WO2020238103A1 - 空调器及其自清洁控制方法和计算机可读存储介质 - Google Patents

空调器及其自清洁控制方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2020238103A1
WO2020238103A1 PCT/CN2019/121336 CN2019121336W WO2020238103A1 WO 2020238103 A1 WO2020238103 A1 WO 2020238103A1 CN 2019121336 W CN2019121336 W CN 2019121336W WO 2020238103 A1 WO2020238103 A1 WO 2020238103A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
speed
preset
self
indoor fan
Prior art date
Application number
PCT/CN2019/121336
Other languages
English (en)
French (fr)
Inventor
席战利
刘翔
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020238103A1 publication Critical patent/WO2020238103A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/43Defrosting; Preventing freezing of indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/22Cleaning ducts or apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • This application relates to the technical field of air conditioners, and in particular to an air conditioner and its self-cleaning control method and computer-readable storage medium.
  • air conditioners With the improvement of people's living standards, air conditioners have become an indispensable electrical appliance in people's production.
  • the indoor heat exchanger is cleaned, but during the cleaning process, the indoor heat exchanger is frosted after cooling for a certain period of time, and the indoor wind of the air conditioner stops during the frosting process
  • the indoor environment will not be exchanged for heat, and after the fan is stopped, the air flow stops, resulting in poor frosting effect.
  • the main purpose of this application is to provide an air conditioner and its self-cleaning control method and computer readable storage medium, which aims to solve the problem that the indoor heat exchanger is frosted during the self-cleaning process of the air conditioner.
  • the indoor wind of the air conditioner stops running, and will not exchange heat to the indoor environment during the stop running process, and after stopping the running of the fan, the air flow stops, causing the problem of poor frosting effect.
  • the self-cleaning control method for an air conditioner includes the following steps:
  • the indoor fan of the air conditioner is controlled to operate at a reduced wind speed, wherein, after the first preset time of cooling operation, a frost layer is attached to the indoor heat exchanger of the air conditioner;
  • the compressor is controlled to enter heating and defrosting to clean the indoor heat exchanger of the air conditioner.
  • the step of controlling the indoor fan of the air conditioner to reduce the wind speed after the first preset time of cooling operation includes:
  • the indoor fan After stopping the operation for the second preset time, the indoor fan is controlled to run at a wind speed lower than the first preset speed.
  • the method further includes:
  • the indoor fan of the air conditioner After operating at a speed less than the first preset speed for a third preset time, the indoor fan of the air conditioner is controlled to stop running to the end of cooling.
  • the method further includes:
  • the indoor fan After operating at a speed greater than the second preset speed for a fifth preset time, the indoor fan is controlled to run at a speed less than a third preset speed, wherein the second preset speed is greater than the first preset speed.
  • the method further includes:
  • the indoor fan After operating at a wind speed less than a fourth preset speed for a seventh preset time, the indoor fan is controlled to operate at a speed greater than a fifth preset speed, wherein the fifth preset speed is greater than the fourth preset speed.
  • the time when the fan of the air conditioner stops running is determined according to the indoor environment humidity and/or the indoor environment temperature of the air conditioner.
  • the method further includes:
  • the indoor fan of the air conditioner is controlled to operate at the current wind speed or to operate at a reduced wind speed, and the indoor fan of the air conditioner does not stop running.
  • the method further includes:
  • the indoor fan that controls the air conditioner stops running.
  • the present application also provides an air conditioner, the air conditioner includes a processor, a memory, and an air conditioner self-cleaning control program stored on the memory and running on the processor.
  • the air conditioner self-cleaning control program is executed by the processor, the steps of the air conditioner self-cleaning control method described above are realized.
  • the present application also provides a computer-readable storage medium that stores an air conditioner self-cleaning control program, and the air conditioner self-cleaning control program is executed by a processor to realize the above The various steps of the air conditioner self-cleaning control method.
  • the air conditioner and its self-cleaning control method and computer readable storage medium provided in the present application.
  • the indoor fan of the air conditioner is not controlled to stop running, but is The wind speed is weak only to cause disturbance to the air near the indoor heat exchanger.
  • the wind speed should not be too high, so that the surface and the inside of the indoor heat exchanger will be frosted, so that the frosting is fully effective.
  • the medium frosting is good for cleaning more cleanly and fully, and the cleaning effect is good.
  • FIG. 1 is a schematic diagram of the hardware structure of an air conditioner related to an embodiment of the application
  • FIG. 2 is a schematic flowchart of an embodiment of a self-cleaning control method for an air conditioner according to the present application
  • FIG. 3 is a schematic diagram of a flow chart of controlling the indoor fan of the air conditioner to reduce the wind speed after the first preset time of cooling operation in an embodiment of the application;
  • FIG. 4 is a schematic flowchart of another embodiment of a method for controlling self-cleaning of an air conditioner according to the present application
  • FIG. 5 is a schematic flowchart of another embodiment of a self-cleaning control method for an air conditioner according to the present application.
  • FIG. 6 is a schematic flowchart of another embodiment of a self-cleaning control method for an air conditioner according to the present application.
  • FIG. 7 is a schematic flowchart of another embodiment of a self-cleaning control method for an air conditioner according to the present application.
  • FIG. 8 is a schematic flowchart of another embodiment of a self-cleaning control method for an air conditioner according to the present application.
  • the main solution of the embodiment of the present application is: when the air conditioner enters self-cleaning, the compressor of the air conditioner is controlled to turn on and enter refrigeration; after the first preset time of cooling operation, the indoor fan of the air conditioner is controlled to run at a reduced wind speed, where After the first preset time of cooling operation, the frost layer is attached to the indoor heat exchanger of the air conditioner; after the frosting is completed, the compressor is controlled to enter the heating and defrosting to clean the indoor heat exchanger of the air conditioner.
  • the air conditioner enters the indoor heat exchanger after cooling for the first preset time after cooling first, and the frost layer is attached, and the indoor wind of the air conditioner stops when the indoor heat exchanger is frosted
  • the indoor environment will not be exchanged for heat, and after the fan is stopped, the air flow stops, resulting in the problem of poor frosting effect.
  • This application provides a solution: After the indoor heat exchanger is frosted for the first preset time in cooling, the indoor fan of the air conditioner is not controlled to stop running, but runs at a certain speed.
