WO2020238403A1 - 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 - Google Patents

氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 Download PDF

Info

Publication number
WO2020238403A1
WO2020238403A1 PCT/CN2020/082839 CN2020082839W WO2020238403A1 WO 2020238403 A1 WO2020238403 A1 WO 2020238403A1 CN 2020082839 W CN2020082839 W CN 2020082839W WO 2020238403 A1 WO2020238403 A1 WO 2020238403A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
glass
moles
fluorophosphate glass
present
Prior art date
Application number
PCT/CN2020/082839
Other languages
English (en)
French (fr)
Inventor
孙伟
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Publication of WO2020238403A1 publication Critical patent/WO2020238403A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/11Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
    • C03C3/112Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
    • C03C3/115Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron
    • C03C3/118Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/23Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron
    • C03C3/247Silica-free oxide glass compositions containing halogen and at least one oxide, e.g. oxide of boron containing fluorine and phosphorus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention belongs to the technical field of fluorophosphate glass. Specifically, the present invention relates to fluorophosphate glass, glass preforms, optical elements and optical instruments with the same.
  • Fluorophosphate optical glass as a widely used new glass material, has the characteristics of low dispersion. It can eliminate the special dispersion of the secondary spectrum in the optical system, improve the resolution, and significantly improve the imaging quality of the optical system, while also having lower softening Temperature, can be directly precision molded into high-grade aspheric lens.
  • a large number of optical glasses used in automotive, security and other fields have been exposed outdoors for a long time.
  • the refractive index temperature coefficient and stress optical coefficient of fluorophosphate glass are often high, and the thermal stability is not suitable for outdoor high temperature. In the case of high-power light applications, poor thermal properties of the glass will cause high energy density to enter the glass and cause the glass to burst. Even if there is no burst, it will change the internal structure of the glass and reduce the image quality.
  • an object of the present invention is to provide a fluorophosphate glass, a glass preform, an optical element and an optical instrument having the same.
  • the refractive index of the fluorophosphate glass is 1.52 to 1.60, and the Abbe number is not less than 68. , And has excellent optical performance, etc., at the same time has a lower refractive index temperature coefficient and lower stress optical coefficient to meet market needs.
  • the present invention proposes a fluorophosphate glass.
  • the fluorophosphate glass includes cations and anions, wherein the cations include: 25-40 mol% P 5+ ; 8-22 mol% Al 3+ ; 1-30 mol % Of Ln 3+ , Ln 3+ is at least one of La 3+ , Gd 3+ , Y 3+ and Yb 3+ ; 25 ⁇ 55 mol% of R 2+ , R 2+ is Ba 2+ , Ca 2 +, Sr 2+ and Mg 2+ at least one of; the anion comprises: 38 to 50 mol% of F -; 50 ⁇ 62 mol% of O 2-.
  • the fluorophosphate glass of the present invention has a refractive index of 1.52 to 1.60, an Abbe number of not less than 68, and has excellent optical properties, etc., and has a lower refraction. High temperature coefficient and low stress optical coefficient to meet market needs.
  • fluorophosphate glass according to the above embodiments of the present invention may also have the following additional technical features:
  • the cations in the above-mentioned fluorophosphate glass composition include: 30-37 mol% P 5+ , preferably 31-36 mol% P 5+ ; and/or 10-20 mol% Al 3+ , preferably 12-17 mol% Al 3+ ; and/or 2-20 mol% Ln 3+ , preferably 3-15 mol% Ln 3+ ; and/or 30-50 mol% R 2+ , preferably 35-45 mol% R 2+ .
  • the fluorophosphate glass has excellent performance.
  • the Ln 3+ in the above fluorophosphate glass composition includes: 0-8 mol% La 3+ , preferably 0-5 mol% La 3+ , without endpoint 0, more Preferably 0.5-4 mol% La 3+ ; and/or 1-10 mol% Gd 3+ , preferably 1-6 mol% Gd 3+ , more preferably 1-5 mol% Gd 3+ ; and/or 1-10 mol% Y 3+ , preferably 1-8 mol% Y 3+ , more preferably 2-6 mol% Y 3+ ; and/or 0-10 mol% Yb 3+ , preferably 0-5 Mole% of Yb 3+ .
  • the fluorophosphate glass has excellent performance.
  • the R 2+ in the above fluorophosphate glass composition includes: 25-40 mol% Ba 2+ , preferably 28-38 mol% Ba 2+ , more preferably 30-35 mol % Ba 2+ ; and/or 0-10 mol% Ca 2+ , preferably 0-5 mol% Ca 2+ ; and/or 3-15 mol% Sr 2+ , preferably 5-12 mol% Sr 2+ , more preferably 5-10 mol% Sr 2+ ; and/or 0-10 mol% Mg 2+ , preferably 0-5 mol% Mg 2+ .
  • the fluorophosphate glass has excellent performance.
  • the above-described fluorophosphate glass composition of said anion comprising: 41 to 48 mole% of F -, preferably 42 to 46 mole% of F -; and / or 52 to 59 mol% of O 2- , preferably 54 to 58 mol% O 2- .
  • the fluorophosphate glass has excellent performance.
  • the ratio of the number of moles of Ln 3+ to the number of moles of R 2+ n Ln 3+ /n R 2+ is greater than 0.11, preferably n Ln 3+ / n R 2+ is greater than 0.135, more preferably 0.14 to 0.65.
  • n Ln 3+ / n R 2+ is greater than 0.135, more preferably 0.14 to 0.65.
  • the Ln 3+ is Y 3+ and/or La 3+
  • the R 2+ is Sr 2+ and/or Ba 2+ .
  • the ratio of the total number of moles of Sr 2+ and Y 3+ to the total number of moles of Al 3+ and Ba 2+ n (Sr 2+ + Y 3 + ) /n (Al 3+ +Ba 2+ ) is 0.25 to 0.43, excluding the endpoint 0.25, preferably 0.265 to 0.375, and excluding the endpoint 0.265.
  • the fluorophosphate glass has excellent performance.
  • the ratio of the total number of moles of Gd 2+ and La 3+ to the total number of moles of Y 3+ and Ba 2+ n (Gd 3+ + La 3 + ) /n (Y 3+ +Ba 2+ ) is greater than 0.085, preferably greater than 0.11, and more preferably 0.115 to 0.165.
  • the fluorophosphate glass has excellent performance.
  • the ratio of the total number of moles of Sr 2+ and Ba 2+ to the total number of moles of Y 3+ , Gd 3+ and La 3+ n (sr 2 + + Ba 2+ ) /n (Y 3+ +Gd 3+ +La 3+ ) is 3.45 to 9, preferably 3.45 to 7.6, more preferably 3.55 to 5.55.
  • the fluorophosphate glass has excellent performance.
  • the ratio of the total number of moles of Y 3+ , Gd 3+ and La 3+ to the total number of moles of P 5+ , Al 3+ and Sr 2+ n (Y 3+ + Gd 3+ + La 3+ ) /n (P 5+ +Al 3+ +Sr 2+ ) is greater than 0.08, preferably 0.105 to 0.26, more preferably 0.105 to 0.195.
  • the fluorophosphate glass has excellent performance.
  • the ratio of the total number of moles of Y 3+ and Gd 3+ to the total number of moles of P 5+ , Al 3+ , Sr 2+ and Ba 2+ n (Y 3+ + Gd 3+ ) /n (P 5+ +Al 3+ +Sr 2+ +Ba 2+ ) is less than 0.12, preferably 0.075 to 0.115. Thus, it can be ensured that the fluorophosphate glass has excellent performance.
  • the ratio of the total number of moles of Y 3+ and La 3+ to the total number of moles of P 5+ , Al 3+ , Sr 2+ and Y 3+ n (Y 3+ + La 3+ ) /n (P 5+ +Al 3+ +Sr 2+ +Y 3+ ) is greater than 0.07, preferably 0.075 to 0.5.
  • the fluorophosphate glass has excellent performance.
  • the total number of moles of Y 3+ , Gd 3+ and Ba 2+ and the total of P 5+ , Al 3+ , Sr 2+ and Ba 2+ is 0.435 to 0.505, preferably 0.44 to 0.5.
  • the cation in the above-mentioned fluorophosphate glass composition further includes: 0-15 mol% Li + , preferably 0-10 mol% Li + ; and/or 0-15 mol% Na + , preferably 0-10 mol% Na + ; and/or 0-10 mol% K + , preferably 0-5 mol% K + ; and/or 0-8 mol% B 3+ , preferably 0 ⁇ 5 mol% B 3+ ; and/or 0-10 mol% Zn 2+ , preferably 0-5 mol% Zn 2+ ; and/or 0-8 mol% In 3+ , preferably 0-5 Mole% of In 3+ ; and/or 0-5 mole% of Nb 5+ , preferably 0-3 mole% of Nb 5+ ; and/or 0-5 mole% of Ti 4+ , preferably 0-3 mole% the Ti 4+; and / or 0 to
  • the above-mentioned fluorophosphate glass has a refractive index of 1.52 to 1.60, preferably 1.53 to 1.58, more preferably 1.55 to 1.58, and an Abbe number of 68 to 75, preferably 69 to 74, more preferably 70 to 73 .
  • the temperature coefficient of refractive index of the above-mentioned fluorophosphate glass is -4.0 ⁇ 10 -6 /degree Celsius or less, preferably -5.0 ⁇ 10 -6 /degree Celsius or less, more preferably -7.5 ⁇ 10 -6 /degree Celsius Below degrees Celsius
  • the acid resistance stability is not less than 2, preferably not less than 1
  • the water resistance stability is not less than 2, preferably not less than 1
  • the transition temperature is not more than 510 degrees Celsius, preferably not more than 500 Celsius degrees, more preferably not higher than 495 degrees Celsius, ⁇ 80 not larger than 370 nm, preferably not larger than 360 nm, more preferably not larger than 350 nm, ⁇ 5 not larger than 310 nm, preferably not larger than 300 nm, more preferably not larger than 295 nm, and abrasion degree not higher than 500 , Preferably not higher than 450.
  • the present invention provides a glass preform.
  • the glass preform is made of the above-mentioned fluorophosphate glass.
  • the present invention provides an optical element.
  • the optical element is made of the above-mentioned fluorophosphate glass or the above-mentioned glass preform.
  • the present invention provides an optical instrument.
  • the optical instrument has the above-mentioned optical element.
  • the ion valence of each component described below is a representative value used for convenience, and is not different from other ion valences. There is a possibility that the ion valence of each component in the optical glass is outside the representative value. For example, P usually exists in glass with an ion valence of +5. Therefore, in the present invention, "P 5+ "is used as a representative value. However, there is the possibility of existence in other ion valence states. Within the scope of protection of the invention.
  • the present invention provides a fluorophosphate glass.
  • the fluorophosphate glass includes: cations and anions, and the cations include: 25-40 mol% P 5+ ; 8-22 mol% Al 3+ ; 1-30 mol% Ln 3+ , Ln 3+ is at least one of La 3+ , Gd 3+ , Y 3+ and Yb 3+ ; 25-55 mol% of R 2+ , R 2+ is Ba 2+ , Ca 2+ , at least one of Sr 2+ and Mg 2+; and the anion comprises: 38 to 50 mol% of F -; 50 ⁇ 62 mol% of O 2-.
  • the mole% of the component in the cation is the ratio of the cation to the total moles of all cations.
  • the mole% of the component in the anion is the ratio of the anions to the total moles of all anions.
  • P 5+ is an important component for reducing dispersion in fluorophosphate glass, and is the main component that affects glass imaging and outdoor high temperature durability.
