WO2020237813A1 - 复合辐射制冷膜、复合辐射制冷膜材料及其应用 - Google Patents

复合辐射制冷膜、复合辐射制冷膜材料及其应用 Download PDF

Info

Publication number
WO2020237813A1
WO2020237813A1 PCT/CN2019/097977 CN2019097977W WO2020237813A1 WO 2020237813 A1 WO2020237813 A1 WO 2020237813A1 CN 2019097977 W CN2019097977 W CN 2019097977W WO 2020237813 A1 WO2020237813 A1 WO 2020237813A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
refrigeration film
reflective layer
radiant refrigeration
composite radiant
Prior art date
Application number
PCT/CN2019/097977
Other languages
English (en)
French (fr)
Inventor
徐绍禹
Original Assignee
宁波瑞凌新能源科技有限公司
宁波瑞凌新能源材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波瑞凌新能源科技有限公司, 宁波瑞凌新能源材料研究院有限公司 filed Critical 宁波瑞凌新能源科技有限公司
Priority to JP2019553305A priority Critical patent/JP7158405B2/ja
Priority to MX2020003403A priority patent/MX2020003403A/es
Priority to AU2019246840A priority patent/AU2019246840B2/en
Priority to SG11202002818TA priority patent/SG11202002818TA/en
Priority to MYPI2019005961A priority patent/MY193668A/en
Priority to CN201980001316.3A priority patent/CN110972467B/zh
Priority to TW108131578A priority patent/TWI730393B/zh
Publication of WO2020237813A1 publication Critical patent/WO2020237813A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/302Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising aromatic vinyl (co)polymers, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/275Coatings made of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B23/00Machines, plants or systems, with a single mode of operation not covered by groups F25B1/00 - F25B21/00, e.g. using selective radiation effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/082Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising vinyl resins; comprising acrylic resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0242Vinyl halide, e.g. PVC, PVDC, PVF or PVDF (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • B32B2264/0285PET or PBT
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0292Polyurethane particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0228Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0221Vinyl resin
    • B32B2266/0235Vinyl halide, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/025Polyolefin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0264Polyester
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/06Open cell foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/46Arrangements or adaptations of devices for control of environment or living conditions
    • B64G1/50Arrangements or adaptations of devices for control of environment or living conditions for temperature control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/06Coatings; Surface treatments having particular radiating, reflecting or absorbing features, e.g. for improving heat transfer by radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • the invention relates to the technical field of radiant refrigeration, in particular to a composite radiant refrigeration film, a composite radiant refrigeration film material and applications thereof.
  • radiant refrigeration technology As a non-energy-consuming temperature adjustment method, radiant refrigeration technology has good practicability, can enable human beings to achieve harmonious development in environmental protection and energy utilization, and will bring major changes to the energy field.
  • any object with a temperature higher than absolute zero will produce electromagnetic radiation.
  • the radiation wavelength is also different.
  • infrared radiation waveband in terms of the nature of radiation, when atoms or groups of atoms in a molecule change from a high-energy vibrational state to a low-energy vibrational state, infrared radiation in the 2.5 ⁇ m-25 ⁇ m band is generated. From the analysis of the atmospheric spectrum transmission characteristics by scientists, it can be known that the atmosphere has different transmittances to electromagnetic waves of different wavelengths.
  • the band with higher transmittance is called the "atmospheric window", such as 0.3 ⁇ m ⁇ 2.5 ⁇ m, 3.2 ⁇ m ⁇ 4.8 ⁇ m , 7 ⁇ m ⁇ 14 ⁇ m.
  • the spectral transmission characteristics of the atmosphere are mainly determined by the water vapor, carbon dioxide and ozone in the atmosphere. Changes in their content will cause changes in the transmittance, but the distribution of the transmission spectrum does not change much. Therefore, the thermal energy of objects on the surface can be exchanged through radiation, and its own heat can be discharged into the outer space with a temperature close to absolute zero in the form of 7 ⁇ m-14 ⁇ m electromagnetic waves through the "atmospheric window" to achieve the purpose of self-cooling.
  • the purpose of the present invention is to provide a composite radiant refrigeration film, a composite radiant refrigeration film material and applications thereof with good cooling effect.
  • a composite radiant refrigeration film which includes a top layer and a reflective layer disposed under the top layer.
  • the top layer includes one or more polymers, and the polymers have different properties in the 7 ⁇ m-14 ⁇ m band. Emissivity below 80%;
  • the top layer includes a first emission layer close to the reflective layer and a second emission layer far away from the reflective layer.
  • the material of the first emission layer includes a first polymer, and the first emission layer further includes a plurality of The first cell, the plurality of first cells are distributed inside the first emission layer, the material of the second emission layer includes a second polymer, and the second emission layer further includes a plurality of second cells
  • the plurality of second pores are distributed inside the second emission layer, the pore size of the first pores is 1 ⁇ m to 20 ⁇ m, and the pore size of the second pores is 1 nm to 200 nm.
  • the volume fraction of the first cells in the first emission layer is 1% to 20%, and the volume fraction of the second cells in the second emission layer is 1. % To 20%.
  • the first emission layer further includes a first additive, and the first additive is embedded in at least a part of the first cells; and/or, the second emission layer further includes a Two additives, the second additive is embedded in at least part of the second cells.
  • the particle size of the first additive is 1 ⁇ m to 20 ⁇ m; and/or,
  • the particle size of the second additive is 1 nm to 200 nm.
  • the volume fraction of the first additive in the first emission layer is 0-20%
  • the volume fraction of the second additive in the second emission layer is 0-20%
  • the first additive and the second additive respectively include inorganic fillers, and the inorganic particles are selected from glass beads, ceramic beads, silicon oxide particles, silicon carbide particles, and silicon nitride particles. , At least one of barium sulfate particles and calcium carbonate particles; and/or,
  • the first additive and the second additive respectively include an organic filler, and the organic filler is selected from at least one polymer containing C-O, C-Cl, C-F, C-N, C-Si, and Si-O functional groups.
  • the organic filler includes polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), Polycarbonate (PC), polyvinyl chloride (PVC), polymethyl methacrylate (PMMA), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), perfluoroethylene propylene copolymer (FEP), At least one of polydimethylsiloxane (PDMS) and polyurethane (PU).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PC Polycarbonate
  • PVC polyvinyl chloride
  • PMMA polymethyl methacrylate
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • FEP perfluoroethylene propylene copolymer
  • PDMS polydimethylsiloxane
  • PU polyure
  • the first polymer is selected from poly-4-methylpentene (TPX), poly-4-methyl-1-pentene (PMP), polyethylene (PE), polypropylene ( At least one of PP) and polystyrene (PS), and the second polymer is selected from at least one of acrylic resin, polyurethane resin, and fluorine-containing resin.
  • TPX poly-4-methylpentene
  • PMP poly-4-methyl-1-pentene
  • PE polyethylene
  • PS polypropylene
  • PS polystyrene
  • the second polymer is selected from at least one of acrylic resin, polyurethane resin, and fluorine-containing resin.
  • the first additive and the second additive include organic fillers, and the organic fillers are selected from poly-4-methylpentene, poly-4-methyl-1-pentene, poly At least one of ethylene, polypropylene, and polystyrene.
  • the first polymer is selected from at least one of C-O, C-Cl, C-F, C-N, C-Si, and Si-O functional group polymers.
  • the first polymer is selected from polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), polyvinyl chloride (PVC), polymethylmethacrylate (PMMA), polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), perfluoroethylene propylene copolymer ( At least one of FEP), polydimethylsiloxane (PDMS), and polyurethane (PU).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PMMA polymethylmethacrylate
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • PU polyurethane
  • convex portions are distributed on the surface of the second emitting layer that is away from the first emitting layer.
  • the height of the convex portion is 1 ⁇ m to 100 ⁇ m.
  • the thickness of the first emission layer is 10 ⁇ m to 300 ⁇ m, and the thickness of the second emission layer is 5 ⁇ m to 150 ⁇ m.
  • the reflective layer includes a metal reflective layer
  • the metal reflective layer includes at least one of gold, silver, aluminum, copper, and zinc.
  • the metal reflective layer includes a first metal reflective layer close to the top layer and a second metal reflective layer far away from the top layer, the first metal reflective layer and the second metal reflective layer
  • the material is the same or different, the thickness of the first metal reflective layer is 5nm-200nm, preferably, the thickness of the first metal reflective layer is 5nm-150nm, and the thickness of the second metal reflective layer is 5nm-200nm
  • the thickness of the second metal reflective layer is 5 nm to 150 nm.
  • the metal reflective layer further includes an intermediate layer connected between the first metal reflective layer and the second metal reflective layer.
  • the reflective layer includes a resin reflective layer, and the resin reflective layer has a plurality of third cells.
  • the pore diameter of the third cell is 0.2 ⁇ m-20 ⁇ m.
  • the resin reflective layer includes a first resin reflective layer, a second resin reflective layer, and a third resin reflective layer arranged in sequence, and the third cells are formed in the second resin reflective layer .
  • the volume fraction of the third cells in the second resin reflective layer is 2% to 30%.
  • the thickness of the resin reflective layer is 25 ⁇ m to 300 ⁇ m.
  • the resin reflective layer includes poly-4-methylpentene (TPX), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), At least one of polyethylene naphthalate (PEN), acrylonitrile-butadiene-styrene copolymer (ABS), polystyrene (PS), polypropylene (PP), polycarbonate (PC) kind.
  • TPX poly-4-methylpentene
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PS polystyrene
  • PP polypropylene
  • PC polycarbonate
  • the reflective layer includes a metal reflective layer close to the top layer and a resin reflective layer far away from the top layer.
  • a composite material comprising the above-mentioned composite radiant refrigeration film, the composite material is composed of the composite radiant refrigeration film and a base material, and the reflective layer of the composite radiant refrigeration film is arranged close to One side of the substrate.
  • the substrate is at least one of metal, plastic, rubber, asphalt, waterproof material, concrete, cement, textile, braid, wood, ceramic tile, glass product or organic synthetic material.
  • an application method of the above-mentioned composite radiant refrigeration film including: arranging the composite radiant refrigeration film on a heat dissipation body, and thermally communicating the composite radiant refrigeration film and the heat dissipation body.
  • the present invention has the beneficial effect that the first cell and the second cell cooperate with each other to greatly increase the emissivity of the top layer in the 7 ⁇ m-14 ⁇ m band, thereby improving the cooling effect of the composite radiant refrigeration film.
  • the provision of cells with different pore diameters in the polymer can greatly increase the passive cooling effect.
  • the first cells formed in the first polymer and the second cells formed in the second polymer have direct sunlight And scattering has a high reverse heat dissipation.
  • surface plasmon resonance can be generated between the cell surface of different pore diameters and the polymer.
  • the surface plasmon resonance has a wavelength range in the atmospheric window (7 ⁇ m ⁇ 14 ⁇ m).
  • the combination of the first emission layer, the second emission layer and the reflection layer has a high reflectivity in the solar spectrum and a high emissivity in the thermal spectrum.
  • Such a structure can set the substrate under the composite radiant refrigeration film , The temperature of the device, structure or object is reduced to achieve a passive radiant cooling effect.
  • Figure 1 is a schematic cross-sectional view of a first embodiment of the composite radiant refrigeration film of the present invention
  • FIG. 2 is a schematic cross-sectional view of a second embodiment of the composite radiant refrigeration film of the present invention.
  • FIG. 3 is a schematic cross-sectional view of a third embodiment of the composite radiant refrigeration film of the present invention.
  • FIG. 4 is a schematic cross-sectional view of a fourth embodiment of the composite radiant refrigeration film of the present invention.
  • Fig. 5 is the change trend of the temperature in the model spaces A, B, and C of the present invention over time
  • Figure 6a is a schematic diagram of the temperature measuring points H1 and I1 at the exact center position of the water inside the water tanks H and I;
  • Fig. 6b is a graph of the temperature change of the temperature measurement points H1 and I1 in the water tank and the environmental temperature change in one of the embodiments.
  • the “solar radiation” mentioned in the present invention mainly refers to electromagnetic radiation with a wavelength from about 300 nm to 2.5 ⁇ m.
  • the "reflectivity" used in the present invention with respect to materials or structures is the fraction of any incident electromagnetic radiation reflected from the surface.
  • a perfect reflector is defined as having a reflectance of 1
  • a perfect absorber is defined as having a reflectance of zero.
  • the high reflectivity in the present invention means that the material or structure has a reflectivity greater than about 80% within a specified range.
  • the "emissivity" used in the present invention with respect to a material or structure is its effectiveness in emitting energy in the shape of electromagnetic radiation.
  • a perfect black body emitter is defined as having an emissivity of 1
  • a perfect non-emitter is defined as having an emissivity of zero.
  • the high emissivity mentioned in the present invention means that the material or structure has an emissivity greater than about 80% within a specified range.
  • the "transmittance" used with respect to materials or structures in the present invention refers to the proportion of electromagnetic waves that are transmitted through the materials or structures in a predetermined waveband.
  • An opaque material or structure is defined as having zero transmittance.
  • the high transmittance mentioned in the present invention means that the material or structure has a transmittance greater than about 80% within a specified range.
  • An embodiment of the present invention provides a composite radiant refrigeration film, as shown in Figures 1 to 4, comprising a top layer 1 and a reflective layer 2 provided under the top layer 1.
  • the top layer 1 includes one or more polymers,
  • the 7 ⁇ m-14 ⁇ m band has an emissivity of not less than 80%, and the reflective layer 2 has a high reflectivity for at least a part of solar radiation.
  • the top layer 1 includes a first emission layer 11 close to the reflective layer 2 and a second emission layer 12 far away from the reflective layer 2.
  • the material of the first emission layer 11 includes a first polymer, and the first polymer also includes a plurality of first cells , The plurality of first cells are distributed inside the first emission layer, the material of the second emission layer 12 includes a second polymer, the second polymer also includes a plurality of second cells, the second cells are distributed in the first Inside the second emission layer, the first cell has a pore diameter of 1 ⁇ m-20 ⁇ m, and the second cell has a pore diameter of 1 nm to 200 nm.
  • the invention uses high cost-effective infrared phonon polarization resonance polymer materials and micro-nano-level cells formed in the polymer layer, which can greatly increase the passive cooling effect, and the micro-nano cells can be controlled and strengthened by the size effect Infrared radiation spectrum.
  • the first cells formed in the first polymer and the second cells formed in the second polymer have high reverse heat dissipation to direct sunlight and scattering; on the other hand, the first cells Surface plasmon resonance can be generated between the surface of the second cell and the polymer.
  • the surface plasmon resonance has a wavelength range within the atmospheric window wavelength range (7 ⁇ m-14 ⁇ m).
  • the polymer has an emissivity of not less than 80% in the 7 ⁇ m-14 ⁇ m band, and is configured to emit heat radiation related to the generated surface plasmon resonance, so the first emission layer having a plurality of first cells and The second emissive layer with multiple second cells has high emissivity in the thermal spectrum.
  • Such a structure arrangement can reduce the temperature of the substrate, device, structure or object under the composite radiant refrigeration film to realize passive radiant refrigeration effect.
  • the emission layer can generate one or more Mie resonances that can penetrate the infrared (7 ⁇ m-14 ⁇ m) band of the atmospheric window.
  • the first emission layer and the second emission layer It has a high absorption rate in the thermal spectrum. Therefore, the first and second emission layers containing cells are good emitters of heat radiation, which can further enhance the emissivity, so that the top layer 1 has an excellent radiant cooling function.
  • two kinds of cells with different pore diameters are arranged in layers. Cells with different pore sizes have different radiant cooling effects.
  • the first cell with a larger pore size is formed in the first polymer inside, and the pore size is smaller.
  • the second cells are formed in the second polymer on the outside. Since the wavelength range of the atmospheric window is mainly concentrated in 7 ⁇ m ⁇ 14 ⁇ m, the first emission layer containing the first cell (pore size is 1 ⁇ m ⁇ 20 ⁇ m) is formed on the inside and plays the role of the main atmospheric window emissivity, containing the second cell ( A second emission layer with an aperture of 1nm-200nm) is formed on the outside to assist in enhancing the atmospheric window emissivity of the composite radiant refrigeration film.
  • Localized surface phonon excimers generated by Mie scattering can intensify infrared radiation, specifically, Mie scattering (Mie scattering), when the first cell/second cell in the first emission layer/second emission layer Scattering occurs when the diameter of the radiation corresponds to the wavelength of the radiation.
  • Mie scattering is mainly caused by the first cells/second cells in the first emission layer/second emission layer, etc.
  • the scattering intensity of Mie scattering is inversely proportional to the square of the wavelength, and the scattering is stronger in the forward direction than in the backward direction, and the directivity is more obvious.
  • each layer is indicative, and it does not mean that each layer should have the relative thickness relationship shown in the figure.
  • the shape, pore size, density, etc. of the cells in each layer They are all indicative, which do not limit the shape, pore size, density, etc. of the cells.
  • the volume fraction of the first cells in the first emission layer 11 is 1% to 20%, and the volume fraction of the second cells in the second emission layer 12 is 1% to 20%.
  • the volume fraction of the first cells in the first emission layer 11 is 1% to 10%, and the volume fraction of the second cells in the second emission layer 12 is 1% to 8%.
  • the first emission layer 11 further includes a first additive.
  • the first additive is dispersed in the first emission layer 11 and is at least partially embedded in the first cells.
  • the first additive can be fully or partially filled.
  • the first cell In other words, at least part of the first cells in the first emissive layer 11 can contain the first additive, and the first additive filled in the first cells may fill the first cells or not. hole.
  • the particle size of the first additive is 1 ⁇ m to 20 ⁇ m, and the first additive is selected from at least one of glass beads, ceramic beads, silicon oxide, silicon carbide, silicon nitride, barium sulfate, and calcium carbonate.
  • the second emission layer 12 further includes a second additive.
  • the second additive is dispersed in the second emission layer 12 and is at least partially embedded in the second cells.
  • the second additive can be fully or partially filled.
  • the second cell Preferably, the particle size of the second additive is 1 nm to 200 nm, and the second additive is selected from at least one of glass beads, ceramic beads, silicon oxide, silicon carbide, silicon nitride, barium sulfate, and calcium carbonate.
