WO2020237780A1 - 一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法 - Google Patents

一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法 Download PDF

Info

Publication number
WO2020237780A1
WO2020237780A1 PCT/CN2019/094905 CN2019094905W WO2020237780A1 WO 2020237780 A1 WO2020237780 A1 WO 2020237780A1 CN 2019094905 W CN2019094905 W CN 2019094905W WO 2020237780 A1 WO2020237780 A1 WO 2020237780A1
Authority
WO
WIPO (PCT)
Prior art keywords
constructed wetland
winter
oil production
water
effluent
Prior art date
Application number
PCT/CN2019/094905
Other languages
English (en)
French (fr)
Inventor
刘春博
胡玮
侯万国
赵显�
尚朝辉
马建波
顾永涛
何海峰
严锦根
彭志敏
孟国栋
谢晓辉
Original Assignee
中国石油化工股份有限公司胜利油田分公司孤东采油厂
东营市正泽环保科技有限公司
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司胜利油田分公司孤东采油厂, 东营市正泽环保科技有限公司, 山东大学 filed Critical 中国石油化工股份有限公司胜利油田分公司孤东采油厂
Priority to US16/770,100 priority Critical patent/US11383997B2/en
Publication of WO2020237780A1 publication Critical patent/WO2020237780A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F2001/007Processes including a sedimentation step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/10Nature of the water, waste water, sewage or sludge to be treated from quarries or from mining activities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2203/00Apparatus and plants for the biological treatment of water, waste water or sewage
    • C02F2203/006Apparatus and plants for the biological treatment of water, waste water or sewage details of construction, e.g. specially adapted seals, modules, connections
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/10Solids, e.g. total solids [TS], total suspended solids [TSS] or volatile solids [VS]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/44Time
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/04Flow arrangements
    • C02F2301/046Recirculation with an external loop
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/08Multistage treatments, e.g. repetition of the same process step under different conditions
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1257Oxidation ditches
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/32Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae
    • C02F3/327Biological treatment of water, waste water, or sewage characterised by the animals or plants used, e.g. algae characterised by animals and plants
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the invention relates to a method for achieving standard operation in the reconstruction of artificial wetlands of oil extraction sewage under low temperature conditions in winter in northern China; in particular, it relates to an ecological method of combining different types of wetlands and adapting plants and animals to the artificial wetlands of oil extraction high-salt sewage
  • the configuration of a method for achieving compliance in winter operation belongs to the field of environmental protection technology.
  • Constructed wetland is artificially imitating the principle of natural wetland water purification, using the three-fold coordination of the physical, chemical and biological effects of media, microorganisms, animals and plants, through co-precipitation, filtration, adsorption, ion exchange, plant photosynthesis, aquatic animal filter food, microorganisms Joint metabolism, complete the biogeochemical cycle transformation of pollutants, and achieve efficient purification of sewage.
  • Oil production wastewater refers to the wastewater produced during the oil extraction process with main indicators meeting COD ⁇ 1000mg/L, suspended matter ⁇ 200mg/L, petroleum ⁇ 200mg/L, polymer ⁇ 100mg/L, and salinity ⁇ 15000mg/L. It mainly includes oil field produced water, drilling sewage and other types of oily sewage in the joint station. Oil field produced water refers to the water separated from the water-containing crude oil extracted from underground after dehydration and desalination. Due to the difference between the stratum and the oil production process, the composition of the produced water is very complicated. The sewage contains not only crude oil, but also various suspended solids, soluble salts, harmful gases and organic polymers. Direct discharge without treatment will pollute water bodies, soil, and plants. , Destroy the natural environment.
  • constructed wetlands In addition to plant dormancy, withering or death, constructed wetlands cannot operate in winter, which affects the promotion of constructed wetlands.
  • the area of constructed wetlands, especially surface flow constructed wetlands is generally large, the implementation of the project is difficult, the investment is high, and the subsequent maintenance operations are complicated, and the practicability is not
  • the salt content of oil production wastewater is about 40% to 60% of seawater.
  • Conventional constructed wetlands cannot grow normally in winter.
  • subsurface constructed wetlands are a widely used type in constructed wetlands. The purification effect is good, but long-term operation of the root system and the accumulation of pollutants can easily block the substrate, and the substrate needs to be replaced regularly, which results in high maintenance costs.
  • underflow constructed wetland and surface flow constructed wetland under low temperature conditions in winter After searching, regarding the combination of underflow constructed wetland and surface flow constructed wetland under low temperature conditions in winter, one is to overcome the long-term operation of underflow constructed wetland, which is easy to be blocked and difficult to recover; the other is to improve the ecological composition of surface flow and use salt-tolerant and cold plant pores Ulva compensates for the lack of plants in the wetland in winter, and combines different aquatic animals to strengthen the biological water purification function to ensure the winter water purification effect of the constructed wetland.
  • the method for the ecological configuration of the artificial wetland for oil production and high-salt sewage to achieve the standard operation in winter has not been reported.
  • the problem to be solved by the present invention is to provide a method for achieving the standard operation in winter for the ecological configuration of the artificial wetland of high-salinity sewage from oil production.
  • the method of the present invention for implementing the ecological configuration of the constructed wetland for high-salinity wastewater from oil production to achieve the standard operation in winter includes the following steps:
  • the oil production wastewater is passed through NaOH, Na 2 CO 3 , CaO, Ca(OH) 2 , NH 3 ⁇ H 2 O, PAC (polyaluminum chloride), PAM (polyacrylamide)
  • PAC polyaluminum chloride
  • PAM polyacrylamide
  • the oxidation pond outlet is equipped with a reflux pump station, which can return part of the oxidation pond effluent to the oxidation pond inlet, with a reflux ratio of 20% to 50%;
  • step (3) The effluent from the oxidation pond prepared in step (2) enters the subsurface flow constructed wetland, the hydraulic retention time is 0.5-2 days, and the water quality is COD60-100mg/L, suspended solids 10-20mg/L, petroleum 1 ⁇ 5mg/L subsurface flow constructed wetland effluent;
  • Step (3) The subsurface flow constructed wetland consists of a soil matrix and a water-conveying pipe wrapped with a permeable non-woven fabric at the bottom of the soil matrix, and the root system grows on the inner side of the water pipe wall and the stem grows on the outer side of the water pipe wall.
  • the structure is composed of reeds with a length higher than the thickness of the soil matrix layer, and its structure is shown in Figure 1. Among them, the effluent of the oxidation pond prepared in step (2) only flows through the water distribution pipe, and the sewage purification unit is limited to the water distribution pipe.
