WO2020238342A1 - 湿法刻蚀粘结相的工艺及其废液回收方法 - Google Patents

湿法刻蚀粘结相的工艺及其废液回收方法 Download PDF

Info

Publication number
WO2020238342A1
WO2020238342A1 PCT/CN2020/079598 CN2020079598W WO2020238342A1 WO 2020238342 A1 WO2020238342 A1 WO 2020238342A1 CN 2020079598 W CN2020079598 W CN 2020079598W WO 2020238342 A1 WO2020238342 A1 WO 2020238342A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
process according
solution
waste liquid
minutes
Prior art date
Application number
PCT/CN2020/079598
Other languages
English (en)
French (fr)
Inventor
孙思叡
Original Assignee
上海名古屋精密工具股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海名古屋精密工具股份有限公司 filed Critical 上海名古屋精密工具股份有限公司
Publication of WO2020238342A1 publication Critical patent/WO2020238342A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/08Etching of refractory metals

Definitions

  • the invention relates to a material processing method, in particular to a pre-processing method for attaching a CVD diamond coating on the surface of a cemented carbide material.
  • pre-treat the surface of the material also known as pre-treatment
  • pre-treatment such as sandblasting and phosphating, etc.
  • it is combined with the coating material through chemical or physical action to enhance the bonding force of the coating.
  • surface activation before blackening of cast iron surface phosphating of steel before galvanizing.
  • tungsten carbide powder metallurgy materials must be pretreated to obtain a diamond coating with good adhesion.
  • the diamond coating on the untreated cemented carbide substrate is often cracked and peeled off due to graphitization or thermal stress. Binding effect,
  • the prior art has adopted three pretreatment methods of "isolation”, “pre-reaction” and “removal”, among which: “isolation” generally refers to the cemented carbide substrate and the diamond coating Apply a transition layer between layers, for example, using magnetron sputtering, ion implantation and other methods to generate a layer of Cr/Ti/W and other easily carbonized metal transition layer on the surface of the substrate, or generate a transition layer of Si and its compound layer to isolate the substrate Cobalt is in contact with the diamond coating. This type of technology has a significant effect on improving the bonding force of the diamond coating.
  • Pre-reaction generally refers to the use of salt baths and other methods.
  • the cobalt element on the surface of the cemented carbide forms a compound with boron and other substances, thereby losing the properties of cobalt to promote graphitization.
  • This kind of technology is unstable in process and mostly uses environmentally toxic metal salts as reactants, and it is not environmentally friendly. No large-scale commercialization has been seen; “removal” refers to the use of wet or dry etching to selectively remove the cobalt element on the surface of the cemented carbide substrate.
  • the main use of chemical Method such as: strong acid solution treatment (also called one-step treatment), or strong acid solution + strong alkali solution treatment (also called two-step treatment) to treat the surface of the material
  • the disadvantage is that the waste liquid treatment is difficult (acidic solution generally uses concentrated hydrochloric acid , Concentrated nitric acid, concentrated sulfuric acid or a mixture of the three, strong alkaline solution generally uses Yamazaki solution, the main component is potassium ferricyanide, containing cyanide), and both solutions have irritating toxic and harmful gases volatilizing, the reaction is violent and difficult Therefore, it is difficult to operate and has a great negative impact on product quality, operator health and the natural environment.
  • An object of the present invention is to provide a process for wet etching the bonding phase, which is used in powder metallurgy materials to improve the bonding force of plating through an environmentally friendly process.
  • Another object of the present invention is to provide a process for wet etching the bonding phase, which is used for powder metallurgy materials to improve the plating bonding force of the diamond vapor thin layer.
  • Another object of the present invention is to provide a high-efficiency, energy-saving, environmentally friendly, low-cost, and easy-to-promote pretreatment process to improve the plating bonding force of the diamond vapor thin layer.
  • the process provided by the present invention is applied to the material of the substrate: tungsten-cobalt-containing cemented carbide materials, especially cemented carbide materials with a Co content of not more than 12%, and the main chemical components are WC and Co. Grades such as: YG6, YG3 and YG10, etc. Among them, the hard phase component is mainly tungsten carbide-based metal carbide, and the binder phase is mainly metal cobalt-based binder phase metal.
  • a process for wet etching the bonding phase includes the following steps:
  • the substrate to be plated as the anode, graphite or stainless steel and other conductive materials as the cathode apply a voltage of 1V to 5V (1V to 2V is preferred), and immerse in an alkaline solution for 0.5 to 15 minutes (0.5 to 10 minutes is preferred) ,
  • the hard phase of the substrate surface is etched by electrolysis to form tungsten-containing soluble ions (such as WO 4+ and WO 3+ ), which increases the surface roughness of the substrate and exposes the binder phase in the substrate;
  • the exposed binder phase matrix as the anode, graphite or stainless steel and other conductive materials as the cathode, apply a voltage of 1V to 5V (preferably 1V to 2V), immerse in an acidic solution for 0.5 to 15 minutes (preferably 0.5 to 5 minutes),
  • the bonding phase on the surface of the substrate is etched by electrolysis to form cobalt-containing soluble ions (such as Co 2+ and Co 3+ ), which reduces the content of the bonding phase on the surface of the substrate.
