WO2020237467A1 - 电机及其转子元件、转子元件的制造方法 - Google Patents

电机及其转子元件、转子元件的制造方法 Download PDF

Info

Publication number
WO2020237467A1
WO2020237467A1 PCT/CN2019/088597 CN2019088597W WO2020237467A1 WO 2020237467 A1 WO2020237467 A1 WO 2020237467A1 CN 2019088597 W CN2019088597 W CN 2019088597W WO 2020237467 A1 WO2020237467 A1 WO 2020237467A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
rotating shaft
rotor
shaft head
substrate
Prior art date
Application number
PCT/CN2019/088597
Other languages
English (en)
French (fr)
Inventor
李长鹏
张卿卿
吴琪
斯维纳连科卡特瑞娜
陈国锋
Original Assignee
西门子(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西门子(中国)有限公司 filed Critical 西门子(中国)有限公司
Priority to PCT/CN2019/088597 priority Critical patent/WO2020237467A1/zh
Priority to CN201980095720.1A priority patent/CN113728532A/zh
Publication of WO2020237467A1 publication Critical patent/WO2020237467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present invention relates to the field of motors, and in particular to motors and their rotor components and methods for manufacturing rotor components.
  • the mechanical movement of the motor is realized by the relative rotation of the rotor relative to the stator.
  • the rotor rotates under the electromagnetic field generated by the winding coil current of the stator.
  • soft magnetic materials with high permeability and flux density are suitable for rotor components.
  • One of the solutions in the prior art is to choose a laminated core and a rotating shaft as the main structure, but this usually involves complicated manufacturing and assembly processes, and is more complicated for motors with smaller dimensions.
  • Another solution in the prior art is to manufacture the entire shaft with soft magnetic materials.
  • the electromagnetic signal generated by the shaft made of soft magnetic material can affect the sensing and/or control system at the end of the shaft.
  • the rotor elements In order to obtain the precise installation of the permanent magnet tiles on the soft magnetic rotor, the rotor elements usually need to use additional fixtures or frames to position and fix the permanent magnet tiles, which will cause additional manufacturing process and assembly complexity and difficulties. And the positioning accuracy is poor.
  • the shaft In order to avoid and reduce the influence of the magnetic shaft on the electronics of the shaft end accessories, the shaft needs to be divided into two separate parts.
  • the main part will be made of soft magnetic materials to ensure a sufficiently high magnetic permeability and flux density, while the shaft end near the sensor or controllable system is made of non-magnetic materials, such as austenitic stainless steel.
  • the two parts are welded together through a complex welding process, such as friction welding.
  • the industry needs a simpler rotor manufacturing method that does not require assembly while improving the performance of the motor.
  • the first aspect of the present invention provides a method of manufacturing a rotor element of a motor, wherein the manufacturing method is executed in an additive manufacturing printing device, and the manufacturing method includes the following steps: providing a substrate to the additive manufacturing printing In the molding cylinder of the device, at least one accommodating hole is provided on the substrate; a rotating shaft head is arranged in one accommodating hole, and a plurality of grooves are melted by laser on the upper surface of the rotating shaft head; on the substrate Spread metal particles, and pass inert gas into the additive manufacturing printing device, and perform laser scanning on the metal particles, so that the metal particles melt into the rotor layer by layer from bottom to top according to the predetermined shape of the rotor element
  • the main body of the shaft and the rotor of the element wherein the lower surface of the main body of the shaft has a convex part that cooperates with a plurality of grooves on the head of the shaft, so that the main body of the shaft and the head of the shaft are clamped together ,
  • the rotor is arranged
  • a first thread is provided on the inner wall of the receiving hole
  • a second thread is provided on the periphery of the rotating shaft head
  • the first thread and the second thread are engaged with each other.
  • the manufacturing method further includes the following steps: A rotating shaft head is screwed into a receiving hole, so that the first thread and the second thread are matched with each other, so that the base plate and the rotating shaft head are fixed together.
  • step S3 unscrewing the rotating shaft head from the base plate, so that the manufactured rotor element is separated from the base plate.
  • the method further includes the following step: polishing the substrate provided with the rotating shaft head so that the substrate and the rotating shaft head are on the same plane.
  • an anti-seizure agent is coated on the first thread of the rotating shaft head.
  • the rotor is a hollow structure in which a plurality of support cells are accommodated.
  • a plurality of tooth-shaped structures are provided on the outer surface of the rotor, and the manufacturing method further includes the step of assembling a plurality of arc-shaped permanent magnet tiles between the plurality of tooth-shaped structures.
  • the density of the contact part between the toothed structure and the magnetic sheet is lower than other parts.
  • the rotating shaft head is made of stainless steel, and the rotating shaft body of the rotating shaft is made of magnetic conductive material.
  • the metal particles are nickel-iron magnetic alloy or silicon steel alloy
  • the openings at both ends of the rotating shaft are provided with a plurality of first openings or the upper and lower surfaces of the rotor are provided with a plurality of second openings, and the manufacturing method further includes the following steps: removing metal particles remaining in the rotor Remove from the first opening or the second opening.
  • the second aspect of the present invention provides a rotor element of a motor, wherein the rotor element is manufactured by the manufacturing method according to the first aspect of the present invention.
  • the third aspect of the present invention provides a motor, wherein the rotor element is manufactured by the manufacturing method according to the first aspect of the present invention.
  • the rotating shaft body and the rotating shaft head of the motor rotor element provided by the present invention have different materials, and no additional welding and other processes are required, and the manufacturing method of the present invention is simpler and more convenient.
