WO2020237486A1 - 一种温度测量方法及装置、存储介质 - Google Patents

一种温度测量方法及装置、存储介质 Download PDF

Info

Publication number
WO2020237486A1
WO2020237486A1 PCT/CN2019/088661 CN2019088661W WO2020237486A1 WO 2020237486 A1 WO2020237486 A1 WO 2020237486A1 CN 2019088661 W CN2019088661 W CN 2019088661W WO 2020237486 A1 WO2020237486 A1 WO 2020237486A1
Authority
WO
WIPO (PCT)
Prior art keywords
resistance
thermistor
voltage
current
resistor
Prior art date
Application number
PCT/CN2019/088661
Other languages
English (en)
French (fr)
Inventor
杨鑫
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201980095436.4A priority Critical patent/CN114072683B/zh
Priority to PCT/CN2019/088661 priority patent/WO2020237486A1/zh
Priority to EP19931256.2A priority patent/EP3978937A4/en
Publication of WO2020237486A1 publication Critical patent/WO2020237486A1/zh
Priority to US17/535,259 priority patent/US20220082453A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/08Circuits for altering the measuring range
    • G01R15/09Autoranging circuits

Definitions

  • the embodiment of the present invention relates to the technical field of crystal oscillators, in particular to a temperature measurement method and device, and a storage medium.
  • Crystal oscillators are not only widely used in various types of oscillating circuits such as color TVs, computers, and remote controls, but also can be used as frequency generators for communication systems, generate clock signals for data processing equipment, and provide reference signals for specific systems.
  • the frequency error in the crystal oscillator is mostly caused by temperature changes.
  • a temperature-compensated crystal oscillator can be used to adjust the resonant frequency by sensing the surrounding temperature, thereby eliminating the frequency error caused by temperature changes.
  • the temperature-compensated crystal oscillator has a relatively high cost and limited application range.
  • free-running crystal oscillators have been used on a larger scale.
  • An external fixed resistor is connected in series with the thermistor of the crystal oscillator, and an analog-to-digital converter is used to measure the temperature of the crystal oscillator.
  • Temperature compensation for the final frequency generated in the system is not only low cost, but also multiple frequencies can be generated in the system. Each frequency corresponds to a different compensation scheme, and the frequencies do not interfere with each other.
  • the thermistor and the external fixed resistance are not in the same order of magnitude. Even if the thermistor changes to a certain extent, the voltage signal input to the analog-to-digital converter actually changes very much. It is small and close to the power supply voltage or close to zero. At this time, the performance of the analog-to-digital converter is poor. Therefore, the temperature measurement accuracy is low, and the measurement of lower temperature or higher temperature cannot be achieved, and the temperature measurement range is limited.
  • the embodiments of the present invention expect to provide a temperature measurement method.
  • the temperature measurement is performed by switching the resistance in series with the thermistor of the crystal oscillator in the resistance array, which not only improves the accuracy of temperature measurement, but also expands The range of temperature measurement.
  • the embodiment of the present application provides a temperature measurement method, the method includes:
  • the current resistance is any resistance in the resistance array
  • the resistance in series with the thermistor is switched from the resistance array based on the preset switching rule until the target resistance in the array resistance and the thermistor Resistors are connected in series, and it is measured that the target voltage corresponding to the thermistor is within the preset voltage range;
  • the temperature value of the crystal oscillator is determined based on the connected power supply voltage, the target resistance, and the target voltage.
  • the switching the resistance in series with the thermistor from the resistance array based on a preset switching rule includes:
  • the resistor array in the resistor array is sequentially switched, and a resistor with a nominal resistance value less than the current resistor is connected in series with the thermistor.
  • the method further includes:
  • the correction resistance value of each resistance switched to is determined in turn until the target resistance is determined Correct the resistance value.
  • the step of sequentially determining the correction resistance value of each resistor switched to until the correction resistance value of the target resistance is determined includes:
  • the first resistance is not the target resistance
  • the first resistance is switched to the second resistance in the resistance array, and the second resistance is connected in series with the thermistor, measure the The second voltage corresponding to the thermistor, and continue to determine the corrected resistance value of the second resistor according to the power supply voltage, the first voltage, the corrected resistance value of the first resistor, and the second voltage, Until the actual resistance of the target resistance is determined.
  • the obtaining the corrected resistance value of the current resistance includes:
  • the nominal resistance of the current resistance is determined as the corrected resistance value of the current resistance.
  • the obtaining the corrected resistance value of the current resistance includes:
  • the corrected resistance value of the historical resistance in the resistance array is obtained, and the thermistor is connected in series with the historical resistance
  • the historical voltage corresponding to the time; the historical resistance is the previous resistance in the resistance array that is connected in series with the thermistor before the current resistance is connected in series with the thermistor;
  • the determining the temperature value of the crystal oscillator based on the connected power supply voltage, the target resistance, and the target voltage includes:
  • the temperature value is determined based on the power supply voltage, the corrected resistance value of the target resistance, and the target voltage.
  • the method further includes:
  • the temperature value is transmitted to a clock generator, so that the clock generator corrects the oscillation frequency output by the crystal oscillator according to the temperature value.
  • An embodiment of the application provides a temperature measurement device, the device includes: a resistor array, an analog-to-digital converter, and a processor;
  • the analog-to-digital converter is configured to measure the current voltage corresponding to the thermistor based on the current resistance in series with the thermistor in the crystal oscillator; the current resistance is any resistance in the resistance array;
  • the processor is configured to switch the resistance in series with the thermistor from the resistance array based on a preset switching rule when the current voltage exceeds or falls below a preset voltage range, until the resistance in the resistance array
  • the target resistor is connected in series with the thermistor, and it is measured that the target voltage corresponding to the thermistor is within the preset voltage range; the crystal is determined based on the connected power supply voltage, the target resistance and the target voltage The temperature value of the oscillator.
  • the processor is configured to sequentially switch the resistor with a nominal resistance greater than the current resistor and the thermistor in the resistor array when the current voltage exceeds the preset voltage range Connected in series; when the current voltage is lower than the preset voltage range, switch the resistor array in sequence, and a resistor with a nominal resistance value less than the current resistor is connected in series with the thermistor.
  • the processor is configured to sequentially determine the value of each resistor switched to in the process of switching the resistors in series with the thermistor from the resistor array based on the preset switching rule The resistance value is corrected until the corrected resistance value of the target resistance is determined.
  • the processor is configured to measure the thermistor when switching from the current resistor to the first resistor in the resistor array to realize that the first resistor is connected in series with the thermistor The first voltage corresponding to the resistance; obtain the corrected resistance value of the current resistance; determine the correct resistance value of the first resistance according to the power supply voltage, the current voltage, the corrected resistance value of the current resistance, and the first voltage Correcting the resistance value; when it is determined that the first resistance is not the target resistance, when switching from the first resistance to the second resistance in the resistance array, the second resistance is connected in series with the thermistor , Measure the second voltage corresponding to the thermistor, and continue to determine the value of the second resistor according to the power supply voltage, the first voltage, the corrected resistance of the first resistor, and the second voltage The resistance value is corrected until the corrected resistance value of the target resistance is determined.
  • the processor is configured to determine the nominal resistance of the current resistance as the current resistance when the current resistance is the first resistance in the resistance array connected in series with the thermistor The corrected resistance value of the resistor.
  • the processor is configured to obtain the corrected resistance value of the historical resistance in the resistance array when the current resistance is not the first resistance in the resistance array connected in series with the thermistor, And the corresponding historical voltage when the thermistor is connected in series with the historical resistance; the historical resistance is in the resistance array that is connected in series with the thermistor before the current resistance is connected in series with the thermistor The previous resistance; according to the power supply voltage, the corrected resistance value of the historical resistance, the historical voltage and the current voltage, determine the actual resistance of the current resistance.
  • the processor is configured to obtain a corrected resistance value of the target resistance; and determine the temperature value based on the power supply voltage, the corrected resistance value of the target resistance, and the target voltage.
  • the processor is configured to transmit the temperature value to a clock generator, so that the clock generator can correct the oscillation frequency output by the crystal oscillator according to the temperature value.
  • the embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor and an analog-to-digital converter to realize the above-mentioned temperature measurement method.
  • the current voltage corresponding to the thermistor is measured based on the current resistance in series with the thermistor in the crystal oscillator; the current resistance is any resistance in the resistance array;
  • the voltage exceeds or falls below the preset voltage range switch the resistance in series with the thermistor from the resistance array based on the preset switching rule until the target resistance in the resistance array is connected in series with the thermistor, and the target voltage corresponding to the thermistor is measured In the preset voltage range; determine the temperature value of the crystal oscillator based on the connected power supply voltage, target resistance, and target voltage. That is to say, the technical solution provided by this application performs temperature measurement by switching the resistance in series with the thermistor of the crystal oscillator in the resistance array, which not only improves the accuracy of temperature measurement, but also expands the range of temperature measurement.
  • FIG. 1 is a first schematic flowchart of a temperature measurement method provided by an embodiment of this application
  • FIG. 2 is a schematic diagram of components of an exemplary temperature measurement device provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of a process for determining a resistance correction resistance according to an embodiment of the application
  • FIG. 4 is a second flowchart of a temperature measurement method provided by an embodiment of this application.
  • FIG. 5 is a schematic structural diagram of a temperature measuring device provided by an embodiment of the application.
  • FIG. 1 is a schematic flowchart 1 of a temperature measurement method provided by this application. As shown in Figure 1, it mainly includes the following steps:
  • the temperature measuring device may measure the current voltage corresponding to the thermistor based on the current resistance in series with the thermistor in the crystal oscillator.
  • the temperature measurement device may include a resistance array, an analog-to-digital converter, and a processor.
  • the resistance array includes a plurality of resistors and a plurality of switches, and one switch can control a resistance and heat.
  • the analog-to-digital converter can measure the corresponding voltage when the thermistor is connected in series with different resistors in the resistance array, that is, the digital-to-analog converter in the temperature measuring device can be based on the current series connection with the thermistor in the crystal oscillator Current resistance, measure the current voltage corresponding to the thermistor, the processor can control the connection state of the resistance in the resistance array and the thermistor according to the different voltages measured by the analog-to-digital converter, calculate the corrected resistance value of the resistance in the resistance array, and The voltage determines the temperature value of the crystal oscillator, etc.
