WO2020238563A1 - Lte和nr用户空分复用的方法 - Google Patents

Lte和nr用户空分复用的方法 Download PDF

Info

Publication number
WO2020238563A1
WO2020238563A1 PCT/CN2020/088713 CN2020088713W WO2020238563A1 WO 2020238563 A1 WO2020238563 A1 WO 2020238563A1 CN 2020088713 W CN2020088713 W CN 2020088713W WO 2020238563 A1 WO2020238563 A1 WO 2020238563A1
Authority
WO
WIPO (PCT)
Prior art keywords
lte
base station
uplink data
users
division multiplexing
Prior art date
Application number
PCT/CN2020/088713
Other languages
English (en)
French (fr)
Inventor
唐清
艾星星
黄�俊
邱刚
张诗壮
陈冬雷
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020238563A1 publication Critical patent/WO2020238563A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0862Weighted combining receiver computing weights based on information from the transmitter

Definitions

  • This application relates to but is not limited to the field of wireless communication.
  • the fifth-generation communication technology (New Radio, NR) is about to be commercialized.
  • NR New Radio
  • Generation communication system Long Term Evolution, LTE
  • the LTE system and the NR system are generally deployed in different frequency bands. Due to the different working frequency points, the interference between the systems is small, and the two systems can coexist at different frequencies.
  • the LTE system and the NR system may be integrated and networked, that is, the working spectrum overlaps the scene.
  • the LTE system exists as a special bandwidth (Bandwidth Part, BWP) in the NR system, and the two systems will interfere with each other, reducing the performance of the communication system. Therefore, a method for space division multiplexing between LTE system users and NR system users is needed to reduce mutual interference between the two systems and improve communication system performance.
  • BWP Bandwidth Part
  • the present disclosure provides a method for space division multiplexing of LTE and NR users, which includes: a base station performs spatial filtering and reception of the received uplink data of LTE and NR users; and the spatial filtering and receiving is used to combine LTE uplink data Separate from NR uplink data; the base station performs demodulation processing on the separated LTE and NR uplink data respectively.
  • the present disclosure also provides a method for space division multiplexing of LTE and NR users, including: a base station performs joint precoding weighting on downlink data of LTE and NR users to be sent, and the joint precoding weight is used to LTE and NR user downlink data are separated; the base station sends the separated LTE user downlink data and NR user downlink data to LTE users and NR users respectively.
  • the present disclosure also provides a base station, including: a memory, a processor, and a computer program stored on the memory and running on the processor, and the processor implements the above-mentioned space division multiplexing method when the program is executed. Any step in.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, any step in the above-mentioned space division multiplexing method is realized.
  • Fig. 1 is a flowchart of a space division multiplexing method for LTE and NR users according to an embodiment of the present disclosure.
  • Fig. 2 is a flowchart of another LTE and NR user space division multiplexing method according to an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a structure of a base station according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of a base station according to the present disclosure performing spatial filtering reception or joint precoding.
  • Fig. 1 is a flowchart of a method for space division multiplexing of LTE and NR users according to an embodiment of the present disclosure. As shown in Fig. 1, in some embodiments, the method may include steps S101 and S102.
  • step S101 for LTE and NR space division users (simultaneous co-frequency scheduling), the base station combines its spatial characteristics, interference direction and other information, and uses beamforming methods such as zero-forcing to construct the corresponding spatial reception weights, and separate them.
  • the signal of each user terminal (UE) in the system is a signal of each user terminal (UE) in the system.
  • the spatial characteristics or interference directions of M LTE users can be expressed as among them Indicates the spatial feature or interference direction of the i-th LTE user
  • the spatial feature or interference direction of N NR users can be expressed as among them Indicates the spatial feature or interference direction of the jth NR user.
  • the spatial receiving weight W uplink can be expressed as:
  • Y is the signal received by the base station
  • Y spatial_filter is the signal of each UE in the respective system separated after spatial filtering.
  • the base station uses the historical channel estimation information of the base station, such as channel estimation based on reference signals such as channel sounding reference signal (Sounding reference signal, SRS), demodulation reference signal (Demodulation reference signal, DMRS), etc. to obtain space division users Spatial characteristics, using beamforming methods such as zero-forcing, construct corresponding spatial reception weights for uplink reception, and separate signals from different users.