  • the rotating shaft of the motor rotor element provided by the present invention can ensure high magnetic permeability and flux density, and because the rotating shaft head uses non-magnetic materials, it will not affect nearby probes.
  • the invention can ensure sufficient mechanical strength between different materials.
  • the magnetic sheet assembly method on the rotor provided by the present invention reduces the complexity of mechanical manufacturing and improves the magnetic performance. Since the rotor of the motor rotor element provided by the present invention can be hollow, its weight is lighter, and it is more conducive to improving the efficiency of the powder motor and the precise control of the motor rotation.
  • Figure 1 is a schematic diagram of the structure of the rotor element of the motor
  • FIG. 2 is a schematic diagram of a selective laser melting device according to a specific embodiment of the present invention.
  • Fig. 3 is a schematic structural diagram of a substrate of a selective laser melting device according to a specific embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a process flow of a method for manufacturing a rotor element according to a specific embodiment of the present invention
  • FIG. 5 is a cross-sectional view of a process flow of a method for manufacturing a rotor element according to a specific embodiment of the present invention
  • Fig. 6 is a schematic structural diagram of a rotor element of a motor according to a specific embodiment of the present invention.
  • Fig. 7 is a schematic cross-sectional structure diagram of a rotor element of a motor according to a specific embodiment of the present invention
  • Fig. 8 is a schematic cross-sectional structure diagram of a rotor element of a motor according to a specific embodiment of the present invention.
  • the present invention provides a method for manufacturing a motor, its rotor element, and a rotor element.
  • the rotating shaft head and the main body of the rotating shaft are made of different materials, and can have a more complex structure, while reducing the complexity of the manufacturing process and further improving the motor performance.
  • FIG. 1 is a schematic structural diagram of a rotor element of a motor.
  • the rotor element 200 includes a rotating shaft 210 and a rotor 220.
  • the rotating shaft 210 further includes a rotating shaft head 212 and a rotating shaft main body 214.
  • the shaft head 212 is close to the bearing part of the motor, and the bearing part is equipped with electronic devices such as probes. Therefore, the shaft head 212 needs to use non-magnetic materials. If the shaft head 212 uses magnetic materials, the rotor tells the rotation to generate an electromagnetic field, thereby generating eddy current Affect nearby electronic devices.
  • the main body 214 of the shaft should be made of a magnetic material, otherwise the magnetic field cannot be transmitted. Therefore, the shaft head 212 and the shaft body 214 need to be made of different materials.
  • the traditional process is to process the shaft head 212 and the shaft body 214 separately, and then use friction welding to assemble the two together.
  • Fig. 2 is a schematic diagram of a selective laser melting device according to a specific embodiment of the present invention.
  • the selective laser melting device 100 includes a laser source 110, a mirror scanner 120, a prism 130, a powder feeding cylinder 140, a forming cylinder 150 and a recovery cylinder 160.
  • the laser source 110 is arranged above the selective laser melting device 100 and serves as a heating source for the metal powder, that is, the metal powder is melted for 3D printing.
  • first piston (not shown) that can move up and down at the lower part of the powder feeding cylinder 140, and spare metal powder is placed in the cavity space above the first piston of the powder feeding cylinder 140, and it follows the movement of the first piston.
  • Moving up and down sends the metal powder from the powder feeding cylinder 140 into the forming cylinder 150.
  • a 3D printed part substrate 154 is arranged in the forming cylinder 150, a 3D printed part is clamped above the substrate 154, and a second piston 152 is fixed below the substrate 154, wherein the second piston 152 and the substrate 154 are vertically arranged.
  • the second piston 152 moves from top to bottom to form a printing space in the molding cylinder 220.
  • the laser source 110 for laser scanning should be set above the forming cylinder 150 of the selective laser melting equipment.
  • the mirror scanner 120 adjusts the position of the laser by adjusting the angle of a prism 130, and determines which area of the laser is melted by the adjustment of the prism 130. powder.
  • the powder feeding cylinder 140 further includes a roller (not shown).
  • the metal powder is stacked on the upper surface of the first piston, and the first piston vertically moves from bottom to top to transfer the metal powder to the upper part of the powder feeding cylinder 140.
  • the roller may roll on the metal powder to send the metal powder to the forming cylinder 150.
  • the selective laser melting device 100 further includes a gas supply device 170.
  • the gas supply device 170 includes a first inlet pipe 172 and a second inlet pipe 174, and an outlet pipe 176.
  • a first valve 173 is further provided on the first air inlet pipe 172
  • a second valve 175 is provided on the second air inlet pipe 174.
  • the control device 171 is connected to the first valve 173 and the second valve 175 for controlling the opening and closing of the first air inlet pipe 172 and the second air inlet pipe 174.
  • the first aspect of the present invention provides a method for manufacturing a rotor element of a motor, wherein the manufacturing method is performed in an additive manufacturing printing device, and the manufacturing method is typically in the selective laser melting device shown in FIG. 2 carried out.
  • step S1 is performed to provide a substrate to the forming cylinder of the additive manufacturing printing device, and at least one receiving hole is provided on the substrate.
  • the additive manufacturing printing device is a selective laser melting device 100.
  • at least one receiving hole 154a is provided on the substrate 154.
  • multiple accommodating holes 154a can be provided on the substrate 154, that is, multiple rotor elements can be manufactured on the substrate 154 at the same time.
  • Step S2 placing a rotating shaft head in an accommodating hole, and melting a plurality of grooves on the upper surface of the rotating shaft head by laser.
  • the manufacturing method further includes the following steps:
  • a rotating shaft head 212 is screwed into a receiving hole 154a, so that the first thread and the second thread are engaged with each other, so that the base plate 154 and the rotating shaft head 212 are fixed together. Then, the substrate 154 provided with the rotating shaft head 212 is polished so that the substrate 154 and the rotating shaft head 212 are on the same plane.
  • an anti-seizure agent needs to be coated on the first thread of the shaft head 212. This is due to the subsequent high-temperature laser manufacturing process.
  • anti-seizure is used as an anti-oxidation and lubricant to be coated on the outside of the first thread.
  • the anti-seizure agent is also to improve the ease of performing the detachment step between the shaft head 212 and the base plate 154 later.
  • the shaft head 212 is made of stainless steel, and its short cylindrical structure can be processed by traditional manufacturing. Therefore, considering the final machining tolerances, the size of the shaft head 212 will be slightly larger.
  • the bottom of the receiving hole 154a of the base plate 154 and the bottom of the shaft head 12 will have threads to improve stability, and at the same time have the ability to detach the substrate 154 and the shaft head 212 later.
  • the base plate 154 is mechanically polished to ensure a smooth surface for the subsequent powder spreading process.
  • the upper surface of the rotating shaft head 212 can be scanned by a high-power laser to form a pattern and a groove structure 212b as shown in FIG. 4 is formed during the laser melting process.
  • the groove structure 212b forms teeth on the upper surface of the rotating shaft head 212. ⁇ Like structure.
  • step S3 is performed, as shown in FIGS. 4 and 5, metal particles are spread on the substrate 254, and an inert gas is introduced into the selective laser melting device 100 of the additive manufacturing printing device to treat the metal particles
  • Laser scanning is performed to make the metal particles melt into the shaft body 214 of the rotor element 200 and the rotor 220 layer by layer from bottom to top according to the predetermined shape of the rotor element 200 as shown in FIG. 1.
  • the lower surface of the shaft main body 214 has protrusions that cooperate with a plurality of grooves on the shaft head 212, so that the shaft main body 214 and the shaft head 212 are clamped together.
  • the rotor 220 is arranged on the periphery of the rotating shaft 210.
  • the metal particles are spread on the substrate 154, for example, the thickness of the powder is 20 microns. Because the metal particles are small in size, the metal particles will also enter the groove structure 212b on the upper surface of the shaft head 212.
  • the subsequent laser fusion melts the metal powder in the groove structure 212b, and forms the shaft body 214 from bottom to top, so that the lower surface of the shaft body 214 has a plurality of grooves on the shaft head 212 to cooperate with each other.
  • the convex part is the thickness of the powder is 20 microns.
  • the method further includes the following step: unscrew the shaft head 212 from the base plate 154 along the threads, so that the manufactured rotor element 200 is separated from the base plate 154.
  • the rotating shaft head 212 is made of stainless steel, and the rotating shaft body 214 of the rotating shaft is made of a magnetically conductive material.
  • the metal particles are nickel-iron magnetic alloy, silicon steel alloy, or other magnetic alloy.
  • the rotor 220 is a hollow structure in which a plurality of supporting grids 220b are accommodated.
  • the hollow structure of the rotor is lighter in weight, lower in cost, and reduces the moment of inertia. It is very beneficial to the motor efficiency and the precise control of the electrode rotation, which further illustrates the superiority of the present invention.
  • a plurality of tooth-shaped structures 220a are provided on the outer surface of the rotor 220, and the manufacturing method further includes the following steps: assembling a plurality of arc-shaped magnetic pieces 300 to the plurality of tooth-shaped structures 220a between.
  • the density of the contact part between the tooth structure 220a and the magnetic sheet 300 is lower than other parts. In this way, the magnetic sheet 300 can be more firmly clamped between the plurality of tooth structures 220a.
  • a plurality of first openings 230b may be provided at both ends of the rotating shaft 210, or a plurality of second openings 230a may be provided on the upper and lower surfaces of the rotor 220.
  • the manufacturing method further includes the following steps: removing metal particles remaining in the rotor 220 from the first opening 230b and the second opening 230a.
  • the first opening 230b and the second opening 230a serve as openings for removing unmelted residual metal particles from the rotor element 220.
  • air will flow between the first opening 230b or the second opening 230a to achieve a cooling effect so as to reduce the temperature of the rotor and the additional magnet pieces thereon to improve the magnet characteristics.
  • the separately arranged tooth structure 220a needs to be directly and accurately manufactured on the surface of the rotor 220.
  • the tooth-shaped structure 220a is used to maintain good magnetic insulation with the adjacent magnet pieces to reduce in-plane contact, and the intermittently arranged tooth-shaped structure 220a has a sufficiently high strength. Because the toothed structure 220a and the entire rotating shaft are made of soft magnetic material, the toothed structure 220a not only further reduces the contact surface, but also ensures the high ductility of the contact surface to promote improved stability of the magnetic assembly.
  • the rotating shaft body and the rotating shaft head of the motor rotor element provided by the present invention have different materials, and no additional welding and other processes are required, and the manufacturing method of the present invention is simpler and more convenient.
  • the rotating shaft of the motor rotor element provided by the present invention can ensure high magnetic permeability and flux density, and because the rotating shaft head uses non-magnetic materials, it will not affect nearby probes.
  • the invention can ensure sufficient mechanical strength between different materials.
  • the magnetic sheet assembly method on the rotor provided by the present invention reduces the complexity of mechanical manufacturing and improves the magnetic performance. Since the rotor of the motor rotor element provided by the present invention can be hollow, its weight is lighter, and it is more conducive to improving motor efficiency and precise control of motor rotation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)

