WO2020240330A1 - 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置 - Google Patents

発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置 Download PDF

Info

Publication number
WO2020240330A1
WO2020240330A1 PCT/IB2020/054664 IB2020054664W WO2020240330A1 WO 2020240330 A1 WO2020240330 A1 WO 2020240330A1 IB 2020054664 W IB2020054664 W IB 2020054664W WO 2020240330 A1 WO2020240330 A1 WO 2020240330A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
organic compound
emitting device
light
layer
Prior art date
Application number
PCT/IB2020/054664
Other languages
English (en)
French (fr)
Inventor
渡部剛吉
植田藍莉
大澤信晴
瀬尾哲史
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to JP2021523125A priority Critical patent/JPWO2020240330A1/ja
Priority to US17/612,299 priority patent/US20220223812A1/en
Priority to KR1020217042090A priority patent/KR20220015423A/ko
Priority to CN202080040579.8A priority patent/CN113906569A/zh
Publication of WO2020240330A1 publication Critical patent/WO2020240330A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • One aspect of the present invention relates to a light emitting device, a light emitting device, a light emitting module, an electronic device, and a lighting device.
  • One aspect of the present invention is not limited to the above technical fields.
  • the technical fields of one aspect of the present invention include semiconductor devices, display devices, light emitting devices, power storage devices, storage devices, electronic devices, lighting devices, input devices (for example, touch sensors), input / output devices (for example, touch panels, etc.). ), Their driving method, or their manufacturing method can be given as an example.
  • organic EL devices also referred to as organic EL devices and organic EL elements
  • EL organic electroluminescence
  • the basic configuration of an organic EL device is such that a layer containing a luminescent organic compound (hereinafter, also referred to as a light emitting layer) is sandwiched between a pair of electrodes. By applying a voltage to this organic EL device, light emission from a luminescent organic compound can be obtained.
  • a luminescent organic compound hereinafter, also referred to as a light emitting layer
  • Examples of the luminescent organic compound include a compound capable of converting a triplet excited state into luminescence (also referred to as a phosphorescent compound or a phosphorescent material).
  • Patent Document 1 discloses an organometallic complex having iridium or the like as a central metal as a phosphorescent material.
  • image sensors are used in various applications such as personal authentication, defect analysis, medical diagnosis, and security-related applications.
  • the wavelength of the light source used for the image sensor is properly used according to the application.
  • light having various wavelengths such as visible light, short wavelength light such as X-ray, and long wavelength light such as near infrared light is used.
  • light emitting devices are also being studied for application as light sources for image sensors as described above.
  • One of the problems in one aspect of the present invention is to provide a light emitting device that emits near-infrared light and in which visible light is hard to be visually recognized.
  • One of the problems in one aspect of the present invention is to increase the luminous efficiency of a light emitting device that emits near infrared light.
  • One of the problems in one aspect of the present invention is to improve the reliability of a light emitting device that emits near-infrared light.
  • One aspect of the present invention has a light emitting organic compound and a host material in the light emitting layer, the maximum peak wavelength of the light emitting spectrum is 750 nm or more and 900 nm or less, and the brightness A [cd / m 2 ] and the radiance B.
  • [W / sr / m 2 ] is a light emitting device that satisfies 0 ⁇ A / B ⁇ 1 [cd ⁇ sr / W].
  • One aspect of the present invention has a light emitting organic compound and a host material in the light emitting layer, the maximum peak wavelength of the light emitting spectrum is 750 nm or more and 900 nm or less, and the brightness A [cd / m 2 ] and the radiance B.
  • [W / sr / m 2 ] is a light emitting device that satisfies 0 ⁇ A / B ⁇ 1 [cd ⁇ sr / W].
  • the difference between the HOMO level and the LUMO level in the host material is preferably 1.35 eV or more and 2.25 eV or less.
  • the host material preferably has a first organic compound and a second organic compound.
  • the HOMO level of the first organic compound is preferably higher than the HOMO level of the second organic compound.
  • the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is preferably smaller than the difference between the HOMO level and the LUMO level of the luminescent organic compound.
  • the first organic compound and the second organic compound are preferably substances that form an excited complex.
  • the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is preferably 1.35 eV or more and 2.25 eV or less.
  • One aspect of the present invention has a luminescent organic compound and a host material in the light emitting layer, the maximum peak wavelength of the luminescence spectrum is 750 nm or more and 900 nm or less, and the HOMO level of the host material is the luminescent organic compound.
  • the difference between the HOMO level and the LUMO level of the host material is smaller than the difference between the HOMO level and the LUMO level of the luminescent organic compound, which is 0.4 eV or more higher than the HOMO level of the light emitting device. Is.
  • the difference between the HOMO level and the LUMO level in the host material is preferably 1.35 eV or more and 2.25 eV or less.
  • One aspect of the present invention has a luminescent organic compound and a host material in the light emitting layer, the maximum peak wavelength of the emission spectrum is 750 nm or more and 900 nm or less, and the host material is the first organic compound and the second organic compound.
  • the HOMO level of the first organic compound is 0.4 eV or more higher than the HOMO level of the luminescent organic compound
  • the HOMO level of the first organic compound is the second organic compound.
  • the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is higher than the difference between the HOMO level and the LUMO level of the luminescent organic compound. It is a small, light emitting device.
  • the first organic compound and the second organic compound are preferably substances that form an excited complex.
  • the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is preferably 1.35 eV or more and 2.25 eV or less.
  • the rising wavelength of the maximum peak on the short wavelength side in the emission spectrum is preferably 650 nm or more.
  • the luminescent organic compound preferably has a rising wavelength of 650 nm or more on the short wavelength side of the maximum peak of the PL spectrum in the solution.
  • the external quantum efficiency of the light emitting device is preferably 1% or more.
  • the luminescent organic compound is preferably an organometallic complex having a metal-carbon bond.
  • the organometallic complex preferably has a condensed complex aromatic ring having 2 or more and 5 or less rings.
  • the fused complex aromatic ring is preferably coordinated to a metal.
  • the luminescent organic compound is preferably a cyclometal complex.
  • the luminescent organic compound is preferably an orthometal complex.
  • the luminescent organic compound is preferably an iridium complex.
  • One aspect of the present invention is a light emitting device having a light emitting device having any of the above configurations and one or both of a transistor and a substrate.
  • One aspect of the present invention is a module having the above light emitting device and attached with a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or TCP (Tape Carrier Package), or a COG (Chip).
  • a connector such as a flexible printed circuit board (hereinafter referred to as FPC) or TCP (Tape Carrier Package), or a COG (Chip).
  • FPC flexible printed circuit board
  • TCP Tape Carrier Package
  • COG Chip
  • It is a light emitting module such as a light emitting module in which an integrated circuit (IC) is mounted by an On Glass method or a COF (Chip On Film) method.
  • the light emitting module of one aspect of the present invention may have only one of the connector and the IC, or may have both.
  • One aspect of the present invention is an electronic device having the above-mentioned light emitting module and at least one of an antenna, a battery, a housing, a camera, a speaker, a microphone, and an operation button.
  • One aspect of the present invention is a lighting device having the above-mentioned light emitting device and at least one of a housing, a cover, and a support base.
  • the present invention it is possible to provide a light emitting device that emits near infrared light and in which visible light is hard to be visually recognized.
  • the luminous efficiency of a light emitting device that emits near infrared light can be increased.
  • the reliability of a light emitting device that emits near infrared light can be enhanced.
  • FIG. 1A to 1C are diagrams showing an example of a light emitting device.
  • FIG. 2A is a top view showing an example of the light emitting device.
  • 2B and 2C are cross-sectional views showing an example of a light emitting device.
  • FIG. 3A is a top view showing an example of the light emitting device.
  • FIG. 3B is a cross-sectional view showing an example of a light emitting device.
  • 4A to 4E are diagrams showing an example of an electronic device.
  • FIG. 5 is a cross-sectional view showing a light emitting device of the embodiment.
  • FIG. 6 is a diagram showing an emission spectrum of the light emitting device of the example.
  • FIG. 7 is a diagram showing an emission spectrum of the light emitting device of the example.
  • FIG. 8 is a diagram showing emission spectra of the light emitting device and the mixed film of the example.
  • FIG. 9 is a diagram showing emission spectra of the light emitting device and the mixed film of the example.
  • FIG. 10 is a diagram showing emission spectra of the light emitting device and the mixed film of the example.
  • FIG. 11 is a diagram showing emission spectra of the light emitting device and the mixed film of the example.
  • FIG. 12 is a diagram showing an absorption spectrum of [Ir (dmdppbq) 2 (dpm)].
  • FIG. 13 is a diagram showing an emission spectrum of [Ir (dmdppbq) 2 (dpm)].
  • membrane and the word “layer” can be interchanged with each other in some cases or depending on the situation.
  • conductive layer can be changed to the term “conductive layer”.
  • insulating film can be changed to the term “insulating layer”.
  • the light emitting device of one aspect of the present invention has a light emitting organic compound (also referred to as a guest material) and a host material in the light emitting layer.
  • a light emitting organic compound also referred to as a guest material
  • a host material in the light emitting layer.
  • the maximum peak wavelength (wavelength having the highest peak intensity) of the light emitting spectrum is 750 nm or more and 900 nm or less, preferably 780 nm or more, and also. , 880 nm or less is preferable.
  • the brightness A [cd / m 2 ] and the radiance B [W / sr / m 2 ] satisfy 0 ⁇ A / B ⁇ 1 [cd ⁇ sr / W]. Is preferable. Alternatively, it is preferable that the brightness A [cd / m 2 ] and the radiance B [W / sr / m 2 ] satisfy 0 ⁇ A / B ⁇ 1 [cd ⁇ sr / W].
  • visible light emission derived from the host material may be visually recognized.
  • the light emission of the host material is light having a wavelength having low visibility.
  • Examples of light having a wavelength having low luminosity factor include ultraviolet light to blue light and red light to near infrared light.
  • the light emitting spectrum may further have a peak at 435 nm or less, or 565 nm or more and 900 nm or less.
  • the wavelength of the peak is preferably 600 nm or more, and preferably 800 nm or less.
  • the absorption band that is considered to contribute most to light emission is the absorption wavelength corresponding to the direct transition from the single-term ground state to the triple-term excited state. In the vicinity, it is the absorption band that appears on the longest wavelength side (low energy side). From this, it is preferable that the emission spectrum (fluorescence spectrum and phosphorescence spectrum) of the host material largely overlaps with the absorption band on the longest wavelength side (low energy side) of the absorption spectrum of the phosphorescence material. As a result, the excitation energy is smoothly transferred from the host material to the guest material. Then, the excitation energy of the host material is converted into the excitation energy of the guest material, so that the guest material emits light efficiently.
  • the emission wavelength of the host material is a long wavelength.
  • the light emitted from the host material is long-wavelength light, it is possible to realize a light emitting device that makes it difficult to visually recognize the emission of visible light (derived from the host material) and efficiently emits near-infrared light.
  • the luminosity factor of the light emitted from the host material can be lowered, and the excitation energy is efficiently transferred from the host material to the guest material. Therefore, it is preferable.
  • the HOMO level of the host material is preferably 0.4 eV or more higher than the HOMO level of the guest material. Since the HOMO level of the host material is sufficiently higher than the HOMO level of the guest material, the band gap of the host material can be reduced, so that the light emission can have a long wavelength. As a result, the luminosity factor of the light emission of the host material can be lowered. In addition, the transfer of excitation energy from the host material to the guest material occurs efficiently, and a light emitting device that efficiently emits near-infrared light can be realized.
  • the LUMO level and HOMO level of the material can be derived from the electrochemical properties (reduction potential and oxidation potential) of the material measured by cyclic voltammetry (CV) measurement.
  • the difference between the HOMO level and the LUMO level of the host material is preferably smaller than the difference between the HOMO level and the LUMO level of the guest material. Even if the difference between the HOMO level and the LUMO level of the host material is small, the emission of the host material can have a long wavelength.
  • the difference between the HOMO level and the LUMO level in the host material is preferably 1.35 eV or more and 2.25 eV or less.
  • the level difference is preferably 1.55 eV or more, and preferably 1.90 eV or less.
  • the guest material using a phosphorescent material T 1 level position of the guest material than (the lowest energy level of a triplet excited state), the direction of T 1 level position of the host material is high, the light emitting device Luminous efficiency can be increased.
  • the host material can convert the singlet excitation energy into light emission.
  • S 1 level position of the host material (energy level of the lowest singlet excited state) is higher than each of T 1 level position of T 1 level position and the guest material of the host material. In order to make the emission of the host material from red light to near infrared light, it is preferable that the difference between the T 1 level of the guest material and the S 1 level of the host material is small.
  • the difference between the S 1 level and T 1 level position of the host material is small.
  • Thermally activated delayed fluorescence (Thermally Activated Delayed Fluorescence: TADF) material since the difference in S 1 level and T 1 level position is small, can be suitably used as the host material.
  • a first organic compound and a second organic compound may be used as host materials in order to form an excited complex.
  • the first organic compound and the second organic compound are combinations that form an excitation complex.
  • the host material can also be said to be a mixed material of the first organic compound and the second organic compound.
  • the light emitting device of one aspect of the present invention derives from an excitation complex formed by the first organic compound and the second organic compound. Light emission is confirmed. Therefore, in order to make the emission of the excitation complex less visible, it is preferable that the emission of the excitation complex is light having low luminosity factor.
  • the height of the energy level is the HOMO level of the second organic compound ⁇ HOMO level of the first organic compound ⁇ LUMO level of the second organic compound ⁇ LUMO level of the first organic compound.
  • the HOMO level of the first organic compound is preferably 0.4 eV or more higher than the HOMO level of the guest material.
  • the emission of the excited complex can have a long wavelength.
  • the luminosity factor of the excited complex can be lowered.
  • the transfer of excitation energy from the excitation complex to the guest material occurs efficiently, and a light emitting device that efficiently emits near-infrared light can be realized.
  • the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is smaller than the difference between the HOMO level and the LUMO level of the guest material. Even if the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is small, the emission of the excited complex can have a long wavelength.
  • the difference between the HOMO level of the first organic compound and the LUMO level of the second organic compound is preferably 1.35 eV or more and 2.25 eV or less.
  • the level difference is preferably 1.55 eV or more, and preferably 1.90 eV or less.
  • the guest material preferably has a low emission intensity in the visible light region.
  • the rising wavelength of the maximum peak on the short wavelength side in the light emitting spectrum is preferably 650 nm or more.
  • tangent lines are drawn at each point on the curve from the point on the short wavelength side of the emission spectrum of the linear scale to the maximum point on the shortest wavelength side of the maximum points of the spectrum.
  • the slope of this tangent increases as the curve rises (the value on the vertical axis increases).
  • the wavelength at which the tangent line drawn at the point where this slope reaches the maximum value on the shortest wavelength side intersects the origin is defined as the rising wavelength.
  • the maximum point where the value on the vertical axis is 10% or less of the maximum peak is excluded from the above-mentioned maximum point on the shortest wavelength side.
  • the luminescent organic compound (guest material) preferably has a rising wavelength of 650 nm or more on the short wavelength side of the maximum peak of the photoluminescence (PL) spectrum in the solution.
  • the external quantum efficiency of the light emitting device of one aspect of the present invention is preferably 1% or more.
  • the light emitting intensity of the host material or the excitation complex is sufficiently low, so that the external quantum efficiency is the external quantum efficiency calculated from the light emitted from the guest material in the light emitting device, or It can be regarded as the external quantum efficiency calculated from the near-infrared emission in the light emitting device.
  • the external quantum efficiency may be calculated using the data in a predetermined wavelength range. Specifically, the external quantum efficiency may be calculated from the data in the wavelength range of 600 nm or more and 1030 nm or less.
  • the waveform separation of the emission spectrum may be performed to distinguish between the emission derived from the guest material and the emission derived from the host material or the excitation complex, and then the external quantum efficiency may be obtained.
  • the external quantum efficiency calculated from the light emitted from the guest material is preferably 1% or more.
  • the external quantum efficiency calculated from near-infrared emission in the light emitting device of one aspect of the present invention is preferably 1% or more.
  • Luminous organic compounds are preferable because when they emit phosphorescence, the luminous efficiency in the light emitting device can be increased.
  • the luminescent organic compound is preferably an organometallic complex having a metal-carbon bond.
  • the luminescent organic compound is more preferably a cyclometal complex.
  • the luminescent organic compound is preferably an orthometal complex. Since these organic compounds easily emit phosphorescence, the luminous efficiency in the light emitting device can be improved. Therefore, the light emitting device of one aspect of the present invention preferably emits phosphorescence.
  • an organometallic complex having a metal-carbon bond is suitable as a luminescent organic compound because it has high luminescence efficiency and high chemical stability as compared with a porphyrin-based compound or the like.
  • a large valley occurs in the absorption spectrum of the luminescent organic compound (a portion having low intensity occurs).
  • the excitation energy is not smoothly transferred from the host material to the guest material, and the energy transfer efficiency is lowered.
  • the absorption band derived from the triplet MLCT Metal to Ligand Charge Transfer
  • the absorption band derived from the singlet MLCT transition and the triplet ⁇ - ⁇ * Since many absorption bands such as absorption bands derived from transitions overlap, large valleys are unlikely to occur in the absorption spectrum. Therefore, the range of excitation energy values of the material that can be used as the host material can be widened, and the range of selection of the host material can be widened.
  • the luminescent organic compound is preferably an iridium complex.
  • the luminescent organic compound is preferably a cyclometal complex using iridium as the central metal. Since the iridium complex has higher chemical stability than the platinum complex and the like, the reliability of the light emitting device can be improved by using the iridium complex as the luminescent organic compound. From the viewpoint of such stability, an iridium cyclometal complex is preferable, and an iridium orthometal complex is more preferable.
  • the ligand in the organometallic complex preferably has a structure in which condensed heteroaromatic rings having 2 to 5 rings are coordinated to the metal.
  • the condensed complex aromatic ring is preferably 3 or more rings.
  • the condensed complex aromatic ring is preferably 4 rings or less. The more rings the fused complex aromatic ring has, the lower the LUMO level can be, and the longer the emission wavelength of the organometallic complex can be. Further, the smaller the number of fused complex aromatic rings, the higher the sublimation property.
  • the LUMO level of the ligand is appropriately lowered, and while maintaining high sublimation property, the organic derived from the (triplet) MLCT transition.
  • the emission wavelength of the metal complex can be extended to near infrared.
  • the light emitting device of one aspect of the present invention can be formed in a film shape and can easily increase the area, it can be used as a surface light source that emits near infrared light.
  • the light emitting device can hardly visually emit visible light and can efficiently emit near infrared light.
  • a light emitting device By using such a light emitting device, it is possible to realize an electronic device that performs authentication, analysis, diagnosis, etc. using near infrared light.
  • the electronic device In the electronic device, it is possible to suppress that the visible light emitted by the light emitting device becomes noise in authentication, analysis, diagnosis, etc. using near infrared light. As a result, the accuracy of authentication, analysis, diagnosis, etc. can be improved. Further, in electronic devices for security-related and military applications, imaging using near-infrared light can be performed without being noticed by people around.
  • ⁇ Basic structure of light emitting device ⁇ 1A to 1C show an example of a light emitting device having an EL layer between a pair of electrodes.
  • the light emitting device shown in FIG. 1A has a structure (single structure) in which the EL layer 103 is sandwiched between the first electrode 101 and the second electrode 102.
  • the EL layer 103 has at least a light emitting layer.
  • the light emitting device may have a plurality of EL layers between the pair of electrodes.
  • FIG. 1B shows a light emitting device having a tandem structure having two EL layers (EL layer 103a and EL layer 103b) between a pair of electrodes and a charge generating layer 104 between the two EL layers.
  • the light emitting device having a tandem structure can be driven at a low voltage and can reduce power consumption.
  • the charge generation layer 104 injects electrons into one of the EL layer 103a and the EL layer 103b and creates holes in the other. Has the function of injecting. Therefore, in FIG. 1B, when a voltage is applied to the first electrode 101 so that the potential is higher than that of the second electrode 102, electrons are injected from the charge generation layer 104 into the EL layer 103a, and holes are injected into the EL layer 103b. Is injected.
  • the charge generation layer 104 transmits near-infrared light from the viewpoint of light extraction efficiency (specifically, the transmittance of the charge generation layer 104 for near-infrared light is 40% or more). Is preferable. Further, the charge generation layer 104 functions even if the conductivity is lower than that of the first electrode 101 and the second electrode 102.
  • FIG. 1C shows an example of the laminated structure of the EL layer 103.
  • the EL layer 103 has a structure in which a hole injection layer 111, a hole transport layer 112, a light emitting layer 113, an electron transport layer 114, and an electron injection layer 115 are sequentially laminated on the first electrode 101.
  • the hole injection layer 111, the hole transport layer 112, the light emitting layer 113, the electron transport layer 114, and the electron injection layer 115 may each have a single layer structure or a laminated structure. Even when a plurality of EL layers are provided as in the tandem structure shown in FIG. 1B, the same laminated structure as the EL layer 103 shown in FIG. 1C can be applied to each EL layer.
  • the stacking order is reversed.
  • the light emitting layer 113 has a light emitting substance or a plurality of substances in an appropriate combination, and can be configured to obtain fluorescent light emission or phosphorescent light emission having a desired wavelength.
  • the EL layer 103a and the EL layer 103b shown in FIG. 1B may be configured to emit wavelengths different from each other.
  • the light emitted from the EL layer may be resonated between the pair of electrodes to enhance the obtained light emission.
  • the first electrode 101 is a reflecting electrode (an electrode having reflectivity to near-infrared light)
  • the second electrode 102 is a semi-transmissive / semi-reflecting electrode (to near-infrared light).
  • a micro-optical resonator (microcavity) structure can be formed, thereby enhancing the light emission obtained from the EL layer 103.
  • the first electrode 101 of the light emitting device is a reflective electrode having a laminated structure of a conductive film having reflectivity for near-infrared light and a conductive film having translucency for near-infrared light.
  • the optical adjustment can be performed by controlling the film thickness of the light-transmitting conductive film.
  • the distance between the first electrode 101 and the second electrode 102 is close to m ⁇ / 2 (where m is a natural number) with respect to the wavelength ⁇ of the light obtained from the light emitting layer 113. It is preferable to adjust so as to.
  • the optical distance from the first electrode 101 to the region (light emitting region) where the desired light of the light emitting layer 113 can be obtained, and the first. Adjust the optical distance from the electrode 102 of 2 to the region (light emitting region) where the desired light of the light emitting layer 113 is obtained so as to be close to (2 m'+ 1) ⁇ / 4 (however, m'is a natural number). It is preferable to do so.
  • the light emitting region referred to here means a recombination region of holes and electrons in the light emitting layer 113.
  • the spectrum of light obtained from the light emitting layer 113 can be narrowed, and light emission of a desired wavelength can be obtained.
  • the optical distance between the first electrode 101 and the second electrode 102 is, strictly speaking, the total thickness from the reflection region of the first electrode 101 to the reflection region of the second electrode 102. it can.
  • the optical distance between the first electrode 101 and the light emitting layer from which the desired light can be obtained is, strictly speaking, the optical distance between the reflection region at the first electrode 101 and the light emitting region at the light emitting layer where the desired light can be obtained. It can be said that it is a distance.
  • an arbitrary position of the first electrode 101 can be set as the reflection region, which is desired. It is assumed that the above-mentioned effect can be sufficiently obtained by assuming that an arbitrary position of the light emitting layer from which light is obtained is a light emitting region.
  • At least one of the first electrode 101 and the second electrode 102 is an electrode having translucency with respect to near-infrared light.
  • the transmittance of the near-infrared light of the electrode having transparency to the near-infrared light is 40% or more.
  • the electrode having translucency with respect to near-infrared light is the semi-transmissive / semi-reflecting electrode
  • the reflectance of the near-infrared light of the electrode is 20% or more, preferably 40% or more. Further, it is less than 100%, preferably 95% or less, and may be 80% or less or 70% or less.
  • the reflectance of near-infrared light of the electrode is 20% or more and 80% or less, preferably 40% or more and 70% or less.
  • the resistivity of the electrode is preferably 1 ⁇ 10 -2 ⁇ cm or less.