  • first additive and the second additive may also include organic fillers, which are selected from at least one of polymers containing CO, C-Cl, CF, CN, C-Si, and Si-O functional groups. kind.
  • the above-mentioned organic filler is selected from polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyvinyl chloride, polymethylmethacrylate At least one of ester, polyvinylidene fluoride, polytetrafluoroethylene, perfluoroethylene propylene copolymer, polydimethylsiloxane, and polyurethane resin.
  • the above-mentioned organic filler may also be selected from at least one of poly-4-methylpentene, poly-4-methyl-1-pentene, polyethylene, polypropylene, and polystyrene.
  • the first cell and/or the second cell may or may not be filled with other additives.
  • the cell When the cell is filled with an additive with radiant cooling capability, the particles of the additive with radiant cooling capability are embedded in the first cell.
  • the additives can further enhance the emissivity of the top layer 1; when the cells are not filled with other additives ,
  • the cell itself is formed in the polymer, and the cell has a high reverse heat dissipation for direct sunlight and scattering.
  • surface plasmon resonance can be generated between the surface of the cell and the polymer, and the surface plasmon resonance
  • the generation has a wavelength range within the atmospheric window wavelength range (7 ⁇ m-14 ⁇ m), that is, the cells have the ability to enhance the emissivity of the top layer 1.
  • the top layer 1 has a high transmittance to solar radiation, and at least a part of the solar radiation passing through the top layer 1 is reflected on the reflective layer 2, so that the solar radiation reaching the other side of the reflective layer 2 can be reduced.
  • first cells are formed in the first emission layer 11 of the top layer 1, no additives are filled in the first cells, second cells are formed in the second emission layer 12, and at least part of the second cells are Fill the second additive.
  • first cells are formed in the first emission layer 11 of the top layer 1, at least part of the first cells are filled with a first additive, and second cells are formed in the second emission layer 12, and the second cells are No additives are filled inside.
  • first cells are formed in the first emission layer 11 of the top layer 1, at least part of the first cells are filled with the first additive, and second cells are formed in the second emission layer 12, and at least part of the second cells The cells are filled with a second additive.
  • the polymer when the additive is dispersed in the polymer, the polymer will form pores that contain the additive around the additive.
  • the size of the pores may be as large as the particle size of the additive contained therein, but this does not rule out Under the influence of various factors, the pore size of some bubbles is larger than the particle size of the additives contained therein.
  • Some particles may form smaller clusters, that is, the additives contained in the cells may exist in the form of smaller clusters. .
  • cells can be formed around the additives through biaxial stretching, solvent evaporation processes or other processes.
  • the preparation process includes: raw material conveying ⁇ drying ⁇ melt extrusion ⁇ casting ⁇ cooling ⁇ longitudinal stretching ( ⁇ transverse stretching ⁇ drawing ⁇ winding).
  • the preparation method of biaxial stretching can also be carried out at the same time of longitudinal stretching and transverse stretching, which can be completed in one step.
  • Liquid carbon dioxide is uniformly mixed in the polymer, and the liquid carbon dioxide vaporizes to produce small cells during the heating process, which are stretched to form cells of the required size.
  • Dissolve the first/second polymer and water in an organic solvent such as acetone, ethyl acetate, butyl acetate, tetrahydrofuran
  • an organic solvent such as acetone, ethyl acetate, butyl acetate, tetrahydrofuran
  • first emissive layer/second emissive layer formed by polymers and additives have fewer cells
  • a single-layer extrusion/multi-layer co-extrusion/melt film formation/coating/solution film formation method can be used.
  • the preparation process using single-layer extrusion/multi-layer co-extrusion/melt film formation includes: raw material conveying ⁇ drying ⁇ melt extrusion ⁇ casting ⁇ cooling ⁇ traction ⁇ winding.
  • the main steps of the melt film forming method include casting and film blowing processes.
  • the film blowing process may include an upward blowing cooling process or a downward blowing water cooling process.
  • the preparation process of coating/solution film formation may include: unwinding ⁇ surface treatment (surface treatment is mainly for dust removal and corona, which is used to maintain the cleanliness of the substrate and improve adhesion) ⁇ coating ⁇ drying ⁇ winding.
  • the coating is to coat a mixture of polymer and additives on any surface.
  • two additives with different particle diameters are arranged in layers, so that the first additive with a larger particle size is dispersed in the first polymer on the inner side, and the second additive with a smaller particle size is dispersed in the second polymer on the outer side.
  • the passive cooling effect of the top layer 1 is greatly improved compared with the prior art; in addition, due to the nano-level additives contained in the second emitting layer 12, the second emitting layer 12 is endowed with excellent hydrophobic properties, which is beneficial to improve the top layer 1.
  • the self-cleaning ability is arranged in layers, so that the first additive with a larger particle size is dispersed in the first polymer on the inner side, and the second additive with a smaller particle size is dispersed in the second polymer on the outer side.
  • the materials of the first polymer and the second polymer may be the same or different.
  • the types of the first additive and the second additive may be the same or different. That is, the first cell and the second cell may be in the same polymer layer, the first additive and the second additive may also be in the same polymer layer, and the first polymer or the second polymer may be a polymer. It may include a combination of multiple polymers, and the first additive or the second additive may be one additive or a combination of multiple additives.
  • the first polymer is selected from at least one of poly-4-methylpentene, poly-4-methyl-1-pentene, polyethylene, polypropylene, and polystyrene
  • the second The polymer is selected from at least one of acrylic resin, polyurethane resin, and fluorine-containing resin.
  • the second polymer has good weather resistance, so the second emission layer 12 has good weather resistance.
  • the first polymer is a polymer containing C-O, C-Cl, C-F, C-N, C-Si, Si-O functional groups.
  • the first polymer is selected from polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polycarbonate, polyvinyl chloride, polymethyl At least one of methyl acrylate, polyvinylidene fluoride, polytetrafluoroethylene, perfluoroethylene propylene copolymer, polydimethylsiloxane, and polyurethane.
  • Radiation cooling to outer space during the day is passive cooling, in which the selective reflection and emission reflect most of the sunlight (wavelength 300nm ⁇ 2500nm), and at the same time transfer heat to outer space in the form of infrared radiation through the atmospheric transparent window.
  • Polymer radiant refrigeration films and coatings can be mass-produced, are low-cost, and are suitable for large-scale systems.
  • the vibration energy of the functional group affects the infrared absorption and emission of the polymer.
  • functional groups have various vibration forms, such as stretching vibration and bending vibration, and various vibration frequencies. Therefore, a single type of polymer with multiple functional groups may have multiple vibration frequencies.
  • the vibration forms of functional groups in polymers include stretching vibration, in-plane bending vibration, out-of-plane bending vibration, and deformation vibration.
  • Stretching vibration includes symmetric stretching vibration and asymmetric stretching vibration; in-plane bending vibration includes shear vibration And in-plane swing; out-of-plane bending vibration includes out-of-plane swing and torsion vibration; deformation vibration includes symmetric deformation vibration and antisymmetric deformation vibration.
  • Each functional group and their multiple vibration forms will cause a large number of infrared absorption/emission peaks in the polymer.
  • Table 1 lists the vibration area and the corresponding functional groups.
  • the vibration pattern in the wide wavenumber (4000cm -1 ⁇ 400cm -1 )/wavelength (2.5 ⁇ m ⁇ 25 ⁇ m) range can be divided into several regions.
  • the spectrum at the larger wavenumber (4000cm -1 ⁇ 2500cm -1 )/wavelength (2.5 ⁇ m ⁇ 4 ⁇ m) end is the stretching vibration region of the functional group XH (where X represents C, O, N, etc.), where CH, OH and NH, etc.
  • XH represents C, O, N, etc.
  • the XH stretching vibration area is the triple bond area, 2500cm -1 ⁇ 2000cm -1 /2.5 ⁇ m ⁇ 4 ⁇ m.
  • the stretching vibration of the C ⁇ C and C ⁇ N functional groups is very weak, they have a larger force constant. Relatively strong absorption rate.
  • the fingerprint area also called the crowded area
  • the wave number/wavelength range is 1500 cm -1 to 600 cm -1 /6.7 ⁇ m to 16.7 ⁇ m.
  • CY groups where Y represents halogen elements such as F, Cl and Br
  • CO groups CO groups
  • CN groups C-Si groups
  • Si -O group At the far end of the infrared spectrum is the framework vibration region, where the vibration of heavy atoms and molecules is responsible for infrared absorption and emission.
  • the CO, C-Cl, CF, CN, C-Si, Si-O functional group polymers can be used as polymers for daytime radiant refrigeration.
  • the solar energy absorption rate, the possibility of mass production, physical and chemical stability, durability, and application goals need to be considered for further selection of polymers.
  • the present invention is based on the relationship between polymer functional groups and infrared thermal emissivity and solar energy absorptivity, as well as the overlap of the atmospheric window (7 ⁇ m-14 ⁇ m) and the infrared spectrum of functional groups in the fingerprint region, and selects polymers with specific functional groups to achieve daytime
  • the radiant refrigeration ability below ambient temperature if the film made of these polymers has a solar reflective layer with higher reflectivity on the back, the radiant refrigeration effect will be better.
  • protrusions 121 are distributed on the outer surface of the second emitting layer 12, and the protrusions 121 may be micro-protrusions arranged in parallel, or a plurality of micro-protrusions distributed in an array.
  • the microstructure 121 substantially covers the outer surface of the second emitting layer 12, and the height ranges from 1 ⁇ m to 100 ⁇ m, preferably from 10 ⁇ m to 100 ⁇ m, more preferably, from 50 ⁇ m to 100 ⁇ m.
  • the convex part 121 may enhance the emission function of the second emission layer 12.
  • the cross-sectional shape of the convex portion 121 may be a triangle, a trapezoid, a semicircle, or other irregular shapes.
  • the convex portion 121 in the drawings of the present invention is merely illustrative, and does not mean that the convex portion 121 needs to have the shape, size, etc. shown in the figure.
  • the convex portion 121 on the outer surface of the second emission layer 12 may be formed by etching, embossing, printing, etc., which is not limited in the present invention.
  • the convex portion 121 can effectively reflect visible light and near-infrared light from different incident angles, especially when the incident angle reaches 30°-60°, the composite radiant refrigeration film can basically reflect all incident light.
  • the convex part 121 can also endow the second emitting layer 12 with extremely high emissivity, and can radiate electromagnetic waves of 7 ⁇ m to 14 ⁇ m to the outside to achieve the purpose of heat dissipation, that is, at this time, the emissivity of the second emitting layer 12 is close to that of a perfect black body. rate.
  • the thickness of the first emission layer 11 is 10 ⁇ m ⁇ 300 ⁇ m, and the thickness of the second emission layer 12 is 5 ⁇ m ⁇ 150 ⁇ m.
  • the reflective layer 2 includes a metal reflective layer 21, which can be, but is not limited to, metals such as gold, silver, aluminum, copper, zinc, or alloys of these metals.
  • the metal reflective layer 21 is mainly used to reflect ultraviolet light, visible light, and near-infrared light.
  • the metal reflective layer 21 can be one layer or multiple layers.
  • the metal reflective layer 21 includes a first metal reflective layer 211 close to the top layer 1 and a second metal reflective layer 212 far away from the top layer 1.
  • a metal reflective layer 211 is mainly used to reflect ultraviolet light, visible light and near-infrared light
  • the second metal reflective layer 212 is mainly used to enhance the reflection of ultraviolet light, visible light and near-infrared light.
  • the first metal reflective layer 211 is a silver reflective layer
  • the second metal reflective layer 212 is an aluminum reflective layer.
  • the thickness of the first metal reflective layer 211 is 5 nm to 200 nm
  • the thickness of the second metal reflective layer 212 is 5 nm to 200 nm.
  • an intermediate layer 213 is further provided between the first metal reflective layer 211 and the second metal reflective layer 212.
  • the intermediate layer 213 functions to connect the first metal reflective layer 211 and the second metal reflective layer 212, and can also avoid electrochemical corrosion caused by directly plating a metal layer on the metal layer.
  • the material of the intermediate layer 213 can be a polymer adhesive, such as acrylate glue or polyurethane glue, or a ceramic material, such as SiO 2 , Al 2 O 3 , TiO 2 , ZnO, Si 3 N 4 , Ti 3 N 4 , ZnS, MgF 2 or CaF 2 , when the intermediate layer 213 is a polymer adhesive, the thickness is 1 ⁇ m to 100 ⁇ m; when the intermediate layer 213 is a ceramic material, the thickness is 5 nm to 200 nm.
  • a polymer adhesive such as acrylate glue or polyurethane glue
  • a ceramic material such as SiO 2 , Al 2 O 3 , TiO 2 , ZnO, Si 3 N 4 , Ti 3 N 4 , ZnS, MgF 2 or CaF 2
  • the reflective layer 2 includes a resin reflective layer 22 having a plurality of third cells 220 in the resin reflective layer 22, and the volume of the third cells 220 in the resin reflective layer 22 is 2% ⁇ 30%, preferably 5%-15%, more preferably 8%-10%.
  • the third cell 220 can refract and scatter the light entering the resin reflective layer 22, thereby increasing the reflectivity of the resin reflective layer 22 and thereby the reflectivity of the reflective layer 2.
  • the resin reflective layer 22 is light-colored, such as white or transparent.
  • the pore diameter of the third cell is 0.2 ⁇ m to 20 ⁇ m.
  • the shape and size of the third cell 220 in Figures 4 and 5 are indicative, and it does not mean that the cell 220 of the present invention must have the shape and size shown in the figure.
  • the distribution of 220 in the resin reflective layer 22 is not limited to that shown in the figure.
  • the resin reflective layer 22 may be, but is not limited to, TPX, PET, PBT, PEN, ABS, PS, PP, or PC.
  • the thickness of the resin reflection layer 22 is 25 ⁇ m to 300 ⁇ m, and preferably, the thickness of the resin reflection layer 22 is 50 ⁇ m to 150 ⁇ m.
  • the resin reflective layer 22 may have a single-layer structure or a multilayer structure.
  • the resin reflective layer 22 includes a first resin reflective layer 221, a second resin reflective layer 222, and a third resin reflective layer 223 arranged in sequence. As shown in FIG. 5, the third cell 220 is formed in the second resin reflective layer. 222 within.
  • the thickness of the first resin reflective layer and the third resin reflective layer are both in the range of 1 ⁇ m to 50 ⁇ m, and the thickness of the second resin reflective layer is in the range of 20 ⁇ m to 300 ⁇ m.
  • the volume fraction of the third cells in the second resin reflective layer 222 is 2% to 30%.
  • the cell structure 220 in the resin reflective layer 22 is a structure formed by a biaxial stretching process. If the resin reflective layer 22 is a single-layer structure, the film is easily broken during the stretching process, and due to the foam The existence of the holes makes the surface of the second resin reflective layer 222 uneven. If the metal reflective layer is directly plated on the second resin reflective layer 222, the flatness of the metal reflective layer will be affected, and the reflectivity of the metal reflective layer will be affected.
  • the first resin reflective layer 221 and the third resin reflective layer 223 arranged on both sides of the second resin reflective layer 222 can be used as support layers, which are beneficial to improve the stability of the resin reflective layer 22 during preparation, and prevent film breakage.
  • the substrate of the metal reflective layer ensures the flatness of the metal reflective layer.
  • the reflective layer 2 includes a metal reflective layer 21 and a resin reflective layer 22 at the same time, and the resin reflective layer 22 is disposed on the side of the metal reflective layer 21 away from the top layer 1.
  • the structures of the metal reflective layer 21 and the resin reflective layer 22 are the same as those described above, and will not be repeated here.
  • Another embodiment of the present invention also provides a composite radiant refrigeration film material, which is formed by compounding the above-mentioned composite radiant refrigeration film and a substrate, and the reflective layer of the composite radiant refrigeration film is arranged on a side close to the substrate.
  • the substrate is selected from at least one of metal, plastic, rubber, asphalt, waterproof material, concrete, cement, textile, braid, wood, ceramic tile, glass product or organic synthetic material.
  • the above-mentioned substrates are not exhaustive, and the composite material may also be formed by the composite radiant refrigeration film and other materials.
  • Another embodiment of the present invention provides an application of the above-mentioned composite radiant refrigeration film, which includes arranging the composite radiant refrigeration film on the heat dissipation body, and thermally communicates the composite radiant refrigeration film and the heat dissipation body.
  • the heat in the heat dissipation body can be emitted through the atmospheric window in the form of infrared radiation, which can effectively reduce the temperature of the heat dissipation body without consuming additional energy. It is mainly used for heat dissipation that requires cooling.
  • the outer surface of the main body has a wide range of applications, including construction, photovoltaic modules and systems, automobiles, outdoor supplies, agriculture, animal husbandry and aquaculture, aerospace, cold chain transportation, outdoor tanks, textile industry, outdoor communication equipment, industrial equipment (such as outdoor power distribution cabinets.), public facilities (such as street lamps and radiator parts, toilet roof walls, and the pavement of venues), cooling water systems, energy systems (such as: air conditioning/refrigeration/heating systems combined), energy-saving equipment, etc., As well as outdoor equipment and facilities that require cooling or heat dissipation, the composite radiant refrigeration film can also be used to improve the efficiency of solar cells, traditional power plants and even water treatment.
  • test the reflectance of ultraviolet, visible and near-infrared light in the range of 300nm ⁇ 2500nm put the sample into Perkin Elmer, Lambda 950 UV/Vis/NIR Spectrometer, and measure the reflectance of the wavelength range of 300nm ⁇ 2500nm. The interval is 1nm, and the average reflectivity of the film in the 300nm ⁇ 2500nm band is taken as the reflectivity R of the film in the ultraviolet, visible and near-infrared light band, that is, the solar reflectance R of the film at 300nm ⁇ 2500nm;
  • Measurement of infrared emissivity E Use SOC-100 Hemispherical Directional Reflectometer to test infrared emissivity E with wavelengths of 7 ⁇ m to 14 ⁇ m.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 20 ⁇ m.
  • the second emission layer includes PVDF polymer and second cells dispersed in the PVDF polymer.
  • the average pore diameter of the second cells is 20nm.
  • the second cells are in the second emission layer.
  • the volume fraction is 3%;
  • the thickness of the first emission layer is 50 ⁇ m, the first emission layer includes TPX polymer and first cells, the average pore diameter of the first cells is 5 ⁇ m, and the volume fraction of the first cells in the first emission layer is 15%;
  • the thickness of the metal reflection layer is 100 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.18%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 93.38%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 50 ⁇ m.
  • the second emission layer includes PVDF polymer, second cells dispersed in PVDF polymer, and SiO 2 particles.
  • the average pore diameter of the second cells is 200 nm.
  • the volume fraction of the second emitting layer was 20%, an average particle diameter of SiO 2 particles was 200 nm, the volume fraction of SiO 2 particles in the second emitting layer was 20%, wherein the volume fraction of approximately 10% SiO 2 particles Embedded in the second cell;
  • the thickness of the first emission layer is 100 ⁇ m.
  • the first emission layer includes PET polymer, first cells dispersed in the PET polymer, and ceramic microbeads.
  • the average pore diameter of the first cells is 10 ⁇ m.
  • the volume fraction in the first emitting layer is 20%, the average particle size of the ceramic beads is 10 ⁇ m, and the volume fraction of ceramic beads in the first emitting layer is 20%, of which approximately 8% of the volume fraction of ceramic beads is embedded Set in the first cell;