Abstract

一种电机的转子元件(200)的制造方法,其是在增材制造打印装置(100)中执行的。该制造方法包括如下步骤:提供一个基板(154)至增材制造打印装置(100)的成型缸(150)中,基板(154)上设置有至少一个容纳孔(154a);将一个转轴头(212)设置在该容纳孔(154a)中,并在转轴头(212)上表面通过激光熔化出多个凹槽(212b);在基板(154)上铺设金属颗粒,并在增材制造打印装置(100)中通入惰性气体,对金属颗粒进行激光扫描,使得金属颗粒按照转子元件(200)预定形状自下而上地逐层熔化为转子元件(200)的转轴主体(214)以及转子(220)。该制造方法简单,同时提高了转子元件(200)的性能。还涉及一种电机及其转子元件(200)。

Description

电机及其转子元件、转子元件的制造方法 技术领域
本发明涉及电机领域,尤其涉及电机及其转子元件、转子元件的制造方法。
背景技术
电机的机械运动通过转子相对于定子的相对转动来实现。对于一个典型的转子元件来说,利用其外围设置的永磁体,转子在定子的绕线线圈电流产生的电磁场下旋转。为了改善磁场和运作效率,具有高导磁系数和通量密度的软磁材料适合于做转子元件。现有技术其中一个解决方案是选择用叠片铁芯和转轴作为主要结构,但是这通常涉及复杂制造和装配过程,并且对尺寸较小的电机来说更加复杂。现有技术另一个解决方案是用软磁材料制造整个转轴。然而,软磁材料制造的转轴产生的电磁信号能够影响传感和/或位于转轴末端的控制系统。
为了获得在软磁转子上永磁瓦片的精确安装,转子元件通常需要利用额外固定物或者框架对永磁瓦片会进行定位和固定,这会造成额外的制造工艺和装配复杂度以及困难,并且定位精度较差。
为了避免和减少磁性转轴对于轴端附件电子器件的影响,转轴需要分为两个单独部分。其中主要部分会用软磁材料来制造来保证足够高的导磁率和通量密度,同时靠近传感器或者可控制系统的轴端部分则由非磁性材料制成,例如奥氏体不锈钢。现有技术这两部分通过复杂焊接过程来焊接在一起,例如摩擦焊接。
业内需要一种更加简单无需装配的转子制造方法,同时提高电机的性能。
发明内容
本发明第一方面提供了电机的转子元件的制造方法,其中,所述制造方法是在增材制造打印装置中执行的,所述制造方法包括如下步骤: 提供一个基板至所述增材制造打印装置的成型缸中,所述基板上设置有至少一个容纳孔;将一个转轴头设置在一个容纳孔中,并在所述转轴头上表面通过激光融化出多个凹槽;在所述基板上铺金属颗粒,并在所述增材制造打印装置中通入惰性气体,对所述金属颗粒进行激光扫描,使得所述金属颗粒按照所述转子元件预定形状自下而上地逐层融化为转子元件的转轴主体以及转子,其中,所述转轴主体的下表面上具有和所述转轴头上的多个凹槽相互配合的凸部,使得所述转轴主体和所述转轴头相互卡接在一起,所述转子设置在所述转轴外围。
进一步地,所述容纳孔的内壁上设置有第一螺纹,所述转轴头的外围设置有第二螺纹,所述第一螺纹和第二螺纹相互咬合,所述制造方法还包括如下步骤:将一个转轴头拧在一个容纳孔中,使得所述第一螺纹和第二螺纹相互配合,使得所述基板和所述转轴头固定在一起。
进一步地,在所述步骤S3以后还包括如下步骤:将所述转轴头从所述基板上拧下,使得制造好的所述转子元件从所述基板上脱离。
进一步地,在所述固定步骤之后,还包括如下步骤:打磨设置有所述转轴头的所述基板,使得所述基板和所述转轴头在一个平面上。
进一步地,在所述转轴头的第一螺纹上涂敷抗咬合剂。
进一步地,所述转子是中空结构,其中容纳有多个支撑格。
进一步地,所述转子外表面上设置有多个齿状结构,所述制造方法还包括如下步骤:装配多个圆弧形永磁瓦片至所述多个齿状结构之间。
进一步地,所述齿状结构的作为和所述磁片之间的接触部分的密度低于其他部分。
进一步地,所述转轴头有不锈钢材料制成,所述转轴的转轴主体由导磁材料制成。
进一步地,所述金属颗粒为镍铁导磁合金或者硅钢合金
进一步地,所述转轴的两端开口设置了多个第一开口或者所述转子的上下表面设置了多个第二开口,所述制造方法还包括如下步骤:将所述转子中残余的金属颗粒从所述第一开口或者所述第二开口中移除。
本发明第二方面提供了电机的转子元件,其中,所述转子元件由本发明第一方面所述的制造方法制造的。
本发明第三方面提供了电机,其中,本发明第一方面所述的制造方 法制造的转子元件。
本发明提供的电机转子元件的转轴主体和转轴头具有不同材料,并且不需要额外焊接等工艺,本发明制造方法更加简单方便。本发明提供的电机转子元件的转轴能够保证高导磁率和通量密度,并且由于转轴头使用不导磁材料,并不会对附近的探头产生影响。本发明能够保证不同材料之间的足够机械强度。本发明提供的转子上的磁片装配方式,减少了机械制造复杂度,并改善了磁性能。本发明提供的电机转子元件的转子由于可以是中空的,其重量更轻,并且更有利于提高粉电机效率和电机旋转的精确控制。
