WO2020237615A1 - 一种拍摄装置的曝光控制方法以及拍摄装置 - Google Patents

一种拍摄装置的曝光控制方法以及拍摄装置 Download PDF

Info

Publication number
WO2020237615A1
WO2020237615A1 PCT/CN2019/089479 CN2019089479W WO2020237615A1 WO 2020237615 A1 WO2020237615 A1 WO 2020237615A1 CN 2019089479 W CN2019089479 W CN 2019089479W WO 2020237615 A1 WO2020237615 A1 WO 2020237615A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
shooting
threshold
brightness
exposure control
Prior art date
Application number
PCT/CN2019/089479
Other languages
English (en)
French (fr)
Inventor
翁松伟
蒋剑锋
普贵翔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/089479 priority Critical patent/WO2020237615A1/zh
Priority to CN201980007959.9A priority patent/CN111699671A/zh
Publication of WO2020237615A1 publication Critical patent/WO2020237615A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control

Definitions

  • the present invention relates to the field of electronic technology, in particular to an exposure control method of a photographing device and a photographing device.
  • the exposure time, the aperture value, and the sensitivity value are important parameters that affect the image quality of the camera.
  • the camera will adopt a certain exposure control strategy to select the corresponding exposure parameters according to the degree of camera shake.
  • the reasons for the shaking of the shooting device under different shooting scenes are different, and the exposure parameters selected by the same exposure control strategy may not be suitable for the corresponding shooting scene.
  • the slight shake of the shooting device caused by the influence of water flow may not be detected, and the exposure parameters selected by the above exposure control strategy cannot be adapted to the underwater shooting scene, thereby affecting the image shooting quality.
  • the embodiments of the present invention provide an exposure control method of a photographing device and a photographing device, which can improve the quality of an image photographed by the photographing device.
  • an embodiment of the present invention provides an exposure control method of a photographing device, including:
  • the shooting scene is an underwater shooting scene, enabling a first exposure control strategy to adjust the exposure parameters of the shooting device;
  • a second exposure control strategy different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • an embodiment of the present invention provides a photographing device, including a processor, a lens, and a memory:
  • the memory is used to store program code
  • the processor is configured to call the program code, and when the program code is executed, it is configured to perform the following operations:
  • the shooting scene is an underwater shooting scene, enabling a first exposure control strategy to adjust the exposure parameters of the shooting device;
  • a second exposure control strategy different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • an embodiment of the present invention provides a computer-readable storage medium, the computer-readable storage medium stores computer program instructions, and when the computer program instructions are executed, they are used to implement the above-mentioned first aspect.
  • the exposure control method of the camera is not limited to:
  • the shooting scene of the shooting device at the current moment is detected, and when the shooting scene is an underwater shooting scene, the first exposure control strategy is activated to adjust the shooting device; when the shooting scene is non-underwater shooting During scenes, a second exposure control strategy different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device. For different shooting scenes, corresponding exposure control strategies are used to adjust the exposure parameters of the shooting device. , Can ensure that the shooting device shoots images with more appropriate exposure parameters, thereby improving the quality of the captured images.
  • FIG. 1a is a schematic diagram of an underwater shooting scene provided by an embodiment of the present invention.
  • Fig. 1b is a schematic diagram of a captured image provided by an embodiment of the present invention.
  • Fig. 1c is a schematic diagram of a captured image provided by the prior art
  • FIG. 2 is a flowchart of an exposure control method of a photographing device provided by an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of another exposure control method of a photographing device according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a photographing device provided by an embodiment of the present invention.
  • the embodiment of the present invention provides an exposure control method of a photographing device, which is used to adjust the exposure parameters of the photographing device to improve the quality of the image captured by the photographing device.
  • the exposure control method when the shooting device adjusts the exposure parameters of the shooting device, it first detects the shooting scene where the shooting device is located; when the shooting scene is an underwater shooting scene, the first exposure control is activated The strategy is to adjust the exposure parameters of the shooting device; when the shooting scene is a non-underwater shooting scene, a second exposure control strategy different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • different exposure control strategies are used to adjust the exposure parameters of the shooting device, which can improve the quality of the images obtained by shooting.
  • the photographing device may be any one or more of a digital camera, a mobile electronic product with a photographing function, a handheld pan/tilt with a photographing function, and a movable platform.
  • the mobile electronic product with shooting function may include any one or more of mobile phones, tablet computers, and smart wearable devices.
  • the movable platform with shooting function may include one or more of drones, unmanned ships, unmanned cars, and robots.
  • the exposure parameter may include one or more of exposure duration, aperture value, and sensitivity value.
  • the main function of the exposure duration is to control the duration of the light input. For example, the shorter the exposure time, the less the amount of light entering the camera. Conversely, the longer the exposure time, the more the amount of light entering the camera.
  • the main function of the aperture value is to adjust the amount of light received by the image sensor in the camera. For example, the larger the aperture value, the more light enters the camera. Conversely, the smaller the aperture value, the less the light enters the camera.
  • the main function of the sensitivity value is to adjust the sensitivity of the image sensor in the camera to light.
  • the higher the sensitivity value the stronger the sensitivity of the image sensor to light, the brighter the captured image, and the more noise; conversely, the lower the sensitivity value, the weaker the sensitivity of the image sensor to light, and the captured image The darker the image, the less noise.
  • S v represents the variable of sensitivity
  • S v log 2 (S*N)
  • S represents the value of sensitivity
  • N is a constant, usually approximately 0.3
  • B v represents the variable of the average brightness of the shooting environment
  • B v log 2 (L s /K*N)
  • K is an arbitrary constant
  • L s represents the average brightness of the shooting environment.
  • the exposure control method provided by the embodiment of the present invention can be applied to any application scenarios that require shooting with a camera, for example, shooting in deep sea diving, shooting on land, and shooting in the air Etc., the following takes the application scenario of shooting in deep sea diving as an example to specifically introduce the embodiments of the present invention.
  • FIG. 1a is an application scene diagram of deep-sea diving shooting provided by an embodiment of the present invention.
  • 101 represents a shooting device
  • 102 represents a shooting person
  • the shooting person 102 holds the shooting device 101 to complete shooting in an underwater shooting scene. task.
  • the camera 101 first detects that the camera's current shooting environment is an underwater shooting environment, then activates the first exposure control strategy to adjust the exposure parameters, and uses the adjusted exposure parameters to control the camera's exposure to the deep sea.
  • the subject in the scene is photographed, and the captured image is shown in Figure 1b.
  • the shooting scene of the shooting device is not considered.
  • the same exposure control strategy is used to adjust the exposure parameters regardless of the shooting scene of the shooting device.
  • the exposure control method shown in FIG. 2 may include step S201-step S203:
  • Step S201 Detect the shooting scene where the shooting device is located at the current moment.
  • the shooting scene refers to the environment in which the shooting device will shoot the object.
  • shooting scenes can be divided into underwater shooting scenes and non-underwater shooting scenes according to whether they are underwater.
  • Underwater shooting scenes can include deep-sea diving shooting scenes, and non-underwater shooting environments can include land shooting. Scenes, aerial shooting scenes, etc.
  • the shooting device may perform step S201 after detecting a trigger event for detecting the shooting scene; when no trigger event is detected, the shooting device may not perform step S201, which can save part of the power consumption of the shooting device.
  • the trigger event may mean that the difference between the current time and the last detection time is equal to the time difference indicated by the preset shooting scene detection frequency.
  • the last detection time refers to the time when the shooting device last detected the shooting scene in which the shooting device is located
  • the preset shooting scene detection frequency refers to how often the shooting scene detection is performed, for example, the preset The shooting scene detection frequency is 5 minutes/time, which means that the shooting scene detection is performed every 5 minutes.
  • the time difference indicated by the preset shooting scene detection frequency is 5 minutes; another example is the preset shooting scene The detection frequency is 30 minutes/time, which means that the shooting scene is detected every 30 minutes. At this time, the time difference indicated by the preset shooting scene detection frequency is 30 minutes.
  • the preset frequency of shooting scene detection is 10 minutes/time
  • the last detection time is 10:00 am on May 22, 2019, and the current time is 10:10 on May 22, 2019. If the difference before the detection time is equal to the time difference indicated by the preset shooting scene detection frequency, it is determined that the trigger event is detected; if the current time is 10:05 on May 22, 2019, it can be determined that the trigger event is not detected .
  • the trigger event may also refer to that the shooting device detects an instruction to start shooting.
  • the instruction to start shooting may be generated by the shooting device after an operation to start shooting entered by the user, and the operation to start shooting may be Refers to the user inputting any one or more of operations such as tapping, pressing, sliding, and long-pressing in the preset area of the camera. For example, if it is detected that the user presses the shutter, an instruction to start shooting is generated, and at this time, it can be determined that a trigger event is detected.
  • the instruction to start shooting may also be generated by the shooting device according to the operation of starting shooting input by the user and the time-lapse shooting duration.
  • the time-lapse shooting time refers to the period from the input of the operation to start shooting to the start of shooting.
  • the time-lapse shooting time is 45 seconds
  • the time for detecting the user input to start shooting operation is 11:19:10
  • the camera detects the time change, and when the time reaches 11:19:55, the start shooting is generated To instruct the camera to start shooting.
  • the trigger event may also be that the brightness difference between the image brightness value and the brightness threshold of the image captured by the photographing device at the current moment is higher than the brightness difference threshold, and the captured image may refer to a preview image.
  • the brightness difference between the image brightness value and the brightness threshold is higher than the brightness difference threshold. It indicates that if the exposure parameters of the camera at the current moment are used for shooting, the resulting shot image is darker or brighter. At this time, it needs to be based on different shooting scenes. Targeted activation of the corresponding exposure control strategy to adjust the exposure parameters of the camera.
  • the brightness difference in the embodiment of the present invention refers to an absolute difference, that is, the brightness difference refers to the absolute value of the difference between the image brightness value of the captured image and the brightness threshold.
  • Step S202 When the shooting scene is an underwater shooting scene, the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • the first exposure control strategy is mainly used to adjust the exposure parameters of the shooting device when shooting underwater shooting scenes, so that the shooting device can shoot high-quality images in the underwater shooting scenes.
  • the exposure parameter may include any one or more of exposure time, aperture value, and sensitivity value; the adjusting the exposure parameter of the photographing device may refer to adjusting the exposure parameter of the photographing device at the current moment, for example, , If the exposure parameter includes the exposure time, the adjusting the exposure parameter of the camera may be to increase or decrease the exposure time of the camera at the current moment; for another example, if the exposure parameter includes the sensitivity value, the adjust the exposure of the camera The parameter can be to increase or decrease the sensitivity value of the camera at the current moment.
  • the brightness and clarity of the image are more important factors that determine the quality of the image.
  • the brightness of the image is determined by the ambient brightness and exposure parameters of the shooting scene at the same time.
  • the adjustment of the exposure parameters referred to in the embodiment of the present invention can be Refers to: in the current shooting scene, find the appropriate exposure parameters of the shooting device to ensure that the shooting device captures images with high brightness and clarity.
  • the step of adjusting the exposure parameters may be: determining the image brightness value of the image captured with the shooting parameters of the shooting device at the current moment in the shooting scene at the current moment; determining the difference between the image brightness value and the brightness threshold of the image Brightness difference; according to the principle of reducing the brightness difference, the current shooting parameters of the shooting device are adjusted.
  • the brightness threshold may be preset, and when the brightness value of the captured image is close to or equal to the brightness threshold, it indicates that shooting with the exposure parameters at this time can obtain an image with more appropriate brightness.
  • the brightness threshold may be one or more.
  • the multiple brightness thresholds are related to the brightness of the ambient light. For example, when the brightness of the ambient light where the subject is located is relatively high, the brightness threshold is relatively high; when the brightness of the ambient light where the subject is located is low, the brightness threshold is relatively low.
  • the first exposure control strategy may include: determining the exposure parameter by looking up a first exposure control table according to a brightness threshold, wherein the first exposure control table includes the brightness threshold and the Correspondence of exposure parameters.
  • the corresponding relationship between the brightness threshold and the exposure parameter in the first exposure control table may be preset by the photographing device, and the quality of the image obtained when shooting with the exposure parameter corresponding to the brightness threshold is relatively high.