  • the distance between the water pipe and the surface is 50 ⁇ 100cm;
  • Step (4) The surface flow constructed wetland consists of a soil substrate and reeds growing on the substrate, water, aquatic salt-tolerant and cold-loving plants in winter, and block-stocked fish, shrimp, crabs, sea rainbows, mussels, oysters or clams
  • the structure of oysters and artificial sand dams is shown in Figure 2; wherein, the fish, shrimps, and crabs are mixed for stocking, and sea rainbows, mussels, oysters or clams are suspended by floating seedling ropes or artificial sand dams.
  • the diameter of the water distribution pipe in step (3) is 10-30 cm, and the net-like spacing is laid at a distance of 20-60 cm.
  • the diameter of the water distribution pipe in step (3) is 20-30 cm, and the net-like spacing is laid, and the spacing distance is 30-50 cm.
  • the winter aquatic salt-tolerant and cold-loving plant in step (4) is preferably Ulva vulgaris, with a planting density of 10-40 plants/m 2 .
  • the fish described in step (4) is preferably trout, and the stocking density is 1 to 5 kg/m 2 .
  • the shrimp described in step (4) is preferably white tail shrimp or vannamei shrimp, and the stocking density is 0.1-2 kg/m 2 .
  • the crab described in step (4) is preferably a hairy crab with a stocking density of 0.5-1 kg/m 2 .
  • the density of the sea rainbow, mussel, oyster or clam floating seedling rope hanging or artificial dam stocking in step (4) is preferably 10 per mu % Area stocking.
  • the method for laying the artificial sand dam in step (4) is preferably: 1 to 5 meters in width along the water flow direction and the same length as the surface flow constructed wetland, The sand surface is laid obliquely, the top of the sand is 5-20cm lower than the water surface, the height is 20-40cm, and the sand size is 20-40 mesh.
  • the method of the present invention overcomes the shortcomings of the prior art, and realizes the winter-compliant operation of the high-salt oil production wastewater constructed wetland;
  • the sewage purification unit is limited to the water distribution pipe, and no substrate such as gravel layer is arranged on the outside of the water distribution pipe. Only the soil substrate is installed for heat preservation. After the water distribution pipe roots or pollutants are blocked, only Backwashing the water distribution pipe is easy for secondary recovery, avoiding the replacement of a large amount of substrate or discarding after the conventional subsurface flow constructed wetland is blocked.
  • the salt-tolerant and cold-loving marine plant Ulva vulgaris is introduced innovatively in the artificial wetland of high-salt oil production wastewater. Its reproduction and growth period is in winter and spring, and the harvest period is in late spring and early summer. Experiments have proved that it can grow normally in the constructed wetland of oil production wastewater with a water temperature of 0-10°C in winter and a salinity of 24000 mg/L, to make up for the lack of plants in the wetland in winter.
  • the constructed "Ulva ulva constructed wetland" provides a microbial net in the constructed wetland. The oxygen required for the growth of water and aquatic animals.
  • the preferred trout of the present invention survives at a water temperature of 0-5°C in winter, and dies at a high temperature of >25°C in summer, and will not cause invasion of foreign species.
  • the present invention adopts the polyculture of fish, shrimp, crab, mussels, oysters, clams and oysters to construct an ecological water purification and circulation chain, strengthen the water purification capacity of aquatic animals in the constructed wetland, and can further construct an economic chain to utilize wetland
  • the aquatic animals feed economic animals such as mink and fox to obtain value-added products such as fur and increase economic returns.
  • the seedling ropes of the present invention are used to hang mussels and oysters. On the one hand, they can purify sewage by their filtering and feeding effect. On the other hand, they can be used as artificial aquatic plants with high surface area to attach a large number of water purification microorganisms and increase the purification contact area between microorganisms and sewage.
  • the artificial sand dam of the present invention is placed at the end of each processing unit to effectively purify sewage.
  • sand can be used as a sand filter system to further filter and improve water quality.
  • Figure 1 is a schematic diagram of the structure of the subsurface flow constructed wetland of the present invention
  • Fig. 2 is a schematic diagram of the structure of the surface flow constructed wetland of the present invention and a demonstration of its operation state in winter.
  • the oil production wastewater used in this example is the oil production wastewater obtained after oil-water separation in the combined station of an oil production plant in Shengli Oilfield, Dongying City.
  • the daily sewage treatment capacity is 3000m 3 /d.
  • the method of the present invention for implementing the ecological configuration of the constructed wetland for high-salinity wastewater from oil production to achieve the standard operation in winter includes the following steps:
  • the oil production wastewater generally has a relatively high temperature (40-60°C), poor biodegradability, and difficult microorganisms to survive.
  • Part of the oxidation pond effluent is returned to the oxidation pond inlet with a reflux ratio of 50%.
  • Adjust the oxidation pond The inlet water temperature improves the quality of the inlet water, increases the number of degrading microorganisms, and increases the oxygen concentration of the inlet water.
  • the plant humus carried or artificially added in the return water (such as reeds, suaeda, tamarisk branches, etc.) can be used as a carbon source for microorganisms.
  • Increase the ratio of influent BOD 5 /COD Cr optimize the nutritional conditions of biological treatment, the range of addition is 0.3kg/m 2 .
  • step (3) The effluent of the oxidation pond prepared in step (2) is entered into the subsurface flow constructed wetland, the hydraulic retention time is 2 days, and the water quality is COD 60mg/L, suspended solids 20mg/L, and petroleum 5mg/L subsurface flow wetland effluent;
  • the above-mentioned underflow constructed wetland consists of a soil matrix and a water-conveying pipe wrapped with a permeable non-woven fabric at the bottom of the soil matrix, and the root system grows on the inner side of the pipe wall, and the stem grows on the outer side of the pipe wall and has a high length.
  • the structure of the reed at the thickness of the soil matrix layer is shown in Figure 1.
  • the effluent of the oxidation pond prepared in step (2) only flows through the water distribution pipe, and the sewage purification unit is limited to the water distribution pipe, and the water distribution pipe is away from the ground surface. 60 ⁇ 80cm; the water distribution pipe has a diameter of 25cm, and is laid at intervals of a net shape with an interval of 30-40cm.
  • step (3) Pass the effluent from step (3) subsurface flow constructed wetland into surface flow wetland, which consists of soil substrate and reeds growing on the substrate, water, winter aquatic salt-tolerant cold-loving plants, and block-stocked fish ,shrimp, crabs, mussels, oysters or clams and artificial sand dams, the structure is shown in Figure 2; surface flow constructed wetland planted Ulva perforatum 25 plants/m 2 , 1kg/m 2 trout, ridge tail white Shrimp 0.5kg/m 2 and hairy crabs 0.5kg/m 2 were stocked, and sea rainbows and mussels were hung on ropes according to the stocking amount of 10% of the water surface area per mu.