附图说明
图1是电机的转子元件的结构示意图;
图2是根据本发明一个具体实施例的选择性激光熔化设备的示意图;
图3是根据本发明一个具体实施例的选择性激光熔化设备的基板的结构示意图;
图4是根据本发明一个具体实施例的转子元件的制造方法的工艺流程剖面图;
图5是根据本发明一个具体实施例的转子元件的制造方法的工艺流程剖面图;
图6是根据本发明一个具体实施例的电机的转子元件的结构示意图;
[根据细则91更正 20.08.2019] 
图7是根据本发明一个具体实施例的电机的转子元件的剖面结构示意图;
图8是根据本发明一个具体实施例的电机的转子元件的横截面结构示意图。
具体实施方式
以下结合附图,对本发明的具体实施方式进行说明。
本发明提供电机及其转子元件、转子原件的制造方法,其中,转轴的转轴头及其主体的材料不同,并且可以具有更加复杂的结构,同时减少制造工艺复杂性并进一步改善电机性能。
图1是电机的转子元件的结构示意图,转子元件200包括一个转轴 210和转子220,其中,所述转轴210进一步地包括一个转轴头212和一个转轴主体214。其中转轴头212由于靠近电机的轴承部位,轴承部位装有探头等电子器件,因此转轴头212需要使用不导磁材料,如果转轴头212采用导磁材料,转子告诉旋转会产生电磁场,从而产生涡流影响附近的电子器件。而转轴主体214应该采用导磁材料,否则无法传输磁场。因此,转轴头212和转轴主体214需要采用不同材料,传统工艺是分别加工转轴头212和转轴主体214,然后采用摩擦焊将两者装配在一起。
图2是根据本发明一个具体实施例的选择性激光熔化设备的示意图。如图2所示,选择性激光熔化设备100包括一个激光源110、一个镜面扫描器120、一个棱镜130、一个送粉缸140、一成型缸150和一个回收缸160。其中,激光源110设置于选择性激光融化设备100上方,充当金属粉末的加热源,即融化金属粉末来进行3D打印。
其中,送粉缸140下部有一个能够上下移动的第一活塞(未示出),在送粉缸140的第一活塞上面的腔体空间放置了备用的金属粉末,并随着第一活塞的上下移动从送粉缸140将金属粉末送入成型缸150。在成型缸150中设置有一个3D打印件基板154,基板154上方夹持有一个3D打印件,基板154下方固定有一个第二活塞152,其中,第二活塞152和基板154垂直设置。在3D打印过程中,第二活塞152自上而下移动,以在成型缸220中形成打印空间。激光扫描的激光源110应设置于选择性激光融化设备的成型缸150的上方,镜面扫描器120通过调整一个棱镜130的角度调整激光的位置,通过棱镜130的调节来决定激光融化哪个区域的金属粉末。送粉缸140还包括一个滚轮(未示出),金属粉末堆设于第一活塞的上表面,第一活塞垂直地自下而上移动传递金属粉末至送粉缸140上部。滚轮可在金属粉末上滚动,以将金属粉末送至成型缸150中。从而持续对金属粉末执行激光扫描,将金属粉末分解为粉末基体,继续对所述粉末基体进行激光扫描直至使所述粉末基体自下而上地烧结为预设形状的打印件。
其中,所述选择性激光熔化设备100还包括一个气体供应装置170。所述气体供应装置170包括第一进气管道172和第二进气管道174,以及一个出气管道176。其中,在所述第一进气管道172上还设置有第一 阀门173,在所述第二进气管道174上设置有第二阀门175。控制装置171连接于所述第一阀门173和第二阀门175,用于控制所述第一进气管道172和第二进气管道174的开启和关闭。
本发明第一方面提供了电机的转子元件的制造方法,其中,所述制造方法是在增材制造打印装置中执行的,所述制造方法典型地在图2所示的选择性激光熔化设备中执行。
首先执行步骤S1,提供一个基板至所述增材制造打印装置的成型缸中,所述基板上设置有至少一个容纳孔。特别地,在本实施例中,所述增材制造打印装置为选择性激光熔化设备100。如图3所示,基板154上设置有至少一个容纳孔154a。
需要说明的是,所述基板154上可以设置多个容纳孔154a,也就是可以在基板154上同时进行多个转子元件的制造。
步骤S2,将一个转轴头设置在一个容纳孔中,并在所述转轴头上表面通过激光融化出多个凹槽。
具体地,如图3所示,所述容纳孔154a的内壁上设置有第一螺纹,所述转轴头212的外围设置有第二螺纹212a,所述第一螺纹和第二螺纹212a相互配合。因此,所述制造方法还包括如下步骤:
将一个转轴头212拧在一个容纳孔154a中,使得所述第一螺纹和第二螺纹相互咬合,使得所述基板154和所述转轴头212固定在一起。然后,打磨设置有所述转轴头212的所述基板154,使得所述基板154和所述转轴头212在一个平面上。