  • the reflectance of near-infrared light of the reflecting electrode is 40% or more and 100% or less, preferably 70% or more and 100% or less.
  • the resistivity of this electrode is preferably 1 ⁇ 10 -2 ⁇ cm or less.
  • the following materials can be appropriately combined and used as long as the functions of both electrodes described above can be satisfied.
  • metals, alloys, electrically conductive compounds, and mixtures thereof can be appropriately used. Specific examples thereof include In—Sn oxide (also referred to as ITO), In—Si—Sn oxide (also referred to as ITSO), In—Zn oxide, and In—W—Zn oxide.
  • Indium (In), Tin (Sn), Molybdenum (Mo), Tantal (Ta), Tungsten (W), Palladium (Pd), Gold (Au), Platinum (Pt), Silver (Ag), Yttrium (Y) ), Neodymium (Nd) and other metals, and alloys containing these in appropriate combinations can also be used.
  • Other elements belonging to Group 1 or Group 2 of the Periodic Table of Elements not illustrated above eg, lithium (Li), cesium (Cs), calcium (Ca), strontium (Sr)), europium (Eu), ytterbium Rare earth metals such as (Yb) and alloys containing them in appropriate combinations, graphene and the like can be used.
  • the first electrode 101 is formed as a reflective electrode
  • the second electrode 102 is formed as a semitransmissive / semireflective electrode. Therefore, it can be formed in a single layer or laminated by using one or more desired conductive materials.
  • the second electrode 102 is formed by selecting a material in the same manner as described above after forming the EL layer 103. Further, a sputtering method or a vacuum vapor deposition method can be used for producing these electrodes.
  • the hole injection layer 111 and the hole transport layer 112 are sequentially laminated and formed on the first electrode 101 by a vacuum vapor deposition method.
  • the hole injection layer 111 is a layer for injecting holes into the EL layer 103 from the first electrode 101, which is an anode, and is a layer containing a material having high hole injection properties.
  • molybdenum oxide, vanadium oxide, ruthenium oxide, tungsten oxide, transition metal oxides such as manganese oxide, phthalocyanine (abbreviation: H 2 Pc) or copper phthalocyanine (abbreviation: A phthalocyanine-based compound such as CuPc) can be used.
  • Materials with high hole injection properties include 4,4', 4'-tris (N, N-diphenylamino) triphenylamine (abbreviation: TDATA), 4,4', 4''-tris [N-]. (3-Methylphenyl) -N-phenylamino] triphenylamine (abbreviation: MTDATA), 4,4'-bis [N- (4-diphenylaminophenyl) -N-phenylamino] biphenyl (abbreviation: DPAB), 4,4'-Bis (N- ⁇ 4- [N'-(3-methylphenyl) -N'-phenylamino] phenyl ⁇ -N-phenylamino) Biphenyl (abbreviation: DNTPD), 1,3,5- Tris [N- (4-diphenylaminophenyl) -N-phenylamino] benzene (abbreviation: DPA3B), 3- [N- (9-pheny
  • Materials with high hole injection properties include poly (N-vinylcarbazole) (abbreviation: PVK), poly (4-vinyltriphenylamine) (abbreviation: PVTPA), and poly [N- (4- ⁇ N'-[ 4- (4-Diphenylamino) phenyl] phenyl-N'-phenylamino ⁇ phenyl) methacrylamide] (abbreviation: PTPDMA), poly [N, N'-bis (4-butylphenyl) -N, N'-bis (Phenyl) benzidine] (abbreviation: Poly-TPD) and the like can be used.
  • PVK poly (N-vinylcarbazole)
  • PVTPA poly (4-vinyltriphenylamine)
  • PTPDMA poly [N- (4- ⁇ N'-[ 4- (4-Diphenylamino) phenyl] phenyl-N'-phenylamino ⁇ phenyl) me
  • a polymer compound to which an acid such as poly (3,4-ethylenedioxythiophene) / poly (styrene sulfonic acid) (abbreviation: PEDOT / PSS) or polyaniline / poly (styrene sulfonic acid) (Pani / PSS) is added. Etc. can also be used.
  • a composite material containing a hole transporting material and an acceptor material can also be used.
  • electrons are extracted from the hole transporting material by the acceptor material, holes are generated in the hole injection layer 111, and holes are injected into the light emitting layer 113 via the hole transport layer 112.
  • the hole injection layer 111 may be formed of a single layer made of a composite material containing a hole transporting material and an acceptor material, and the hole transport material and the acceptor material may be formed of separate layers. It may be formed by laminating.
  • the hole transport layer 112 is a layer that transports the holes injected from the first electrode 101 to the light emitting layer 113 by the hole injection layer 111.
  • the hole transport layer 112 is a layer containing a hole transport material.
  • oxides of metals belonging to Group 4 to Group 8 in the Periodic Table of the Elements can be used. Specific examples thereof include molybdenum oxide, vanadium oxide, niobium oxide, tantalum oxide, chromium oxide, tungsten oxide, manganese oxide and rhenium oxide. Of these, molybdenum oxide is particularly preferable because it is stable in the atmosphere, has low hygroscopicity, and is easy to handle.
  • organic acceptors such as quinodimethane derivatives, chloranil derivatives, and hexaazatriphenylene derivatives can be used.
  • an electron-withdrawing group (a halogen group or a cyano group) is 7,7,8,8-(abbreviation: F 4 -TCNQ), chloranil, 2,3,6,7,10,11-hexacyano-1,4,5,8,9,12-hexaazatriphenylene (abbreviation: HAT-CN), 1,3,4,5,7,8-hexa Fluorotetracyano-naphthoquinodimethane (abbreviation: F6-TCNNQ) and the like can be mentioned.
  • a compound such as HAT-CN in which an electron-withdrawing group is bonded to a condensed aromatic ring having a plurality of complex atoms is thermally stable and preferable.
  • the [3] radialene derivative having an electron-withdrawing group is preferable because it has very high electron acceptability, and specifically, ⁇ , ⁇ ', ⁇ ''-.
  • 1,2,3-Cyclopropanetriylidentris [4-cyano-2,3,5,6-tetrafluorobenzene acetonitrile], ⁇ , ⁇ ', ⁇ ''-1,2,3-cyclopropanetriiridentris [2,6-dichloro-3,5-difluoro-4- (trifluoromethyl) benzeneacetonitrile], ⁇ , ⁇ ', ⁇ ''-1,2,3-cyclopropanetriylidentris [2,3,4 , 5,6-Pentafluorobenzene acetonitrile] and the like.
  • the hole transporting material used for the hole injection layer 111 and the hole transport layer 112 a substance having a hole mobility of 10-6 cm 2 / Vs or more is preferable.
  • any substance other than these can be used as long as it is a substance having a higher hole transport property than electrons.
  • the hole-transporting material examples include materials having high hole-transporting properties such as ⁇ -electron-rich heteroaromatic compounds (for example, carbazole derivatives, thiophene derivatives, furan derivatives, etc.) and aromatic amines (compounds having an aromatic amine skeleton). Is preferable.
  • materials having high hole-transporting properties such as ⁇ -electron-rich heteroaromatic compounds (for example, carbazole derivatives, thiophene derivatives, furan derivatives, etc.) and aromatic amines (compounds having an aromatic amine skeleton). Is preferable.
  • Examples of the carbazole derivative (compound having a carbazole skeleton) include a carbazole derivative (for example, a 3,3'-bicarbazole derivative), an aromatic amine having a carbazolyl group, and the like.
  • bicarbazole derivative for example, 3,3'-bicarbazole derivative
  • PCCP 3,3'-bis (9-phenyl-9H-carbazole)
  • 9,9'-bis (1,1'-biphenyl-4-yl) -3,3'-bi-9H-carbazole
  • 9,9'-bis (1,1'-biphenyl-3-yl) -3,3'-bi- 9H-carbazole
  • 9- (2-naphthyl) -9'-phenyl-9H, 9'H-3,3'-bicarbazole abbreviation: ⁇ NCCP
  • aromatic amine having a carbazolyl group examples include 4-phenyl-4'-(9-phenyl-9H-carbazole-3-yl) triphenylamine (abbreviation: PCBA1BP) and N- (4-biphenyl).
  • PCBiF N- (1,1'-biphenyl-4-yl) ) -N- [4- (9-phenyl-9H-carbazole-3-yl) phenyl] -9,9-dimethyl-9H-fluoren-2-amine
  • PCBBiF 4,4'-diphenyl-4 ''-(9-Phenyl-9H-carbazole-3-yl) triphenylamine
  • PCBBi1BP 4- (1-naphthyl) -4'-(9-phenyl-9H-carbazole-3-yl) tri Phenylamine (abbreviation: PCBANB), 4,4'-di (1-naphthyl) -4''- (9-phenyl-9H-carbazole-3-yl) tri Phenylamine (abbreviation: PCBANB), 4,4'-di (1-naphthyl) -4''- (9-phenyl-9H-carbazol
  • carbazole derivative examples include 3- [4- (9-phenanthryl) -phenyl] -9-phenyl-9H-carbazole (abbreviation: PCPPn) and 3- [4- (1-naphthyl) -phenyl] in addition to the above.
  • PCPN 1,3-bis (N-carbazolyl) benzene
  • mCP 1,3-bis (N-carbazolyl) benzene
  • CBP 4,4'-di (N-carbazolyl) biphenyl
  • CzTP 3,3,5-diphenylphenyl) -9-phenylcarbazole
  • TCPB 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene
  • TCPB 1,3,5-tris [4- (N-carbazolyl) phenyl] benzene
  • CzPA 9- [ 4- (10-phenyl-9-anthracenyl) phenyl] -9H-carbazole
  • thiophene derivative compound having a thiophene skeleton
  • furan derivative compound having a furan skeleton
  • aromatic amine examples include 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB or ⁇ -NPD) and N, N'-bis (3).
  • polymer compounds such as PVK, PVTPA, PTPDMA, and Poly-TPD can also be used.
  • the hole transporting material is not limited to the above, and various known materials can be used for the hole injection layer 111 and the hole transport layer 112 in combination of one or a plurality of known materials.
  • the light emitting layer 113 is formed on the hole transport layer 112 by a vacuum vapor deposition method.
  • the light emitting layer 113 is a layer containing a light emitting substance.
  • the light emitting device of one aspect of the present invention has a luminescent organic compound as a light emitting substance.
  • the luminescent organic compound emits near-infrared light.
  • the maximum peak wavelength of light emitted by a luminescent organic compound is larger than 750 nm and 900 nm or less.
  • a luminescent organic compound for example, bis ⁇ 4,6-dimethyl-2- [3- (3,5-dimethylphenyl)-, which is an organometallic complex shown as a guest material (phosphorescent material) in Examples described later.
  • 2-Benzo [g] quinoxalinyl- ⁇ N] phenyl- ⁇ C ⁇ (2,2,6,6-tetramethyl-3,5-heptandionat- ⁇ 2 O, O') Iridium (III) (abbreviation: [Ir (dmdbpbq) ) 2 (dpm)]) can be used.
  • luminescent organic compound for example, tetraphenyltetrabenzoporphyrin platinum (II) can be used.
  • the light emitting layer 113 can have one or more kinds of light emitting substances.
  • the light emitting layer 113 has one or more kinds of organic compounds (host material) in addition to the light emitting substance (guest material).
  • the one or more kinds of organic compounds one or both of the hole transporting material and the electron transporting material described in this embodiment can be used. Further, a bipolar material may be used as one or more kinds of organic compounds.
  • the luminescent material that can be used for the light emitting layer 113 is not particularly limited, and is a luminescent material that converts the singlet excitation energy into light emission in the near infrared light region, or a luminescent material that converts triplet excitation energy into light emission in the near infrared light region. Substances can be used.
  • Examples of the luminescent substance that converts the single-term excitation energy into light emission include a substance that emits fluorescence (fluorescent material).
  • examples thereof include quinoxalin derivatives, quinoxalin derivatives, pyridine derivatives, pyrimidine derivatives, phenanthrene derivatives and naphthalene derivatives.
  • Examples of the luminescent substance that converts triplet excitation energy into light emission include a substance that emits phosphorescence (phosphorescent material) and a TADF material that exhibits thermal activated delayed fluorescence.
  • an organic metal complex having a 4H-triazole skeleton, a 1H-triazole skeleton, an imidazole skeleton, a pyrimidine skeleton, a pyrazine skeleton, or a pyridine skeleton (particularly an iridium complex), or a phenylpyridine derivative having an electron-withdrawing group is arranged.
  • examples thereof include an organic metal complex (particularly an iridium complex), a platinum complex, and a rare earth metal complex as a ligand.
  • one or a plurality of substances having an energy gap larger than the energy gap of the light emitting substance can be selected and used.
  • the organic compound used in combination with the luminescent material has a large energy level in the singlet excited state and a small energy level in the triplet excited state. Is preferable.
  • the organic compounds that can be used in combination with the luminescent material include anthracene derivatives, tetracene derivatives, phenanthrene derivatives, pyrene derivatives, chrysene derivatives, and dibenzo [g, p] chrysene derivatives. Examples include ring aromatic compounds.
  • organic compound (host material) used in combination with the fluorescent material examples include 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA), 3, 6-Diphenyl-9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: DPCzPA), PCPN, 9,10-diphenylanthracene (abbreviation: DPAnth), N, N-diphenyl- 9- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole-3-amine (abbreviation: CzA1PA), 4- (10-phenyl-9-anthryl) triphenylamine (abbreviation: DPhPA), 4- (9H-carbazole-9-yl) -4'-(10-phenyl-9-anthril) triphenylamine (abbreviation: PC
  • the organic compound used in combination with the luminescent material is an organic compound having a triplet excitation energy larger than the triplet excitation energy (energy difference between the base state and the triplet excited state) of the luminescent material. You just have to select.
  • a plurality of organic compounds for example, a first host material and a second host material
  • a luminescent material for example, a phosphorescent material
  • these multiple organic compounds are used as a phosphorescent material (particularly an organometallic complex). ) And it is preferable to use it.
  • ExTET Extra-Triplet Energy Transfer
  • the combination of a plurality of organic compounds is preferably one in which an excitation complex is easily formed, and a compound that easily receives holes (hole transporting material) and a compound that easily receives electrons (electron transporting material) are combined. Is particularly preferred.
  • the hole transporting material and the electron transporting material the materials shown in the present embodiment can be used. With this configuration, high efficiency, low voltage, and long life of the light emitting device can be realized at the same time.
  • Examples of the organic compound that can be used in combination with the luminescent substance when the luminescent substance is a phosphorescent material include aromatic amines, carbazole derivatives, dibenzothiophene derivatives, dibenzofuran derivatives, zinc and aluminum-based metal complexes, and oxadiazole derivatives.
  • Examples thereof include triazole derivatives, benzoimidazole derivatives, quinoxalin derivatives, dibenzoquinoxalin derivatives, pyrimidine derivatives, triazine derivatives, pyridine derivatives, bipyridine derivatives, phenanthroline derivatives and the like.
  • aromatic amines compounds having an aromatic amine skeleton
  • carbazole derivatives dibenzothiophene derivatives (thiophene derivatives)
  • dibenzofuran derivatives dibenzofuran derivatives (furan derivatives)
  • hole transporting material shown above.
  • zinc and aluminum-based metal complexes that are organic compounds with high electron transport properties include tris (8-quinolinolato) aluminum (III) (abbreviation: Alq) and tris (4-methyl-8-quinolinolato) aluminum.
  • III) abbreviation: Almq 3
  • bis (10-hydroxybenzo [h] quinolinato) berylium (II) abbreviation: BeBq 2
  • metal complexes having a quinoline skeleton or a benzoquinolin skeleton such as (III) (abbreviation: BAlq) and bis (8-quinolinolato) zinc (II) (abbreviation: Znq).
  • oxazoles such as bis [2- (2-benzothazolyl) phenolato] zinc (II) (abbreviation: ZnPBO) and bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ)
  • ZnPBO bis [2- (2-benzothazolyl) phenolato] zinc
  • ZnBTZ bis [2- (2-benzothiazolyl) phenolato] zinc
  • oxadiazole derivative triazole derivative
  • benzoimidazole derivative benzoimidazole derivative
  • quinoxalin derivative dibenzoquinoxalin derivative
  • phenylanthrolin derivative which are organic compounds having high electron transport properties
  • heterocyclic compound having a diazine skeleton the heterocyclic compound having a triazine skeleton, and the heterocyclic compound having a pyridine skeleton, which are organic compounds having high electron transport properties, are 4,6-bis [3- (phenanthrene-).
  • organic compounds having high electron transport properties examples include poly (2,5-pyridinediyl) (abbreviation: PPy) and poly [(9,9-dihexylfluorene-2,7-diyl) -co- (pyridine-3,5). -Diyl)] (abbreviation: PF-Py), poly [(9,9-dioctylfluorene-2,7-diyl) -co- (2,2'-bipyridine-6,6'-diyl)] (abbreviation: A high molecular compound such as PF-BPy) can also be used.
  • the TADF material is a material that has a small difference between the S 1 level and the T 1 level and has a function of converting energy from triplet excitation energy to singlet excitation energy by intersystem crossing. Therefore, the triplet excited energy can be up-converted to the singlet excited energy by a small amount of heat energy (intersystem crossing), and the singlet excited state can be efficiently generated. In addition, triplet excitation energy can be converted into light emission.
  • the conditions for thermally activated delayed fluorescence is efficiently obtained, the energy difference between the S 1 level and T 1 level position is 0eV than 0.2eV or less, preferably not more than 0.1eV than 0eV.
  • delayed fluorescence in TADF materials refers to emission that has a spectrum similar to that of normal fluorescence but has a significantly long lifetime. Its life is 10-6 seconds or longer, preferably 10-3 seconds or longer.
  • a phosphorescence spectrum observed at a low temperature may be used as an index of the T 1 level.
  • the TADF material drawing a tangential line at the short wavelength side of the hem of the fluorescence spectrum, the energy of the wavelength of the extrapolation and S 1 levels, drawing a tangential line at the short wavelength side of the hem of the phosphorescence spectrum, its extrapolation the energy of the wavelength of the line upon the T 1 level position, it is preferable that difference between the S 1 level and T 1 level position is below 0.3 eV, and more preferably less 0.2 eV.
  • the TADF material may be used as a guest material or as a host material.
  • Examples of the TADF material include fullerenes and derivatives thereof, acridine derivatives such as proflavin, and eosin.
  • Examples thereof include metal-containing porphyrins containing magnesium (Mg), zinc (Zn), cadmium (Cd), tin (Sn), platinum (Pt), indium (In), palladium (Pd) and the like.
  • Examples of the metal-containing porphyrin include protoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Proto IX)), mesoporphyrin-tin fluoride complex (abbreviation: SnF 2 (Meso IX)), and hematoporphyrin-tin fluoride.
  • a heterocyclic compound having can be used.
  • a substance in which a ⁇ -electron-rich heteroaromatic ring and a ⁇ -electron-deficient heteroaromatic ring are directly bonded has a stronger donor property of the ⁇ -electron-rich heteroaromatic ring and a stronger acceptability of the ⁇ -electron-deficient heteroaromatic ring. , It is particularly preferable because the energy difference between the single-term excited state and the triple-term excited state becomes small.
  • TADF material When a TADF material is used, it can also be used in combination with other organic compounds. In particular, it can be combined with the host material, hole transport material, and electron transport material described above.
  • the above material can be used for forming the light emitting layer 113 by combining with a low molecular weight material or a high molecular weight material. Further, a known method (evaporation method, coating method, printing method, etc.) can be appropriately used for film formation.
  • the electron transport layer 114 is formed on the light emitting layer 113.
  • the electron transport layer 114 is a layer that transports the electrons injected from the second electrode 102 to the light emitting layer 113 by the electron injection layer 115.
  • the electron transport layer 114 is a layer containing an electron transport material.
  • the electron-transporting material used for the electron-transporting layer 114 is preferably a substance having an electron mobility of 1 ⁇ 10-6 cm 2 / Vs or more. In addition, any substance other than these can be used as long as it is a substance having a higher electron transport property than holes.
  • Examples of the electron-transporting material include a metal complex having a quinoline skeleton, a metal complex having a benzoquinoline skeleton, a metal complex having an oxazole skeleton, a metal complex having a thiazole skeleton, and the like, as well as an oxazole derivative, a triazole derivative, and an imidazole derivative.
  • ⁇ electron deficiency including oxazole derivative, thiazole derivative, phenanthroline derivative, quinoline derivative having quinoline ligand, benzoquinoline derivative, quinoxalin derivative, dibenzoquinoxaline derivative, pyridine derivative, bipyridine derivative, pyrimidine derivative, and other nitrogen-containing heteroaromatic compounds
  • a material having high electron transport property such as a type heteroaromatic compound can be used.
  • the material shown above can be used.
  • an electron injection layer 115 is formed on the electron transport layer 114 by a vacuum vapor deposition method.
  • the electron injection layer 115 is a layer containing a substance having a high electron injection property.
  • the electron injection layer 115 contains an alkali metal such as lithium fluoride (LiF), cesium fluoride (CsF), calcium fluoride (CaF 2 ), lithium oxide (LiO x ), or an alkaline earth metal, or the like. Compounds can be used. In addition, rare earth metal compounds such as erbium fluoride (ErF 3 ) can be used. Further, an electlide may be used for the electron injection layer 115. Examples of the electride include a substance in which a high concentration of electrons is added to a mixed oxide of calcium and aluminum. The substance constituting the electron transport layer 114 described above can also be used.
  • a composite material containing an electron transporting material and a donor material may be used for the electron injection layer 115.
  • a composite material is excellent in electron injection property and electron transport property because electrons are generated in the organic compound by the electron donor.
  • the organic compound is preferably a material excellent in transporting generated electrons, and specifically, for example, an electron transporting material (metal complex, heteroaromatic compound, etc.) used for the above-mentioned electron transport layer 114. ) Can be used.
  • the electron donor may be any substance that exhibits electron donating property to the organic compound.
  • alkali metals, alkaline earth metals and rare earth metals are preferable, and lithium, cesium, magnesium, calcium, erbium, ytterbium and the like can be mentioned.
  • alkali metal oxides and alkaline earth metal oxides are preferable, and lithium oxides, calcium oxides, barium oxides and the like can be mentioned.
  • a Lewis base such as magnesium oxide can also be used.
  • an organic compound such as tetrathiafulvalene (abbreviation: TTF) can also be used.
  • the charge generation layer 104 injects electrons into the EL layer 103a when a voltage is applied between the first electrode 101 (anode) and the second electrode 102 (cathode). , Has a function of injecting holes into the EL layer 103b.
  • the charge generation layer 104 may have a structure including a hole transporting material and an acceptor material (electron acceptor material), or may have a structure including an electron transporting material and a donor material. By forming the charge generation layer 104 having such a configuration, it is possible to suppress an increase in the drive voltage when the EL layers are laminated.
  • the hole transporting material As the hole transporting material, the accepting material, the electron transporting material, and the donor material, the above-mentioned materials can be used.
  • a vacuum process such as a vapor deposition method or a solution process such as a spin coating method or an inkjet method can be used to fabricate the light emitting device shown in the present embodiment.
  • a physical vapor deposition method PVD method
  • a sputtering method such as a sputtering method, an ion plating method, an ion beam vapor deposition method, a molecular beam deposition method, or a vacuum vapor deposition method, or a chemical vapor deposition method (CVD method) is used.
  • PVD method physical vapor deposition method
  • CVD method chemical vapor deposition method
  • a vapor deposition method vacuum vapor deposition method, etc.
  • a coating method dip
  • Coating method die coating method, bar coating method, spin coating method, spray coating method, etc.
  • printing method inkprint method, screen (hole plate printing) method, offset (flat plate printing) method, flexo (letter plate printing) method, gravure method, It can be formed by a method such as microcontact method).
  • the materials of the functional layer and the charge generation layer constituting the EL layer 103 are not limited to the above-mentioned materials, respectively.
  • a high molecular compound oligoform, dendrimer, polymer, etc.
  • a medium molecular compound compound in the intermediate region between low molecular weight and high molecular weight: molecular weight 400 to 4000
  • an inorganic compound quantum dot material, etc.
  • a colloidal quantum dot material an alloy type quantum dot material, a core / shell type quantum dot material, a core type quantum dot material, or the like can be used.
  • the light emitting device of one aspect of the present invention it is difficult to visually recognize the light emission of the host material or the excitation complex formed by the host material. Therefore, it is possible to realize a light emitting device that makes it difficult to visually recognize the light emission of visible light and efficiently emits near infrared light.
  • the brightness A [cd / m 2 ] and the radiance B [W / sr / m 2 ] are 0 ⁇ A / B ⁇ 1 [cd ⁇ sr / W] (or 0 ⁇ A / B ⁇ 1 [cd ⁇ sr / W]) is satisfied. Therefore, it is possible to realize a light emitting device that makes it difficult to visually recognize the light emission of visible light and efficiently emits near infrared light.
  • the light emitting device of the present embodiment has the light emitting device shown in the first embodiment. Therefore, it is possible to realize a light emitting device that emits near-infrared light and makes it difficult to visually recognize the light emission of visible light.
  • FIGS. 2A and 2C show a cross-sectional view between the alternate long and short dash lines X1-Y1 and X2-Y2 of FIG. 2A.
  • the light emitting device shown in FIGS. 2A to 2C can be used, for example, in a lighting device.
  • the light emitting device may be any of bottom emission, top emission, and dual emission.
  • the light emitting device shown in FIG. 2B includes a substrate 490a, a substrate 490b, a conductive layer 406, a conductive layer 416, an insulating layer 405, an organic EL device 450 (first electrode 401, EL layer 402, and second electrode 403), and It has an adhesive layer 407.
  • the organic EL device 450 the light emitting device shown in the first embodiment can be used.
  • the organic EL device 450 has a first electrode 401 on the substrate 490a, an EL layer 402 on the first electrode 401, and a second electrode 403 on the EL layer 402.
  • the organic EL device 450 is sealed by the substrate 490a, the adhesive layer 407, and the substrate 490b.
  • the ends of the first electrode 401, the conductive layer 406, and the conductive layer 416 are covered with the insulating layer 405.
  • the conductive layer 406 is electrically connected to the first electrode 401, and the conductive layer 416 is electrically connected to the second electrode 403.
  • the conductive layer 406 covered with the insulating layer 405 via the first electrode 401 functions as an auxiliary wiring and is electrically connected to the first electrode 401. It is preferable to have an auxiliary wiring electrically connected to the electrode of the organic EL device 450 because the voltage drop due to the resistance of the electrode can be suppressed.
  • the conductive layer 406 may be provided on the first electrode 401. Further, an auxiliary wiring for electrically connecting to the second electrode 403 may be provided on the insulating layer 405 or the like.
  • Glass, quartz, ceramic, sapphire, organic resin and the like can be used for the substrate 490a and the substrate 490b, respectively.
  • the flexibility of the light emitting device can be increased.
  • a light extraction structure for improving the light extraction efficiency, an antistatic film for suppressing the adhesion of dust, a water-repellent film for preventing the adhesion of dirt, and a hardware for suppressing the occurrence of scratches due to use.
  • a coat film, a shock absorbing layer, or the like may be arranged.
  • Examples of the insulating material that can be used for the insulating layer 405 include resins such as acrylic resin and epoxy resin, and inorganic insulating materials such as silicon oxide, silicon oxide, silicon nitride, silicon nitride, and aluminum oxide.
  • various curable adhesives such as a photocurable adhesive such as an ultraviolet curable type, a reaction curable type adhesive, a thermosetting type adhesive, and an anaerobic type adhesive can be used.
  • these adhesives include epoxy resin, acrylic resin, silicone resin, phenol resin, polyimide resin, imide resin, PVC (polyvinyl chloride) resin, PVB (polyvinyl butyral) resin, EVA (ethylene vinyl acetate) resin and the like.
  • a material having low moisture permeability such as an epoxy resin is preferable.
  • a two-component mixed type resin may be used.
  • the light emitting device shown in FIG. 2C has a barrier layer 490c, a conductive layer 406, a conductive layer 416, an insulating layer 405, an organic EL device 450, an adhesive layer 407, a barrier layer 423, and a substrate 490b.
  • the barrier layer 490c shown in FIG. 2C has a substrate 420, an adhesive layer 422, and an insulating layer 424 having a high barrier property.
  • the organic EL device 450 is arranged between the insulating layer 424 having a high barrier property and the barrier layer 423. Therefore, even if a resin film or the like having a relatively low waterproof property is used for the substrate 420 and the substrate 490b, it is possible to prevent impurities such as water from entering the organic EL device and shortening the life.