  • the first exposure control table may include the exposure duration and sensitivity values corresponding to the brightness threshold; if the exposure parameters include exposure duration and aperture value, the first The exposure control table may include the exposure duration and aperture value corresponding to the brightness threshold; if the exposure parameters include the sensitivity value and the aperture value, the first exposure control table may include the sensitivity value and the aperture value corresponding to the brightness threshold; if the exposure parameters include Sensitivity value, exposure duration and aperture value, the first exposure control table may include sensitivity value, exposure duration and aperture value corresponding to the brightness threshold.
  • the exposure parameters including exposure duration and sensitivity as an example, the storage form of the corresponding relationship between the brightness threshold value and the exposure parameter in the first exposure control table is specifically introduced below.
  • the exposure time length and sensitivity value corresponding to the brightness threshold value stored in the first exposure control table may also be in the form: the interval value of the brightness threshold value corresponds to a combination of multiple exposure time lengths and sensitivity values, For example, when the brightness threshold is in the range of L1-L2, the corresponding exposure time is the combination of t1 and the sensitivity value s1, and the exposure time is the combination of t2 and the sensitivity value s2, and so on.
  • the combination of each exposure duration and sensitivity value can have different priorities, and the camera can follow the respective exposure duration and sensitivity
  • the priority of the combination of values is from high to low, or from low to high to adjust the exposure parameters.
  • each exposure time and sensitivity value correspond to different shooting scenes.
  • the shooting device can select the shooting scene to be the same as the current shooting scene from the combination of exposure time and sensitivity value.
  • a similar combination to adjust the exposure parameters of the camera In this way, the exposure parameters of the camera can be adjusted to the best value more quickly.
  • each brightness threshold corresponds to a combination of the exposure duration and the sensitivity value.
  • the exposure duration and sensitivity value corresponding to the brightness threshold stored in the first exposure control table may also be in the form: each brightness threshold corresponds to a combination of multiple exposure durations and sensitivity values.
  • each brightness threshold corresponds to multiple combinations of exposure duration and sensitivity value
  • each combination of exposure duration and sensitivity value has a different priority.
  • the exposure parameters may include exposure duration and aperture value
  • the first exposure control table may include a combination of exposure duration and aperture value corresponding to the brightness threshold.
  • the form of the exposure duration and the aperture value corresponding to the brightness threshold stored in the first exposure control table may be: the interval value of the brightness threshold corresponds to a combination of the exposure duration and the aperture value.
  • the form of the exposure duration and aperture value corresponding to the brightness threshold stored in the first exposure control table may also be: the interval value of the brightness threshold corresponds to a combination of multiple exposure durations and aperture values, when the interval value of the brightness threshold corresponds to multiple
  • each combination of exposure duration and aperture value can have different priorities, or each combination of exposure duration and aperture value can correspond to different shooting scenes.
  • the camera can first find the For shooting scenes with the same or similar shooting scenes, the exposure parameters of the shooting device are adjusted according to the combination of the exposure duration and the aperture value in the shooting scenes, so that the adjustment efficiency of the exposure parameters can be improved.
  • the form of the exposure duration and the aperture value corresponding to the brightness threshold stored in the first exposure control table may also be: each brightness threshold corresponds to a combination of the exposure duration and the aperture value.
  • the exposure duration and aperture value corresponding to the brightness threshold stored in the first exposure control table may be in the form of: one brightness threshold corresponds to a combination of multiple exposure durations and aperture values, when one brightness threshold corresponds to multiple exposure durations and apertures In the combination of values, each combination of exposure duration and aperture value can have different priorities.
  • the exposure parameters include aperture value and sensitivity value, or exposure parameters include aperture value, sensitivity value, and exposure duration
  • the corresponding relationship between the brightness threshold value and the exposure parameter in the first exposure control table can be referred to the above description, here No longer.
  • the first exposure control strategy may further include reducing the exposure duration and increasing the sensitivity value.
  • the exposure time mentioned here is less than or equal to the longest exposure time set by the camera, that is, the safety shutter.
  • the first exposure control strategy is When adjusting the exposure time, you should ensure that the adjusted exposure time is less than or equal to the safety shutter. This part of the content will be described in detail in the following embodiments.
  • Step S203 When the shooting scene is a non-underwater shooting scene, a second exposure control strategy different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • the second exposure control strategy is mainly used to adjust the exposure parameters of the shooting device when shooting non-underwater shooting scenes, so that the shooting device can shoot high-quality images in the non-underwater shooting scenes.
  • the second exposure control strategy includes: acquiring the shaking degree of the photographing device; and determining the exposure parameters of the photographing device according to the shaking degree of the photographing device.
  • the exposure parameter when the degree of shake is not greater than the shake threshold, the exposure parameter is determined by looking up the second exposure control table.
  • the second exposure control table includes the corresponding relationship between the brightness threshold and the exposure parameter; when the degree of jitter is greater than the jitter threshold, the exposure parameter is determined by looking up the third exposure control table.
  • the corresponding relationship between the brightness threshold and the exposure parameter in the second exposure control table may be pre-set by the photographing device, and is obtained by shooting with the exposure parameter in the second exposure control table when the degree of shake is not greater than the shake threshold. The image quality is higher.
  • the corresponding relationship between the brightness threshold and the exposure parameter in the third exposure control table may also be preset by the photographing device, and when the degree of shake is greater than the shake threshold, the exposure parameter in the third exposure control table The image quality obtained by shooting is higher.
  • the degree of shake when the degree of shake is not greater than the preset threshold, it can be set that all the degrees of shake not greater than the preset threshold correspond to a second exposure control table.
  • the number of the second exposure control tables is One; it is also possible to set each jitter level not greater than the preset jitter threshold to correspond to a second exposure control table.
  • the number of second exposure control tables is at least one; for example, when the jitter level is A, it corresponds to a second exposure control table. Exposure control table; when the degree of jitter is equal to B, it corresponds to a second exposure control table.
  • the number of second exposure control tables is at least one, for example, the jitter level is at the jitter level A -When the jitter degree is in the range of B, it corresponds to the second exposure control table 1; when the jitter degree is in the range of the jitter degree C- the jitter degree D, it corresponds to the second exposure control table 2.
  • the shaking degree when the shaking degree is greater than the preset shaking threshold, it can be set that all shaking degrees greater than the preset shaking threshold correspond to the same third exposure control table.
  • the third exposure control The number of tables is one; it is also possible to set a third exposure control table for each jitter degree greater than the preset jitter threshold.
  • the number of third exposure control tables is at least two; you can also set a value greater than the preset jitter threshold Any two interval values of unequal jitter levels correspond to one third exposure control table, and at this time, the number of third exposure control tables is at least one.
  • the form of the correspondence between the brightness threshold and the exposure parameters included in the second exposure control table, and the form of the correspondence between the brightness threshold and the exposure parameters included in the third exposure control table is the same as the above-mentioned first exposure control
  • the form of the corresponding relationship between the brightness threshold and the exposure parameter included in the table is the same.
  • the second exposure control strategy may further include adjusting the exposure duration and lowering the sensitivity value so that the brightness difference is smaller than the brightness difference threshold according to when the degree of shake of the camera is not greater than a preset shake threshold. ; When the degree of jitter is greater than the preset jitter threshold, shorten the exposure time and increase the sensitivity value so that the brightness difference is less than the brightness difference threshold.
  • the exposure time in order to reduce the noise in the captured image, the exposure time may be longer than the safety shutter at this time. For this embodiment, the description will be expanded in the following embodiments.
  • the second exposure control strategy may include determining the exposure parameters of the shooting device by looking up a fourth exposure control table according to the degree of shaking of the shooting device.
  • the fourth exposure control table includes a plurality of control tables, and each control table corresponds to a different degree of shaking.
  • each control table corresponds to a different jitter degree interval, and each control table includes the corresponding relationship between the brightness threshold and the exposure parameter.
  • the corresponding relationship between the brightness threshold and the exposure parameter may be preset by the camera. In this way, the different degrees of shaking of the photographing device can be graded, so that the size of the exposure parameter can be more accurately controlled according to the degree of shaking of the photographing device.
  • the shooting scene of the shooting device at the current moment is detected, and when the shooting scene is an underwater shooting scene, the first exposure control strategy is activated to adjust the exposure parameters of the shooting device;
  • a second exposure control strategy that is different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • corresponding exposure control strategies are used to adjust the exposure of the shooting device. The parameters can ensure that the camera captures images with more appropriate exposure parameters, thereby improving the quality of the captured images.
  • FIG. 3 is another exposure control method of a photographing device provided by an embodiment of the present invention.
  • the exposure control method is applied to any photographing device that requires exposure control.
  • the exposure control method can be executed by the photographing device.
  • the ground can be executed by the processor of the camera.
  • the exposure control method shown in FIG. 3 may include step S301-step S307:
  • Step S301 Obtain the image brightness value of the image captured by the camera at the current moment.
  • Step S302 Determine a brightness difference value according to the image brightness value and the brightness threshold.
  • the photographing device may include a digital signal processor (DSP) chip and an image sensor, and the photographing device may obtain an image captured by the image sensor through the DSP chip.
  • the implementation manners included in step S301 may be: partition the image to obtain multiple image regions included in the image; calculate the brightness value of each pixel included in each image region of the multiple image regions, and combine each The brightness value of each pixel included in the image area is fused to obtain the brightness value of each image area; the brightness weight value corresponding to each image area is obtained, and the brightness weight value corresponding to each image area and the brightness value of each image area will be more Fusion processing is performed on the image regions to obtain the image brightness value of the image data.
  • DSP digital signal processor
  • the fusion processing of multiple image areas according to the brightness weight value corresponding to each image area and the brightness value of each image area may be multiplying the brightness value of each image area and the brightness weight corresponding to the area and adding them.
  • the implementation of determining the brightness difference value according to the image brightness value and the brightness threshold value in step S302 may include: subtracting the image brightness value and the brightness threshold value, and the absolute value of the result obtained is the brightness difference value .
  • Step S303 If the brightness difference is not less than the brightness difference threshold, detect whether the shooting scene where the shooting device is currently located is an underwater shooting scene.
  • the shooting device may set a color temperature threshold, the color temperature threshold is used to define underwater shooting scenes and non-underwater shooting scenes, the color temperature threshold may be determined according to an empirical value, or the color temperature threshold It may also be calculated based on data at historical moments, which is not limited in the embodiment of the present invention.
  • the photographing device may compare the color temperature value of the captured image with the color temperature threshold value, and if the color temperature value of the image is greater than the color temperature threshold value, it may be determined that the photographing scene where the photographing device is located at the current moment is an underwater photographing scene; If the color temperature value of the image is not greater than the color temperature threshold, it can be determined that the shooting scene where the shooting device is located at the current moment is a non-underwater shooting scene.
  • Step S304 If the shooting scene where the shooting device is located at the current moment is an underwater shooting scene, shorten the exposure time and increase the sensitivity so that the brightness difference is smaller than the brightness difference threshold.
  • the shortening of the exposure time and the increase of the sensitivity value may be adjusted randomly; or, it may be adjusted according to the correspondence between multiple sets of preset exposure durations and sensitivity values. .
  • the target sensitivity value corresponding to the target exposure time can be determined by the correspondence between the exposure time and the sensitivity value, and then the sensitivity value of the camera is adjusted to Equal to the target sensitivity value.
  • the corresponding relationship between the preset multiple sets of exposure time lengths and sensitivity values may be determined according to the adjustment records of historical exposure parameter adjustments in the same or similar shooting scene as the current moment, or the exposure