  • the thickness of the metal reflection layer is 200 nm, and the metal reflection layer is an aluminum layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R of 300 nm to 2500 nm of 92.16%, and an infrared emissivity E of 7 ⁇ m to 14 ⁇ m of 94.36%.
  • the difference between the composite radiant refrigeration film of Example 3 and Example 1 is that the outer surface of the second emitting layer has protrusions, which are formed by roller embossing with a microstructure on the surface, and the height of the protrusions is 1 ⁇ m.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.71%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 94.34%.
  • the difference between the composite radiant refrigeration film of Example 4 and Example 1 is that the outer surface of the second emitting layer has protrusions, which are formed by roller embossing with a microstructure on the surface, and the height of the protrusions is 100 ⁇ m.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.55%, and an infrared transmittance E from 7 ⁇ m to 14 ⁇ m of 93.62%.
  • the difference between the composite radiant refrigeration film of Example 5 and Example 1 is that in the second emission layer, the average pore size of the second cells is 50 nm, and in the first emission layer, the average pore size of the first cells is 20 ⁇ m.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.65%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 92.97%.
  • the difference between the composite radiant refrigeration film of Example 6 and Example 1 is that in the second emission layer, the average pore size of the second cells is 1 nm, and in the first emission layer, the average pore size of the first cells is 1 ⁇ m.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.18%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 92.47%.
  • the difference between the composite radiant refrigeration film of Example 7 and Example 2 is: in the first emitting layer, the volume fraction of the first cells in the first emitting layer is 1%, of which there is roughly 2% ceramic volume fraction.
  • the microbeads are embedded in the first cell, in the second emitting layer, the volume fraction of the second cell in the second emitting layer is 1%, of which approximately 1% of the volume fraction of SiO 2 particles are embedded in Inside the second cell.
  • the composite radiant refrigeration film has a solar reflectance R of 300 nm to 2500 nm of 92.25%, and an infrared emissivity E of 7 ⁇ m to 14 ⁇ m of 93.29%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, a first metal reflective layer, an intermediate layer, and a second metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 150 ⁇ m.
  • the second emission layer includes PVDF polymer, second cells dispersed in PVDF polymer, and barium sulfate particles.
  • the average pore diameter of the second cells is 80nm.
  • the volume fraction in the second emission layer is 6%, the average particle size of barium sulfate particles is 80nm, the volume fraction of barium sulfate particles in the second emission layer is 6%, of which there are roughly 3% by volume barium sulfate particles Embedded in the second cell;
  • the thickness of the first emission layer is 300 ⁇ m.
  • the first emission layer includes TPX polymer, first cells dispersed in the TPX polymer, and CaCO 3 particles.
  • the average pore diameter of the first cells is 20 ⁇ m, and the first cell the volume fraction of the first emitting layer was 15%, an average particle diameter of 20 m CaCO 3 particles, CaCO 3 particle volume fraction in the first emitting layer was 15%, wherein the volume fraction of approximately 5% CaCO 3 particles Embedded in the first cell;
  • the thickness of the first metal reflection layer is 200 nm, and the first metal reflection layer is a silver layer plated on the first emission layer;
  • the thickness of the middle layer is 200nm, and the material of the middle layer is alumina ceramic;
  • the thickness of the second metal reflective layer is 200 nm, and the second metal reflective layer is a silver layer plated on the intermediate layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 95.29%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 94.71%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, a first metal reflective layer, an intermediate layer, a second metal reflective layer, and a resin reflective layer arranged in order from top to bottom, wherein:
  • the thickness of the second emission layer is 5 ⁇ m.
  • the second emission layer includes PMMA polymer, second cells dispersed in the PMMA polymer, and SiO 2 particles.
  • the average pore diameter of the second cells is 100 nm, and the second cell the volume fraction of the second emitting layer was 14%, an average particle diameter of 100 nm or SiO 2 particles, the volume fraction of SiO 2 particles in the second emitting layer was 14%, wherein approximately 7% of the volume fraction of SiO 2 The particles are embedded in the second cell;
  • the thickness of the first emission layer is 10 ⁇ m
  • the first emission layer includes PEN polymer, first cells dispersed in the PEN polymer, and Si 3 N 4 particles
  • the average pore diameter of the first cells is 12 ⁇ m
  • the first cell The volume fraction of cells in the first emissive layer is 8%, the size of Si 3 N 4 particles is 1 ⁇ m, and the volume fraction of Si 3 N 4 particles in the first emissive layer is 20%, of which approximately 12% by volume Fractional Si 3 N 4 particles are embedded in the first cell;
  • the thickness of the first metal reflection layer is 5 nm, and the first metal reflection layer is a silver film plated on one side of the first emission layer;
  • the thickness of the middle layer is 100 ⁇ m, and the material of the middle layer is acrylic glue;
  • the thickness of the second metal reflective layer is 5 nm, and the second metal reflective layer is an aluminum film plated on one side of the resin reflective layer;
  • the thickness of the resin reflection layer is 300 ⁇ m.
  • the resin reflection layer is a white PC layer.
  • the third cells are basically evenly distributed in the resin reflection layer.
  • the average pore diameter of the third cells is 20 ⁇ m.
  • the third cells are in the resin reflection layer.
  • the volume fraction is 30%.
  • the composite radiant refrigeration film has a solar reflectance R of 300 nm to 2500 nm of 95.18%, and an infrared emissivity E of 7 ⁇ m to 14 ⁇ m of 95.36%.
  • a composite radiant refrigeration film comprising a second emission layer, a first emission layer, a first metal reflection layer, an intermediate layer, a second metal reflection layer, and a resin reflection layer arranged in order from top to bottom, wherein:
  • the thickness of the second emission layer is 30 ⁇ m.
  • the second emission layer includes a polyurethane polymer, second cells dispersed in the polyurethane polymer, and SiO 2 particles.
  • the average pore diameter of the second cells is 100 nm, and the second cells the volume fraction of the second emitting layer was 14%, an average particle diameter of 100 nm or SiO 2 particles, the volume fraction of SiO 2 particles in the second emitting layer was 14%, wherein approximately 10% volume fraction of SiO 2 The particles are embedded in the second cell;
  • the thickness of the first emission layer is 50 ⁇ m.
  • the first emission layer includes PEN polymer, first cells dispersed in the PEN polymer, and Si 3 N 4 particles.
  • the average pore diameter of the first cells is 12 ⁇ m, and the first cell
  • the volume fraction of cells in the first emission layer is 8%, the size of Si 3 N 4 particles is 12 ⁇ m, and the volume fraction of Si 3 N 4 particles in the first emission layer is 8%, of which approximately 5% volume Fractional Si 3 N 4 particles are embedded in the first cell;
  • the thickness of the first metal reflection layer is 200 nm, and the first metal reflection layer is a silver film plated on one side of the first emission layer;
  • the thickness of the middle layer is 1 ⁇ m, and the material of the middle layer is acrylic glue;
  • the thickness of the second metal reflection layer is 200 nm, and the second metal reflection layer is an aluminum film plated on one side of the resin reflection layer;
  • the thickness of the resin reflection layer is 25 ⁇ m.
  • the resin reflection layer is a white PC layer.
  • the resin reflection layer includes a first resin reflection layer, a second resin reflection layer, and a third resin reflection layer arranged in sequence.
  • the second resin reflection layer has The third cell, the average pore diameter of the third cell is 0.2 ⁇ m, the volume fraction of the third cell in the second resin reflection layer is 2%, the first resin reflection layer and the third resin reflection layer basically do not include bubbles ⁇ Hole structure.
  • the composite radiant refrigeration film has a solar reflectance R of 300 nm to 2500 nm of 94.97%, and an infrared emissivity E of 7 ⁇ m to 14 ⁇ m of 95.20%.
  • the difference between the composite radiant refrigeration film of Example 11 and Example 2 is that in the first emitting layer, the average pore diameter of the first cells is 10 ⁇ m, and the volume fraction of the first cells in the first emitting layer is 10%. , Wherein approximately 8% volume fraction of ceramic microbeads are embedded in the first cell, in the second emitting layer, the average pore diameter of the second cell is 100nm, and the volume fraction of the second cell in the second emitting layer It is 8%, of which, approximately 3% by volume of SiO 2 particles are embedded in the second cells.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.72%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 94.68%.
  • a composite radiant refrigeration film comprising an emitting layer and a metal reflective layer arranged in sequence from top to bottom, wherein:
  • the thickness of the emission layer is 50 ⁇ m, the emission layer includes PET polymer and SiO 2 particles, the average particle size of the SiO 2 particles is 200 nm, and the volume fraction of additives in the emission layer is 20%;
  • the thickness of the metal reflection layer is 200 nm, and the metal reflection layer is an aluminum layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 91.93%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 83.85%.
  • a composite radiant refrigeration film comprising an emitting layer and a metal reflective layer arranged in sequence from top to bottom, wherein:
  • the thickness of the emitting layer is 150 ⁇ m, the emitting layer includes TPX polymer and SiO 2 particles, the average particle size of the SiO 2 particles is 20 ⁇ m, and the volume fraction of additives in the emitting layer is 15%;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.39%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 83.66%.
  • a composite radiant refrigeration film comprising an emitting layer and a metal reflective layer arranged in sequence from top to bottom, wherein:
  • the thickness of the emission layer is 50 ⁇ m.
  • the emission layer includes PET polymer, CaCO 3 particles and SiO 2 particles.
  • the CaCO 3 particles and SiO 2 particles are basically uniformly dispersed in the PET.
  • the average particle size of the CaCO 3 particles is 500 nm, and the SiO 2 particles
  • the average particle size is 50 ⁇ m, the volume fraction of CaCO 3 particles in the emitting layer is 8%, and the volume fraction of SiO 2 particles in the emitting layer is 12%;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 93.07%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of infrared is 84.72%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 20 ⁇ m, and the second emission layer includes PVDF polymer;
  • the thickness of the first emission layer is 5 ⁇ m, the first emission layer includes TPX polymer and first cells, the average pore diameter of the first cells is 5 ⁇ m, and the volume fraction of the first cells in the first emission layer is 15%;
  • the thickness of the metal reflection layer is 200 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.78%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 91.37%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 20 ⁇ m.
  • the second emission layer includes FEP polymer and second cells dispersed in the FEP polymer.
  • the average pore diameter of the second cells is 20nm.
  • the second cells are in the second emission layer.
  • the volume fraction is 3%;
  • the thickness of the first emission layer is 5 ⁇ m, and the first emission layer includes TPX polymer;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.81%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 90.12%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 20 ⁇ m, and the second emission layer includes PMMA polymer;
  • the thickness of the first emission layer is 5 ⁇ m, and the first emission layer includes TPX polymer;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.72%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 90.03%.
  • a composite radiant refrigeration film comprising an emitting layer and a metal reflecting layer arranged in order from top to bottom, wherein:
  • the thickness of the emitting layer is 10 ⁇ m, the emitting layer includes PET polymer and first and second cells dispersed in the PET polymer.
  • the average pore diameter of the first cells is 5 ⁇ m, and the volume fraction of the first cells is 15%, the average pore diameter of the second cell is 20nm, and the volume fraction of the second cell is 3%;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.82%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 90.13%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 20 ⁇ m.
  • the second emission layer includes PVDF polymer and second cells dispersed in the PVDF polymer.
  • the average pore diameter of the second cells is 5 ⁇ m.
  • the second cells are in the second emission layer.
  • the volume fraction of is 15%;
  • the thickness of the first emission layer is 5 ⁇ m, the first emission layer includes TPX polymer and first cells, the average pore diameter of the first cells is 20 nm, and the volume fraction of the first cells in the first emission layer is 3%;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.78%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 87.12%.
  • a composite radiant refrigeration film comprising a second emitting layer, a first emitting layer, and a metal reflective layer sequentially arranged from top to bottom, wherein:
  • the thickness of the second emission layer is 20 ⁇ m.
  • the second emission layer includes PMMA polymer and second cells dispersed in the PMMA polymer.
  • the average pore diameter of the second cells is 20nm.
  • the second cells are in the second emission layer.
  • the volume fraction is 30%;
  • the thickness of the first emission layer is 5 ⁇ m, the first emission layer includes TPX polymer and first cells, the average pore diameter of the first cells is 5 ⁇ m, and the volume fraction of the first cells in the first emission layer is 30%;
  • the thickness of the metal reflection layer is 250 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.69%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 89.13%.
  • PVDF and PMMA are taken as examples below.
  • PMMA is transparent, while PVDF is translucent.
  • the average solar absorption rate of 100 ⁇ m thick PVDF film is only 3.0%, while the average solar absorption rate of 100 ⁇ m thick PMMA film is 5.0%, and the solar absorption rate of 100 ⁇ m thick PVDF-PMMA blend film is as high as 10.0%.
  • the PVDF-PMMA blend film has too strong absorption of solar radiation, and its effect on radiant cooling below ambient temperature during the day is poor.
  • the average emissivity of 100 ⁇ m thick PVDF film is 93%, while the average emissivity of 100 ⁇ m thick PMMA film is lower, 91%.
  • the emissivity of 100 ⁇ m thick PMMA film and 100 ⁇ m thick PVDF film was also tested under various zenith angles. Experiments show that the emissivity of 100 ⁇ m thick PMMA film is significantly lower than that of 100 ⁇ m thick PVDF film, the difference is about 5%.
  • the PVDF film of the same thickness has a lower solar energy absorption rate and higher selective emissivity, so it has a better effect on daytime radiant cooling than a PMMA film and PVDF-PMMA mixed film.
  • the thickness of the film is preferably 20 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 150 ⁇ m.
  • glass beads, ceramic beads, silicon oxide particles, silicon carbide particles, silicon nitride particles, barium sulfate particles, calcium carbonate particles and other inorganic fillers to polymers with certain types of functional groups in the present invention will be in the atmospheric window ( 7 ⁇ m-14 ⁇ m wavelength) produces high emissivity.
  • a film made by adding organic fillers such as PET, PBT, PC, PVC, PMMA, PVDF, PTFE, FEP, PDMS, etc. can also be used in the atmospheric window (7 ⁇ m ⁇ 14 ⁇ m wavelength) Produce high emissivity.
  • the prepared film can be a uniform polymer film or a film containing organic particles.
  • PVDF organic filler is added to the PVDF polymer.
  • the film can be a uniform PVDF film or a film containing PVDF particles.
  • the PVDF film with a silver reflective layer on the back and the PMMA film with a silver reflective layer on the back are applied to the water tank as examples to illustrate the influence of polymers with different functional groups on the radiant cooling effect of the water tank.
  • a plastic water tank with internal length, width and height of 800mm, 800mm, and 80mm is set on the upper surface of the water tank with a composite radiant refrigeration film, including a first emitting layer and a metal reflective layer arranged from top to bottom, in which:
  • the thickness of the first emission layer is 100 ⁇ m.
  • the first emission layer includes a PVDF first polymer, first cells dispersed in the PVDF first polymer, and a PVDF first additive.
  • the thickness of the metal reflection layer is 150 nm, and the metal reflection layer is a silver layer plated on the first emission layer.
  • the film water tank provided with the embodiment is denoted as H, and a temperature measuring point H1 is set at the center of the water inside the water tank H.
  • the composite radiant refrigeration film has a solar reflectance R from 300 nm to 2500 nm of 92.88%, and an infrared emissivity E from 7 ⁇ m to 14 ⁇ m of 93.29%.
  • the existing water tank of the same material and size is provided with a composite radiant refrigeration film on the upper surface of the water tank.
  • This comparative example is basically the same as the composite radiant refrigeration film of Example 12. The only difference is: the first polymerization of the first emitting layer
  • the substance and the first additive are both PMMA, that is, the first emitting layer is a uniform PMMA film with first cells formed inside.
  • the water tank provided with the film of the comparative example is denoted as I, and the water in the center of the water tank I Set a temperature measurement point I1.
  • the composite radiant refrigeration film has a solar reflectance R at 300 nm to 2500 nm of 92.76%, and an infrared emissivity E at 7 ⁇ m to 14 ⁇ m of 92.26%.
  • Figure 6a shows a schematic diagram of the temperature measuring points H1 and I1 at the exact center positions of the water inside the water tanks H and I. From June 28th to July 4th, 2019, the temperature changes at the temperature measuring points H1 and I1 and the ambient temperature inside the water tank were tested on the lawn at No. 88 Dongfeng Road, Fenghua District, Ningbo City, during this period. For various weather conditions, such as sunny, cloudy and rainy days, the inclination angle of the water tank relative to the horizontal plane is 15° during installation. This installation angle can appropriately reduce the solar irradiance on the panel. The test result is shown in Figure 6b.
  • the temperature of the temperature measurement point H1 inside the water tank H is 13.5°C lower than the ambient temperature
  • the temperature of the temperature measurement point I1 inside the water tank I is 12.4°C lower than the ambient temperature.
  • the temperature of the temperature measurement point H1 during the day and night is lower than that of the temperature measurement point J1.
  • the difference is mainly due to the low solar energy absorption rate of the PVDF film during the day. At night, the PVDF film can reach a lower temperature. Because it has higher atmospheric window emissivity and higher selectivity than PMMA film.
  • PVDF film can cool water down to as low as 9.6°C, which means that the cold is obtained at night and stored for use during the day.
  • the use of highly selective emission materials may become a promising method to effectively meet the cooling demand in practical applications.
  • PVDF and PMMA films have the same thickness, the former performs better in terms of solar reflection, infrared emission, and daytime cooling below ambient temperature, indicating that polymers with C-F may be more suitable for daytime radiant cooling.
  • the thickness of the two films is 100 ⁇ m, the PVDF film has lower solar energy absorption, higher atmospheric window emissivity and higher selectivity. Therefore, its daytime and nighttime cooling performance is better than PMMA film. If used in large-scale cooling systems, this subtle difference in polymer refrigeration performance may cause significant long-term economic differences.
  • Example 8 and Comparative Example 3 are respectively covered on the outer surface of a model space with a space size of 4m ⁇ 3m ⁇ 2.5m, denoted as Model A and Model B, on the outer surface of another identical model space Do not do any processing, record as model C.
  • Model A and Model B on the outer surface of another identical model space
  • model C set temperature measurement points in the middle of model A, model B and model C, which are recorded as temperature measurement points A1, B1, and C1.
  • the temperature in the model space is tested all-weather, and the test results are shown in Figure 5.