  • the substrate 420 and the substrate 490b are provided with polyester resins such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyacrylonitrile resin, acrylic resin, polyimide resin, polymethylmethacrylate resin, and polycarbonate (PC) resin, respectively.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • Polyether sulfone (PES) resin polyamide resin (nylon, aramid, etc.), polysiloxane resin, cycloolefin resin, polystyrene resin, polyamideimide resin, polyurethane resin, polyvinyl chloride resin, polyvinylidene chloride resin, polypropylene resin, polytetra Fluoroethylene (PTFE) resin, ABS resin, cellulose nanofibers and the like can be used.
  • glass having a thickness sufficient to have flexibility may be used.
  • the insulating layer 424 having a high barrier property it is preferable to use an inorganic insulating film.
  • an inorganic insulating film for example, a silicon nitride film, a silicon nitride film, a silicon oxide film, a silicon nitride film, an aluminum oxide film, an aluminum nitride film, or the like can be used. Further, a hafnium oxide film, an yttrium oxide film, a zirconium oxide film, a gallium oxide film, a tantalum oxide film, a magnesium oxide film, a lanthanum oxide film, a cerium oxide film, a neodymium oxide film and the like may be used. Further, two or more of the above-mentioned insulating films may be laminated and used.
  • the barrier layer 423 preferably has at least one inorganic film.
  • a single-layer structure of an inorganic film or a laminated structure of an inorganic film and an organic film can be applied to the barrier layer 423.
  • the inorganic film the above-mentioned inorganic insulating film is suitable.
  • the laminated structure include a structure in which a silicon oxide film, a silicon oxide film, an organic film, a silicon oxide film, and a silicon nitride film are formed in this order.
  • the highly barrier insulating layer 424 and the organic EL device 450 can be formed directly on the flexible substrate 420. In this case, the adhesive layer 422 is unnecessary. Further, the insulating layer 424 and the organic EL device 450 can be transferred to the substrate 420 after being formed on the hard substrate via the release layer. For example, the insulating layer 424 and the organic EL device 450 are peeled from the hard substrate by applying heat, force, laser light, or the like to the peeling layer, and then the substrate 420 is bonded to the peeling layer using the adhesive layer 422. It may be transposed to.
  • the release layer for example, a laminated structure of an inorganic film containing a tungsten film and a silicon oxide film, an organic resin film such as polyimide, or the like can be used.
  • the insulating layer 424 can be formed by applying a high temperature as compared with a resin substrate or the like, so that the insulating layer 424 can be a dense and extremely barrier insulating film.
  • the light emitting device of one aspect of the present invention can be a passive matrix type or an active matrix type.
  • the active matrix type light emitting device will be described with reference to FIG.
  • FIG. 3A shows a top view of the light emitting device.
  • FIG. 3B is a cross-sectional view between the alternate long and short dash lines AA'shown in FIG. 3A.
  • the active matrix type light emitting device shown in FIGS. 3A and 3B includes a pixel unit 302, a circuit unit 303, a circuit unit 304a, and a circuit unit 304b.
  • the circuit unit 303, the circuit unit 304a, and the circuit unit 304b can each function as a scanning line drive circuit (gate driver) or a signal line drive circuit (source driver).
  • the circuit may be a circuit that electrically connects the external gate driver or source driver and the pixel unit 302.
  • a routing wiring 307 is provided on the first substrate 301.
  • the routing wiring 307 is electrically connected to the FPC 308 which is an external input terminal.
  • the FPC 308 transmits an external signal (for example, a video signal, a clock signal, a start signal, a reset signal, etc.) or an electric potential to the circuit unit 303, the circuit unit 304a, and the circuit unit 304b.
  • a printed wiring board may be attached to the FPC 308.
  • the configuration shown in FIGS. 3A and 3B can also be said to be a light emitting module having a light emitting device (or light emitting device) and an FPC.
  • the pixel unit 302 has a plurality of pixels having an organic EL device 317, a transistor 311 and a transistor 312.
  • the organic EL device 317 the light emitting device shown in the first embodiment can be used.
  • the transistor 312 is electrically connected to the first electrode 313 of the organic EL device 317.
  • the transistor 311 functions as a switching transistor.
  • the transistor 312 functions as a current control transistor.
  • the number of transistors included in each pixel is not particularly limited, and can be appropriately provided as needed.
  • the circuit unit 303 has a plurality of transistors including a transistor 309, a transistor 310, and the like.
  • the circuit unit 303 may be formed of a circuit including a unipolar (only one of N-type or P-type) transistors, or may be formed of a CMOS circuit including an N-type transistor and a P-type transistor. Good. Further, the configuration may have a drive circuit externally.
  • the structure of the transistor included in the light emitting device of the present embodiment is not particularly limited.
  • a planar type transistor, a stagger type transistor, an inverted stagger type transistor and the like can be used.
  • either a top gate type or a bottom gate type transistor structure may be used.
  • gates may be provided above and below the semiconductor layer on which the channel is formed.
  • the crystallinity of the semiconductor material used for the transistor is also not particularly limited, and either an amorphous semiconductor or a semiconductor having crystallinity (microcrystalline semiconductor, polycrystalline semiconductor, single crystal semiconductor, or semiconductor having a partially crystalline region). May be used. It is preferable to use a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • the semiconductor layer of the transistor preferably has a metal oxide (also referred to as an oxide semiconductor).
  • the semiconductor layer of the transistor may have silicon. Examples of silicon include amorphous silicon and crystalline silicon (low temperature polysilicon, single crystal silicon, etc.).
  • the semiconductor layers include, for example, indium and M (M is gallium, aluminum, silicon, boron, ittrium, tin, copper, vanadium, beryllium, titanium, iron, nickel, germanium, zirconium, molybdenum, lantern, cerium, neodymium, etc. It is preferable to have one or more selected from hafnium, tantalum, tungsten, and gallium) and zinc.
  • M is preferably one or more selected from aluminum, gallium, yttrium, and tin.
  • an oxide containing indium (In), gallium (Ga), and zinc (Zn) also referred to as IGZO
  • IGZO oxide containing indium (In), gallium (Ga), and zinc (Zn)
  • the sputtering target used for forming the In-M-Zn oxide preferably has an In atom ratio of M or more.
  • the transistor included in the circuit unit 303, the circuit unit 304a, and the circuit unit 304b and the transistor included in the pixel unit 302 may have the same structure or different structures.
  • the structures of the plurality of transistors included in the circuit unit 303, the circuit unit 304a, and the circuit unit 304b may all be the same, or may be two or more types.
  • the structures of the plurality of transistors included in the pixel unit 302 may all be the same, or there may be two or more types.
  • the end of the first electrode 313 is covered with an insulating layer 314.
  • an organic compound such as a negative type photosensitive resin or a positive type photosensitive resin (acrylic resin), or an inorganic compound such as silicon oxide, silicon oxide nitride, or silicon nitride can be used.
  • the upper end portion or the lower end portion of the insulating layer 314 has a curved surface having a curvature. Thereby, the covering property of the film formed on the upper layer of the insulating layer 314 can be improved.
  • An EL layer 315 is provided on the first electrode 313, and a second electrode 316 is provided on the EL layer 315.
  • the EL layer 315 has a light emitting layer, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, a charge generation layer, and the like.
  • the plurality of transistors and the plurality of organic EL devices 317 are sealed by the first substrate 301, the second substrate 306, and the sealing material 305.
  • the space 318 surrounded by the first substrate 301, the second substrate 306, and the sealing material 305 may be filled with an inert gas (nitrogen, argon, etc.) or an organic substance (including the sealing material 305).
  • Epoxy resin or glass frit can be used for the sealing material 305.
  • the sealing material 305 is preferably made of a material that does not allow moisture or oxygen to permeate as much as possible.
  • a glass frit is used as the sealing material, it is preferable that the first substrate 301 and the second substrate 306 are glass substrates from the viewpoint of adhesiveness.
  • the light emitting device of one aspect of the present invention emits near-infrared light, and the light emission of visible light is difficult to visually recognize.
  • a light emitting device it is possible to realize an electronic device that performs authentication, analysis, diagnosis, etc. using near infrared light.
  • the electronic device it is possible to suppress that the visible light emitted by the light emitting device becomes noise in authentication, analysis, diagnosis, etc. using near infrared light.
  • the accuracy of authentication, analysis, diagnosis, etc. can be improved.
  • imaging using near-infrared light can be performed without being noticed by people around.
  • FIG. 4A is a biometric authentication device for a finger vein, which has a housing 911, a light source 912, a detection stage 913, and the like. By placing a finger on the detection stage 913, the shape of the vein can be imaged.
  • a light source 912 that emits near-infrared light is installed in the upper part of the detection stage 913, and an image pickup device 914 is installed in the lower part.
  • the detection stage 913 is made of a material that transmits near-infrared light, and the near-infrared light that is emitted from the light source 912 and transmitted through the finger can be imaged by the image pickup apparatus 914.
  • An optical system may be provided between the detection stage 913 and the image pickup apparatus 914.
  • the configuration of the above device can also be used for a biometric authentication device for a vein in the palm.
  • the light emitting device of one aspect of the present invention can be used for the light source 912.
  • the light emitting device according to one aspect of the present invention can be installed in a curved shape, and can uniformly irradiate an object with light.
  • a light emitting device that emits near-infrared light having the strongest peak intensity at a wavelength of 760 nm or more and 900 nm or less is preferable.
  • the position of a vein can be detected by receiving light transmitted through a finger or palm and imaging it. The action can be used as biometric authentication. Further, by combining with the global shutter method, highly accurate sensing becomes possible even if the subject moves.
  • the light source 912 can have a plurality of light emitting units as shown in the light emitting units 915, 916, and 917 shown in FIG. 4B.
  • Each of the light emitting units 915, 916, and 917 may emit light at a different wavelength, and each may irradiate light at different timings. Therefore, since different images can be continuously captured by changing the wavelength and angle of the emitted light, a plurality of images can be used for authentication and high security can be realized.
  • FIG. 4C is a biometric authentication device for a vein in the palm, which includes a housing 921, an operation button 922, a detection unit 923, a light source 924 that emits near-infrared light, and the like.
  • the shape of the vein in the palm can be recognized by holding a hand over the detection unit 923. You can also enter a password or the like using the operation buttons.
  • a light source 924 is arranged around the detection unit 923 to irradiate an object (hand). Then, the reflected light from the object is incident on the detection unit 923.
  • the light emitting device of one aspect of the present invention can be used for the light source 924.
  • An imaging device 925 is arranged directly below the detection unit 923, and an image of an object (overall image of the hand) can be captured.
  • An optical system may be provided between the detection unit 923 and the image pickup device 925.
  • the configuration of the above device can also be used for a biometric authentication device for a finger vein.
  • FIG. 4D is a non-destructive inspection device, which includes a housing 931, an operation panel 932, a transport mechanism 933, a monitor 934, a detection unit 935, a light source 938 that emits near infrared light, and the like.
  • the light emitting device of one aspect of the present invention can be used for the light source 938.
  • the member to be inspected 936 is transported directly under the detection unit 935 by the transport mechanism 933.
  • the member to be inspected 936 is irradiated with near-infrared light from the light source 938, and the transmitted light is imaged by an image pickup device 937 provided in the detection unit 935.
  • the captured image is displayed on the monitor 934.
  • FIG. 4E is a mobile phone, which includes a housing 981, a display unit 982, an operation button 983, an external connection port 984, a speaker 985, a microphone 986, a first camera 987, a second camera 988, and the like.
  • the mobile phone includes a touch sensor on the display unit 982.
  • the housing 981 and the display unit 982 are flexible. All operations such as making a phone call or inputting characters can be performed by touching the display unit 982 with a finger or a stylus.
  • the first camera 987 can acquire a visible light image
  • the second camera 988 can acquire an infrared light image (near infrared light image).
  • the mobile phone or display 982 shown in FIG. 4E may have a light emitting device according to an aspect of the present invention.
  • results of producing and evaluating a device 1 to which one aspect of the present invention is applied and a comparison device 2 for comparison will be described as light emitting devices.
  • the structures of the device 1 and the comparison device 2 used in this embodiment are shown in FIG. 5, and the specific configuration is shown in Table 1.
  • the chemical formulas of the materials used in this example are shown below.
  • a first electrode 801 is formed on the substrate 800, and a hole injection layer is formed on the first electrode 801 as an EL layer 802. It has a structure in which 811, a hole transport layer 812, a light emitting layer 813, an electron transport layer 814, and an electron injection layer 815 are sequentially laminated, and a second electrode 803 is laminated on the electron injection layer 815.
  • the first electrode 801 was formed on the substrate 800.
  • the electrode area was 4 mm 2 (2 mm ⁇ 2 mm).
  • a glass substrate was used as the substrate 800.
  • the first electrode 801 was formed by forming a film of indium tin oxide (ITSO) containing silicon oxide by a sputtering method.
  • the film thickness of the first electrode 801 was 70 nm for the device 1 and 110 nm for the comparative device 2.
  • the first electrode 801 functions as an anode.
  • the surface of the substrate was washed with water, fired at 200 ° C. for 1 hour, and then UV ozone treatment was performed for 370 seconds.
  • the substrate was introduced into a vacuum vapor deposition apparatus whose internal pressure was reduced to about 1 ⁇ 10 -4 Pa, and the substrate was vacuum-fired at 170 ° C. for 30 minutes in a heating chamber inside the vacuum vapor deposition apparatus for 30 minutes. Allowed to cool.
  • the hole injection layer 811 was formed on the first electrode 801.
  • the hole injection layer 811 is formed by reducing the pressure in the vacuum vapor deposition apparatus to about 1 ⁇ 10 -4 Pa, and then using 1,3,5-tri (dibenzothiophen-4-yl) benzene (abbreviation: DBT3P-II) and molybdenum oxide.
  • the film thickness of the hole injection layer 811 was 120 nm for device 1 and 60 nm for comparative device 2.
  • the hole transport layer 812 was formed on the hole injection layer 811.
  • the hole transport layer 812 is composed of N- (1,1'-biphenyl-4-yl) -N- [4- (9-phenyl-9H-carbazole-3-yl) phenyl] -9,9-dimethyl-9H. It was formed by vapor deposition using ⁇ fluorene-2-amine (abbreviation: PCBBiF) so as to have a film thickness of 20 nm.
  • PCBBiF ⁇ fluorene-2-amine
  • a light emitting layer 813 was formed on the hole transport layer 812.
  • an electron transport layer 814 was formed on the light emitting layer 813.
  • the electron transport layer 814 of the device 1 has a film thickness of 2.8 mDBtP2Bfqn of 20 nm and a film thickness of 2,9-bis (naphthalene-2-yl) -4,7-diphenyl-1,10-phenanthroline (abbreviation: NBphenyl). It was formed by successive vapor deposition so that the thickness was 70 nm.
  • the electron transport layer 814 of the comparative device 2 was formed by thin-film deposition so that the film thickness of 2mDBTBPDBq-II was 20 nm and the film thickness of NBphen was 70 nm.
  • an electron injection layer 815 was formed on the electron transport layer 814.
  • the electron injection layer 815 was formed by vapor deposition using lithium fluoride (LiF) so as to have a film thickness of 1 nm.
  • a second electrode 803 was formed on the electron injection layer 815.
  • the second electrode 803 was formed by a vapor deposition method of aluminum so as to have a film thickness of 200 nm.
  • the second electrode 803 functions as a cathode.
  • a light emitting device formed by sandwiching the EL layer 802 between a pair of electrodes is formed on the substrate 800.
  • the hole injection layer 811, the hole transport layer 812, the light emitting layer 813, the electron transport layer 814, and the electron injection layer 815 described in the above steps are functional layers constituting the EL layer in one aspect of the present invention. Further, in all the vapor deposition steps in the above-mentioned production method, the vapor deposition method by the resistance heating method was used.
  • the light emitting device manufactured as shown above is sealed by another substrate (not shown).
  • another substrate (not shown) coated with an adhesive that is solidified by ultraviolet light is placed on the substrate 800 in a glove box having a nitrogen atmosphere.
  • the substrates were fixed and the substrates were adhered to each other so that the adhesive adhered around the light emitting device formed on the substrate 800.
  • the adhesive was stabilized by irradiating it with ultraviolet light of 365 nm 2 at 6 J / cm 2 to solidify the adhesive and heat-treating it at 80 ° C. for 1 hour.
  • ⁇ Operating characteristics of light emitting device ⁇ The operating characteristics of device 1 and comparison device 2 were measured. The measurement was performed at room temperature (atmosphere maintained at 25 ° C.).
  • FIG. 6 and 7 show the emission spectra when a current is passed through the device 1 and the comparison device 2 at a current density of 50 mA / cm 2 .
  • the range of wavelength 380 nm or more and 749 nm or less is the measurement result using a spectroradiance meter (SR-UL1R, manufactured by Topcon)
  • the range of wavelength 750 nm or more and 1030 nm or less is a near infrared spectroradiometer (SR-UL1R, manufactured by Topcon). It is a measurement result using SR-NIR (manufactured by Topcon).
  • FIG. 7 is different from FIG. 6 in that the vertical axis is a logarithmic display. Further, FIG. 7 also shows a scotopic vision curve based on scotopic luminosity (CIE (1951) Scotopic V'( ⁇ )).
  • Table 2 shows the main initial characteristic values of the device 1 and the comparison device 2 at a current of 2 mA (current density of 50 mA / cm 2 ).
  • the radiant flux and the external quantum efficiency were calculated using the radiance, assuming that the light distribution characteristics of the light emitting device were of the Lambersian type.
  • the maximum peak wavelength of the emission spectrum of the device 1 is 801 nm
  • the maximum peak wavelength of the emission spectrum of the comparison device 2 is 793 nm
  • both devices are included in the light emitting layer 813 [Ir (Ir). It was found that it emits near-infrared light from dmdppbq) 2 (dpm)].
  • the rising wavelength of the maximum peak on the short wavelength side was 754 nm.
  • the rising wavelength of the maximum peak on the short wavelength side was 751 nm. It was found that in both the device 1 and the comparison device 2, the rising wavelength on the short wavelength side of the maximum peak is a sufficiently long wavelength.
  • a relatively large emission peak (peak wavelength 523 nm) was confirmed in the wavelength range of visible light in the emission spectrum of the comparative device 2.
  • the light emitted by the comparison device 2 includes light in a wavelength range having high luminosity among visible light. That is, the comparison device 2 can easily visually recognize the emission of visible light.
  • the device 1 had a lower spectral radiance in the wavelength range of visible light than the comparative device 2.
  • the maximum peak wavelength of the emission spectrum of the device 1 in the visible light wavelength region was 638 nm, and the emission spectrum of the device 1 had an emission peak in the wavelength region where the visual sensitivity was low even in the visible light. From this, it was found that the device 1 emits visible light in a wavelength region having low luminosity factor, and the emission intensity is low in the wavelength region of the visible light.
  • the luminance / radiance of the device 1 (the value obtained by dividing the luminance value by the radiance value) is 0.05 cd ⁇ sr / W, and the luminance / radiance of the comparative device 2 is 2. It was 1 cd ⁇ sr / W. From this, it was found that the device 1 has an extremely low emission intensity of visible light with respect to the emission intensity of near infrared light. Therefore, it can be said that the device 1 is a light emitting device that emits near-infrared light and the light emission of visible light is difficult to see. On the other hand, in the comparison device 2, the emission intensity of visible light is higher than the emission intensity of near-infrared light, and it can be said that visible light is easily visible.
  • the external quantum efficiency of device 1 was 2.5%. It can be said that this is a high value as the external quantum efficiency of a light emitting device that mainly emits near-infrared light because the emission intensity of visible light is weak.
  • the external quantum efficiency of the device 1 was calculated from the measurement results using a near-infrared spectroradiometer (SR-NIR, manufactured by Topcon) in the wavelength range of 600 nm or more and 1030 nm or less.
  • SR-NIR near-infrared spectroradiometer
  • a mixed film A of the two host materials used for the device 1 and a mixed film B of the two host materials used for the comparison device 2 were prepared, and the emission spectrum (PL spectrum) was measured.
  • 2.8 mDBtP2Bfqn and m-MTDATA are combinations that form an excited complex.
  • 2mDBTBPDBq-II and PCBBiF are a combination that forms an excited complex.
  • Table 3 shows the HOMO and LUMO levels of each host material.
  • the HOMO level and LUMO level were derived from the electrochemical properties (reduction potential and oxidation potential) of the material measured by cyclic voltammetry (CV) measurement.
  • Table 3 also shows the HOMO and LUMO levels of the guest materials used in the device 1 and the comparison device 2.
  • the HOMO level and LUMO level of the two host materials used for the device 1 and the mixed film A will be described with reference to Table 3. It can be seen that the HOMO level of m-MTDATA is higher than the HOMO level of [Ir (dmdppbq) 2 (dpm)] and the HOMO level of 2.8 mDBtP2Bfqn, respectively. Specifically, the HOMO level (-4.98 eV) of m-MTDATA is 0.56 eV higher than the HOMO level (-5.54 eV) of [Ir (dmdppbq) 2 (dpm)].
  • the difference between the HOMO level of m-MTDATA (-4.98 eV) and the LUMO level of 2.8 mDBtP2Bfqn (-3.31 eV) is 1.67 eV, which is [Ir (dmdppbq) 2 (dpm). )] Is smaller than the difference (2.05 eV) between the HOMO level (-5.54 eV) and the LUMO level (-3.49 eV).
  • the HOMO level and the LUMO level of the two host materials used for the comparison device 2 and the mixed film B will be described with reference to Table 3. It can be seen that the HOMO level of PCBiF is higher than the HOMO level of [Ir (dmdppbq) 2 (dpm)] and the HOMO level of 2mDBTBPDBq-II, respectively. Specifically, the HOMO level (-5.36 eV) of PCBiF is 0.18 eV higher than the HOMO level (-5.54 eV) of [Ir (dmdppbq) 2 (dpm)].
  • the difference between the HOMO level of PCBiF (-5.36 eV) and the LUMO level of 2 mDBTBPDBq-II (-2.94 eV) is 2.42 eV, [Ir (dmdppbq) 2 (dpm)]. This is larger than the difference (2.05 eV) between the HOMO level (-5.54 eV) and the LUMO level (-3.49 eV).
  • the PL spectrum was measured at room temperature using a fluorometer (FS920 manufactured by Hamamatsu Photonics Co., Ltd.).
  • FIGS. 8 and 9 show the PL spectrum of the mixed film A and the emission spectrum of the device 1 (similar to FIGS. 6 and 7). Note that FIG. 9 is different from FIG. 8 in that the vertical axis is a logarithmic display.
  • FIG. 10 and 11 show the PL spectrum of the mixed film B and the emission spectrum of the comparison device 2 (similar to FIG. 6). Note that FIG. 11 is different from FIG. 10 in that the vertical axis is a logarithmic display.
  • the maximum peak wavelength of the PL spectrum of the mixed film A was 678 nm. From the difference between the HOMO level of m-MTDATA and the LUMO level of 2.8 mDBtP2Bfqn, it can be said that the light emission of the mixed film A is derived from the excited complex formed by these two materials.
  • the maximum peak wavelength of the PL spectrum of the mixed film B was 516 nm. From the difference between the HOMO level of PCBiF and the LUMO level of 2mDBTBPDBq-II, it can be said that the light emission of the mixed film B is derived from the excited complex formed by these two materials.
  • the visible light emission confirmed by the comparison device 2 is an excitation formed by the two host materials. It was shown that the luminescence was derived from the complex.
  • the maximum peak wavelength of the PL spectrum of the mixed film A is included in a wavelength region having low visibility. Therefore, the luminescence derived from the excited complex formed by the two host materials used for the mixed film A has low luminosity factor. Therefore, the device 1 is a light emitting device in which the light emission derived from the excited complex is hard to be visually recognized and the light emission of visible light is hard to be visually recognized.
  • the HOMO level of m-MTDATA used for the mixed membrane A is 0.56 eV higher than the HOMO level of [Ir (dmdppbq) 2 (dpm)]. Further, the difference between the HOMO level of m-MTDATA and the LUMO level of 2.8 mDBtP2Bfqn is smaller than the difference between the HOMO level and LUMO level of [Ir (dmdppbq) 2 (dpm)]. .. As a result, the emission wavelength of the excitation complex formed by these two materials can be made longer, and the luminosity factor of the emission derived from the excitation complex can be lowered.
  • step 1 Synthesis of 2,3-bis- (3,5-dimethylphenyl) -2-benzo [g] quinoxaline (abbreviation: Hdmdpbq)>
  • Hdmdpbq was synthesized. 3.20 g of 3,3', 5,5'-tetramethylbenzyl, 1.97 g of 2,3-diaminonaphthalene, and 60 mL of ethanol were placed in a three-necked flask equipped with a reflux tube, and the inside was replaced with nitrogen, and then 90 ° C. Was stirred for 7 and a half hours. After a lapse of a predetermined time, the solvent was distilled off.
  • step 1 The synthesis scheme of step 1 is shown in (a-1).
  • step 2 15 mL of 2-ethoxyethanol, 5 mL of water, 1.81 g of Hdmdpbq obtained in step 1, and 0.66 g of iridium chloride hydrate (IrCl 3 ⁇ H 2 O) (manufactured by Furuya Metals Co., Ltd.) were added to an eggplant with a reflux tube. It was placed in a flask and the inside of the flask was replaced with argon. Then, it was irradiated with microwaves (2.45 GHz 100 W) for 2 hours to react. After a lapse of a predetermined time, the obtained residue was suction-filtered and washed with methanol to obtain the desired product (black solid, yield 1.76 g, yield 81%). The synthesis scheme of step 2 is shown in (a-2).
  • the obtained residue was suction-filtered with methanol and then washed with water and methanol.
  • the obtained solid was purified by silica gel column chromatography using dichloromethane as a developing solvent, and then recrystallized from a mixed solvent of dichloromethane and methanol to obtain the desired product (dark green solid, yield 0.42 g, 21% yield).
  • 0.41 g of the obtained dark green solid was sublimated and purified by the train sublimation method. Under the sublimation purification conditions, the dark green solid was heated at 300 ° C. while flowing an argon gas at a pressure of 2.7 Pa and a flow rate of 10.5 mL / min. After sublimation purification, a dark green solid was obtained in a yield of 78%.
  • the synthesis scheme of step 3 is shown in (a-3).
  • the absorption spectrum was measured using an ultraviolet-visible spectrophotometer (V550 type manufactured by JASCO Corporation), a dichloromethane solution (0.010 mmol / L) was placed in a quartz cell, and the measurement was performed at room temperature.
  • a fluorometer (FS920 manufactured by Hamamatsu Photonics Co., Ltd.) was used to measure the emission spectrum, and a dichloromethane deoxidizing solution (0.010 mmol / L) was placed in a quartz cell under a nitrogen atmosphere, sealed, and at room temperature. Measurements were made.
  • the absorption spectrum shown in FIG. 12 shows the result of subtracting the absorption spectrum measured by putting only dichloromethane in the quartz cell from the absorption spectrum measured by putting the dichloromethane solution (0.010 mmol / L) in the quartz cell.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