  • the corresponding relationship between the duration and the sensitivity value may also be set by the user for the shooting device according to shooting experience. It should be understood that the embodiments of the present invention only list some feasible implementations for determining the correspondence between the exposure duration and the sensitivity value, and there is no specific limitation on how to determine the correspondence between the exposure duration and the sensitivity value. Specific analysis based on specific application scenarios.
  • the implementation of shortening the exposure duration and increasing the sensitivity so that the brightness difference is less than the brightness difference threshold may be: adjusting the exposure duration of the camera to be equal to the first exposure duration, and the sensitivity value Adjusted to be equal to the first sensitivity value; controlling the photographing device to capture the updated image with the first exposure duration and the first sensitivity value, and calculating the updated image brightness value of the updated image; calculating the updated image The updated brightness difference between the brightness value and the brightness threshold; if the updated brightness difference is less than the brightness difference threshold, then the exposure parameter adjustment is completed; if the updated brightness difference is not less than the brightness difference threshold, the first An exposure duration is adjusted to a second exposure duration, the second exposure duration is less than the first exposure duration, the first sensitivity value is adjusted to a second sensitivity value, the second sensitivity value is greater than the first sensitivity value, The above adjustment process is repeated until the updated brightness difference is less than the brightness difference threshold, and then the adjustment of the exposure parameter is ended.
  • Step S305 If the shooting scene where the shooting device is located at the current moment is a non-underwater shooting scene, acquire the shaking degree of the shooting device.
  • the camera may shake during the shooting. This shaking may be caused by the shaking of the hand of the person holding the camera.
  • the shaking of the camera may be caused by the hand of the holding person. It is driven by jitter; or, the jitter of the camera may also be caused by the influence of airflow, such as a rotorcraft.
  • the embodiments of the present invention are applicable to any photographing equipment that may shake during the photographing process, and will not be repeated here.
  • acquiring the shaking degree of the photographing device in step S305 may include: acquiring at least one axis attitude angular velocity of the photographing device; and determining the shaking degree of the photographing device according to the at least one axis attitude angular velocity.
  • the determination of the shaking degree of the photographing device according to the angular velocity of at least one axis posture may specifically include the following implementation manners:
  • the degree of shaking of the camera can be determined according to the attitude angular velocity of any one of the three-axis attitude angular velocity of the camera, for example, the attitude angular velocity of the X axis, the attitude angular velocity of the Y axis, or the attitude of the Z axis
  • the angular velocity obtains the shaking degree of the camera.
  • the specific angular velocity of the axis can be determined according to the product form of the camera and the user's usage habits. This is not limited in the embodiment of the present invention.
  • the degree of shaking of the camera can be determined according to the maximum attitude angular velocity of the three-axis attitude angular velocity of the camera. For example, if the attitude angular velocity of the X axis is the largest, the attitude angular velocity of the X axis can be used to determine the The degree of shaking; the Y-axis attitude angular velocity is the largest, and the shaking degree of the camera can be determined according to the attitude angular velocity of the Y-axis; similarly, the attitude angular velocity of the Z-axis is the largest, and the shaking degree of the camera can be determined according to the attitude angular velocity of the Z-axis .
  • the degree of shaking of the photographing device may be determined according to the attitude angular velocities of two of the three-axis angular velocities of the photographing device.
  • the degree of shaking of the camera can be determined according to the attitude angular velocity of the X axis and the attitude angular velocity of the Y axis; or, the degree of shaking of the camera can be determined according to the attitude angular velocity of the Y axis and the attitude angular velocity of the Z axis;
  • the attitude angular velocity of the axis and the attitude angular velocity of the Z axis determine the shaking degree of the camera.
  • the specific angular velocity of the two axes can be determined according to the product form of the camera and the user's usage habits, which is not limited in the embodiment of the present invention.
  • the degree of shaking of the photographing device may be determined according to the three-axis attitude angular velocity.
  • Step S306 When the shaking degree of the photographing device is not greater than the preset shaking threshold, the exposure time is increased and the sensitivity value is decreased, so that the brightness difference is smaller than the brightness difference threshold.
  • Step S307 When the shaking degree of the photographing device is greater than the preset shaking threshold, shorten the exposure time and increase the sensitivity value, so that the brightness difference is smaller than the brightness difference threshold.
  • the shortening of the exposure duration and the lowering of the sensitivity value may be adjusted randomly, or may be adjusted according to the correspondence relationship between multiple sets of preset exposure durations and sensitivity values
  • the sensitivity value corresponding to the exposure time can be determined according to the correspondence between multiple sets of exposure time and the sensitivity value.
  • the preset correspondences between the multiple sets of exposure durations and sensitivity values may be generated based on adjustment records of historical exposure parameter adjustments in a shooting scene that is the same or similar to the current moment; or may also be generated by the user according to The shooting experience is set.
  • the implementation manner of increasing the exposure time and reducing the sensitivity value so that the brightness difference is less than the brightness difference threshold may be : Adjust the exposure time of the camera to be equal to the third exposure time, and adjust the sensitivity value to be equal to the third sensitivity value; control the camera to capture the updated image with the third exposure time and the third sensitivity value, and calculate The updated image brightness value of the updated image; calculate the updated brightness difference between the updated image brightness value and the brightness threshold; if the updated brightness difference is less than the brightness difference threshold, complete the exposure parameter adjustment ; If the updated brightness difference is not less than the brightness difference threshold, the third exposure duration is adjusted to the fourth exposure duration, the third exposure duration is less than the fourth exposure duration, the third sensitivity value is adjusted to the fourth The sensitivity value, the third sensitivity value is greater than the fourth sensitivity value, and the above adjustment process is repeated until the updated brightness difference value is less than the brightness difference threshold, then the adjustment of the exposure parameter
  • step S307 is the same as that of step S306, which will not be repeated here.
  • the image brightness value of the image captured by the camera at the current moment is acquired, and the brightness difference is determined according to the image brightness value and the brightness threshold.
  • the brightness difference is less than the brightness difference threshold, the camera is detected at the current moment.
  • the shooting scene is an underwater shooting scene
  • adjust the exposure parameters by shortening the exposure time and increasing the sensitivity
  • get the shaking degree of the shooting device when the shooting device
  • the jitter degree of the camera is not greater than the preset jitter threshold
  • the camera shake is greater than the preset jitter threshold
  • the exposure parameters are adjusted by shortening the exposure time and increasing the sensitivity value.
  • the exposure time mentioned here is within the safety shutter range, it can effectively prevent the blur of the captured image caused by the shake of the shooting device and improve the clarity of the shooting device; when the shake of the shooting device is not greater than the preset shake threshold, the exposure time can be increased and lowered.
  • the sensitivity value adjusts the exposure parameters. At this time, the exposure time can be longer than the safety shutter. In this case, the jitter degree is not greater than the jitter threshold, which indicates that the jitter of the camera has little effect on the sharpness of the image and can be ignored.
  • Exposure time and lower sensitivity value can reduce noise in the captured image, thereby improving image quality. Because underwater shooting scenes are affected by ocean currents, the camera is prone to small amplitude jitter, but these jitters cannot be effectively detected, so it is not suitable to continue to adjust the exposure parameters according to the degree of jitter in underwater shooting scenes, but does not consider it.
  • the degree of jitter is directly adjusted by shortening the exposure time and increasing the sensitivity to adjust the exposure parameters to increase the filming rate of the captured image.
  • an embodiment of the present invention provides a schematic structural diagram of a photographing device as shown in FIG. 4.
  • the photographing device as shown in FIG. 4 may include a processor 401, a lens 402, and a memory 403.
  • the processor 401, the lens 402, and the memory 403 are connected by a bus 404.
  • the memory 403 stores program instructions, and the processor 401 calls the memory 403 Program instructions.
  • the memory 403 may include volatile memory (volatile memory), such as random-access memory (RAM); the memory 403 may also include non-volatile memory (non-volatile memory), such as flash memory (flash memory), solid-state drive (solid-state drive, SSD), etc.; the memory 403 may also include a combination of the foregoing types of memories.
  • volatile memory volatile memory
  • non-volatile memory non-volatile memory
  • flash memory flash memory
  • solid-state drive solid-state drive
  • SSD solid-state drive
  • the processor 401 may be a central processing unit (Central Processing Unit, CPU).
  • the processor 401 may further include a hardware chip.
  • the aforementioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), etc.
  • the PLD may be a field-programmable gate array (FPGA), a general array logic (generic array logic, GAL), etc.
  • the processor 401 may also be a combination of the foregoing structures.
  • the memory 403 is used to store a computer program, and the computer program includes program instructions, and the processor 401 is used to call the program instructions stored in the memory 403 to implement the above-mentioned FIG. 2 and FIG. 3 The steps of the corresponding method in the embodiment.
  • the processor 401 is configured to execute when the program instructions are called: detect the shooting scene where the shooting device is located at the current moment; when the shooting scene is an underwater shooting scene, enable the first exposure control The strategy is to adjust the exposure parameters of the shooting device; when the shooting scene is a non-underwater shooting scene, a second exposure control strategy different from the first exposure control strategy is activated to adjust the exposure parameters of the shooting device.
  • the processor 401 performs the following operations when detecting the shooting scene where the shooting device is located at the current moment: acquiring the color temperature value of the image captured by the shooting device at the current moment; determining according to the color temperature value of the image The shooting scene of the shooting device at the current moment.
  • the processor 401 performs the following operations when determining the shooting scene in which the shooting device is located at the current moment according to the color temperature value of the image: when the color temperature value of the image is greater than the color temperature threshold , It is determined that the shooting scene where the shooting device is located at the current moment is an underwater shooting scene.
  • the photographing device further includes a white balance module 404.
  • the processor 401 performs the following operations when acquiring the color temperature value of the image captured by the photographing device at the current moment: acquiring the color temperature of the image through the white balance module value.
  • the exposure parameter includes one or more of exposure duration, aperture value, and sensitivity value.
  • the processor 401 when the processor 401 is configured to call program instructions, it also executes: acquiring the image brightness value of the image captured by the camera at the current moment; determining the brightness difference value according to the image brightness value and the brightness threshold.
  • the first exposure control strategy includes: shortening the exposure time and increasing the sensitivity value, so that the brightness difference is smaller than the brightness difference threshold.
  • the first exposure control strategy includes: determining the exposure parameter by looking up a first exposure control table according to the brightness threshold, wherein the first exposure control table includes the brightness threshold and the Describe the corresponding relationship of the exposure parameters.
  • the second exposure control strategy includes: acquiring the shaking degree of the photographing device; and determining the exposure parameter of the photographing device according to the shaking degree of the photographing device.
  • the processor 401 performs the following operations when acquiring the degree of shaking of the photographing device: acquiring at least one axis attitude angular velocity of the photographing device; determining the at least one axis attitude angular velocity according to the at least one axis attitude angular velocity The degree of camera shake.
  • the processor 401 determines the exposure parameters of the photographing device according to the degree of shaking of the photographing device, it performs the following operations: when the degree of shaking is less than a preset shaking threshold, adjust the length of the camera. The exposure duration and lower the sensitivity value so that the brightness difference is smaller than the brightness difference threshold; when the degree of jitter is greater than the preset shake threshold, the exposure duration is shortened and the sensitivity value is increased , So that the brightness difference is smaller than the brightness difference threshold.
  • the processor 401 performs the following operations when determining the exposure parameters of the photographing device according to the degree of shaking of the photographing device: when the degree of shaking is not greater than a preset shaking threshold, searching The second exposure control table determines the exposure parameter, wherein the second exposure control table includes the corresponding relationship between the brightness threshold and the exposure parameter; when the degree of jitter is greater than the preset jitter threshold, search for a third exposure control The table determines the exposure parameter, wherein the third exposure control table includes the corresponding relationship between the brightness threshold and the exposure parameter.
  • the program can be stored in a computer readable storage medium. During execution, it may include the procedures of the above-mentioned method embodiments.
  • the storage medium may be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)