Abstract

一种复合辐射制冷膜,包括顶层(1)以及设于顶层(1)下方的反射层(2),顶层(1)包括一种或多种聚合物,聚合物在7μm~14μm波段具有不低于80%的发射率,反射层(2)对至少一部分太阳辐射具有高反射率。顶层(1)包括靠近反射层(2)的第一发射层(11)以及远离反射层(2)的第二发射层(12),第一发射层(11)包括第一聚合物以及形成于第一聚合物中的多个第一泡孔,第二发射层(12)包括第二聚合物以及形成于第二聚合物中的多个第二泡孔,第一泡孔的孔径为1μm~20μm,第二泡孔的孔径为1nm~200nm。还提供一种包含该复合辐射制冷膜的复合材料,以及该复合辐射制冷膜的应用方法。通过第一泡孔与第二泡孔的配合,大幅提高了顶层(1)在7μm~14μm波段的发射率,从而提高了复合辐射制冷膜的制冷效果。

Description

复合辐射制冷膜、复合辐射制冷膜材料及其应用
相关申请
本申请要求2019年5月31日申请的,申请号为201910468709.7,名称为“一种复合辐射制冷膜”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及一种辐射制冷技术领域,尤其涉及一种复合辐射制冷膜、复合辐射制冷膜材料及其应用。
背景技术
辐射制冷技术作为一种无能耗的温度调节手段,其实用性良好,可以使人类在环境保护和能源利用两方面得到和谐的发展,将会给能源领域带来重大的变革。
凡温度高于绝对零度的物体,都会产生电磁辐射。随着辐射物体材质、分子结构和温度等条件的不同,其辐射波长也各不相同。在红外辐射的波段里,从辐射的本质来讲,当分子中的原子或者原子团从高能量的振动状态转变到低能量的振动状态时,产生2.5μm~25μm波段的红外辐射。由科学家对大气光谱透过特性的分析可以知道,大气层对不同波长的电磁波有不同的透射率,透射率较高的波段称为“大气窗口”,例如0.3μm~2.5μm、3.2μm~4.8μm、7μm~14μm。大气层的光谱透过特性主要由大气层中的水蒸气、二氧化碳和臭氧决定的,它们的含量变化会引起透过率的变化,但是透射光谱的分布却变化不大。因此,地表上物体的热能可以通过辐射换热,将自身热量以7μm~14μm电磁波的形式通过“大气窗口”排放到温度接近绝对零度的外部太空,达到自身冷却的目的。
传统的辐射冷却系统通过具备较高发射率的聚合物实现被动制冷,但是单纯依靠聚合物进行被动冷却,其制冷效果较差。因此,现有的辐射制冷系统的制冷效果还有待进一步提升。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种制冷效果好的复合辐射制冷膜、复合辐射制冷膜材料及其应用。
根据本发明的一个方面提供一种复合辐射制冷膜,包括顶层以及设于所述顶层下方的反射层,所述顶层包括一种或多种聚合物,所述聚合物在7μm~14μm波段具有不低于80%的发射率;
所述顶层包括靠近所述反射层的第一发射层以及远离所述反射层的第二发射层,所述第一发射层的材料包括第一聚合物,所述第一发射层还包括多个第一泡孔,该多个第一泡孔分布于所述第一发射层内部,所述第二发射层的材料包括第二聚合物,所述第二发射层还包括多个第二泡孔,该多个第二泡孔分布于所述第二发射层内部,所述第一泡孔的孔径为1μm~20μm,所述第二泡孔的孔径为1nm~200nm。
在其中一个实施例中,所述第一泡孔在所述第一发射层中的体积分数为1%至20%,所述第二泡孔在所述第二发射层中的体积分数为1%至20%。
在其中一个实施例中,所述第一发射层还包括第一添加剂,所述第一添加剂嵌置于至少部分所述第一泡孔内;并且/或,所述第二发射层还包括第二添加剂,所述第二添加剂嵌置于至少部分所述第二泡孔 内。
在其中一个实施例中,所述第一添加剂的粒径为1μm~20μm;并且/或,
所述第二添加剂的粒径为1nm~200nm。
在其中一个实施例中,所述第一添加剂在第一发射层中的体积分数为0~20%,所述第二添加剂在所述第二发射层中的体积分数为0~20%。
在其中一个实施例中,所述第一添加剂和所述第二添加剂分别包括无机填料,且所述无机颗粒选自玻璃微珠、陶瓷微珠、氧化硅颗粒、碳化硅颗粒、氮化硅颗粒、硫酸钡颗粒、碳酸钙颗粒中的至少一种;及/或,
所述第一添加剂和所述第二添加剂分别包括有机填料,所述有机填料选自含有C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物中的至少一种。
在其中一个实施例中,所述有机填料包括聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、全氟乙烯丙烯共聚物(FEP)、聚二甲基硅氧烷(PDMS)、聚氨酯(PU)中的至少一种。在其中一个实施例中,所述第一聚合物选自聚4-甲基戊烯(TPX)、聚-4-甲基-1-戊烯(PMP)、聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)中的至少一种,所述第二聚合物选自丙烯酸树脂、聚氨酯树脂、含氟树脂中的至少一种。
在其中一个实施例中,所述第一添加剂和所述第二添加剂分别包括有机填料,所述有机填料选自聚4-甲基戊烯、聚-4-甲基-1-戊烯、聚乙烯、聚丙烯、聚苯乙烯中的至少一种。
在其中一个实施例中,所述第一聚合物选自C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物中的至少一种。
在其中一个实施例中,所述第一聚合物选自聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、聚碳酸酯(PC)、聚氯乙烯(PVC)、聚甲基丙烯酸甲酯(PMMA)、聚偏氟乙烯(PVDF)、聚四氟乙烯(PTFE)、全氟乙烯丙烯共聚物(FEP)、聚二甲基硅氧烷(PDMS)、聚氨酯(PU)中的至少一种。
在其中一个实施例中,所述第二发射层远离所述第一发射层的一侧表面分布有凸部。
在其中一个实施例中,所述凸部的高度为1μm至100μm。
在其中一个实施例中,所述第一发射层的厚度为10μm~300μm,所述第二发射层的厚度为5μm~150μm。
在其中一个实施例中,所述反射层包括金属反射层,所述金属反射层包括金、银、铝、铜、锌中的至少一种。
在其中一个实施例中,所述金属反射层包括靠近所述顶层的第一金属反射层和远离所述顶层的第二金属反射层,所述第一金属反射层与所述第二金属反射层的材质相同或不同,所述第一金属反射层的厚度为5nm~200nm,优选地,所述第一金属反射层的厚度为5nm~150nm,所述第二金属反射层的厚度为 5nm~200nm,优选地,所述第二金属反射层的厚度为5nm~150nm。
在其中一个实施例中,所述金属反射层还包括连接于所述第一金属反射层与所述第二金属反射层之间的中间层。
在其中一个实施例中,所述反射层包括树脂反射层,所述树脂反射层内具有多个第三泡孔。
在其中一个实施例中,所述第三泡孔的孔径为0.2μm~20μm。
在其中一个实施例中,所述树脂反射层包括依次设置的第一树脂反射层、第二树脂反射层以及第三树脂反射层,所述第三泡孔形成于所述第二树脂反射层中。
在其中一个实施例中,所述第三泡孔在所述第二树脂反射层中的体积分数为2%至30%。
在其中一个实施例中,所述树脂反射层的厚度为25μm~300μm。
在其中一个实施例中,所述树脂反射层包括聚4-甲基戊烯(TPX)、聚对苯二甲酸乙二醇酯(PET)、聚对苯二甲酸丁二醇酯(PBT)、聚萘二甲酸乙二醇酯(PEN)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚苯乙烯(PS)、聚丙烯(PP)、聚碳酸酯(PC)中的至少一种。
在其中一个实施例中,所述反射层包括靠近所述顶层的金属反射层以及远离所述顶层的树脂反射层。
根据本发明的另一个方面提供一种包含上述复合辐射制冷膜的复合材料,所述复合材料由所述复合辐射制冷膜与基材复合而成,所述复合辐射制冷膜的反射层设置于靠近所述基材的一侧。
在其中一个实施例中,所述基材为金属、塑料、橡胶、沥青、防水材料、混凝土、水泥、纺织物、编织物、木材、瓷砖、玻璃制品或有机合成材料中的至少一种。
根据本发明的再一个方面提供一种上述复合辐射制冷膜的应用方法,包括:将所述复合辐射制冷膜设于散热主体,并使所述复合辐射制冷膜与所述散热主体热连通。
相比现有技术,本发明的有益效果在于:通过第一泡孔与第二泡孔的相互配合,可大幅提高顶层在7μm~14μm波段的发射率,从而提高复合辐射制冷膜的制冷效果。在聚合物中设置不同孔径的泡孔能极大增加被动降温效果,一方面,形成于第一聚合物内的第一泡孔以及形成于第二聚合物内的第二泡孔对阳光的直射和散射具有很高的反向散热,另一方面,不同孔径的泡孔表面与聚合物之间能产生表面等离子体共振,该表面等离子体共振产生具有在大气窗口波长范围(7μm~14μm)内的波长范围,因而第一发射层、第二发射层与反射层的组合具有在太阳光谱的高反射率和在热谱中的高发射率,这样的结构设置可以将复合辐射制冷膜下方的基底、装置、结构或物体的温度降低,实现被动式的辐射制冷效果。
本发明的以上以及其他有益效果将在接下来的描述中进一步阐述。
附图说明
图1为本发明的复合辐射制冷膜的第一个实施例的剖面示意图;
图2为本发明的复合辐射制冷膜的第二个实施例的剖面示意图;
图3为本发明的复合辐射制冷膜的第三个实施例的剖面示意图;
图4为本发明的复合辐射制冷膜的第四个实施例的剖面示意图;
图5为本发明的模型空间A、B、C内的温度随时间的变化趋势;
图6a为水箱H和I内部水的正中心位置测温点H1和I1的示意图;
图6b为其中一个实施例中水箱内部测温点H1、I1的温度变化和环境温度变化的曲线图。
图中:1-顶层;11-第一发射层;12-第二发射层;121-凸部;2-反射层;21-金属反射层;211-第一金属反射层;212-第二金属反射层;213-中间层;22-树脂反射层;220-第三泡孔;221-第一树脂反射层;222-第二树脂反射层;223-第三树脂反射层。
具体实施方式
本发明所说的“太阳辐射”主要是指从约300nm至2.5μm波长的电磁辐射。
本发明中关于材料或结构所使用的“反射率”是从表面反射出的任何入射电磁辐射的分数。将完美反射体定义为具有1的反射率,并且将完美吸收体定义为具有零的反射率。本发明所说的高反射率,是指该材料或结构在规定范围内具有大于约80%的反射率。
本发明中关于材料或结构所使用的“发射率”是其在发射以电磁辐射形状的能量方面的有效性。将完美黑体发射体定义为具有1的发射率,并将完美非发射体定义为具有零的发射率。本发明所说的高发射率,是指该材料或结构在规定范围内具有大于约80%的发射率。
本发明中关于材料或结构所使用的“透过率”是指在规定波段内,透射穿过材料或结构的电磁波的比例。将不透明的材料或结构定义为具有零的透射率。本发明所说的高透过率,是指该材料或结构在规定范围内具有大于约80%的透过率。
本发明一实施例提供一种复合辐射制冷膜,如图1-图4所示,包括顶层1以及设于顶层1下方的反射层2,顶层1包括一种或多种聚合物,聚合物在7μm~14μm波段具有不低于80%的发射率,反射层2对至少一部分太阳辐射具有高反射率。顶层1包括靠近反射层2的第一发射层11以及远离反射层2的第二发射层12,第一发射层11的材料包括第一聚合物,第一聚合物还包括多个第一泡孔,该多个第一泡孔分布于第一发射层内部,第二发射层12的材料包括第二聚合物,第二聚合物还包括多个第二泡孔,该第二泡孔分布于第二发射层内部,第一泡孔的孔径为1μm~20μm,第二泡孔的孔径为1nm~200nm。
本发明选用高性价比的红外声子极化共振聚合物材料,以及形成于聚合物层中的微纳米级泡孔,能极大增加被动降温效果,其中微纳米泡孔通过尺寸效应能够调控并强化红外辐射频谱。一方面,形成于第一聚合物内的第一泡孔以及形成于第二聚合物内的第二泡孔对阳光的直射和散射具有很高的反向散热,另一方面,第一泡孔和第二泡孔的表面与聚合物之间能分别产生表面等离子体共振,该表面等离子体共振产生具有在大气窗口波长范围(7μm~14μm)内的波长范围,由于第一聚合物和第二聚合物在7μm~14μm波段具有不低于80%的发射率,并被设置成用于发射与产生的表面等离子体共振相关的热辐射,因此具有多个第一泡孔的第一发射层和具有多个第二泡孔的第二发射层具有在热谱中的高发射率,这样的结构设置可以将复合辐射制冷膜下方的基底、装置、结构或物体的温度降低,实现被动式的辐射制冷效果。
进一步地,发射层可产生能贯穿大气窗口波段红外线(7μm~14μm)的一个或多个米氏谐振,基于聚合物和泡孔之间良好的热吸收性能,第一发射层和第二发射层具有热谱中的高吸收率,所以,含有泡 孔的第一发射层和第二发射层是热辐射的良好发射体,能够进一步增强发射率,使得顶层1具有优异的辐射制冷功能。
并且,将两种孔径不同的泡孔分层设置,不同孔径大小的泡孔,其辐射制冷的效果也不同,孔径较大的第一泡孔形成于内侧的第一聚合物中,孔径较小的第二泡孔形成于外侧的第二聚合物中。由于大气窗口的波长范围主要集中在7μm~14μm,含有第一泡孔(孔径为1μm~20μm)的第一发射层形成于内侧并发挥主要的大气窗口发射率的作用,含有第二泡孔(孔径为1nm~200nm)的第二发射层形成于外侧用以辅助增强复合辐射制冷膜的大气窗口发射率。利用米氏散射产生的局域表面声子激元能够强化红外辐射,具体地,米氏散射(Mie scattering),当第一发射层/第二发射层中的第一泡孔/第二泡孔的直径与辐射的波长相当时发生的散射。这种散射主要由第一发射层/第二发射层中的第一泡孔/第二泡孔等引起。米氏散射的散射强度与波长的二次方成反比,并且散射在光线向前方向比向后方向更强,方向性比较明显。
值得一提的是,本发明的各附图中,各层的厚度均为示意,并不表示各层应该具有图中所示的相对厚薄关系,各层中泡孔的形状、孔径、密度等均为示意,其对泡孔的形状、孔径、密度等并不构成限制。
在一些实施例中,第一泡孔在第一发射层11中的体积分数为1%至20%,第二泡孔在第二发射层12中的体积分数为1%至20%。
优选地,第一泡孔在第一发射层11中的体积分数为1%~10%,第二泡孔在第二发射层12中的体积分数为1%~8%。
在一些实施例中,第一发射层11还包括第一添加剂,第一添加剂分散于第一发射层11内,并至少部分嵌置于第一泡孔内,第一添加剂可以全部或部分地充满第一泡孔。换句话说,第一发射层11内的至少部分第一泡孔可容纳第一添加剂,填充在第一泡孔内的第一添加剂可以充满该第一泡孔,也可以未充满该第一泡孔。
优选地,第一添加剂的粒径为1μm~20μm,第一添加剂选自玻璃微珠、陶瓷微珠、氧化硅、碳化硅、氮化硅、硫酸钡、碳酸钙中的至少一种。
在一些实施例中,第二发射层12还包括第二添加剂,第二添加剂分散于第二发射层12内,并至少部分嵌置于第二泡孔内,第二添加剂可以全部或部分地充满第二泡孔。优选地,第二添加剂的粒径为1nm~200nm,第二添加剂选自玻璃微珠、陶瓷微珠、氧化硅、碳化硅、氮化硅、硫酸钡、碳酸钙中的至少一种。
可以理解的是,第一添加剂和第二添加剂还可以分别包括有机填料,该有机填料选自含有C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物中的至少一种。
优选地,上述有机填料选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚碳酸酯、聚氯乙烯、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚四氟乙烯、全氟乙烯丙烯共聚物、聚二甲基硅氧烷、聚氨酯树脂中的至少一种。
在其它实施例中,上述有机填料也可选自聚4-甲基戊烯、聚-4-甲基-1-戊烯、聚乙烯、聚丙烯、聚苯乙烯中的至少一种。
第一泡孔和/或第二泡孔内可以填充其他添加剂,也可以不填充其他添加剂,当泡孔内填充具有辐射制冷能力的添加剂时,即具有辐射制冷能力的添加剂的颗粒嵌置于第一聚合物中的至少部分第一泡孔内和/或第二聚合物中的至少部分第二泡孔内时,添加剂也能够进一步增强顶层1的发射率;当泡孔内不填充其他添加剂时,泡孔本身形成于聚合物内,泡孔对阳光的直射和散射具有很高的反向散热,另一方面,泡孔表面与聚合物之间能产生表面等离子体共振,该表面等离子体共振产生具有在大气窗口波长范围(7μm~14μm)内的波长范围,即泡孔具有增强顶层1发射率的能力。顶层1对太阳辐射具有高透过率,通过顶层1的太阳辐射的至少一部分在反射层2被反射,从而能够减少到达反射层2另一侧的太阳辐射。
在其中一个实施例中,顶层1的第一发射层11内形成第一泡孔,第一泡孔内不填充添加剂,第二发射层12内形成第二泡孔,至少部分第二泡孔内填充第二添加剂。
在另一个实施例中,顶层1的第一发射层11内形成第一泡孔,至少部分第一泡孔内填充第一添加剂,第二发射层12内形成第二泡孔,第二泡孔内不填充添加剂。
在再一个实施例中,顶层1的第一发射层11内形成第一泡孔,至少部分第一泡孔内填充第一添加剂,第二发射层12内形成第二泡孔,至少部分第二泡孔内填充第二添加剂。
上述实施例仅为示例,并不对泡孔和添加剂之间的填充予以限制。