近赤外光を発し、かつ、可視光が視認されにくい発光デバイスを提供する。 発光層に発光性の有機化合物及びホスト材料を有する発光デバイスである。発光デバイスの発光ス ペクトルの最大ピーク波長は、750nm以上900nm以下である。発光デバイスにおいて、輝 度Aと、放射輝度Bとは、0≦A/B≦1を満たす。

Description

発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
本発明の一態様は、発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置に関する。
なお、本発明の一態様は、上記の技術分野に限定されない。本発明の一態様の技術分野としては、半導体装置、表示装置、発光装置、蓄電装置、記憶装置、電子機器、照明装置、入力装置(例えば、タッチセンサなど)、入出力装置(例えば、タッチパネルなど)、それらの駆動方法、またはそれらの製造方法を一例として挙げることができる。
有機エレクトロルミネッセンス(EL:Electro Luminescence)現象を利用した発光デバイス(有機ELデバイス、有機EL素子ともいう)の研究開発が盛んに行われている。有機ELデバイスの基本的な構成は、一対の電極間に発光性の有機化合物を含む層(以下、発光層とも記す)を挟んだものである。この有機ELデバイスに電圧を印加することにより、発光性の有機化合物からの発光を得ることができる。
発光性の有機化合物としては、例えば、三重項励起状態を発光に変換できる化合物(燐光性化合物、燐光材料ともいう)が挙げられる。特許文献1では、燐光材料として、イリジウムなどを中心金属とする有機金属錯体が開示されている。
また、個人認証、不良解析、医療診断、セキュリティ関連など、様々な用途でイメージセンサが用いられている。イメージセンサは、用途に応じて、用いる光源の波長が使い分けられている。イメージセンサでは、例えば、可視光、X線などの短波長の光、近赤外光などの長波長の光など、様々な波長の光が用いられている。
発光デバイスは、表示装置に加え、上記のようなイメージセンサの光源としての応用も検討されている。
特開2007−137872号公報
本発明の一態様では、近赤外光を発し、かつ、可視光の発光が視認されにくい発光デバイスを提供することを課題の一つとする。本発明の一態様では、近赤外光を発する発光デバイスの発光効率を高めることを課題の一つとする。本発明の一態様では、近赤外光を発する発光デバイスの信頼性を高めることを課題の一つとする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はないものとする。明細書、図面、請求項の記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、発光層に発光性の有機化合物及びホスト材料を有し、発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、輝度A[cd/m]と、放射輝度B[W/sr/m]とは、0≦A/B≦1[cd・sr/W]を満たす、発光デバイスである。
本発明の一態様は、発光層に発光性の有機化合物及びホスト材料を有し、発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、輝度A[cd/m]と、放射輝度B[W/sr/m]とは、0<A/B≦1[cd・sr/W]を満たす、発光デバイスである。
ホスト材料におけるHOMO準位とLUMO準位との差は、1.35eV以上2.25eV以下であることが好ましい。
ホスト材料は、第1の有機化合物及び第2の有機化合物を有することが好ましい。第1の有機化合物のHOMO準位は、第2の有機化合物のHOMO準位よりも高いことが好ましい。第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差は、発光性の有機化合物のHOMO準位とLUMO準位との差に比べて小さいことが好ましい。第1の有機化合物と第2の有機化合物とは、励起錯体を形成する物質であることが好ましい。第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差は、1.35eV以上2.25eV以下であることが好ましい。
本発明の一態様は、発光層に発光性の有機化合物及びホスト材料を有し、発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、ホスト材料のHOMO準位は、発光性の有機化合物のHOMO準位よりも0.4eV以上高く、ホスト材料のHOMO準位とLUMO準位との差は、発光性の有機化合物のHOMO準位とLUMO準位との差に比べて小さい、発光デバイスである。ホスト材料におけるHOMO準位とLUMO準位との差は、1.35eV以上2.25eV以下であることが好ましい。
本発明の一態様は、発光層に発光性の有機化合物及びホスト材料を有し、発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、ホスト材料は、第1の有機化合物及び第2の有機化合物を有し、第1の有機化合物のHOMO準位は、発光性の有機化合物のHOMO準位よりも0.4eV以上高く、第1の有機化合物のHOMO準位は、第2の有機化合物のHOMO準位よりも高く、第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差は、発光性の有機化合物のHOMO準位とLUMO準位との差に比べて小さい、発光デバイスである。第1の有機化合物と第2の有機化合物とは、励起錯体を形成する物質であることが好ましい。第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差は、1.35eV以上2.25eV以下であることが好ましい。
発光スペクトルにおける最大ピークの短波長側の立ち上がり波長は、650nm以上であることが好ましい。
発光性の有機化合物は、溶液におけるPLスペクトルの、最大ピークの短波長側の立ち上がり波長が650nm以上であることが好ましい。
発光デバイスの外部量子効率は、1%以上であることが好ましい。
発光性の有機化合物は、金属−炭素結合を有する有機金属錯体であることが好ましい。
有機金属錯体は、2環以上5環以下の縮合複素芳香環を有することが好ましい。縮合複素芳香環は、金属に配位していることが好ましい。
発光性の有機化合物は、シクロメタル錯体であることが好ましい。発光性の有機化合物は、オルトメタル錯体であることが好ましい。発光性の有機化合物は、イリジウム錯体であることが好ましい。
本発明の一態様は、上記いずれかの構成の発光デバイスと、トランジスタ及び基板の一方または双方と、を有する発光装置である。
本発明の一態様は、上記の発光装置を有し、フレキシブルプリント回路基板(Flexible Printed Circuit、以下、FPCと記す)もしくはTCP(Tape Carrier Package)等のコネクタが取り付けられたモジュール、またはCOG(Chip On Glass)方式もしくはCOF(Chip On Film)方式等により集積回路(IC)が実装された発光モジュール等の発光モジュールである。なお、本発明の一態様の発光モジュールは、コネクタ及びICのうち一方のみを有していてもよく、双方を有していてもよい。
本発明の一態様は、上記の発光モジュールと、アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち少なくとも一つと、を有する電子機器である。
本発明の一態様は、上記の発光装置と、筐体、カバー、及び支持台のうち少なくとも一つと、を有する、照明装置である。
本発明の一態様により、近赤外光を発し、かつ、可視光の発光が視認されにくい発光デバイスを提供できる。本発明の一態様により、近赤外光を発する発光デバイスの発光効率を高めることができる。本発明の一態様により、近赤外光を発する発光デバイスの信頼性を高めることができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。明細書、図面、請求項の記載から、これら以外の効果を抽出することが可能である。
図1A~図1Cは、発光デバイスの一例を示す図である。
図2Aは、発光装置の一例を示す上面図である。図2B、図2Cは、発光装置の一例を示す断面図である。
図3Aは、発光装置の一例を示す上面図である。図3Bは、発光装置の一例を示す断面図である。
図4A~図4Eは、電子機器の一例を示す図である。
図5は、実施例の発光デバイスを示す断面図である。
図6は、実施例の発光デバイスの発光スペクトルを示す図である。
図7は、実施例の発光デバイスの発光スペクトルを示す図である。
図8は、実施例の発光デバイス及び混合膜の発光スペクトルを示す図である。
図9は、実施例の発光デバイス及び混合膜の発光スペクトルを示す図である。
図10は、実施例の発光デバイス及び混合膜の発光スペクトルを示す図である。
図11は、実施例の発光デバイス及び混合膜の発光スペクトルを示す図である。
図12は、[Ir(dmdpbq)(dpm)]の吸収スペクトルを示す図である。
図13は、[Ir(dmdpbq)(dpm)]の発光スペクトルを示す図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
なお、「膜」という言葉と、「層」という言葉とは、場合によっては、または、状況に応じて、互いに入れ替えることが可能である。例えば、「導電層」という用語を、「導電膜」という用語に変更することが可能である。または、例えば、「絶縁膜」という用語を、「絶縁層」という用語に変更することが可能である。
(実施の形態1)
本実施の形態では、本発明の一態様の発光デバイスについて図1を用いて説明する。
本発明の一態様の発光デバイスは、発光層に発光性の有機化合物(ゲスト材料ともいう)及びホスト材料を有する。
本発明の一態様の発光デバイスにおいて、発光スペクトル(エレクトロルミネッセンス(EL)スペクトル)の最大ピーク波長(ピーク強度が最も高い波長)は、750nm以上900nm以下であり、780nm以上であることが好ましく、また、880nm以下であることが好ましい。
本発明の一態様の発光デバイスにおいて、輝度A[cd/m]と、放射輝度B[W/sr/m]とは、0≦A/B≦1[cd・sr/W]を満たすことが好ましい。または、輝度A[cd/m]と、放射輝度B[W/sr/m]とは、0<A/B≦1[cd・sr/W]を満たすことが好ましい。
輝度と放射輝度が上述の式を満たすことで、可視光の発光が視認されにくく、かつ、近赤外光を効率よく発する発光デバイスを実現することができる。
近赤外光を発するゲスト材料を用いた発光デバイスにおいて、ホスト材料に由来する可視光発光が視認されることがある。ホスト材料の発光を視認されにくくするためには、ホスト材料の発光が、視感度の低い波長の光であることが好ましい。
視感度の低い波長の光としては、例えば、紫外光~青色の光、赤色の光~近赤外光が挙げられる。例えば、ホスト材料の発光がこのような光であれば、発光デバイスが、ホスト材料由来の発光を呈する場合であっても、可視光の発光が視認されにくくなる。具体的には、本発明の一態様の発光デバイスにおいて、発光スペクトルは、435nm以下、または565nm以上900nm以下に、さらにピークを有していてもよい、ということもできる。当該ピークの波長は、600nm以上が好ましく、また、800nm以下が好ましい。
ここで、ゲスト材料が燐光を発する物質(燐光材料)の場合、最も発光に強く寄与すると考えられている吸収帯は、一重項基底状態から三重項励起状態への直接遷移に相当する吸収波長とその近傍であり、それは最も長波長側(低エネルギー側)に現れる吸収帯である。このことから、ホスト材料の発光スペクトル(蛍光スペクトル及び燐光スペクトル)が、燐光材料の吸収スペクトルの最も長波長側(低エネルギー側)の吸収帯と大きく重なることが好ましいとされる。これにより、ホスト材料からゲスト材料への励起エネルギーの移動が円滑に行われる。そして、ホスト材料の励起エネルギーがゲスト材料の励起エネルギーに変換されることで、ゲスト材料が効率よく発光する。
したがって、ゲスト材料が近赤外光を効率よく発するためには、ホスト材料の発光波長が長波長であることが好ましい。ホスト材料の発光が長波長の光であると、(ホスト材料由来の)可視光の発光が視認されにくく、かつ、近赤外光を効率よく発する発光デバイスを実現することができる。特に、ホスト材料の発光が、赤色の光~近赤外光であると、ホスト材料に由来する発光の視感度を低くでき、かつ、ホスト材料からゲスト材料への励起エネルギーの移動が効率よく生じるため、好ましい。
ホスト材料のHOMO準位は、ゲスト材料のHOMO準位よりも0.4eV以上高いことが好ましい。ホスト材料のHOMO準位がゲスト材料のHOMO準位よりも十分に高いことで、ホスト材料のバンドギャップを小さくすることができるため、発光を長波長にすることができる。これにより、ホスト材料の発光の視感度を低くすることができる。また、ホスト材料からゲスト材料への励起エネルギーの移動が効率よく生じ、近赤外光を効率よく発する発光デバイスを実現することができる。
なお、材料のLUMO準位及びHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位及び酸化電位)から導出することができる。
ホスト材料のHOMO準位とLUMO準位との差は、ゲスト材料のHOMO準位とLUMO準位との差に比べて小さいことが好ましい。ホスト材料のHOMO準位とLUMO準位との差が小さいことでも、ホスト材料の発光を長波長にすることができる。具体的には、ホスト材料におけるHOMO準位とLUMO準位との差は、1.35eV以上2.25eV以下であることが好ましい。当該準位の差は、1.55eV以上が好ましく、また、1.90eV以下が好ましい。
ここで、ゲスト材料に燐光材料を用いる場合、ゲスト材料のT準位(最も低い三重項励起状態のエネルギー準位)よりも、ホスト材料のT準位の方が高いと、発光デバイスの発光効率を高めることができる。一方で、ホスト材料は、一重項励起エネルギーを発光に変換することができる。ホスト材料のS準位(最も低い一重項励起状態のエネルギー準位)は、ホスト材料のT準位及びゲスト材料のT準位のそれぞれよりも高い。ホスト材料の発光を赤色の光~近赤外光にするためには、ゲスト材料のT準位とホスト材料のS準位の差が小さいことが好ましい。つまり、ホスト材料のS準位とT準位の差が小さいことが好ましい。熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence:TADF)材料は、S準位とT準位の差が小さいため、ホスト材料として好適に用いることができる。
または、励起錯体を形成させるべく、ホスト材料として、第1の有機化合物と第2の有機化合物を用いてもよい。第1の有機化合物と第2の有機化合物とは、励起錯体を形成する組み合わせである。この場合、ホスト材料は、第1の有機化合物と第2の有機化合物の混合材料ということもできる。ホスト材料に第1の有機化合物と第2の有機化合物を用いることで、発光デバイスでは、一対の電極間に電圧を印加した際に、励起錯体が形成される。
2種類の物質で励起状態を形成する励起錯体は、S準位とT準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。
ホスト材料が、第1の有機化合物と第2の有機化合物を有する場合、本発明の一態様の発光デバイスからは、第1の有機化合物と第2の有機化合物により形成された励起錯体に由来する発光が確認される。したがって、励起錯体の発光を視認されにくくするためには、励起錯体の発光が、視感度の低い光であることが好ましい。
ここで、エネルギー準位の高さが、第2の有機化合物のHOMO準位<第1の有機化合物のHOMO準位<第2の有機化合物のLUMO準位<第1の有機化合物のLUMO準位となる場合を考える。このとき、2つの有機化合物により形成される励起錯体において、LUMO準位は、第2の有機化合物に由来し、HOMO準位は、第1の有機化合物に由来する。
したがって、第1の有機化合物のHOMO準位は、ゲスト材料のHOMO準位よりも0.4eV以上高いことが好ましい。第1の有機化合物のHOMO準位がゲスト材料のHOMO準位よりも十分に高いことで、励起錯体の発光を長波長にすることができる。これにより、励起錯体の視感度を低くすることができる。また、励起錯体からゲスト材料への励起エネルギーの移動が効率よく生じ、近赤外光を効率よく発する発光デバイスを実現することができる。
また、第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差は、ゲスト材料のHOMO準位とLUMO準位との差に比べて小さいことが好ましい。第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差が小さいことでも、励起錯体の発光を長波長にすることができる。具体的には、第1の有機化合物のHOMO準位と第2の有機化合物のLUMO準位との差は、1.35eV以上2.25eV以下であることが好ましい。当該準位の差は、1.55eV以上が好ましく、また、1.90eV以下が好ましい。
また、ゲスト材料は、可視光領域の発光強度が低いことが好ましい。例えば、そこで、本発明の一態様の発光デバイスは、発光スペクトルにおける最大ピークの短波長側の立ち上がり波長は、650nm以上であることが好ましい。
本明細書等における、立ち上がり波長の求め方を説明する。まず、リニアスケールの発光スペクトルの短波長側の点から順に、スペクトルの極大点のうち、最も短波長側の極大点まで、曲線上の各点における接線を引く。この接線は、曲線が立ち上がる(縦軸の値が大きくなる)につれ、傾きが大きくなる。最も短波長側でこの傾きが極大値をとる点において引いた接線が原点と交差する波長を、立ち上がり波長とする。なお、縦軸の値が、最大ピークの10%以下である極大点は、上述の最も短波長側の極大点から除く。
また、発光性の有機化合物(ゲスト材料)は、溶液におけるフォトルミネッセンス(PL)スペクトルの、最大ピークの短波長側の立ち上がり波長が650nm以上であることが好ましい。
本発明の一態様の発光デバイスの外部量子効率は、1%以上であることが好ましい。
なお、本発明の一態様の発光デバイスにおいて、ホスト材料または励起錯体の発光強度は十分に低いため、当該外部量子効率は、発光デバイスにおける、ゲスト材料由来の発光より算出した外部量子効率、または、発光デバイスにおける、近赤外発光より算出した外部量子効率とみなすことができる。また、発光デバイスにおける、ゲスト材料由来の発光、もしくは、近赤外発光から外部量子効率を算出すべく、例えば、所定の波長域のデータを用いて、外部量子効率を算出してもよい。具体的には、波長600nm以上1030nm以下の範囲のデータから、外部量子効率を算出してもよい。
また、発光スペクトルの波形分離を実施し、ゲスト材料由来の発光と、ホスト材料由来または励起錯体由来の発光と、を区別してから、外部量子効率を求めてもよい。このとき、本発明の一態様の発光デバイスにおける、ゲスト材料由来の発光より算出した外部量子効率が、1%以上であることが好ましい。または、本発明の一態様の発光デバイスにおける、近赤外発光より算出した外部量子効率が、1%以上であることが好ましい。
発光性の有機化合物は、燐光を発すると、発光デバイスにおける発光効率を高めることができるため、好ましい。特に、発光性の有機化合物は、金属−炭素結合を有する有機金属錯体であることが好ましい。その中でも、発光性の有機化合物は、シクロメタル錯体であることがより好ましい。さらに、発光性の有機化合物は、オルトメタル錯体であることが好ましい。これらの有機化合物は、燐光を放出しやすいため、発光デバイスにおける発光効率を高めることができる。したがって、本発明の一態様の発光デバイスは、燐光を発することが好ましい。
さらに、金属−炭素結合を有する有機金属錯体は、ポルフィリン系の化合物などに比べて、発光効率が高く、化学的安定性が高いため、発光性の有機化合物として好適である。
また、発光層に、ゲスト材料として発光性の有機化合物を用い、ホスト材料として他の有機化合物を用いる場合、発光性の有機化合物の吸収スペクトルに大きな谷が生じる(強度の低い部分が生じる)と、ホスト材料の励起エネルギーの値によっては、ホスト材料からゲスト材料への励起エネルギーの移動が円滑に行われず、エネルギー移動効率が低下してしまう。ここで、金属−炭素結合を有する有機金属錯体の吸収スペクトルでは、三重項MLCT(Metal to Ligand Charge Transfer)遷移に由来する吸収帯、一重項MLCT遷移に由来する吸収帯、及び三重項π−π*遷移に由来する吸収帯など、数多くの吸収帯が重なるため、当該吸収スペクトルに大きな谷が生じにくい。したがって、ホスト材料として用いることができる材料の励起エネルギーの値の幅を広くすることができ、ホスト材料の選択の幅を広げることができる。
また、発光性の有機化合物は、イリジウム錯体であることが好ましい。例えば、発光性の有機化合物は、中心金属にイリジウムを用いた、シクロメタル錯体であることが好ましい。イリジウム錯体は白金錯体などに比べて化学的安定性が高いため、発光性の有機化合物としてイリジウム錯体を用いることで、発光デバイスの信頼性を高めることができる。このような安定性の観点で、イリジウムのシクロメタル錯体が好ましく、イリジウムのオルトメタル錯体がより好ましい。
なお、近赤外発光を得る観点から、上記有機金属錯体における配位子は、2環以上5環以下の縮合複素芳香環が金属に配位した構造を有することが好ましい。縮合複素芳香環は3環以上が好ましい。また、縮合複素芳香環は、4環以下が好ましい。縮合複素芳香環が有する環が多いほど、LUMO準位を下げることができ、有機金属錯体の発光波長を長波長化させることができる。また、縮合複素芳香環が少ないほど、昇華性を高めることができる。そのため、2環以上5環以下の縮合複素芳香環を採用することで、配位子のLUMO準位が適切に低下し、高い昇華性を維持しつつ、(三重項)MLCT遷移に由来する有機金属錯体の発光波長を近赤外まで長波長化させることができる。また、縮合複素芳香環が有する窒素原子(N)の数が多いほど、LUMO準位を下げることができる。したがって、縮合複素芳香環が有する窒素原子(N)の数は、2つ以上が好ましく、2つが特に好ましい。
本発明の一態様の発光デバイスは、膜状に形成することができ、大面積化が容易であるため、近赤外光を発する面光源として用いることができる。
本発明の一態様の発光デバイスは、可視光の発光が視認されにくく、かつ、近赤外光を効率よく発することができる。このような発光デバイスを用いて、近赤外光を用いた認証、解析、診断等を行う電子機器を実現することができる。当該電子機器では、発光デバイスが発する可視光が、近赤外光を用いた認証、解析、診断等におけるノイズとなることを抑制できる。これにより、認証、解析、診断等の精度を高めることができる。また、セキュリティ関連、軍事用途などの電子機器において、近赤外光を用いた撮像を、周囲の人に気づかれずに行うことができる。
[発光デバイスの構成例]
≪発光デバイスの基本的な構造≫
図1A~図1Cに、一対の電極間にEL層を有する発光デバイスの一例を示す。
図1Aに示す発光デバイスは、第1の電極101と第2の電極102との間にEL層103が挟まれた構造(シングル構造)を有する。EL層103は、少なくとも発光層を有する。
発光デバイスは、一対の電極間に複数のEL層を有していてもよい。図1Bに、一対の電極間に2層のEL層(EL層103a及びEL層103b)を有し、2層のEL層の間に電荷発生層104を有する、タンデム構造の発光デバイスを示す。タンデム構造の発光デバイスは、低電圧駆動が可能で消費電力を低くすることができる。
電荷発生層104は、第1の電極101と第2の電極102に電圧を印加したときに、EL層103a及びEL層103bのうち、一方に電子を注入し、他方に正孔(ホール)を注入する機能を有する。従って、図1Bにおいて、第1の電極101に第2の電極102よりも電位が高くなるように電圧を印加すると、電荷発生層104からEL層103aに電子が注入され、EL層103bに正孔が注入される。
なお、電荷発生層104は、光の取り出し効率の点から、近赤外光を透過する(具体的には、電荷発生層104の近赤外光の透過率が、40%以上である)ことが好ましい。また、電荷発生層104は、第1の電極101や第2の電極102よりも低い導電率であっても機能する。
図1Cには、EL層103の積層構造の一例を示す。本実施の形態では、第1の電極101が陽極として機能し、第2の電極102が陰極として機能する場合を例に挙げて説明する。EL層103は、第1の電極101上に、正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、電子注入層115が順次積層された構造を有する。正孔注入層111、正孔輸送層112、発光層113、電子輸送層114、及び電子注入層115は、それぞれ、単層構造であってもよく、積層構造であってもよい。なお、図1Bに示すタンデム構造のように複数のEL層を有する場合であっても、各EL層に、図1Cに示すEL層103と同様の積層構造を適用することができる。また、第1の電極101が陰極で、第2の電極102が陽極の場合、積層順は逆になる。
発光層113は、発光物質や複数の物質を適宜組み合わせて有しており、所望の波長の蛍光発光や燐光発光が得られる構成とすることができる。図1Bに示すEL層103a及びEL層103bは、互いに異なる波長を発する構成であってもよい。
本発明の一態様の発光デバイスにおいて、EL層で得られた発光を一対の電極間で共振させることにより、得られる発光を強める構成としてもよい。例えば、図1Cにおいて、第1の電極101を反射電極(近赤外光に対して反射性を有する電極)とし、第2の電極102を半透過・半反射電極(近赤外光に対して透過性及び反射性を有する電極)とすることにより、微小光共振器(マイクロキャビティ)構造を形成することで、EL層103から得られる発光を強めることができる。