  • the weak wind speed only causes disturbance to the air near the indoor heat exchanger. It should not be too large, so that the surface and interior of the indoor heat exchanger will be frosted, so that the frosting effect is good, and the frosting is good in the cleaning process of the air conditioner.
  • the air conditioner can be as shown in Figure 1.
  • the solution of the embodiment of the present application relates to an air conditioner.
  • the air conditioner includes a processor 1001, such as a CPU, a memory 1002, and a communication bus 1003.
  • the communication bus 1003 is used to implement connection and communication between these components.
  • the memory 1002 may be a high-speed RAM memory, or a stable memory (non-volatile memory), such as a magnetic disk memory. As shown in FIG. 1, the memory 1003, which is a computer storage medium, may include an air conditioner self-cleaning control program; and the processor 1001 may be used to call the air conditioner self-cleaning control program stored in the memory 1002 and perform the following operations:
  • the indoor fan of the air conditioner is controlled to operate at a reduced wind speed, wherein, after the first preset time of cooling operation, a frost layer is attached to the indoor heat exchanger of the air conditioner;
  • the compressor is controlled to enter heating and defrosting to clean the indoor heat exchanger of the air conditioner.
  • the processor 1001 may be used to call the air conditioner self-cleaning control program stored in the memory 1002, and perform the following operations:
  • the indoor fan After stopping the operation for the second preset time, the indoor fan is controlled to run at a wind speed lower than the first preset speed.
  • the processor 1001 may be used to call the air conditioner self-cleaning control stored in the memory 1002 Program and do the following:
  • the indoor fan of the air conditioner After operating at a speed less than the first preset speed for a third preset time, the indoor fan of the air conditioner is controlled to stop running to the end of cooling.
  • the processor 1001 may be used to call the air conditioner self-cleaning control program stored in the memory 1002, and perform the following operations:
  • the indoor fan After operating at a speed greater than the second preset speed for a fifth preset time, the indoor fan is controlled to run at a speed less than a third preset speed, wherein the second preset speed is greater than the first preset speed.
  • the processor 1001 may be used to call the air conditioner self-cleaning control program stored in the memory 1002, and perform the following operations:
  • the indoor fan After operating at a wind speed less than a fourth preset speed for a seventh preset time, the indoor fan is controlled to operate at a speed greater than a fifth preset speed, wherein the fifth preset speed is greater than the fourth preset speed.
  • the time when the fan of the air conditioner stops running is determined according to the indoor environment humidity and/or the indoor environment temperature of the air conditioner.
  • the processor 1001 may be used to call the air conditioner self-cleaning control program stored in the memory 1002 and execute the following operating:
  • the indoor fan of the air conditioner is controlled to operate at the current wind speed or to operate at a reduced wind speed, and the indoor fan of the air conditioner does not stop running.
  • the processor 1001 may be used to call the air conditioner self-cleaning control program stored in the memory 1002 and execute the following operating:
  • the indoor fan that controls the air conditioner stops running.
  • Figure 2 is an embodiment of a self-cleaning control method for an air conditioner according to the present application.
  • the self-cleaning control method for an air conditioner includes the following steps:
  • Step S10 when the air conditioner enters self-cleaning, control the compressor of the air conditioner to turn on and enter refrigeration;
  • the self-cleaning of the air conditioner can be entered according to a fixed button on the remote control, or according to the cleanliness of the heat exchanger in the air conditioner or the total operating time of the air conditioner.
  • the self-cleaning of the air conditioner includes the condensate generation phase during refrigeration, the refrigeration frosting phase, the heating and defrosting phase, and the heating and drying phase.
  • the condensate generation phase during the refrigeration is operated at the highest frequency or when the compressor is controlled to start and enter the cooling operation.
  • Increase the operating frequency of the compressor of the air conditioner to increase the ability of the air conditioner to generate condensate, and generate condensate faster and more to meet the self-cleaning needs of the air conditioner.
  • step S20 after the first preset time of cooling operation, the indoor fan of the air conditioner is controlled to operate at a reduced wind speed, wherein after the first preset time of cooling operation, a layer of frost is attached to the indoor heat exchanger of the air conditioner.
  • step S30 after the frosting is completed, the compressor is controlled to enter heating and defrosting to clean the indoor heat exchanger of the air conditioner.
  • the indoor heat exchanger of the air conditioner After entering the refrigeration operation for the first preset time, for example, it may be 5 minutes or 10 minutes, etc., which can be set according to requirements.
  • the indoor heat exchanger of the air conditioner After the first preset time of operation in the refrigeration phase, the indoor heat exchanger of the air conditioner begins to form frost, and a frost layer is attached to the indoor heat exchanger.
  • the indoor fan is generally stopped to speed up the frosting of the indoor heat exchanger.
  • this application is for the control of frosting.
  • the indoor fan of the air conditioner After entering the self-cleaning indoor heat exchanger of the air conditioner to start frosting, the indoor fan of the air conditioner is controlled to reduce the wind speed. The reduction here does not mean stopping the fan.
  • the indoor fan After entering the frosting , The indoor fan is controlled to operate at a weak wind speed, the weak wind speed being a wind speed greater than 0 and less than a preset speed, and the preset speed is a wind speed that can drive air disturbances, for example, 60 revolutions per minute, or 1 revolution per minute. Seconds, or other suitable wind speed settings.
  • this embodiment does not stop the operation of the indoor fan of the air conditioner after entering the frosting phase, but adopts a certain rotation speed to cause disturbance to the air near the indoor heat exchanger.
  • the indoor fan The frosting of the heat exchanger can be frosted on the surface and inside of the indoor heat exchanger, so that the frosting effect is better, and the cleaning of the indoor heat exchanger of the air conditioner is cleaner.
  • the indoor heat exchanger of the air conditioner will form frost, and frost will form on the indoor heat exchanger of the air conditioner.
  • the frosting peeling operation peels off the dirt on the indoor heat exchanger; after frosting for a period of time, such as 2 minutes or 3 minutes, the compressor stops for 2s or 5s, etc., and the compressor turns on to start heating;
  • the frost layer formed on the indoor heat exchanger is melted, and the frost formed is turned into water by heating, which cleans the indoor heat exchanger, and then completes the drying of the indoor heat exchanger by heating to avoid Produce bacteria.