  • Fig. 2 is a schematic diagram of an exemplary temperature measuring device provided by an embodiment of the application.
  • the temperature measurement device can include not only a resistor array, an analog-to-digital converter, and a processor, but also a low-pass filter and a decimator.
  • the resistor array includes n resistors, and the low-pass filter can connect the power supply
  • the voltage divider performs low-pass filtering on the voltage signal of the thermistor, and then outputs it to the analog-to-digital converter to measure the voltage corresponding to the thermistor.
  • the extractor can be The rule extracts from multiple voltages, and further uses the extracted voltage as the current voltage, or calculates the average value of multiple voltages at a time adjacent to the current time as the current voltage.
  • the extractor can also directly The real-time output voltage value of the digital converter is provided to the processor as the current voltage for further temperature measurement, etc.
  • the temperature value of the crystal oscillator can also be determined in real time, and the processor, low-pass filter, and analog The digital converter and decimator as a whole, that is, as a measurement interface.
  • the temperature measurement device may also include other devices, such as a memory, which can store voltage and/or determined temperature values, which is not limited in the embodiment of the present application.
  • the resistance value of each of the multiple resistors included in the resistor array can be pre-matched according to actual requirements.
  • the specific number of resistors included in the resistor array and the resistance value of the resistors The embodiment is not limited.
  • the current resistance is the resistance connected in series with the thermistor at the current moment, and the analog-to-digital converter can directly measure the current resistance value corresponding to the thermistor at this time.
  • the measuring device used to measure the temperature of the crystal oscillator is usually only a fixed resistor in series with the thermistor of the crystal oscillator, and based on the fixed resistor, the temperature of the crystal oscillator is continuously measured
  • the voltage signal input at the analog-to-digital converter will be larger or smaller, resulting in a decrease in the sensitivity of the analog-to-digital converter, that is, the analog-to-digital converter cannot be kept at a higher temperature. Therefore, the voltage corresponding to the thermistor finally measured is inaccurate, which leads to the inaccuracy of the temperature value further determined according to the voltage.
  • the resistance array includes a plurality of resistors. Therefore, the temperature measurement device can determine the resistance that needs to be connected in series with the thermistor to achieve temperature measurement according to the actual measurement state, so as to ensure that the analog-to-digital converter is in comparison. Good working conditions not only improve the accuracy of the temperature value, but also expand the measurable range.
  • the temperature measuring device when the current voltage exceeds or falls below the preset voltage range, can switch the resistance in series with the thermistor from the resistance array based on the preset switching rule until the target resistance in the resistance array is The thermistor is connected in series, and the target voltage corresponding to the thermistor is measured to be in the preset voltage range.
  • the target voltage can be any voltage measured in the preset voltage range after the target resistor and the thermistor are connected in series. The embodiments of this application are not limited.
  • the user can set a preset voltage range in the temperature measuring device according to actual needs.
  • the specific preset voltage range can be set near half of the power supply voltage, and the power supply voltage is the current temperature.
  • the working voltage connected to the measuring device is not limited in the embodiment of this application.
  • the preset voltage range is: greater than or equal to 40% of the power supply voltage, and less than or equal to 70% of the power supply voltage
  • the temperature measuring device can determine the current voltage after measuring the current voltage Whether it is in the preset voltage range.
  • the temperature measurement device switches the resistance in series with the thermistor from the resistance array based on a preset switching rule, including: when the current voltage exceeds the preset voltage range, sequentially switching the resistance in the resistance array It is said that the resistance greater than the current resistance is connected in series with the thermistor; when the current voltage is lower than the preset voltage range, the resistance array is switched in sequence, and the resistance with the nominal resistance less than the current resistance is connected in series with the thermistor.
  • the analog-to-digital converter in the temperature measuring device inputs its current voltage before measuring the current voltage.
  • the voltage signal of the analog-to-digital converter is too large and the sensitivity of the analog-to-digital converter is poor. At this time, the current voltage measured is inaccurate. At this time, it is necessary to reduce the voltage signal input to the analog-to-digital converter.
  • the resistance and the resistance in the resistance array are connected in series to divide the voltage of the power supply.
  • the temperature measuring device can be switched to the resistance in the resistance array whose nominal resistance is greater than the current resistance, and connected in series with the thermistor, thereby reducing the input analog-to-digital converter Voltage signal, of course, if the current voltage is lower than the preset voltage range, it indicates that the current voltage is too small, and the temperature measuring device can switch to the resistance in the resistance array whose nominal resistance is less than the current resistance, and connect it in series with the thermistor to increase Large input voltage signal of analog-to-digital converter.
  • each resistor included in the resistor array has its corresponding nominal resistance value, that is, the resistance value that should be reached, and the temperature measuring device can directly obtain the nominal resistance value. As a basis for resistance switching.
  • the resistor array includes N resistors, namely A1, A2, ... An, and the nominal resistance values increase sequentially, and the resistance A3 is currently connected in series with the thermistor, and the measurement The voltage corresponding to the thermistor exceeds the preset voltage range. Therefore, the temperature measurement device can first switch from resistance A3 to resistance A4.
  • the temperature measuring device will actually measure the corresponding voltage through the analog-to-digital converter to make a judgment.
  • switch the series in series If the resistance is switched to a resistance that satisfies the preset voltage range, the resistance is the target resistance, and the resistance in the resistance array is terminated at this time.
  • the target resistor is connected in series with the thermistor, and the measured target voltage corresponding to the thermistor is in the preset range, which indicates that the voltage signal input to the analog-to-digital converter is at the power source. Near half of the voltage, the analog-to-digital converter can have better performance. At this time, the resistance of the target resistance and the thermistor are closer. When the thermistor changes to a certain degree with temperature, the input of the analog-to-digital converter The voltage signal will also change to a certain degree, so the final temperature measurement sensitivity is also higher. If the target voltage is used to calculate the crystal oscillator temperature, the temperature value is more accurate.
  • the following steps may be performed: based on a preset switching rule, switch the resistor array in series with the thermistor During the resistance process, the correction resistance value of each resistor switched to is determined in turn until the correction resistance value of the target resistance is determined.
  • the temperature measuring device sequentially determines the corrected resistance value of each resistance switched to until the corrected resistance value of the target resistance is determined, including: switching from the current resistance to the first resistance in the resistance array A resistor, when the first resistor is connected in series with the thermistor, measure the first voltage corresponding to the thermistor; obtain the corrected resistance value of the current resistance; according to the power supply voltage, the current voltage, the corrected resistance value of the current resistance and the first voltage, Determine the corrected resistance of the first resistor; when it is determined that the first resistor is not the target resistor, switch from the first resistor to the second resistor in the resistor array to realize the second resistor in series with the thermistor, measure the corresponding thermistor The second voltage, and according to the power supply voltage, the first voltage, the corrected resistance of the first voltage, and the second voltage, continue to determine the corrected resistance of the second resistor until the corrected resistance of the target resistor is determined.
  • the temperature measurement device is actually switched during the switching process, and the correction resistance value of the resistor switched to is determined based on the correction resistance value of the previous resistor connected in series with the thermistor.
  • the voltage corresponding to the series connection with the previous resistance, the series connection of the thermistor and the switched resistance are determined by the corresponding voltage and the power supply voltage.
  • the specific first resistance is the resistance determined according to the preset switching rule. The embodiment is not limited.
  • each time the temperature measuring device switches the resistance connected in series with the thermistor the correction resistance value of the switched resistance can be determined.
  • the temperature measuring device can determine the correction of the first resistance according to the following formula (1) and formula (2) according to the power supply voltage, the current voltage, the correction resistance value of the current resistance, and the first voltage. Resistance:
  • V ADC1 V DD ⁇ R TH1 /(R TH1 +R X1 ) (1)
  • V ADC2 V DD ⁇ R TH1 /(R TH1 +R X2 ) (2)
  • V ADC1 is the current voltage
  • V DD is the power supply voltage
  • R X1 is the correction resistance value of the current resistance
  • V ADC2 is the first voltage
  • R TH1 is the current resistance value of the thermistor, which is considered unchanged during the switching process
  • R TH1 can be calculated according to formula (1)
  • the corrected resistance value R X2 of the first resistor can be calculated by substituting formula (2).
  • the second resistor if the first voltage is still beyond or below the preset voltage range, that is, the first resistor is not the target resistor, when the second resistor is switched in series with the thermistor, the second resistor
  • the embodiment of the present invention is not limited, continue to determine the correction resistance value of the second resistor according to the above method, that is, measure the second voltage corresponding to the thermistor when the second resistor is connected in series, and correct the second voltage, the first voltage, and the first resistor.
  • the resistance value and the power supply voltage are calculated based on formula (1) and formula (2) to calculate the corrected resistance value of the second resistor until the corrected resistance value of the target resistance is determined.
  • FIG 3 is a schematic diagram of a process for determining the resistance correction resistance provided by an embodiment of the application.
  • the temperature measuring device first determines whether the current voltage V ADC1 corresponding to the thermistor connected in series with the current resistance exceeds or falls below The preset voltage range, if it exceeds or falls below the preset voltage range, the current voltage V ADC1 and the current resistance correction resistance R X1 can be recorded, and then based on the preset switching rule, switch to the first resistance and the thermistor in series, and record the first A voltage V ADC2 , and finally according to the connected power supply voltages V DD , V ADC1 , R X1 and V ADC2 , the corrected resistance value R X2 of the first resistor is calculated.
  • the temperature measurement device obtains the corrected resistance value of the current resistance in two cases. Specifically, one case is when the current resistance is the first one in the resistance array and the thermal resistance. When the resistance is connected in series, the nominal resistance of the current resistance is determined as the corrected resistance value of the current resistance. In another case, when the current resistance is not the first resistance in series with the thermistor in the resistance array, the resistance array is obtained The corrected resistance value of the historical resistance in the middle and the corresponding historical voltage when the thermistor is connected in series with the historical resistance. Determine the corrected resistance value of the current resistance according to the power supply voltage, the corrected resistance value of the historical resistance, the historical voltage and the current voltage. The resistor is the previous resistor connected in series with the thermistor in the resistor array before the current resistor is connected in series with the thermistor.
  • the historical resistance is the previous resistance connected in series with the thermistor before switching to the current resistance.