なお、発光デバイスの第1の電極101が、近赤外光に対して反射性を有する導電膜と近赤外光に対して透光性を有する導電膜との積層構造からなる反射電極である場合、当該透光性を有する導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層113から得られる光の波長λに対して、第1の電極101と、第2の電極102との電極間距離がmλ/2(ただし、mは自然数)近傍となるように調整するのが好ましい。
また、発光層113から得られる所望の光(波長:λ)を増幅させるために、第1の電極101から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、第2の電極102から発光層113の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m’+1)λ/4(ただし、m’は自然数)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層113における正孔と電子との再結合領域を示す。
このような光学調整を行うことにより、発光層113から得られる光のスペクトルを狭線化させ、所望の波長の発光を得ることができる。
但し、上記の場合、第1の電極101と第2の電極102との光学距離は、厳密には第1の電極101における反射領域から第2の電極102における反射領域までの総厚ということができる。しかし、第1の電極101や第2の電極102における反射領域を厳密に決定することは困難であるため、第1の電極101と第2の電極102の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、第1の電極101と、所望の光が得られる発光層との光学距離は、厳密には第1の電極101における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、第1の電極101における反射領域や、所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、第1の電極101の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
第1の電極101と第2の電極102の少なくとも一方は、近赤外光に対して透光性を有する電極とする。近赤外光に対して透光性を有する電極の近赤外光の透過率は、40%以上とする。なお、近赤外光に対して透光性を有する電極が、上記半透過・半反射電極の場合、当該電極の近赤外光の反射率は、20%以上、好ましくは40%以上であり、また、100%未満、好ましくは95%以下であり、80%以下または70%以下であってもよい。例えば、当該電極の近赤外光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、当該電極の抵抗率は、1×10−2Ωcm以下が好ましい。
第1の電極101または第2の電極102が、反射電極である場合、反射電極の近赤外光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極の抵抗率は、1×10−2Ωcm以下が好ましい。
≪発光デバイスの具体的な構造及び作製方法≫
次に、発光デバイスの具体的な構造及び作製方法について説明する。ここでは、図1Cに示すシングル構造を有する発光デバイスを用いて説明する。
<第1の電極及び第2の電極>
第1の電極101及び第2の電極102を形成する材料としては、上述した両電極の機能が満たせるのであれば、以下に示す材料を適宜組み合わせて用いることができる。例えば、金属、合金、電気伝導性化合物、及びこれらの混合物などを適宜用いることができる。具体的には、In−Sn酸化物(ITOともいう)、In−Si−Sn酸化物(ITSOともいう)、In−Zn酸化物、In−W−Zn酸化物が挙げられる。その他、アルミニウム(Al)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ガリウム(Ga)、亜鉛(Zn)、インジウム(In)、スズ(Sn)、モリブデン(Mo)、タンタル(Ta)、タングステン(W)、パラジウム(Pd)、金(Au)、白金(Pt)、銀(Ag)、イットリウム(Y)、ネオジム(Nd)などの金属、及びこれらを適宜組み合わせて含む合金を用いることもできる。その他、上記例示のない元素周期表の第1族または第2族に属する元素(例えば、リチウム(Li)、セシウム(Cs)、カルシウム(Ca)、ストロンチウム(Sr))、ユウロピウム(Eu)、イッテルビウム(Yb)などの希土類金属及びこれらを適宜組み合わせて含む合金、グラフェン等を用いることができる。
なお、マイクロキャビティ構造を有する発光デバイスを作製する場合は、第1の電極101を反射電極として形成し、第2の電極102を半透過・半反射電極として形成する。したがって、所望の導電性材料を単数または複数用い、単層または積層して形成することができる。なお、第2の電極102は、EL層103を形成した後、上記と同様に材料を選択して形成する。また、これらの電極の作製には、スパッタリング法や真空蒸着法を用いることができる。
図1Cに示す発光デバイスにおいて、第1の電極101が陽極である場合、第1の電極101上に正孔注入層111及び正孔輸送層112が真空蒸着法により順次積層形成される。
<正孔注入層及び正孔輸送層>
正孔注入層111は、陽極である第1の電極101からEL層103に正孔を注入する層であり、正孔注入性の高い材料を含む層である。
正孔注入性の高い材料としては、モリブデン酸化物、バナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等の遷移金属酸化物、フタロシアニン(略称:HPc)や銅フタロシアニン(略称:CuPc)等のフタロシアニン系の化合物等を用いることができる。
正孔注入性の高い材料としては、4,4’,4’’−トリス(N,N−ジフェニルアミノ)トリフェニルアミン(略称:TDATA)、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N’−(3−メチルフェニル)−N’−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等の芳香族アミン化合物等を用いることができる。
正孔注入性の高い材料としては、ポリ(N−ビニルカルバゾール)(略称:PVK)、ポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N−(4−{N’−[4−(4−ジフェニルアミノ)フェニル]フェニル−N’−フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’−ビス(4−ブチルフェニル)−N,N’−ビス(フェニル)ベンジジン](略称:Poly−TPD)等を用いることができる。または、ポリ(3,4−エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(略称:PEDOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等の酸を添加した高分子化合物等を用いることもできる。
正孔注入性の高い材料としては、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む複合材料を用いることもできる。この場合、アクセプター性材料により正孔輸送性材料から電子が引き抜かれて正孔注入層111で正孔が発生し、正孔輸送層112を介して発光層113に正孔が注入される。なお、正孔注入層111は、正孔輸送性材料とアクセプター性材料とを含む複合材料からなる単層で形成してもよく、正孔輸送性材料とアクセプター性材料とをそれぞれ別の層で積層して形成してもよい。
正孔輸送層112は、正孔注入層111によって、第1の電極101から注入された正孔を発光層113に輸送する層である。正孔輸送層112は、正孔輸送性材料を含む層である。正孔輸送層112に用いる正孔輸送性材料は、特に正孔注入層111のHOMO準位と同じまたは近いHOMO準位を有するものを用いることが好ましい。
正孔注入層111に用いるアクセプター性材料としては、元素周期表における第4族乃至第8族に属する金属の酸化物を用いることができる。具体的には、酸化モリブデン、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化タングステン、酸化マンガン、酸化レニウムが挙げられる。中でも特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好ましい。その他、キノジメタン誘導体、クロラニル誘導体、ヘキサアザトリフェニレン誘導体などの有機アクセプターを用いることができる。電子吸引基(ハロゲン基やシアノ基)を有するものとしては、7,7,8,8−テトラシアノ−2,3,5,6−テトラフルオロキノジメタン(略称:F−TCNQ)、クロラニル、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(略称:HAT−CN)、1,3,4,5,7,8−ヘキサフルオロテトラシアノ−ナフトキノジメタン(略称:F6−TCNNQ)等を挙げることができる。特に、HAT−CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’−1,2,3−シクロプロパントリイリデントリス[4−シアノ−2,3,5,6−テトラフルオロベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,6−ジクロロ−3,5−ジフルオロ−4−(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’−1,2,3−シクロプロパントリイリデントリス[2,3,4,5,6−ペンタフルオロベンゼンアセトニトリル]などが挙げられる。
正孔注入層111及び正孔輸送層112に用いる正孔輸送性材料としては、10−6cm/Vs以上の正孔移動度を有する物質が好ましい。なお、電子よりも正孔の輸送性の高い物質であれば、これら以外のものも用いることができる。
正孔輸送性材料としては、π電子過剰型複素芳香族化合物(例えばカルバゾール誘導体、チオフェン誘導体、フラン誘導体など)や芳香族アミン(芳香族アミン骨格を有する化合物)等の正孔輸送性の高い材料が好ましい。
カルバゾール誘導体(カルバゾール骨格を有する化合物)としては、ビカルバゾール誘導体(例えば、3,3’−ビカルバゾール誘導体)、カルバゾリル基を有する芳香族アミン等が挙げられる。
ビカルバゾール誘導体(例えば、3,3’−ビカルバゾール誘導体)としては、具体的には、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)、9,9’−ビス(1,1’−ビフェニル−4−イル)−3,3’−ビ−9H−カルバゾール、9,9’−ビス(1,1’−ビフェニル−3−イル)−3,3’−ビ−9H−カルバゾール、9−(1,1’−ビフェニル−3−イル)−9’−(1,1’−ビフェニル−4−イル)−9H,9’H−3,3’−ビカルバゾール(略称:mBPCCBP)、9−(2−ナフチル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:βNCCP)などが挙げられる。
カルバゾリル基を有する芳香族アミンとしては、具体的には、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、N−(4−ビフェニル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9−フェニル−9H−カルバゾール−3−アミン(略称:PCBiF)、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、4−フェニルジフェニル−(9−フェニル−9H−カルバゾール−3−イル)アミン(略称:PCA1BP)、N,N’−ビス(9−フェニルカルバゾール−3−イル)−N,N’−ジフェニルベンゼン−1,3−ジアミン(略称:PCA2B)、N,N’,N’’−トリフェニル−N,N’,N’’−トリス(9−フェニルカルバゾール−3−イル)ベンゼン−1,3,5−トリアミン(略称:PCA3B)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、PCzPCA1、PCzPCA2、PCzPCN1、3−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA1)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzDPA2)、3,6−ビス[N−(4−ジフェニルアミノフェニル)−N−(1−ナフチル)アミノ]−9−フェニルカルバゾール(略称:PCzTPN2)、2−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:PCASF)、N−[4−(9H−カルバゾール−9−イル)フェニル]−N−(4−フェニル)フェニルアニリン(略称:YGA1BP)、N,N’−ビス[4−(カルバゾール−9−イル)フェニル]−N,N’−ジフェニル−9,9−ジメチルフルオレン−2,7−ジアミン(略称:YGA2F)、4,4’,4’’−トリス(カルバゾール−9−イル)トリフェニルアミン(略称:TCTA)などが挙げられる。
カルバゾール誘導体としては、上記に加えて、3−[4−(9−フェナントリル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPPn)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)等が挙げられる。
チオフェン誘導体(チオフェン骨格を有する化合物)及びフラン誘導体(フラン骨格を有する化合物)としては、具体的には、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)等が挙げられる。
芳香族アミンとしては、具体的には、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPBまたはα−NPD)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、N−(9,9−ジメチル−9H−フルオレン−2−イル)−N−{9,9−ジメチル−2−[N’−フェニル−N’−(9,9−ジメチル−9H−フルオレン−2−イル)アミノ]−9H−フルオレン−7−イル}フェニルアミン(略称:DFLADFL)、N−(9,9−ジメチル−2−ジフェニルアミノ−9H−フルオレン−7−イル)ジフェニルアミン(略称:DPNF)、2−[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPASF)、2,7−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]スピロ−9,9’−ビフルオレン(略称:DPA2SF)、4,4’,4’’−トリス[N−(1−ナフチル)−N−フェニルアミノ]トリフェニルアミン(略称:1’−TNATA)、TDATA、m−MTDATA、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、DPAB、DNTPD、DPA3B等が挙げられる。
正孔輸送性材料としては、PVK、PVTPA、PTPDMA、Poly−TPDなどの高分子化合物を用いることもできる。
正孔輸送性材料は、上記に限られることなく公知の様々な材料を1種または複数種組み合わせて、正孔注入層111及び正孔輸送層112に用いることができる。
図1Cに示す発光デバイスにおいて、正孔輸送層112上に発光層113が真空蒸着法により形成される。
<発光層>
発光層113は、発光物質を含む層である。
本発明の一態様の発光デバイスは、発光物質として、発光性の有機化合物を有する。当該発光性の有機化合物は、近赤外光を発する。具体的には、発光性の有機化合物が発する光の最大ピーク波長は、750nmより大きく900nm以下である。
発光性の有機化合物として、例えば、後述する実施例でゲスト材料(燐光材料)として示す有機金属錯体である、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−2−ベンゾ[g]キノキサリニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdpbq)(dpm)])を用いることができる。
また、発光性の有機化合物として、例えば、テトラフェニルテトラベンゾポルフィリン白金(II)を用いることができる。
発光層113は、1種または複数種の発光物質を有することができる。
発光層113は、発光物質(ゲスト材料)に加えて、1種または複数種の有機化合物(ホスト材料)を有する。1種または複数種の有機化合物としては、本実施の形態で説明する正孔輸送性材料及び電子輸送性材料の一方または双方を用いることができる。また、1種または複数種の有機化合物として、バイポーラ性材料を用いてもよい。
発光層113に用いることができる発光物質として、特に限定は無く、一重項励起エネルギーを近赤外光領域の発光に変える発光物質、または三重項励起エネルギーを近赤外光領域の発光に変える発光物質を用いることができる。
一重項励起エネルギーを発光に変える発光物質としては、蛍光を発する物質(蛍光材料)が挙げられ、例えば、ピレン誘導体、アントラセン誘導体、トリフェニレン誘導体、フルオレン誘導体、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、ジベンゾキノキサリン誘導体、キノキサリン誘導体、ピリジン誘導体、ピリミジン誘導体、フェナントレン誘導体、ナフタレン誘導体などが挙げられる。
三重項励起エネルギーを発光に変える発光物質としては、例えば、燐光を発する物質(燐光材料)や熱活性化遅延蛍光を示すTADF材料が挙げられる。
燐光材料としては、例えば、4H−トリアゾール骨格、1H−トリアゾール骨格、イミダゾール骨格、ピリミジン骨格、ピラジン骨格、またはピリジン骨格を有する有機金属錯体(特にイリジウム錯体)、電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属錯体(特にイリジウム錯体)、白金錯体、希土類金属錯体等が挙げられる。
発光層113に用いるホスト材料としては、発光物質のエネルギーギャップより大きなエネルギーギャップを有する物質を、一種もしくは複数種選択して用いることができる。
発光層113に用いる発光物質が蛍光材料である場合、発光物質と組み合わせて用いる有機化合物としては、一重項励起状態のエネルギー準位が大きく、三重項励起状態のエネルギー準位が小さい有機化合物を用いるのが好ましい。
発光物質が蛍光材料である場合、発光物質と組み合わせて用いることができる有機化合物としては、アントラセン誘導体、テトラセン誘導体、フェナントレン誘導体、ピレン誘導体、クリセン誘導体、ジベンゾ[g,p]クリセン誘導体等の縮合多環芳香族化合物が挙げられる。
蛍光材料と組み合わせて用いる有機化合物(ホスト材料)の具体例としては、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3,6−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:DPCzPA)、PCPN、9,10−ジフェニルアントラセン(略称:DPAnth)、N,N−ジフェニル−9−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:CzA1PA)、4−(10−フェニル−9−アントリル)トリフェニルアミン(略称:DPhPA)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、N,9−ジフェニル−N−{4−[4−(10−フェニル−9−アントリル)フェニル]フェニル}−9H−カルバゾール−3−アミン(略称:PCAPBA)、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、6,12−ジメトキシ−5,11−ジフェニルクリセン、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、CzPA、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、9,9’−ビアントリル(略称:BANT)、9,9’−(スチルベン−3,3’−ジイル)ジフェナントレン(略称:DPNS)、9,9’−(スチルベン−4,4’−ジイル)ジフェナントレン(略称:DPNS2)、1,3,5−トリ(1−ピレニル)ベンゼン(略称:TPB3)、5,12−ジフェニルテトラセン、5,12−ビス(ビフェニル−2−イル)テトラセンなどが挙げられる。
発光物質が燐光材料である場合、発光物質と組み合わせて用いる有機化合物としては、発光物質の三重項励起エネルギー(基底状態と三重項励起状態とのエネルギー差)よりも三重項励起エネルギーの大きい有機化合物を選択すればよい。
励起錯体を形成させるべく複数の有機化合物(例えば、第1のホスト材料、及び第2のホスト材料)を発光物質と組み合わせて用いる場合は、これらの複数の有機化合物を燐光材料(特に有機金属錯体)と混合して用いることが好ましい。
このような構成とすることにより、励起錯体から発光物質へのエネルギー移動であるExTET(Exciplex−Triplet Energy Transfer)を用いた発光を効率よく得ることができる。なお、複数の有機化合物の組み合わせとしては、励起錯体が形成されやすいものがよく、正孔を受け取りやすい化合物(正孔輸送性材料)と、電子を受け取りやすい化合物(電子輸送性材料)とを組み合わせることが特に好ましい。なお、正孔輸送性材料及び電子輸送性材料の具体例については、本実施の形態で示す材料を用いることができる。この構成により、発光デバイスの高効率、低電圧、長寿命を同時に実現できる。
発光物質が燐光材料である場合に発光物質と組み合わせて用いることができる有機化合物としては、芳香族アミン、カルバゾール誘導体、ジベンゾチオフェン誘導体、ジベンゾフラン誘導体、亜鉛やアルミニウム系の金属錯体、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリミジン誘導体、トリアジン誘導体、ピリジン誘導体、ビピリジン誘導体、フェナントロリン誘導体等が挙げられる。
なお、上記のうち、正孔輸送性の高い有機化合物である芳香族アミン(芳香族アミン骨格を有する化合物)、カルバゾール誘導体、ジベンゾチオフェン誘導体(チオフェン誘導体)、ジベンゾフラン誘導体(フラン誘導体)の具体例としては、上記に示した正孔輸送性材料の具体例と同じものが挙げられる。
電子輸送性の高い有機化合物である、亜鉛やアルミニウム系の金属錯体の具体例としては、トリス(8−キノリノラト)アルミニウム(III)(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(III)(略称:Almq)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等が挙げられる。
この他、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。
電子輸送性の高い有機化合物である、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾイミダゾール誘導体、ベンゾイミダゾール誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、フェナントロリン誘導体の具体例としては、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、3−(4−tert−ブチルフェニル)−4−(4−エチルフェニル)−5−(4−ビフェニリル)−1,2,4−トリアゾール(略称:p−EtTAZ)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)、4,4’−ビス(5−メチルベンゾオキサゾール−2−イル)スチルベン(略称:BzOs、バソフェナントロリン(略称:Bphen)、バソキュプロイン(略称:BCP)、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、2−[4−(3,6−ジフェニル−9H−カルバゾール−9−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2CzPDBq−III)、7−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:7mDBTPDBq−II)、及び6−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6mDBTPDBq−II)などが挙げられる。