值得一提的是,将添加剂分散在聚合物中时,聚合物就会在添加剂的周围形成容纳添加剂的泡孔,泡孔有较大可能与容纳其中的添加剂的粒径相当,但也不排除在各种因素的影响下,部分气泡的孔径大于容纳其中的添加剂的粒径。此外,纳米或微米级别的添加剂在添加时很难实现完全均匀的分散,一些颗粒可能会形成较小的团簇,也即容纳在泡孔中添加剂有一定的可能以较小团簇的形式存在。另外,发射层在分散有添加剂的情况下,可以通过双向拉伸、溶剂蒸发工艺或其它工艺在添加剂周围形成泡孔。
具体地,双向拉伸制备工艺:
制备过程包括:原料输送→干燥→熔融挤出→流延→冷却→纵向拉伸(→横向拉伸→牵引→收卷制得。
双向拉伸的制备方式也可以纵向拉伸和横向拉伸同时进行,一步完成。
形成泡孔的方法:
(1)在聚合物中均匀混有液体二氧化碳,在加热过程中液体二氧化碳气化产生小泡孔,并通过拉伸形成所需尺寸的泡孔。
(2)在聚合物中均匀混入有机或无机填料,再通过拉伸在有机或无机填料周围形成泡孔。
溶剂蒸发制备工艺:
将第一/第二聚合物和水溶解在有机溶剂(如:丙酮、乙酸乙酯、乙酸丁酯、四氢呋喃)中,涂在任意的表面,有机溶剂蒸发后,第一/第二聚合物和水分离,在第一/第二聚合物中形成微纳孔,从而形成第一/第二发射层。
当聚合物和添加剂形成的第一发射层/第二发射层泡孔较少时,可采用单层挤塑/多层共挤/熔融成膜/涂覆/溶液成膜的方法。
其中,采用单层挤塑/多层共挤/熔融成膜的制备工艺包括:原料输送→干燥→熔融挤出→流延→冷却→牵引→收卷。
所述熔融成膜方法的主要步骤包括流延和吹膜工艺。吹膜工艺可包括上吹风冷工艺或下吹水冷工艺。
涂覆/溶液成膜的制备工艺可包括:放卷→表面处理(表面处理主要为除尘、电晕,作用为保持基材清洁度和提高粘接力)→涂布→干燥→收卷。所说的涂布是在任意表面上涂布聚合物与添加剂的混合物。
本发明通过将两种不同粒径的添加剂分层设置,使粒径较大的第一添加剂分散在内侧的第一聚合物中,粒径较小的第二添加剂分散在外侧的第二聚合物中,从而使得顶层1的被动降温效果与现有技术相比大大提升;此外,由于第二发射层12中包含的纳米级添加剂,赋予第二发射层12优异的疏水性能,有利于提高顶层1的自清洁能力。
值得一提的是,第一聚合物与第二聚合物的材质可以相同,也可以不同。第一添加剂与第二添加剂的种类可以相同也可以不同。即第一泡孔和第二泡孔可以在同一聚合物层中,第一添加剂和第二添加剂也可以在同一聚合物层中,第一聚合物或第二聚合物可以是一种聚合物也可以包括多种聚合物的组合,第一添加剂或第二添加剂可以是一种添加剂也可以包括多种添加剂的组合。
在其中一个实施例中,第一聚合物选自聚4-甲基戊烯、聚-4-甲基-1-戊烯、聚乙烯、聚丙烯、聚苯乙烯中的至少一种,第二聚合物选自丙烯酸树脂、聚氨酯树脂、含氟树脂中的至少一种。第二聚合物具备良好的耐候性,因此第二发射层12的耐候性良好。
在其中一个实施例中,第一聚合物为含有C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物。优选地,该第一聚合物选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚碳酸酯、聚氯乙烯、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚四氟乙烯、全氟乙烯丙烯共聚物、聚二甲基硅氧烷中、聚氨酯中的至少一种。
日间向外太空进行辐射制冷属于被动制冷,其中选择性反射和发射通过反射大部分太阳光(波长为300nm~2500nm),同时通过大气透明窗口以红外辐射的形式将热量传递到外太空。聚合物的辐射制冷薄膜和涂料因为可大规模生产、具有低成本且适用于大型系统的特点。但是,对聚合物的热发射的起源和如何有效地选择聚合物用于辐射制冷的研究较少。因此,理解聚合物官能团与红外热发射率和太阳能吸收率之间的关系可以有效的选择适用于日间辐射制冷的聚合物。
可以理解的是,官能团的振动能影响聚合物红外吸收和发射。不同的官能团,如O-H,C=O,C-Cl,具有相当特定的振动频率/波长,该频率可根据承载官能团的聚合物不同而略有不同。此外,官能团有各种振动形式,如伸缩振动和弯曲振动,以及各种振动频率,因此,具有多个官能团的单一类型聚合物可能具有多种振动频率。
通常,聚合物中官能团的振动形式,包括伸缩振动、面内弯曲振动、面外弯曲振动和变形振动,其中伸缩振动包括对称性伸缩振动和非对称性伸缩振动;面内弯曲振动包括剪切振动和面内摇摆;面外弯曲振动包括面外摇摆和扭曲振动;变形振动包括对称变形振动和反对称变形振动。各官能团连同它们的多 种振动形式将导致聚合物中出现大量红外吸收/发射峰。
表1中列出了振动区域和相应的官能团。在宽的波数(4000cm -1~400cm -1)/波长(2.5μm~25μm)范围上的振动形式可以分成几个区域。在较大的波数(4000cm -1~2500cm -1)/波长(2.5μm~4μm)端的光谱是X-H(其中X代表C,O,N等)官能团的伸缩振动区域,其中C-H,O-H和N-H等主要负责发射和吸收,高伸缩振动频率源于这些官能团的小质量和体积。在X-H伸缩振动区域之后是三键区域,2500cm -1~2000cm -1/2.5μm~4μm,其中尽管C≡C和C≡N官能团的伸缩振动很弱,但由于它们较大的力常数而具有相对强的吸收率。在中波数(2000cm -1~1500cm -1)/波长(4μm~6.7μm)范围内,双键官能团如C=C和C=O由于伸缩振动而具有更高的吸收率。指纹区域(也称为拥挤区域)位于更远处,波数/波长范围为1500cm -1~600cm -1/6.7μm~16.7μm。在该指纹区域中,有许多官能团由于弯曲振动而具有强吸收,包括C-Y基团(其中Y代表F,Cl和Br等卤素元素)、C-O基团、C-N基团、C-Si基团、Si-O基团。在红外光谱的远端是骨架振动区域,其中重原子和分子的振动负责红外吸收和发射。由于对应于电磁波谱6.7μm~16.7μm的拥挤区域覆盖整个大气窗口,所以大量聚合物的大部分7μm~14μm的红外发射可以直接输送至外太空,而不会被大气吸收,故含有指纹区域中的C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物可作为用于日间辐射制冷的聚合物。此外,还需考虑到太阳能吸收率、量产的可能性、物理和化学稳定性、耐久性和应用目标,以对聚合物进行进一步选择。
表1聚合物中官能团的振动区域
Figure PCTCN2019097977-appb-000001
本发明基于聚合物官能团与红外热发射率和太阳能吸收率之间的关系、以及大气窗口(7μm~14μm)与官能团红外光谱在指纹区域的重叠,选择具有特定官能团的聚合物以实现日间的低于环境温度的辐射制冷能力,如果这些聚合物制成的薄膜的背面有反射率更高的太阳能反射层,则辐射制冷效果更好。
可以理解的是,在其中一些实施例中,仅仅通过上述聚合物和反射层即可实现良好的辐射制冷效果。
如图2所示,在一些实施例中,第二发射层12的外表面分布有凸部121,凸部121可以为平行设置的微型凸筋,或者为呈阵列分布的多个微型凸包,微结构121基本布满第二发射层12的外表面,高度 范围为1μm~100μm,优选地,为10μm~100μm,更优选地,为50μm~100μm。凸部121可以增强第二发射层12的发射功能。凸部121的截面形状可以是三角形、梯形、半圆形或其他不规则形状等。本发明的附图中的凸部121仅为示意,并不是指凸部121需要具有图中所示的形状、尺寸等。
第二发射层12外表面凸部121可以通过蚀刻、压印、打印等方式形成,本发明对此不做限定。凸部121可以有效地反射来自不同入射角度的可见光和近红外光,尤其当入射角达到30°~60°时,复合辐射制冷膜基本可以反射所有的入射光。凸部121还可以赋予第二发射层12极高的发射率,可以向外界辐射7μm~14μm的电磁波来达到散热的目的,也即此时第二发射层12表面的发射率接近完美黑体的发射率。
在一些实施例中,第一发射层11的厚度为10μm~300μm,第二发射层12的厚度为5μm~150μm。
在一些实施例中,如图3、4所示,反射层2包括金属反射层21,金属反射层21可以是但不限于金、银、铝、铜、锌等金属或这些金属的合金。金属反射层21主要用于反射紫外线、可见光以及近红外光。
金属反射层21可以是一层也可以是多层,在一个优选实施例中,金属反射层21包括靠近顶层1的第一金属反射层211和远离顶层1的第二金属反射层212,其中第一金属反射层211主要用于反射紫外线、可见光以及近红外光,第二金属反射层212主要用于增强对紫外线、可见光以及近红外光的反射。优选地,第一金属反射层211为银反射层,第二金属反射层212为铝反射层。第一金属反射层211的厚度为5nm~200nm,第二金属反射层212的厚度为5nm~200nm。
在一些实施例中,第一金属反射层211与第二金属反射层212之间还设置有中间层213。中间层213起到连接第一金属反射层211与第二金属反射层212的作用,还可以避免直接在金属层上镀金属层引起电化学腐蚀现象。中间层213的材料可以是高分子胶黏剂,如丙烯酸酯胶或聚氨酯胶,也可以是陶瓷材料,如SiO 2、Al 2O 3、TiO 2、ZnO、Si 3N 4、Ti 3N 4、ZnS、MgF 2或CaF 2,当所述中间层213为高分子胶黏剂时,其厚度为1μm至100μm;当所述中间层213为陶瓷材料时,其厚度为5nm至200nm。
在一些实施例中,反射层2包括树脂反射层22,该树脂反射层22内具有多个第三泡孔220,所述第三泡孔220在所述树脂反射层22中的体积为2%~30%,优选地,为5%~15%,更优选地,为8%~10%。第三泡孔220可以对进入树脂反射层22的光线进行折射、散射,从而提高树脂反射层22的反射率,进而提高反射层2的反射率。优选地,树脂反射层22为浅色,如白色或透明。
在一些实施例中,第三泡孔的孔径为0.2μm~20μm。
值得一提的是,附图4、5中第三泡孔220的形状、尺寸等均为示意,并不是指本发明的泡孔220必须具有图中所示的形状、尺寸,第三泡孔220在树脂反射层22中的分布情况也不限于图中所示。
树脂反射层22可以是但不限于TPX、PET、PBT、PEN、ABS、PS、PP或PC。树脂反射层22的厚度为25μm~300μm,优选地,树脂反射层22的厚度为50μm~150μm。
树脂反射层22可以是单层结构也可以是多层结构。优选地,树脂反射层22包括依次设置的第一树脂反射层221、第二树脂反射层222以及第三树脂反射层223,如图5所示,第三泡孔220形成于第二 树脂反射层222内。
在一些实施例中,所述第一树脂反射层和所述第三树脂反射层的厚度范围均为1μm~50μm,所述第二树脂反射层的厚度范围为20μm~300μm。
在一些实施例中,第三泡孔在第二树脂反射层222中的体积分数为2%至30%。
值得一提的是,树脂反射层22中的泡孔结构220是通过双向拉伸工艺形成的结构,如果树脂反射层22是单层结构,在拉伸的过程中很容易破膜,而且由于泡孔的存在,第二树脂反射层222的表面不平整,如果直接在第二树脂反射层222上镀金属反射层会影响金属反射层的平整性,进而会影响金属反射层的反射率。设置在第二树脂反射层222两侧的第一树脂反射层221和第三树脂反射层223可以作为支撑层,有利于提高树脂反射层22制备时的稳定性,不易发生破膜,还可以作为金属反射层的衬底,保证金属反射层的平整性。
在一些实施例中,反射层2同时包括金属反射层21以及树脂反射层22,树脂反射层22设置在金属反射层21远离顶层1的一侧。具体地,金属反射层21和树脂反射层22的结构同上所述,此处不予赘述。
本发明另一实施例还提供一种复合辐射制冷膜材料,由上述复合辐射制冷膜与基材复合而成,该复合辐射制冷膜的反射层设置于靠近基材的一侧。
优选地,基材选自金属、塑料、橡胶、沥青、防水材料、混凝土、水泥、纺织物、编织物、木材、瓷砖、玻璃制品或有机合成材料中的至少一种。
但需要理解,上述基材并非穷举,该复合材料还可以由上述复合辐射制冷膜与其它材料复合而成。
本发明还有一实施例提供一种上述复合辐射制冷膜的应用,包括将复合辐射制冷膜设于散热主体,并使复合辐射制冷膜与散热主体热连通。
通过与散热主体的表面进行热连通,可以把散热主体内的热量以红外辐射的方式通过大气窗口发射出去,可有效降低散热主体的温度,且无需消耗额外的能源,主要应用在需要降温的散热主体的外表面,其应用领域广泛,包括建筑、光伏组件及系统、汽车、户外用品、农牧水产业、航空航天、冷链运输、室外箱柜罐、纺织行业、室外通讯设备、工业设备(如户外配电柜。)、公用设施(如路灯及其散热器件、厕所屋顶墙面、场馆的路面)、冷却水系统、能源系统(如:空调/制冷/供暖系统结合)、节能设备等,以及户外极需降温或散热的设备、设施,复合辐射制冷膜还可用于提高太阳能电池、传统电厂甚至水处理的效率。
以下通过实施例对本发明的复合辐射制冷膜、复合辐射制冷膜材料及其应用做进一步说明。
测试方法:
对各个实施例及对比例得到的样品进行测试。测试300nm~2500nm波段范围内紫外、可见及近红外光波段的反射率:将样品放进Perkin Elmer,Lambda 950型UV/Vis/NIR Spectrometer中,测量波长范围为300nm~2500nm波段的反射率,测量间隔为1nm,将300nm~2500nm波段中薄膜的反射率的平均值作为薄膜的紫外、可见及近红外光波段的反射率R,即薄膜在300nm~2500nm的太阳反射率R;
红外发射率E的测量:使用SOC-100Hemispherical Directional Reflectometer测试7μm~14μm波长的红外发射率E。
实施例1
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为20μm,第二发射层包括PVDF聚合物以及分散在PVDF聚合物中的第二泡孔,第二泡孔的平均孔径为20nm,第二泡孔在第二发射层中的体积分数为3%;
第一发射层的厚度为50μm,第一发射层包括TPX聚合物以及第一泡孔,第一泡孔的平均孔径为5μm,第一泡孔在第一发射层中的体积分数为15%;
金属反射层的厚度为100nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.18%,7μm~14μm的红外发射率E为93.38%。
实施例2
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为50μm,第二发射层包括PVDF聚合物、分散在PVDF聚合物中的第二泡孔,以及SiO 2颗粒,第二泡孔的平均孔径为200nm,第二泡孔在第二发射层中的体积分数为20%,SiO 2颗粒的平均粒径为200nm,SiO 2颗粒在第二发射层中的体积分数为20%,其中,大致有10%体积分数的SiO 2颗粒嵌设于第二泡孔内;
第一发射层的厚度为100μm,第一发射层包括PET聚合物、分散在PET聚合物中的第一泡孔,以及陶瓷微珠,第一泡孔的平均孔径为10μm,第一泡孔在第一发射层中的体积分数为20%,陶瓷微珠的平均粒径为10μm,陶瓷微珠在第一发射层中的体积分数为20%,其中,大致有8%体积分数陶瓷微珠嵌设于第一泡孔内;
金属反射层的厚度为200nm,金属反射层为镀在第一发射层上的铝层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.16%,7μm~14μm的红外发射率E为94.36%。
实施例3
实施例3的复合辐射制冷膜与实施例1的不同之处在于:第二发射层的外表面具有凸部,凸部利用表面具有微结构的辊压印形成,凸部的高度为1μm。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.71%,7μm~14μm的红外发射率E为94.34%。
实施例4
实施例4的复合辐射制冷膜与实施例1的不同之处在于:第二发射层的外表面具有凸部,凸部利用表面具有微结构的辊压印形成,凸部的高度为100μm。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.55%,7μm~14μm的红外发 射率E为93.62%。
实施例5
实施例5的复合辐射制冷膜与实施例1的不同之处在于:第二发射层中,第二泡孔的平均孔径为50nm,第一发射层中,第一泡孔的平均孔径为20μm。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.65%,7μm~14μm的红外发射率E为92.97%。
实施例6
实施例6的复合辐射制冷膜与实施例1的不同之处在于:第二发射层中,第二泡孔的平均孔径为1nm,第一发射层中,第一泡孔的平均孔径为1μm。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.18%,7μm~14μm的红外发射率E为92.47%。
实施例7
实施例7的复合辐射制冷膜与实施例2的不同之处在于:第一发射层中,第一泡孔在第一发射层中的体积分数为1%,其中,大致有2%体积分数陶瓷微珠嵌设于第一泡孔内,第二发射层中,第二泡孔,在第二发射层中的体积分数为1%,其中,大致有1%体积分数的SiO 2颗粒嵌设于第二泡孔内。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.25%,7μm~14μm的红外发射率E为93.29%。