  • For the heating and drying stage if the outdoor environment temperature reaches a certain temperature, for example, 30 degrees or 35 degrees, there is no need to enter the heating and drying stage, and the three stages of cooling, frosting, heating and defrosting can be used directly.
  • the indoor heat exchanger can be dried by natural air drying.
  • the above is to complete the self-cleaning of the indoor heat exchanger of the air conditioner through the generation of condensed water in the refrigeration, the frosting of the refrigeration, the defrosting of the heating, and the drying of the heating.
  • the indoor heat exchanger of the air conditioner is cleaned by the defrosted water, and the defrosted water is heated by heating, and the indoor heat exchanger of the air conditioner is cleaned by hot water. Heater to improve the cleaning effect.
  • the indoor fan of the air conditioner is not controlled to stop running, but runs at a certain speed.
  • the weak wind speed only causes disturbance to the air near the indoor heat exchanger, and the wind speed should not be too high, so that the surface and inside of the indoor heat exchanger will be frosted, so that the frosting is fully effective, and it will form frost during the cleaning process of the air conditioner. Good cleaning is cleaner and more adequate, and the cleaning effect is good.
  • the step of controlling the indoor fan of the air conditioner to reduce the wind speed after the first preset time of cooling operation includes:
  • Step S21 controlling the indoor fan of the air conditioner to stop running
  • Step S22 after stopping the operation for a second preset time, control the indoor fan to operate at a wind speed lower than the first preset speed.
  • reducing the speed of the indoor fan includes first stopping the operation of the indoor fan of the air conditioner, and then running at a wind speed lower than the first preset speed.
  • the first stop here is to first attach a layer to the surface of the indoor heat exchanger Frost layer, first stabilize the frost, and then turn on the wind speed operation at the first preset speed after the frost, so that the surface of the indoor heat exchanger is more frosted, and the interior of the indoor heat exchanger is also started by disturbance Frosting can improve the effect of frosting, and the stolen goods of the indoor heat exchanger can be better peeled off through the frosting, and the cleaning effect of the indoor heat exchanger can be improved.
  • the frosting process is completed by stopping first and then running slowly.
  • the second preset time may be 10s or 20s, etc., which is set according to the requirement of frosting to ensure that the surface of the indoor heat exchanger is condensed to produce frost.
  • the method further includes:
  • step S23 after operating at a speed less than the first preset speed for a third preset time, control the indoor fan of the air conditioner to stop operating until the cooling ends.
  • the indoor fan of the air conditioner is controlled to stop operating first, and then operates at a first preset speed, and after operating at the wind speed of the first preset speed for a third preset time, the indoor fan of the air conditioner is controlled to stop operating until the end of cooling.
  • the method adopted here is stop+slow operation+stop operation.
  • the third preset time can be set shorter, and when entering the rapid frosting period, you can stop and then turn on the fan to run. It is not fixed to stop once, turn on and stop again, you can choose to turn on or keep stopped according to the frosting situation .
  • the method further includes:
  • Step S24 after stopping the operation for a fourth preset time, control the indoor fan to run at a wind speed greater than the second preset speed;
  • Step S25 after operating at a speed greater than a second preset speed for a fifth preset time, control the indoor fan to run at a speed less than a third preset speed, wherein the second preset speed is greater than the first preset speed.
  • the second preset rotation speed is a wind speed greater than the first preset rotation speed.
  • the second preset rotation speed may be 200 rpm or 500 rpm, which is set according to the frosting demand, and the air conditioner is at this rotation speed.
  • the indoor heat exchanger is in a frosting state without affecting the frosting of the air conditioner, and the fourth preset time is greater than the second preset time, for example, 40s or 50s, and the fourth preset time is stopped.
  • the frosting operation of the indoor heat exchanger of the air conditioner is higher than the frosting degree of the second preset time when the operation is stopped. Therefore, it is necessary to increase the speed of the indoor fan to increase air disturbance and inject air into the room.
  • the frosting operation is generated inside.
  • the indoor fan is controlled to run at a speed lower than the third preset speed.
  • the third preset speed is a rotation speed less than the first preset speed. The speed is also not zero.
  • the method further includes:
  • Step S26 after stopping the operation for the sixth preset time, control the indoor fan to run at a wind speed less than the fourth preset speed;
  • Step S27 After operating at a wind speed less than the fourth preset speed for a seventh preset time, control the indoor fan to operate at a speed greater than a fifth preset speed, where the fifth preset speed is greater than the fourth preset speed.
  • the sixth preset time is 8s or 15s, etc., which can be set according to requirements.
  • the fourth preset speed is less than the second preset speed
  • the seventh preset time is 10s or 12s, etc.
  • the fifth preset speed is less than the second preset speed, or may be greater than the second preset speed
  • the fifth preset speed is greater than the fourth preset speed, but the fifth preset speed is controlled at a speed that guarantees frosting of the indoor heat exchanger.
  • the indoor fan control mode of stop + slow + fast is adopted. After the frost and air turbulence are expected, that is, after the frost layer is formed on the surface and inside of the indoor heat exchanger, the indoor fan is controlled to stop running.
  • the time when the fan of the air conditioner stops running is determined according to the indoor environmental humidity and/or the indoor environmental temperature of the air conditioner.
  • the shutdown time is related to the indoor environment humidity of the air conditioner, and the humidity is related to the indoor environment temperature.
  • the humidity can be obtained from the indoor environment temperature, and then the shutdown time is obtained according to the humidity. The higher the humidity, the shorter the shutdown time, and vice versa.
  • the method further includes:
  • Step S40 after the wind speed is reduced for the eighth preset time, the indoor fan of the air conditioner is controlled to stop running.
  • the eighth preset time may be 30s or 20s, etc., which is set according to the requirements of frosting and air disturbance.
  • the indoor fan that controls the air conditioner stops running. After stopping the operation of the fan, ensure that there is enough frost on the indoor heat exchanger to strip the dirt on the indoor heat exchanger and improve the cleaning effect.
  • the method further includes:
  • Step S50 obtaining indoor humidity in the working space of the air conditioner
  • step S60 when the indoor humidity is greater than the preset humidity, the indoor fan of the air conditioner is controlled to operate at the current wind speed or to operate at a reduced wind speed, and the indoor fan of the air conditioner does not stop running.