電子輸送性の高い有機化合物である、ジアジン骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物、ピリジン骨格を有する複素環化合物の具体例としては、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス[3−(4−ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm−II)、4,6−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリミジン(略称:4,6mCzP2Pm)、2−{4−[3−(N−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール−9−イル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:PCCzPTzn)、9−[3−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)フェニル]−9’−フェニル−2,3’−ビ−9H−カルバゾール(略称:mPCCzPTzn−02)、2−[3’−(9,9−ジメチル−9H−フルオレン−2−イル)−1,1’−ビフェニル−3−イル]−4,6−ジフェニル−1,3,5−トリアジン(略称:mFBPTzn)、2−[(1,1’−ビフェニル)−4−イル]−4−フェニル−6−[9,9’−スピロビ(9H−フルオレン)−2−イル]−1,3,5−トリアジン(略称:BP−SFTzn)、2−{3−[3−(ベンゾ[b]ナフト[1,2−d]フラン−8−イル)フェニル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:mBnfBPTzn)、2−{3−[3−(ベンゾ[b]ナフト[1,2−d]フラン−6−イル)フェニル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:mBnfBPTzn−02)、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などが挙げられる。
電子輸送性の高い有機化合物としては、ポリ(2,5−ピリジンジイル)(略称:PPy)、ポリ[(9,9−ジヘキシルフルオレン−2,7−ジイル)−co−(ピリジン−3,5−ジイル)](略称:PF−Py)、ポリ[(9,9−ジオクチルフルオレン−2,7−ジイル)−co−(2,2’−ビピリジン−6,6’−ジイル)](略称:PF−BPy)のような高分子化合物を用いることもできる。
TADF材料とは、S準位とT準位との差が小さく、逆項間交差によって三重項励起エネルギーから一重項励起エネルギーへエネルギーを変換することができる機能を有する材料である。そのため、三重項励起エネルギーをわずかな熱エネルギーによって一重項励起エネルギーにアップコンバート(逆項間交差)が可能で、一重項励起状態を効率よく生成することができる。また、三重項励起エネルギーを発光に変換することができる。熱活性化遅延蛍光が効率良く得られる条件としては、S準位とT準位のエネルギー差が0eV以上0.2eV以下、好ましくは0eV以上0.1eV以下であることが挙げられる。また、TADF材料における遅延蛍光とは、通常の蛍光と同様のスペクトルを持ちながら、寿命が著しく長い発光をいう。その寿命は、10−6秒以上、好ましくは10−3秒以上である。
準位の指標としては、低温(例えば77Kから10K)で観測される燐光スペクトルを用いればよい。TADF材料としては、その蛍光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをS準位とし、燐光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをT準位とした際に、そのS準位とT準位の差が0.3eV以下であることが好ましく、0.2eV以下であることがさらに好ましい。
TADF材料は、ゲスト材料として用いてもよく、ホスト材料として用いてもよい。
TADF材料としては、例えば、フラーレンやその誘導体、プロフラビン等のアクリジン誘導体、エオシン等が挙げられる。また、マグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。金属含有ポルフィリンとしては、例えば、プロトポルフィリン−フッ化スズ錯体(略称:SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(略称:SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(略称:SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(略称:SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(略称:SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(略称:SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(略称:PtClOEP)等が挙げられる。
その他にも、2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)、PCCzPTzn、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環及びπ電子不足型複素芳香環を有する複素環化合物を用いることができる。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環のドナー性とπ電子不足型複素芳香環のアクセプター性が共に強くなり、一重項励起状態と三重項励起状態のエネルギー差が小さくなるため、特に好ましい。
なお、TADF材料を用いる場合、他の有機化合物と組み合わせて用いることもできる。特に、上述したホスト材料、正孔輸送材料、電子輸送材料と組み合わせることができる。
また、上記の材料は、低分子材料や高分子材料と組み合わせることにより発光層113の形成に用いることができる。また、成膜には、公知の方法(蒸着法や塗布法や印刷法など)を適宜用いることができる。
図1Cに示す発光デバイスにおいて、発光層113上に電子輸送層114が形成される。
<電子輸送層>
電子輸送層114は、電子注入層115によって、第2の電極102から注入された電子を発光層113に輸送する層である。なお、電子輸送層114は、電子輸送性材料を含む層である。電子輸送層114に用いる電子輸送性材料は、1×10−6cm/Vs以上の電子移動度を有する物質が好ましい。なお、正孔よりも電子の輸送性の高い物質であれば、これら以外のものも用いることができる。
電子輸送性材料としては、キノリン骨格を有する金属錯体、ベンゾキノリン骨格を有する金属錯体、オキサゾール骨格を有する金属錯体、チアゾール骨格を有する金属錯体等の他、オキサジアゾール誘導体、トリアゾール誘導体、イミダゾール誘導体、オキサゾール誘導体、チアゾール誘導体、フェナントロリン誘導体、キノリン配位子を有するキノリン誘導体、ベンゾキノリン誘導体、キノキサリン誘導体、ジベンゾキノキサリン誘導体、ピリジン誘導体、ビピリジン誘導体、ピリミジン誘導体、その他含窒素複素芳香族化合物を含むπ電子不足型複素芳香族化合物等の電子輸送性の高い材料を用いることができる。
電子輸送性材料の具体例としては、上記に示した材料を用いることができる。
次に、図1Cに示す発光デバイスにおいて、電子輸送層114上に電子注入層115が真空蒸着法により形成される。
<電子注入層>
電子注入層115は、電子注入性の高い物質を含む層である。電子注入層115には、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、リチウム酸化物(LiO)等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用いることができる。また、フッ化エルビウム(ErF)のような希土類金属化合物を用いることができる。また、電子注入層115にエレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。なお、上述した電子輸送層114を構成する物質を用いることもできる。
また、電子注入層115に、電子輸送性材料とドナー性材料(電子供与性材料)とを含む複合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が発生するため、電子注入性及び電子輸送性に優れている。この場合、有機化合物としては、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述した電子輸送層114に用いる電子輸送性材料(金属錯体や複素芳香族化合物等)を用いることができる。電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バリウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いることもできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることもできる。
<電荷発生層>
図1Bに示す発光デバイスにおいて、電荷発生層104は、第1の電極101(陽極)と第2の電極102(陰極)との間に電圧を印加したときに、EL層103aに電子を注入し、EL層103bに正孔を注入する機能を有する。
電荷発生層104は、正孔輸送性材料とアクセプター性材料(電子受容性材料)とを含む構成であっても、電子輸送性材料とドナー性材料とを含む構成であってもよい。このような構成の電荷発生層104を形成することにより、EL層が積層された場合における駆動電圧の上昇を抑制することができる。
正孔輸送性材料、アクセプター性材料、電子輸送性材料、及びドナー性材料は、それぞれ上述の材料を用いることができる。
なお、本実施の形態で示す発光デバイスの作製には、蒸着法などの真空プロセスや、スピンコート法やインクジェット法などの溶液プロセスを用いることができる。蒸着法を用いる場合には、スパッタ法、イオンプレーティング法、イオンビーム蒸着法、分子線蒸着法、真空蒸着法などの物理蒸着法(PVD法)や、化学蒸着法(CVD法)等を用いることができる。特にEL層に含まれる機能層(正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層)及び電荷発生層については、蒸着法(真空蒸着法等)、塗布法(ディップコート法、ダイコート法、バーコート法、スピンコート法、スプレーコート法等)、印刷法(インクジェット法、スクリーン(孔版印刷)法、オフセット(平版印刷)法、フレキソ(凸版印刷)法、グラビア法、マイクロコンタクト法等)などの方法により形成することができる。
EL層103を構成する機能層及び電荷発生層の材料は、それぞれ、上述の材料に限定されない。例えば、機能層の材料として、高分子化合物(オリゴマー、デンドリマー、ポリマー等)、中分子化合物(低分子と高分子の中間領域の化合物:分子量400乃至4000)、無機化合物(量子ドット材料等)等を用いてもよい。なお、量子ドット材料としては、コロイド状量子ドット材料、合金型量子ドット材料、コア・シェル型量子ドット材料、コア型量子ドット材料などを用いることができる。
本発明の一態様の発光デバイスは、ホスト材料またはホスト材料が形成する励起錯体の発光が視認されにくい。したがって、可視光の発光が視認されにくく、かつ、近赤外光を効率よく発する発光デバイスを実現することができる。
本発明の一態様の発光デバイスにおいて、輝度A[cd/m]と、放射輝度B[W/sr/m]とは、0≦A/B≦1[cd・sr/W](または0<A/B≦1[cd・sr/W])を満たす。したがって、可視光の発光が視認されにくく、かつ、近赤外光を効率よく発する発光デバイスを実現することができる。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。また、本明細書において、1つの実施の形態の中に、複数の構成例が示される場合は、構成例を適宜組み合わせることが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様の発光装置について図2及び図3を用いて説明する。
本実施の形態の発光装置は、実施の形態1に示す発光デバイスを有する。したがって、近赤外光を発し、かつ、可視光の発光が視認されにくい発光装置を実現できる。
[発光装置の構成例1]
図2Aに発光装置の上面図を示し、図2B、図2Cに、図2Aの一点鎖線X1−Y1間及びX2−Y2間の断面図を示す。図2A~図2Cに示す発光装置は、例えば、照明装置に用いることができる。発光装置は、ボトムエミッション、トップエミッション、デュアルエミッションのいずれであってもよい。
図2Bに示す発光装置は、基板490a、基板490b、導電層406、導電層416、絶縁層405、有機ELデバイス450(第1の電極401、EL層402、及び第2の電極403)、及び接着層407を有する。有機ELデバイス450には、実施の形態1に示す発光デバイスを用いることができる。
有機ELデバイス450は、基板490a上の第1の電極401と、第1の電極401上のEL層402と、EL層402上の第2の電極403とを有する。基板490a、接着層407、及び基板490bによって、有機ELデバイス450は封止されている。
第1の電極401、導電層406、導電層416の端部は絶縁層405で覆われている。導電層406は第1の電極401と電気的に接続し、導電層416は第2の電極403と電気的に接続する。第1の電極401を介して絶縁層405に覆われた導電層406は、補助配線として機能し、第1の電極401と電気的に接続する。有機ELデバイス450の電極と電気的に接続する補助配線を有すると、電極の抵抗に起因する電圧降下を抑制できるため、好ましい。導電層406は、第1の電極401上に設けられていてもよい。また、絶縁層405上等に、第2の電極403と電気的に接続する補助配線を有していてもよい。
基板490a及び基板490bには、それぞれ、ガラス、石英、セラミック、サファイア、有機樹脂などを用いることができる。基板490a及び基板490bに可撓性を有する材料を用いると、発光装置の可撓性を高めることができる。
発光装置の発光面には、光取り出し効率を高めるための光取り出し構造、ゴミの付着を抑制する帯電防止膜、汚れを付着しにくくする撥水性の膜、使用に伴う傷の発生を抑制するハードコート膜、衝撃吸収層等を配置してもよい。
絶縁層405に用いることのできる絶縁材料としては、例えば、アクリル樹脂、エポキシ樹脂などの樹脂、酸化シリコン、酸化窒化シリコン、窒化酸化シリコン、窒化シリコン、酸化アルミニウムなどの無機絶縁材料が挙げられる。
接着層407としては、紫外線硬化型等の光硬化型接着剤、反応硬化型接着剤、熱硬化型接着剤、嫌気型接着剤などの各種硬化型接着剤を用いることができる。これら接着剤としてはエポキシ樹脂、アクリル樹脂、シリコーン樹脂、フェノール樹脂、ポリイミド樹脂、イミド樹脂、PVC(ポリビニルクロライド)樹脂、PVB(ポリビニルブチラル)樹脂、EVA(エチレンビニルアセテート)樹脂等が挙げられる。特に、エポキシ樹脂等の透湿性が低い材料が好ましい。また、二液混合型の樹脂を用いてもよい。また、接着シート等を用いてもよい。
図2Cに示す発光装置は、バリア層490c、導電層406、導電層416、絶縁層405、有機ELデバイス450、接着層407、バリア層423、及び基板490bを有する。
図2Cに示すバリア層490cは、基板420、接着層422、及びバリア性の高い絶縁層424を有する。
図2Cに示す発光装置では、バリア性の高い絶縁層424とバリア層423との間に、有機ELデバイス450が配置されている。したがって、基板420及び基板490bに比較的防水性の低い樹脂フィルムなどを用いても、有機ELデバイスに水などの不純物が入り込み寿命が低減することを、抑制することができる。
基板420及び基板490bには、それぞれ、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)等のポリエステル樹脂、ポリアクリロニトリル樹脂、アクリル樹脂、ポリイミド樹脂、ポリメチルメタクリレート樹脂、ポリカーボネート(PC)樹脂、ポリエーテルスルホン(PES)樹脂、ポリアミド樹脂(ナイロン、アラミド等)、ポリシロキサン樹脂、シクロオレフィン樹脂、ポリスチレン樹脂、ポリアミドイミド樹脂、ポリウレタン樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリプロピレン樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、ABS樹脂、セルロースナノファイバー等を用いることができる。基板420及び基板490bには、可撓性を有する程度の厚さのガラスを用いてもよい。
バリア性の高い絶縁層424としては、無機絶縁膜を用いることが好ましい。無機絶縁膜としては、例えば、窒化シリコン膜、酸化窒化シリコン膜、酸化シリコン膜、窒化酸化シリコン膜、酸化アルミニウム膜、窒化アルミニウム膜などを用いることができる。また、酸化ハフニウム膜、酸化イットリウム膜、酸化ジルコニウム膜、酸化ガリウム膜、酸化タンタル膜、酸化マグネシウム膜、酸化ランタン膜、酸化セリウム膜、及び酸化ネオジム膜等を用いてもよい。また、上述の絶縁膜を2以上積層して用いてもよい。
バリア層423には、少なくとも1層の無機膜を有することが好ましい。例えば、バリア層423には、無機膜の単層構造や、無機膜と有機膜との積層構造を適用することができる。無機膜としては、上記無機絶縁膜が好適である。当該積層構造としては、例えば、酸化窒化シリコン膜と、酸化シリコン膜と、有機膜と、酸化シリコン膜と、窒化シリコン膜と、を順に形成する構成などが挙げられる。バリア層を無機膜と有機膜との積層構造とすることで、有機ELデバイス450に入り込みうる不純物(代表的には、水素、水など)を好適に抑制することができる。
バリア性の高い絶縁層424及び有機ELデバイス450は、可撓性を有する基板420上に直接形成することができる。この場合、接着層422は不要である。また、絶縁層424及び有機ELデバイス450は、硬質基板上に剥離層を介して形成した後、基板420に転置することができる。例えば、剥離層に、熱、力、レーザ光などを与えることにより、硬質基板から絶縁層424及び有機ELデバイス450を剥離した後、接着層422を用いて基板420を貼り合わせることで、基板420に転置してもよい。剥離層としては、例えば、タングステン膜と酸化シリコン膜とを含む無機膜の積層構造や、ポリイミド等の有機樹脂膜等を用いることができる。硬質基板を用いる場合、樹脂基板などに比べて、高温をかけて絶縁層424を形成することができるため、絶縁層424を緻密で極めてバリア性の高い絶縁膜とすることができる。
[発光装置の構成例2]
本発明の一態様の発光装置は、パッシブマトリクス型またはアクティブマトリクス型とすることができる。アクティブマトリクス型の発光装置について図3を用いて説明する。
図3Aに発光装置の上面図を示す。図3Bは、図3Aに示す一点鎖線A−A’間の断面図である。
図3A、図3Bに示すアクティブマトリクス型の発光装置は、画素部302、回路部303、回路部304a、及び回路部304bを有する。
回路部303、回路部304a、及び回路部304bは、それぞれ、走査線駆動回路(ゲートドライバ)または信号線駆動回路(ソースドライバ)として機能することができる。または、外付けのゲートドライバまたはソースドライバと、画素部302と、を電気的に接続する回路であってもよい。
第1の基板301上には、引き回し配線307が設けられる。引き回し配線307は、外部入力端子であるFPC308と電気的に接続される。FPC308は、回路部303、回路部304a、及び回路部304bに外部からの信号(例えば、ビデオ信号、クロック信号、スタート信号、リセット信号等)や電位を伝達する。また、FPC308にはプリント配線基板(PWB)が取り付けられていてもよい。図3A、図3Bに示す構成は、発光デバイス(または発光装置)及びFPCを有する発光モジュールということもできる。
画素部302は、有機ELデバイス317、トランジスタ311、及びトランジスタ312を有する画素を、複数有する。有機ELデバイス317には、実施の形態1に示す発光デバイスを用いることができる。トランジスタ312は、有機ELデバイス317が有する第1の電極313と電気的に接続されている。トランジスタ311は、スイッチング用トランジスタとして機能する。トランジスタ312は、電流制御用トランジスタとして機能する。なお、各画素が有するトランジスタの数は、特に限定されることはなく、必要に応じて適宜設けることができる。
回路部303は、トランジスタ309、トランジスタ310等を含む、複数のトランジスタを有する。回路部303は、単極性(N型またはP型のいずれか一方のみ)のトランジスタを含む回路で形成されてもよいし、N型のトランジスタとP型のトランジスタを含むCMOS回路で形成されてもよい。また、外部に駆動回路を有する構成としてもよい。
本実施の形態の発光装置が有するトランジスタの構造は特に限定されない。例えば、プレーナ型のトランジスタ、スタガ型のトランジスタ、逆スタガ型のトランジスタ等を用いることができる。また、トップゲート型またはボトムゲート型のいずれのトランジスタ構造としてもよい。または、チャネルが形成される半導体層の上下にゲートが設けられていてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、または一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
トランジスタの半導体層は、金属酸化物(酸化物半導体ともいう)を有することが好ましい。または、トランジスタの半導体層は、シリコンを有していてもよい。シリコンとしては、アモルファスシリコン、結晶性のシリコン(低温ポリシリコン、単結晶シリコンなど)などが挙げられる。
半導体層は、例えば、インジウムと、M(Mは、ガリウム、アルミニウム、シリコン、ホウ素、イットリウム、スズ、銅、バナジウム、ベリリウム、チタン、鉄、ニッケル、ゲルマニウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステン、及びマグネシウムから選ばれた一種または複数種)と、亜鉛と、を有することが好ましい。特に、Mは、アルミニウム、ガリウム、イットリウム、及びスズから選ばれた一種または複数種であることが好ましい。
特に、半導体層として、インジウム(In)、ガリウム(Ga)、及び亜鉛(Zn)を含む酸化物(IGZOとも記す)を用いることが好ましい。
半導体層がIn−M−Zn酸化物の場合、In−M−Zn酸化物を成膜するために用いるスパッタリングターゲットは、Inの原子数比がMの原子数比以上であることが好ましい。このようなスパッタリングターゲットの金属元素の原子数比として、In:M:Zn=1:1:1、In:M:Zn=1:1:1.2、In:M:Zn=2:1:3、In:M:Zn=3:1:2、In:M:Zn=4:2:3、In:M:Zn=4:2:4.1、In:M:Zn=5:1:6、In:M:Zn=5:1:7、In:M:Zn=5:1:8、In:M:Zn=6:1:6、In:M:Zn=5:2:5等が挙げられる。
回路部303、回路部304a、回路部304bが有するトランジスタと、画素部302が有するトランジスタは、同じ構造であってもよく、異なる構造であってもよい。回路部303、回路部304a、回路部304bが有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。同様に、画素部302が有する複数のトランジスタの構造は、全て同じであってもよく、2種類以上あってもよい。
第1の電極313の端部は、絶縁層314により覆われている。なお、絶縁層314には、ネガ型の感光性樹脂、ポジ型の感光性樹脂(アクリル樹脂)などの有機化合物や、酸化シリコン、酸化窒化シリコン、窒化シリコン等の無機化合物を用いることができる。絶縁層314の上端部または下端部には、曲率を有する曲面を有するのが好ましい。これにより、絶縁層314の上層に形成される膜の被覆性を良好なものとすることができる。
第1の電極313上にはEL層315が設けられ、EL層315上には第2の電極316が設けられる。EL層315は、発光層、正孔注入層、正孔輸送層、電子輸送層、電子注入層、電荷発生層等を有する。
複数のトランジスタ及び複数の有機ELデバイス317は、第1の基板301、第2の基板306、及びシール材305によって、封止されている。第1の基板301、第2の基板306、及びシール材305で囲まれた空間318は、不活性気体(窒素やアルゴン等)や有機物(シール材305を含む)で充填されていてもよい。
シール材305には、エポキシ樹脂やガラスフリットを用いることができる。なお、シール材305には、できるだけ水分や酸素を透過しない材料を用いることが好ましい。シール材としてガラスフリットを用いる場合には、接着性の観点から第1の基板301及び第2の基板306はガラス基板であることが好ましい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、本発明の一態様の発光デバイスを用いることができる電子機器について図4を用いて説明する。
本発明の一態様の発光デバイスは、近赤外光を発し、かつ、可視光の発光が視認されにくい。このような発光デバイスを用いて、近赤外光を用いた認証、解析、診断等を行う電子機器を実現することができる。当該電子機器では、発光デバイスが発する可視光が、近赤外光を用いた認証、解析、診断等におけるノイズとなることを抑制できる。これにより、認証、解析、診断等の精度を高めることができる。また、セキュリティ関連、軍事用途などの電子機器において、近赤外光を用いた撮像を、周囲の人に気づかれずに行うことができる。