  • an artificial dam is set up with 30 mesh sand, 4 meters wide and 150 meters long, the sand surface is inclined, and the top of the sand is 15 cm below the water surface and 30 cm in height.
  • the hydraulic retention time is 20 days, the hydraulic load is 0.3m/day, and the water quality is COD 40mg/L, suspended solids 10mg/L, petroleum products 0.5mg/L, and salinity 20,000mg/L surface flow wetland effluent to reach high-salt wastewater from oil production Environmental protection standards for constructed wetlands in winter.
  • the trout and spine-tailed white shrimp stocked in the above surface wetlands can be used to raise mink, mink meat is fed to foxes, fox meat is fed to crocodile, and crocodile meat can be fed to fish, mink and fox. interest.
  • the circulating chain is:
  • the water after stocking animals can be used to replenish water in the composite wetland.
  • the animal excrement is used for fermentation in the biogas digester to provide green fuel for the daily life of the staff on site.
  • the fermented waste residue can be used as organic fertilizer for wetland plants such as reeds.
  • the oil production wastewater is pretreated with NaOH at a weight ratio of 10:1 for 4 hours, and then passed into a sedimentation tank or air flotation tank for 10 hours, sludge is removed, the effluent is adjusted to pH 6-8, and the water quality is COD 200mg/ L, 35mg/L of suspended matter, 15mg/L of petroleum pretreatment effluent;
  • step (2) Pass the pretreated effluent prepared in step (1) into the oxidation pond, with a hydraulic retention time of 11 days, and produce the oxidation pond effluent with COD 120mg/L, 25mg/L suspended solids, and 6mg/L petroleum ;
  • a reflux pump station is set at the outlet of the oxidation pond, which can return part of the outlet water of the oxidation pond to the inlet of the oxidation pond, with a reflux ratio of 30%;
  • step (3) The effluent of the oxidation pond prepared in step (2) is entered into the underflow constructed wetland with a hydraulic retention time of 1.5 days, and the water quality is COD 80mg/L, suspended solids 15mg/L, and petroleum 3mg/L underflow constructed wetland effluent. ;
  • Step (3) The underflow constructed wetland consists of a soil matrix and a water-conveying pipe wrapped with a permeable non-woven fabric at the bottom of the soil matrix, and a root system grows on the inner side of the water pipe wall and stems grow on the outer side of the water pipe wall.
  • the structure is composed of reeds with a length higher than the thickness of the soil matrix layer, and its structure is shown in Figure 1. Among them, the effluent of the oxidation pond prepared in step (2) only flows through the water distribution pipe, and the sewage purification unit is limited to the water distribution pipe.
  • the distance between the water pipe and the surface is 70cm;
  • Step (4) The surface flow constructed wetland consists of a soil substrate, reeds growing on the substrate, water, aquatic salt-tolerant and cold-loving plants in winter, and block-stocked fish, shrimp, crabs, sea rainbows, mussels, oysters or clams
  • the structure of oysters and artificial sand dams is shown in Figure 2; wherein, the fish, shrimps, and crabs are mixed for stocking, and sea rainbow, mussels, oysters or clams are suspended by floating seedling ropes or artificial sand dams.
  • the diameter of the water distribution pipe in step (3) is 30 cm, and the network is laid at intervals with a distance of 50 cm.
  • the winter aquatic salt-tolerant and cold-loving plant in step (4) is preferably Ulva vulgaris, with a planting density of 40 plants/m 2 .
  • the fish described in step (4) is preferably trout, and the stocking density is 3 kg/m 2 .
  • the shrimp described in step (4) is preferably white tail shrimp or vannamei shrimp, and the stocking density is 1 kg/m 2 .
  • the crab described in step (4) is preferably a hairy crab, and its stocking density is 0.7 kg/m 2 .
  • the density of the sea rainbow, mussel, oyster or clam floating seedling rope hanging or artificial dam stocking in step (4) is preferably 10 per mu % Area stocking.
  • the method for laying the artificial sand dam in step (4) is preferably: 4 meters wide in the direction of water flow and the same length as the surface flow constructed wetland. Pave diagonally, the top of the sand is 10cm below the water surface, the height is 30cm, and the sand size is 25 mesh.
  • the method of the present invention for implementing the ecological configuration of the constructed wetland of high-salinity wastewater from oil extraction to achieve the standard operation in winter includes the following steps:
  • step (2) Pass the pretreated effluent prepared in step (1) into the oxidation pond, with a hydraulic retention time of 7 days, and prepare the oxidation pond effluent with a water quality of 100 mg/L COD, 20 mg/L suspended solids, and 7 mg/L petroleum;
  • the outlet of the oxidation pond is equipped with a reflux pump station, which can return part of the outlet water of the oxidation pond to the inlet of the oxidation pond, with a reflux ratio of 20% to 50%;
  • step (3) The effluent of the oxidation pond prepared in step (2) is entered into the underflow constructed wetland with a hydraulic retention time of 1 day, and the water quality is COD 60mg/L, suspended matter 10mg/L, and petroleum 2mg/L underflow constructed wetland effluent. ;
  • Step (3) The underflow constructed wetland consists of a soil matrix and a water-conveying pipe wrapped with a permeable non-woven fabric at the bottom of the soil matrix, and a root system grows on the inner side of the water pipe wall and stems grow on the outer side of the water pipe wall.
  • the structure is composed of reeds with a length higher than the thickness of the soil matrix layer, and its structure is shown in Figure 1. Among them, the effluent of the oxidation pond prepared in step (2) only flows through the water distribution pipe, and the sewage purification unit is limited to the water distribution pipe.
  • the distance between the water pipe and the surface is 100cm;
  • Step (4) The surface flow constructed wetland consists of a soil substrate and reeds growing on the substrate, water, aquatic salt-tolerant and cold-loving plants in winter, and block-stocked fish, shrimp, crabs, sea rainbows, mussels, oysters or clams
  • the structure of oysters and artificial sand dams is shown in Figure 2; wherein, the fish, shrimps, and crabs are mixed for stocking, and sea rainbows, mussels, oysters or clams are suspended by floating seedling ropes or artificial sand dams.
  • the diameter of the water distribution pipe in step (3) is 30 cm, and the network is laid at intervals with a distance of 60 cm.
  • the winter aquatic salt-tolerant and cold-loving plant in step (4) is preferably Ulva vulgaris, with a planting density of 40 plants/m 2 .
  • the fish described in step (4) is preferably trout, and the stocking density is 5 kg/m 2 .
  • the shrimp described in step (4) is preferably the white shrimp or vannamei shrimp, and the stocking density is 2 kg/m 2 .
  • the crab described in step (4) is preferably a hairy crab with a stocking density of 1 kg/m 2 .
  • the density of the sea rainbow, mussel, oyster or clam floating seedling rope hanging or artificial dam stocking in step (4) is preferably 10 per mu % Area stocking.
  • the method for laying the artificial sand dam in step (4) is preferably: 3 meters in the direction of the water flow, the same length as the surface flow constructed wetland, and the sand surface Pave diagonally, the top of the sand is 10cm below the water surface, the height is 20cm, and the sand size is 20 mesh.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydroponics (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