  • reference signals such as channel sounding reference signal (Sounding reference signal, SRS), demodulation reference signal (Demodulation reference signal, DMRS), etc.
  • SRS channel sounding reference signal
  • Demodulation reference signal Demodulation reference signal
  • DMRS demodulation reference signal
  • the base station uses the channel information or spatial characteristics of LTE and NR users estimated based on SRS, DMRS and other reference signals, and then uses the zero-forcing beamforming method described in step S101 to construct the corresponding spatial reception weights, and separate the respective systems Signal of each UE in
  • the base station uses the channel information reported by the user, such as the DMRS reported by the user, channel-state information reference signal (Channel-state information reference signal, CSIRS), and cell-specific reference signal (Cell-specific reference signals, CRS).
  • the channel estimation of the reference signal obtains the spatial characteristics of the space division user, and the corresponding beamforming method such as zero-forcing is used to construct the corresponding spatial reception weight for uplink reception, and separate the signals of different users.
  • LTE users use DMRS, CSIRS, CRS reference signals to estimate the current channel state
  • NR users use DMRS, CSIRS, and other reference signals to estimate the current channel state, and then report it to the base station.
  • the base station uses the zero-forcing beamforming described in step S101. Method, construct the corresponding spatial receiving weight, separate the signal of each UE in the respective system.
  • the base station uses the beam information of the reference signal, such as based on the beam information carried by the Synchronization Signal Block (SSB), SRS, etc., to obtain the spatial characteristics of the space division user and the interference direction, and uses beamforming methods such as zero-forcing. , Construct the corresponding spatial reception weight for uplink reception, and separate the signals of different users.
  • SSB Synchronization Signal Block
  • SRS Synchronization Signal Block
  • the base station estimates the spatial characteristics of LTE users based on SRS signals, and estimates the spatial characteristics of NR users based on the beam information or SRS signals carried by the SSB, and then uses the zero-forcing beamforming method described in step S101 to construct the corresponding spatial reception weights , Separate the signal of each UE in the respective system.
  • step S102 the base station performs corresponding demodulation processing on the separated LTE and NR signals.
  • the base station will separate the separated LTE and NR signals for subsequent reception and demodulation processing such as channel estimation, equalization, and decoding.
  • Fig. 2 is a flowchart of another LTE and NR user space division multiplexing method according to an embodiment of the present disclosure. As shown in Fig. 2, in some embodiments, the method may include step S201 and step S202.
  • step S201 for the LTE and NR space division users (simultaneous co-frequency scheduling), the base station uses precoding algorithms such as zero-forcing in combination with their spatial characteristics, interference direction and other information to construct corresponding spatial transmission weights for joint pre-signaling. Encoding weight.
  • two LTE users and one NR user occupy the same time-frequency resources.
  • the number of antennas at the base station is N BS and the number of antennas at the UE is N UE .
  • the LTE The spatial characteristics of users can be expressed as with
  • the spatial characteristics of NR users can be expressed as They are all a matrix of N BS *N UE .
  • the spatial transmission weight obtained by the zero-forcing precoding algorithm is:
  • the signal after joint precoding and weighting of the transmitted signal using the spatial transmission weight is:
  • Y is the signal before the joint precoding weighting
  • Y spatial_precoding is the transmission signal after the joint precoding weighting
  • the constructed joint precoding weights are directed to terminal 1 and terminal 2 for LTE users, and null in the direction of terminal 3; for NR users, they are directed to terminal 3, and null in the direction of terminal 1 and terminal 2. Therefore, the spatial joint Precoding weighting can effectively reduce the mutual interference between terminals.
  • the base station uses the channel estimation of the base station, such as the channel estimation based on the SRS, DMRS and other reference signals of the LTE/NR system, and uses precoding algorithms such as zero-forcing to construct the corresponding spatial transmission weights and combine the signals. Precoding weighting.
  • the base station uses historical channel information of LTE and NR users estimated based on reference signals such as SRS and DMRS, and then uses the precoding algorithm such as zero-forcing described in step S201 to construct corresponding spatial transmission weights to perform joint precoding weighting on the signal .