  • the corrected resistance of the historical resistance, the historical voltage and the current voltage The process of determining the corrected resistance of the current resistor is the same as the process of determining the corrected resistance of the first resistor described above, and will not be repeated here.
  • the temperature measurement device may include a memory. After the corrected resistance value of each resistor is determined, the corresponding corrected resistance value may be stored in the memory to facilitate subsequent data processing. For example, the calculation of the temperature value is performed, and the specific memory type is not limited in the embodiment of the present invention.
  • the correction resistance value of the target resistance is determined, when the resistance needs to be switched according to the actual situation, the correction resistance value of the resistance can also be updated again during the switching process. This is because as the temperature changes, the resistance In fact, the resistance value will still have a slight change. In order to obtain a higher precision temperature value, it is necessary to continuously recalibrate during each switching process to obtain a new corrected resistance value.
  • the first resistor in series with the thermistor in the resistor array can be determined as the reference resistor, that is, the nominal resistance of the resistor is determined as the corrected resistance of the resistor.
  • S103 Determine the temperature value of the crystal oscillator based on the connected power supply voltage, target resistance and target voltage.
  • the temperature value of the crystal oscillator can be determined based on the connected power supply voltage, target resistance, and target voltage.
  • the temperature measuring device determines the temperature value of the crystal oscillator based on the connected power supply voltage, the target resistance, and the target voltage, including: obtaining the corrected resistance value of the target resistance; The correction resistance value of the resistance and the target voltage, determine the temperature value.
  • the target voltage is any voltage within the preset voltage range measured by the temperature measuring device after the target resistor is connected in series with the thermistor.
  • the specific target voltage is not used in this embodiment of the application. limited.
  • the temperature measuring device when the resistance is switched, sequentially determines the corrected resistance value of each resistance switched to, until the corrected resistance value of the target resistance is determined. Therefore, the temperature measuring device is When determining the temperature value, the corrected resistance value of the target resistance can be directly obtained.
  • the temperature measurement device can calculate the real-time resistance value of the thermistor in the case of series connection with the target resistance according to formula (3):
  • V ADC V DD ⁇ R TH2 /(R TH2 +R Xm ) (3)
  • V ADC is the target voltage
  • V DD is the power supply voltage
  • R Xm is the correction resistance value of the target resistance.
  • the temperature measuring device determines the resistance value R TH2 of the thermistor, it can be substituted into formula (4) to calculate the temperature value of the crystal oscillator:
  • R TH2 R 0 e B(1/T-1/T0) (4)
  • T0 is 30 degrees
  • R 0 is the resistance of the thermistor when the temperature is T0, specifically 100 kiloohms
  • B is the thermistor constant.
  • the temperature measuring device measures the target voltage for a period of time, that is, it is in the preset state. After setting the voltage of the voltage range, it may appear that the voltage measured at a certain moment exceeds or falls below the preset voltage range. At this time, the target voltage can be regarded as the above-mentioned current resistance, and the new resistance switch can be performed again to determine the new target resistance To ensure the accuracy and range of temperature measurement.
  • FIG. 4 is a second schematic flowchart of a temperature measurement method provided by an embodiment of this application. As shown in Figure 4, after step S103, step S104 is further included:
  • S104 Transmit the temperature value to the clock generator, so that the clock generator can correct the oscillation frequency output by the crystal oscillator according to the temperature value.
  • the temperature measurement device may transmit the temperature value to the clock generator, so that the clock generator can correct the oscillation frequency output by the crystal oscillator according to the temperature value.
  • the clock generator can receive the oscillation frequency output by the crystal oscillator.
  • the output oscillation frequency may be inaccurate. Therefore, the clock The generator can adjust the received oscillation frequency in a certain way according to the temperature value to provide it to a specific device.
  • the temperature can be measured according to a certain period, which is not limited in the embodiments of the present application.
  • the embodiment of the application provides a temperature measurement method, based on the current resistance connected in series with the thermistor in the crystal oscillator, measuring the current voltage corresponding to the thermistor; the current resistance is any resistance in the resistance array; when the current voltage exceeds Or below the preset voltage range, switch the resistance in series with the thermistor from the resistance array based on the preset switching rule until the target resistance in the resistance array is in series with the thermistor, and the target voltage corresponding to the thermistor is measured Set the voltage range; determine the temperature value of the crystal oscillator based on the connected power supply voltage, target resistance and target voltage. That is to say, the technical solution provided by the present application performs temperature measurement by switching the resistance in series with the thermistor of the crystal oscillator in the resistance array, which not only improves the accuracy of temperature measurement, but also expands the range of temperature measurement.
  • FIG. 5 is a schematic structural diagram of a temperature measurement device provided in an embodiment of the application.
  • the device includes: a resistor array 501, an analog-to-digital converter 502, and a processor 503;
  • the analog-to-digital converter 502 is configured to measure the current voltage corresponding to the thermistor based on the current resistance in series with the thermistor in the crystal oscillator; the current resistance is any resistance in the resistance array 501;
  • the processor 503 is configured to switch the resistance in series with the thermistor from the resistance array 501 based on a preset switching rule when the current voltage exceeds or falls below a preset voltage range until the resistance
  • the target resistor in the array is connected in series with the thermistor, and the analog-to-digital converter 502 measures that the target voltage corresponding to the thermistor is within the preset voltage range; based on the connected power supply voltage, the target resistance and The target voltage determines the temperature value of the crystal oscillator.
  • the processor 503 is configured to, when the current voltage exceeds the preset voltage range, sequentially switch the resistor array 501 with a nominal resistance greater than the current resistor and the thermal resistor.
  • the resistors are connected in series; when the current voltage is lower than the preset voltage range, the resistor array 501 is sequentially switched, and the resistors with a nominal resistance value less than the current resistor are connected in series with the thermistor.
  • the processor 503 is configured to, in the process of switching the resistors connected in series with the thermistor from the resistor array based on the preset switching rule, sequentially determine the value of each resistor switched to The resistance value is corrected until the corrected resistance value of the target resistance is determined.
  • the processor 503 is configured to measure the thermistor when switching from the current resistance to the first resistance in the resistance array to realize that the first resistance is connected in series with the thermistor The first voltage corresponding to the resistance; obtain the corrected resistance value of the current resistance; determine the correct resistance value of the first resistance according to the power supply voltage, the current voltage, the corrected resistance value of the current resistance, and the first voltage Correcting the resistance value; when it is determined that the first resistance is not the target resistance, when switching from the first resistance to the second resistance in the resistance array, the second resistance is connected in series with the thermistor , Measure the second voltage corresponding to the thermistor, and continue to determine the second resistor according to the power supply voltage, the first voltage, the corrected resistance value of the first resistor, and the second voltage Until the corrected resistance value of the target resistance is determined.
  • the processor 503 is configured to, when the current resistance is the first resistance in the resistance array 501 connected in series with the thermistor, determine the nominal resistance of the current resistance as the The corrected resistance value of the current resistance.
  • the processor 503 is configured to obtain the corrected resistance value of the historical resistance in the resistance array when the current resistance is not the first resistance in the resistance array 501 connected in series with the thermistor , And the corresponding historical voltage when the thermistor is connected in series with the historical resistance; the historical resistance is in the resistance array, before the current resistance is connected in series with the thermistor, and the thermistor The previous resistor in series; the actual resistance of the current resistance is determined according to the power supply voltage, the corrected resistance value of the historical resistance, the historical voltage and the current voltage.
  • the processor 503 is configured to obtain a corrected resistance value of the target resistance; and determine the temperature value based on the power supply voltage, the corrected resistance value of the target resistance, and the target voltage.
  • the processor 503 is configured to transmit the temperature value to a clock generator, so that the clock generator can correct the oscillation frequency output by the crystal oscillator according to the temperature value.
  • the embodiment of the application provides a temperature measuring device, which measures the current voltage corresponding to the thermistor based on the current resistance in series with the thermistor in the crystal oscillator; the current resistance is any resistance in the resistance array; when the current voltage exceeds Or below the preset voltage range, switch the resistance in series with the thermistor from the resistance array based on the preset switching rule until the target resistance in the resistance array is in series with the thermistor, and the target voltage corresponding to the thermistor is measured Set the voltage range; determine the temperature value of the crystal oscillator based on the connected power supply voltage, target resistance and target voltage.
  • the temperature measurement device provided by the present application performs temperature measurement by switching the resistance in series with the thermistor of the crystal oscillator in the resistance array, which not only improves the accuracy of temperature measurement, but also expands the range of temperature measurement.
  • the embodiment of the present invention provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor and an analog-to-digital converter, the above temperature measurement method is implemented.
  • the computer-readable storage medium may be a volatile memory (volatile memory), such as random-access memory (Random-Access Memory, RAM); or a non-volatile memory (non-volatile memory), such as read-only memory (Read Only Memory).
  • volatile memory volatile memory
  • RAM random-access memory
  • non-volatile memory non-volatile memory
  • Read Only Memory Read Only Memory
  • HDD hard disk drive
  • SSD solid-state drive
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a hardware embodiment, a software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may be in the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable signal processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable signal processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.
  • the current voltage corresponding to the thermistor is measured based on the current resistance in series with the thermistor in the crystal oscillator; the current resistance is any resistance in the resistance array; when the current voltage exceeds or falls below In the preset voltage range, switch the resistance in series with the thermistor from the resistance array based on the preset switching rule until the target resistance in the resistance array is in series with the thermistor, and the target voltage corresponding to the thermistor is measured to be at the preset voltage Range: Determine the temperature value of the crystal oscillator based on the connected power supply voltage, target resistance and target voltage. That is to say, the technical solution provided by the present application performs temperature measurement by switching the resistance in series with the thermistor of the crystal oscillator in the resistance array, which not only improves the accuracy of temperature measurement, but also expands the range of temperature measurement.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种温度测量方法,基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压,当前电阻为电阻阵列中任意一个电阻(S101);当当前电压超过或低于预设电压范围时,基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围(S102);基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值(S103)。