一种对采油污水人工湿地生态配置实现冬季达标运行的方法,是在利用人工湿地处理采油高盐污水时通过对潜流人工湿地和表面流人工湿地进行生态配置改造实现冬季达标运行。其中所述潜流人工湿地由土壤基质和置于土壤基质底部的外围包裹透水无纺布的输送污水的布水管,以及根系生长于布水管壁内侧、茎生在布水管壁外侧并长度高于土壤基质层厚度的芦苇构成;所述表面流人工湿地由土壤基质和生长于基质上的芦苇,水,冬季水生耐盐喜寒植物,区块放养的鱼、虾、蟹、海虹、贻贝、牡蛎或蛤蛎以及人工沙子堤坝构成。该方法克服了现有技术的不足,使高盐采油污水人工湿地能够冬季正常运行,成本低,经济效益显著。

Description

一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法 技术领域
本发明涉及一种北方冬季低温条件下,对采油污水人工湿地改造实现达标运行的方法;尤其涉及一种对采油高盐污水人工湿地以不同类型湿地组合,适应性的植物、动物搭配的生态方式配置实现冬季达标运行的方法,属环保技术领域。
背景技术
人工湿地是人为模仿自然湿地净水原理,利用介质、微生物、动植物的物理、化学和生物的三重协调作用,通过共沉、过滤,吸附,离子交换,植物光合作用,水生动物滤食,微生物联合代谢,完成污染物质的生物地球化学循环转化,实现污水的高效净化。
采油污水是指主要指标符合COD≤1000mg/L,悬浮物≤200mg/L,石油类≤200mg/L,聚合物≤100mg/L、矿化度≤15000mg/L的石油开采过程中产生的废水,主要包括油田采出水、钻井污水及联合站内其他类型的含油污水,油田采出水是指从地下采出的含水原油经脱水、脱盐等处理后分离出来的水。由于地层与采油工艺的不同,采出水的成分十分复杂,污水中不仅含有原油,还存在各种悬浮物、可溶性盐、有害气体和有机聚合物,未经处理直接排放会污染水体、土壤、植物,破坏自然环境。
人工湿地作为一种新型生态污水净化处理方法,因为造价低,运行费用低,并具有景观效应,易于被大众所接受,近年来发展迅速。检索发现人工湿地处理采油污水在国内外早有实践,并取得了良好的处理效果,中国专利ZL201310309060.7公开了“一种能实现零排放的人工湿地深度处理采油污水的方法”,其中涉及利用人工湿地深度处理采油污水的方法。但人工湿地的推广仍然普遍存在突出的制约因素。一是我国北方地区,冬季气温低,严重抑制微生物的生理活性与繁殖速度,加上植物休眠、枯萎或死亡,人工湿地冬季无法运行,影响了人工湿地的推广。虽然也有专利涉及采用大棚、植物体覆盖等保温措施,有一定效果,但人工湿地,尤其是表面流人工湿地面积一般较大,实施工程难度大,投资高,且后期维护操作复杂,实用性不高;另一方面,采油污水含盐量约为海水的40%~60%,常规的人工湿地冬季净水植物无法正常生长;第三,潜流人工湿地是人工湿地中应用较广的类型,冬季净化效果好,但是长期运行根系及污染物积累,易堵塞基质,需要定期更换基质,维护费用高。
经检索,关于冬季低温条件下,组合潜流人工湿地与表面流人工湿地,一是克服潜流人工湿地长期运行易堵塞、难恢复的问题;二是完善表面流生态组成,利用耐盐喜寒植物孔石 莼弥补湿地冬季植物缺失问题,同时搭配不同水生动物,强化生物净水功能,保证人工湿地冬季净水效果的对采油高盐污水人工湿地生态配置以实现冬季达标运行的方法还未见报道。
发明内容
针对现有技术的不足,本发明要解决的问题是提供一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法。
本发明所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,步骤是:
(1)按重量比5~10:1将采油污水经NaOH、Na 2CO 3、CaO、Ca(OH) 2、NH 3·H 2O、PAC(聚合氯化铝)、PAM(聚丙烯酰胺)中的一种或任意两种以上的混合物进行预处理反应2~4h,然后通入沉淀池或气浮池处理1~10h,除污泥,出水调pH为6~8,制得水质为COD 150~300mg/L、悬浮物30~50mg/L、石油类10~20mg/L的预处理出水;
(2)将步骤(1)制得的预处理出水通入氧化塘,水力停留时间为3~21天,制得水质为COD 100~150mg/L、悬浮物20~30mg/L、石油类1~10mg/L的氧化塘出水;其中,氧化塘出水口设置回流泵站,能将部分氧化塘出水回流至氧化塘进水口,回流比为20%~50%;
(3)将步骤(2)制得的氧化塘出水进入潜流人工湿地,水力停留时间为0.5~2天,制得水质为COD60~100mg/L、悬浮物10~20mg/L、石油类1~5mg/L的潜流人工湿地出水;
(4)将步骤(3)制得的潜流人工湿地出水通入表面流人工湿地,水力停留时间为20~30天,水力负荷≤0.5m/天,制得水质为COD40~50mg/L、悬浮物10~20mg/L、石油类0.01~3mg/L、矿化度15000~24000mg/L的表面流人工湿地出水;
其特征在于:
步骤(3)所述潜流人工湿地由土壤基质和置于土壤基质底部的外围包裹透水无纺布的输送污水的布水管,以及根系生长于布水管壁内侧、茎生在布水管壁外侧并长度高于土壤基质层厚度的芦苇构成,其结构如图1所示;其中,步骤(2)制得的氧化塘出水只流经布水管,将污水的净化单元限定在布水管内,布水管距离地表50~100cm;
步骤(4)所述表面流人工湿地由土壤基质和生长于基质上的芦苇,水,冬季水生耐盐喜寒植物,区块放养的鱼、虾、蟹、海虹、贻贝、牡蛎或蛤蛎以及人工沙子堤坝构成,其结构如图2所示;其中,所述鱼、虾、蟹混合放养,海虹、贻贝、牡蛎或蛤蛎采用浮体苗绳垂挂或人工沙子堤坝放养。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(3)所述布水管直径10~30cm,网状间隔铺设,间隔距离20~60cm。