  • the content of P 5+ in the present invention is 25 to 40 mol%, and the content of P 5+ is preferably 30 to 37 mol%, and more preferably 31 to 36 mol%.
  • Al 3+ is a structural component of the fluorophosphate glass as a network skeleton and an important component for improving the stability of the glass.
  • the content of Al 3+ in the present invention is 8 to 22 mol%, and the content of Al 3+ is preferably 10 to 20 mol%, and more preferably 12 to 17 mol%.
  • La 3+ , Gd 3+ , Y 3+ and Yb 3+ can increase the refractive index of glass, but Ln 3+ (at least one selected from La 3+ , Gd 3+ , Y 3+ and Yb 3+ ) When it is less than 1 mol%, the effect on the refractive index of the glass is small, but when Ln 3+ is higher than 30 mol%, the stability of the glass will deteriorate, and the glass transition temperature will increase, resulting in a decrease in the stability of the glass.
  • the Ln 3+ in the present invention is 1-30 mol%, preferably 2-20 mol%, more preferably 3-15 mol%, including 0-8 mol% La 3+ , preferably 0-5 mol% La 3+ does not contain endpoint 0, more preferably 0.5-4 mol% La 3+ ; and/or 1-10 mol% Gd 3+ , preferably 1-6 mol% Gd 3+ , more preferably 1-5 Mol% of Gd 3+ ; and/or 1-10 mol% of Y 3+ , preferably 1-8 mol% of Y 3+ , more preferably 2-6 mol% of Y 3+ ; and/or 0-10 mol % Yb 3+ , preferably 0-5 mol% Yb 3+ , and more preferably not introduced.
  • the R 2+ in the present invention is 25 to 55 mol%, preferably 30 to 50 mol%, more preferably 35 to 45 mol%, which can increase the refractive index without excessively reducing the dispersion of the glass.
  • It includes 25-40 mol% Ba 2+ , preferably 28-38 mol% Ba 2+ , more preferably 30-35 mol% Ba 2+ ; and/or 0-10 mol% Ca 2+ , preferably 0- 5 mol% Ca 2+ , more preferably not introduced; and/or 3-15 mol% Sr 2+ , preferably 5-12 mol% Sr 2+ , more preferably 5-10 mol% Sr 2+ ; and /Or 0 to 10 mol% of Mg 2+ , preferably 0 to 5 mol% of Mg 2+ , more preferably not introduced.
  • F - can reduce the melting point and dispersion of glass, and can also reduce the temperature coefficient of refractive index of glass.
  • the introduction amount is less than 38 mol%, the melting point of the glass is higher, which leads to poor processing performance, and the high temperature resistance of the glass is poor.
  • the introduction amount is higher than 50 mol%, the glass is in the melting process The volatility increases, the glass loss increases, and the refractive index performance deteriorates. Therefore, the content of F - in the present invention is 38 to 50 mol %, and the content of F - is preferably 41 to 48 mol %, and more preferably 42 to 46 mol %.
  • O 2- is an essential component of the glass network structure, which can improve the stability of the glass, inhibit the devitrification of the glass, and reduce the degree of wear.
  • the amount of its introduction is less than 50 mol%, its effect of inhibiting the devitrification and abrasion of the glass is not obvious, but when the amount of its introduction is higher than 62 mol%, the viscosity of the glass rises and the melting temperature rises, resulting in permeation The rate has deteriorated. Therefore, the content of O 2- in the present invention is 50 to 62 mol%, and the content of O 2- is preferably 52 to 59 mol%, and more preferably 54 to 58 mol%.
  • the refractive index of the fluorophosphate glass of the present invention is 1.52-1.60, preferably 1.53-1.58, more preferably 1.55-1.58, and Abbe number is 68-75, preferably 69- 74, more preferably 70-73, and ⁇ 80 is not greater than 370 nm, preferably not greater than 360 nm, more preferably not greater than 350 nm, ⁇ 5 is not greater than 310 nm, preferably not greater than 300 nm, more preferably not greater than 295 nm, and the temperature coefficient of refractive index is- 4.0 ⁇ 10 -6 /degree Celsius or less, preferably -5.0 ⁇ 10 -6 /degree Celsius or less, more preferably -7.5 ⁇ 10 -6 /degree Celsius or less, the stress optical coefficient is not higher than 0.6 ⁇ 10 -12 /Pa, preferably not higher than 0.5 ⁇ 10 -12 /Pa, more preferably not higher than 0.4 ⁇ 10 -12 /Pa,
  • the fluorophosphate glass of the present application is required to have excellent water and acid resistance, stability, etc., and the inventor of the present application has found through a lot of research that by controlling the Ln 3+ (selected from La 3+ , Gd 3+) in the glass composition , At least one of Y 3+ and Yb 3+ ) and R 2+ (at least one selected from Ba 2+ , Ca 2+ , Sr 2+ and Mg 2+ ) n Ln 3+ /n R 2+ is greater than 0.11, and each component exerts a synergistic effect, which can further improve the refractive index of the glass and the stability of acid and water resistance, and further reduce the dispersion and temperature coefficient of refractive index, resulting in fluorophosphate acid on stability of the glass is not less than 2, the stability of the role of water is not less than 2, more preferably the number of moles of Ln 3+ control the glass component and the number of R 2+ molar ratio n Ln 3+
  • Ln 3+ is Y 3+ and/or La 3+
  • Ln 3+ is the sum of Y 3+ and La 3+
  • R 2+ is Sr 2+ and/or Ba 2+
  • R 2+ is the sum of Sr 2+ and Ba 2+
  • the obtained fluorophosphate glass has excellent optical properties, low refractive index temperature coefficient and low stress optical coefficient.
  • the fluorophosphate glass of the present application is required to have excellent glass-forming stability and low abrasion.
  • the inventors of the present invention have found through a lot of research that by controlling the Sr 2+ and Y 3+ in the glass composition
  • the ratio of the total number of moles to the total number of moles of Al 3+ and Ba 2+ (n (Sr 2+ + Y 3+ ) /n (Al 3+ +Ba 2+ ) ) is 0.25 to 0.43, excluding the endpoint 0.25,
  • the synergistic effect between the components can further improve the glass-forming stability and optical properties of the glass, and reduce the degree of abrasion, thereby improving the workability of the glass.
  • the abrasion degree of the obtained fluorophosphate glass is not higher than 500, more preferably Control the ratio of the total number of moles of Sr 2+ and Y 3+ to the total number of moles of Al 3+ and Ba 2+ (n (Sr 2+ + Y 3+ ) /n (Al 3+ +Ba 2 + ) ) Is 0.265 ⁇ 0.375, without endpoint 0.265, so that the abrasion degree of the obtained fluorophosphate glass is not higher than 450.
  • the inventor also found that by controlling the ratio of the total number of moles of Gd 2+ and La 3+ to the total number of moles of Y 3+ and Ba 2+ in the glass component (n (Gd 3+ + La 3+ ) /n (Y 3+ +Ba 2+ ) ) is greater than 0.085, which can further improve the glass-forming stability and optical properties of the glass, and the transition temperature is significantly lower, which makes it easy to mold, has little damage to the abrasive, and ensures the use of the mold Life, the transition temperature of the obtained fluorophosphate glass is not higher than 510 degrees Celsius.
  • n (Gd 3+ + La 3+ ) /n (Y 3+ +Ba 2+ ) ) is greater than 0.11, and the transition temperature of the obtained fluorophosphate glass is not higher than 500 degrees Celsius.
  • the ratio of the total number of moles of + and La 3+ to the total number of moles of Y 3+ and Ba 2+ (n (Gd 3+ + La 3+ ) /n (Y 3+ +Ba 2+ ) ) is 0.115 ⁇ 0.165 ,
  • the transition temperature of the obtained fluorophosphate glass is not higher than 495 degrees Celsius.
  • the inventor also found that by controlling the ratio of the total number of moles of Sr 2+ and Ba 2+ to the total number of moles of Y 3+ , Gd 3+ and La 3+ (n (sr 2+ + Ba 2+ ) /n (Y 3+ +Gd 3+ +La 3+ ) ) is 3.45-9, which can further improve the glass forming stability and increase the refractive index of the glass without excessively reducing the dispersion.
  • the fluorophosphate glass of the present application is also required to have a lower specific gravity.
  • the inventor found that by controlling the total number of moles of Y 3+ , Gd 3+ and La 3+ in the glass composition, it is compared with P 5+ and Al 3
  • the ratio of the total moles of + and Sr 2+ (n (Y 3+ + Gd 3+ + La 3+ ) /n (P 5+ +Al 3+ +Sr 2+ ) ) is greater than 0.08, between the components
  • the synergistic effect can further adjust the refractive index and dispersion of the glass, while further reducing the specific gravity and abrasion, and the density of the obtained fluorophosphate glass is not higher than 4.7g/cm 3 , and it is further preferred to control the Y 3+ in the glass composition
  • the inventors also found that by controlling the ratio of the total number of moles of Y 3+ and Gd 3+ to the total number of moles of P 5+ , Al 3+ , Sr 2+ and Ba 2+ (n ( Y 3+ + Gd 3+ ) /n (P 5+ +Al 3+ +Sr 2+ +Ba 2+ ) ) is greater than 0.12, which can further help to adjust the glass refractive index, ensure dispersion performance, and glass stability Good, the transition temperature is lower, it is preferable to control the ratio of the total moles of Y 3+ and Gd 3+ to the total moles of P 5+ , Al 3+ , Sr 2+ and Ba 2+ (n (Y 3+ + Gd 3+ ) /n (P 5+ +Al 3+ +Sr 2+ +Ba 2+ ) ) is 0.075 to 0.115.
  • the ratio of the total moles of Ba 2+ is 0.44 to 0.5
  • the cation in the above-mentioned fluorophosphate glass composition further includes: 0-15 mol% Li + , preferably 0-10 mol% Li + ; and/or 0-15 mol% Na + , Preferably 0-10 mol% Na + ; and/or 0-10 mol% K + , preferably 0-5 mol% K + ; and/or 0-8 mol% B 3+ , preferably 0-5 Mol% of B 3+ ; and/or 0-10 mol% of Zn 2+ , preferably 0-5 mol% of Zn 2+ ; and/or 0-8 mol% of In 3+ , preferably 0-5 mol% In 3+ , and/or 0-5 mol% Nb 5+ , preferably 0-3 mol% Nb 5+ ; and/or 0-5 mol% Ti 4+ , preferably 0-3 mol% Ti 4+ ; and/or 0-5 mol%
  • the content of Li + in the present invention is 0 to 15 mol %, preferably the content of Li + is 0 to 10 mol %, and it is more preferable not to introduce it.
  • Na + can improve the meltability and devitrification resistance of the glass and increase the transmittance in the visible light region.
  • the amount of Na + is higher than 15 mol %, the stability of the glass is reduced.
  • the content of Na + in the present invention is 0-15 mol%, preferably 0-10 mol%, and more preferably not introduced.
  • K + can reduce the viscosity and transition temperature of the glass, but when its introduction amount is higher than 10 mol%, it will cause the stability of the glass to decrease. Therefore, the content of K + in the present invention is 0-10 mol%, preferably 0-5 mol%, and more preferably not introduced.
  • B 3+ can improve the stability of the glass, but when its introduction amount is higher than 8 mol%, it is easy to volatilize in the form of BF 3 during the melting process and thus cause streaks.
  • the content of B 3+ in the present invention is 0-8 mol%, preferably 0-5 mol%, and more preferably not introduced.