  • the indoor fan After reducing the operating speed of the indoor fan, obtain the humidity of the indoor environment, and determine whether the humidity can be lowered and continue to reduce the wind speed. For example, if the humidity is greater than 60%, the fan may not be able to stop the operation. If it is less than 30%, the fan can be stopped.
  • the indoor fan can be controlled to stop running only when the humidity is low, and when the humidity is greater than the preset humidity, or greater than the preset humidity, and the difference between the preset humidity is greater than 30% or 35% (Set according to actual demand or the frosting performance of the air conditioner), the indoor fan of the air conditioner is not controlled to stop running.
  • the indoor fan of the air conditioner can be controlled to stop running only after the humidity drops below the preset humidity.
  • the indoor fan By monitoring the conditions under which the fan stops running, the indoor fan can be reasonably controlled during the frosting phase, so that the air conditioner can be cleaned more reasonably and accurately.
  • the present application also provides an air conditioner including a processor, a memory, and an air conditioner self-cleaning control program stored on the memory and running on the processor, the air conditioner control program being executed by the processor When realizing the steps of the air conditioner self-cleaning control method described in the above embodiment.
  • This embodiment does not control the indoor fan of the air conditioner to stop running after the indoor heat exchanger is frosted for the first preset time after the air conditioner cleans the indoor heat exchanger to enter the cooling, but runs at a certain speed.
  • the weak wind speed is only for the indoor
  • the air near the heat exchanger causes turbulence, and the wind speed should not be too high, so that the surface and inside of the indoor heat exchanger are frosted, so that the frosting is fully effective, and the frosting is good in the cleaning process of the air conditioner, and the cleaning is cleaner and more fully , The cleaning effect is good.
  • the present application also provides a computer-readable storage medium that stores an air conditioner self-cleaning control program, and the air conditioner self-cleaning control program is executed by a processor to realize the air conditioner described in the above embodiment The various steps of the self-cleaning control method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请公开了一种空调器自清洁控制方法,所述空调器自清洁控制方法包括以下步骤:在空调器进入自清洁时,控制空调器的压缩机开启进入制冷;在制冷运行第一预设时间后,控制空调器室内风机降低风速运转,其中,在制冷运行第一预设时间后,空调器的室内换热器上附着霜层;在结霜完成后,控制压缩机进入制热化霜,以对空调器的室内换热器清洁。本申请还公开了一种空调器和计算机可读存储介质。

Description

空调器及其自清洁控制方法和计算机可读存储介质
优先权信息:本申请要求2019年5月29日申请的,申请号为201910461882.4、名称为“空调器及其自清洁控制方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器及其自清洁控制方法和计算机可读存储介质。
背景技术
随着人们生活水平的提高,空调已成为人们生成中必不可少的电器。
空调器随着工作时间的增长,会在空调器的表面和内部积满灰尘。而在室内换热器上积满灰尘,会影响空调器的换热能力,且也会给室内环境送入的空气中增加细菌,使得室内环境变差。
目前,在空调器的清洁过程中,会对室内换热器清洁,但在清洁的过程中,先制冷一定时间后室内换热器结霜,而在结霜过程中空调器的室内风机会停止运行,在停止运行过程中不会对室内环境换热,且在停止风机运行后,空气流动停止,导致结霜效果差。
发明内容
本申请的主要目的在于提供一种空调器及其自清洁控制方法和计算机可读存储介质,旨在解决空调器自清洁过程中先制冷一定时间后室内换热器结霜,而在结霜过程中空调器的室内风机会停止运行,在停止运行过程中不会对室内环境换热,且在停止风机运行后,空气流动停止,导致结霜效果差的问题。
为实现上述目的,本申请提供的一种空调器自清洁控制方法,所述空调器自清洁控制方法包括以下步骤:
在空调器进入自清洁时,控制空调器的压缩机开启进入制冷;
在制冷运行第一预设时间后,控制空调器室内风机降低风速运转,其中,在制冷运行第一预设时间后,空调器的室内换热器上附着霜层;