Abstract

一种拍摄装置的曝光控制方法以拍摄装置,其中,方法可包括:检测拍摄装置在当前时刻所处的拍摄场景;当拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整拍摄装置的曝光参数;当拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整拍摄装置的曝光参数。采用本发明实施例可以提高拍摄的图像的质量。

Description

一种拍摄装置的曝光控制方法以及拍摄装置 技术领域
本发明涉及电子技术领域,尤其涉及一种拍摄装置的曝光控制方法以及拍摄装置。
背景技术
对于拍摄装置来说,曝光时长、光圈值以及感光度值是影响拍摄装置拍摄的图像质量较为重要的参数。为防止拍摄的图像因为机身抖动而变得模糊,拍摄装置会采用一定的曝光控制策略,来根据拍摄装置的抖动程度选择相应的曝光参数。然而,不同的拍摄场景下引起拍摄装置抖动的原因不同,采用同一曝光控制策略选择的曝光参数并不一定适应于相应的拍摄场景。比如,水下拍摄场景中,因水流影响引起的拍摄装置的轻微抖动可能无法被检测到,采用上述曝光控制策略选择的曝光参数无法适应于水下拍摄场景,从而影响图像拍摄质量。
发明内容
本发明实施例提供了一种拍摄装置的曝光控制方法以及拍摄装置,能够提高拍摄装置拍摄的图像的质量。
第一方面,本发明实施例提供了一种拍摄装置的曝光控制方法,包括:
检测拍摄装置在当前时刻所处的拍摄场景;
当所述拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整所述拍摄装置的曝光参数;
当所述拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数。
第二方面,本发明实施例提供了一种拍摄装置,包括:处理器、镜头和存储器:
所述存储器,用于存储程序代码;
所述处理器,用于调用所述程序代码,当所述程序代码被执行时,用于执行如下操作:
检测拍摄装置在当前时刻所处的拍摄场景;
当所述拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整所述拍摄装置的曝光参数;
当所述拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数。
第三方面,本发明实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序指令,所述计算机程序指令被执行时用于实现上述的第一方面所述的拍摄装置的曝光控制方法。
本发明实施例中,检测拍摄装置在当前时刻所处的拍摄场景,并在拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整所述拍摄装置;在拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数,对于不同的拍摄场景,有针对性地采用相应的曝光控制策略以调整拍摄装置的曝光参数,可以保证拍摄装置以较为合适的曝光参数拍摄图像,从而可提高拍摄的图像的质量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a为本发明实施例提供的一种水下拍摄场景的示意图;
图1b为本发明实施例提供的一种拍摄的图像的示意图;
图1c为现有技术提供的一种拍摄的图像的示意图;
图2为本发明实施例提供的一种拍摄装置的曝光控制方法的流程图;
图3为本发明实施例提供的另一种拍摄装置的曝光控制方法的流程示意图;
图4为本发明实施例提供的一种拍摄装置的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是 全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例提出了一种拍摄装置的曝光控制方法,用于对拍摄装置的曝光参数进行调整以提高拍摄装置拍摄的图像的质量。其中,在所述曝光控制方法中,拍摄装置在对拍摄装置的曝光参数进行调整时,首先检测拍摄装置所处的拍摄场景;当所述拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整所述拍摄装置的曝光参数;当所述拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数。针对不同的拍摄场景有针对地采用不同的曝光控制策略以调整拍摄装置的曝光参数,可以提高拍摄得到的图像的质量。
在一个实施例中,所述拍摄装置可以是数码相机、具有拍摄功能的移动电子产品以及具有拍摄功能的手持云台、可移动平台等任意一种或多种。其中,所述具有拍摄功能的移动电子产品可包括手机、平板电脑以及智能穿戴设备中的任意一种或多种。所述具有拍摄功能的可移动平台可包括无人机、无人船、无人汽车以及机器人中的一种或多种。
在一个实施例中,所述曝光参数可以包括曝光时长、光圈值以及感光度值中的一种或多种。其中,所述曝光时长主要作用是用来控制进光量的时间长短。例如,曝光时长越短,进入拍摄装置的光量越少,反之,曝光时长越长,进入拍摄装置的光量越多;所述光圈值的主要作用是调整拍摄装置中图像感应器的受光量。例如,光圈值越大,进入拍摄装置的光量越多,反之,光圈值越小,进入拍摄装置的光量越少;所述感光度值主要作用是调整拍摄装置中图像传感器对光线的敏感程度。例如,感光度值越高,图像传感器对光线的敏感程度越强,拍摄出的图像越亮,噪点越多;反之,感光度值越低,图像传感器对光线的敏感程度越弱,拍摄出的图像越暗,噪点越少。
在一个实施例中,上述各个曝光参数之间的关系可以通过一个曝光方程来表示,例如,曝光方程表示为E v=A v+T v=S v+B v,其中,E v表示曝光量,所述曝光量可以是预先设定的值,A v表示光圈的变量,并且A v=log 2(F 2),F表示光圈值,T v表示时间的变量,并且T v=log 2(1/T),T表示曝光时长,也可以叫做快门速度。S v表示感光度的变量,并且S v=log 2(S*N),S表示感光度 值,N是一个常数,通常情况下近似为0.3,B v表示拍摄环境的平均亮度的变量,并且B v=log 2(L s/K*N),K是任意常数,L s表示拍摄环境的平均亮度。
在一个实施例中,本发明实施例提供的曝光控制方法可以应用在任何需要使用拍摄装置进行拍摄的应用场景中,例如,在深海潜水时进行拍摄、在陆地上进行拍摄,以及在空中进行拍摄等,下面以在深海潜水进行拍摄的应用场景为例,具体介绍本发明实施例。
参考图1a为本发明实施例提供的一种深海潜水拍摄的应用场景图,在图1a中101表示拍摄装置,102表示拍摄人员,拍摄人员102手持拍摄装置101以在水下拍摄场景中完成拍摄任务。采用本发明实施例,拍摄装置101首先检测出拍摄装置当前时刻所处的拍摄环境为水下拍摄环境,然后启用第一曝光控制策略来调整曝光参数,利用调整后的曝光参数控制拍摄装置对深海场景中的拍摄对象进行拍摄,得到拍摄的图像如图1b所示。相比于现有技术中在对拍摄装置的曝光参数调整时不考虑拍摄装置所处的拍摄场景,换句话说无论拍摄装置处于何种拍摄场景都采用同样的曝光控制策略调整曝光参数,本实施例中在调整曝光控制参数之前,首先判断出拍摄装置所处的拍摄场景,对于不同拍摄场景采用相对应的曝光控制策略以调整拍摄装置的曝光参数,可以得到较高的图像拍摄质量。
例如,在图1a的应用场景中,如果按照上述的现有技术对拍摄装置的曝光参数进行调整,并利用调整曝光参数后的拍摄装置在图1a所示的拍摄场景中进行拍摄,得到拍摄的图像如图1c所示。通过对比可见,采用本发明实施例提供的拍摄装置的曝光控制方法得到的图像更加比较清晰,且图像亮度合适。
参考图2,为本发明实施例提供的一种拍摄装置的曝光控制方法,所述曝光控制方法可以应用于任何需要曝光控制的拍摄装置中,所述曝光控制方法可以由拍摄装置执行,具体地可以由拍摄装置的处理器执行。图2所示的曝光控制方法可以包括步骤S201-步骤S203:
步骤S201、检测拍摄装置在当前时刻所处的拍摄场景。
其中,拍摄场景是指拍摄装置将要拍摄的拍摄对象所处的环境。可选的,可以将拍摄场景按照是否在水下分为水下拍摄场景和非水下拍摄场景两大类, 水下拍摄场景可以把包括深海潜水拍摄场景,非水下拍摄环境可包括陆地拍摄场景、空中拍摄场景等。
可选的,拍摄装置可以是在检测到检测拍摄场景的触发事件,再执行步骤S201;在未检测到触发事件时,拍摄装置可不执行步骤S201,这样可节省拍摄装置的部分功耗开销。在一个实施例中,所述触发事件可以指当前时间与上一次检测时间之间的差值等于预设的拍摄场景检测频率所指示的时间差值。其中,所述上一次检测时间是指拍摄装置上一次检测拍摄装置所处的拍摄场景的时间,预设的拍摄场景检测频率是指每隔多长时间进行一次拍摄场景的检测,例如,预设的拍摄场景检测频率为5分钟/次,表示每隔5分钟进行一次拍摄场景的检测,此时预设的拍摄场景检测频率所指示的时间差值为5分钟;再如,预设的拍摄场景检测频率为30分钟/次,表示每隔30分钟进行一次拍摄场景的检测,此时预设的拍摄场景检测频率所指示的时间差值为30分钟。
例如,预设的拍摄场景检测频率为10分钟/次,上一次检测时间为2019年5月22日上午10点00分,当前时间为2019年5月22日10点10分,当前时间与上一次检测时间之前的差值等于预设的拍摄场景检测频率所指示的时间差,则确定检测到触发事件;如果当前时间为2019年5月22日10点05分,则可确定未检测到触发事件。
再一个实施例中,所述触发事件还可以指拍摄装检测到启动拍摄的指令,所述启动拍摄的指令可以是用户输入的启动拍摄的操作后拍摄装置生成的,所述启动拍摄的操作可以指用户在拍摄装置的预设区域比如快门输入点击、按压、滑动、长按等操作中的任意一种或多种。比如,如果检测到用户按下快门,则生成启动拍摄指令,此时可确定检测到触发事件。或者,所述启动拍摄的指令还可以是拍摄装置根据用户输入的启动拍摄的操作和延时拍摄时长生成的,所述延时拍摄时长是指从输入的启动拍摄的操作到开始拍摄之间的时长。例如,假设延时拍摄时长为45秒,检测到用户输入的启动拍摄的操作的时间为11点19分10秒,拍摄装置检测时间变化,当时间达到11点19分55秒时,生成启动拍摄的指令以指示拍摄装置开始拍摄。
又一个实施例中,所述触发事件还可以当前时刻拍摄装置捕获的图像的图像亮度值与亮度阈值之间的亮度差值高于亮度差阈值,所述捕获的图像可以指 预览图像。图像亮度值与亮度阈值之间的亮度差值高于亮度差阈值表明如果采用当前时刻拍摄装置的曝光参数进行拍摄,得到的拍摄图像的较暗或较亮,此时则需要根据不同拍摄场景有针对性的启用相应的曝光控制策略以调整拍摄装置的曝光参数。需要说明的是,本发明实施例中所述亮度差值指的是绝对差值,也即所述亮度差值是指捕获的图像的图像亮度值与亮度阈值之间的差值的绝对值。
步骤S202、当拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整拍摄装置的曝光参数。
其中,所述第一曝光控制策略主要用于在水下拍摄场景拍摄时调整拍摄装置的曝光参数,以使得拍摄装置在水下拍摄场景中能够拍摄出质量较高的图像。可选的,所述曝光参数可包括曝光时长、光圈值以及感光度值中的任意一种或多种;所述调整拍摄装置的曝光参数可以指对当前时刻拍摄装置的曝光参数进行调整,例如,如果曝光参数包括曝光时长,所述调整拍摄装置的曝光参数可以是将当前时刻拍摄装置的曝光时长调长或调短;再如,如果曝光参数包括感光度值,所述调整拍摄装置的曝光参数可以是将当前时刻拍摄装置的感光度值调高或调低。
在一个实施例中,由于拍摄装置可能有不同的产品形态,可调整的拍摄参数也可能不同。例如,有的拍摄装置的光圈值是固定不可调节的,可调节的曝光参数为曝光时长和感光度值;再如,有的拍摄装置的光圈值也是可调节的,此时可调节的曝光参数为曝光时长、感光度值以及光圈值。在本发明实施例的下面描述中,不做特殊说明时均是以拍摄装置的光圈值固定不可调节为例进行描述。