  • Alkaline solution provides hydroxide for etching. It is an aqueous solution of hydroxide (such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or a mixture of both), with a concentration of 10w/v%; or other inorganic alkalis Solutions or organic base solutions, including, for example, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, etc., or aqueous solutions of organic bases containing nitrogen atoms (such as but not limited to quaternary ammonium hydroxide).
  • hydroxide such as sodium hydroxide aqueous solution, potassium hydroxide aqueous solution or a mixture of both
  • organic base solutions including, for example, sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, etc., or aqueous solutions of organic bases containing nitrogen atoms (such as but not limited to quaternary ammonium hydroxide).
  • the acid solution provides hydrogen ions for etching, such as dilute hydrochloric acid (less than or equal to 20w/v%, specifically: 1w/v%, 2w/v%, 3w/v%, 4w/v%, 5w/v%, 6w/v%, 7w/v%, 8w/v%, 9w/v%, 10w/v%, 11w/v%, 12w/v%, 13w/v%, 14w/v%, 15w/v%, 16w/v%, 17w/v%, 18w/v%, 19w/v% and 20w/v%), dilute sulfuric acid (less than or equal to 70w/v%) and dilute nitric acid (less than or equal to 40w/v%), etc.
  • An aqueous solution of inorganic acid, or an aqueous solution of organic acids such as glacial acetic acid and oxalic acid.
  • the acid-etched substrate has an increased surface roughness and a reduced binder phase content, which is used for subsequent plating operations, and the obtained coating adhesion is improved.
  • the substrate treated by the process provided by the present invention adopts a CVD vapor phase chemical diamond plating thin layer process (such as CN03151295.X and CN201110290577.7) to obtain a 0.2 ⁇ m-15 ⁇ m diamond plating thin layer.
  • a CVD vapor phase chemical diamond plating thin layer process such as CN03151295.X and CN201110290577.7
  • the coating film and the substrate have good adhesion.
  • more than 80% of the coating surface reaches the HF1 level of adhesion, and the total area of the HF1 and HF2 level of adhesion is more than 95%.
  • the common acid-base two-step method is used to obtain the coating surface bonding force generally at the HF3-2 level, and the HF1 bonding force cannot be obtained on a large area.
  • the process of the present invention can be used for the substrate treatment before the CVD diamond coating of the hard alloy wear-resistant parts, and the surface-treated substrate can be used for products such as cutting tools or wire drawing films.
  • waste liquid A contains W element
  • waste liquid B contains Co element
  • the AB solution is mixed first, that is, the acid-base neutralization Produce precipitation.
  • W element or Co element will produce precipitation under the condition of PH ⁇ 7 and >7, respectively.
  • After filtering the precipitate measure the pH of the mixed waste liquid. If pH ⁇ 7, add hydroxide ion (such as: NaOH) until pH>7 If pH>7, add hydrogen ions (such as HCl) until pH ⁇ 7, and precipitation will occur again. After filtration, the pH of the waste liquid will be measured again and the same method will be repeated to filter and adjust the pH to neutral.
  • the waste liquid is a neutral salt aqueous solution (such as: NaCl aqueous solution), which no longer contains Co and W metal elements, and meets environmental protection requirements and can be directly discharged.
  • Na 2 WO 4 is filtered from the acidic mixed waste liquid
  • Co(OH) 2 is filtered from the alkaline mixed waste liquid, both of which are recyclable metallurgical precursor compounds that can be used for refining
  • the tungsten and cobalt elements, which are strategic resources, are collected and reused.
  • the etching solution can be used repeatedly by adding hydrogen ions and hydroxide ions. Generally, there is no need to replace the etching solution at a high frequency. The entire processing process is not Then produce other three wastes.
  • the process provided by the invention does not require the purchase of expensive gas phase pretreatment equipment and has low application cost.
  • the process provided by the present invention has wide process conditions ( ⁇ 60 seconds) and stable etching effect. Compared with the time accuracy required by the chemical acid-base two-step process within ⁇ 10 seconds, the process requirements are greatly reduced.
  • the gas phase pretreatment needs to operate for several hours, the process provided by the invention only takes several minutes, and the energy consumption is low.
  • the process provided by the present invention mixes the obtained acid waste liquid and alkali waste liquid with waste liquid, and recycles and reuses the contained substances. After treatment, the waste liquid is environmentally friendly and can be directly discharged.
  • Figure 1 is a topography diagram of the coating surface prepared by the process of the present invention.
  • Figure 2 shows the surface morphology of the coating prepared by the existing standard acid-base two-step process.
  • a cemented carbide material is used as the substrate to be plated, and different process parameters are used to perform etching and a traditional two-step acid-base method is set to treat the sample as a control:
  • cemented carbide bar as the substrate to be plated as the anode and graphite cathode to be immersed in a 10w/v% NaOH solution and apply a voltage (1V ⁇ 5V) for 0.5 minutes to 15 minutes.
  • the surface of the substrate is hardened by electrolysis.
  • the phase is etched. According to different experimental conditions, the surface roughness of each sample substrate is increased to different degrees, and the bonding phase under the surface is exposed;
  • the concentration of the acid solution and the alkali solution changes according to actual conditions as the reaction progresses and the environmental temperature and/or humidity changes. At this time, it is necessary to adjust the electrical parameters (such as voltage) and reaction time to achieve the same processing effect. See the parameter combinations of serial number 1, serial number 3, serial number 4, serial number 6 to serial number 8 in Table 1.