  • Zn 2+ can improve the devitrification resistance, stability and processability of the glass. When the amount of Zn 2+ is higher than 10 mol %, the devitrification resistance of the glass will decrease significantly. Therefore, the content of Zn 2+ in the present invention is 0-10 mol%, and the content of Zn 2+ is preferably 0-5 mol%, and it is more preferable not to introduce it.
  • In 3+ can improve the stability of the glass, but when the amount of In 3+ is higher than 8 mol%, the stability of the glass is drastically decreased.
  • the content of In 3+ in the present invention is 0 to 8 mol %, and the content of In 3+ is preferably 0 to 5 mol %, and it is more preferable not to introduce it.
  • Nb 5+ and Ti 4+ can increase the refractive index of the glass, but when the amount of Nb 5+ and Ti 4+ introduced exceeds 5 mol%, both will reduce the stability of the glass. Therefore, the content of Nb 5+ in the present invention It is 0-5 mol%, preferably 0-3 mol%, more preferably not introduced, and the content of Ti 4+ is 0-5 mol%, preferably 0-3 mol%, and more preferably not introduced.
  • Zr 4+ can increase the refractive index of the glass and can suppress the glass veining caused by the volatilization of the components in the glass. However, when the amount of Zr 4+ introduced is higher than 5 mol%, the stability of the glass will be reduced. Therefore, the Zr 4 of the present invention
  • the content of + is 0-5 mol%, preferably 0-3 mol%, and more preferably not introduced.
  • Ta 5+ can increase the refractive index of the glass and reduce the devitrification of the glass, but when it is introduced in an amount higher than 5 mol%, it will reduce the stability of the glass. Therefore, the content of Ta 5+ in the present invention is 0-5 mol% , Preferably 0 to 3 mol%, more preferably not introduced.
  • Ge 4+ can increase the refractive index and devitrification resistance of the glass, but when the amount of Ge 4+ is higher than 5 mol%, it will increase the cost of the glass. Therefore, the Ge 4+ content of the present invention is 0-5 mol%. 0 to 3 moles, more preferably not introduced.
  • the "does not contain”, “does not contain”, “does not introduce” and "0%” as described in the present invention means that the compound, molecule or element is not intentionally added as a raw material to the glass of the present invention; but as The raw materials and/or equipment for glass production may contain some impurities or components that are not deliberately added, which may be contained in small or trace amounts in the final glass. This situation is also within the protection scope of the present invention patent.
  • the temperature coefficient of refractive index of the above-mentioned fluorophosphate glass is -4.0 ⁇ 10 -6 /degree Celsius or less, preferably -5.0 ⁇ 10 -6 /degree Celsius or less, more preferably -7.5 ⁇ 10 -6 /degree Celsius Below degrees Celsius
  • the acid resistance stability is not less than 2, preferably not less than 1
  • the water resistance stability is not less than 2, preferably not less than 1
  • the transition temperature is not more than 510 degrees Celsius, preferably not more than 500 Celsius degrees, more preferably not higher than 495 degrees Celsius, ⁇ 80 not larger than 370 nm, preferably not larger than 360 nm, more preferably not larger than 350 nm, ⁇ 5 not larger than 310 nm, preferably not larger than 300 nm, more preferably not larger than 295 nm, and abrasion degree not higher than 500 , Preferably not higher than 450.
  • the present invention provides a glass preform.
  • the glass preform is made of the above-mentioned fluorophosphate glass. Therefore, the optical preform of the present invention has characteristics such as low dispersion, and at the same time has a low refractive index high temperature coefficient and a low stress optical coefficient, and is useful in various optical elements and optical designs.
  • the present invention provides an optical element.
  • the optical element is made of the above-mentioned fluorophosphate glass or the above-mentioned glass preform. Therefore, the optical element of the present invention has low dispersion characteristics, and at the same time has low refractive index high temperature coefficient and stress optical coefficient, and can provide various optical elements such as lenses and prisms with excellent performance.
  • the optical element of the present invention may be various lenses such as spherical lenses, aspheric lenses, microlenses, diffraction gratings, lenses with diffraction gratings, lens arrays, prisms, and the like.
  • an optical film such as an anti-reflection film, a total reflection film, a partial reflection film, and a film having spectral characteristics may be provided on the optical element. It should be noted that the features and advantages described above for the fluorophosphate glass and the glass preform are also applicable to the optical element, and will not be repeated here.
  • the present invention provides an optical instrument.
  • the optical instrument has the above-mentioned optical element. Therefore, by using the above-mentioned optical element with excellent performance on the optical instrument, it can be suitable for outdoor high temperature environment.
  • the optical device of the present invention may be an optical device that transmits visible light among cameras, projectors, and the like. It should be noted that the features and advantages described above for the optical element are also applicable to the optical instrument, and will not be repeated here.
  • the short-wave transmission spectrum characteristics of the glass of the present invention are expressed by the degree of coloration ( ⁇ 80 / ⁇ 5 ).
  • ⁇ 80 refers to the wavelength when the glass transmittance reaches 80%
  • ⁇ 5 refers to the wavelength when the glass transmittance reaches 5%.
  • ⁇ 80 is measured using two opposite planes that are parallel to each other and optically polished. For glass with a thickness of 10 ⁇ 0.1 mm, the spectral transmittance in the wavelength range from 280 nm to 700 nm is measured and the wavelength exhibiting a transmittance of 80%.
  • the so-called spectral transmittance or transmittance is the amount expressed by I out /I in when light of intensity I in is incident perpendicularly to the above-mentioned surface of the glass, and light of intensity I out is emitted from a plane through the glass, and
  • the transmittance of the surface reflection loss on the above-mentioned surface of the glass is also included.
  • the corresponding wavelength ( ⁇ 80 ) is not greater than 370 nm, preferably not greater than 360 nm, more preferably not greater than 350 nm, and the corresponding wavelength ( ⁇ 5 ) when the glass transmittance reaches 5% is not greater than 310nm, preferably not more than 300nm, more preferably not more than 295nm.
  • a glass sample with a thickness of 10 ⁇ 0.1 mm with two optically polished planes facing each other was used to measure the spectral transmittance and calculate it based on the result.
  • the density of fluorophosphate glass is the weight per unit volume at a temperature of 20°C, expressed in g/cm 3.
  • the density of the fluorophosphate glass of the present invention is not higher than 4.7 g/cm 3 , preferably not higher than 4.6 g/ cm 3 , more preferably not higher than 4.5 g/cm 3 .
  • the transition temperature T g refers to the temperature corresponding to the intersection point where the low temperature area and the straight line part of the high temperature area intersect the glass sample from room temperature to the sag temperature T s .
  • the transition temperature T g is measured according to the method specified in GB/T7962.16-2010.
  • the transition temperature (T g ) of the glass of the present invention is not higher than 510°C, preferably not higher than 500°C, more preferably not higher than 495°C.
  • the refractive index nd of the fluorophosphate glass of the present invention is 1.52 to 1.60, preferably 1.53 to 1.58, more preferably 1.55 to 1.58, and Abbe number vd is 68 to 75, preferably 69 to 74, and more preferably 70 to 73.
  • the refractive index and Abbe number are tested according to the method specified in GB/T7962.1-2010.
  • the temperature coefficient of refractive index of the glass of the present invention is -4.0 ⁇ 10 -6 /degree Celsius or less, preferably -5.0 ⁇ 10 -6 /degree Celsius or less, more preferably -7.5 ⁇ 10 -6 /degree Celsius or less.
  • the temperature coefficient of refractive index is tested according to the method specified in GB/T 7962.4-2010, and the temperature coefficient of refractive index from -40 to 80°C is measured.
  • the chemical stability of optical glass which mainly depends on the chemical composition of the glass.
  • the water resistance stability Dw is not lower than level 2, preferably not lower than level 1
  • the acid resistance stability DA is not lower than level 2, preferably not lower than level 1.
  • the stress optical coefficient of the glass of the present invention is lower than 0.6 ⁇ 10 -12 /Pa, preferably lower than 0.5 ⁇ 10 -12 /Pa, more preferably lower than 0.4 ⁇ 10 -12 /Pa.
  • the stress optical coefficient test is performed as follows:
  • the sample is processed into a cylindrical shape with polished polished surfaces at both ends, and the cylindrical side surface is finely ground.
  • the size is ⁇ 20mm ⁇ 15mm. It can also be processed into other specifications according to the test equipment.
  • the parallelism of the two transparent surfaces is ⁇ 1/100, and the roundness is ⁇ 5 /100, the side taper ⁇ 1/100.
  • the test of the stress optical coefficient adopts a disk to compress the sample, and the cylindrical sample is put into the stress birefringence test optical path with the circular end surface perpendicular to the optical path, and the two end points of a diameter D on the cylindrical side corresponding to the circular end surface face simultaneously Apply a force P to keep the sample position unchanged, while testing the stress birefringence optical path difference ⁇ at the center of the circle.
  • the melting and molding method for preparing the optical glass of the present invention can employ techniques known to those skilled in the art. For example: the glass raw materials (fluoride, carbonate, nitrate, metaphosphate, oxide, etc.) are weighed and mixed according to the proportion of glass ions and mixed uniformly, then put into the melting device (such as platinum crucible), and then After proper stirring, clarification and homogenization at 800 ⁇ 1250°C, the temperature is lowered to below 900°C, poured or leaked into the forming mold, and finally subjected to post-treatments such as annealing and processing, or directly pressed into shape through precision pressing technology. In addition, the characteristics of each glass were measured by the method shown above, and the measurement results are shown in Tables 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)