在一个实施例中,图像的亮度和清晰度是决定图像质量的较为重要的因素,图像的亮度是由拍摄场景的环境亮度和曝光参数同时决定的,本发明实施例所指的调整曝光参数可以指:在当前时刻的拍摄场景下,找到合适的拍摄装置的曝光参数以保证拍摄装置拍摄出亮度和清晰度均较高的图像。可选的,调整曝光参数的步骤可以是:确定在当前时刻的拍摄场景下,以当前时刻拍摄装置的拍摄参数捕获到的图像的图像亮度值;确定图像的图像亮度值与亮度阈值之间的亮度差值;按照减小所述亮度差值的原则,对拍摄装置的当前拍摄参数进行 调整。其中,所述亮度阈值可以是预先设置的,且当捕获到的图像的亮度值接近或者等于该亮度阈值的情况下,表明以此时的曝光参数进行拍摄可得到亮度较为合适的图像。所述亮度阈值可以是一个或多个,当所述亮度阈值为多个时,多个亮度阈值与环境光亮度有关。例如,当拍摄对象所处的环境光亮度较高时,亮度阈值相对较高;当拍摄对象所处的环境光亮度较低时,亮度阈值相对较低。
在一个实施例中,所述第一曝光控制策略可以包括:根据亮度阈值,通过查找第一曝光控制表确定所述曝光参数,其中,所述第一曝光控制表包括所述亮度阈值与所述曝光参数的对应关系。所述第一曝光控制表中亮度阈值与曝光参数的对应关系可以是拍摄装置预先设定的,且以所述亮度阈值对应的曝光参数进行拍摄时得到的图像的质量较高。
在一个实施例中,如果所述曝光参数包括曝光时长和感光度值,第一曝光控制表中可包括亮度阈值对应的曝光时长和感光度值;如果曝光参数包括曝光时长和光圈值,第一曝光控制表中可包括亮度阈值对应的曝光时长和光圈值;如果曝光参数包括感光度值和光圈值,第一曝光控制表中可包括亮度阈值对应的感光度值和光圈值;如果曝光参数包括感光度值、曝光时长以及光圈值,第一曝光控制表中可包括亮度阈值对应的感光度值、曝光时长以及光圈值。下面以曝光参数包括曝光时长和感光度值为例,具体介绍第一曝光控制表中亮度阈值与曝光参数的对应关系的存储形式。
作为一种可行的实施方式,第一曝光控制表中存储的亮度阈值对应的曝光时长和感光度值的形式可以是:亮度阈值的区间值对应一个曝光时长和感光度值的组合,例如,亮度阈值在L1-L2范围内时,对应曝光时长为t1和感光度值为s1的组合;亮度阈值在L2-L范围内时,对应曝光时长为t2和感光度值为s2的组合。
作为另一种可行的实施方式,第一曝光控制表中存储的亮度阈值对应的曝光时长和感光度值的形式也可以是:亮度阈值的区间值对应多个曝光时长和感光度值的组合,例如,亮度阈值在L1-L2范围内时,对应曝光时长为t1和感光度值为s1的组合,以及曝光时长为t2和感光度值为s2的组合等等。需要说明的是,当亮度阈值的区间值对应多个曝光时长和感光度值的组合时,各个曝光时长和感光度值的组合可以具有不同的优先级,拍摄装置可以按照各个曝光时长和感 光度值的组合的优先级由高到低,或者由低到高的顺序调整曝光参数。或者,各个曝光时长和感光度值对应有不同的拍摄场景,拍摄装置在调整曝光参数时,可以从各组曝光时长和感光度值的组合中选择拍摄场景与当前时刻所处的拍摄场景相同或相近的组合来调整拍摄装置的曝光参数。如此一来,可以更加快速的将拍摄装置的曝光参数调整到最佳。
作为又一种可行的实施方式,第一曝光控制表中存储的亮度阈值对应的曝光时长和感光度值的形式还可以是:每个亮度阈值对应一个曝光时长和感光度值的组合。例如,亮度阈值L1对应曝光时长t1和感光度值s1的组合;亮度阈值L2对应曝光时长t2和感光度值s2的组合。
作为又一种可行的实施方式,第一曝光控制表中存储的亮度阈值对应的曝光时长和感光度值的形式又可以是:每个亮度阈值对应多个曝光时长和感光度值的组合。当每个亮度阈值对应多个曝光时长和感光度值的组合时,各个曝光时长和感光度值的组合具有不同的优先级。
再一个实施例中,曝光参数可以包括曝光时长和光圈值,第一曝光控制表中可包括亮度阈值对应的曝光时长和光圈值的组合。具体地,第一曝光控制表中存储的亮度阈值对应的曝光时长和光圈值的形式可以是:亮度阈值的区间值对应一个曝光时长和光圈值的组合。或者,第一曝光控制表中存储的亮度阈值对应的曝光时长和光圈值的形式还可以是:亮度阈值的区间值对应多个曝光时长和光圈值的组合,当亮度阈值的区间值对应多个曝光时长和光圈值的组合时,各个曝光时长和光圈值的组合可以具有不同的优先级,或者各个曝光时长和光圈值的组合对应不同的拍摄场景,这样一来,拍摄装置可以首先找到与当前的拍摄场景相同或相似的拍摄场景,然后根据该拍摄场景下的曝光时长和光圈值的组合来调整拍摄装置的曝光参数,如此可以提高曝光参数的调整效率。
或者,第一曝光控制表中存储的亮度阈值对应的曝光时长和光圈值的形式还可以是:每个亮度阈值对应一个曝光时长和光圈值的组合。或者,第一曝光控制表中存储的亮度阈值对应的曝光时长和光圈值的形式又可以是:一个亮度阈值对应多个曝光时长和光圈值的组合,当一个亮度阈值对应多个曝光时长和光圈值的组合时,各个曝光时长和光圈值的组合可以具有不同的优先级。
应当理解的,如果曝光参数包括光圈值和感光度值,或者曝光参数包括光 圈值、感光度值以及曝光时长,第一曝光控制表中亮度阈值与曝光参数的对应关系可以参考上述描述,在此不再赘述。
在其他的实施例中,所述第一曝光控制策略还可以包括调短曝光时长并调高感光度值。通常情况下,为了防止由于拍摄装置的抖动而导致拍摄的图像模糊,此处所述曝光时长小于等于拍摄装置设置的最长的曝光时长,也即安全快门,此时第一曝光控制策略在对曝光时长调整时,应该保证调整的曝光时长小于或等于安全快门。对此部分内容,将在后面的实施例中具体描述。
步骤S203、当拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整拍摄装置的曝光参数。
其中,第二曝光控制策略主要用于在非水下拍摄场景拍摄时调整拍摄装置的曝光参数,以使得拍摄装置在非水下拍摄场景中能够拍摄出质量较高的图像。
在一个实施例中,所述第二曝光控制策略包括:获取拍摄装置的抖动程度;根据拍摄装置的抖动程度,确定拍摄装置的曝光参数。
在一个实施例中,当抖动程度不大于抖动阈值时,通过查找第二曝光控制表确定曝光参数。其中,第二曝光控制表中包括亮度阈值与曝光参数的对应关系;当抖动程度大于抖动阈值时,通过查找第三曝光控制表确定曝光参数。所述第二曝光控制表中亮度阈值与曝光参数的对应关系可以是拍摄装置预先设定的,且在抖动程度不大于抖动阈值的情况下以第二曝光控制表中的曝光参数进行拍摄得到的图像的质量较高。同理的,所述第三曝光控制表中亮度阈值与曝光参数的对应关系也可以是拍摄装置预先设定的,且在抖动程度大于抖动阈值的情况下以第三曝光控制表中的曝光参数进行拍摄得到图像的质量较高。
在一个实施例中,当所述抖动程度不大于预设抖动阈值时,可以设置不大于预设抖动阈值的所有抖动程度均对应一个第二曝光控制表,此时第二曝光控制表的数量为一个;也可以设置不大于预设抖动阈值的每个抖动程度对应一个第二曝光控制表,此时第二曝光控制表的数量为至少一个;例如,当抖动程度为A时,对应一个第二曝光控制表;当抖动程度等于B时,对应一个第二曝光控制表。当不大于预设抖动阈值的每个抖动程度对应一个第二曝光控制表时,在通过查找第二曝光控制表确定所述曝光参数之前,需要先获取到与拍摄装置的抖动程度对应的第二曝光控制表。还可以设置不大于预设抖动阈值的任意两 个不相等的抖动程度的区间值对应一个第二曝光控制表,此时第二曝光控制表的数量为至少一个,例如,抖动程度在抖动程度A-抖动程度B范围内时,对应第二曝光控制表1;抖动程度在抖动程度C-抖动程度D范围内时,对应第二曝光控制表2。
同理的,在一个实施例中,当所述抖动程度大于预设抖动阈值时,可以设置大于预设抖动阈值的所有抖动程度对应同一个第三曝光控制表,此时所述第三曝光控制表的数量为一个;也可以设置每一个大于预设抖动阈值的抖动程度对应一个第三曝光控制表,此时第三曝光控制表的数量为至少两个;还可以设置大于预设抖动阈值的任意两个不相等的抖动程度的区间值对应一个第三曝光控制表,此时第三曝光控制表的数量为至少一个。
在一个实施例中,第二曝光控制表中包括的亮度阈值与曝光参数的对应关系的形式,以及第三曝光控制表中包括的亮度阈值与曝光参数的对应关系的形式与上述第一曝光控制表中包括的亮度阈值与曝光参数的对应关系的形式相同,具体可参见上述描述,在此不再赘述。
再一个实施例中,所述第二曝光控制策略还可以包括根据当拍摄装置的抖动程度不大于预设抖动阈值时,调长曝光时长并调低感光度值以使得亮度差值小于亮度差阈值;当抖动程度大于预设抖动阈值时,调短曝光时长并调高感光度值,以使得亮度差值小于亮度差阈值。在一个实施例中,为了减少拍摄的图像中的噪点,此时所述的曝光时长可以大于安全快门。对于此种实施方式,将在后面的实施例中展开描述。
在一个实施例中,所述第二曝光控制策略可以包括根据拍摄设备的抖动程度,通过查找第四曝光控制表确定拍摄装置的曝光参数。其中,第四曝光控制表包括多个控制表,每个控制表对应于不同的抖动程度。示例的,每个控制表对应于不同的抖动程度区间,每个控制表中包括亮度阈值和曝光参数的对应关系。其中,亮度阈值与曝光参数的对应关系可以是拍摄装置预先设定的。如此,可以对拍摄装置的不同抖动程度进行分级,从而根据拍摄装置的抖动程度更精确地控制曝光参数的大小。
本发明实施例中,检测拍摄装置在当前时刻所处的拍摄场景,并在拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整拍摄装置的曝光参数;在 拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数,对于不同的拍摄场景,有针对性地采用相应的曝光控制策略以调整拍摄装置的曝光参数,可以保证拍摄装置以较为合适的曝光参数拍摄图像,从而可提高拍摄的图像的质量。
请参考图3,为本发明实施例提供的另一种拍摄装置的曝光控制方法,所述曝光控制方法应用于任何需要曝光控制的拍摄装置中,所述曝光控制方法可以由拍摄装置执行,具体地可以由拍摄装置的处理器执行。图3所示的曝光控制方法可以包括步骤S301-步骤S307:
步骤S301、获取当前时刻拍摄装置捕获的图像的图像亮度值。
步骤S302、根据图像亮度值与亮度阈值确定亮度差值。
在一个实施例中,拍摄装置可包括数字信号处理(digital signal processor,DSP)芯片和图像传感器,拍摄装置可以通过DSP芯片获取图像传感器捕获的图像。在一个实施例中,步骤S301包括的实施方式可以为:将图像进行分区处理,得到图像包括的多个图像区域;计算多个图像区域中各个图像区域包括的各个像素的亮度值,并将各个图像区域包括的各个像素的亮度值进行融合处理,得到各个图像区域的亮度值;获取各个图像区域对应的亮度权重值,并根据各个图像区域对应的亮度权重值和各个图像区域的亮度值将多个图像区域进行融合处理,得到所述图像数据的图像亮度值。
其中,所述根据各个图像区域对应的亮度权重值和各个图像区域的亮度值将多个图像区域进行融合处理可以是将各个图像区域的亮度值与该区域对应的亮度权重相乘后相加。
在一个实施例中,步骤S302所述根据图像亮度值与亮度阈值确定亮度差值的实施方式可以包括:将图像亮度值与亮度阈值进行相减运算,得到的结果的绝对值即为亮度差值。
步骤S303、如果亮度差值不小于亮度差阈值,则检测拍摄装置当前时刻所处的拍摄场景是否为水下拍摄场景。
在一个实施例中,可以通过拍摄装置捕获到的图像的色温值来检测拍摄装置所处的拍摄场景。具体可选的,所述步骤S303可包括:获取当前时刻拍摄装 置捕获的图像的色温值;根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景。其中,拍摄装置中可配置有白平衡模块,所述拍摄装置可通过白平衡模块获取图像的色温值。
在一个可能的实施方式中,拍摄装置可设置一个色温阈值,所述色温阈值用于界定水下拍摄场景和非水下拍摄场景,该色温阈值可以是根据经验值确定的,或者所述色温阈值也可以是根据历史时刻的数据计算得到的,对此,本发明实施例不做限定。拍摄装置可以将捕获到的图像的色温值与色温阈值进行对比,如果所述图像的色温值大于色温阈值,则可确定所述拍摄装置在当前时刻所处的拍摄场景为水下拍摄场景;反之,如果所述图像的色温值不大于色温阈值,则可确定所述拍摄装置在当前时刻所处的拍摄场景为非水下拍摄场景。
步骤S304、如果拍摄装置当前时刻所处的拍摄场景为水下拍摄场景,则调短曝光时长并调高感光度,以使得亮度差值小于亮度差阈值。