Description

一种温度测量方法及装置、存储介质 技术领域
本发明实施例涉及晶体振荡器技术领域,尤其涉及一种温度测量方法及装置、存储介质。
背景技术
晶体振荡器,不仅广泛应用于彩电、计算机、遥控器等各类振荡电路中,还可以作为通信系统的频率发生器、为数据处理设备产生时钟信号,以及为特定系统提供基准信号。晶体振荡器中的频率误差大部分情况下是由温度变化引起的。
在现有技术中,可以采用温度补偿晶体振荡器能够通过感知周围温度调节谐振频率,从而消除温度变化引起的频率误差,但是,温度补偿晶体振荡器的成本较高,应用范围有限。目前,自由振荡的晶体振荡器得到了更大规模的应用,为晶体振荡器的热敏电阻串联一个外部固定电阻,并利用模数转换器进行晶体振荡器的温度测量,通过改变后端射频电路中最终产生的频率进行温度补偿,不仅成本较低,而且可以在系统中生成多个频率,每个频率都对应有不同的补偿方案,频率之间互不干扰。然而,在温度较低或者温度较高时,热敏电阻和外部固定电阻之间不在一个数量级上,即使热敏电阻出现一定程度的变化,对于输入至模数转换器的电压信号实际上变化很小,且接近于电源电压或者接近于零,此时,模数转换器的性能较差,因此,温度测量精度较低,且无法实现较低温度或者较高温度的测量,温度测量范围有限。
发明内容
为解决上述技术问题,本发明实施例期望提供一种温度测量方法,通 过切换电阻阵列中与晶体振荡器的热敏电阻串联的电阻,进行温度测量,不仅提高了温度测量的精度,还扩大了温度测量的范围。
本申请实施例的技术方案可以如下实现:
本申请实施例提供了一种温度测量方法,所述方法包括:
基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量所述热敏电阻对应的当前电压;所述当前电阻为电阻阵列中任意一个电阻;
当所述当前电压超过或低于预设电压范围时,基于预设切换规则从所述电阻阵列中切换与所述热敏电阻串联的电阻,直至所述阵列电阻中目标电阻与所述热敏电阻串联,测量到所述热敏电阻对应的目标电压处于所述预设电压范围;
基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值。
在上述方案中,所述基于预设切换规则从所述电阻阵列中切换与所述热敏电阻串联的电阻,包括:
当所述当前电压超过所述预设电压范围,依次切换所述电阻阵列中,标称阻值大于所述当前电阻的电阻与所述热敏电阻串联;
当所述当前电压低于所述预设电压范围,依次切换所述电阻阵列中,标称阻值小于所述当前电阻的电阻与所述热敏电阻串联。
在上述方案中,所述测量所述热敏电阻对应的当前电压之后,所述方法还包括:
在基于所述预设切换规则,从所述电阻阵列中切换与所述热敏电阻串联的电阻的过程中,依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
在上述方案中,所述依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值,包括:
在从所述当前电阻切换到所述电阻阵列中的第一电阻,实现所述第一 电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第一电压;
获取所述当前电阻的校正阻值;
根据所述电源电压、所述当前电压、所述当前电阻的校正阻值和所述第一电压,确定所述第一电阻的校正阻值;
当确定所述第一电阻非所述目标电阻,在从所述第一电阻切换到所述电阻阵列中的第二电阻,实现所述第二电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第二电压,并根据所述电源电压、所述第一电压、所述第一电阻的校正阻值和所述第二电压,继续确定所述第二电阻的校正阻值,直至确定出所述目标电阻的实际阻值。
在上述方案中,所述获取所述当前电阻的校正阻值,包括:
当所述当前电阻为所述电阻阵列中第一个与所述热敏电阻串联的电阻时,将所述当前电阻的标称电阻确定为所述当前电阻的校正阻值。
在上述方案中,所述获取所述当前电阻的校正阻值,包括:
当所述当前电阻非所述电阻阵列中第一个与所述热敏电阻串联的电阻时,获取所述电阻阵列中历史电阻的校正阻值,以及所述热敏电阻与所述历史电阻串联时对应的历史电压;所述历史电阻为所述电阻阵列中,在所述当前电阻与所述热敏电阻串联之前,与所述热敏电阻串联的前一个电阻;
根据所述电源电压、所述历史电阻的校正阻值、所述历史电压和所述当前电压,确定所述当前电阻的校正阻值。
在上述方案中,所述基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值,包括:
获取所述目标电阻的校正阻值;
基于所述电源电压、所述目标电阻的校正阻值和所述目标电压,确定所述温度值。
在上述方案中,所述基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值之后,所述方法还包括:
将所述温度值传输至时钟发生器,以供所述时钟发生器根据所述温度值,对所述晶体振荡器输出的振荡频率进行校正。
本申请实施例提供了一种温度测量装置,所述装置包括:电阻器阵列、模数转换器、处理器;
所述模数转换器,配置为基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量所述热敏电阻对应的当前电压;所述当前电阻为电阻阵列中任意一个电阻;
所述处理器,配置为当所述当前电压超过或低于预设电压范围时,基于预设切换规则从所述电阻阵列中切换与所述热敏电阻串联的电阻,直至所述电阻阵列中目标电阻与所述热敏电阻串联,测量到所述热敏电阻对应的目标电压处于所述预设电压范围;基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值。
在上述装置中,所述处理器,配置为当所述当前电压超过所述预设电压范围,依次切换所述电阻阵列中,标称阻值大于所述当前电阻的电阻与所述热敏电阻串联;当所述当前电压低于所述预设电压范围,依次切换所述电阻阵列中,标称阻值小于所述当前电阻的电阻与所述热敏电阻串联。
在上述装置中,所述处理器,配置为在基于所述预设切换规则,从所述电阻阵列中切换与所述热敏电阻串联的电阻的过程中,依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
在上述装置中,所述处理器,配置为在从所述当前电阻切换到所述电阻阵列中的第一电阻,实现所述第一电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第一电压;获取所述当前电阻的校正阻值;根据所述电源电压、所述当前电压、所述当前电阻的校正阻值和所述第一电压,确定所述第一电阻的校正阻值;当确定所述第一电阻非所述目标电阻,在从所述第一电阻切换到所述电阻阵列中的第二电阻,实现所述第二电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第二电压,并根据所述电源电 压、所述第一电压、所述第一电阻的校正阻值和所述第二电压,继续确定所述第二电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
在上述装置中,所述处理器,配置为当所述当前电阻为所述电阻阵列中第一个与所述热敏电阻串联的电阻,将所述当前电阻的标称电阻确定为所述当前电阻的校正阻值。
在上述装置中,所述处理器,配置为当所述当前电阻非所述电阻阵列中第一个与所述热敏电阻串联的电阻时,获取所述电阻阵列中历史电阻的校正阻值,以及所述热敏电阻与所述历史电阻串联时对应的历史电压;所述历史电阻为所述电阻阵列中,在所述当前电阻与所述热敏电阻串联之前,与所述热敏电阻串联的前一个电阻;根据所述电源电压、所述历史电阻的校正阻值、所述历史电压和所述当前电压,确定所述当前电阻的实际阻值。
在上述装置中,所述处理器,配置为获取所述目标电阻的校正阻值;基于所述电源电压、所述目标电阻的校正阻值和所述目标电压,确定所述温度值。
在上述装置中,所述处理器,配置为将所述温度值传输至时钟发生器,以供所述时钟发生器根据所述温度值,对所述晶体振荡器输出的振荡频率进行校正。
本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器和模数转换器执行时实现上述温度测量方法。
由此可见,在本申请实施例的技术方案中,基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压;当前电阻为电阻阵列中任意一个电阻;当当前电压超过或低于预设电压范围时,基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围;基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值。也就是说,本申请提供的技术方案,通过切换电阻阵列中与晶体振荡 器的热敏电阻串联的电阻,进行温度测量,不仅提高了温度测量的精度,还扩大了温度测量的范围。
附图说明
图1为本申请实施例提供的一种温度测量方法的流程示意图一;
图2为本申请实施例提供的一种示例性的温度测量装置的器件示意图;
图3为本申请实施例提供的一种确定电阻校正阻值的流程示意图;
图4为本申请实施例提供的一种温度测量方法的流程示意图二;
图5为本申请实施例提供的一种温度测量装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅仅用于解释相关申请,而非对该申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关申请相关的部分。
实施例一
本申请实施例提供了一种温度测量方法,图1为本申请提供的一种温度测量方法的流程示意图一。如图1所示,主要包括以下步骤:
S101、基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压;当前电阻为电阻阵列中任意一个电阻。
在本申请的实施例中,温度测量装置可以基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压。