Abstract

一种湿法刻蚀粘结相的工艺,包括先将拟镀覆的基体作为阳极,以导电材料作为阴极,施加电压,浸入碱性溶液通过电解方式对基体表面硬质相进行刻蚀,形成钨的可溶性离子,使得基体表面粗糙度提高,露出基体内的粘结相;再将露出粘结相基体作为阳极,以导电材料作为阴极,施加电压,浸入酸性溶液刻蚀,形成钴的可溶性离子,使得基体表面粘结相含量下降。

Description

湿法刻蚀粘结相的工艺及其废液回收方法 技术领域
本发明涉及一种材料处理方法,尤其涉及一种用于在硬质合金材料表面附着CVD金刚石涂层的前处理方法。
背景技术
在对材料的表面处理前,通常需要对材料表面进行预处理(又称前处理),例如:喷砂和磷化等,主要是提高表面粗糙度或激活表面活性,使材料表面能在后续涂层作业中与涂层材料通过化学作用或物理作用实现结合,增强涂层结合力。比如:在铸铁进行发黑处理前进行表面活化、钢在镀锌前进行表面磷化。类似地,在金刚石气相化学镀覆前,碳化钨粉末冶金材料必须进行预处理以获得结合力良好的金刚石涂层。
在金刚石涂层时,由于钴的促石墨化效果强烈且自身热膨胀系数较大,未经处理的硬质合金基体上的金刚石涂层往往由于石墨化或热应力影响而开裂脱落,无法获得良好的结合力效果,
为了减少钴对金刚石涂层附着力的劣化,现有技术采用了“隔绝”、“预反应”和“去除”三种预处理方法,其中:“隔绝”一般指在硬质合金基体和金刚石涂层间施加过渡层,例如采用磁控溅射、离子注入等方法在基体表面生成一层Cr/Ti/W等易于碳化的金属过渡层,或者生成Si及其化合物层过渡层,隔绝基体内的钴和金刚石涂层接触,这一类技术对提高金刚石涂层结合力效果显著,不过生产成本较高,主要为国外产品使用,不利于产品推广;“预反应”一般指采用盐浴等方式让硬质合金表面的钴元素与硼等物质形成化合物,进而失去钴促石墨化的特性,这类技术工艺性不稳定,且大都采用具有环境毒性的金属盐类作为反应物,本身亦不环保,未见大规模商业化;“去除”指的是采用湿法或干法刻蚀,选择性地去除硬质合金基体表面的钴元素,在现有的这类前处理方法中,主要是采用化学法,如:强酸溶液处理(又称一步法处理)、或强酸溶液+强碱溶液处理(又称两步法处理)对材料表面进行处理,缺点是废液处理困难(酸性溶液一般采用浓盐酸、浓硝酸、浓硫酸或三者的混合物、强碱溶液一般采用山崎溶液,主要成分为铁氰化钾,含有氰根),且两种溶液都有刺激性的有毒有害气体挥发、反应剧烈难以控制,因此操作困难且对产品质量、操作者健康及自然环境均构成很大负面影响;由于这些负面影响,后续有人开发了热处理法如:激光选择性蒸发钴元素,缺点是只能实现单件处理,效率太低,无法量产;以及干法刻蚀如:氩气/氢气的气相干蚀刻钴元素,其缺点在于需要昂贵设备维持10 -2Pa左右的近真空低压,工艺复杂,效率较低,能耗亦大且容错率低,而且会产生含钴蒸汽,并不十分环保。
发明内容
本发明的一个目的在于提供一种湿法刻蚀粘结相的工艺,用于粉末冶金材料,通过环保工艺来提高镀覆结合力。
本发明的另一个目的在于提供一种湿法刻蚀粘结相的工艺,用于粉末冶金材料,提高金刚石气相薄层的镀覆结合力。
本发明的再一个目的在于提供一种高效、节能、环保、低成本、易于推广的前处理工艺来提高金刚石气相薄层的镀覆结合力。