在一个实施例中,所述调短曝光时长并调高感光度值可以是随机调整的;或者,也可以是根据预先设定的多组曝光时长与感光度值之间的对应关系进行调整的。例如,拍摄装置将曝光时长调短到目标曝光时长时,可以通过曝光时长与感光度值之间的对应关系确定与目标曝光时长对应的目标感光度值,然后将拍摄装置的感光度值调整为等于目标感光度值。其中,所述预设的多组曝光时长与感光度值之间的对应关系可以是根据在与当前时刻相同或者相似的拍摄场景中进行历史曝光参数调整时的调整记录确定的,或者所述曝光时长与感光度值之间的对应关系也可以是用户根据拍摄经验为拍摄装置设置的。应当理解的,本发明实施例只是列举一些确定曝光时长与感光度值之间的对应关系的可行的实施方式,对于具体如何确定曝光时长与感光度值之间的对应关系不做具体限定,可以依据具体应用场景具体分析。
在一个实施例中,所述调短曝光时长并调高感光度,以使得亮度差值小于亮度差阈值的实施方式可以为:将拍摄装置的曝光时长调整为等于第一曝光时长,感光度值调整为等于第一感光度值;控制拍摄装置以所述第一曝光时长以及第一感光度值捕获更新的图像,并计算所述更新的图像的更新的图像亮度值;计算所述更新的图像亮度值与亮度阈值之间的更新的亮度差值;如果所述更新的亮度差值小于亮度差阈值,则完成曝光参数调整;如果所述更新的亮度差值 不小于亮度差阈值,则将第一曝光时长调整为第二曝光时长,所述第二曝光时长小于第一曝光时长,将第一感光度值调整为第二感光度值,所述第二感光度值大于第一感光度值,重复执行上述调整过程直到更新后的亮度差值小于亮度差阈值,则结束曝光参数的调整。
步骤S305、如果拍摄装置当前时刻所处拍摄场景为非水下拍摄场景,则获取拍摄装置的抖动程度。
在一个实施例中,拍摄装置在进行拍摄的过程中,可能会发生抖动。这种抖动可能是由于手持者的手抖动带动拍摄装置抖动,例如,如果拍摄装置为手持云台、数码相机、手机、平板电脑以及可穿戴设备等,拍摄装置的抖动可能是由于手持者的手抖动带动的;或者,拍摄装置的抖动也可能是由于气流等影响产生的,例如旋翼飞机等。本发明实施例对于任何在拍摄过程中可能产生抖动的拍摄设备均适用,在此不一一赘述。
在一个实施例中,步骤S305所述获取拍摄装置的抖动程度,可包括:获取所述拍摄装置的至少一轴姿态角速度;根据所述至少一轴姿态角速度,确定所述拍摄装置的抖动程度。所述根据至少一轴姿态角速度确定所述拍摄装置的抖动程度,具体可包括以下几种实施方式:
一种可能的实施方式,可以根据拍摄装置的三轴姿态角速度中任意一个轴的姿态角速度确定拍摄装置的抖动程度,例如,可以根据X轴的姿态角速度、Y轴的姿态角速度或者Z轴的姿态角速度得到拍摄装置的抖动程度。具体依据哪个轴的姿态角速度,可以依据拍摄装置的产品形态以及用户的使用习惯确定。对此,本发明实施例中不做限定。
另一种可能的实施方式,可以根据拍摄装置的三轴姿态角速度中最大的姿态角速度确定拍摄装置的抖动程度,例如,X轴的姿态角速度最大,则可以根据X轴的姿态角速度确定拍摄装置的抖动程度;Y轴的姿态角速度最大,则可以根据Y轴的姿态角速度确定拍摄装置的抖动程度;同理的,Z轴的姿态角速度最大,则可以根据Z轴的姿态角速度确定拍摄装置的抖动程度。
再一种可能的实现方式,可以根据拍摄装置的三轴角速度中的两个轴的姿态角速度确定拍摄装置的抖动程度。例如,可以根据X轴的姿态角速度和Y轴的姿态角速度确定拍摄装置的抖动程度;或者,可以根据Y轴的姿态角速 度和Z轴的姿态角速度确定拍摄装置的抖动程度;再或者,可以根据X轴的姿态角速度和Z轴的姿态角速度确定拍摄装置的抖动程度。应当理解的,具体依据哪两个轴的姿态角速度,可以根据拍摄装置的产品形态以及用户的使用习惯来确定,对此,本发明实施例不做限定。
又一种可能的实施方式,可以根据三轴姿态角速度确定拍摄装置的抖动程度。
在一个实施例中,下面以所述根据所述三轴姿态角速度,确定所述拍摄装置的抖动程度为例进行描述,所述根据所述三轴姿态角速度确定所述拍摄装置的抖动程度可包括:将所述三轴姿态角度速进行加权求和运算,并将运算结果确定为拍摄装置的抖动程度。例如,可根据公式ω=aω x+bω y+cω z得到拍摄设备的抖动程度;其中,ω x表示X轴的姿态角速度,ω y表示Y轴的姿态角速度,ω z表示Z轴的姿态角速度,a,b,c分别表示X轴、Y轴以及Z轴的权重值,且a+b+c=1。
再一个实施例中,所述根据所述三轴姿态角速度确定所述拍摄装置的抖动程度还可包括:通过查表的方式得到姿态角速度对应的抖动程度。其中,可以根据经验值建立姿态角速度与抖动程度的对应关系,也可以通过计算的方式得到姿态角速度与抖动程度的对应关系,对此,本发明实施例不做限定。
步骤S306、当拍摄装置的抖动程度不大于预设抖动阈值时,调长曝光时长并调低感光度值,以使得亮度差值小于亮度差阈值。
步骤S307、当拍摄装置的抖动程度大于预设抖动阈值,调短曝光时长并调高感光度值,以使得亮度差值小于亮度差阈值。
在一个实施例中,所述根据所述拍摄装置的抖动程度,确定所述拍摄装置的曝光参数,可包括:判断抖动程度是否大于预设抖动阈值;如果大于预设抖动阈值,则可按照调短曝光时长和调高感光度值的组合进行曝光参数的调整以使得图像的亮度值与亮度阈值之间的亮度差值趋近亮度差阈值;如果不大于预设抖动阈值,则可按照调长曝光时长和调低感光度值的组合进行曝光参数的调整以使得图像的亮度值与亮度阈值之间的亮度差值趋近亮度差阈值。
在一个实施例中,所述步骤S306中,所述调短曝光时长和调低感光度值可以是随机调整的,也可以是按照预设的多组曝光时长与感光度值的对应关系 进行调整的,例如,拍摄装置将曝光时长调短到某个曝光时长时,可以根据多组曝光时长与感光度值之间的对应关系确定与该曝光时长对应的感光度值。其中,所述预设的多组曝光时长与感光度值的对应关系可以是根据在与当前时刻相同或相似的拍摄场景中进行历史曝光参数调整时的调整记录生成的;或者也可以是用户根据拍摄经验设置的。
在一个实施例中,所述步骤S306中当拍摄装置的抖动程度不大于预设抖动阈值时,调长曝光时长和调低感光度值,以使得亮度差值小于亮度差阈值的实施方式可以为:将拍摄装置的曝光时长调整为等于第三曝光时长,感光度值调整为等于第三感光度值;控制拍摄装置以所述第三曝光时长以及第三感光度值捕获更新的图像,并计算所述更新的图像的更新的图像亮度值;计算所述更新的图像亮度值与亮度阈值之间的更新的亮度差值;如果所述更新的亮度差值小于亮度差阈值,则完成曝光参数调整;如果所述更新的亮度差值不小于亮度差阈值,则将第三曝光时长调整为第四曝光时长,所述第三曝光时长小于第四曝光时长,将第三感光度值调整为第四感光度值,所述第三感光度值大于第四感光度值,重复执行上述调整过程直到更新后的亮度差值小于亮度差阈值,则结束曝光参数的调整。
在一个实施例中,所述步骤S307的实施方式与步骤S306相同,在此不一一赘述。
本发明实施例中,获取当前时刻拍摄装置捕获的图像的图像亮度值,并根据图像亮度值与亮度阈值确定亮度差值,在亮度差值小于亮度差阈值时,检测拍摄装置在当前时刻所处的拍摄场景;在拍摄场景为水下拍摄场景时,通过调短曝光时长并调高感光度来调整曝光参数;在拍摄场景为非水下拍摄场景时,获取拍摄装置的抖动程度,当拍摄装置的抖动程度不大于预设抖动阈值时,调长曝光时长和调低感光度值,以使得亮度差值小于亮度差阈值;当拍摄装置的抖动程度大于预设抖动阈值,调短曝光时长和调高感光度值,以使得亮度差值小于亮度差阈值。
由上述描述可知,在拍摄场景为非水下拍摄场景时,当拍摄装置的抖动程度大于抖动阈值时,通过调短曝光时长和调高感光度值调整曝光参数,此处所述的曝光时长在安全快门范围内,可以有效的防止由于拍摄装置的抖动而造成 拍摄的图像模糊,提高拍摄装置的清晰度;当拍摄装置的抖动程度不大于预设抖动阈值时,通过调长曝光时长和调低感光度值调整曝光参数,此时所述曝光时长可大于安全快门,在该种情况下抖动程度不大于抖动阈值表明拍摄装置的抖动对图像的清晰度影响不大可以忽略,此时可以调长曝光时长和调低感光度值可以减少拍摄的图像中的噪点,从而提高画质。由于水下拍摄场景受到洋流的影响,拍摄装置容易出现小幅度的抖动,但是这些抖动不能被有效的检测到,所以在水下拍摄场景中不适合继续根据抖动程度调整曝光参数,而是不考虑抖动程度,直接通过调短曝光时长并调高感光度来调整曝光参数以提高拍摄图像的成片率。
基于上述图2和图3描述的方法实施例,本发明实施例提供了一种拍摄装置的结构示意图如图4所示。如图4所述的拍摄装置可包括:处理器401、镜头402和存储器403,其中处理器401、镜头402、存储器403通过总线404连接,存储器403中存储程序指令,处理器401调用存储器403中的程序指令。
所述存储器403可以包括易失性存储器(volatile memory),如随机存取存储器(random-access memory,RAM);存储器403也可以包括非易失性存储器(non-volatile memory),如快闪存储器(flash memory),固态硬盘(solid-state drive,SSD)等;存储器403还可以包括上述种类的存储器的组合。
所述处理器401可以是中央处理器(Central Processing Unit,CPU)。所述处理器401还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)等。该PLD可以是现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)等。所述处理器401也可以为上述结构的组合。
本发明实施例中,所述存储器403用于存储计算机程序,所述计算机程序包括程序指令,处理器401用于调用存储器403中存储的程序指令,用来实现上述图2和图3所示的实施例中的相应方法的步骤。
在一个实施例中,所述处理器401被配置调用所述程序指令时执行:检测拍摄装置在当前时刻所处的拍摄场景;当所述拍摄场景为水下拍摄场景时,启 用第一曝光控制策略以调整所述拍摄装置的曝光参数;当所述拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数。在一个实施例中,所述处理器401在检测拍摄装置在当前时刻所处的拍摄场景时,执行如下操作:获取当前时刻拍摄装置捕获的图像的色温值;根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景。
在一个实施例中,所述处理器401在根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景时,执行如下操作:当所述图像的色温值大于色温阈值时,则确定所述拍摄装置在当前时刻所处的拍摄场景为水下拍摄场景。
在一个实施例中,拍摄装置还包括白平衡模块404,所述处理器401在获取当前时刻拍摄装置捕获的图像的色温值时,执行如下操作:通过所述白平衡模块获取所述图像的色温值。
在一个实施例中,所述曝光参数包括:曝光时长、光圈值、感光度值中的一个或多个。
在一个实施例中,所述处理器401被配置调用程序指令时还执行:获取当前时刻拍摄装置捕获的图像的图像亮度值;根据所述图像亮度值与亮度阈值确定亮度差值。
在一个实施例中,所述第一曝光控制策略包括:调短曝光时长并调高感光度值,以使得所述亮度差值小于所述亮度差阈值。
在一个实施例中,所述第一曝光控制策略包括:根据所述亮度阈值,通过查找第一曝光控制表确定所述曝光参数,其中,所述第一曝光控制表包括所述亮度阈值与所述曝光参数的对应关系。
在一个实施例中,所述第二曝光控制策略包括:获取所述拍摄装置的抖动程度;根据所述拍摄装置的抖动程度,确定所述拍摄装置的曝光参数。
在一个实施例中,所述处理器401在获取所述拍摄装置的抖动程度时,执行如下操作:获取所述拍摄装置的至少一轴姿态角速度;根据所述至少一轴姿态角速度,确定所述拍摄装置的抖动程度。
在一个实施例中,所述处理器401在根据所述拍摄装置的抖动程度,确定 所述拍摄装置的曝光参数时,执行如下操作:当所述抖动程度小于预设抖动阈值时,调长所述曝光时长并调低所述感光度值,以使得所述亮度差值小于亮度差阈值;当所述抖动程度大于预设抖动阈值时,调短所述曝光时长并调高所述感光度值,以使得所述亮度差值小于亮度差阈值。
在一个实施例中,所述处理器401在根据所述拍摄装置的抖动程度,确定所述拍摄装置的曝光参数时,执行如下操作:当所述抖动程度不大于预设抖动阈值时,通过查找第二曝光控制表确定所述曝光参数,其中,所述第二曝光控制表包括所述亮度阈值与曝光参数的对应关系;当所述抖动程度大于预设抖动阈值时,通过查找第三曝光控制表确定所述曝光参数,其中,所述第三曝光控制表包括所述亮度阈值与曝光参数的对应关系。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (25)