优选地,在所述转轴头212固定于所述基板154的容纳孔154a中之前,需要在所述转轴头212的第一螺纹上涂敷抗咬合剂。这是由于后续的高温激光制程,为了避免转轴头212和基板154之间的可能粘结发生,抗咬合是作为防氧化和润滑剂涂敷在第一螺纹外面。此外,抗咬合剂也是为了提高在后续执行转轴头212和基板154之间的脱离步骤的容易度。
其中,转轴头212是由不锈钢材料制成,其短圆筒结构能够通过传统制造来加工。因此,考虑到最终机械加工公差,转轴头212的尺寸会稍微大一些。基板154的容纳孔154a的底部以及转轴头12的底部会具有螺纹来改善稳定性,并同时具有后续基板154和转轴头212脱离的能力。在转轴头212放到基板154的容纳孔154a中之后,基板154会机械 打磨来保证后续铺粉过程的平整表面。
在铺粉之前,转轴头212的上表面能够通过高功率激光扫描形成图案并且在激光融化过程中形成如图4所示的凹槽结构212b,凹槽结构212b在转轴头212的上表面形成齿状结构。
最后执行步骤S3,如图4和图5所示,在所述基板254上铺金属颗粒,并在所述增材制造打印装置选择性激光熔化设备100中通入惰性气体,对所述金属颗粒进行激光扫描,使得所述金属颗粒按照如图1所示的转子元件200预定形状自下而上地逐层融化为转子元件200的转轴主体214以及转子220。其中,所述转轴主体214的下表面上具有和所述转轴头212上的多个凹槽相互配合的凸部,使得所述转轴主体214和所述转轴头212相互卡接在一起,所述转子220设置在所述转轴210外围。
具体地,在基板154上铺金属颗粒,例如铺粉厚度为20微米,由于金属颗粒尺寸较小,金属颗粒也会进入转轴头212上表面的凹槽结构212b中。后续的激光融化回在凹槽结构212b中融化金属粉末,并自下而上开始形成转轴主体214,因此使得转轴主体214的下表面上具有和所述转轴头212上的多个凹槽相互配合的凸部。
在所述步骤S3以后还包括如下步骤:将所述转轴头212从所述基板154上沿着螺纹拧下来,使得制造好的所述转子元件200从所述基板154上脱离。
进一步地,所述转轴头212有不锈钢材料制成,所述转轴的转轴主体214由导磁材料制成。特别地,所述金属颗粒为镍铁导磁合金,硅钢合金,或者其它导磁合金。
进一步地,如图6和7所示,所述转子220是中空结构,其中容纳有多个支撑格220b。转子的中空结构比起实心的转子重量更轻,造价更低,减少了转动惯量,其对于电机效率和电极旋转的精确控制十分有益,这更说明了本发明的优越性。
[根据细则91更正 20.08.2019] 
其中,如图8所示,所述转子220外表面上设置有多个齿状结构220a,所述制造方法还包括如下步骤:装配多个弧形磁片300至所述多个齿状结构220a之间。特别地,所述齿状结构220a的作为和所述磁片300之间的接触部分的密度低于其他部分。这样使得磁片300卡接在所述多个齿状结构220a之间时能够更牢固。
进一步地,取决于转子的具体尺寸和形状设计,可以在所述转轴210的两端开口设置多个第一开口230b,或者在转子220的上下表面上设置了多个第二开口230a,所述制造方法还包括如下步骤:将所述转子220中残余的金属颗粒从所述第一开口230b和第二开口230a中移除。其中,所述第一开口230b和第二开口230a会充当将未被融化的残余金属颗粒从所述转子元件220中移除的开口。此外,通过电机的转子元件的旋转,空气会在所述第一开口230b或者第二开口230a之间流动以起到冷却效果从而降低转子和其上附加的磁铁片的温度,以改进磁体特性。
并且,为了改善永磁体的稳定性和精确性,分开设置的齿状结构220a需要直接地和精确地在转子220表面制造。所述齿状结构220a用于保持与相邻磁铁片之间减少面内接触的良好磁性绝缘,间断设置的齿状结构220a为足够高强度。因为齿状结构220a和整个转轴都用软磁材料制成,齿状结构220a不仅进一步减少了接触表面,但也保证了接触表面的高延展性,以促进磁装配具有改善的稳定性。
本发明提供的电机转子元件的转轴主体和转轴头具有不同材料,并且不需要额外焊接等工艺,本发明制造方法更加简单方便。本发明提供的电机转子元件的转轴能够保证高导磁率和通量密度,并且由于转轴头使用不导磁材料,并不会对附近的探头产生影响。本发明能够保证不同材料之间的足够机械强度。本发明提供的转子上的磁片装配方式,减少了机械制造复杂度,并改善了磁性能。本发明提供的电机转子元件的转子由于可以是中空的,其重量更轻,并且更有利于提高电机效率和电机旋转的精确控制。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。此外,不应将权利要求中的任何附图标记视为限制所涉及的权利要求;“包括”一词不排除其它权利要求或说明书中未列出的装置或步骤;“第一”、“第二”等词语仅用来表示名称,而并不表示任何特定的顺序。