其中,进一步优选的实施方式是:步骤(3)所述布水管直径20~30cm,网状间隔铺设,间隔距离30~50cm。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述冬季水生耐盐喜寒植物优选是孔石莼,其种植密度为10~40株/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的鱼优选为鳟鱼,其放养密度为1~5kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的虾优选为脊尾白虾或南美白虾,其放养密度为0.1~2kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的蟹优选为大闸蟹,其放养密度为0.5~1kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的海虹、贻贝、牡蛎或蛤蛎浮体苗绳垂挂或人工堤坝放养的密度优选是每亩10%面积的放养量。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中,步骤(4)所述人工沙子堤坝的铺设方法优选是:沿水流方向宽1~5米,长与表面流人工湿地相同,沙面斜铺,沙顶端低于水面5~20cm,高度20~40cm,沙子粒径为20-40目。
本发明公开的对采油高盐污水人工湿地生态配置实现冬季达标运行的方法所产生的有益效果是:
1、通过本发明方法克服了现有技术的不足,实现了高盐采油污水人工湿地的冬季达标运行;
2、本发明方法公开的潜流人工湿地,将污水的净化单元限定在布水管内,布水管外侧不再设置砾石层等基质,仅设置土壤基质保温,布水管根系或污染物堵塞后,只需反冲洗布水管,易于二次恢复,避免了常规潜流人工湿地堵塞后更换大量基质或废弃。
3、本发明在高盐采油污水人工湿地内,创新性的引种耐盐喜寒海洋植物孔石莼,其繁殖生长期在冬春季,采收盛期在春末夏初。实验证实其可在冬季水温0~10℃,矿化度24000mg/L的采油污水人工湿地中正常生长,弥补湿地冬季植物缺失问题,构建的“孔石莼人工湿地”,提供了人工湿地微生物净水及水生动物生长所需的氧气。
4、本发明优选的鳟鱼,在冬季水温0~5℃存活,在夏季高温>25℃死亡,不会造成外来物种入侵。
5、本发明采用鱼、虾、蟹、贻贝、牡蛎、蛤蛎混养,构建生态净水与循环链条,强化人 工湿地内水生动物的净水能力,还可进一步构建经济链条,利用湿地中的水生动物喂养貂、狐狸等经济动物获得毛皮等附加值产品,提高经济收益。
6、本发明的苗绳垂挂放养贻贝、牡蛎,一方面利用其滤食作用净化污水,另一方面可作为高表面积的人工水草,附着大量净水微生物,增加微生物与污水的净化接触面积。
7、本发明的人工沙子堤坝置于各处理单元的末端,有效净化污水,同时沙子可作为砂滤系统,进一步过滤提升水质。
附图说明
图1是本发明所述潜流人工湿地结构示意图
其中:1、芦苇,2、土壤基质,3、挡土透水无纺布,4、布水管。
图2是本发明所述表面流人工湿地结构示意图及冬季运行状态演示。
其中:5、孔石莼,6、芦苇空心杆,7、鳟鱼,8、虾,9、大闸蟹,10、浮体,11、贻贝与牡蛎,12、蛤蜊,13、人工沙子堤坝。
具体实施方式
下面结合具体实施例对本发明内容进行详细说明。如下所述例子仅是本发明的较佳实施方式而已,并非对本发明作任何形式上的限制,凡是依据本发明的技术实质对实施方式所做的任何简单修改,等同变化与修饰,均属于本发明技术方案的范围内。
实施例1
本实施例使用的采油污水为东营市胜利油田某采油厂的联合站内油水分离后获得的采油污水,主要指标:COD=300mg/L,悬浮物=100mg/L,石油类=50mg/L,聚合物=40mg/L、矿化度=12000mg/L。日处理污水量3000m 3/d。
本发明所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,步骤是:
(1)向上述采油污水中按重量比5:1的量加入等重量比例混合的NaOH、Ca(OH) 2,反应2.5h,然后通入沉淀池沉淀15h,沉淀池的出水调pH6~8后,制得水质为COD=150mg/L、悬浮物=50mg/L、石油类=10mg/L的预处理出水。
(2)将步骤(1)制得的预处理出水通入氧化塘,水力停留时间为20天,制得水质为COD=100mg/L、悬浮物=30mg/L、石油类=1mg/L的氧化塘出水,氧化塘面积依据污染物负荷40kgCOD/(10 4m 2.d),67500m 2
氧化塘出水口设置回流泵站,采油污水一般温度较高(40~60℃),可生化性差,微生物生存困难,将部分氧化塘出水回流至氧化塘进水口,回流比50%,调节氧化塘进水温度, 改善进水水质,增加降解微生物数量,提高进水氧气浓度,同时回流水中携带或人为添加的植物腐殖质(如芦苇、碱蓬、柽柳枝等),可作为微生物可利用的碳源,提高进水BOD 5/COD Cr比值,优化生物处理的营养条件,添加量范围为0.3kg/m 2
(3)将步骤(2)制得的氧化塘出水进入潜流人工湿地,水力停留时间为2天,制得水质为COD60mg/L、悬浮物20mg/L、石油类5mg/L的潜流湿地出水;
其中,上述潜流人工湿地由土壤基质和置于土壤基质底部的外围包裹透水无纺布的输送污水的布水管,以及根系生长于布水管壁内侧、茎生在布水管壁外侧并长度高于土壤基质层厚度的芦苇构成,其结构如图1所示;其中,步骤(2)制得的氧化塘出水只流经布水管,将污水的净化单元限定在布水管内,布水管距离地表60~80cm;所述布水管直径25cm,网状间隔铺设,间隔距离30~40cm。
(4)将步骤(3)潜流人工湿地出水通入表面流湿地,所述表面流人工湿地由土壤基质和生长于基质上的芦苇,水,冬季水生耐盐喜寒植物,区块放养的鱼、虾、蟹、贻贝、牡蛎或蛤蛎以及人工沙子堤坝构成,其结构如图2所示;表面流人工湿地种植孔石莼25株/m 2,按鳟鱼1kg/m 2、脊尾白虾0.5kg/m 2、大闸蟹0.5kg/m 2放养,按照每亩水面10%面积的放养量苗绳垂挂海虹、贻贝。在表面流人工湿地出水口50米处,设置人工堤坝,采用30目沙子铺设,宽4米,长150米,沙面斜铺,沙顶端低于水面15cm,高度30cm。水力停留时间20d,水力负荷0.3m/天,制得水质为COD40mg/L、悬浮物10mg/L、石油类0.5mg/L、矿化度20000mg/L的表面流湿地出水,达到采油高盐污水人工湿地冬季运行环保标准。
上述表面流湿地放养的鳟鱼、脊尾白虾可用于养貂,貂肉喂食狐狸,狐狸肉喂食鳄鱼,鳄鱼肉又可以喂鱼、貂和狐狸,通过制备貂皮、鳄鱼皮、狐狸皮获得经济利益。
循环链条为:
Figure PCTCN2019094905-appb-000001
需要申明的,湿地中放养的鱼类存在威胁人类健康的风险,为安全起见,不作为水产品进入市场,仅作为动物的饲料;可以通过制备貂、狐狸、鳄鱼等毛皮获得经济效益。放养动物后的水可以用于复合湿地的补水,动物的排泄物用于沼气池发酵,为现场工作人员日常生活提供绿色燃料,发酵后的废渣可以作为芦苇等湿地植物的有机肥料。
实施例2