  • reference signals such as SRS and DMRS
  • the base station uses the channel information reported by users. For example, LTE system users report channel estimation based on DMRS, CSIRS, CRS, etc., and NR system users report channel estimation based on DMRS, CRIRS, etc., using zero-forcing. And other precoding algorithms, construct the corresponding spatial transmission weight, and perform joint precoding weighting on the signal.
  • LTE users use DMRS, CSIRS, CRS reference signals to estimate the current channel status
  • NR users use DMRS, CSIRS, and other reference signals to estimate the current channel status, and then report to the base station.
  • the base station uses precoding such as zero-forcing described in step S201. Algorithm to construct the corresponding spatial transmission weight to perform joint precoding weighting on the signal.
  • the base station uses the beam information of the reference signal.
  • the LTE/NR system obtains the spatial characteristics and interference direction of the space division user based on the beam information carried by the SSB, SRS, etc., and uses precoding algorithms such as zero-forcing to construct the corresponding space. Send weights and perform joint precoding weighting on the signal.
  • the base station estimates the spatial characteristics, channel state and other information of the LTE user based on the SRS signal, and estimates the spatial characteristics and channel state of the NR user based on the beam information carried by the SSB or the SRS signal, and then adopts the zero-forcing and other predictions described in step S201.
  • the coding algorithm constructs the corresponding spatial transmission weight to perform joint precoding weighting on the signal.
  • step S202 the base station performs corresponding transmission processing on the pre-coded signal.
  • the base station sends the pre-coded signal to IFFT (Inverse Fast Fourier Transform), radio frequency and other modules for subsequent transmission processing.
  • IFFT Inverse Fast Fourier Transform
  • Fig. 3 is a schematic diagram of a structure of a base station according to an embodiment of the present disclosure.
  • the base station 300 includes: a processor 301, a transceiver 302, a memory 303, a user interface 304, and a bus interface, where:
  • the base station 300 further includes: a computer program stored in the memory 303 and capable of running on the processor 301.
  • the computer program is executed by the processor 301, the above-mentioned space division multiplexing method for LTE and NR networks is implemented. Any step.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 301 and various circuits of the memory represented by the memory 303 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further descriptions are provided herein.
  • the bus interface provides the interface.
  • the transceiver 302 may be a plurality of elements, that is, including a transmitter and a receiver, and provide a unit for communicating with various other devices on the transmission medium.
  • the user interface 304 may also be an interface capable of connecting externally and internally with the required equipment.
  • the connected equipment includes but not limited to a keypad, a display, a speaker, a microphone, a joystick, etc.
  • the processor 301 is responsible for managing the bus architecture and general processing, and the memory 303 can store data used by the processor 301 when performing operations.
  • the aforementioned memory 303 may be a volatile memory (volatile memory), such as RAM; or a non-volatile memory (non-volatile memory), such as ROM, flash memory, or hard disk (Hard Disk). Drive, HDD) or Solid-State Drive (SSD); or a combination of the foregoing types of memories, and provide instructions and data to the processor 301.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • ROM read-only memory
  • flash memory read-only memory
  • HDD hard disk
  • SSD Solid-State Drive
  • the aforementioned processor 301 may be an application-specific integrated circuit (ASIC), a digital signal processor (DSP), a digital signal processing device (DSPD), a programmable logic device (PLD), a field programmable gate array (FPGA), a central processing unit ( At least one of CPU), controller, microcontroller, and microprocessor.
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • DSPD digital signal processing device
  • PLD programmable logic device
  • FPGA field programmable gate array
  • CPU central processing unit
  • controller microcontroller
  • microprocessor microprocessor
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, any step in the above-mentioned space division multiplexing method is realized.
  • the storage medium includes: U disk, mobile hard disk, read only memory (Read Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes.
  • the technical solution of the present disclosure provides a space division multiplexing method for LTE and NR users, which reduces the mutual interference between the two systems, so that the LTE system and the NR system can reuse the same time-frequency resources , Improve the frequency resource utilization of the communication system.