Claims (13)

  1. 电机的转子元件的制造方法,其中,所述制造方法是在增材制造打印装置中执行的,所述制造方法包括如下步骤:
    提供一个基板至所述增材制造打印装置的成型缸中,所述基板上设置有至少一个容纳孔;
    将一个转轴头设置在一个容纳孔中,并在所述转轴头上表面通过激光融化出多个凹槽;
    在所述基板上铺金属颗粒,并在所述增材制造打印装置中通入惰性气体,对所述金属颗粒进行激光扫描,使得所述金属颗粒按照所述转子元件预定形状自下而上地逐层融化为转子元件的转轴主体以及转子,
    其中,所述转轴主体的下表面上具有和所述转轴头上的多个凹槽相互配合的凸部,使得所述转轴主体和所述转轴头相互卡接在一起,所述转子设置在所述转轴外围。
  2. 根据权利要求1所述的制造方法,其特征在于,所述容纳孔的内壁上设置有第一螺纹,所述转轴头的外围设置有第二螺纹,所述第一螺纹和第二螺纹相互咬合,所述制造方法还包括如下步骤:
    将一个转轴头拧在一个容纳孔中,使得所述第一螺纹和第二螺纹相互配合,使得所述基板和所述转轴头固定在一起。
  3. 根据权利要求2所述的制造方法,其特征在于,在所述步骤S3以后还包括如下步骤:
    将所述转轴头从所述基板上拧下,使得制造好的所述转子元件从所述基板上脱离。
  4. 根据权利要求2所述的制造方法,其特征在于,在所述固定步骤之后,还包括如下步骤:
    打磨设置有所述转轴头的所述基板,使得所述基板和所述转轴头在一个平面上。
  5. 根据权利要求1所述的制造方法,其特征在于,在所述转轴头的第一螺纹上涂敷抗咬合剂。
  6. 根据权利要求1所述的制造方法,其特征在于,所述转子是中空结构,其中容纳有多个支撑格。
  7. 根据权利要求1所述的制造方法,其特征在于,所述转子外表面上设置有多个齿状结构,所述制造方法还包括如下步骤:
    装配多个圆弧形磁片至所述多个齿状结构之间。
  8. 根据权利要求1所述的制造方法,其特征在于,所述齿状结构的作为和所述磁片之间的接触部分的密度低于其他部分。
  9. 根据权利要求1所述的制造方法,其特征在于,所述转轴头由不锈钢材料制成,所述转轴的转轴主体由导磁材料制成。
  10. 根据权利要求1所述的制造方法,其特征在于,所述金属颗粒为镍铁导磁合金或者硅钢合金。
  11. 根据权利要求1所述的制造方法,其特征在于,所述转轴的两端开口设置了多个第一开口或者所述转子的上下表面设置了多个第二开口,所述制造方法还包括如下步骤:
    将所述转子中残余的金属颗粒从所述第一开口或者所述第二开口中移除。
  12. 电机的转子元件,其特征在于,所述转子元件由权利要求1至11任一项所述的制造方法制造的。
  13. 电机,其特征在于,所述电机包括由权利要求1至11任一项所述的制造方法制造的转子元件。
PCT/CN2019/088597 2019-05-27 2019-05-27 电机及其转子元件、转子元件的制造方法 WO2020237467A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/088597 WO2020237467A1 (zh) 2019-05-27 2019-05-27 电机及其转子元件、转子元件的制造方法
CN201980095720.1A CN113728532A (zh) 2019-05-27 2019-05-27 电机及其转子元件、转子元件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088597 WO2020237467A1 (zh) 2019-05-27 2019-05-27 电机及其转子元件、转子元件的制造方法

Publications (1)

Publication Number Publication Date
WO2020237467A1 true WO2020237467A1 (zh) 2020-12-03