对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,步骤是:
(1)按重量比10:1将采油污水经NaOH进行预处理反应4h,然后通入沉淀池或气浮池处理10h,除污泥,出水调pH为6~8,制得水质为COD 200mg/L、悬浮物35mg/L、石油类15mg/L的预处理出水;
(2)将步骤(1)制得的预处理出水通入氧化塘,水力停留时间为11天,制得水质为COD 120mg/L、悬浮物25mg/L、石油类6mg/L的氧化塘出水;其中,氧化塘出水口设置回流泵站,能将部分氧化塘出水回流至氧化塘进水口,回流比为30%;
(3)将步骤(2)制得的氧化塘出水进入潜流人工湿地,水力停留时间为1.5天,制得水质为COD80mg/L、悬浮物15mg/L、石油类3mg/L的潜流人工湿地出水;
(4)将步骤(3)制得的潜流人工湿地出水通入表面流人工湿地,水力停留时间为26天,水力负荷≤0.5m/天,制得水质为COD40mg/L、悬浮物10mg/L、石油类1.5mg/L、矿化度17000mg/L的表面流人工湿地出水;
其中:
步骤(3)所述潜流人工湿地由土壤基质和置于土壤基质底部的外围包裹透水无纺布的输送污水的布水管,以及根系生长于布水管壁内侧、茎生在布水管壁外侧并长度高于土壤基质层厚度的芦苇构成,其结构如图1所示;其中,步骤(2)制得的氧化塘出水只流经布水管,将污水的净化单元限定在布水管内,布水管距离地表70cm;
步骤(4)所述表面流人工湿地由土壤基质和生长于基质上的芦苇,水,冬季水生耐盐喜寒植物,区块放养的鱼、虾、蟹、海虹、贻贝、牡蛎或蛤蛎以及人工沙子堤坝构成,其结构如图2所示;其中,所述鱼、虾、蟹混合放养,海虹、贻贝、牡蛎或蛤蛎采用浮体苗绳垂挂或人工沙子堤坝放养。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(3)所述布水管直径30cm,网状间隔铺设,间隔距离50cm。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述冬季水生耐盐喜寒植物优选是孔石莼,其种植密度为40株/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的鱼优选为鳟鱼,其放养密度为3kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的虾优选为脊尾白虾或南美白虾,其放养密度为1kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的蟹优选为大闸蟹,其放养密度为0.7kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的海虹、贻贝、牡蛎或蛤蛎浮体苗绳垂挂或人工堤坝放养的密度优选是每亩10%面积的放养量。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中,步骤(4)所述人工沙子堤坝的铺设方法优选是:沿水流方向宽4米,长与表面流人工湿地相同,沙面斜铺,沙顶端低于水面10cm,高度30cm,沙子粒径为25目。
实施例3
本发明所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,步骤是:
(1)向采油污水中按重量比8:1的量加入等重量比例混合的NaOH、CaO、Ca(OH) 2,反应2h,然后通入沉淀池沉淀5h,沉淀池的出水调pH6~8后,制得水质为COD=180mg/L、悬浮物=40mg/L、石油类=20mg/L的预处理出水。
(2)将步骤(1)制得的预处理出水通入氧化塘,水力停留时间为7天,制得水质为COD100mg/L、悬浮物20mg/L、石油类7mg/L的氧化塘出水;其中,氧化塘出水口设置回流泵站,能将部分氧化塘出水回流至氧化塘进水口,回流比为20%~50%;
(3)将步骤(2)制得的氧化塘出水进入潜流人工湿地,水力停留时间为1天,制得水质为COD60mg/L、悬浮物10mg/L、石油类2mg/L的潜流人工湿地出水;
(4)将步骤(3)制得的潜流人工湿地出水通入表面流人工湿地,水力停留时间为20天,水力负荷≤0.5m/天,制得水质为COD40mg/L、悬浮物10mg/L、石油类0.5mg/L、矿化度20000mg/L的表面流人工湿地出水;
其中:
步骤(3)所述潜流人工湿地由土壤基质和置于土壤基质底部的外围包裹透水无纺布的输送污水的布水管,以及根系生长于布水管壁内侧、茎生在布水管壁外侧并长度高于土壤基质层厚度的芦苇构成,其结构如图1所示;其中,步骤(2)制得的氧化塘出水只流经布水管,将污水的净化单元限定在布水管内,布水管距离地表100cm;
步骤(4)所述表面流人工湿地由土壤基质和生长于基质上的芦苇,水,冬季水生耐盐喜寒植物,区块放养的鱼、虾、蟹、海虹、贻贝、牡蛎或蛤蛎以及人工沙子堤坝构成,其结构如图2所示;其中,所述鱼、虾、蟹混合放养,海虹、贻贝、牡蛎或蛤蛎采用浮体苗绳垂 挂或人工沙子堤坝放养。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(3)所述布水管直径30cm,网状间隔铺设,间隔距离60cm。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述冬季水生耐盐喜寒植物优选是孔石莼,其种植密度为40株/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的鱼优选为鳟鱼,其放养密度为5kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的虾优选为脊尾白虾或南美白虾,其放养密度为2kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的蟹优选为大闸蟹,其放养密度为1kg/m 2
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中:步骤(4)所述的海虹、贻贝、牡蛎或蛤蛎浮体苗绳垂挂或人工堤坝放养的密度优选是每亩10%面积的放养量。
上述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法中,步骤(4)所述人工沙子堤坝的铺设方法优选是:沿水流方向宽3米,长与表面流人工湿地相同,沙面斜铺,沙顶端低于水面10cm,高度20cm,沙子粒径为20目。