需要说明的是,在本申请的实施例中,温度测量装置可以包括电阻阵列、模数转换器和处理器,其中,电阻阵列包括多个电阻和多个开关,一个开关可以控制一个电阻与热敏电阻的串联,模数转换器可以测量出热敏电阻与电阻阵列中不同电阻串联时,对应的电压,即温度测量装置中数模 转换器可以基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压,处理器可以根据模数转换器测量的不同电压控制电阻阵列中的电阻与热敏电阻的连接状态、计算电阻阵列中电阻的校正阻值,以及根据电压确定晶体振荡器的温度值等。
图2为本申请实施例提供的一种示例性的温度测量装置的示意图。如图2所示,温度测量装置不仅可以包括电阻阵列、模数转换器和处理器,还可以包括低通滤波器和抽取器,其中,电阻阵列包括n个电阻,低通滤波器可以将电源电压分压给热敏电阻的电压信号进行低通滤波,之后输出到模数转换器,即可测量到热敏电阻对应的电压,之后,由于一直实时持续对测量出电压,抽取器可以按照一定规则从多个电压中进行抽取,从而进一步根据抽取出的电压作为当前电压,或者,将与当前时刻相邻时刻内的多个电压计算均值,作为当前电压,当然,抽取器也可以直接将模数转换器实时输出的电压值作为当前电压提供给处理器,从而进一步进行温度测量等,当然,也可以一直实时确定晶体振荡器的温度值,并且,可以将处理器、低通滤波器、模数转换器和抽取器作为一个整体,即作为测量接口。此外,温度测量装置还可以包括其它器件,例如,存储器,可以进行电压和/或确定的温度值的存储,本申请实施例不作限定。
需要说明的是,在本申请的实施例中,电阻阵列包括的多个电阻中每一个电阻的阻值可以根据实际需求预先匹配,具体的电阻阵列包括的电阻数目,以及电阻的阻值本申请实施例不作限定。
需要说明的是,在本申请的实施例中,当前电阻即为当前时刻与热敏电阻串联的电阻,模数转换器可以直接测量到此时热敏电阻对应的当前电阻值。
可以理解的是,在现有技术中,测量晶体振荡器的温度值采用的测量装置,通常仅为晶体振荡器的热敏电阻串联一个固定电阻,基于该固定电阻,持续测量晶体振荡器的温度值,然而,在晶体振荡器温度过高或过低 时,模数转换器处输入的电压信号将较大或较小,导致模数转换器的灵敏度降低,即模数转换器无法保持处于较佳的工作状态,因此,最终测量出的热敏电阻对应的电压不准确,从而导致根据电压进一步确定的温度值也是不准确的,在实际应用中仅能测量较小范围的温度值,对于温度较大或温度较小的情况,难以正常测量。在本申请的实施例中,电阻阵列包括了多个电阻,因此,温度测量装置可以根据实际的测量状态,确定需要与热敏电阻串联以实现温度测量的电阻,以保证模数转换器处于较佳的工作状态,从而不仅提高了温度值的精度,还扩大了可测量的范围。
S102、当当前电压超过或低于预设电压范围时,基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围。
在本申请的实施例中,当当前电压超过或低于预设电压范围时,温度测量装置可以基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围,其中,目标电压可以为目标电阻与热敏电阻串联之后,测量到的任一处于预设电压范围的电压,目标电压本申请实施例不作限定。
需要说明的是,在本申请的实施例中,用户可以根据实际需求在温度测量装置中设置预设电压范围,具体的预设电压范围可以设置在电源电压一半的附近,电源电压即为当前温度测量装置中接入的工作电压,本申请实施例不作限定。
示例性的,在本申请的实施例中,预设电压范围为:大于等于电源电压的40%,且小于等于电源电压的70%,温度测量装置在测量出当前电压之后,即可判断当前电压是否处于该预设电压范围。
具体的,在本申请的实施例中,温度测量装置基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,包括:当当前电压超过预设电压范 围,依次切换电阻阵列中,标称阻值大于当前电阻的电阻与热敏电阻串联;当当前电压低于预设电压范围,依次切换电阻阵列中,标称阻值小于当前电阻的电阻与热敏电阻串联。
可以理解的是,在本申请的实施例中,如果当前电压超过预设电压范围,则表明当前电压过大,相应的,温度测量装置中的模数转换器在测量出当前电压之前,输入其的电压信号是过大的,模数转换器的灵敏度较差,此时测量出的当前电压是不准确的,此时,需要减小输入到模数转换器的电压信号,因此,基于热敏电阻和电阻阵列中电阻串联,对电源电压分压的原理,温度测量装置可以切换到电阻阵列中标称阻值大于当前电阻的电阻,与热敏电阻进行串联,从而降低输入模数转换器的电压信号,当然,如果当前电压低于预设电压范围,则表明当前电压过小,温度测量装置可以切换到电阻阵列中标称阻值小于当前电阻的电阻,与热敏电阻进行串联,从而增大输入模数转换器的电压信号。
需要说明的是,在本申请的实施例中,电阻阵列中包括的每一个电阻都有其对应的标称阻值,即应该达到的阻值,温度测量装置可以直接获取到标称阻值,作为电阻切换的依据。
示例性的,在本申请的实施例中,电阻阵列中包括N个电阻,分别为A1、A2,……An,且标称阻值依次增大,当前与热敏电阻串联电阻A3,测量到的热敏电阻对应的电压超过预设电压范围,因此,温度测量装置可以先从电阻A3切换到将电阻A4,如果测量出热敏电阻对应的电压仍然超过预设电压范围,再从电阻A4切换到电阻A5,依次类推,直到切换到电阻Ax与热敏电阻串联时,热敏电阻对应的电压处于预设电压范围,从而电阻Ax即为目标电阻,x为大于3且小于等于n的自然数。
可以理解的是,在本申请的实施例中,每切换一次与热敏电阻串联的电阻,温度测量装置实际上都将通过模数转换器测量对应的电压,从而进行判断,当然,依次切换串联的电阻,如果切换到满足预设电压范围的电 阻,该电阻即为目标电阻,此时则终止切换电阻阵列中的电阻。
可以理解的是,在本申请的实施例中,目标电阻与热敏电阻串联,测量到的热敏电阻对应的目标电压处于预设范围,则表明此时输入模数转换器的电压信号处于电源电压的一半附近,模数转换器可以具备较佳的性能,此时,目标电阻与热敏电阻的阻值较为接近,在热敏电阻随着温度变化产生一定变化时,输入模数转换器的电压信号也会相应产生一定的程度的变化,从而最终温度测量的灵敏度也较高,如果采用目标电压进行晶体振荡器温度的计算,温度值较为准确。
需要说明的是,在本申请的实施例中,温度测量装置测量热敏电阻对应的当前电压之后,还可以执行以下步骤:在基于预设切换规则,从电阻阵列中切换与热敏电阻串联的电阻的过程中,依次确定每一个切换到的电阻的校正阻值,直至确定出目标电阻的校正阻值。
具体的,在本申请的实施例中,温度测量装置依次确定每一个切换到的电阻的校正阻值,直至确定出目标电阻的校正阻值,包括:在从当前电阻切换到电阻阵列中的第一电阻,实现第一电阻与热敏电阻串联时,测量热敏电阻对应的第一电压;获取当前电阻的校正阻值;根据电源电压、当前电压、当前电阻的校正阻值和第一电压,确定第一电阻的校正阻值;当确定第一电阻非目标电阻,在从第一电阻切换到电阻阵列中的第二电阻,实现第二电阻与热敏电阻串联时,测量热敏电阻对应的第二电压,并根据电源电压、第一电压、第一电压的校正阻值和第二电压,继续确定第二电阻的校正阻值,直至确定出目标电阻的校正阻值。
需要说明的是,在本申请的实施例中,温度测量装置实际上切换过程,确定切换到的电阻的校正阻值,是根据前一个与热敏电阻串联的电阻的校正阻值、热敏电阻与前一个电阻串联时对应的电压、热敏电阻与切换到的电阻串联是对应的电压,以及电源电压确定的,此外,具体的第一电阻为按照预设切换规则所确定的电阻,本发明实施例不作限定。
可以理解的是,在本申请的实施例中,为了避免不同电阻切换导致的额外的偏移,因此,需要进行电阻的阻值的匹配校正,以在后续计算过程中,采用校正阻值进行计算,使计算结果更加准确。
需要说明的是,在本申请的实施例中,温度测量装置每切换一次与热敏电阻串联的电阻时,即可以确定切换到的电阻的校正阻值。
具体的,在本申请的实施例中,温度测量装置根据电源电压、当前电压、当前电阻的校正阻值和第一电压,可以按照以下公式(1)和公式(2)确定第一电阻的校正阻值:
V ADC1=V DD×R TH1/(R TH1+R X1)        (1)
V ADC2=V DD×R TH1/(R TH1+R X2)        (2)
其中,V ADC1为当前电压,V DD为电源电压,R X1为当前电阻的校正阻值,V ADC2为第一电压,R TH1为热敏电阻的当前阻值,在切换过程中认为其不变,根据公式(1)即可计算出R TH1,代入公式(2)即可计算出第一电阻的校正阻值R X2
可以理解的是,在本申请的实施例中,如果第一电压仍然超出或低于预设电压范围,即第一电阻非目标电阻,则切换第二电阻与热敏电阻串联时,第二电阻本发明实施例不作限定,继续按照上述方式确定第二电阻的校正阻值,即测量串联第二电阻时热敏电阻对应的第二电压,根据第二电压、第一电压、第一电阻的校正阻值,以及电源电压,基于公式(1)和公式(2)计算第二电阻的校正阻值,直至确定出目标电阻的校正阻值。
图3为本申请实施例提供的一种确定电阻校正阻值的流程示意图,如图3所示,温度测量装置先判断与当前电阻串联的热敏电阻对应的当前电压V ADC1是否超过或低于预设电压范围,如果超过或低于预设电压范围,可以记录当前电压V ADC1和当前电阻的校正阻值R X1,之后基于预设切换规则切换到第一电阻与热敏电阻串联,记录第一电压V ADC2,最后根据接入的电源电压V DD、V ADC1、R X1和V ADC2,计算第一电阻的校正阻值R X2
需要说明的是,在本申请的实施例中,温度测量装置获取当前电阻的校正阻值分为两种情况,具体的,一种情况为,当当前电阻为电阻阵列中第一个与热敏电阻串联的电阻时,将当前电阻的标称电阻确定为当前电阻的校正阻值,另一种情况为,当当前电阻非电阻阵列中第一个与热敏电阻串联的电阻时,获取电阻阵列中历史电阻的校正阻值,以及热敏电阻与历史电阻串联时对应的历史电压,根据电源电压、历史电阻的校正阻值、历史电压和当前电压,确定当前电阻的校正阻值,其中,历史电阻为电阻阵列中,在当前电阻与热敏电阻串联之前,与热敏电阻串联的前一个电阻。
需要说明的是,在本申请的实施例中,历史电阻即为切换到当前电阻之前,与热敏电阻串联的前一个电阻,根据电源电压、历史电阻的校正阻值、历史电压和当前电压,确定当前电阻的校正阻值的过程与上述确定第一电阻的校正阻值的过程相同,在此不再赘述。