本发明提供的工艺应用于基体的材料为:含钨钴的硬质合金材料,尤其是Co含量不超过12%的硬质合金,其主要化学成分为WC和Co。牌号如:YG6、YG3和YG10等。其中硬质相成分主要是碳化钨为主的金属碳化物,粘结相主要是金属钴为主的粘结相金属。
一种湿法刻蚀粘结相的工艺,包括如下步骤:
先将拟镀覆的基体作为阳极,石墨或不锈钢等导电材料作为阴极,施加1V~5V电压(优先选择1V~2V),浸入碱性溶液0.5分钟~15分钟(优先选择0.5分钟~10分钟),通过电解方式对基体表面硬质相进行刻蚀,形成含钨的可溶性离子(如:WO 4+和WO 3+),使得基体表面粗糙度提高,露出基体内的粘结相;
再将露出粘结相基体作为阳极,石墨或不锈钢等导电材料作为阴极,施加1V~5V电压(优先选择1V~2V),浸入酸性溶液0.5分钟~15分钟(优先选择0.5分钟~5分钟),通过电解方式对基体表面粘结相进行刻蚀,形成含钴的可溶性离子(如:Co 2+和Co 3+),使得基体表面粘结相含量下降。
碱性溶液为刻蚀提供氢氧根,为氢氧化物的水溶液(如:氢氧化钠水溶液、氢氧化钾水溶液或两者混合),浓度如:10w/v%;或者也可以为其他无机碱溶液或者有机碱溶液,包括如:碳酸钠、碳酸氢钠、碳酸钾和碳酸氢钾等,或者含有氮原子有机碱配置的水溶液(如:但不限于氢氧化季铵盐)。
酸性溶液为刻蚀提供氢离子,如:稀盐酸(小于或等于20w/v%,具体如:1w/v%、2w/v%、3w/v%、4w/v%、5w/v%、6w/v%、7w/v%、8w/v%、9w/v%、10w/v%、11w/v%、12w/v%、13w/v%、14w/v%、15w/v%、16w/v%、17w/v%、18w/v%、19w/v%和20w/v%)、稀硫酸(小于或等于70w/v%)和稀硝酸(小于或等于40w/v%)等无机酸的水溶液,或者冰醋酸和草酸等有机酸的水溶液。
经酸刻蚀的基体表面粗糙化程度增加,且粘结相含量降低,用于后续镀覆作业,获得的涂层结合力得到提高。
采用本发明提供的工艺处理的基体,采用CVD气相化学钻石镀覆薄层工艺(如:CN03151295.X和CN201110290577.7)获得0.2μm~15μm钻石镀覆薄层。根据JB T11442-2013标准检测,处理后镀覆薄层和基体结合力良好,整个涂敷面上平均80%以上面积达到HF1级别结合力,达到HF1及HF2级别结合力的面积合计达到95%以上,而采用通常酸碱两步法获得涂敷面结合力一般在HF3-2级别,无法大面积获得HF1结合力。
本发明的工艺可用于硬质合金耐磨件CVD金刚石涂层前的基体处理,经表面处理的基体可用于刀具或拉丝膜等产品。
碱刻蚀得到废液(称为废液A)含有W元素,以及酸刻蚀得到的废液(称为废液B)含有Co元素,则先将AB溶液混合,即经酸碱中和而产生沉淀。W元素或Co元素分别会在PH<7及>7的情况下生成沉淀,过滤沉淀后对混合废液进行pH测量,若pH<7则添加氢氧根离子(如:NaOH)直至pH>7,若pH>7则添加氢离子(如:HCl)直至PH<7,相应均会再次产生沉淀,过滤后再次对所得的废液进行pH测量并依照相同方法反复过滤并调整pH至中性。