Family

ID=73553550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088597 WO2020237467A1 (zh) 2019-05-27 2019-05-27 电机及其转子元件、转子元件的制造方法

Country Status (2)

Country Link
CN (1) CN113728532A (zh)
WO (1) WO2020237467A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394923A (zh) * 2021-06-15 2021-09-14 苏州共腾精密机械有限公司 一种电机转子加工工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2662519Y (zh) * 2003-10-13 2004-12-08 福建省仙游电机股份有限公司 一种无刷爪极汽车发电机转子
CN101345459A (zh) * 2008-09-03 2009-01-14 贵州航天林泉电机有限公司 一种新型有限转角电动机及制作方法
CN105637744A (zh) * 2013-09-06 2016-06-01 通用电气航空系统有限责任公司 用于电机的转子组件
US20170317545A1 (en) * 2016-04-27 2017-11-02 Wittenstein Se Rotor

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201533204U (zh) * 2009-10-30 2010-07-21 宁波北斗科技有限公司 电机转子的磁钢固定结构
CN202001386U (zh) * 2011-02-24 2011-10-05 嘉善川田环保科技有限公司 内磁安装固定机构
JP2015166604A (ja) * 2014-03-03 2015-09-24 山洋電気株式会社 シャフトの接合構造
CN204761184U (zh) * 2015-07-27 2015-11-11 河北深海电器有限公司 电机转子结构
CN105537588B (zh) * 2016-01-21 2017-06-27 东莞市康铭光电科技有限公司 一种塑胶注塑模仁的三维打印制备方法及塑胶注塑模仁
DE112017000580T5 (de) * 2016-02-25 2019-02-14 Eaton Intelligent Power Limited Additiv gefertigte rotoren für kompressoren und expander querverweis auf verwandte anmeldungen
CN206135584U (zh) * 2016-09-29 2017-04-26 珠海格力节能环保制冷技术研究中心有限公司 电机转子和电机
US11047387B2 (en) * 2017-09-27 2021-06-29 Johnson Controls Technology Company Rotor for a compressor
CN109079132B (zh) * 2018-07-11 2020-10-23 广东汉邦激光科技有限公司 3d嫁接打印的定位方法
CN208782588U (zh) * 2018-09-03 2019-04-23 中山市基鑫机电工业有限公司 一种永磁电机转子的磁瓦固定结构
CN109676919A (zh) * 2018-12-11 2019-04-26 北京航星机器制造有限公司 一种零件随型铺粉的增材制造装置及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2662519Y (zh) * 2003-10-13 2004-12-08 福建省仙游电机股份有限公司 一种无刷爪极汽车发电机转子
CN101345459A (zh) * 2008-09-03 2009-01-14 贵州航天林泉电机有限公司 一种新型有限转角电动机及制作方法
CN105637744A (zh) * 2013-09-06 2016-06-01 通用电气航空系统有限责任公司 用于电机的转子组件
US20170317545A1 (en) * 2016-04-27 2017-11-02 Wittenstein Se Rotor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113394923A (zh) * 2021-06-15 2021-09-14 苏州共腾精密机械有限公司 一种电机转子加工工艺
CN113394923B (zh) * 2021-06-15 2023-09-15 苏州共腾精密机械有限公司 一种电机转子加工工艺

Also Published As

Publication number Publication date
CN113728532A (zh) 2021-11-30

Similar Documents

Publication Publication Date Title
CN109690911A (zh) 电机
JP2002272033A (ja) 永久磁石式同期モータのロータとその製造方法
CN108781029B (zh) 转子的制造方法
JP2019068701A (ja) 回転電機ロータ及びその製造方法
WO2018152944A1 (zh) 一种电机及具有此电机的云台和机械臂
WO2020237467A1 (zh) 电机及其转子元件、转子元件的制造方法
CN102969813A (zh) 端环组件及其形成方法
CN110773868B (zh) 稳态磁场耦合激光填丝窄槽修复方法
WO2008068910A1 (ja) ポリゴンミラースキャナモータとその製造方法
JP2006280052A (ja) 電動機
JP2004243333A (ja) 溶接装置および溶接方法
WO2020031612A1 (ja) 回転電機の固定子及びその製造方法
JP2010259251A (ja) アキシャルギャップ型回転電機用ロータとその製造方法
US11527944B2 (en) Additive manufacturing for segmented electric machines
CN110773869A (zh) 稳态磁场耦合激光填丝窄槽修复装置
JP5906694B2 (ja) 回転機用ロータの製造方法
US20210194315A1 (en) Motor and manufacturing method of motor
US20230378854A1 (en) Electrical Machine, Method, and System
JP2005210817A (ja) 電磁積層鉄心とその製造方法
JP7390408B2 (ja) 真空ポンプ、真空ポンプ用回転体、及び真空ポンプの製造方法
JP2019103175A (ja) 回転電機及び回転電機の製造方法
JPH11260480A (ja) マイクロ部品接続装置
JP2977846B2 (ja) インバータ駆動形回転電機
US20240291360A1 (en) Three-Dimensional-Flux Electric Motor And Method For Making Thereof
JP2594599B2 (ja) ベアリングの嵌装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931212

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931212

Country of ref document: EP

Kind code of ref document: A1