需要说明的是,在本申请的实施例中,温度测量装置可以包括存储器,在确定每一个电阻的校正阻值之后,都可以将对应的校正阻值存储在存储器中,便于后续进行数据处理,例如,进行温度值的计算等,具体的存储器类型本发明实施例不作限定。此外,如果确定了目标电阻的校正阻值之后,在后续根据实际情况需要继续切换电阻时,在切换过程中,也可以重新更新电阻的校正阻值,这是因为,随着温度的变化,电阻的阻值实际上还是会产生微小的变化,为了获得精度更高的温度值,需要在每一次切换过程不断重新校准,获得新的校正阻值。
需要说明的是,在本申请的实施例中,可以将电阻阵列中第一个与热敏电阻串联的电阻确定为参考电阻,即将该电阻的标称阻值确定为该电阻的校正阻值。
S103、基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值。
在本申请的实施例中,温度测量装置在将目标电阻与热敏电阻串联之 后,即可基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值。
具体的,在本申请的实施例中,温度测量装置基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值,包括:获取目标电阻的校正阻值;基于电源电压、目标电阻的校正阻值和目标电压,确定温度值。
需要说明的是,在本申请的实施例中,目标电压为目标电阻与热敏电阻串联之后,温度测量装置测量到的任一处于预设电压范围的电压,具体的目标电压本申请实施例不作限定。
可以理解的是,在本申请的实施例中,在进行电阻切换时,温度测量装置依次确定每一个切换到的电阻的校正阻值,直至确定目标电阻的校正阻值,因此,温度测量装置在确定温度值时,可以直接获取到目标电阻的校正阻值。
具体的,在本申请的实施例中,温度测量装置可以按照公式(3)计算热敏电阻在串联目标电阻的情况下,实时的电阻值:
V ADC=V DD×R TH2/(R TH2+R Xm)        (3)
其中,V ADC为目标电压,V DD为电源电压,R Xm为目标电阻的校正阻值,将三个数据代入公式(3),即可确定出此时热敏电阻的阻值R TH2
具体的,在本申请的实施例中,温度测量装置在确定出热敏电阻的阻值R TH2之后,即可代入公式(4)计算晶体振荡器的温度值:
R TH2=R 0e B(1/T-1/T0)        (4)
其中,T0为30度,R 0为热敏电阻在温度为T0时的阻值,具体为100千欧,B为热敏电阻常数,将R TH2代入公式(4),即可计算出的晶体振荡器此时的温度值T。
可以理解的是,在本申请的实施例中,目标电阻和热敏电阻串联之后,由于热敏电阻的温度仍然在不断的变化,因此,温度测量装置在测量到一段时间目标电压,即处于预设电压范围的电压之后,可能出现测量到某一 时刻的电压超出或低于预设电压范围,此时,可以将目标电压看作上述当前电阻,重新进行新的电阻切换,确定新的目标电阻,以保证温度测量精度和范围。
图4为本申请实施例提供的一种温度测量方法的流程示意图二。如图4所示,在步骤S103之后,还包括步骤S104:
S104、将温度值传输至时钟发生器,以供时钟发生器根据温度值,对晶体振荡器输出的振荡频率进行校正。
在本申请的实施例中,温度测量装置可以将温度值传输至时钟发生器,以供时钟发生器根据温度值,对晶体振荡器输出的振荡频率进行校正。
可以理解的是,在本申请的实施例中,时钟发生器可以接收到晶体振荡器输出的振荡频率,但是,由于晶体振荡器的温度变化,输出的振荡频率存在不准确的情况,因此,时钟发生器可以根据温度值,按照一定的方式调整接收到的振荡频率,以提供给特定的器件等。
需要说明的是,在本申请的实施例中,基于上述温度测量方法,在实际测量过程中,可以按照一定的周期进行温度测量,本申请实施例不作限定。
本申请实施例提供了一种温度测量方法,基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压;当前电阻为电阻阵列中任意一个电阻;当当前电压超过或低于预设电压范围时,基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围;基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值。也就是说,本申请提供的技术方案,通过切换电阻阵列中与晶体振荡器的热敏电阻串联的电阻,进行温度测量,不仅提高了温度测量的精度,还扩大了温度测量的范围。
实施例二
本申请实施例提供了一种温度测量装置,图5为本申请实施例提供的一种温度测量装置的结构示意图。如图5所示,所述装置包括:电阻器阵列501、模数转换器502、处理器503;
所述模数转换器502,配置为基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量所述热敏电阻对应的当前电压;所述当前电阻为电阻阵列501中任意一个电阻;
所述处理器503,配置为当所述当前电压超过或低于预设电压范围时,基于预设切换规则从所述电阻阵列501中切换与所述热敏电阻串联的电阻,直至所述电阻阵列中目标电阻与所述热敏电阻串联,所述模数转换器502测量到所述热敏电阻对应的目标电压处于所述预设电压范围;基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值。
可选的,所述处理器503,配置为当所述当前电压超过所述预设电压范围,依次切换所述电阻阵列501中,标称阻值大于所述当前电阻的电阻与所述热敏电阻串联;当所述当前电压低于所述预设电压范围,依次切换所述电阻阵列501中,标称阻值小于所述当前电阻的电阻与所述热敏电阻串联。
可选的,所述处理器503,配置为在基于所述预设切换规则,从所述电阻阵列中切换与所述热敏电阻串联的电阻的过程中,依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
可选的,所述处理器503,配置为在从所述当前电阻切换到所述电阻阵列中的第一电阻,实现所述第一电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第一电压;获取所述当前电阻的校正阻值;根据所述电源电压、所述当前电压、所述当前电阻的校正阻值和所述第一电压,确定所述第一电阻的校正阻值;当确定所述第一电阻非所述目标电阻,在从所述第一电阻切换到所述电阻阵列中的第二电阻,实现所述第二电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第二电压,并根据所述电源电压、 所述第一电压、所述第一电阻的校正阻值和所述第二电压时,继续确定所述第二电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
可选的,所述处理器503,配置为当所述当前电阻为所述电阻阵列501中第一个与所述热敏电阻串联的电阻,将所述当前电阻的标称电阻确定为所述当前电阻的校正阻值。
可选的,所述处理器503,配置为当所述当前电阻非所述电阻阵列501中第一个与所述热敏电阻串联的电阻时,获取所述电阻阵列中历史电阻的校正阻值,以及所述热敏电阻与所述历史电阻串联时对应的历史电压;所述历史电阻为所述电阻阵列中,在所述当前电阻与所述热敏电阻串联之前,与所述热敏电阻串联的前一个电阻;根据所述电源电压、所述历史电阻的校正阻值、所述历史电压和所述当前电压,确定所述当前电阻的实际阻值。
可选的,所述处理器503,配置为获取所述目标电阻的校正阻值;基于所述电源电压、所述目标电阻的校正阻值和所述目标电压,确定所述温度值。
可选的,所述处理器503,配置为将所述温度值传输至时钟发生器,以供所述时钟发生器根据所述温度值,对所述晶体振荡器输出的振荡频率进行校正。
本申请实施例提供了一种温度测量装置,基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压;当前电阻为电阻阵列中任意一个电阻;当当前电压超过或低于预设电压范围时,基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围;基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值。也就是说,本申请提供的温度测量装置,通过切换电阻阵列中与晶体振荡器的热敏电阻串联的电阻,进行温度测量,不仅提高了温度测量的精度,还扩大了温度测量的范围。
本发明实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器和模数转换器执行时实现上述温度测量方法。计算机可读存储介质可以是是易失性存储器(volatile memory),例如随机存取存储器(Random-Access Memory,RAM);或者非易失性存储器(non-volatile memory),例如只读存储器(Read-Only Memory,ROM),快闪存储器(flash memory),硬盘(Hard Disk Drive,HDD)或固态硬盘(Solid-State Drive,SSD);也可以是包括上述存储器之一或任意组合的各自设备,如移动电话、计算机、平板设备、个人数字助理等。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程信号处理设备的处理器以产生一个机器,使得通过计算机或其他可编程信号处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程信号处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程信号处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。
工业实用性
在本发明实施例的技术方案中,基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量热敏电阻对应的当前电压;当前电阻为电阻阵列中任意一个电阻;当当前电压超过或低于预设电压范围时,基于预设切换规则从电阻阵列中切换与热敏电阻串联的电阻,直至电阻阵列中目标电阻与热敏电阻串联,测量到热敏电阻对应的目标电压处于预设电压范围;基于接入的电源电压、目标电阻和目标电压,确定晶体振荡器的温度值。也就是说,本申请提供的技术方案,通过切换电阻阵列中与晶体振荡器的热敏电阻串联的电阻,进行温度测量,不仅提高了温度测量的精度,还扩大了温度测量的范围。