Abstract

本发明公开了一种氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器,所述氟磷酸盐玻璃包括:阳离子和阴离子,所述阳离子包括:25~40摩尔%的P 5+;8~22摩尔%的Al 3+;1~30摩尔%的Ln 3+,Ln 3+为La 3+、Gd 3+、Y 3+和Yb 3+的至少之一;25~55摩尔%的R 2+,R 2+为Ba 2+、Ca 2+、Sr 2+和Mg 2+的至少之一;所述阴离子包括:38~50摩尔%的F -;50~62摩尔%的O 2-。该氟磷酸盐玻璃的折射率在1.52~1.60,阿贝数不低于68,并且具有优异的光学性能等,同时具有较低的折射率高温系数和较低的应力光学系数,满足市场需要。

Description

氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 技术领域
本发明属于氟磷酸盐玻璃技术领域,具体而言,本发明涉及氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器。
背景技术
氟磷酸盐光学玻璃作为应用较为广泛的新型玻璃材料,具有低色散的特性,在光学系统中可消除二级光谱特殊色散,提高分辨率,明显改善光学系统成像质量,同时还具有较低的软化温度,可以直接精密模压制成高级非球面透镜。近年来,大量应用于车载、安防等领域的光学玻璃由于长期暴露在室外,而目前氟磷酸盐玻璃的折射率温度系数和应力光学系数往往偏高,热学稳定性差不适于室外高温,而且尤其在高功率光应用的情况下,玻璃热学性能不良会导致高能密度进入玻璃中会导致玻璃炸裂,即使没有炸裂也会改变玻璃内部结构,降低成像质量。
因此,急需开发折射率为1.52-1.60、阿贝数为68-75的较高折射低色散并具有低的折射率温度系数和低的应力光学系数的氟磷酸盐光学玻璃。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器,该氟磷酸盐玻璃的折射率在1.52~1.60,阿贝数不低于68,并且具有优异的光学性能等,同时具有较低的折射率温度系数和较低的应力光学系数,满足市场需要。
在本发明的一个方面,本发明提出了一种氟磷酸盐玻璃。根据本发明的实施例,所述氟磷酸盐玻璃包括:阳离子和阴离子,其中,所述阳离子包括:25~40摩尔%的P 5+;8~22摩尔%的Al 3+;1~30摩尔%的Ln 3+,Ln 3+为La 3+、Gd 3+、Y 3+和Yb 3+的至少之一;25~55摩尔%的R 2+,R 2+为Ba 2+、Ca 2+、Sr 2+和Mg 2+的至少之一;所述阴离子包括:38~50摩尔%的F -;50~62摩尔%的O 2-
发明人发现,通过控制其组分以及含量,使得本发明的氟磷酸盐玻璃的折射率在1.52~1.60,阿贝数不低于68,并且具有优异的光学性能等,同时具有较低的折射率高温系数和较低的应力光学系数,满足市场需要。
另外,根据本发明上述实施例的氟磷酸盐玻璃还可以具有如下附加的技术特征:
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中所述阳离子包括:30~37摩尔%的 P 5+,优选31~36摩尔%的P 5+;和/或10~20摩尔%的Al 3+,优选12~17摩尔%的Al 3+;和/或2~20摩尔%的Ln 3+,优选3~15摩尔%的Ln 3+;和/或30~50摩尔%的R 2+,优选35-45摩尔%的R 2+。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中所述Ln 3+包括:0~8摩尔%的La 3+,优选0~5摩尔%的La 3+,不含端点0,更优选0.5~4摩尔%的La 3+;和/或1~10摩尔%的Gd 3+,优选1~6摩尔%的Gd 3+,更优选1~5摩尔%的Gd 3+;和/或1~10摩尔%的Y 3+,优选1~8摩尔%的Y 3+,更优选2~6摩尔%的Y 3+;和/或0~10摩尔%的Yb 3+,优选0~5摩尔%的Yb 3+。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中所述R 2+包括:25~40摩尔%的Ba 2+,优选28~38摩尔%的Ba 2+,更优选30~35摩尔%的Ba 2+;和/或0~10摩尔%的Ca 2+,优选0~5摩尔%的Ca 2+;和/或3~15摩尔%的Sr 2+,优选5~12摩尔%的Sr 2+,更优选5~10摩尔%的Sr 2+;和/或0~10摩尔%的Mg 2+,优选0~5摩尔%的Mg 2+。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中所述阴离子包括:41~48摩尔%的F -,优选42~46摩尔%的F -;和/或52~59摩尔%的O 2-,优选54~58摩尔%的O 2-。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Ln 3+的摩尔数与R 2+的摩尔数之比n Ln 3+/n R 2+大于0.11,优选n Ln 3+/n R 2+大于0.135,更优选0.14~0.65。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,所述Ln 3+为Y 3+和/或La 3+,所述R 2+为Sr 2+和/或Ba 2+。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Sr 2+和Y 3+的合计摩尔数与Al 3+和Ba 2+的合计摩尔数之比n (Sr 2++ Y 3+ )/n (Al 3+ +Ba 2+ )为0.25~0.43,不含端点0.25,优选0.265~0.375,不含端点0.265。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Gd 2+和La 3+的合计摩尔数与Y 3+和Ba 2+的合计摩尔数之比n (Gd 3++ La 3+ )/n (Y 3+ +Ba 2+ )大于0.085,优选大于0.11,更优选0.115~0.165。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Sr 2+和Ba 2+的合计摩尔数与Y 3+、Gd 3+和La 3+的合计摩尔数之比n (sr 2++ Ba 2+ )/n (Y 3+ +Gd 3+ +La 3+ )为3.45~9,优选3.45~7.6,更优选3.55~5.55。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Y 3+、Gd 3+和La 3+的合计摩尔数与P 5+、Al 3+和Sr 2+的合计摩尔数之比n (Y 3++ Gd 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ )大于0.08,优选0.105~0.26, 更优选0.105~0.195。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Y 3+和Gd 3+的合计摩尔数与P 5+、Al 3+、Sr 2+和Ba 2+的合计摩尔数之比n (Y 3++ Gd 3+ )/n (P 5+ +Al 3+ +Sr 2+ +Ba 2+ )小于0.12,优选0.075~0.115。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Y 3+和La 3+的合计摩尔数与P 5+、Al 3+、Sr 2+和Y 3+的合计摩尔数之比n (Y 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ +Y 3+ )大于0.07,优选0.075~0.5。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中,Y 3+、Gd 3+和Ba 2+的合计摩尔数与P 5+、Al 3+、Sr 2+和Ba 2+的合计摩尔数之比n (Y 3++ Gd 3++ Ba 2+ )/n (P 5+ +Al 3+ +Sr 2++ Ba 2+ )为0.435~0.505,优选0.44~0.5。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃组成中所述阳离子进一步包括:0~15摩尔%的Li +,优选0~10摩尔%的Li +;和/或0~15摩尔%的Na +,优选0~10摩尔%的Na +;和/或0~10摩尔%的K +,优选0~5摩尔%的K +;和/或0~8摩尔%的B 3+,优选0~5摩尔%的B 3+;和/或0~10摩尔%的Zn 2+,优选0~5摩尔%的Zn 2+;和/或0~8摩尔%的In 3+,优选0~5摩尔%的In 3+;和/或0~5摩尔%的Nb 5+,优选0~3摩尔%的Nb 5+;和/或0~5摩尔%的Ti 4+,优选0~3摩尔%的Ti 4+;和/或0~5摩尔%的Zr 4+,优选0~3摩尔%的Zr 4+;和/或0~5摩尔%的Ta 5+,优选0~3摩尔%的Ta 5+;和/或0~5摩尔%的Ge 4+,优选0~3摩尔%的Ge 4+。由此,可以保证该氟磷酸盐玻璃具有优异的性能。
在本发明的一些实施例中,上述氟磷酸盐玻璃折射率为1.52~1.60,优选1.53~1.58,更优选1.55~1.58,阿贝数为68~75,优选69~74,更优选70~73。
在本发明的一些实施例中,上述氟磷酸盐玻璃的折射率温度系数为-4.0×10 -6/摄氏度以下,优选-5.0×10 -6/摄氏度以下,更优选-7.5×10 -6/摄氏度以下,耐酸作用稳定性不低于2级,优选不低于1级,耐水作用稳定性不低于2级,优选不低于1级,转变温度不高于510摄氏度,优选不高于500摄氏度,更优选不高于495摄氏度,λ 80不大于370nm,优选不大于360nm,更优选不大于350nm,λ 5不大于310nm,优选不大于300nm,更优选不大于295nm,磨耗度不高于500,优选不高于450。
在本发明的再一个方面,本发明提出了一种玻璃预制件。根据本发明的实施例,所述玻璃预制件采用上述的氟磷酸盐玻璃制成。
在本发明的第三个方面,本发明提出了一种光学元件。根据本发明的实施例,所述光学元件采用上述的氟磷酸盐玻璃或上述的玻璃预制件制成。
在本发明的第四个方面,本发明提出了一种光学仪器。根据本发明的实施例,所述光学仪器具有上述的光学元件。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
具体实施方式
下面详细描述本发明的实施例,下面描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