図4Aは指の静脈を対象とした生体認証機器であり、筐体911、光源912、検知ステージ913等を有する。検知ステージ913に指を載せることにより静脈の形状を撮像することができる。検知ステージ913の上部には近赤外光を発する光源912が設置され、下部には撮像装置914が設置される。検知ステージ913は近赤外光を透過する材料で構成されており、光源912から照射され、指を透過した近赤外光を撮像装置914で撮像することができる。なお、検知ステージ913と撮像装置914の間に光学系が設けられていてもよい。上記機器の構成は、手のひらの静脈を対象とした生体認証機器に利用することもできる。
本発明の一態様の発光デバイスを、光源912に用いることができる。本発明の一態様の発光デバイスは、湾曲した形状に設置することができ、対象物に対して均一性よく光を照射することができる。特に波長760nm以上900nm以下に最も強いピーク強度を有する近赤外光を発する発光デバイスであることが好ましい。指や手のひらなどを透過した光を受光して画像化することで静脈の位置を検出することができる。当該作用は生体認証として利用することができる。また、グローバルシャッタ方式と組み合わせることで、被写体に動きがあっても精度の高いセンシングが可能となる。
また、光源912は、図4Bに示す発光部915、916、917のように、複数の発光部を有することができる。発光部915、916、917のそれぞれは、発光する波長が異なっていてもよい、また、それぞれは、別のタイミングで光を照射することもできる。したがって、照射する光の波長や角度を変えることにより異なる画像を連続して撮像することができるため、複数の画像を認証に利用し、高いセキュリティを実現することができる。
図4Cは手のひらの静脈を対象とした生体認証機器であり、筐体921、操作ボタン922、検知部923、近赤外光を発する光源924等を有する。検知部923上に手をかざすことにより手のひらの静脈の形状を認識することができる。また、操作ボタンにより暗証番号などを入力することもできる。検知部923の周囲には光源924が配置され対象物(手)を照射する。そして、対象物からの反射光が検知部923に入射される。本発明の一態様の発光デバイスを、光源924に用いることができる。検知部923直下には撮像装置925が配置され、対象物の像(手の全体像)を取り込むことができる。なお、検知部923と撮像装置925の間に光学系が設けられていてもよい。上記機器の構成は、指の静脈を対象とした生体認証機器に利用することもできる。
図4Dは非破壊検査機器であり、筐体931、操作パネル932、搬送機構933、モニタ934、検知ユニット935、近赤外光を発する光源938等を有する。本発明の一態様の発光デバイスを、光源938に用いることができる。被検査部材936は搬送機構933で検知ユニット935の直下に運搬される。被検査部材936には光源938から近赤外光が照射され、その透過光を検知ユニット935内に設けられた撮像装置937で撮像する。撮像された画像は、モニタ934に映し出される。その後、筐体931の出口まで運搬され、不良品が分別されて回収される。近赤外光を用いた撮像により、非検査部材内部の欠陥や異物などの不良要素を非破壊で高速に検出することができる。
図4Eは携帯電話機であり、筐体981、表示部982、操作ボタン983、外部接続ポート984、スピーカ985、マイク986、第1のカメラ987、第2のカメラ988等を有する。当該携帯電話機は、表示部982にタッチセンサを備える。筐体981及び表示部982は可撓性を有する。電話を掛ける、或いは文字を入力するなどのあらゆる操作は、指やスタイラスなどで表示部982に触れることで行うことができる。第1のカメラ987では可視光画像を取得することができ、第2のカメラ988では赤外光画像(近赤外光画像)を取得することができる。図4Eに示す携帯電話機または表示部982は、本発明の一態様の発光デバイスを有していてもよい。
本実施の形態は、他の実施の形態と適宜組み合わせることができる。
本実施例では、本発明の一態様の発光デバイスを作製し、評価した結果について説明する。
本実施例では、発光デバイスとして、本発明の一態様が適用されたデバイス1と、比較用の比較デバイス2と、を作製し、評価した結果について説明する。
本実施例で用いるデバイス1及び比較デバイス2の構造を図5に示し、具体的な構成について表1に示す。また、本実施例で用いる材料の化学式を以下に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-C000002
≪デバイスの作製≫
本実施例で示すデバイス1及び比較デバイス2は、図5に示すように、基板800上に第1の電極801が形成され、第1の電極801上に、EL層802として、正孔注入層811、正孔輸送層812、発光層813、電子輸送層814、及び電子注入層815が順次積層され、電子注入層815上に第2の電極803が積層された構造を有する。
まず、基板800上に第1の電極801を形成した。電極面積は、4mm(2mm×2mm)とした。基板800には、ガラス基板を用いた。第1の電極801は、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により成膜して形成した。第1の電極801の膜厚は、デバイス1では70nmとし、比較デバイス2では110nmとした。なお、本実施例において、第1の電極801は、陽極として機能する。
ここで、前処理として、基板の表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。その後、1×10−4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、第1の電極801上に正孔注入層811を形成した。正孔注入層811は、真空蒸着装置内を1×10−4Pa程度に減圧した後、1,3,5−トリ(ジベンゾチオフェン−4−イル)ベンゼン(略称:DBT3P−II)と酸化モリブデンとを、DBT3P−II:酸化モリブデン=2:1(重量比)とし、共蒸着して形成した。正孔注入層811の膜厚は、デバイス1では120nmとし、比較デバイス2では60nmとした。
次に、正孔注入層811上に正孔輸送層812を形成した。正孔輸送層812は、N−(1,1’−ビフェニル−4−イル)−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9,9−ジメチル−9H−フルオレン−2−アミン(略称:PCBBiF)を用い、膜厚が20nmになるように蒸着して形成した。
次に、正孔輸送層812上に発光層813を形成した。
デバイス1では、ホスト材料として、2,8−ビス[3−(ジベンゾチオフェン−4−イル)フェニル]ベンゾフロ[2,3−b]キノキサリン(略称:2,8mDBtP2Bfqn)と、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミン(略称:m−MTDATA)と、を用い、ゲスト材料(燐光材料)として、ビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−2−ベンゾ[g]キノキサリニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdpbq)(dpm)])を用い、重量比が2,8mDBtP2Bfqn:m−MTDATA:[Ir(dmdpbq)(dpm)]=0.7:0.3:0.1となるように共蒸着した。なお、発光層813の膜厚は、40nmとした。
比較デバイス2では、ホスト材料として、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)と、PCBBiFと、を用い、ゲスト材料(燐光材料)として、[Ir(dmdpbq)(dpm)]を用い、重量比が2mDBTBPDBq−II:PCBBiF:[Ir(dmdpbq)(dpm)]=0.7:0.3:0.1となるように共蒸着した。なお、発光層813の膜厚は、40nmとした。
次に、発光層813上に電子輸送層814を形成した。
デバイス1の電子輸送層814は、2,8mDBtP2Bfqnの膜厚が20nm、2,9−ビス(ナフタレン−2−イル)−4,7−ジフェニル−1,10−フェナントロリン(略称:NBphen)の膜厚が70nmとなるように順次蒸着して形成した。
比較デバイス2の電子輸送層814は、2mDBTBPDBq−IIの膜厚が20nm、NBphenの膜厚が70nmとなるように順次蒸着して形成した。
次に、電子輸送層814上に電子注入層815を形成した。電子注入層815は、フッ化リチウム(LiF)を用い、膜厚が1nmになるように蒸着して形成した。
次に、電子注入層815上に第2の電極803を形成した。第2の電極803は、アルミニウムを蒸着法により、膜厚が200nmとなるように形成した。なお、本実施例において、第2の電極803は、陰極として機能する。
以上の工程により、基板800上に一対の電極間にEL層802を挟んでなる発光デバイスを形成した。なお、上記工程で説明した正孔注入層811、正孔輸送層812、発光層813、電子輸送層814、電子注入層815は、本発明の一態様におけるEL層を構成する機能層である。また、上述した作製方法における蒸着工程では、全て抵抗加熱法による蒸着法を用いた。
また、上記に示すように作製した発光デバイスは、別の基板(図示せず)により封止される。なお、別の基板(図示せず)を用いた封止の際は、窒素雰囲気のグローブボックス内において、紫外光により固化する接着剤を塗布した別の基板(図示せず)を基板800上に固定し、基板800上に形成された発光デバイスの周囲に接着剤が付着するよう基板同士を接着させた。封止時には365nmの紫外光を6J/cm照射し接着剤を固化し、80℃にて1時間熱処理することにより接着剤を安定化させた。
≪発光デバイスの動作特性≫
デバイス1及び比較デバイス2の動作特性について測定した。なお、測定は室温(25℃に保たれた雰囲気)で行った。
図6及び図7に、デバイス1及び比較デバイス2に50mA/cmの電流密度で電流を流した際の発光スペクトルを示す。発光スペクトルにおいて、波長380nm以上749nm以下の範囲は、分光放射輝度計(SR−UL1R、トプコン社製)を用いた測定結果であり、波長750nm以上1030nm以下の範囲は、近赤外分光放射計(SR−NIR、トプコン社製)を用いた測定結果である。なお、図7は、縦軸が対数表示である点で、図6と異なる。さらに、図7には、暗所比視感度(CIE(1951)Scotopic V’(λ))に基づく視感度曲線も示す。
また、表2に電流2mA(電流密度50mA/cm)におけるデバイス1及び比較デバイス2の主な初期特性値を示す。なお、放射束及び外部量子効率は、発光デバイスの配光特性がランバーシアン型と仮定して、放射輝度を用いて算出した。
Figure JPOXMLDOC01-appb-T000003
ここで、参考例(図13)に示すように、[Ir(dmdpbq)(dpm)]のジクロロメタン溶液におけるPLスペクトルは、807nm(1.54eV)に最大ピークを示した。また、当該最大ピークの短波長側の立ち上がりは、754nm(1.64eV)であった。
図6に示すように、デバイス1の発光スペクトルの最大ピーク波長は801nmであり、比較デバイス2の発光スペクトルの最大ピーク波長は793nmであり、どちらのデバイスも、発光層813に含まれる[Ir(dmdpbq)(dpm)]に由来して、近赤外光を発していることがわかった。
図6に示す、デバイス1の発光スペクトルにおける、最大ピークの短波長側の立ち上がり波長は、754nmであった。比較デバイス2の発光スペクトルにおける、最大ピークの短波長側の立ち上がり波長は、751nmであった。デバイス1及び比較デバイス2は、いずれも、最大ピークの短波長側の立ち上がり波長が十分に長波長であることがわかった。
図7に示すように、比較デバイス2の発光スペクトルには、可視光の波長域に比較的大きな発光ピーク(ピーク波長523nm)が確認された。視感度曲線と比較することで、比較デバイス2が発する光には、可視光の中でも視感度の高い波長域の光が含まれることがわかった。つまり、比較デバイス2は、可視光の発光が視認されやすい。一方、デバイス1は、比較デバイス2に比べて、可視光の波長域の分光放射輝度が低かった。また、デバイス1の発光スペクトルの可視光の波長域における最大ピーク波長は638nmであり、デバイス1の発光スペクトルは、可視光の中でも視感度が低い波長域に発光のピークを有した。このことから、デバイス1は、視感度の低い波長域の可視光を発し、かつ、当該可視光の波長域では発光強度が低いことがわかった。
表2に示すように、デバイス1の輝度/放射輝度(輝度の値を放射輝度の値で割った値)は0.05cd・sr/Wであり、比較デバイス2の輝度/放射輝度は2.1cd・sr/Wであった。このことから、デバイス1は、近赤外光の発光強度に対して、可視光の発光強度が極めて低いことがわかった。したがって、デバイス1は、近赤外光を発し、かつ、可視光の発光が視認されにくい発光デバイスであるといえる。一方で、比較デバイス2は、近赤外光の発光強度に対して可視光の発光強度が高く、可視光が視認されやすいといえる。
表2に示すように、デバイス1の外部量子効率は、2.5%であった。これは、可視光の発光強度が弱く、主に近赤外光を発する発光デバイスの外部量子効率としては、高い値ということができる。なお、デバイス1の外部量子効率は、波長600nm以上1030nm以下の範囲の近赤外分光放射計(SR−NIR、トプコン社製)を用いた測定結果より算出した。
また、デバイス1に用いた2つのホスト材料の混合膜Aと、比較デバイス2に用いた2つのホスト材料の混合膜Bと、を、それぞれ作製し、発光スペクトル(PLスペクトル)を測定した。
混合膜Aは、石英基板上に、2,8mDBtP2Bfqnと、m−MTDATAと、を、2,8mDBtP2Bfqn:m−MTDATA=0.7:0.3(重量比)とし、膜厚50nmとなるように共蒸着して形成した。ここで、2,8mDBtP2Bfqnと、m−MTDATAと、は、励起錯体を形成する組み合わせである。
混合膜Bは、石英基板上に、2mDBTBPDBq−IIと、PCBBiFと、を、2mDBTBPDBq−II:PCBBiF=0.7:0.3(重量比)とし、膜厚50nmとなるように共蒸着して形成した。ここで、2mDBTBPDBq−IIと、PCBBiFと、は、励起錯体を形成する組み合わせである。
各ホスト材料のHOMO準位及びLUMO準位を表3に示す。なお、当該HOMO準位及びLUMO準位は、サイクリックボルタンメトリ(CV)測定によって測定した材料の電気化学特性(還元電位及び酸化電位)から導出した。また、表3には、デバイス1及び比較デバイス2に用いたゲスト材料のHOMO準位及びLUMO準位も示す。
Figure JPOXMLDOC01-appb-T000004
表3を用いて、デバイス1及び混合膜Aに用いた2つのホスト材料のHOMO準位及びLUMO準位について説明する。m−MTDATAのHOMO準位は、[Ir(dmdpbq)(dpm)]のHOMO準位及び2,8mDBtP2BfqnのHOMO準位のそれぞれよりも高いことがわかる。具体的には、m−MTDATAのHOMO準位(−4.98eV)は、[Ir(dmdpbq)(dpm)]のHOMO準位(−5.54eV)よりも、0.56eV高い。また、m−MTDATAのHOMO準位(−4.98eV)と、2,8mDBtP2BfqnのLUMO準位(−3.31eV)と、の差は、1.67eVであり、[Ir(dmdpbq)(dpm)]のHOMO準位(−5.54eV)とLUMO準位(−3.49eV)と、の差(2.05eV)に比べて小さい。
次に、表3を用いて、比較デバイス2及び混合膜Bに用いた2つのホスト材料のHOMO準位及びLUMO準位について説明する。PCBBiFのHOMO準位は、[Ir(dmdpbq)(dpm)]のHOMO準位及び2mDBTBPDBq−IIのHOMO準位のそれぞれよりも高いことがわかる。具体的には、PCBBiFのHOMO準位(−5.36eV)は、[Ir(dmdpbq)(dpm)]のHOMO準位(−5.54eV)よりも、0.18eV高い。また、PCBBiFのHOMO準位(−5.36eV)と、2mDBTBPDBq−IIのLUMO準位(−2.94eV)と、の差は、2.42eVであり、[Ir(dmdpbq)(dpm)]のHOMO準位(−5.54eV)とLUMO準位(−3.49eV)と、の差(2.05eV)に比べて大きい。
PLスペクトルは、室温で、蛍光光度計((株)浜松ホトニクス製 FS920)を用いて測定した。
図8及び図9に、混合膜AのPLスペクトルと、デバイス1の発光スペクトル(図6及び図7と同様)と、を示す。なお、図9は、縦軸が対数表示である点で、図8と異なる。
図10及び図11に、混合膜BのPLスペクトルと、比較デバイス2の発光スペクトル(図6と同様)と、を示す。なお、図11は、縦軸が対数表示である点で、図10と異なる。
図8に示すように、混合膜AのPLスペクトルの最大ピーク波長は678nmであった。m−MTDATAのHOMO準位と2,8mDBtP2BfqnのLUMO準位との差から、混合膜Aの発光は、これら2つの材料が形成する励起錯体に由来する発光であるといえる。
図10に示すように、混合膜BのPLスペクトルの最大ピーク波長は516nmであった。PCBBiFのHOMO準位と2mDBTBPDBq−IIのLUMO準位との差から、混合膜Bの発光は、これら2つの材料が形成する励起錯体に由来する発光であるといえる。
比較デバイス2の可視光領域の発光ピーク波長は、混合膜BのPLスペクトルの最大ピーク波長と近いことから、比較デバイス2で確認された可視光の発光は、2つのホスト材料により形成された励起錯体に由来する発光であったことが示された。
混合膜AのPLスペクトルの最大ピーク波長は、視感度の低い波長域に含まれる。そのため、混合膜Aに用いた2つのホスト材料によって形成される励起錯体に由来する発光は、視感度が低い。したがって、デバイス1は、励起錯体に由来する発光が視認されにくく、可視光の発光が視認されにくい発光デバイスである。
上述の通り、混合膜Aに用いた、m−MTDATAのHOMO準位は、[Ir(dmdpbq)(dpm)]のHOMO準位よりも、0.56eV高い。また、m−MTDATAのHOMO準位と、2,8mDBtP2BfqnのLUMO準位と、の差は、[Ir(dmdpbq)(dpm)]のHOMO準位とLUMO準位と、の差に比べて小さい。これにより、これら2つの材料で形成する励起錯体の発光波長を長波長にし、励起錯体に由来する発光の視感度を低くすることができる。
以上のように、本実施例から、2つのホスト材料により形成される励起錯体の発光を、視感度が低い波長の光とすることで、近赤外光を発し、かつ、可視光の発光が視認されにくい発光デバイスを作製できることがわかった。
(参考例)
上記実施例で用いたビス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−2−ベンゾ[g]キノキサリニル−κN]フェニル−κC}(2,2,6,6−テトラメチル−3,5−ヘプタンジオナト−κO,O’)イリジウム(III)(略称:[Ir(dmdpbq)(dpm)])の合成方法について、具体的に説明する。[Ir(dmdpbq)(dpm)]の構造を以下に示す。
Figure JPOXMLDOC01-appb-C000005
<ステップ1;2,3−ビス−(3,5−ジメチルフェニル)−2−ベンゾ[g]キノキサリン(略称:Hdmdpbq)の合成>
まず、ステップ1では、Hdmdpbqを合成した。3,3’,5,5’−テトラメチルベンジル3.20g、2,3−ジアミノナフタレン1.97g、エタノール60mLを、還流管を付けた三口フラスコに入れ、内部を窒素置換した後、90℃で7時間半撹拌した。所定時間経過後、溶媒を留去した。その後、トルエンを展開溶媒とするシリカゲルカラムクロマトグラフィーで精製し、目的物を得た(黄色固体、収量3.73g、収率79%)。ステップ1の合成スキームを(a−1)に示す。
Figure JPOXMLDOC01-appb-C000006
ステップ1で得られた黄色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。分析結果から、Hdmdpbqが得られたことがわかった。
得られた物質のH NMRデータを以下に示す。
 H−NMR.δ(CDCl):2.28(s,12H),7.01(s,2H),7.16(s,4H),7.56−7.58(m,2H),8.11−8.13(m,2H),8.74(s,2H).
<ステップ2;ジ−μ−クロロ−テトラキス{4,6−ジメチル−2−[3−(3,5−ジメチルフェニル)−2−ベンゾ[g]キノキサリニル−κN]フェニル−κC}ジイリジウム(III)(略称:[Ir(dmdpbq)Cl])の合成>
次に、ステップ2では、[Ir(dmdpbq)Cl]を合成した。2−エトキシエタノール15mL、水5mL、ステップ1で得たHdmdpbq1.81g、及び、塩化イリジウム水和物(IrCl・HO)(フルヤ金属社製)0.66gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を2時間照射し、反応させた。所定時間経過後、得られた残渣をメタノールで吸引ろ過、洗浄し、目的物を得た(黒色固体、収量1.76g、収率81%)。ステップ2の合成スキームを(a−2)に示す。
Figure JPOXMLDOC01-appb-C000007
<ステップ3;[Ir(dmdpbq)(dpm)]の合成>
そして、ステップ3では、[Ir(dmdpbq)(dpm)]を合成した。2−エトキシエタノール20mL、ステップ2で得た[Ir(dmdpbq)Cl]1.75g、ジピバロイルメタン(略称:Hdpm)0.50g、及び、炭酸ナトリウム0.95gを、還流管を付けたナスフラスコに入れ、フラスコ内をアルゴン置換した。その後、マイクロ波(2.45GHz 100W)を3時間照射した。得られた残渣を、メタノールで吸引ろ過した後、水、メタノールで洗浄した。得られた固体を、ジクロロメタンを展開溶媒とするシリカゲルカラムクロマトグラフィーにより精製した後、ジクロロメタンとメタノールの混合溶媒にて再結晶することにより、目的物を得た(暗緑色固体、収量0.42g、収率21%)。得られた暗緑色固体0.41gを、トレインサブリメーション法により昇華精製した。昇華精製条件は、圧力2.7Pa、アルゴンガスを流量10.5mL/minで流しながら、300℃で暗緑色固体を加熱した。昇華精製後、暗緑色固体を収率78%で得た。ステップ3の合成スキームを(a−3)に示す。
Figure JPOXMLDOC01-appb-C000008
ステップ3で得られた暗緑色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。分析結果から、[Ir(dmdpbq)(dpm)]が得られたことがわかった。
 H−NMR.δ(CDCl):0.75(s,18H),0.97(s,6H),2.01(s,6H),2.52(s,12H),4.86(s,1H),6.39(s,2H),7.15(s,2H),7.31(s,2H),7.44−7.51(m,4H),7.80(d,2H),7.86(s,4H),8.04(d,2H),8.42(s,2H),8.58(s,2H).
次に、[Ir(dmdpbq)(dpm)]のジクロロメタン溶液の紫外可視吸収スペクトル(以下、単に「吸収スペクトル」という)及び発光スペクトル(PLスペクトル)を測定した結果を、図12及び図13に示す。
吸収スペクトルの測定には、紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0.010mmol/L)を石英セルに入れ、室温で測定を行った。また、発光スペクトルの測定には、蛍光光度計((株)浜松ホトニクス製 FS920)を用い、窒素雰囲気下でジクロロメタン脱酸素溶液(0.010mmol/L)を石英セルに入れ、密栓し、室温で測定を行った。
図12に示す吸収スペクトルは、ジクロロメタン溶液(0.010mmol/L)を石英セルに入れて測定した吸収スペクトルから、ジクロロメタンのみを石英セルに入れて測定した吸収スペクトルを差し引いた結果を示す。
図13に示すように、[Ir(dmdpbq)(dpm)]は、807nm(1.54eV)に発光ピークを示し、ジクロロメタン溶液からは近赤外の発光が観測された。また、当該発光ピークの立ち上がりは、754nm(1.64eV)であった。
101:第1の電極、102:第2の電極、103:EL層、103a:EL層、103b:EL層、104:電荷発生層、111:正孔注入層、112:正孔輸送層、113:発光層、114:電子輸送層、115:電子注入層、301:基板、302:画素部、303:回路部、304a:回路部、304b:回路部、305:シール材、306:基板、307:配線、308:FPC、309:トランジスタ、310:トランジスタ、311:トランジスタ、312:トランジスタ、313:第1の電極、314:絶縁層、315:EL層、316:第2の電極、317:有機ELデバイス、318:空間、401:第1の電極、402:EL層、403:第2の電極、405:絶縁層、406:導電層、407:接着層、416:導電層、420:基板、422:接着層、423:バリア層、424:絶縁層、450:有機ELデバイス、490a:基板、490b:基板、490c:バリア層、800:基板、801:第1の電極、802:EL層、803:第2の電極、811:正孔注入層、812:正孔輸送層、813:発光層、814:電子輸送層、815:電子注入層、911:筐体、912:光源、913:検知ステージ、914:撮像装置、915:発光部、916:発光部、917:発光部、921:筐体、922:操作ボタン、923:検知部、924:光源、925:撮像装置、931:筐体、932:操作パネル、933:搬送機構、934:モニタ、935:検知ユニット、936:被検査部材、937:撮像装置、938:光源、981:筐体、982:表示部、983:操作ボタン、984:外部接続ポート、985:スピーカ、986:マイク、987:カメラ、988:カメラ