Claims (9)

  1. 一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,步骤是:
    (1)按重量比5~10:1将采油污水经NaOH、Na 2CO 3、CaO、Ca(OH) 2、NH 3·H 2O、PAC(聚合氯化铝)、PAM(聚丙烯酰胺)中的一种或任意两种以上的混合物进行预处理反应2~4h,然后通入沉淀池或气浮池处理1~10h,除污泥,出水调pH为6~8,制得水质为COD 150~300mg/L、悬浮物30~50mg/L、石油类10~20mg/L的预处理出水;
    (2)将步骤(1)制得的预处理出水通入氧化塘,水力停留时间为3~21天,制得水质为COD 100~150mg/L、悬浮物20~30mg/L、石油类1~10mg/L的氧化塘出水;其中,氧化塘出水口设置回流泵站,能将部分氧化塘出水回流至氧化塘进水口,回流比为20%~50%;
    (3)将步骤(2)制得的氧化塘出水进入潜流人工湿地,水力停留时间为0.5~2天,制得水质为COD60~100mg/L、悬浮物10~20mg/L、石油类1~5mg/L的潜流人工湿地出水;
    (4)将步骤(3)制得的潜流人工湿地出水通入表面流人工湿地,水力停留时间为20~30天,水力负荷≤0.5m/天,制得水质为COD40~50mg/L、悬浮物10~20mg/L、石油类0.01~3mg/L、矿化度15000~24000mg/L的表面流人工湿地出水;
    其特征在于:
    步骤(3)所述潜流人工湿地由土壤基质和置于土壤基质底部的外围包裹透水无纺布的输送污水的布水管,以及根系生长于布水管壁内侧、茎生在布水管壁外侧并长度高于土壤基质层厚度的芦苇构成,其结构如图1所示;其中,步骤(2)制得的氧化塘出水只流经布水管,将污水的净化单元限定在布水管内,布水管距离地表50~100cm;
    步骤(4)所述表面流人工湿地由土壤基质和生长于基质上的芦苇,水,冬季水生耐盐喜寒植物,区块放养的鱼、虾、蟹、海虹、贻贝、牡蛎或蛤蛎以及人工沙子堤坝构成,其结构如图2所示;其中,所述鱼、虾、蟹混合放养,海虹、贻贝、牡蛎或蛤蛎采用浮体苗绳垂挂或人工沙子堤坝放养。
  2. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(3)所述布水管直径10~30cm,网状间隔铺设,间隔距离20~60cm。
  3. 根据权利要求2所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(3)所述布水管直径20~30cm,网状间隔铺设,间隔距离30~50cm。
  4. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(4)所述冬季水生耐盐喜寒植物是孔石莼,其种植密度为10~40株/m 2
  5. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(4)所述的鱼为鳟鱼,其放养密度为1~5kg/m 2
  6. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(4)所述的虾为脊尾白虾或南美白虾,其放养密度为0.1~2kg/m 2
  7. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(4)所述的蟹为大闸蟹,其放养密度为0.5~1kg/m 2
  8. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于:步骤(4)所述的海虹、贻贝、牡蛎或蛤蛎浮体苗绳垂挂或人工堤坝放养的密度是每亩10%面积的放养量。
  9. 根据权利要求1所述对采油高盐污水人工湿地生态配置实现冬季达标运行的方法,其特征在于,步骤(4)所述人工沙子堤坝的铺设方法是:沿水流方向宽1~5米,长与表面流人工湿地相同,沙面斜铺,沙顶端低于水面5~20cm,高度20~40cm,沙子粒径为20-40目。
PCT/CN2019/094905 2019-05-31 2019-07-05 一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法 WO2020237780A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/770,100 US11383997B2 (en) 2019-05-31 2019-07-05 Method for ecologic configuration of oil production high-salt wastewater artificial wetland to realize up-to-standard operation in winter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910469603.9A CN110054369B (zh) 2019-05-31 2019-05-31 一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法
CN201910469603.9 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020237780A1 true WO2020237780A1 (zh) 2020-12-03

Family

ID=67325302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094905 WO2020237780A1 (zh) 2019-05-31 2019-07-05 一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法

Country Status (3)