  1. 一种拍摄装置的曝光控制方法,其特征在于,包括:
    检测拍摄装置在当前时刻所处的拍摄场景;
    当所述拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整所述拍摄装置的曝光参数;
    当所述拍摄场景为非水下拍摄场景时,启用不同于所述第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数。
  2. 根据权利要求1所述的方法,其特征在于,所述检测拍摄装置在当前时刻所处的拍摄场景,包括:
    获取当前时刻拍摄装置捕获的图像的色温值;
    根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景,包括:
    当所述图像的色温值大于色温阈值时,确定所述拍摄装置在当前时刻所处的拍摄场景为水下拍摄场景。
  4. 根据权利要求2所述的方法,其特征在于,所述拍摄装置包括白平衡模块,所述获取当前时刻拍摄装置捕获的图像的色温值,包括:
    通过所述白平衡模块获取所述图像的色温值。
  5. 根据权利要求1所述的方法,其特征在于,所述曝光参数包括:曝光时长、光圈值、感光度值中的一个或多个。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取当前时刻拍摄装置捕获的图像的图像亮度值;
    根据所述图像亮度值与亮度阈值确定亮度差值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一曝光控制策略包括:
    调短曝光时长并调高感光度值,以使得所述亮度差值小于亮度差阈值。
  8. 根据权利要求6所述的方法,其特征在于,所述第一曝光控制策略包括:
    根据所述亮度阈值,通过查找第一曝光控制表确定所述曝光参数,其中,所述第一曝光控制表包括所述亮度阈值与所述曝光参数的对应关系。
  9. 根据权利要求6所述的方法,其特征在于,所述第二曝光控制策略包括:
    获取所述拍摄装置的抖动程度;
    根据所述拍摄装置的抖动程度,确定所述拍摄装置的曝光参数。
  10. 根据权利要求9所述的方法,其特征在于,所述获取所述拍摄装置的抖动程度,包括:
    获取所述拍摄装置的至少一轴姿态角速度;
    根据所述至少一轴姿态角速度,确定所述拍摄装置的抖动程度。
  11. 根据权利要求9所述的方法,其特征在于,所述根据所述拍摄装置的抖动程度,确定所述拍摄装置的曝光参数,包括:
    当所述抖动程度不大于预设抖动阈值时,调长所述曝光时长并调低所述感光度值,以使得所述亮度差值小于亮度差阈值;
    当所述抖动程度大于预设抖动阈值时,调短所述曝光时长并调高所述感光度值,以使得所述亮度差值小于亮度差阈值。
  12. 根据权利要求9所述的方法,其特征在于,所述根据所述拍摄设备的抖动程度,确定所述拍摄装置的曝光参数,包括:
    当所述抖动程度不大于预设抖动阈值时,通过查找第二曝光控制表确定所述曝光参数,其中,所述第二曝光控制表包括所述亮度阈值与曝光参数的对应关系;
    当所述抖动程度大于预设抖动阈值时,通过查找第三曝光控制表确定所述曝光参数,其中,所述第三曝光控制表包括所述亮度阈值与曝光参数的对应关系。
  13. 一种拍摄装置,其特征在于,包括:
    处理器、镜头和存储器;
    所述存储器,用于存储程序代码;
    所述处理器,用于调用所述程序代码,当所述程序代码被执行时,用于执行如下操作:
    检测拍摄装置在当前时刻所处的拍摄场景;
    当所述拍摄场景为水下拍摄场景时,启用第一曝光控制策略以调整所述拍摄装置的曝光参数;
    当所述拍摄场景为非水下拍摄场景时,启用不同于第一曝光控制策略的第二曝光控制策略以调整所述拍摄装置的曝光参数。
  14. 根据权利要求13所述的装置,其特征在于,所述处理器在检测拍摄装置在当前时刻所处的拍摄场景时,执行如下操作:
    获取当前时刻拍摄装置捕获的图像的色温值;
    根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景。
  15. 根据权利要求14所述的装置,其特征在于,所述处理器在根据所述图像的色温值,确定所述拍摄装置在当前时刻所处的拍摄场景时,执行如下操作:
    当所述图像的色温值大于色温阈值时,则确定所述拍摄装置在当前时刻所处的拍摄场景为水下拍摄场景。
  16. 根据权利要求14所述的装置,其特征在于,所述拍摄装置还包括白平衡模块,所述处理器在获取当前时刻拍摄装置捕获的图像的色温值时,执行如下操作:
    通过所述白平衡模块获取所述图像的色温值。
  17. 根据权利要求13所述的装置,其特征在于,所述曝光参数包括:曝光时长、光圈值、感光度值中的一个或多个。
  18. 根据权利要求13所述的装置,其特征在于,所述处理器还用于:
    获取当前时刻拍摄装置捕获的图像的图像亮度值;
    根据所述图像亮度值与亮度阈值确定亮度差值。
  19. 根据权利要求18所述的装置,其特征在于,所述第一曝光控制策略包括:
    调短曝光时长并调高感光度值,以使得所述亮度差值小于所述亮度差阈值。
  20. 根据权利要求18所述的装置,其特征在于,所述第一曝光控制策略包括:
    根据所述亮度阈值,通过查找第一曝光控制表确定所述曝光参数,其中,所述第一曝光控制表包括所述亮度阈值与所述曝光参数的对应关系。
  21. 根据权利要求18述的装置,其特征在于,所述第二曝光控制策略包括:
    获取所述拍摄装置的抖动程度;
    根据所述拍摄装置的抖动程度,确定所述拍摄装置的曝光参数。
  22. 根据权利要求21所述的装置,其特征在于,所述处理器在获取所述拍摄装置的抖动程度时,执行如下操作:
    获取所述拍摄设备的至少一轴姿态角速度;
    根据所述至少一轴姿态角速度,确定所述拍摄设备的抖动程度。
  23. 根据权利要求21所述的装置,其特征在于,所述处理器在根据所述拍摄设备的抖动程度,确定所述拍摄装置的曝光参数时,执行如下操作:
    当所述抖动程度小于预设抖动阈值时,调长所述曝光时长和调低所述感光度值,以使得所述亮度差值小于亮度差阈值;
    当所述抖动程度大于预设抖动阈值时,调短所述曝光时长和调高所述感光度值,以使得所述亮度差值小于亮度差阈值。
  24. 根据权利要求21所述的装置,其特征在于,所述处理器在根据所述拍摄设备的抖动程度,确定所述拍摄装置的曝光参数时,执行如下操作:
    当所述抖动程度不大于预设抖动阈值时,通过查找第二曝光控制表确定所述曝光参数,其中,所述第二曝光控制表包括所述亮度阈值与曝光参数的对应关系。
    当所述抖动程度大于预设抖动阈值时,通过查找第三曝光控制表确定所述曝光参数,其中,所述第三曝光控制表包括所述亮度阈值与曝光参数的对应关系。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括的程序指令,所述程序指令当被处理器执行时使所述处理器执行如权利要求1-12任一项所述的拍摄装置的曝光控制方法。
PCT/CN2019/089479 2019-05-31 2019-05-31 一种拍摄装置的曝光控制方法以及拍摄装置 WO2020237615A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/089479 WO2020237615A1 (zh) 2019-05-31 2019-05-31 一种拍摄装置的曝光控制方法以及拍摄装置
CN201980007959.9A CN111699671A (zh) 2019-05-31 2019-05-31 一种拍摄装置的曝光控制方法以及拍摄装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/089479 WO2020237615A1 (zh) 2019-05-31 2019-05-31 一种拍摄装置的曝光控制方法以及拍摄装置