Abstract

本申请提供一种LTE和NR用户空分复用的方法,包括:基站将接收到的LTE和NR用户的上行数据进行空域滤波接收,所述空域滤波接收用于将LTE上行数据和NR上行数据分离;基站对分离得到的LTE和NR上行数据分别进行解调处理。

Description

LTE和NR用户空分复用的方法 技术领域
本申请涉及但不限于无线通信领域。
背景技术
随着3GPP第一版5G标准的冻结,第五代通信技术(New Radio,NR)即将商用,但是,在NR部署的初期,现网中还会存在大量4G用户,NR不可避免会和第四代通信系统(Long Term Evolution,LTE)共同组网。
目前LTE系统和NR系统一般部署在不同的频段,由于工作频点不同,系统之间的干扰很小,两系统能够异频共存。但是,为了增加NR的带宽,或者提升LTE频谱的使用效率,LTE系统与NR系统可能融合组网,即工作频谱重叠场景。例如LTE系统作为NR系统中一种特殊的带宽(Bandwidth Part,BWP)存在,两系统之间会相互干扰,降低通信系统性能。因此,需要一种LTE系统用户与NR系统用户空分复用的方法,来降低两系统之间的互干扰,提升通信系统性能。
发明内容
一方面,本公开提供了一种LTE和NR用户空分复用的方法,包括:基站将接收到的LTE和NR用户的上行数据进行空域滤波接收;所述空域滤波接收用于将LTE上行数据和NR上行数据分离;基站对分离得到的LTE和NR上行数据分别进行解调处理。
另一方面,本公开还提供了一种LTE和NR用户空分复用的方法,包括:基站对待发送的LTE和NR用户的下行数据进行联合预编码加权,所述联合预编码加权用于将LTE和NR用户下行数据分离;基站将分离得到的LTE用户下行数据和NR用户下行数据分别发送LTE用户和NR用户。
另一方面,本公开还提供一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现上述空分复用方法中的任意步骤。
另一方面,本公开还提供了一种计算机可读存储介质,其上存储有计算 机程序,所述程序被处理器执行时实现上述空分复用方法中的任意步骤。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是根据本公开实施例的一种LTE和NR用户空分复用方法的流程图。
图2是根据本公开实施例的另一种LTE和NR用户空分复用方法的流程图。
图3是根据本公开实施例的一种基站的结构的示意图。
图4是根据本公开的基站进行空域滤波接收或者联合预编码的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1是根据本公开实施例的一种LTE和NR用户空分复用方法的流程图。如图1所示,在一些实施例中,所述方法可以包括步骤S101和S102。
在步骤S101,基站针对LTE、NR空分的用户(同时同频调度),则结合其空间特征、干扰方向等信息,利用迫零等波束成形方法,构造相应的空间接收权值,分离出各自系统中每个用户终端(UE)的信号。
假设M个LTE用户的空间特征或者干扰方向可以表示为
Figure PCTCN2020088713-appb-000001
其中
Figure PCTCN2020088713-appb-000002
表示第i个LTE用户的空间特征或者干扰方向,N个NR用户的空间特征或者干扰方向可以表示为
Figure PCTCN2020088713-appb-000003
其中
Figure PCTCN2020088713-appb-000004
表示第j个NR用户的空间特征或者干扰方向。
利用迫零波束成形算法,空间接收权值W uplink可以表示为:
W uplink=[H H H] -1H H
其中
Figure PCTCN2020088713-appb-000005
表示LTE和NR用户的空间特征或者干扰方向的组合。
使用空间接收权值对接收信号进行空域滤波,可得空域滤波后的信号为:
Y spatial_filter=W uplinkY
其中Y是基站接收信号,Y spatial_filter是空域滤波后分离出的各自系统中每个UE的信号。
在一个实施例中,基站利用基站的历史信道估计信息,如基于信道探测参考信号(Sounding reference signal,SRS)、解调参考信号(Demodulation reference signal,DMRS)等参考信号的信道估计得到空分用户空间特征,利用迫零等波束成形方法,构造相应的空间接收权值进行上行接收,分离出不同用户的信号。
例如,基站利用基于SRS、DMRS等参考信号估计的LTE和NR用户的信道信息或者空间特征,然后采用步骤S101所描述的迫零等波束成形方法,构造相应的空间接收权值,分离出各自系统中每个UE的信号
在一个实施例中,基站利用用户上报的信道信息,如用户上报的基于DMRS、信道状态信息参考信号(Channel-state information reference signal,CSIRS)、小区特定参考信号(Cell-specific reference signals,CRS)等参考信号的信道估计得到空分用户空间特征,利用迫零等波束成形方法,构造相应的空间接收权值进行上行接收,分离出不同用户的信号。
例如,LTE用户采用DMRS、CSIRS、CRS参考信号估计当前的信道状态,NR用户采用DMRS、CSIRS等参考信号估计当前的信道状态,然后上报给基站,基站采用步骤S101所描述的迫零等波束成形方法,构造相应的空间接收权值,分离出各自系统中每个UE的信号。
在一个实施例中,基站利用参考信号的波束信息,如基于同步信号块(Synchronization Signal Block,SSB)、SRS等携带的波束信息得到空分用户空间特征和干扰方向,利用迫零等波束成形方法,构造相应的空间接收权值进行上行接收,分离出不同用户的信号。
例如,基站根据SRS信号估计LTE用户的空间特征,根据SSB携带的波束信息或者SRS信号估计NR用户的空间特征,然后采用步骤S101所描述的迫零等波束成形方法,构造相应的空间接收权值,分离出各自系统中每个UE的信号。
在步骤S102,基站对分离出来的LTE、NR信号进行相应的解调处理。