此时废液为中性盐的水溶液(如:NaCl水溶液),不再含有Co及W金属元素,复合环保要求,可直接排放。从呈酸性的混合后废液中滤得Na 2WO 4,从呈碱性的混合后废液中滤得Co(OH) 2,均是可回收再利用的冶金前驱化合物,可以用于重新提炼属于战略资源的钨钴元素,予以收集再利用;并且日常使用中,只需添加氢根离子及氢氧根离子,即可反复使用蚀刻液,一般无需高频率更换刻蚀液,整个处理过程不再产生其他三废。
本发明技术方案实现的有益效果:
本发明提供的工艺,不需要购入昂贵气相预处理设备,应用成本低。
本发明提供的工艺,其工艺条件较宽泛(±60秒),且刻蚀效果稳定,与化学酸碱两步法工艺所要求的时间精度在±10秒以内相比,工艺要求大大降低。
气相预处理需要运作数小时,本发明提供的工艺只需数分钟,能耗低。
本发明提供的工艺,将获得酸废液和碱废液进行废液混合,对所含物质进行回收再利用,处理后废液环保且可直接排放。
附图说明
图1为本发明工艺制得的涂层表面形貌图;
图2为现有标准酸碱两步法工艺制得的涂层表面形貌图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
本实施例以硬质合金材料作为拟镀覆的基体,并采用不同工艺参数实施刻蚀并设置传统酸碱两步法处理样本作为对照:
1、准备100mm长度×10mm直径的YG3、YG6、YG10棒材,予以乙醇预清洁后,用超声波清洗机予以表面清洁并进入烘箱烘干;
2、将上述硬质合金棒材作为拟镀覆的基体作为阳极与石墨阴极共同浸入 10w/v%NaOH溶液并施加电压(1V~5V)0.5分钟~15分钟,通过电解方式对基体表面硬质相进行刻蚀,根据实验条件设置不同,各样本基体表面粗糙度获得不同程度增加,且均露出表面下的粘结相;
3、采用乙醇及去离子水清洗碱刻蚀基体,获得可用于后续反应的洁净表面;
4、将前述3清洗后的基体作为阳极与石墨阴极共同浸入10w/v%HCl溶液并施加电压(1V~5V)0.5分钟~10分钟,通过电解方式对基体表面粘结相进行刻蚀,根据实验条件设置不同,各样本表面Co含量均有显著下降,使得基体表面在后续气相沉积阶段更易生长金刚石晶体。
5、另外单独按照化学酸碱两步法工艺处理样本作为对照组;
6、对前述所有样本采用HFCVD工艺渡覆气象化学沉积的金刚石涂层,并按照《JB T11442-2013整体硬质合金涂层刀具检测方法》进行检测,相关结果如下表1,所得的涂层参见图1和图2。从图1和图2比对可见,本实施例方法制得的涂层其上钻石结合量更多;从表中观察,虽然表1中结合力测试结果也受金刚石涂层工艺稳定性及实验参数影响,不过总体仍可看出采用本方案预处理方法的金刚石涂层总体质量和结合力均好于现有技术工艺。
本实施例中,酸溶液和碱溶液的浓度根据实际情况,随着反应进行和环境温度和/或湿度的变化而发生改变。此时,有必要相应调节电参数(如:电压)和反应时间实现相同的处理效果,参见表1中序号1、序号3、序号4、序号6~序号8的参数组合。
表1
Figure PCTCN2020079598-appb-000001
Figure PCTCN2020079598-appb-000002