实施例8
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、第一金属反射层、中间层、第二金属反射层,其中:
第二发射层的厚度为150μm,第二发射层包括PVDF聚合物、分散在PVDF聚合物中的第二泡孔,以及硫酸钡颗粒,第二泡孔的平均孔径为80nm,第二泡孔在第二发射层中的体积分数为6%,硫酸钡颗粒的平均粒径为80nm,硫酸钡颗粒在第二发射层中的体积分数为6%,其中,大致有3%体积分数的硫酸钡颗粒嵌设于第二泡孔内;
第一发射层的厚度为300μm,第一发射层包括TPX聚合物、分散在TPX聚合物中的第一泡孔,以及CaCO 3颗粒,第一泡孔的平均孔径为20μm,且第一泡孔在第一发射层中的体积分数为15%,CaCO 3颗粒的平均粒径为20μm,CaCO 3颗粒在第一发射层中的体积分数为15%,其中,大致有5%体积分数CaCO 3颗粒嵌设于第一泡孔内;
第一金属反射层的厚度为200nm,第一金属反射层为镀在第一发射层上的银层;
中间层的厚度为200nm,中间层的材质为氧化铝陶瓷;
第二金属反射层的厚度为200nm,第二金属反射层为镀在中间层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为95.29%,7μm~14μm的红外发射率E为94.71%。
实施例9
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、第一金属反射层、中间层、第二金属反射层、树脂反射层,其中:
第二发射层的厚度为5μm,第二发射层包括PMMA聚合物、分散于PMMA聚合物中的第二泡孔、以及SiO 2颗粒,第二泡孔的平均孔径为100nm,且第二泡孔在第二发射层中的体积分数为14%,SiO 2颗粒的平均粒径为100nm,SiO 2颗粒在第二发射层中的体积分数为14%,其中,大致有7%体积分数的SiO 2颗粒嵌设于第二泡孔内;
第一发射层的厚度为10μm,第一发射层包括PEN聚合物、分散于PEN聚合物中的第一泡孔、以及Si 3N 4颗粒,第一泡孔的平均孔径为12μm,且第一泡孔在第一发射层中的体积分数为8%,Si 3N 4颗粒的尺寸为1μm,Si 3N 4颗粒在第一发射层中的体积分数为20%,其中,大致有12%体积分数Si 3N 4颗粒嵌设于第一泡孔内;
第一金属反射层的厚度为5nm,第一金属反射层为镀在第一发射层其中一面的银膜;
中间层的厚度为100μm,中间层的材质为丙烯酸酯胶;
第二金属反射层的厚度为5nm,第二金属反射层为镀在树脂反射层其中一面的铝膜;
树脂反射层的厚度为300μm,树脂反射层的为白色PC层,树脂反射层中基本均匀地分布有第三泡孔,第三泡孔的平均孔径为20μm,第三泡孔在树脂反射层中的体积分数为30%。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为95.18%,7μm~14μm的红外发射率E为95.36%。
实施例10
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、第一金属反射层、中间层、第二金属反射层、树脂反射层,其中:
第二发射层的厚度为30μm,第二发射层包括聚氨酯聚合物、分散于聚氨酯聚合物中的第二泡孔,以及SiO 2颗粒,第二泡孔的平均孔径为100nm,且第二泡孔在第二发射层中的体积分数为14%,SiO 2颗粒的平均粒径为100nm,SiO 2颗粒在第二发射层中的体积分数为14%,其中,大致有10%体积分数的SiO 2颗粒嵌设于第二泡孔内;
第一发射层的厚度为50μm,第一发射层包括PEN聚合物、分散于PEN聚合物中的第一泡孔,以及Si 3N 4颗粒,第一泡孔的平均孔径为12μm,且第一泡孔在第一发射层中的体积分数为8%,Si 3N 4颗粒的尺寸为12μm,Si 3N 4颗粒在第一发射层中的体积分数为8%,其中,大致有5%体积分数Si 3N 4颗粒嵌设于第一泡孔内;
第一金属反射层的厚度为200nm,第一金属反射层为镀在第一发射层其中一面的银膜;
中间层的厚度为1μm,中间层的材质为丙烯酸酯胶;
第二金属反射层的厚度为200nm,第二金属反射层为镀在树脂反射层其中一面的铝膜;
树脂反射层的厚度为25μm,树脂反射层的为白色PC层,树脂反射层包括依次设置的第一树脂反 射层、第二树脂反射层和第三树脂反射层,其中第二树脂反射层中具有第三泡孔,第三泡孔的平均孔径为0.2μm,第三泡孔在第二树脂反射层中的体积分数为2%,第一树脂反射层、第三树脂反射层内基本不包括泡孔结构。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为94.97%,7μm~14μm的红外发射率E为95.20%。
实施例11
实施例11的复合辐射制冷膜与实施例2的不同之处在于:第一发射层中,第一泡孔的平均孔径为10μm,第一泡孔在第一发射层中的体积分数为10%,其中,大致有8%体积分数陶瓷微珠嵌设于第一泡孔内,第二发射层中,第二泡孔的平均孔径为100nm,第二泡孔在第二发射层中的体积分数为8%,其中,大致有3%体积分数的SiO 2颗粒嵌设于第二泡孔内。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.72%,7μm~14μm的红外发射率E为94.68%。
对比例1
一种复合辐射制冷膜,包括从上至下依次设置的发射层和金属反射层,其中:
发射层的厚度为50μm,发射层包括PET聚合物以及SiO 2颗粒,SiO 2颗粒的平均粒径为200nm,添加剂在发射层中的体积分数为20%;
金属反射层的厚度为200nm,金属反射层为镀在第一发射层上的铝层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为91.93%,7μm~14μm的红外发射率E为83.85%。
对比例2
一种复合辐射制冷膜,包括从上至下依次设置的发射层和金属反射层,其中:
发射层的厚度为150μm,发射层包括TPX聚合物以及SiO 2颗粒,SiO 2颗粒的平均粒径为20μm,添加剂在发射层中的体积分数为15%;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.39%,7μm~14μm的红外发射率E为83.66%。
对比例3
一种复合辐射制冷膜,包括从上至下依次设置的发射层和金属反射层,其中:
发射层的厚度为50μm,发射层包括PET聚合物、CaCO 3颗粒和SiO 2颗粒,CaCO 3颗粒和SiO 2颗粒基本均匀地分散在PET中,CaCO 3颗粒的平均粒径为500nm,SiO 2颗粒的平均粒径50μm,CaCO 3颗粒在发射层中的体积分数为8%,SiO 2颗粒在发射层中的体积分数为12%;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为93.07%,红外7μm~14μm的红 外发射率E为84.72%。
对比例4
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为20μm,第二发射层包括PVDF聚合物;
第一发射层的厚度为5μm,第一发射层包括TPX聚合物以及第一泡孔,第一泡孔的平均孔径为5μm,第一泡孔在第一发射层中的体积分数为15%;
金属反射层的厚度为200nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.78%,7μm~14μm的红外发射率E为91.37%。
对比例5
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为20μm,第二发射层包括FEP聚合物以及分散在FEP聚合物中的第二泡孔,第二泡孔的平均孔径为20nm,第二泡孔在第二发射层中的体积分数为3%;
第一发射层的厚度为5μm,第一发射层包括TPX聚合物;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.81%,7μm~14μm的红外发射率E为90.12%。
对比例6
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为20μm,第二发射层包括PMMA聚合物;
第一发射层的厚度为5μm,第一发射层包括TPX聚合物;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.72%,7μm~14μm的红外发射率E为90.03%。
对比例7
一种复合辐射制冷膜,包括从上至下依次设置的发射层、金属反射层,其中:
发射层的厚度为10μm,该发射层包括PET聚合物以及分散在PET聚合物中的第一泡孔、第二泡孔,第一泡孔的平均孔径为5μm,第一泡孔的体积分数为15%,第二泡孔的平均孔径为20nm,第二泡孔的体积分数为3%;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.82%,7μm~14μm的红外发射率E为90.13%。
对比例8
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为20μm,第二发射层包括PVDF聚合物以及分散在PVDF聚合物中的第二泡孔,第二泡孔的平均孔径为5μm,第二泡孔在第二发射层中的体积分数为15%;
第一发射层的厚度为5μm,第一发射层包括TPX聚合物以及第一泡孔,第一泡孔的平均孔径为20nm,第一泡孔在第一发射层中的体积分数为3%;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.78%,7μm~14μm的红外发射率E为87.12%。
对比例9
一种复合辐射制冷膜,包括从上至下依次设置的第二发射层、第一发射层、金属反射层,其中:
第二发射层的厚度为20μm,第二发射层包括PMMA聚合物以及分散在PMMA聚合物中的第二泡孔,第二泡孔的平均孔径为20nm,第二泡孔在第二发射层中的体积分数为30%;
第一发射层的厚度为5μm,第一发射层包括TPX聚合物以及第一泡孔,第一泡孔的平均孔径为5μm,第一泡孔在第一发射层中的体积分数为30%;
金属反射层的厚度为250nm,金属反射层为镀在第一发射层上的银层。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.69%,7μm~14μm的红外发射率E为89.13%。
进一步地,为了说明含有不同官能团聚合物的发射层的辐射制冷效果,下面以PVDF和PMMA为例进行说明。
在外观上,PMMA是透明的,而PVDF是半透明的。PMMA具有C-H,C=O和C-O基团,PVDF具有C-H和C-F基团,这些基团在指纹区域(即大气窗口)都具有弯曲振动。然后测量100μm厚的PVDF薄膜、100μm厚的PMMA薄膜、100μm厚的PVDF-PMMA共混膜的太阳能吸收率和红外发射率。
100μm厚的PVDF膜的平均太阳能吸收率仅为3.0%,而100μm厚的PMMA膜的平均太阳能吸收率为5.0%,100μm厚的PVDF-PMMA共混膜的太阳能吸收率高达10.0%,由于100μm厚的PVDF-PMMA共混膜对太阳辐射的吸收太强,它用于日间的低于环境温度的辐射制冷的效果较差。
在大气窗口(7μm~14μm)中,100μm厚的PVDF膜的平均发射率为93%,而100μm厚的PMMA膜的平均发射率较低,为91%。还测试了各种天顶角下,100μm厚的PMMA薄膜和100μm厚的PVDF薄膜的发射率,实验表示100μm厚的PMMA薄膜的发射率明显低于100μm厚的PVDF薄膜的发射率,差异约为5%。对于辐射制冷的应用,在大气窗口中具有较低的太阳能吸收率和较高的大气窗口(7μm~14μm)红外发射率对于在日间实现低于环境温度的辐射制冷是很重要的。相同厚度的PVDF薄膜由于具有较低的太阳能吸收率和较高的选择性发射率,因此比PMMA薄膜和PVDF-PMMA的混合薄膜在日间的辐射制冷方面效果更好。
较低的太阳能吸收需要较小的膜厚度,但较高的红外发射需要相当大的膜厚度,而且非常厚的聚 合物膜如PVDF和PMMA很可能变成理想的红外发射器/吸收器,但具有明显高的太阳能吸收,因此,存在最佳厚度或厚度范围以获得更好的日间辐射制冷性能。根据聚合物的类型,存在最佳厚度或厚度范围以获得更好的日间辐射制冷性能,薄膜的厚度优选为20μm~300μm,更优选为50μm~150μm。在本发明中具有某些类型官能团的聚合物中添加玻璃微珠、陶瓷微珠、氧化硅颗粒、碳化硅颗粒、氮化硅颗粒、硫酸钡颗粒、碳酸钙颗粒等无机填料会在大气窗口(7μm~14μm波长)中产生高的发射率。同样在具有某些类型官能团的聚合物中添加PET、PBT、PC、PVC、PMMA、PVDF、PTFE、FEP、PDMS等有机填料制成的薄膜也可以在会在大气窗口(7μm~14μm波长)中产生高的发射率。当在聚合物中添加与聚合物相同成分的有机填料时,所制备的薄膜可以为均匀的聚合物薄膜,也可以为含有有机颗粒的薄膜,如在PVDF聚合物中添加PVDF有机填料,其制备的薄膜可以为均匀的PVDF薄膜,也可以为含有PVDF颗粒的薄膜。
下面以背面设置有银反射层的PVDF薄膜,和背面设置有银反射层的PMMA薄膜应用于水箱为例说明具有不同官能团的聚合物对水箱的辐射制冷效果的影响。
实施例12
将塑料材质,内部长宽高分别为800mm、800mm、80mm的水箱,在水箱的上表面设置复合辐射制冷膜,包括从上至下依次设置的第一发射层、金属反射层,其中:
第一发射层的厚度为100μm,第一发射层包括PVDF第一聚合物、分散在PVDF第一聚合物中的第一泡孔,以及PVDF第一添加剂,即第一发射层为内部形成有第一泡孔的均匀的PVDF薄膜,其中,第一泡孔的平均孔径为10μm,且第一泡孔在第一发射层中的体积分数为10%,第一添加剂的尺寸为10μm,且第一添加剂在第一发射层中的体积分数为10%;
金属反射层的厚度为150nm,金属反射层为镀在第一发射层上的银层。
将设置有实施例的薄膜水箱记为H,在水箱H内部水的正中心位置设置1个测温点H1。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.88%,7μm~14μm的红外发射率E为93.29%。
对比例10
现有同样材质、大小的水箱,在水箱的上表面设置复合辐射制冷膜,该对比例与与实施例12的复合辐射制冷膜基本相同,不同之处仅在于:第一发射层的第一聚合物以及第一添加剂均为PMMA,即第一发射层为内部形成有第一泡孔的均匀的PMMA薄膜,将设置有对比例的薄膜的水箱记为I,在水箱I内部水的正中心位置设置1个测温点I1。
经测试,该复合辐射制冷膜的300nm~2500nm的太阳反射率R为92.76%,7μm~14μm的红外发射率E为92.26%。
如图6a表示水箱H和I内部水的正中心位置测温点H1和I1的示意图。于2019年6月28日至7月4日在宁波市奉化区东峰路88号的草坪上测试7天内水箱内部测温点H1、I1的温度变化和环境温度的变化,在此期间有各种天气条件,如晴天,阴天和雨天,水箱安装时相对水平面的倾斜角为15°,这个安装角度可以适当降低面板上的太阳辐照度,测试结果如图6b。
由图6b可知,水箱H内部测温点H1的温度比环境温度低13.5℃,而水箱I内部测温点I1的温度比环境温度低12.4℃。在日间和夜间测温点H1的温度均比测温点J1的温度低,差异主要是由于在日间时PVDF薄膜的太阳能吸收率较低,在夜间,PVDF薄膜可以达到较低的温度,因为它具有比PMMA薄膜具有较高的大气窗口发射率和较高的选择性。有趣的是,在7月4日晚上,在环境温度为21.6℃时,PVDF薄膜可以将水冷却至低至9.6℃,这意味着夜间获得冷量并将其储存用来在日间使用,同时使用高选择性发射材料可能成为有效满足实际应用中冷量需求的有前景的方法。尽管PVDF和PMMA薄膜具有相同的厚度,但前者在太阳反射,红外发射以及日间低于环境温度的制冷方面表现更好,表明具有C-F的聚合物可能更适合日间辐射制冷。虽然两种薄膜的厚度都为100μm,但PVDF薄膜具有较低的太阳能吸收率,较高的大气窗口发射率和较高的选择性。因此,其日间和夜间制冷性能均优于PMMA薄膜。如果用于大规模的冷却系统,聚合物制冷性能的这种细微差别可能导致长期的显著经济差异。
上述实施例8、对比例3的复合辐射制冷膜分别覆盖在空间大小为4m×3m×2.5m的模型空间的外表面,记为模型A和模型B,在另一相同的模型空间的外表面不做任何处理,记为模型C。在模型A、模型B和模型C内部的正中间位置设置测温点,分别记为测温点A1、B1、C1。对模型空间内的温度进行全天候测试,测试结果见附图5。
表2各实施例及对比例的太阳反射率及红外发射率性能测试
Figure PCTCN2019097977-appb-000002
Figure PCTCN2019097977-appb-000003
上述实施方式仅为本发明的优选实施方式,不能以此来限定本发明保护的范围,本领域的技术人员在本发明的基础上所做的任何非实质性的变化及替换均属于本发明所要求保护的范围。