基站将分离出的LTE和NR信号分别进行如信道估计、均衡、译码等后 续接收解调处理。
图2是根据本公开实施例的另一种LTE和NR用户空分复用方法的流程图。如图2所示,在一些实施例中,所述方法可以包括步骤S201和步骤S202。
在步骤S201,基站针对LTE、NR空分的用户(同时同频调度),结合其空间特征、干扰方向等信息,使用迫零等预编码算法,构造相应的空间发送权值对信号进行联合预编码加权。
如图4例,两个LTE用户和一个NR用户占用相同的时频资源,基站端天线数为N BS,UE端天线数为N UE,以基站利用上个时刻的信道估计为例,则LTE用户的空间特征可以表示为
Figure PCTCN2020088713-appb-000006
Figure PCTCN2020088713-appb-000007
NR用户的空间特征可以表示为
Figure PCTCN2020088713-appb-000008
它们都是N BS*N UE的矩阵。则采用迫零预编码算法获得的空间发送权值为:
W downlink=H H[HH H] -1
其中
Figure PCTCN2020088713-appb-000009
是一个3N UE×N BS的矩阵,表示LTE和NR用户的空间特征或者干扰方向的组合,其中(·) T表示转置。
使用空间发送权值对发送信号进行联合预编码加权之后的信号为:
Y spatial_precoding=W downlinkY
其中Y是联合预编码加权之前的信号,Y spatial_precoding是联合预编码加权之后的发送信号。
构造的联合预编码权值针对LTE用户分别指向了终端1和终端2,而在终端3方向零陷;针对NR用户指向了终端3,而在终端1和终端2方向零陷,因此,空域联合预编码加权能够有效的降低终端之间的互干扰。
在一个实施例中,基站利用基站的信道估计,如基于LTE/NR系统的SRS、DMRS等参考信号的信道估计,使用迫零等预编码算法,构造相应的空间发送权值,对信号进行联合预编码加权。
例如,基站利用基于SRS、DMRS等参考信号估计的LTE和NR用户的历史信道信息,然后采用步骤S201所描述的迫零等预编码算法,构造相应的空间发送权值对信号进行联合预编码加权。
在一个实施例中,基站利用用户上报的信道信息,如LTE系统用户上报基于DMRS、CSIRS、CRS等参考信号的信道估计,NR系统用户上报基于DMRS、CRIRS等参考信号的信道估计,使用迫零等预编码算法,构造相应 的空间发送权值,对信号进行联合预编码加权。
例如,LTE用户采用DMRS、CSIRS、CRS参考信号估计当前的信道状态,NR用户采用DMRS、CSIRS等参考信号估计当前的信道状态,然后上报给基站,基站采用步骤S201所描述的迫零等预编码算法,构造相应的空间发送权值对信号进行联合预编码加权。
在一个实施例中,基站利用参考信号的波束信息,如LTE/NR系统基于SSB、SRS等携带的波束信息得到空分用户空间特征和干扰方向,使用迫零等预编码算法,构造相应的空间发送权值,对信号进行联合预编码加权。
例如,基站根据SRS信号估计LTE用户的空间特征、信道状态等信息,根据SSB携带的波束信息或者SRS信号估计NR用户的空间特征、信道状态等信息,然后采用步骤S201所描述的迫零等预编码算法,构造相应的空间发送权值对信号进行联合预编码加权。
在步骤S202,基站对预编码之后的信号进行相应的发射处理。
基站将预编码之后的信号送入IFFT(快速傅里叶逆变换)、射频等模块,进行后续的发射处理。
图3是根据本公开实施例的一种基站的结构的示意图。如图3所示,在一些实施例中,基站300包括:处理器301、收发机302、存储器303、用户接口304和总线接口,其中:
在本公开实施例中,基站300还包括:存储在存储器303上并可在处理器301上运行的计算机程序,计算机程序被处理器301执行时实现上述LTE和NR网络的空分复用方法中的任意步骤。
在图3中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器301代表的一个或多个处理器和存储器303代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机302可以是多个元件,即包括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口304还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器301负责管理总线架构和通常的处理,存储器303可以存储处理 器301在执行操作时所使用的数据。
在实际应用中,上述存储器303可以是易失性存储器(volatile memory),例如RAM;或者非易失性存储器(non-volatile memory),例如ROM,快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);或者上述种类的存储器的组合,并向处理器301提供指令和数据。
上述处理器301可以为专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、中央处理器(CPU)、控制器、微控制器、微处理器中的至少一种。用于实现上述处理器功能的电子器件还可以为其它,本公开实施例不作具体限定。
本公开还提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现上述空分复用方法中的任意步骤。所述存储介质包括:U盘、移动硬盘、只读存储器(Read Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
与相关技术相比,本公开的技术方案提供了一种LTE和NR用户空分复用的方法,降低了两系统之间的互干扰,使得LTE系统和NR系统能够复用相同的时频资源,提高了通信系统的频率资源利用率。
以上所述,仅为本公开的示例性实施例而已,并非用于限定本公开的保护范围。凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (12)