Claims (20)

  1.  発光層を有する発光デバイスであり、
     前記発光層は、発光性の有機化合物及びホスト材料を有し、
     前記発光デバイスの発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、
     輝度A[cd/m]と、放射輝度B[W/sr/m]とは、0≦A/B≦1[cd・sr/W]を満たす、発光デバイス。
  2.  請求項1において、
     前記ホスト材料におけるHOMO準位とLUMO準位との差は、1.35eV以上2.25eV以下である、発光デバイス。
  3.  請求項1において、
     前記ホスト材料は、第1の有機化合物及び第2の有機化合物を有し、
     前記第1の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位よりも高く、
     前記第1の有機化合物のHOMO準位と前記第2の有機化合物のLUMO準位との差は、前記発光性の有機化合物のHOMO準位とLUMO準位との差に比べて小さい、発光デバイス。
  4.  請求項3において、
     前記第1の有機化合物と前記第2の有機化合物とは、励起錯体を形成する物質である、発光デバイス。
  5.  請求項3または4において、
     前記第1の有機化合物のHOMO準位と前記第2の有機化合物のLUMO準位との差は、1.35eV以上2.25eV以下である、発光デバイス。
  6.  発光層を有する発光デバイスであり、
     前記発光層は、発光性の有機化合物及びホスト材料を有し、
     前記発光デバイスの発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、
     前記ホスト材料のHOMO準位は、前記発光性の有機化合物のHOMO準位よりも0.4eV以上高く、
     前記ホスト材料のHOMO準位とLUMO準位との差は、前記発光性の有機化合物のHOMO準位とLUMO準位との差に比べて小さい、発光デバイス。
  7.  請求項6において、
     前記ホスト材料におけるHOMO準位とLUMO準位との差は、1.35eV以上2.25eV以下である、発光デバイス。
  8.  発光層を有する発光デバイスであり、
     前記発光層は、発光性の有機化合物及びホスト材料を有し、
     前記発光デバイスの発光スペクトルの最大ピーク波長は、750nm以上900nm以下であり、
     前記ホスト材料は、第1の有機化合物及び第2の有機化合物を有し、
     前記第1の有機化合物のHOMO準位は、前記発光性の有機化合物のHOMO準位よりも0.4eV以上高く、
     前記第1の有機化合物のHOMO準位は、前記第2の有機化合物のHOMO準位よりも高く、
     前記第1の有機化合物のHOMO準位と前記第2の有機化合物のLUMO準位との差は、前記発光性の有機化合物のHOMO準位とLUMO準位との差に比べて小さい、発光デバイス。
  9.  請求項8において、
     前記第1の有機化合物と前記第2の有機化合物とは、励起錯体を形成する物質である、発光デバイス。
  10.  請求項8または9において、
     前記第1の有機化合物のHOMO準位と前記第2の有機化合物のLUMO準位との差は、1.35eV以上2.25eV以下である、発光デバイス。
  11.  請求項1乃至10のいずれか一において、
     前記発光スペクトルにおける最大ピークの短波長側の立ち上がり波長は、650nm以上である、発光デバイス。
  12.  請求項1乃至11のいずれか一において、
     前記発光性の有機化合物は、溶液における発光スペクトルの、最大ピークの短波長側の立ち上がり波長が650nm以上である、発光デバイス。
  13.  請求項1乃至12のいずれか一において、
     外部量子効率は、1%以上である、発光デバイス。
  14.  請求項1乃至13のいずれか一において、
     前記発光性の有機化合物は、金属−炭素結合を有する有機金属錯体である、発光デバイス。
  15.  請求項14において、
     前記有機金属錯体は、2環以上5環以下の縮合複素芳香環を有し、
     前記縮合複素芳香環は、前記金属に配位している、発光デバイス。
  16.  請求項1乃至15のいずれか一において、
     前記発光性の有機化合物は、シクロメタル錯体である、発光デバイス。
  17.  請求項1乃至16のいずれか一に記載の発光デバイスと、
     トランジスタ及び基板の一方または双方と、を有する、発光装置。
  18.  請求項17に記載の発光装置と、
     コネクタ及び集積回路の一方または双方と、を有する、発光モジュール。
  19.  請求項18に記載の発光モジュールと、
     アンテナ、バッテリ、筐体、カメラ、スピーカ、マイク、及び操作ボタンのうち少なくとも一つと、を有する、電子機器。
  20.  請求項17に記載の発光装置と、
     筐体、カバー、及び支持台のうち少なくとも一つと、を有する、照明装置。
PCT/IB2020/054664 2019-05-31 2020-05-18 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置 WO2020240330A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021523125A JPWO2020240330A1 (ja) 2019-05-31 2020-05-18
US17/612,299 US20220223812A1 (en) 2019-05-31 2020-05-18 Light-Emitting Device, Light-Emitting Apparatus, Light-Emitting Module, Electronic Device, and Lighting Device
KR1020217042090A KR20220015423A (ko) 2019-05-31 2020-05-18 발광 디바이스, 발광 장치, 발광 모듈, 전자 기기, 및 조명 장치
CN202080040579.8A CN113906569A (zh) 2019-05-31 2020-05-18 发光器件、发光装置、发光模块、电子设备及照明装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-102034 2019-05-31
JP2019102034 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020240330A1 true WO2020240330A1 (ja) 2020-12-03

Family

ID=73552690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2020/054664 WO2020240330A1 (ja) 2019-05-31 2020-05-18 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置

Country Status (5)

Country Link
US (1) US20220223812A1 (ja)
JP (1) JPWO2020240330A1 (ja)
KR (1) KR20220015423A (ja)
CN (1) CN113906569A (ja)
WO (1) WO2020240330A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060094A (ja) * 2010-08-09 2012-03-22 Doshisha 有機発光ダイオード
JP2017108108A (ja) * 2015-09-30 2017-06-15 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP2017168803A (ja) * 2015-07-23 2017-09-21 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP2019501997A (ja) * 2015-12-15 2019-01-24 ケンブリッジ ディスプレイ テクノロジー リミテッド 発光組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7040774B2 (en) * 2003-05-23 2006-05-09 Goldeneye, Inc. Illumination systems utilizing multiple wavelength light recycling
JP5072312B2 (ja) 2005-10-18 2012-11-14 株式会社半導体エネルギー研究所 有機金属錯体及びそれを用いた発光素子、発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060094A (ja) * 2010-08-09 2012-03-22 Doshisha 有機発光ダイオード
JP2017168803A (ja) * 2015-07-23 2017-09-21 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP2017108108A (ja) * 2015-09-30 2017-06-15 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP2019501997A (ja) * 2015-12-15 2019-01-24 ケンブリッジ ディスプレイ テクノロジー リミテッド 発光組成物

Also Published As

Publication number Publication date
US20220223812A1 (en) 2022-07-14
CN113906569A (zh) 2022-01-07
KR20220015423A (ko) 2022-02-08
JPWO2020240330A1 (ja) 2020-12-03

Similar Documents

Publication Publication Date Title
JPWO2018211377A1 (ja) 電子デバイス、発光装置、電子機器、および照明装置
JP7475281B2 (ja) 有機化合物、発光デバイス用ホスト材料、発光デバイス、発光装置、発光モジュール、電子機器、
JP7170930B1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
JP2023169222A (ja) 発光デバイス、発光装置、発光モジュール、電子機器及び照明装置
JP2024052976A (ja) 発光デバイス
US11903232B2 (en) Light-emitting device comprising charge-generation layer between light-emitting units
WO2020121097A1 (ja) 発光デバイス、発光装置、電子機器、および照明装置
WO2020240330A1 (ja) 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
WO2020240333A1 (ja) 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
WO2020229908A1 (ja) 発光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
JP7498113B2 (ja) 有機化合物、発光デバイス、発光装置、電子機器、および照明装置
JP7382936B2 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
JP2021014452A (ja) 有機化合物、発光デバイス、受光デバイス、発光装置、発光モジュール、電子機器、及び照明装置
JP2024156940A (ja) 発光デバイス、発光装置、電子機器および照明装置
JPWO2018189623A1 (ja) 有機金属錯体、発光素子、発光装置、電子機器、および照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815552

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021523125

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217042090

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20815552

Country of ref document: EP

Kind code of ref document: A1