在结霜完成后,控制压缩机进入制热化霜,以对空调器的室内换热器清洁。
可选地,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤包括:
控制空调器室内风机停止运行;
在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转。
可选地,所述在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转的步骤之后,还包括:
在以小于第一预设速度运转第三预设时间后,控制空调器室内风机停止运行至制冷结束。
可选地,所述控制空调器室内风机停止运行的步骤之后,还包括:
在停止运行第四预设时间后,控制室内风机以大于第二预设速度的风速运转;
在以大于第二预设速度运转第五预设时间后,控制室内风机以小于第三预设速度运转,其中,所述第二预设转速大于第一预设转速。
可选地,所述控制空调器室内风机停止运行的步骤之后,还包括:
在停止运行第六预设时间后,控制室内风机以小于第四预设速度的风速运转;
在以小于第四预设速度的风速运转第七预设时间后,控制室内风机以大于第五预设速度运转,其中,所述第五预设转速大于第四预设转速。
可选地,空调器风机停止运行时时间根据空调器的室内环境湿度和/或室内环境温度确定。
可选地,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,还包括:
获取空调器作用空间内的室内湿度;
在所述室内湿度大于预设湿度时,控制空调器的室内风机维持当前风速运转或者降低风速运转,且空调器的室内风机不停机运转。
可选地,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,还包括:
在降低风速运行第八预设时间后,控制空调器的室内风机停止运行。
为实现上述目的,本申请还提供一种空调器,所述空调器包括处理器、存储器和存储在所述存储器上并可在所述处理器上运行的空调器自清洁控制程序,所述空调器自清洁控制程序被所述处理器执行时实现如上所述的空调器自清洁控制方法的步骤。
为实现上述目的,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有空调器自清洁控制程序,所述空调器自清洁控制程序被处理器执行时时实现如上所述的空调器自清洁控制方法的各个步骤。
本申请提供的空调器及其自清洁控制方法和计算机可读存储介质,空调器在自清洁在室内换热器上附着有霜层后,不控制空调器的室内风机停止运转,而是以一定的转速运转,该风速微弱只是给室内换热器附近的空气造成扰动,风速不宜过大,使得室内换热器的表面和内部均结霜,使得结霜充分效果好,在空调器的清洗过程中结霜好清洗的更干净更充分,清洗效果好。
附图说明
图1为本申请实施例涉及的空调器的硬件结构示意图;
图2为本申请空调器自清洁控制方法一实施例的流程示意图;
图3为本申请一实施例中在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的流程示意图;
图4为本申请空调器自清洁控制方法另一实施例的流程示意图的流程示意图;
图5为本申请空调器自清洁控制方法又一实施例的流程示意图;
图6为本申请空调器自清洁控制方法又一实施例的流程示意图;
图7为本申请空调器自清洁控制方法又一实施例的流程示意图;
图8为本申请空调器自清洁控制方法又一实施例的流程示意图。
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例的主要解决方案是:在空调器进入自清洁时,控制空调器的压缩机开启进入制冷;在制冷运行第一预设时间后,控制空调器室内风机降低风速运转,其中,在制冷运行第一预设时间后,空调器的室内换热器上附着霜层;在结霜完成后,控制压缩机进入制热化霜,以对空调器的室内换热器清洁。
现有技术中存在空调器自清洁过程中,先制冷后,经过第一预设时间的制冷后进入室内换热器附着霜层,而在室内换热器结霜中空调器的室内风机会停止运行,在停止运行过程中不会对室内环境换热,且在停止风机运行后,空气流动停止,导致结霜效果差的问题。
本申请提供一种解决方案: 在进入制冷第一预设时间室内换热器结霜后,不控制空调器的室内风机停止运转,而是以一定的转速运转,该风速微弱只是给室内换热器附近的空气造成扰动,风速不宜过大,使得室内换热器的表面和内部均结霜,使得结霜充分效果好,在空调器的清洗过程中结霜好清洗的更干净更充分,清洗效果好。
作为一种实现方案,空调器可以如图1所示。
本申请实施例方案涉及的是空调器,空调器包括:处理器1001,例如CPU,存储器1002,通信总线1003。其中,通信总线1003用于实现这些组件之间的连接通信。
存储器1002可以是高速RAM存储器,也可以是稳定的存储器(non-volatilememory),例如磁盘存储器。如图1所示,作为一种计算机存储介质的存储器1003中可以包括空调器自清洁控制程序;而处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
在空调器进入自清洁时,控制空调器的压缩机开启进入制冷;
在制冷运行第一预设时间后,控制空调器室内风机降低风速运转,其中,在制冷运行第一预设时间后,空调器的室内换热器上附着霜层;
在结霜完成后,控制压缩机进入制热化霜,以对空调器的室内换热器清洁。
可选地,处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
控制空调器室内风机停止运行;
在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转。
可选地,所述在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转的步骤之后,处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
在以小于第一预设速度运转第三预设时间后,控制空调器室内风机停止运行至制冷结束。
可选地,所述控制空调器室内风机停止运行的步骤之后,处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
在停止运行第四预设时间后,控制室内风机以大于第二预设速度的风速运转;
在以大于第二预设速度运转第五预设时间后,控制室内风机以小于第三预设速度运转,其中,所述第二预设转速大于第一预设转速。
可选地,所述控制空调器室内风机停止运行的步骤之后,处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
在停止运行第六预设时间后,控制室内风机以小于第四预设速度的风速运转;
在以小于第四预设速度的风速运转第七预设时间后,控制室内风机以大于第五预设速度运转,其中,所述第五预设转速大于第四预设转速。
可选地,空调器风机停止运行时时间根据空调器的室内环境湿度和/或室内环境温度确定。
可选地,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
获取空调器作用空间内的室内湿度;
在所述室内湿度大于预设湿度时,控制空调器的室内风机维持当前风速运转或者降低风速运转,且空调器的室内风机不停机运转。
可选地,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,处理器1001可以用于调用存储器1002中存储的空调器自清洁控制程序,并执行以下操作:
在降低风速运行第八预设时间后,控制空调器的室内风机停止运行。
基于上述硬件构架,提出本申请空调器自清洁控制方法的实施例。
参照图2,图2为本申请空调器自清洁控制方法的一实施例,所述空调器自清洁控制方法包括以下步骤:
步骤S10,在空调器进入自清洁时,控制空调器的压缩机开启进入制冷;