  1. 一种长期演进(LTE)和新空口(NR)用户空分复用的方法,包括:
    基站将接收到的LTE和NR用户的上行数据进行空域滤波接收,所述空域滤波接收用于将LTE上行数据和NR上行数据分离;
    基站对分离得到的LTE和NR上行数据分别进行解调处理。
  2. 如权利要求1所述的空分复用方法,其中,基站将接收到的LTE和NR用户的上行数据进行空域滤波接收,所述空域滤波接收用于将LTE上行数据和NR上行数据分离包括:基站根据接收到的LTE和NR用户的上行数据,构造相应的空间接收权值,根据所述空间接收权值对接收到的LTE和NR上行数据进行空域滤波接收。
  3. 如权利要求2所述的空分复用方法,其中:
    所述基站利用上行数据中基站的信道估计,构造相应的空间接收权值。
  4. 如权利要求2所述的空分复用方法,其中:
    所述基站利用上行数据中用户上报的信道信息,构造相应的空间接收权值。
  5. 如权利要求2所述的空分复用方法,其中:
    所述基站利用上行数据中参考信号的波束信息,构造相应的空间接收权值。
  6. 一种长期演进(LTE)和新空口(NR)用户空分复用的方法,包括:
    基站对待发送的LTE和NR用户的下行数据进行联合预编码加权,所述联合预编码加权用于将LTE和NR用户下行数据分离;
    基站将分离得到的LTE用户下行数据和NR用户下行数据分别发送LTE用户和NR用户。
  7. 如权利要求6所述的空分复用方法,其中,基站对待发送的LTE和NR用户的下行数据进行联合预编码加权,所述联合预编码加权用于将LTE和NR用户下行数据分离包括:基站根据已接收的LTE和NR用户的上行数据,构造相应的空间发送权值,根据所述空间发送权值对待发送的LTE和NR用户的下行数据进行联合预编码加权。
  8. 如权利要求7所述的空分复用方法,其中:
    所述基站利用上行数据中基站的信道估计,构造相应的空间发送权值。
  9. 如权利要求7所述的空分复用方法,其中:
    所述基站利用上行数据中用户上报的信道信息,构造相应的空间发送权值。
  10. 如权利要求7所述的空分复用方法,其中:
    所述基站利用上行数据中参考信号的波束信息,构造相应的空间发送权值。
  11. 一种基站,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如权利要求1~10任一项所述的空分复用方法中的任意步骤。
  12. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序在被处理器执行时实现如权利要求1~10任一项所述空分复用方法中的任意步骤。
PCT/CN2020/088713 2019-05-24 2020-05-06 Lte和nr用户空分复用的方法 WO2020238563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910443733.5A CN111988071A (zh) 2019-05-24 2019-05-24 一种lte和nr用户空分复用的方法
CN201910443733.5 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238563A1 true WO2020238563A1 (zh) 2020-12-03

Family

ID=73437116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088713 WO2020238563A1 (zh) 2019-05-24 2020-05-06 Lte和nr用户空分复用的方法

Country Status (2)