Claims (17)

  1. 一种温度测量方法,所述方法包括:
    基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量所述热敏电阻对应的当前电压;所述当前电阻为电阻阵列中任意一个电阻;
    当所述当前电压超过或低于预设电压范围时,基于预设切换规则从所述电阻阵列中切换与所述热敏电阻串联的电阻,直至所述电阻阵列中目标电阻与所述热敏电阻串联,测量到所述热敏电阻对应的目标电压处于所述预设电压范围;
    基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值。
  2. 根据权利要求1所述的方法,其中,所述基于预设切换规则从所述电阻阵列中切换与所述热敏电阻串联的电阻,包括:
    当所述当前电压超过所述预设电压范围,依次切换所述电阻阵列中,标称阻值大于所述当前电阻的电阻与所述热敏电阻串联;
    当所述当前电压低于所述预设电压范围,依次切换所述电阻阵列中,标称阻值小于所述当前电阻的电阻与所述热敏电阻串联。
  3. 根据权利要求1所述的方法,其中,所述测量所述热敏电阻对应的当前电压之后,所述方法还包括:
    在基于所述预设切换规则,从所述电阻阵列中切换与所述热敏电阻串联的电阻的过程中,依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
  4. 根据权利要求3所述的方法,其中,所述依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值,包括:
    在从所述当前电阻切换到所述电阻阵列中的第一电阻,实现所述第一电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第一电压;
    获取所述当前电阻的校正阻值;
    根据所述电源电压、所述当前电压、所述当前电阻的校正阻值和所述第一电压,确定所述第一电阻的校正阻值;
    当确定所述第一电阻非所述目标电阻,在从所述第一电阻切换到所述电阻阵列中的第二电阻,实现所述第二电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第二电压,并根据所述电源电压、所述第一电压、所述第一电阻的校正阻值和所述第二电压,继续确定所述第二电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
  5. 根据权利要求4所述的方法,其中,所述获取所述当前电阻的校正阻值,包括:
    当所述当前电阻为所述电阻阵列中第一个与所述热敏电阻串联的电阻时,将所述当前电阻的标称电阻确定为所述当前电阻的校正阻值。
  6. 根据权利要求4所述的方法,其中,所述获取所述当前电阻的校正阻值,包括:
    当所述当前电阻非所述电阻阵列中第一个与所述热敏电阻串联的电阻时,获取所述电阻阵列中历史电阻的校正阻值,以及所述热敏电阻与所述历史电阻串联时对应的历史电压;所述历史电阻为所述电阻阵列中,在所述当前电阻与所述热敏电阻串联之前,与所述热敏电阻串联的前一个电阻;
    根据所述电源电压、所述历史电阻的校正阻值、所述历史电压和所述当前电压,确定所述当前电阻的校正阻值。
  7. 根据权利要求1所述的方法,其中,所述基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值,包括:
    获取所述目标电阻的校正阻值;
    基于所述电源电压、所述目标电阻的校正阻值和所述目标电压,确定所述温度值。
  8. 根据权利要求1所述的方法,其中,所述基于接入的电源电压、所 述目标电阻和所述目标电压,确定所述晶体振荡器的温度值之后,所述方法还包括:
    将所述温度值传输至时钟发生器,以供所述时钟发生器根据所述温度值,对所述晶体振荡器输出的振荡频率进行校正。
  9. 一种温度测量装置,所述装置包括:电阻器阵列、模数转换器、处理器;
    所述模数转换器,配置为基于当前与晶体振荡器中热敏电阻串联的当前电阻,测量所述热敏电阻对应的当前电压;所述当前电阻为电阻阵列中任意一个电阻;
    所述处理器,配置为当所述当前电压超过或低于预设电压范围时,基于预设切换规则从所述电阻阵列中切换与所述热敏电阻串联的电阻,直至所述电阻阵列中目标电阻与所述热敏电阻串联,测量到所述热敏电阻对应的目标电压处于所述预设电压范围;基于接入的电源电压、所述目标电阻和所述目标电压,确定所述晶体振荡器的温度值。
  10. 根据权利要求9所述的装置,其中,
    所述处理器,配置为当所述当前电压超过所述预设电压范围,依次切换所述电阻阵列中,标称阻值大于所述当前电阻的电阻与所述热敏电阻串联;当所述当前电压低于所述预设电压范围,依次切换所述电阻阵列中,标称阻值小于所述当前电阻的电阻与所述热敏电阻串联。
  11. 根据权利要求9所述的装置,其中,
    所述处理器,配置为在基于所述预设切换规则,从所述电阻阵列中切换与所述热敏电阻串联的电阻的过程中,依次确定每一个切换到的电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
  12. 根据权利要求11所述的装置,其中,
    所述处理器,配置为在从所述当前电阻切换到所述电阻阵列中的第一电阻,实现所述第一电阻与所述热敏电阻串联时,测量所述热敏电阻对应 的第一电压;获取所述当前电阻的校正阻值;根据所述电源电压、所述当前电压、所述当前电阻的校正阻值和所述第一电压,确定所述第一电阻的校正阻值;当确定所述第一电阻非所述目标电阻,在从所述第一电阻切换到所述电阻阵列中的第二电阻,实现所述第二电阻与所述热敏电阻串联时,测量所述热敏电阻对应的第二电压,并根据所述电源电压、所述第一电压、所述第一电阻的校正阻值和所述第二电压,继续确定所述第二电阻的校正阻值,直至确定出所述目标电阻的校正阻值。
  13. 根据权利要求12所述的装置,其中,
    所述处理器,配置为当所述当前电阻为所述电阻阵列中第一个与所述热敏电阻串联的电阻,将所述当前电阻的标称电阻确定为所述当前电阻的校正阻值。
  14. 根据权利要求12所述的装置,其中,
    所述处理器,配置为当所述当前电阻非所述电阻阵列中第一个与所述热敏电阻串联的电阻时,获取所述电阻阵列中历史电阻的校正阻值,以及所述热敏电阻与所述历史电阻串联时对应的历史电压;所述历史电阻为所述电阻阵列中,在所述当前电阻与所述热敏电阻串联之前,与所述热敏电阻串联的前一个电阻;根据所述电源电压、所述历史电阻的校正阻值、所述历史电压和所述当前电压,确定所述当前电阻的实际阻值。
  15. 根据权利要求9所述的装置,其中,
    所述处理器,配置为获取所述目标电阻的校正阻值;基于所述电源电压、所述目标电阻的校正阻值和所述目标电压,确定所述温度值。
  16. 根据权利要求9所述的装置,其中,
    所述处理器,配置为将所述温度值传输至时钟发生器,以供所述时钟发生器根据所述温度值,对所述晶体振荡器输出的振荡频率进行校正。
  17. 一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器和模数转换器执行时实现如权利要求1-8任一项所述的方法。
PCT/CN2019/088661 2019-05-27 2019-05-27 一种温度测量方法及装置、存储介质 WO2020237486A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980095436.4A CN114072683B (zh) 2019-05-27 2019-05-27 一种温度测量方法及装置、存储介质
PCT/CN2019/088661 WO2020237486A1 (zh) 2019-05-27 2019-05-27 一种温度测量方法及装置、存储介质
EP19931256.2A EP3978937A4 (en) 2019-05-27 2019-05-27 METHOD AND DEVICE FOR MEASURING TEMPERATURE AND STORAGE MEDIUM
US17/535,259 US20220082453A1 (en) 2019-05-27 2021-11-24 Method and device for measuring temperature, and storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088661 WO2020237486A1 (zh) 2019-05-27 2019-05-27 一种温度测量方法及装置、存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/535,259 Continuation US20220082453A1 (en) 2019-05-27 2021-11-24 Method and device for measuring temperature, and storage medium