Publications (1)

Publication Number Publication Date
WO2020237615A1 true WO2020237615A1 (zh) 2020-12-03

Family

ID=72476401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089479 WO2020237615A1 (zh) 2019-05-31 2019-05-31 一种拍摄装置的曝光控制方法以及拍摄装置

Country Status (2)

Country Link
CN (1) CN111699671A (zh)
WO (1) WO2020237615A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118524293A (zh) * 2024-07-23 2024-08-20 浙江大华技术股份有限公司 曝光参数的控制方法、摄像设备及存储介质
EP4404578A4 (en) * 2021-10-27 2024-08-21 Sz Dji Technology Co Ltd IMAGING METHODS AND IMAGING DEVICE FOR WATER SCENES

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114827468A (zh) * 2022-04-25 2022-07-29 Oppo广东移动通信有限公司 控制方法、控制装置、计算机可读存储介质和移动终端

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282460A (ja) * 2003-03-17 2004-10-07 Nikon Corp 電子カメラおよび電子カメラシステム
JP2006186688A (ja) * 2004-12-27 2006-07-13 Casio Comput Co Ltd 撮像装置、画像処理方法及びプログラム
US20120236173A1 (en) * 2011-03-17 2012-09-20 Telek Michael J Digital camera user interface which adapts to environmental conditions
JP2013021518A (ja) * 2011-07-12 2013-01-31 Canon Inc 撮像装置およびその制御方法
CN104349071A (zh) * 2013-07-25 2015-02-11 奥林巴斯株式会社 摄像装置和摄像方法
CN106375676A (zh) * 2016-09-20 2017-02-01 广东欧珀移动通信有限公司 终端设备的拍照控制方法、装置和终端设备
CN107613190A (zh) * 2016-07-11 2018-01-19 中兴通讯股份有限公司 一种拍照方法及终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006259056A (ja) * 2005-03-16 2006-09-28 Nikon Corp カメラ
JP5505094B2 (ja) * 2010-05-28 2014-05-28 株式会社ニコン 撮影装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004282460A (ja) * 2003-03-17 2004-10-07 Nikon Corp 電子カメラおよび電子カメラシステム
JP2006186688A (ja) * 2004-12-27 2006-07-13 Casio Comput Co Ltd 撮像装置、画像処理方法及びプログラム
US20120236173A1 (en) * 2011-03-17 2012-09-20 Telek Michael J Digital camera user interface which adapts to environmental conditions
JP2013021518A (ja) * 2011-07-12 2013-01-31 Canon Inc 撮像装置およびその制御方法
CN104349071A (zh) * 2013-07-25 2015-02-11 奥林巴斯株式会社 摄像装置和摄像方法
CN107613190A (zh) * 2016-07-11 2018-01-19 中兴通讯股份有限公司 一种拍照方法及终端
CN106375676A (zh) * 2016-09-20 2017-02-01 广东欧珀移动通信有限公司 终端设备的拍照控制方法、装置和终端设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4404578A4 (en) * 2021-10-27 2024-08-21 Sz Dji Technology Co Ltd IMAGING METHODS AND IMAGING DEVICE FOR WATER SCENES
CN118524293A (zh) * 2024-07-23 2024-08-20 浙江大华技术股份有限公司 曝光参数的控制方法、摄像设备及存储介质

Also Published As

Publication number Publication date
CN111699671A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
US11368615B2 (en) Modifying image parameters using wearable device input
US20170163878A1 (en) Method and electronic device for adjusting shooting parameters of camera
CN105306806B (zh) 一种移动终端及其拍照的方法
WO2018191070A2 (en) Optical flow and sensor input based background subtraction in video content
CN107613190B (zh) 一种拍照方法及终端
US20170094155A1 (en) Mobile terminal and photographing method therefor
US10911671B2 (en) Automatic processing of automatic image capture parameter adjustment
CN110708463B (zh) 对焦方法、装置、存储介质及电子设备
WO2016110075A1 (zh) 一种移动终端相机的拍照方法及装置
US20170214847A1 (en) Method for Setting Shooting Parameters of HDR mode and Electronic Device Using the Same
WO2020237615A1 (zh) 一种拍摄装置的曝光控制方法以及拍摄装置
CN107317965B (zh) 图像防抖方法和设备
US9462188B2 (en) Time extension for image frame processing
EP3179716B1 (en) Image processing method, computer storage medium, device, and terminal
WO2020107289A1 (zh) 拍摄方法、装置及无人机
JP2010183460A (ja) 撮像装置およびその制御方法
US20160373648A1 (en) Methods and systems for capturing frames based on device information
JP2016213717A (ja) 画像処理装置及び画像処理方法、プログラム、記憶媒体
JP2010183461A (ja) 撮像装置およびその制御方法
JP6514577B2 (ja) 画像処理装置および画像処理方法ならびに撮像装置
US12047678B2 (en) Image pickup system that performs automatic shooting using multiple image pickup apparatuses, image pickup apparatus, control method therefor, and storage medium
JP2011172266A (ja) 撮像装置、撮像方法および撮像プログラム
KR101611303B1 (ko) 영상 촬영 방법 및 장치
JP5789330B2 (ja) 撮像装置およびその制御方法
JP2015119326A (ja) 画像処理装置、方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930275

Country of ref document: EP

Kind code of ref document: A1