在本申请中,空调器进入自清洁可以根据遥控器上的固定按键进入,也可以根据空调器室内换热器的干净程度或者空调器运行的总时长来确定,在检测到空调器上的赃物浓度高或者总时长大于1000个小时或者800个小时时,自动进入自清洁。空调器自清洁包括制冷产生冷凝水阶段、制冷结霜阶段、制热化霜阶段和制热烘干阶段,所述制冷产生冷凝水阶段以最高频率运转或者在控制压缩机启动进入制冷运转时,提高空调器的压缩机运转频率,以提高空调器产生冷凝水的能力,快而多的产生冷凝水以满足空调器自清洁的需求。
进入空调器自清洁后,先控制空调器进入制冷,控制压缩机以最高运行频率运行,进入快速制冷阶段,产生冷凝水。
步骤S20,在制冷运行第一预设时间后,控制空调器室内风机降低风速运转,其中,在制冷运行第一预设时间后,空调器的室内换热器上附着霜层。
步骤S30,在结霜完成后,控制压缩机进入制热化霜,以对空调器的室内换热器清洁。
在进入制冷运行第一预设时间后,例如,可以是5分钟或者10分钟等,根据需求来设置。而在制冷阶段运行第一预设时间后,空调器的室内换热器开始结霜,在室内换热器上附着有霜层。
在室内换热器上附着有霜层后,目前一般会采取停止室内风机,加快室内换热器的结霜。
而本申请,是对结霜的控制,在进入空调器自清洁的室内换热器开始结霜后,控制空调器室内风机降低风速运转,这里降低指的不是停止风机运转,在进入结霜后,控制室内风机以微弱的风速运转,该微弱的风速为大于0,小于预设转速的风速,所述预设转速为可以带动空气扰动的风速,例如,为60转/分钟,或者1转/秒,或者其他合适的设置的风速。而与以往的不同的是,本实施例进入结霜阶段后,不停止空调器的室内风机运转,而采取以一定转速运转对室内换热器附近的空气造成扰动,而在扰动过程中,室内换热器的结霜可以再室内换热器的表面和内部都结霜,使得结霜效果更好,对于空调器的室内换热器的清洗更加干净。在高频制冷一段时间,例如,第一预设时间(例如,8分钟或者10分钟等)后,空调器的室内换热器会结霜,在空调器的室内换热器上结霜,做结霜剥离操作,将室内换热器上的脏东西剥离;在结霜一段时间,例如2分钟或者3分钟后,压缩机停止2s或者5s等,压缩机开启进入制热;制热初期为将室内换热器上所结的霜层化掉,通过加热的方式来将结下的霜变为水,对室内换热器的清洁,再通过制热的方式完成室内换热器的干燥,避免产生细菌。而对于制热烘干阶段,如果室外环境温度达到一定温度,例如达到30度或者35度,则无需进入制热烘干阶段,直接采用制冷、结霜、制热化霜三个阶段完成即可,可通过自然风干的方式完成室内换热器的干燥。上述是通过制冷中的产生冷凝水,制冷的结霜,以及制热的化霜、制热的烘干来完成空调器室内换热器的自清洁。在结霜完成后,制热化霜,通过化霜后的水对空调器室内换热器清洁,且通过加热的方式对化霜后的水加热,通过热水的方式清洗空调器的室内换热器,提高清洁效果。
本实施例提供的技术方案中,在空调器清洁室内换热器进入制冷第一预设时间室内换热器开始结霜后,不控制空调器的室内风机停止运转,而是以一定的转速运转,该风速微弱只是给室内换热器附近的空气造成扰动,风速不宜过大,使得室内换热器的表面和内部均结霜,使得结霜充分效果好,在空调器的清洗过程中结霜好清洗的更干净更充分,清洗效果好。
在一实施例中,参考图3,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤包括:
步骤S21,控制空调器室内风机停止运行;
步骤S22,在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转。
本实施例中,降低室内风机的转速包括先停止空调器的室内风机的运转,然后再以小于第一预设速度的风速运转,这里先停止是为了先在室内换热器的表面附着一层结霜层,先稳定结霜,然后在结霜后再开启第一预设速度的风速运转,使得室内换热器的表面结霜更多,而也通过扰动使得室内换热器的内部也开始结霜,提高结霜的效果,进而可以更好的通过结霜剥离室内换热器的赃物,提高了室内换热器的清洗效果。采取的是先停止再慢速运转的方式来完成结霜的操作过程。所述第二预设时间可以是10s或者20s等,根据结霜的需求设置,保证在室内换热器表面凝结产生霜。
在一实施例中,参考图4,所述在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转的步骤之后,还包括:
步骤S23,在以小于第一预设速度运转第三预设时间后,控制空调器室内风机停止运行至制冷结束。
在控制空调器的室内风机先停止运转,然后以第一预设速速运转,在以第一预设速度的风速运转第三预设时间后,控制空调器室内风机停止运行至制冷结束。这里采取的是停止+慢速运转+停止运转的方式,通过在后续内部结霜完全的前提下,控制室内风机停止运转,可以加快结霜的过程,降低结霜的时间,使得室内换热器的清洗过程的时间缩短,在保持清洗效果的同时加快清洗效率,节约时间。所述第三预设时间可以是10秒或者20秒等,根据需求设置,根据结霜产生的速度控制,如果结霜产生的快第三预设时间可以加长,如果结霜产生的慢,则第三预设时间可以设置短一些,而在进入结霜快速期时,可以先停止然后再开启风机运转一下,不固定是一次停止一次开启再一次停止,可以根据结霜情况选择开启或者保持停止。
在一实施例中,参考图5,所述控制空调器室内风机停止运行的步骤之后,还包括:
步骤S24,在停止运行第四预设时间后,控制室内风机以大于第二预设速度的风速运转;
步骤S25,在以大于第二预设速度运转第五预设时间后,控制室内风机以小于第三预设速度运转,其中,所述第二预设转速大于第一预设转速。
所述第二预设转速为大于第一预设转速的风速,所述第二预设转速可以是200转/分钟,或者是500转/分钟,根据结霜需求设置,在该转速下空调器的室内换热器处于结霜状态,而不会影响空调器的结霜,而所述第四预设时间为大于第二预设时间,例如,为40s或者50s等,在停止运行第四预设时间后,空调器的室内换热器结霜的操作比停止运行第二预设时间所结霜的程度要高,因此需要加大室内风机的转速,以提高空气扰动,将空气注入进室内换热器的内部,在内部产生结霜操作,在空气扰动完成后,控制室内风机以小于第三预设速度运转,第三预设速度为小于第一预设速度的转速,第三预设转速也不为0。
通过不同的转速和时间的设置,提供了不同的空气扰动和结霜的操作方式,使得空调器的室内换热器表面和内部结霜更加充分,提高了空调器清洗的效果。
在一实施例中,参考图6,所述控制空调器室内风机停止运行的步骤之后,还包括:
步骤S26,在停止运行第六预设时间后,控制室内风机以小于第四预设速度的风速运转;
步骤S27,在以小于第四预设速度的风速运转第七预设时间后,控制室内风机以大于第五预设速度运转,其中,所述第五预设转速大于第四预设转速。
所述第六预设时间为8s或者15s等,根据需求设置。所述第四预设速度小于第二预设速度,所述第七预设时间为10s或者12s等,所述第五预设速度小于第二预设速度,或者也可以大于第二预设速度,所述第五预设转速大于第四预设转速,但所述第五预设速度控制在保证室内换热器结霜的速度之下。采取的为停止+慢速+快速的室内风机控制方式。而在产生的结霜和空气扰动达到预期后,即,在室内换热器的表面和内部均结霜层后,控制室内风机停止运转。
通过不同的转速和时间的设置,提供了不同的空气扰动和结霜的操作方式,使得空调器的室内换热器表面和内部结霜更加充分,提高了空调器清洗的效果。
在一实施例中,所述上述的空调器风机停止运行时时间根据空调器的室内环境湿度和/或室内环境温度确定。停止运行时间与空调器的室内环境湿度相关,而湿度又与室内环境温度相关,可通过室内环境温度得到湿度的情况,再根据湿度得到停止运行时间,湿度越大,停止运行时间越短,反之越长,通过停止时间的控制,在增加空气扰动保持室内换热器内部结霜的同时,保证了换热器表面的结霜,提高了结霜效果,充分结霜,提高空调器的清洗效果。
在一实施例中,参考图7,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,还包括:
步骤S40,在降低风速运行第八预设时间后,控制空调器的室内风机停止运行。
在控制空调器的室内风机降低第八预设时间后,所述第八预设时间可以是30s或者20s等,根据结霜和空气扰动的需求设置。在降低风速运行预设时间后,控制空调器的室内风机停止运行。停止运行风机后,保证在室内换热器上结霜足够多,对室内换热器上的赃物剥离,提高清洗效果。