Claims (27)

  1. 一种复合辐射制冷膜,其特征在于:包括顶层以及设于所述顶层下方的反射层,所述顶层的材料包括一种或多种聚合物,所述聚合物在7μm~14μm波段具有不低于80%的发射率;
    所述顶层包括靠近所述反射层的第一发射层以及远离所述反射层的第二发射层,所述第一发射层的材料包括第一聚合物,所述第一发射层还包括多个第一泡孔,该多个第一泡孔分布于所述第一发射层内部,所述第二发射层的材料包括第二聚合物,所述第二发射层还包括多个第二泡孔,该多个第二泡孔分布于所述第二发射层内部,所述第一泡孔的孔径为1μm~20μm,所述第二泡孔的孔径为1nm~200nm。
  2. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述第一泡孔在所述第一发射层中的体积分数为1%至20%,所述第二泡孔在所述第二发射层中的体积分数为1%至20%。
  3. 根据权利要求1或2所述的复合辐射制冷膜,其特征在于,所述第一发射层还包括第一添加剂,所述第一添加剂嵌置于至少部分所述第一泡孔内;并且/或,
    所述第二发射层还包括第二添加剂,所述第二添加剂嵌置于至少部分所述第二泡孔内。
  4. 根据权利要求3所述的复合辐射制冷膜,其特征在于,所述第一添加剂的粒径为1μm~20μm;并且/或,
    所述第二添加剂的粒径为1nm~200nm。
  5. 根据权利要求3所述的复合辐射制冷膜,其特征在于,所述第一添加剂在第一发射层中的体积分数为0~20%,所述第二添加剂在所述第二发射层中的体积分数为0~20%。
  6. 根据权利要求3所述的复合辐射制冷膜,其特征在于,所述第一添加剂和所述第二添加剂分别包括无机填料,所述无机填料选自玻璃微珠、陶瓷微珠、氧化硅颗粒、碳化硅颗粒、氮化硅颗粒、硫酸钡颗粒、碳酸钙颗粒中的至少一种;及/或,
    所述第一添加剂和所述第二添加剂分别包括有机填料,所述有机填料选自含有C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物中的至少一种。
  7. 根据权利要求6所述的复合辐射制冷膜,其特征在于,所述有机填料选自聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚碳酸酯、聚氯乙烯、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚四氟乙烯、全氟乙烯丙烯共聚物、聚二甲基硅氧烷、聚氨酯中的至少一种。
  8. 根据权利要求3所述的复合辐射制冷膜,其特征在于所述第一添加剂和所述第二添加剂分别包括有机填料,所述有机填料选自聚4-甲基戊烯、聚-4-甲基-1-戊烯、聚乙烯、聚丙烯、聚苯乙烯中至少一种。
  9. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述第一聚合物选自聚4-甲基戊烯、聚-4-甲基-1-戊烯、聚乙烯、聚丙烯、聚苯乙烯中的至少一种,所述第二聚合物选自丙烯酸树脂、聚氨酯树脂、含氟树脂中的至少一种。
  10. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述第一聚合物选自C-O、C-Cl、C-F、C-N、C-Si、Si-O官能团的聚合物中的至少一种。
  11. 根据权利要求10所述的复合辐射制冷膜,其特征在于,所述第一聚合物包括聚对苯二甲酸乙二 醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚碳酸酯、聚氯乙烯、聚甲基丙烯酸甲酯、聚偏氟乙烯、聚四氟乙烯、全氟乙烯丙烯共聚物、聚二甲基硅氧烷、聚氨酯中的至少一种。
  12. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述第二发射层远离所述第一发射层的一侧表面分布有凸部。
  13. 根据权利要求12所述的复合辐射制冷膜,其特征在于,所述凸部的高度为1μm至100μm。
  14. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述第一发射层的厚度为10μm~300μm,所述第二发射层的厚度为5μm~150μm。
  15. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述反射层包括金属反射层,所述金属反射层包括金、银、铝、铜、锌中的至少一种。
  16. 根据权利要求15所述的复合辐射制冷膜,其特征在于,所述金属反射层包括靠近所述顶层的第一金属反射层和远离所述顶层的第二金属反射层,所述第一金属反射层与所述第二金属反射层的材质相同或不同,所述第一金属反射层的厚度为5nm~200nm,所述第二金属反射层的厚度为5nm~200nm。
  17. 根据权利要求16所述的复合辐射制冷膜,其特征在于,所述金属反射层还包括连接于所述第一金属反射层与所述第二金属反射层之间的中间层。
  18. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述反射层包括树脂反射层,所述树脂反射层包括多个第三泡孔。
  19. 根据权利要求18所述的复合辐射制冷膜,其特征在于,所述第三泡孔的孔径为0.2μm~20μm。
  20. 根据权利要求18或19所述的复合辐射制冷膜,其特征在于,所述树脂反射层包括依次设置的第一树脂反射层、第二树脂反射层以及第三树脂反射层,所述第三泡孔形成于所述第二树脂反射层。
  21. 根据权利要求20所述的复合辐射制冷薄膜,其特征在于,所述第三泡孔在所述第二树脂反射层中的体积分数为2%至30%。
  22. 根据权利要求18所述的复合辐射制冷薄膜,其特征在于,所述树脂反射层的厚度为25μm~300μm。
  23. 根据权利要求18所述的复合辐射制冷膜,其特征在于,所述树脂反射层的材料包括聚4-甲基戊烯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、丙烯腈-丁二烯-苯乙烯共聚物、聚苯乙烯、聚丙烯、聚碳酸酯中的至少一种。
  24. 根据权利要求1所述的复合辐射制冷膜,其特征在于,所述反射层包括靠近所述顶层的金属反射层以及远离所述顶层的树脂反射层。
  25. 一种包含如权利要求1~24中任一所述复合辐射制冷膜材料,其特征在于,所述复合辐射制冷膜材料由所述复合辐射制冷膜与基材复合而成,所述复合辐射制冷膜的反射层设置于靠近所述基材的一侧。
  26. 根据权利要求25所述的复合辐射制冷膜材料,其特征在于,所述基材为金属、塑料、橡胶、沥青、防水材料、混凝土、水泥、纺织物、编织物、木材、瓷砖、玻璃制品或有机合成材料中的至少一种。
  27. 一种如权利要求1~24中任一所述复合辐射制冷膜的应用,其特征在于,包括:将所述复合辐射制冷膜设于散热主体,并使所述复合辐射制冷膜与所述散热主体热连通。
PCT/CN2019/097977 2019-05-31 2019-07-26 复合辐射制冷膜、复合辐射制冷膜材料及其应用 WO2020237813A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2019553305A JP7158405B2 (ja) 2019-05-31 2019-07-26 複合放射冷却膜、複合放射冷却膜材料及びその応用
MX2020003403A MX2020003403A (es) 2019-05-31 2019-07-26 Pelicula de enfriamiento radiativo compuesta, conjunto de pelicula de enfriamiento radiativo compuesta y aplicacion de la misma.
AU2019246840A AU2019246840B2 (en) 2019-05-31 2019-07-26 Composite radiative cooling film, composite radiative cooling film assembly and application thereof
SG11202002818TA SG11202002818TA (en) 2019-05-31 2019-07-26 Composite radiative cooling film, composite radiative cooling film assembly and application thereof
MYPI2019005961A MY193668A (en) 2019-05-31 2019-07-26 Composite radiative cooling film, composite radiative cooling film assembly and application thereof
CN201980001316.3A CN110972467B (zh) 2019-05-31 2019-07-26 复合辐射制冷膜、复合辐射制冷膜材料及其应用
TW108131578A TWI730393B (zh) 2019-05-31 2019-09-02 複合輻射致冷膜、複合輻射致冷膜材料及其應用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910468709.7 2019-05-31
CN201910468709.7A CN110216924B (zh) 2019-05-31 2019-05-31 一种复合辐射制冷膜