Publications (1)

Publication Number Publication Date
WO2020237486A1 true WO2020237486A1 (zh) 2020-12-03

Family

ID=73552190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088661 WO2020237486A1 (zh) 2019-05-27 2019-05-27 一种温度测量方法及装置、存储介质

Country Status (4)

Country Link
US (1) US20220082453A1 (zh)
EP (1) EP3978937A4 (zh)
CN (1) CN114072683B (zh)
WO (1) WO2020237486A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2209335Y (zh) * 1994-10-08 1995-10-04 深圳深锋电子仪器有限公司 全自动数字万用表
CN1249811A (zh) * 1997-03-07 2000-04-05 艾利森公司 提供可切换分辨率的分压器
CN1455262A (zh) * 2002-05-04 2003-11-12 朱筱杰 电阻测量电路及含此电路的检测、控制、报警装置
US6794859B2 (en) * 2002-11-20 2004-09-21 Sang J. Choi Automatic multimeter
CN101118190A (zh) * 2007-06-15 2008-02-06 杨如祥 一种温度测量装置及利用该装置测量温度的方法
CN101470145A (zh) * 2007-12-28 2009-07-01 北京机械工业学院 绝缘电阻测试系统
CN103809028A (zh) * 2012-11-14 2014-05-21 罗伯特·博世有限公司 用于确定传感器电阻器件的电阻值的测量电路
CN203849312U (zh) * 2013-11-29 2014-09-24 上海原动力通信科技有限公司 电流检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2990569B2 (ja) * 1994-03-28 1999-12-13 松下電工株式会社 差動式熱感知器
JP6583216B2 (ja) * 2016-11-09 2019-10-02 株式会社デンソー サーミスタ駆動回路
CN109212318A (zh) * 2017-07-04 2019-01-15 重庆无线绿洲通信技术有限公司 阻值测量电路及方法、温度监控装置、电池包及管理系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2209335Y (zh) * 1994-10-08 1995-10-04 深圳深锋电子仪器有限公司 全自动数字万用表
CN1249811A (zh) * 1997-03-07 2000-04-05 艾利森公司 提供可切换分辨率的分压器
CN1455262A (zh) * 2002-05-04 2003-11-12 朱筱杰 电阻测量电路及含此电路的检测、控制、报警装置
US6794859B2 (en) * 2002-11-20 2004-09-21 Sang J. Choi Automatic multimeter
CN101118190A (zh) * 2007-06-15 2008-02-06 杨如祥 一种温度测量装置及利用该装置测量温度的方法
CN101470145A (zh) * 2007-12-28 2009-07-01 北京机械工业学院 绝缘电阻测试系统
CN103809028A (zh) * 2012-11-14 2014-05-21 罗伯特·博世有限公司 用于确定传感器电阻器件的电阻值的测量电路
CN203849312U (zh) * 2013-11-29 2014-09-24 上海原动力通信科技有限公司 电流检测装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3978937A4 *

Also Published As

Publication number Publication date
EP3978937A4 (en) 2022-06-22
EP3978937A1 (en) 2022-04-06
US20220082453A1 (en) 2022-03-17
CN114072683B (zh) 2024-01-05
CN114072683A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
US9857782B2 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
TWI648606B (zh) System and method for frequency compensation of an instant clock system
JP6034663B2 (ja) 半導体装置
JP5867652B2 (ja) モジュールおよび容量検出方法
US9019023B2 (en) Oscillator
CN113900473B (zh) 一种高精度基准的产生方法及系统
US9838023B2 (en) Slow-clock calibration method and unit, clock circuit, and mobile communication terminal
WO2020237486A1 (zh) 一种温度测量方法及装置、存储介质
KR20160006501A (ko) 주파수보정 시스템 및 그 보정방법
CN112468097A (zh) 一种温度补偿方法、射频装置及存储介质
WO2020155068A1 (zh) 一种用于测量电流的装置、方法及设备
CN114826156A (zh) 振荡器电路输出频率的调节方法、装置、设备及存储介质
CN110857890A (zh) 一种高精度温度检测方法及装置
JP2018164188A (ja) 温度補償装置、温度補償型発振器、および温度補償方法
CN115951756A (zh) 时钟信号校准装置及方法、电子设备、存储介质
CN111897202A (zh) 烟感探测器mcu的rtc校准电路及校准方法
JP2016090405A (ja) 温度変換テーブル作成装置、温度変換テーブル作成方法、及び、温度測定装置
JP2006303764A (ja) 温度補償発振回路の温度補償方法、温度補償発振回路、圧電デバイスおよび電子機器
JP2015204608A (ja) 物理量センサ装置および物理量センサ装置の調整方法
JP6880167B2 (ja) 計時回路、電子機器および計時回路の制御方法
JP2013024808A (ja) 計測装置および計測方法
CN207490904U (zh) 一种片上低功耗高精度参考时钟
JP7053397B2 (ja) 抵抗発生装置
JP2023147059A (ja) 調整装置、調整方法、及びプログラム
CN116184367A (zh) 进位链延时的校准方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019931256

Country of ref document: EP

Effective date: 20220103