在一实施例中,参考图8,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,还包括:
步骤S50,获取空调器作用空间内的室内湿度;
步骤S60,在所述室内湿度大于预设湿度时,控制空调器的室内风机维持当前风速运转或者降低风速运转,且空调器的室内风机不停机运转。
在降低室内风机运行速度之后,获取室内环境的湿度,根据该湿度判断是否可以降低继续降低风速运转,例如,湿度大于60%,则可能无法停止风机运转,如果小于30%,可以停止风机运转,通过对室内环境湿度的监测,只有在湿度较小时,才可控制室内风机停止运转,而湿度大于预设湿度时,或者大于预设湿度,且与预设湿度的差值大于30%或者35%(根据实际需求或者空调器的结霜性能设置)时,不控制空调器的室内风机停止运行。只有在湿度降低到预设湿度之下后,才可控制空调器室内风机停止运行。
通过对风机停止运行的条件的监测,使得室内风机在结霜阶段下的合理控制,使得空调器的清洁更加合理准确。
本申请还提供一种空调器,包括处理器、存储器和存储在所述存储器上并可在所述处理器上运行的空调器自清洁控制程序,所述空调器控制程序被所述处理器执行时实现如上实施例所述的空调器自清洁控制方法的步骤。
本实施例在空调器清洁室内换热器进入制冷第一预设时间室内换热器结霜后,不控制空调器的室内风机停止运转,而是以一定的转速运转,该风速微弱只是给室内换热器附近的空气造成扰动,风速不宜过大,使得室内换热器的表面和内部均结霜,使得结霜充分效果好,在空调器的清洗过程中结霜好清洗的更干净更充分,清洗效果好。
本申请还提供一种计算机可读存储介质,所述计算机可读存储介质存储有空调器自清洁控制程序,所述空调器自清洁控制程序被处理器执行时实现如上实施例所述的空调器自清洁控制方法的各个步骤。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在如上所述的一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的可选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种空调器自清洁控制方法,其中,所述空调器自清洁控制方法包括步骤:
    在空调器进入自清洁时,控制空调器的压缩机开启进入制冷;
    在制冷运行第一预设时间后,控制空调器室内风机降低风速运转,其中,在制冷运行第一预设时间后,空调器的室内换热器上附着霜层;以及
    在结霜完成后,控制压缩机进入制热化霜,以对空调器的室内换热器清洁。
  2. 如权利要求1所述的空调器自清洁控制方法,其中,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤包括:
    控制空调器室内风机停止运行;以及
    在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转。
  3. 如权利要求2所述的空调器自清洁控制方法,其中,所述在停止运行第二预设时间后,控制室内风机以小于第一预设速度的风速运转的步骤之后,还包括:
    在以小于第一预设速度运转第三预设时间后,控制空调器室内风机停止运行至制冷结束。
  4. 如权利要求2所述的空调器自清洁控制方法,其中,所述控制空调器室内风机停止运行的步骤之后,还包括:
    在停止运行第四预设时间后,控制室内风机以大于第二预设速度的风速运转;以及
    在以大于第二预设速度运转第五预设时间后,控制室内风机以小于第三预设速度运转,其中,所述第二预设转速大于第一预设转速。
  5. 如权利要求2所述的空调器自清洁控制方法,其中,所述控制空调器室内风机停止运行的步骤之后,还包括:
    在停止运行第六预设时间后,控制室内风机以小于第四预设速度的风速运转;以及
    在以小于第四预设速度的风速运转第七预设时间后,控制室内风机以大于第五预设速度运转,其中,所述第五预设转速大于第四预设转速。
  6. 如权利要求2至5任一项所述的空调器自清洁控制方法,其中,空调器风机停止运行时时间根据空调器的室内环境湿度和/或室内环境温度确定。
  7. 如权利要求6所述的空调器自清洁控制方法,其中,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,还包括:
    获取空调器作用空间内的室内湿度;以及
    在所述室内湿度大于预设湿度时,控制空调器的室内风机维持当前风速运转或者降低风速运转,且空调器的室内风机不停机运转。
  8. 如权利要求1至5任一项所述的空调器自清洁控制方法,其中,所述在制冷运行第一预设时间后,控制空调器室内风机降低风速运转的步骤之后,还包括:
    在降低风速运行第八预设时间后,控制空调器的室内风机停止运行。
  9. 一种空调器,其中,所述空调器还包括处理器、存储器和存储在所述存储器上并可在所述处理器上运行的空调器自清洁控制程序,所述空调器自清洁控制程序被所述处理器执行时实现如权利要求1-8任一项所述的空调器自清洁控制方法的步骤。
  10. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有空调器自清洁控制程序,所述空调器自清洁控制程序被处理器执行时时实现如权利要求1-8任一项所述的空调器自清洁控制方法的各个步骤。
PCT/CN2019/121336 2019-05-29 2019-11-27 空调器及其自清洁控制方法和计算机可读存储介质 WO2020238103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910461882.4 2019-05-29
CN201910461882.4A CN110173827A (zh) 2019-05-29 2019-05-29 空调器及其自清洁控制方法和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020238103A1 true WO2020238103A1 (zh) 2020-12-03

Family

ID=67696757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/121336 WO2020238103A1 (zh) 2019-05-29 2019-11-27 空调器及其自清洁控制方法和计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN110173827A (zh)
WO (1) WO2020238103A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173827A (zh) * 2019-05-29 2019-08-27 广东美的制冷设备有限公司 空调器及其自清洁控制方法和计算机可读存储介质
CN110848920A (zh) * 2019-11-29 2020-02-28 广东美的制冷设备有限公司 空调器及其自清洁控制方法和控制装置
CN111380151B (zh) * 2020-03-26 2021-07-27 广东美的制冷设备有限公司 空调器及其空调控制方法、控制装置和可读存储介质
CN112460734B (zh) * 2020-11-26 2022-02-08 珠海格力电器股份有限公司 一种空调自清洁控制方法、装置、存储介质及空调
CN115164387A (zh) * 2022-07-29 2022-10-11 海信空调有限公司 空调器及其自清洁控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106545975A (zh) * 2016-12-08 2017-03-29 美的集团武汉制冷设备有限公司 空调器的换热器清洗控制方法和装置