除非在具体情况下另外指出,本文所列出的数值范围包括上限值和下限值,“以上”和“以下”包括端点值,在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
需要说明的是,以下描述的各成分的离子价是为了方便而使用的代表值,与其他的离子价没有区别。光学玻璃中各组分的离子价存在代表值以外的可能性。例如,P通常以离子价为+5价的状态存在于玻璃中,因此在本发明中以“P 5+”作为代表值,但是存在以其他的离子价状态存在的可能性,这也在本发明的保护范围之内。
在本发明的一个方面,本发明提出了一种氟磷酸盐玻璃。根据本发明的实施例,所述氟磷酸盐玻璃包括:阳离子和阴离子,所述阳离子包括:25~40摩尔%的P 5+;8~22摩尔%的Al 3+;1~30摩尔%的Ln 3+,Ln 3+为La 3+、Gd 3+、Y 3+和Yb 3+的至少之一;25~55摩尔%的R 2+,R 2+为Ba 2+、Ca 2+、Sr 2+和Mg 2+的至少之一;所述阴离子包括:38~50摩尔%的F -;50~62摩尔%的O 2-。需要说明的是,阳离子中组分摩尔%为该阳离子与所有阳离子总摩尔数的比值,同理阴离子中组分摩尔%为该阴离子与所有阴离子总摩尔数的比值。
玻璃成分:
P 5+是氟磷酸玻璃中用于降低色散的重要成分,并且是影响玻璃成像和室外高温耐用的主要成分。当其引入量低于25摩尔%时,玻璃稳定性降低,析晶倾向增大,并且其折射率温度系数较低,但当其引入量高于40摩尔%时,无法满足预定的光学性能。因此,本发明的P 5+的含量为25~40摩尔%,优选P 5+的含量为30~37摩尔%,更优选31~36摩尔%。
Al 3+是氟磷酸玻璃中作为网络骨架的结构成分,并且用于提高成玻稳定性的重要成分。当其引入量低于8摩尔%时,玻璃稳定性较低,但当其引入量高于22摩尔%时,玻璃转变温度和析晶上限温度大大升高,导致成型温度升高。因此,本发明的Al 3+的含量为8~22摩尔%,优选Al 3+的含量为10~20摩尔%,更优选12~17摩尔%。
La 3+、Gd 3+、Y 3+和Yb 3+可以提高玻璃的折射率,但是Ln 3+(选自La 3+、Gd 3+、Y 3+和Yb 3+中的至少之一)低于1摩尔%时,对玻璃的折射率影响较小,但Ln 3+高于30摩尔%时,会导致玻璃的稳定性恶化,同时使得玻璃转变温度升高,导致玻璃的稳定性降低。因此,本发明的Ln 3+为1~30摩尔%,优选2~20摩尔%,更优选3~15摩尔%,其中,包括0~8摩尔% 的La 3+,优选0~5摩尔%的La 3+,不含端点0,更优选0.5~4摩尔%的La 3+;和/或1~10摩尔%的Gd 3+,优选1~6摩尔%的Gd 3+,更优选1~5摩尔%的Gd 3+;和/或1~10摩尔%的Y 3+,优选1~8摩尔%的Y 3+,更优选2~6摩尔%的Y 3+;和/或0~10摩尔%的Yb 3+,优选0~5摩尔%的Yb 3+,更优选不引入。
Ba 2+、Ca 2+、Sr 2+和Mg 2+可以提高玻璃的稳定性和折射率,但R 2+(选自Ba 2+、Ca 2+、Sr 2+和Mg 2+中的至少之一)低于25摩尔%时,对玻璃的稳定性和玻璃的稳定性提高影响不明显,但R 2+高于55摩尔%时,导致玻璃的稳定性急剧下降,并且还会显著降低玻璃色散。由此,本发明的R 2+为25~55摩尔%,优选30~50摩尔%,更优选35~45摩尔%,可以在提高折射率的同时,不会过分的降低玻璃的色散,其中,包括25~40摩尔%的Ba 2+,优选28~38摩尔%的Ba 2+,更优选30~35摩尔%的Ba 2+;和/或0~10摩尔%的Ca 2+,优选0~5摩尔%的Ca 2+,更优选不引入;和/或3~15摩尔%的Sr 2+,优选5~12摩尔%的Sr 2+,更优选5~10摩尔%的Sr 2+;和/或0~10摩尔%的Mg 2+,优选0~5摩尔%的Mg 2+,更优选不引入。
F -可降低玻璃的熔点和色散,并且还可以降低玻璃的折射率温度系数。当其引入量低于38摩尔%时,玻璃的熔点较高,导致其加工性能变差,同时玻璃的耐高温性能较差,但当其引入量高于50摩尔%时,玻璃在熔炼过程中挥发性加大,玻璃损耗度增大,折射率性能也变差。因此,本发明的F -的含量为38~50摩尔%,优选F -的含量为41~48摩尔%,更优选42~46摩尔%。
O 2-是玻璃网络结构的必要组分,可提高玻璃稳定性,抑制玻璃的失透,降低磨损度。当其引入量低于50摩尔%时,其抑制玻璃的失透和磨损度效果不明显,但当其引入量高于62摩尔%时,使得玻璃的粘度上升且熔融温度升高,导致透过率恶化。因此,本发明的O 2-的含量为50~62摩尔%,优选O 2-的含量为52~59摩尔%,更优选54~58摩尔%。
发明人发现,通过控制其组分以及含量,使得本发明的氟磷酸盐玻璃的折射率为1.52~1.60,优选1.53~1.58,更优选1.55~1.58,阿贝数为68~75,优选69~74,更优选70~73,并且λ 80不大于370nm,优选不大于360nm,更优选不大于350nm,λ 5不大于310nm,优选不大于300nm,更优选不大于295nm,同时折射率温度系数为-4.0×10 -6/摄氏度以下,优选-5.0×10 -6/摄氏度以下,更优选-7.5×10 -6/摄氏度以下,应力光学系数不高于0.6×10 -12/Pa,优选不高于0.5×10 -12/Pa,更优选不高于0.4×10 -12/Pa,满足市场需要。
同时,本申请的氟磷酸盐玻璃要求具有优异的耐水耐酸作用稳定性能等,而本申请的发明人通过大量研究发现,通过控制玻璃组分中Ln 3+(选自La 3+、Gd 3+、Y 3+和Yb 3+中的至少之一)的摩尔数与R 2+(选自Ba 2+、Ca 2+、Sr 2+和Mg 2+中的至少之一)的摩尔数之比n Ln 3+/n R 2+大于0.11,各组分之间发挥协同作用,可以进一步提高玻璃的折射率和耐酸耐水作用稳定性能,且进一步降低色散和折射率温度系数,得到的氟磷酸盐玻璃耐酸作用稳定性不低于2级, 耐水作用稳定性不低于2级,进一步优选控制玻璃组分中Ln 3+摩尔数与R 2+摩尔数之比n Ln 3+/n R 2+大于0.135,所得氟磷酸盐玻璃耐酸作用稳定性不低于1级,耐水作用稳定性不低于1级,更优选能控制玻璃组分中Ln 3+摩尔数与R 2+摩尔数之比n Ln 3+/n R 2+为0.14~0.65。进一步的,优选Ln 3+为Y 3+和/或La 3+,更优选Ln 3+为Y 3+和La 3+总和,优选R 2+为Sr 2+和/或Ba 2+,更优选R 2+为Sr 2+和Ba 2+总和,所得氟磷酸盐玻璃具有优异的光学性能以及较低的折射率温度系数以及较低的应力光学系数。
进一步的,本申请的氟磷酸盐玻璃要求具有优异的成玻稳定性以及较低的磨耗度,而本发明的发明人通过大量研究发现,通过控制玻璃组分中Sr 2+和Y 3+的合计摩尔数与Al 3+和Ba 2+的合计摩尔数之比(n (Sr 2++ Y 3+ )/n (Al 3+ +Ba 2+ ))为0.25~0.43,不含端点0.25,各组分之间协同作用,可以进一步提高玻璃的成玻稳定性和光学性能,并且降低磨损度,从而提高玻璃的可加工性,得到的氟磷酸盐玻璃的磨耗度不高于500,更优选控制玻璃组分中Sr 2+和Y 3+的合计摩尔数与Al 3+和Ba 2+的合计摩尔数之比(n (Sr 2++ Y 3+ )/n (Al 3+ +Ba 2+ ))为0.265~0.375,不含端点0.265,使得所得氟磷酸盐玻璃的磨耗度不高于450。
进一步地,发明人还发现,通过控制玻璃组分中Gd 2+和La 3+的合计摩尔数与Y 3+和Ba 2+的合计摩尔数之比(n (Gd 3++ La 3+ )/n (Y 3+ +Ba 2+ ))大于0.085,可以进一步提高玻璃的成玻稳定性和光学特性,并且转变温度明显更低,从而易于模压,对磨具损伤小,保证了模具的使用寿命,得到的氟磷酸盐玻璃的转变温度不高于510摄氏度,进一步优选控制玻璃组分中Gd 2+和La 3+的合计摩尔数与Y 3+和Ba 2+的合计摩尔数之比(n (Gd 3++ La 3+ )/n (Y 3+ +Ba 2+ ))大于0.11,得到的氟磷酸盐玻璃的转变温度不高于500摄氏度,更进一步优选控制玻璃组分中Gd 2+和La 3+的合计摩尔数与Y 3+和Ba 2+的合计摩尔数之比(n (Gd 3++ La 3+ )/n (Y 3+ +Ba 2+ ))为0.115~0.165,得到的氟磷酸盐玻璃的转变温度不高于495摄氏度。
进一步地,发明人还发现,通过控制玻璃组分中Sr 2+和Ba 2+的合计摩尔数与Y 3+、Gd 3+和La 3+的合计摩尔数之比(n (sr 2++ Ba 2+ )/n (Y 3+ +Gd 3+ +La 3+ ))为3.45~9,可以进一步提高玻璃的成玻稳定性,并且在提高玻璃折射率的同时不会过分降低色散,优选控制玻璃组分中Sr 2+和Ba 2+的合计摩尔数与Y 3+、Gd 3+和La 3+的合计摩尔数之比(n (sr 2++ Ba 2+ )/n (Y 3+ +Gd 3+ +La 3+ ))为3.45~7.6,更优选3.55~5.55。
进一步的,本申请的氟磷酸盐玻璃还要求具有较低的比重,发明人发现,通过控制玻璃组分中Y 3+和Gd 3+、La 3+的合计摩尔数与P 5+和Al 3+、Sr 2+的合计摩尔数之比(n (Y 3++ Gd 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ ))大于0.08,各组分之间协同作用,可以进一步调节玻璃的折射率和色散,同时进一步降低比重和磨损度,并且得到的氟磷酸盐玻璃的密度不高于4.7g/cm 3,进一步优选通过控制玻璃组分中Y 3+和Gd 3+、La 3+的合计摩尔数与P 5+和Al 3+、Sr 2+的合计摩尔数之比(n (Y 3++ Gd 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ ))为0.105~0.26,得到的氟磷酸盐玻璃的密度不高于4.6g/cm 3, 更优选控制玻璃组分中Y 3+和Gd 3+、La 3+的合计摩尔数与P 5+和Al 3+、Sr 2+的合计摩尔数之比(n (Y 3++ Gd 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ ))为0.105~0.195,得到的氟磷酸盐玻璃的密度不高于4.5g/cm 3
进一步地,发明人还发现,通过控制玻璃组分中Y 3+和Gd 3+的合计摩尔数与P 5+、Al 3+、Sr 2+和Ba 2+的合计摩尔数之比(n (Y 3++ Gd 3+ )/n (P 5+ +Al 3+ +Sr 2+ +Ba 2+ ))大于0.12,可以进一步更有利于调整玻璃折射率,保证色散性能,并且成玻稳定性好,转变温度更低,优选控制玻璃组分中Y 3+和Gd 3+的合计摩尔数与P 5+、Al 3+、Sr 2+和Ba 2+的合计摩尔数之比(n (Y 3++ Gd 3+ )/n (P 5+ +Al 3+ +Sr 2+ +Ba 2+ ))为0.075~0.115。