Country Link
CN (1) CN111988071A (zh)
WO (1) WO2020238563A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114938702A (zh) * 2022-04-14 2022-08-23 北京小米移动软件有限公司 接收、发送信号的方法及装置、存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741450A (zh) * 2008-11-21 2010-06-16 北京大学 Mimo系统中上行链路的信号接收方法及其系统
WO2012033877A1 (en) * 2010-09-08 2012-03-15 Mediatek Singapore Pte. Ltd. Psmp-based downlink multi-user mimo communications
US9692469B1 (en) * 2016-02-23 2017-06-27 Resonant Sciences, LLC Interference signal cancellation over a broad frequency range
CN109155725A (zh) * 2016-03-30 2019-01-04 Idac控股公司 长期演进辅助的nr灵活无线电接入
CN109302220A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 用于数据传输的方法、装置和系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111903217B (zh) * 2007-03-01 2012-03-14 中国电子科技集团公司第五十四研究所 对多信号进行分离和提取的方法及装置
CN104052700B (zh) * 2014-05-27 2017-07-28 北京创毅视讯科技有限公司 一种lte系统抗干扰方法和装置
US10560230B2 (en) * 2017-08-04 2020-02-11 Lg Electronics Inc. Method for transmitting and receiving signal based on LTE and NR in wireless communication system and apparatus therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101741450A (zh) * 2008-11-21 2010-06-16 北京大学 Mimo系统中上行链路的信号接收方法及其系统
WO2012033877A1 (en) * 2010-09-08 2012-03-15 Mediatek Singapore Pte. Ltd. Psmp-based downlink multi-user mimo communications
US9692469B1 (en) * 2016-02-23 2017-06-27 Resonant Sciences, LLC Interference signal cancellation over a broad frequency range
CN109155725A (zh) * 2016-03-30 2019-01-04 Idac控股公司 长期演进辅助的nr灵活无线电接入
CN109302220A (zh) * 2017-07-25 2019-02-01 华为技术有限公司 用于数据传输的方法、装置和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON.: "On multi-numerology transmission and requirements", 3GPP TSG-RAN WG4 #82 R4-171158, vol. RAN WG4, 17 February 2017 (2017-02-17), XP051225033 *
ERICSSON: "Efficient MUST Operation", 3GPP TSG-RAN WGI#84BIS R1-163092, vol. RAN WG1, 2 April 2016 (2016-04-02), XP051080534 *

Also Published As

Publication number Publication date
CN111988071A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US10999852B2 (en) Methods and apparatus for requesting buffer status reports for implementing multiple user uplink medium access control protocols in a wireless network
JP6518791B2 (ja) Ul−muワイヤレス通信システム上でdl−muデータに肯定応答するためのブロック肯定応答機構
CN113765830B (zh) 获取信道信息的方法及通信装置
WO2017076102A1 (zh) 数据处理方法及装置
WO2020238563A1 (zh) Lte和nr用户空分复用的方法
WO2021179864A1 (zh) 码本反馈方法、网络设备、终端设备及计算机存储介质
JP2020532148A (ja) データ伝送方法、端末装置及びネットワーク装置
JP5660967B2 (ja) 順次レスポンスプロトコルを用いたデータ通信方法とその方法を適用した基準端末及び端末、並びにコンピュータ読み取り可能な記録媒体
WO2019047535A1 (zh) 一种信道跳频的确定方法及装置、计算机存储介质
WO2018170863A1 (zh) 一种波束避让方法及基站
WO2019100808A1 (zh) 捆绑大小确定方法、用户终端和网络侧设备
US11259254B2 (en) Variable-length coding in a NOMA-based communication system
WO2020107154A1 (zh) 数据传输方法、装置及计算机存储介质
WO2019157742A1 (zh) 信道状态信息矩阵信息处理方法及通信装置
WO2019174054A1 (zh) 确定第一多天线发送模式的方法、终端设备和网络设备
WO2019222952A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2023207863A1 (zh) 直通链路定位参考信号的发送方法、终端定位方法及装置
WO2023061352A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022052073A1 (zh) 信道估计的方法、装置、通信设备及存储介质
WO2024067539A1 (zh) 一种通信方法和装置
WO2022061733A1 (zh) 无线通信方法和设备
WO2022183563A1 (zh) 码本上报的方法、终端设备和网络设备
WO2023206171A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备
US20240120981A1 (en) Method and device in nodes used for wireless communication
WO2023206170A1 (zh) Csi的上报方法、预编码矩阵的确定方法、装置及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814422

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814422

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20814422

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20814422

Country of ref document: EP

Kind code of ref document: A1