Claims (14)

  1. 一种湿法刻蚀粘结相的工艺,包括先将拟镀覆的基体作为阳极,以导电材料作为阴极,施加电压,浸入碱性溶液通过电解方式对基体表面硬质相进行刻蚀,形成钨的可溶性离子,使得基体表面粗糙度提高,露出基体内的粘结相;再将露出粘结相基体作为阳极,以导电材料作为阴极,施加电压,浸入酸性溶液刻蚀,形成钴的可溶性离子,使得基体表面粘结相含量下降。
  2. 根据权力要求1所述的工艺,先将拟镀覆的基体作为阳极,石墨或不锈钢等导电材料作为阴极,施加1V~5V电压,浸入碱性溶液0.5分钟~15分钟,通过电解方式对基体表面硬质相进行刻蚀,形成含钨的可溶性离子,使得基体表面粗糙度提高,露出基体内的粘结相;
    再将露出粘结相基体作为阳极,石墨或不锈钢等导电材料作为阴极,施加1V~5V电压,浸入酸性溶液0.5分钟~15分钟,通过电解方式对基体表面粘结相进行刻蚀,形成含钴的可溶性离子,使得基体表面粘结相含量下降。
  3. 根据权利要求1所述的工艺,其特征在于浸入所述碱性溶液0.5分钟~10分钟。
  4. 根据权利要求1所述的工艺,其特征在于浸入所述酸性溶液0.5分钟~5分钟。
  5. 根据权利要求1所述的工艺,其特征在于所述的碱性溶液为氢氧化物水溶液。
  6. 根据权利要求5所述的工艺,其特征在于所述的氢氧化物水溶液选自于氢氧化钠水溶液和氢氧化钾水溶液之一种或几种。
  7. 根据权利要求5所述的工艺,其特征在于所述的氢氧化物的水溶液浓度为10w/v%。
  8. 根据权利要求1所述的工艺,其特征在于所述的酸性溶液选自于稀盐酸、稀硫酸、稀硝酸、草酸和冰醋酸之一种或几种。
  9. 根据权利要求8所述的工艺,其特征在于所述酸性溶液为小于或等于20w/v%稀盐酸。
  10. 根据权利要求1所述的工艺,其特征在于所述的电压为1V~5V。
  11. 根据权利要求1所述的工艺,其特征在于所述的电压为1V~2V。
  12. 根据权利要求1所述的工艺,其特征在于所述的基体为硬质合金。
  13. 根据权利要求1所述的工艺,其特征在于所述的碱刻蚀得到的废液含有钨元素,以及酸刻蚀得到的废液含有钴元素,先将酸碱废液混合,即经酸碱中和而产生沉淀,此时钨元素或钴元素分别会在pH<7及pH>7的情况下生成沉淀,过滤沉淀后对混合废液进行pH测量,若pH<7则添加氢氧根离子直至pH>7,若pH>7则添加氢离子直至pH<7,相应均会再次产生沉淀,过滤后再次对所得的废液进行pH测量并依照相同方法反复过滤并调整pH至中性。
  14. 根据权利要求13所述的工艺,其特征在于从呈酸性的混合后废液中滤得含钨元素沉淀,从呈碱性的混合后废液中滤得含钴元素沉淀,含有两类元素的沉淀均是 可回收再利用的前驱化合物,予以收集再利用,整个过程不再产生其他三废。
PCT/CN2020/079598 2019-05-30 2020-03-17 湿法刻蚀粘结相的工艺及其废液回收方法 WO2020238342A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910466338.9A CN112011781A (zh) 2019-05-30 2019-05-30 湿法刻蚀粘结相的工艺及其废液回收方法
CN201910466338.9 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020238342A1 true WO2020238342A1 (zh) 2020-12-03

Family

ID=73502078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/079598 WO2020238342A1 (zh) 2019-05-30 2020-03-17 湿法刻蚀粘结相的工艺及其废液回收方法