进一步的,发明人发现,通过控制玻璃组分中Y 3+和La 3+的合计摩尔数与P 5+和Al 3+、Sr 2+、Y 3+的合计摩尔数之比(n (Y 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ +Y 3+ ))大于0.07,可以进一步提高玻璃的光学特性,并且进一步降低应力光学系数低和折射率温度系数,进一步优选控制玻璃组分中Y 3+和La 3+的合计摩尔数与P 5+和Al 3+、Sr 2+、Y 3+的合计摩尔数之比(n (Y 3++ La 3+ )/n (P 5+ +Al 3+ +Sr 2+ +Y 3+ ))为0.075~0.5。
进一步的,发明人发现,通过控制玻璃组分中Y 3+和Gd 3+、Ba 2+的合计摩尔数与P 5+和Al 3+、Sr 2+、Ba 2+的合计摩尔数之比(n (Y 3++ Gd 3++ Ba 2+ )/n (P 5+ +Al 3+ +Sr 2++ Ba 2+ ))为0.435~0.505,更有利于降低F挥发,可以进一步提高玻璃的光学特性和折射率稳定性,并且进一步降低玻璃比重,优选控制玻璃组分中Y 3+和Gd 3+、Ba 2+的合计摩尔数与P 5+和Al 3+、Sr 2+、Ba 2+的合计摩尔数之比(n (Y 3++ Gd 3++ Ba 2+ )/n (P 5+ +Al 3+ +Sr 2++ Ba 2+ ))为0.44~0.5。
根据本发明的又一个实施例,上述氟磷酸盐玻璃组成中阳离子进一步包括:0~15摩尔%的Li +,优选0~10摩尔%的Li +;和/或0~15摩尔%的Na +,优选0~10摩尔%的Na +;和/或0~10摩尔%的K +,优选0~5摩尔%的K +;和/或0~8摩尔%的B 3+,优选0~5摩尔%的B 3+;和/或0~10摩尔%的Zn 2+,优选0~5摩尔%的Zn 2+;和/或0~8摩尔%的In 3+,优选0~5摩尔%的In 3+;和/或0~5摩尔%的Nb 5+,优选0~3摩尔%的Nb 5+;和/或0~5摩尔%的Ti 4+,优选0~3摩尔%的Ti 4+;和/或0~5摩尔%的Zr 4+,优选0~3摩尔%的Zr 4+;和/或0~5摩尔%的Ta 5+,优选0~3摩尔%的Ta 5+;和/或0~5摩尔%的Ge 4+,优选0~3摩尔%的Ge 4+。发明人发现,Li +可降低玻璃转变温度而不损害玻璃稳定性,当其引入量高于35摩尔%时,玻璃的稳定性降低,并且玻璃的加工性能变差。因此,本发明的Li +的含量为0~15摩尔%,优选Li +的含量为0~10摩尔%,更优选不引入。Na +可改善玻璃的熔融性、耐失透性并提高可视光区域的透过率,但当其引入量高于15摩尔%时,玻璃的稳定性降低。因此,本发明的Na +的含量为0~15摩尔%,优选0~10摩尔%,更优选不引入。K +可以降低玻璃的粘性和转变温度,但其引入量高于10摩尔%时,会导致玻璃的稳定性降低。因此,本发明的K +的含量为0~10摩尔%,优选0~5摩尔%,更优选不引入。B 3+可以提高玻璃的稳定性,但是其引入量高于8摩尔%时,由于其在熔融过程中容易以BF 3形式挥发,并因此造成条纹。因此,本发明的 B 3+的含量为0~8摩尔%,优选0~5摩尔%,更优选不引入。Zn 2+可提高玻璃的耐失透性、稳定性和加工性,当其引入量高于10摩尔%,使得玻璃的耐失透性反而显著下降。因此,本发明的Zn 2+的含量为0~10摩尔%,优选Zn 2+的含量为0~5摩尔%,更优选不引入。In 3+可提高玻璃稳定性,但当其引入量高于8摩尔%时,导致玻璃的稳定性急剧下降。因此,本发明的In 3+的含量为0~8摩尔%,优选In 3+的含量为0~5摩尔%,更优选不引入。Nb 5+和Ti 4+可以提高玻璃的折射率,但是Nb 5+和Ti 4+的引入量分别超过5摩尔%时,均会降低玻璃的稳定性,因此,本发明的Nb 5+的含量为0~5摩尔%,优选0~3摩尔%,更优选不引入,Ti 4+的含量为0~5摩尔%,优选0~3摩尔%,更优选不引入。Zr 4+可以提高玻璃的折射率,并且能够抑制由于玻璃中的成分挥发而导致的玻璃脉纹,但是其引入量高于5摩尔%时,会降低玻璃的稳定性,因此本发明的Zr 4+的含量为0~5摩尔%,优选0~3摩尔%,更优选不引入。Ta 5+可以提高玻璃的折射率并降低玻璃的失透性,但是其引入量高于5摩尔%时,会降低玻璃的稳定性,因此,本发明的Ta 5+含量为0~5摩尔%,优选0~3摩尔%,更优选不引入。Ge 4+可以提高玻璃的折射率和耐失透性,但是其引入量高于5摩尔%时,会导致玻璃成本升高,因此,本发明的Ge 4+含量为0~5摩尔%,引入0~3摩尔,更优选不引入。
需要说明的是,本发明所记载的“不包含”“不含有”“不引入”“0%”是指没有故意将该化合物、分子或元素等作为原料添加到本发明的玻璃中;但作为生产玻璃的原材料和/或设备,会存在某些不是故意添加的杂质或组分,会在最终的玻璃中少量或痕量含有,此种情形也在本发明专利的保护范围内。
在本发明的一些实施例中,上述氟磷酸盐玻璃的折射率温度系数为-4.0×10 -6/摄氏度以下,优选-5.0×10 -6/摄氏度以下,更优选-7.5×10 -6/摄氏度以下,耐酸作用稳定性不低于2级,优选不低于1级,耐水作用稳定性不低于2级,优选不低于1级,转变温度不高于510摄氏度,优选不高于500摄氏度,更优选不高于495摄氏度,λ 80不大于370nm,优选不大于360nm,更优选不大于350nm,λ 5不大于310nm,优选不大于300nm,更优选不大于295nm,磨耗度不高于500,优选不高于450。
在本发明的第二个方面,本发明提出了一种玻璃预制件。根据本发明的实施例,所述玻璃预制件采用上述的氟磷酸盐玻璃制成。由此,本发明的光学预制件具有低色散等特性,同时具有较低的折射率高温系数和较低的应力光学系数,在各种光学元件和光学设计上是有用的。尤其是,优选由本发明的氟磷酸盐玻璃出发,使用精密压制成型等手段来制作镜头、棱镜、反射镜等光学元件。需要说明的是,上述针对氟磷酸盐玻璃所描述的特征和优点同样适用于该玻璃预制件,此处不再赘述。
在本发明的第三个方面,本发明提出了一种光学元件。根据本发明的实施例,所述光学元件采用上述的氟磷酸盐玻璃或上述玻璃预制件制成。由此,本发明的光学元件具有低色散 特性,同时具有较低的折射率高温系数和应力光学系数,能够提供性能优异的各种透镜、棱镜等光学元件。例如,本发明的光学元件可以为球面透镜、非球面透镜、微透镜等各种透镜、衍射光栅、带衍射光栅的透镜、透镜阵列、棱镜等。另外,必要时可在该光学元件上设置防反射膜、全反射膜、部分反射膜、具有分光特性的膜等光学薄膜。需要说明的是,上述针对氟磷酸盐玻璃和玻璃预制件所描述的特征和优点同样适用于该光学元件,此处不再赘述。
在本发明的第四个方面,本发明提出了一种光学仪器。根据本发明的实施例,所述光学仪器具有上述的光学元件。由此,通过在该光学仪器上使用上述具有优异性能的光学元件,可以适用于户外高温环境。具体的,本发明的光学仪器可以是照相机、投影机等中的使可见光透过的光学仪器。需要说明的是,上述针对光学元件所描述的特征和优点同样适用于该光学仪器,此处不再赘述。
下面,对本发明的氟磷酸盐玻璃的性能及测试方法进行说明。
1、着色度(λ 805)
本发明玻璃的短波透射光谱特性用着色度(λ 805)表示。λ 80是指玻璃透射比达到80%时对应的波长,λ 5是指玻璃透射比达到5%时对应的波长,其中,λ 80的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1mm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率80%的波长。所谓分光透射率或透射率是在向玻璃的上述表面垂直地入射强度I in的光,透过玻璃并从一个平面射出强度I out的光的情况下通过I out/I in表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在本发明的光学玻璃中,λ 80的值小意味着玻璃自身的着色少。本发明的光学玻璃透射比达到80%时对应的波长(λ 80)不大于370nm,优选不大于360nm,更优选不大于350nm,其玻璃透射比达到5%时对应的波长(λ 5)不大于310nm,优选不大于300nm,更优选不大于295nm。
使用具有彼此相对的两个光学抛光平面的厚度为10±0.1mm的玻璃样品,测定分光透射率,根据其结果而计算得出。
2、密度
氟磷酸盐玻璃的密度是温度为20℃时单位体积的重量,单位以g/cm 3表示,本发明的氟磷酸盐玻璃的密度不高于4.7g/cm 3,优选不高于4.6g/cm 3,更优选不高于4.5g/cm 3
按GB/T7962.20-2010规定的方法进行测量。
3、转变温度T g
氟磷酸盐玻璃在某一温度区间会逐渐由固态变成可塑态。转变温度T g是指玻璃试样从室温升温至驰垂温度T s,其低温区域和高温区域直线部分延长线相交的交点所对应的温度。 转变温度T g按GB/T7962.16-2010规定的方法进行测量。
本发明玻璃的转变温度(T g)不高于510℃,优选不高于500℃,更优选不高于495℃。
4、折射率及阿贝数
本发明氟磷酸盐玻璃的折射率nd为1.52~1.60,优选为1.53~1.58,更优选1.55~1.58,阿贝数vd为68~75,优选为69~74,更优选为70~73。
折射率与阿贝数按照GB/T7962.1-2010规定的方法进行测试。
5、折射率温度系数
本发明玻璃的折射率温度系数为-4.0×10 -6/摄氏度以下,优选-5.0×10 -6/摄氏度以下,更优选-7.5×10 -6/摄氏度以下。
折射率温度系数按照GB/T 7962.4-2010规定方法测试,测定-40~80℃的折射率温度系数。
6、化学稳定性(耐水作用稳定性DW、耐酸作用稳定性DA)
光学玻璃元件在制造和使用过程中,其抛光表面抵抗水、酸等各种侵蚀介质作用的能力称为光学玻璃的化学稳定性,其主要取决于玻璃的化学组分,本发明的光学玻璃的耐水作用稳定性Dw(粉末法)不低于2级,优选不低于1级;耐酸作用稳定性DA(粉末法)不低于2级,优选不低于1级。
按GB/T 17129的测试方法测试耐水作用稳定性Dw和耐酸作用稳定性DA。
7、应力光学系数
本发明玻璃的应力光学系数低于0.6×10 -12/Pa,优选低于0.5×10 -12/Pa,更优选低于0.4×10 -12/Pa。
应力光学系数测试按照下列进行:
样品要求
样品加工成圆柱状,两端通光面抛光,圆柱侧面精磨,尺寸为Φ20mm×15mm,也可根据试验设备情况加工成其他规格,两通光面平行度≤1/100,圆度≤5/100,侧面锥度≤1/100。
测试方法