Country Link
US (1) US11383997B2 (zh)
CN (1) CN110054369B (zh)
WO (1) WO2020237780A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600810A (zh) * 2022-04-18 2022-06-10 江苏农牧科技职业学院 一种克氏原螯虾和中华绒螯蟹高效轮养的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230233993A1 (en) * 2022-01-24 2023-07-27 Saudi Arabian Oil Company Managed ecosystem utilizing produced water from oil and/or gas recovery operations and method for sequestering carbon dioxide using same
CN117147253B (zh) * 2023-08-25 2024-06-04 广东省农业科学院农业质量标准与监测技术研究所 一种美人蕉湿地系统中高氯酸盐浓度的测定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951866A (en) * 1996-07-31 1999-09-14 Grove; John E. Cold climate wetland waste water treatment system
KR20070033646A (ko) * 2005-09-22 2007-03-27 한국농촌공사 비점오염 물질처리를 위한 인공습지시스템
JP2008068211A (ja) * 2006-09-14 2008-03-27 National Agriculture & Food Research Organization 伏流式人工湿地システム
CN101412564A (zh) * 2008-11-06 2009-04-22 中国科学院南京地理与湖泊研究所 一种用于污水厂尾水深度净化的湿地工艺
KR100945046B1 (ko) * 2009-08-14 2010-03-05 주식회사 자연환경 생태하천 및 습지 조성을 위한 오염원 정수처리장치
CN103351082A (zh) * 2013-07-19 2013-10-16 山东大学 一种能实现零排放的人工湿地深度处理采油污水的方法
CN104291520A (zh) * 2014-08-29 2015-01-21 温州大学 一种生活污水处理及回用方法
CN204848444U (zh) * 2015-07-29 2015-12-09 秦皇岛恒特鹏鹞环保工程有限公司 一种适用于北方地区人工湿地污水处理装置
CN105859041A (zh) * 2016-05-18 2016-08-17 无锡城市发展集团有限公司 一种深度处理污水厂二级出水的多级生态单元组合系统
CN107381787A (zh) * 2017-09-04 2017-11-24 北京东方园林环境股份有限公司 一种适用于低温环境的人工湿地系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100936943B1 (ko) * 2009-05-26 2010-01-13 공주대학교 산학협력단 인공 습지용 조립식 블록, 이를 이용한 인공 습지 구조물, 및 인공 습지 구조물의 제조 방법
CN102351376B (zh) * 2011-07-08 2012-11-28 中国科学院水生生物研究所 一种河滩坡岸多塘湿地废污水处理方法及装置
CN104129857B (zh) * 2014-07-29 2017-08-01 青海省环境科学研究设计院 一种高寒地区中水深度净化人工湿地系统
CN206521324U (zh) * 2017-02-08 2017-09-26 北京金都园林绿化有限责任公司 潜流人工湿地
CN208545198U (zh) * 2018-07-04 2019-02-26 陕西耀坤环境设备有限公司 一种新型零动力人工湿地充氧装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5951866A (en) * 1996-07-31 1999-09-14 Grove; John E. Cold climate wetland waste water treatment system
KR20070033646A (ko) * 2005-09-22 2007-03-27 한국농촌공사 비점오염 물질처리를 위한 인공습지시스템
JP2008068211A (ja) * 2006-09-14 2008-03-27 National Agriculture & Food Research Organization 伏流式人工湿地システム
CN101412564A (zh) * 2008-11-06 2009-04-22 中国科学院南京地理与湖泊研究所 一种用于污水厂尾水深度净化的湿地工艺
KR100945046B1 (ko) * 2009-08-14 2010-03-05 주식회사 자연환경 생태하천 및 습지 조성을 위한 오염원 정수처리장치
CN103351082A (zh) * 2013-07-19 2013-10-16 山东大学 一种能实现零排放的人工湿地深度处理采油污水的方法
CN104291520A (zh) * 2014-08-29 2015-01-21 温州大学 一种生活污水处理及回用方法
CN204848444U (zh) * 2015-07-29 2015-12-09 秦皇岛恒特鹏鹞环保工程有限公司 一种适用于北方地区人工湿地污水处理装置
CN105859041A (zh) * 2016-05-18 2016-08-17 无锡城市发展集团有限公司 一种深度处理污水厂二级出水的多级生态单元组合系统
CN107381787A (zh) * 2017-09-04 2017-11-24 北京东方园林环境股份有限公司 一种适用于低温环境的人工湿地系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600810A (zh) * 2022-04-18 2022-06-10 江苏农牧科技职业学院 一种克氏原螯虾和中华绒螯蟹高效轮养的方法

Also Published As

Publication number Publication date
CN110054369B (zh) 2020-05-12
US11383997B2 (en) 2022-07-12
US20210403355A1 (en) 2021-12-30
CN110054369A (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN104310591B (zh) 城市景观水体生态系统的构建方法
CN101120661B (zh) 一种基于复合垂直流人工湿地的生态渔业养殖装置
CN103922478B (zh) 一种水库深水水体富营养化治理的方法
WO2020237780A1 (zh) 一种对采油高盐污水人工湿地生态配置实现冬季达标运行的方法
KR100861134B1 (ko) 해양 심층수와 표층해수를 이용한 해조류의 양식방법
CN105152346A (zh) 应用于大型深水湖泊水生态系统修复的方法
CN103960193B (zh) 模拟自然生态环境的松江鲈鱼繁养水处理系统及运作管理方法
CN203618566U (zh) 一种水体净化高效循环养殖系统
CN101461337A (zh) 石斑鱼池塘养殖方法
CN113912192B (zh) 一种污水净化回用处理方法及系统装置
CN113213710A (zh) 海水工厂化大棚养殖南美白对虾尾水处理系统和方法
CN110250062B (zh) 一种海水综合利用的方法
CN105432549A (zh) 一种兼具净化养殖排放水和养殖功能的陆基化池塘系统
CN201107973Y (zh) 一种基于复合垂直流人工湿地的生态渔业养殖装置
CN111718076A (zh) 一种丘陵地区小型水体富营养化治理的方法
CN101397166A (zh) 天然水域饮用水源地靶环式生态修复及水质改良技术
CN101779595B (zh) 一种北方池塘脆江蓠移植栽培的方法
CN109319939B (zh) 一种人工湖水体复合生态净化系统
CN216058832U (zh) 一种海水稻鱼虾生态循环种养殖装置
KR100869033B1 (ko) 해양 심층수와 표층해수를 이용한 어류의 양식방법
CN210764850U (zh) 一种人工红树林湿地污水深层处理系统
CN103351082B (zh) 一种能实现零排放的人工湿地深度处理采油污水的方法
CN109678304A (zh) 一种用于养殖鲥鱼的铁含量超标浅井水的系统化处理系统
CN107347622A (zh) 一种长茎葡萄蕨藻养殖池及其养殖方法
CN108684598B (zh) 智能化海水池塘休闲景观生态养殖系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931180

Country of ref document: EP

Kind code of ref document: A1