CN106765926A (zh) * 2016-12-08 2017-05-31 美的集团武汉制冷设备有限公司 空调器的换热器清洗控制方法和装置
JP2018200167A (ja) * 2018-05-29 2018-12-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN109114745A (zh) * 2018-08-31 2019-01-01 海信(山东)空调有限公司 变频空调室外换热器自清洁控制方法及空调器
CN109140666A (zh) * 2018-09-03 2019-01-04 珠海格力电器股份有限公司 一种空调内外机自清洁方法
CN110173827A (zh) * 2019-05-29 2019-08-27 广东美的制冷设备有限公司 空调器及其自清洁控制方法和计算机可读存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6334321B1 (en) * 2000-03-15 2002-01-01 Carrier Corporation Method and system for defrost control on reversible heat pumps
KR100710055B1 (ko) * 2005-11-01 2007-04-20 주식회사 대우일렉트로닉스 에어컨의 증발기 세척 장치
CN105605742B (zh) * 2016-01-26 2019-02-15 广东美的制冷设备有限公司 空调器换热器的清洁方法
CN105486164A (zh) * 2016-02-02 2016-04-13 广东美的制冷设备有限公司 空调器室内换热器的清洁控制方法及空调器
CN106322663B (zh) * 2016-08-24 2019-02-05 青岛海尔空调器有限总公司 一种空调自清洁控制方法
CN106556106B (zh) * 2016-11-09 2020-03-31 青岛海尔空调器有限总公司 一种空调室内机自清洁的控制方法及装置
CN106556107A (zh) * 2016-11-11 2017-04-05 青岛海尔空调器有限总公司 空调换热器自清洁方法
CN107525221A (zh) * 2017-07-31 2017-12-29 青岛海尔空调器有限总公司 一种空调自清洁的控制方法及装置
CN109469965B (zh) * 2017-09-08 2020-10-23 奥克斯空调股份有限公司 一种空调器的清洗方法
CN109489189B (zh) * 2017-09-08 2020-10-23 奥克斯空调股份有限公司 一种空调器的清洗方法
CN107894185A (zh) * 2017-10-10 2018-04-10 广东美的制冷设备有限公司 空调器换热器的自清洁方法和空调器
CN108489030A (zh) * 2018-03-07 2018-09-04 广东美的制冷设备有限公司 空调蒸发器自清洁的控制方法、装置、空调器及存储介质
CN108844178B (zh) * 2018-06-19 2020-11-24 珠海格力电器股份有限公司 空调自清洁控制方法和装置
MY195097A (en) * 2018-10-05 2023-01-10 Hitachi Johnson Controls Air Conditioning Inc Air Conditioner and Method and Program for Controlling Air Conditioner
CN109373504B (zh) * 2018-11-22 2020-01-17 珠海格力电器股份有限公司 一种提高霜层厚度的蒸发器自清洁方法及空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106545975A (zh) * 2016-12-08 2017-03-29 美的集团武汉制冷设备有限公司 空调器的换热器清洗控制方法和装置
CN106765926A (zh) * 2016-12-08 2017-05-31 美的集团武汉制冷设备有限公司 空调器的换热器清洗控制方法和装置
JP2018200167A (ja) * 2018-05-29 2018-12-20 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN109114745A (zh) * 2018-08-31 2019-01-01 海信(山东)空调有限公司 变频空调室外换热器自清洁控制方法及空调器
CN109140666A (zh) * 2018-09-03 2019-01-04 珠海格力电器股份有限公司 一种空调内外机自清洁方法
CN110173827A (zh) * 2019-05-29 2019-08-27 广东美的制冷设备有限公司 空调器及其自清洁控制方法和计算机可读存储介质

Also Published As

Publication number Publication date
CN110173827A (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2020238103A1 (zh) 空调器及其自清洁控制方法和计算机可读存储介质
CN109489189B (zh) 一种空调器的清洗方法
CN109469965B (zh) 一种空调器的清洗方法
JP2020038053A (ja) 空調室内機・室外機の自己清浄方法
CN102297491B (zh) 简化的空调器控制方法
CN102353115B (zh) 一种通信基站节能装置、节能装置控制系统及其控制方法
WO2015008978A1 (en) Drying machine
WO2019042043A1 (zh) 一种空调自清洁的控制方法及装置
CN112283863A (zh) 一种空调外机自清洁控制方法、装置、存储介质及空调
WO2017023127A1 (ko) 공기조화기의 제어방법
WO2017219242A1 (zh) 家用空调及其室外风机运行控制的方法
WO2020034711A1 (zh) 空调器的控制方法、装置、空调器及计算机可读存储介质
WO2020077749A1 (zh) 一拖多空调器及其控制方法、装置和计算机可读存储介质
WO2020151180A1 (zh) 空调电子膨胀阀的控制方法及空调器
WO2017185733A1 (zh) 空调系统及其阀体控制方法
CN201059689Y (zh) 强热型空调器
WO2018098957A1 (zh) 空调器加湿控制方法、装置及空调器
WO2017088304A1 (zh) 基于调温器的变频空调控制装置、终端、系统及方法
WO2021000507A1 (zh) 空调温度调节异常的控制方法、空调器及存储介质
WO2024106748A1 (ko) 연료전지 배열 활용 고효율 일체형 흡수식 냉방시스템
WO2020220656A1 (zh) 空调器的控制方法、空调器及计算机可读存储介质
CN204187779U (zh) 空调器
CN108981047B (zh) 一种热交换器及其方法
WO2016129880A1 (en) Air conditioner
WO2018098956A1 (zh) 空调器蒸发器水洗控制方法、装置及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930717

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930717

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19930717

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2022)