应力光学系数的测试采用圆盘对径压缩样品,将圆柱形样品以圆端面垂直光路的方式放入应力双折射测试光路中,在圆柱侧面对应圆端面的一条直径D的两个端点上相向同时施加作用力P,保持样品位置不变,同时测试圆心位置处的应力双折射光程差δ。由公式
Figure PCTCN2020082839-appb-000001
计算光弹性系数,其中D为圆柱体样品通光面直径,可利用千分尺测得;P为施加在圆柱体样品侧面上的负荷,可通过压力计获得;δ为光路垂直通过样品通光面时的双折射光程差,可用应力仪测得。为了提高精度,减小误差,一般采用不同负荷下测试其相应的双 折射光程差的多次测量方法,绘制δ-P曲线,然后进行线性回归处理,得到该直线斜率,进而计算出应力光学系数B。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
为了得到具有表1~表5所示的组成的玻璃,制备本发明光学玻璃的熔融和成型方法可以采用本领域技术人员公知的技术。例如:将玻璃原料(氟化物、碳酸盐、硝酸盐、偏磷酸盐、氧化物等)按照玻璃离子的配比称重配合并混合均匀后,投入熔炼装置中(如铂金坩埚),然后在800~1250℃采取适当的搅拌、澄清、均化后,降温至900℃以下,浇注或漏注在成型模具中,最后经退火、加工等后期处理,或者通过精密压型技术直接压制成型。另外,通过上述所示的方法测定各玻璃的特性,并将测定结果表示在表1~表5中。
表1
Figure PCTCN2020082839-appb-000002
表2
Figure PCTCN2020082839-appb-000003
表3
Figure PCTCN2020082839-appb-000004
表4
Figure PCTCN2020082839-appb-000005
表5
Figure PCTCN2020082839-appb-000006
注:上述表格中总量100%是扣除了测量误差、设备精度和不可避免的杂质后的数据。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种氟磷酸盐玻璃,其特征在于,包括:阳离子和阴离子,
    所述阳离子包括:
    25~40摩尔%的P 5+
    8~22摩尔%的Al 3+
    1~30摩尔%的Ln 3+,Ln 3+为La 3+、Gd 3+、Y 3+和Yb 3+的至少之一;
    25~55摩尔%的R 2+,R 2+为Ba 2+、Ca 2+、Sr 2+和Mg 2+的至少之一;
    所述阴离子包括:
    38~50摩尔%的F -
    50~62摩尔%的O 2-
  2. 根据权利要求1所述的氟磷酸盐玻璃,其特征在于,所述阳离子包括:
    30~37摩尔%的P 5+,优选31~36摩尔%的P 5+;和/或
    10~20摩尔%的Al 3+,优选12~17摩尔%的Al 3+;和/或
    2~20摩尔%的Ln 3+,优选3~15摩尔%的Ln 3+;和/或
    30~50摩尔%的R 2+,优选35-45摩尔%的R 2+
  3. 根据权利要求1或2所述的氟磷酸盐玻璃,其特征在于,所述Ln 3+包括:
    0~8摩尔%的La 3+,优选0~5摩尔%的La 3+,不含端点0,更优选0.5~4摩尔%的La 3+;和/或
    1~10摩尔%的Gd 3+,优选1~6摩尔%的Gd 3+,更优选1~5摩尔%的Gd 3+;和/或
    1~10摩尔%的Y 3+,优选1~8摩尔%的Y 3+,更优选2~6摩尔%的Y 3+;和/或
    0~10摩尔%的Yb 3+,优选0~5摩尔%的Yb 3+
  4. 根据权利要求1-3中任一项所述的氟磷酸盐玻璃,其特征在于,所述R 2+包括:
    25~40摩尔%的Ba 2+,优选28~38摩尔%的Ba 2+,更优选30~35摩尔%的Ba 2+;和/或
    0~10摩尔%的Ca 2+,优选0~5摩尔%的Ca 2+;和/或
    3~15摩尔%的Sr 2+,优选5~12摩尔%的Sr 2+,更优选5~10摩尔%的Sr 2+;和/或
    0~10摩尔%的Mg 2+,优选0~5摩尔%的Mg 2+
  5. 根据权利要求1-4中任一项所述的氟磷酸盐玻璃,其特征在于,所述阴离子包括:
    41~48摩尔%的F -,优选42~46摩尔%的F -;和/或
    52~59摩尔%的O 2-,优选54~58摩尔%的O 2-
  6. 根据权利要求1-5中任一项所述的氟磷酸盐玻璃,其特征在于,Ln 3+的摩尔数与R 2+的摩尔数之比n Ln 3+/n R 2+大于0.11,优选n Ln 3+/n R 2+大于0.135,更优选0.14~0.65。
  7. 根据权利要求1-6中任一项所述的氟磷酸盐玻璃,其特征在于,所述Ln 3+为Y 3+和/ 或La 3+,所述R 2+为Sr 2+和/或Ba 2+
  8. 根据权利要求1-7中任一项所述的氟磷酸盐玻璃,其特征在于,Sr 2+和Y 3+的合计摩尔数与Al 3+和Ba 2+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100001
    为0.25~0.43,不含端点0.25,优选0.265~0.375,不含端点0.265。
  9. 根据权利要求1-8中任一项所述的氟磷酸盐玻璃,其特征在于,Gd 2+和La 3+的合计摩尔数与Y 3+和Ba 2+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100002
    大于0.085,优选大于0.11,更优选0.115~0.165。
  10. 根据权利要求1-9中任一项所述的氟磷酸盐玻璃,其特征在于,Sr 2+和Ba 2+的合计摩尔数与Y 3+、Gd 3+和La 3+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100003
    为3.45~9,优选3.45~7.6,更优选3.55~5.55。
  11. 根据权利要求1-10中任一项所述的氟磷酸盐玻璃,其特征在于,Y 3+、Gd 3+和La 3+的合计摩尔数与P 5+、Al 3+和Sr 2+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100004
    大于0.08,优选0.105~0.26,更优选0.105~0.195。
  12. 根据权利要求1-11中任一项所述的氟磷酸盐玻璃,其特征在于,Y 3+和Gd 3+的合计摩尔数与P 5+、Al 3+、Sr 2+和Ba 2+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100005
    小于0.12,优选0.075~0.115。
  13. 根据权利要求1-12中任一项所述的氟磷酸盐玻璃,其特征在于,Y 3+和La 3+的合计摩尔数与P 5+、Al 3+、Sr 2+和Y 3+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100006
    大于0.07,优选0.075~0.5。
  14. 根据权利要求1-13中任一项所述的氟磷酸盐玻璃,其特征在于,Y 3+、Gd 3+和Ba 2+的合计摩尔数与P 5+、Al 3+、Sr 2+和Ba 2+的合计摩尔数之比
    Figure PCTCN2020082839-appb-100007
    为0.435~0.505,优选0.44~0.5。
  15. 根据权利要求1-14中任一项所述的氟磷酸盐玻璃,其特征在于,所述阳离子进一步包括:
    0~15摩尔%的Li +,优选0~10摩尔%的Li +;和/或
    0~15摩尔%的Na +,优选0~10摩尔%的Na +;和/或
    0~10摩尔%的K +,优选0~5摩尔%的K +;和/或
    0~8摩尔%的B 3+,优选0~5摩尔%的B 3+;和/或
    0~10摩尔%的Zn 2+,优选0~5摩尔%的Zn 2+;和/或
    0~8摩尔%的In 3+,优选0~5摩尔%的In 3+;和/或
    0~5摩尔%的Nb 5+,优选0~3摩尔%的Nb 5+;和/或
    0~5摩尔%的Ti 4+,优选0~3摩尔%的Ti 4+;和/或
    0~5摩尔%的Zr 4+,优选0~3摩尔%的Zr 4+;和/或
    0~5摩尔%的Ta 5+,优选0~3摩尔%的Ta 5+;和/或
    0~5摩尔%的Ge 4+,优选0~3摩尔%的Ge 4+
  16. 根据权利要求1-15中任一项所述的氟磷酸盐玻璃,其特征在于,所述氟磷酸盐玻璃折射率为1.52~1.60,优选1.53~1.58,更优选1.55~1.58,阿贝数为68~75,优选69~74,更优选70~73。
  17. 根据权利要求1-16中任一项所述的氟磷酸盐玻璃,其特征在于,所述氟磷酸盐玻璃的折射率温度系数为-4.0×10 -6/摄氏度以下,优选-5.0×10 -6/摄氏度以下,更优选-7.5×10 -6/摄氏度以下,耐酸作用稳定性不低于2级,优选不低于1级,耐水作用稳定性不低于2级,优选不低于1级,转变温度不高于510摄氏度,优选不高于500摄氏度,更优选不高于495摄氏度,λ 80不大于370nm,优选不大于360nm,更优选不大于350nm,λ 5不大于310nm,优选不大于300nm,更优选不大于295nm,密度不高于4.7g/cm 3,优选不高于4.6g/cm 3,更优选不高于4.5g/cm 3,应力光学系数不高于0.6×10 -12/Pa,优选不高于0.5×10 -12/Pa,更优选不高于0.4×10 -12/Pa,磨耗度不高于500,优选不高于450。
  18. 一种玻璃预制件,其特征在于,所述玻璃预制件采用权利要求1-17中任一项所述的氟磷酸盐玻璃制成。
  19. 一种光学元件,其特征在于,所述光学元件采用权利要求1-17中任一项所述的氟磷酸盐玻璃或权利要求18所述玻璃预制件制成。
  20. 一种光学仪器,其特征在于,所述光学仪器具有权利要求19所述的光学元件。
PCT/CN2020/082839 2019-05-31 2020-04-01 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器 WO2020238403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910473388.X 2019-05-31
CN201910473388.XA CN112010554B (zh) 2019-05-31 2019-05-31 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Publications (1)