Publications (1)

Publication Number Publication Date
WO2020237813A1 true WO2020237813A1 (zh) 2020-12-03

Family

ID=67818782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097977 WO2020237813A1 (zh) 2019-05-31 2019-07-26 复合辐射制冷膜、复合辐射制冷膜材料及其应用

Country Status (10)

Country Link
EP (1) EP3744517B1 (zh)
JP (1) JP7158405B2 (zh)
CN (2) CN110216924B (zh)
AU (1) AU2019246840B2 (zh)
BR (1) BR102020005881A2 (zh)
MX (1) MX2020003403A (zh)
MY (1) MY193668A (zh)
SG (1) SG11202002818TA (zh)
TW (1) TWI730393B (zh)
WO (1) WO2020237813A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460837A (zh) * 2020-12-05 2021-03-09 中国人民解放军国防科技大学 基于dbs算法的二氧化钛选择性吸波器及设计方法
CN113527740A (zh) * 2021-07-15 2021-10-22 伊诺福科光学技术有限公司 一种具有表面周期性微纳结构的辐射制冷薄膜及制备方法
CN114016300A (zh) * 2021-11-24 2022-02-08 浙江理工大学 一种具有被动辐射冷却功能的涂层纺织品及其制备方法
JP7086248B1 (ja) 2021-03-26 2022-06-17 大阪瓦斯株式会社 放射冷却装置
JP7086247B1 (ja) 2021-03-26 2022-06-17 大阪瓦斯株式会社 放射冷却装置
WO2022207558A1 (de) * 2021-04-01 2022-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Raumfahrzeugmembran, photovoltaik-raumfahrtmodul, widerstandssegel, membranantenne, solarsegel und verwendung einer raumfahrzeugmembran

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10648751B1 (en) * 2019-10-31 2020-05-12 Rockwell Automation Technologies, Inc Heat dissipating cladding
EP3819425A1 (en) * 2019-11-06 2021-05-12 Ningbo Radi-Cool Advanced Energy Technologies Co., Ltd. Radiative cooling fabrics and products
JP6944013B2 (ja) * 2019-11-06 2021-10-06 寧波瑞凌新能源科技有限公司Ningbo Radi−Cool Advanced Energy Technologies Co., Ltd. 放射冷却生地及び製品
CN111113751A (zh) * 2019-12-17 2020-05-08 中国科学院国家空间科学中心 仿银蚁透波仿生反射层的制备方法及多层柔性热控组件
CN111100610A (zh) * 2019-12-17 2020-05-05 中国科学院国家空间科学中心 一种柔性透波防热散热薄膜的制备方法
CN111113752A (zh) * 2019-12-17 2020-05-08 中国科学院国家空间科学中心 仿银蚁透波仿生反射层的制备方法及充气透波防热组件
CN114830846A (zh) * 2019-12-19 2022-07-29 3M创新有限公司 包括反射微孔层和uv吸收层的复合冷却膜
CN111114031B (zh) * 2019-12-31 2022-05-03 宁波瑞凌新能源科技有限公司 辐射制冷薄膜、辐射制冷复合膜、辐射制冷制品
EP4091003A4 (en) 2020-01-16 2024-01-24 3M Innovative Properties Company COMPOSITE COOLING FOIL WITH A REFLECTIVE NONPOROUS ORGANIC POLYMER LAYER AND A UV PROTECTIVE LAYER
JP7442352B2 (ja) 2020-03-12 2024-03-04 大阪瓦斯株式会社 放射冷却式膜材
CN113513858B (zh) * 2020-04-09 2023-10-31 香港科技大学 具有增强的选择性红外发射的辐射制冷结构
CN113776226A (zh) * 2020-06-09 2021-12-10 南京大学 一种辐射制冷膜
CN111806020B (zh) * 2020-09-04 2020-12-01 宁波瑞凌新能源科技有限公司 制冷膜、包括制冷膜的制品
CN114434926A (zh) * 2020-11-03 2022-05-06 张钟元 一种智能制冷人造皮革及其制备方法
CN112460836A (zh) * 2020-11-17 2021-03-09 淮阴工学院 被动式辐射冷却复合材料薄膜
WO2022114673A1 (ko) * 2020-11-24 2022-06-02 롯데케미칼 주식회사 복사냉각 다층 필름
CN112833582B (zh) * 2021-01-19 2022-05-06 郑州大学 一种实现辐射制冷的二氧化硅热超材料及其应用
CN112797666B (zh) * 2021-02-04 2022-03-01 宁波瑞凌新能源科技有限公司 辐射制冷膜及其制品
CO2021002728A1 (es) * 2021-02-26 2022-08-30 Proquinal S A S Material compuesto multicapa con efecto frío
CN112984858B (zh) * 2021-03-18 2022-07-26 哈尔滨工业大学 一种微结构辐射制冷器件的制备方法及应用
JP7183327B2 (ja) * 2021-03-26 2022-12-05 大阪瓦斯株式会社 放射冷却式膜材
US20230044340A1 (en) * 2021-07-28 2023-02-09 Facebook Technologies, Llc High modulus, high thermal conductivity bilayer radiative passive coolant
CN113354911B (zh) * 2021-07-29 2022-07-22 东南大学 一种辐射制冷材料、制备方法及辐射制冷板材
TWI808520B (zh) * 2021-10-29 2023-07-11 國立清華大學 輻射冷却裝置及其製備方法和應用
KR20230074368A (ko) * 2021-11-19 2023-05-30 롯데케미칼 주식회사 복사냉각 다층 필름
WO2023090717A1 (ko) * 2021-11-19 2023-05-25 롯데케미칼 주식회사 복사냉각 다층 필름
CN113997673A (zh) * 2021-11-23 2022-02-01 深圳市碧洁新能源科技有限公司 透气降温机织面料及其制备方法
US11780209B2 (en) 2021-11-24 2023-10-10 Eenotech, Inc. Wallpaper and method for manufacturing same
CN114506141A (zh) * 2022-01-30 2022-05-17 浙江大学 一种辐射制冷薄膜
CN114659290A (zh) * 2022-03-23 2022-06-24 国家纳米科学中心 一种基于纤维阵列的辐射制冷表面及其制备方法和应用
CN114806514A (zh) * 2022-05-06 2022-07-29 哈尔滨工业大学 采用模板法制备非连续散射强化的孔球复合聚合物基辐射制冷材料的方法
CN114805941B (zh) * 2022-05-09 2023-04-21 东南大学 一种定向导热多孔辐射制冷薄膜材料及其制备方法
CN114933731A (zh) * 2022-06-02 2022-08-23 哈尔滨工业大学 分级粒径微球与孔复合的聚合物基辐射制冷材料及其制备方法
CN115323801B (zh) * 2022-07-12 2024-04-30 浙江理工大学 一种具有全天高效被动辐射冷却功能的涂层纺织品及其制备方法
CN115572399B (zh) * 2022-10-09 2023-07-25 南京特殊教育师范学院 一种被动辐射冷却薄膜及其制备方法
WO2024085103A1 (ja) * 2022-10-19 2024-04-25 バンドー化学株式会社 放射冷却構造及びその製造方法
CN115595796B (zh) * 2022-10-26 2024-02-27 王文玉 一种辐射制冷纤维及其制备方法、织物
CN116774332B (zh) * 2023-08-24 2023-11-17 中国科学院长春光学精密机械与物理研究所 定向辐射器件在辐射制冷中的应用
CN116813961B (zh) * 2023-08-25 2023-12-22 南京助天中科科技发展有限公司 一种增强大气窗口发射率的辐射制冷薄膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874896A (zh) * 2013-11-04 2016-08-17 材料视觉有限公司 利用颗粒物的隔热系统
WO2017151514A1 (en) * 2016-02-29 2017-09-08 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
CN107560224A (zh) * 2017-09-08 2018-01-09 赵文立 一种辐射制冷膜
CN109337497A (zh) * 2018-10-11 2019-02-15 宁波瑞凌节能环保创新与产业研究院 一种环境友好型的降温制冷涂料
CN109631408A (zh) * 2019-01-19 2019-04-16 天津大学 生物可降解红外发射被动式辐射冷却结构及冷却方法
CN109622343A (zh) * 2018-12-19 2019-04-16 宁波瑞凌节能环保创新与产业研究院 一种辐射制冷帘及其制备方法
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜
CN208827268U (zh) * 2018-06-11 2019-05-07 宁波瑞凌节能环保创新与产业研究院 一种降温效果可调的辐射制冷薄膜
US20190152410A1 (en) * 2017-11-20 2019-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Transparent radiative cooling films and structures comprising the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167082A (ja) * 1987-12-15 1989-06-30 Ono Kk 複合シート状温度管理保存袋
JPH0278539A (ja) * 1988-09-14 1990-03-19 Gijutsu Kiyoukiyuu:Kk 金属の熱伝導を利用する赤外線放射体および赤外線吸収体
KR20100062992A (ko) * 2007-06-19 2010-06-10 유니버서티 오브 테크놀러지 시드니 냉각 재료
CA2772874A1 (en) * 2011-04-21 2012-10-21 Certainteed Corporation System, method and apparatus for thermal energy management in a roof
DE102013223353A1 (de) * 2013-11-15 2015-05-21 Evonik Industries Ag One-shot Herstellung von Composites
JP2018526599A (ja) * 2015-06-18 2018-09-13 ザ トラスティーズ オブ コロンビア ユニヴァーシティ イン ザ シティ オブ ニューヨーク 放射冷却および加熱用のシステムならびに方法
WO2018062541A1 (ja) 2016-09-30 2018-04-05 富士フイルム株式会社 積層構造
CN109664574A (zh) 2019-01-19 2019-04-23 天津大学 基于复合材料的被动式辐射冷却结构及冷却方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105874896A (zh) * 2013-11-04 2016-08-17 材料视觉有限公司 利用颗粒物的隔热系统
WO2017151514A1 (en) * 2016-02-29 2017-09-08 The Regents Of The University Of Colorado, A Body Corporate Radiative cooling structures and systems
CN107560224A (zh) * 2017-09-08 2018-01-09 赵文立 一种辐射制冷膜
US20190152410A1 (en) * 2017-11-20 2019-05-23 Toyota Motor Engineering & Manufacturing North America, Inc. Transparent radiative cooling films and structures comprising the same
CN208827268U (zh) * 2018-06-11 2019-05-07 宁波瑞凌节能环保创新与产业研究院 一种降温效果可调的辐射制冷薄膜
CN109337497A (zh) * 2018-10-11 2019-02-15 宁波瑞凌节能环保创新与产业研究院 一种环境友好型的降温制冷涂料
CN109622343A (zh) * 2018-12-19 2019-04-16 宁波瑞凌节能环保创新与产业研究院 一种辐射制冷帘及其制备方法
CN109651973A (zh) * 2018-12-19 2019-04-19 宁波瑞凌新能源科技有限公司 一种高反射率辐射制冷膜
CN109631408A (zh) * 2019-01-19 2019-04-16 天津大学 生物可降解红外发射被动式辐射冷却结构及冷却方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112460837A (zh) * 2020-12-05 2021-03-09 中国人民解放军国防科技大学 基于dbs算法的二氧化钛选择性吸波器及设计方法
JP7086248B1 (ja) 2021-03-26 2022-06-17 大阪瓦斯株式会社 放射冷却装置
JP7086247B1 (ja) 2021-03-26 2022-06-17 大阪瓦斯株式会社 放射冷却装置
WO2022202990A1 (ja) * 2021-03-26 2022-09-29 大阪瓦斯株式会社 放射冷却装置
WO2022202991A1 (ja) * 2021-03-26 2022-09-29 大阪瓦斯株式会社 放射冷却装置
JP2022151098A (ja) * 2021-03-26 2022-10-07 大阪瓦斯株式会社 放射冷却装置
JP2022151097A (ja) * 2021-03-26 2022-10-07 大阪瓦斯株式会社 放射冷却装置
WO2022207558A1 (de) * 2021-04-01 2022-10-06 Deutsches Zentrum für Luft- und Raumfahrt e.V. Raumfahrzeugmembran, photovoltaik-raumfahrtmodul, widerstandssegel, membranantenne, solarsegel und verwendung einer raumfahrzeugmembran
CN113527740A (zh) * 2021-07-15 2021-10-22 伊诺福科光学技术有限公司 一种具有表面周期性微纳结构的辐射制冷薄膜及制备方法
WO2023284350A1 (zh) * 2021-07-15 2023-01-19 伊诺福科光学技术有限公司 一种具有表面周期性微纳结构的辐射制冷薄膜及制备方法
CN114016300A (zh) * 2021-11-24 2022-02-08 浙江理工大学 一种具有被动辐射冷却功能的涂层纺织品及其制备方法
CN114016300B (zh) * 2021-11-24 2024-02-02 浙江理工大学 一种具有被动辐射冷却功能的涂层纺织品及其制备方法

Also Published As

Publication number Publication date
EP3744517B1 (en) 2023-11-29
MX2020003403A (es) 2021-01-08
CN110972467B (zh) 2021-12-14
BR102020005881A2 (pt) 2020-12-08
CN110972467A (zh) 2020-04-07
JP7158405B2 (ja) 2022-10-21
JP2021529680A (ja) 2021-11-04
SG11202002818TA (en) 2021-01-28
TWI730393B (zh) 2021-06-11
TW202045681A (zh) 2020-12-16
CN110216924B (zh) 2021-08-06
AU2019246840B2 (en) 2021-09-09
EP3744517A1 (en) 2020-12-02
CN110216924A (zh) 2019-09-10
AU2019246840A1 (en) 2020-12-17
MY193668A (en) 2022-10-24

Similar Documents

Publication Publication Date Title
WO2020237813A1 (zh) 复合辐射制冷膜、复合辐射制冷膜材料及其应用
Liu et al. Multi-bioinspired self-cleaning energy-free cooling coatings
Lee et al. Visibly clear radiative cooling metamaterials for enhanced thermal management in solar cells and windows
Chen et al. Development of radiative cooling and its integration with buildings: A comprehensive review
Zhou et al. Three-dimensional printable nanoporous polymer matrix composites for daytime radiative cooling
TWI740202B (zh) 輻射致冷功能塗料及其製備方法與應用、選擇性輻射致冷塗層及複合材料
CN109070695B (zh) 辐射冷却结构和系统
US20090114279A1 (en) Solar cell sheet and a method for the preparation of the same
CN111690301B (zh) 具有梯度结构的辐射制冷涂层及其制备方法与应用
JP2021521768A (ja) 受動放射冷却のための製作方法、構造体、および使用
Cui et al. Progress of passive daytime radiative cooling technologies towards commercial applications
Lim et al. CaCO3 micro particle-based radiative cooling device without metal reflector for entire day
Zhou et al. Radiative cooling for energy sustainability: Materials, systems, and applications
Li et al. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving
AU2019246842B1 (en) Radiative cooling material, method for making the same and application thereof
Zhao et al. Superhydrophobic bilayer coating for passive daytime radiative cooling
Zhang et al. Efficient Passive Daytime Radiative Cooling by Hierarchically Designed Films Integrating Robust Durability
CN210894760U (zh) 一种辐射制冷薄膜
RU2014128474A (ru) Демпфирующее радиолокационное отражение остекление
CN210970215U (zh) 一种可降解辐射制冷薄膜
CN117308401A (zh) 一种具有结构色柔性疏水辐射制冷透明结构
CN210970217U (zh) 一种高反射辐射制冷薄膜
Wang et al. Passive daytime radiative cooling materials toward real-world applications
Bijarniya et al. Progress on Natural and Sustainable Materials for Daytime Radiative Cooling
CN116774332B (zh) 定向辐射器件在辐射制冷中的应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019553305

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019246840

Country of ref document: AU

Date of ref document: 20190726

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931496

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931496

Country of ref document: EP

Kind code of ref document: A1