Country Status (2)

Country Link
CN (1) CN112011781A (zh)
WO (1) WO2020238342A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380408A (en) * 1991-05-15 1995-01-10 Sandvik Ab Etching process
JPH0892741A (ja) * 1994-09-20 1996-04-09 New Japan Radio Co Ltd ダイヤモンド堆積用超硬合金の表面処理方法
US6110240A (en) * 1996-05-31 2000-08-29 Ngk Spark Plug Co., Ltd. Superhard article with diamond coat and method of manufacturing same
CN105764637A (zh) * 2013-11-29 2016-07-13 三菱综合材料株式会社 金刚石包覆硬质合金制切削工具及其制造方法
WO2018174139A1 (ja) * 2017-03-22 2018-09-27 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金切削工具
CN108821492A (zh) * 2018-06-22 2018-11-16 赣州中盛隆电子有限公司 一种电路板蚀刻废液的净化处理工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650059A (en) * 1995-08-11 1997-07-22 Credo Tool Company Method of making cemented carbide substrate
CN106282567A (zh) * 2015-05-29 2017-01-04 陕西瑞凯环保科技有限公司 一种从废酸性蚀刻液中回收金属的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380408A (en) * 1991-05-15 1995-01-10 Sandvik Ab Etching process
JPH0892741A (ja) * 1994-09-20 1996-04-09 New Japan Radio Co Ltd ダイヤモンド堆積用超硬合金の表面処理方法
US6110240A (en) * 1996-05-31 2000-08-29 Ngk Spark Plug Co., Ltd. Superhard article with diamond coat and method of manufacturing same
CN105764637A (zh) * 2013-11-29 2016-07-13 三菱综合材料株式会社 金刚石包覆硬质合金制切削工具及其制造方法
WO2018174139A1 (ja) * 2017-03-22 2018-09-27 三菱マテリアル株式会社 ダイヤモンド被覆超硬合金切削工具
CN108821492A (zh) * 2018-06-22 2018-11-16 赣州中盛隆电子有限公司 一种电路板蚀刻废液的净化处理工艺

Also Published As

Publication number Publication date
CN112011781A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
TW477831B (en) Methods for a roughly metallic surface producing, and with this methods obtained the means
JP2004525254A5 (zh)
JPH06507677A (ja) エッチング方法
CN102234834A (zh) 电解退镀液及使用该电解退镀液退除含钛膜层的方法
CN102234835B (zh) 电解退除碳化钛膜层的退镀液及方法
CN108060398A (zh) 一种燃料电池复合纳米涂层及其镀制方法
JP2015518925A (ja) 金属コーティングを作製するための方法
WO2020238342A1 (zh) 湿法刻蚀粘结相的工艺及其废液回收方法
JP2017503081A (ja) 無シアン系前処理用電気銅メッキ液及びその製造方法
CN1970844A (zh) 铝类基材的表面处理方法
CN104451616A (zh) 一种用于4Cr13不锈钢的化学镀镍方法
CN102560599A (zh) 钛合金表面原位生长氧化膜的制备方法
CN109680319A (zh) 基于钙盐的镁合金表面耐腐蚀自修复涂层的制备方法
CN101358356A (zh) 高比表面金刚石电极的制备方法
JP2000256864A (ja) アルミニウム又はアルミニウム合金表面の亜鉛置換方法、そのための置換液及び亜鉛置換皮膜を有するアルミニウム又はアルミニウム合金
TWI534926B (zh) Semiconductor processing device and manufacturing method thereof
JP2564218B2 (ja) チタンをベースとする基板に耐摩耗性コーティングを堆積する方法
CN113652734B (zh) 一种不锈钢表面电解粗化剂及其粗化方法
CN1211635A (zh) 金刚石涂层拉丝模
CN104743499A (zh) 玻璃衬底的工艺方法
CN103205714A (zh) 一种蒸镀用金属掩模板及其制备方法
CN105112981A (zh) 阶段升压制备镁合金微弧氧化陶瓷层的方法
CN108893724A (zh) 一种硬质合金中钴元素闪脱方法
CN104294272A (zh) 一种提高硬质合金刀具表面金刚石涂层附着力的方法
CN103911645A (zh) 一种镁合金阳极氧化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813129

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813129

Country of ref document: EP

Kind code of ref document: A1