Publication Number Publication Date
WO2020238403A1 true WO2020238403A1 (zh) 2020-12-03

Family

ID=73506902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082839 WO2020238403A1 (zh) 2019-05-31 2020-04-01 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Country Status (3)

Country Link
CN (1) CN112010554B (zh)
TW (1) TWI738351B (zh)
WO (1) WO2020238403A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156324A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804622B (zh) * 2021-01-21 2023-08-01 成都光明光电股份有限公司 近红外特殊色散玻璃
CN112811815B (zh) * 2021-01-21 2022-04-12 成都光明光电股份有限公司 光学玻璃、玻璃预制件、光学元件和光学仪器
CN112707640B (zh) * 2021-01-21 2022-02-11 成都光明光电股份有限公司 氟磷酸盐光学玻璃、光学元件及光学仪器
US20230381915A1 (en) * 2022-05-27 2023-11-30 Applied Materials, Inc. Operation of clamping retainer for chemical mechanical polishing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193167A (zh) * 2009-08-26 2014-12-10 Hoya株式会社 氟磷酸盐玻璃、模压成型用玻璃材料、光学元件坯料、光学元件和玻璃成型体及制造方法
CN109608040A (zh) * 2019-01-25 2019-04-12 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626820A (zh) * 2019-01-25 2019-04-16 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626821A (zh) * 2019-01-25 2019-04-16 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626819A (zh) * 2019-01-25 2019-04-16 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156324A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156323A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156325A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4570576B2 (ja) * 2005-03-30 2010-10-27 Hoya株式会社 光学ガラス、プレス成形用プリフォームとその製造方法、および光学素子とその製造方法
JP4437807B2 (ja) * 2006-09-29 2010-03-24 Hoya株式会社 光学ガラスの製造方法、精密プレス成形用プリフォームの製造方法および光学素子の製造方法
TWI637929B (zh) * 2012-06-29 2018-10-11 日商小原股份有限公司 光學玻璃、光學元件及預成形體
JPWO2014065225A1 (ja) * 2012-10-23 2016-09-08 旭硝子株式会社 フツリン酸ガラス、プレス成形用プリフォーム、および光学素子
JP2015067459A (ja) * 2013-09-26 2015-04-13 旭硝子株式会社 フツリン酸ガラス、プレス成形用プリフォーム、および光学素子
CN105016619B (zh) * 2014-04-22 2018-02-16 成都光明光电股份有限公司 氟磷酸盐光学玻璃
JP6825939B2 (ja) * 2017-03-02 2021-02-03 Hoya株式会社 光学ガラスおよび光学素子
CN108623152B (zh) * 2018-06-14 2021-11-26 成都光明光电股份有限公司 光学玻璃、光学预制件及光学元件
CN108751698B (zh) * 2018-06-14 2021-09-28 成都光明光电股份有限公司 光学玻璃、光学预制件及光学元件
CN109320075A (zh) * 2018-09-28 2019-02-12 成都光明光电股份有限公司 氟磷酸盐光学玻璃、光学预制件、元件及仪器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104193167A (zh) * 2009-08-26 2014-12-10 Hoya株式会社 氟磷酸盐玻璃、模压成型用玻璃材料、光学元件坯料、光学元件和玻璃成型体及制造方法
CN109608040A (zh) * 2019-01-25 2019-04-12 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626820A (zh) * 2019-01-25 2019-04-16 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626821A (zh) * 2019-01-25 2019-04-16 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626819A (zh) * 2019-01-25 2019-04-16 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156324A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156323A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156325A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156324A (zh) * 2019-05-31 2019-08-23 成都光明光电股份有限公司 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器

Also Published As

Publication number Publication date
TW202104122A (zh) 2021-02-01
TWI738351B (zh) 2021-09-01
CN112010554B (zh) 2022-04-12
CN112010554A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
TWI738351B (zh) 氟磷酸鹽玻璃、玻璃預製件、光學元件及具有其的光學儀器
CN110156324B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN110156323B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109608040B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
JP7254937B2 (ja) フルオロリン酸塩ガラス、ガラスプレフォーム、光学素子及びそれを有する光学機器
CN109626819B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
TWI639570B (zh) Optical glass and optical components
CN110156325B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN109626820B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
WO2015161779A1 (zh) 氟磷酸盐光学玻璃
WO2021238475A1 (zh) 光学玻璃
WO2022193797A1 (zh) 高折射高色散光学玻璃及光学元件
US11878938B2 (en) Optical glass, glass preform, optical element and optical instrument having the same
CN109641781A (zh) 玻璃、压制成型用玻璃原材料、光学元件坯件及光学元件
TW201731786A (zh) 光學玻璃及光學元件
WO2022156527A1 (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN112010555B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN102206043A (zh) 光学玻璃、光学元件以及预成形品
CN112010556B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
WO2022052642A1 (zh) 光学玻璃、光学预制件、光学元件及光学仪器
CN109455925B (zh) 一种低软化点光学玻璃及其玻璃预制件、元件和仪器
CN109650716B (zh) 一种无色光学玻璃及其玻璃预制件、元件和仪器
CN111484249B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN111484248B (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
CN108975683A (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813228

Country of ref document: EP

Kind code of ref document: A1