WO2018152944A1 - 一种电机及具有此电机的云台和机械臂 - Google Patents

一种电机及具有此电机的云台和机械臂 Download PDF

Info

Publication number
WO2018152944A1
WO2018152944A1 PCT/CN2017/080460 CN2017080460W WO2018152944A1 WO 2018152944 A1 WO2018152944 A1 WO 2018152944A1 CN 2017080460 W CN2017080460 W CN 2017080460W WO 2018152944 A1 WO2018152944 A1 WO 2018152944A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
circuit
support
permanent magnet
circuit board
Prior art date
Application number
PCT/CN2017/080460
Other languages
English (en)
French (fr)
Inventor
吉志鹏
张正力
陈法全
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Priority to EP17777149.0A priority Critical patent/EP3386074A4/en
Priority to US15/784,556 priority patent/US10141823B2/en
Publication of WO2018152944A1 publication Critical patent/WO2018152944A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/182Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to stators axially facing the rotor, i.e. with axial or conical air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/003Couplings; Details of shafts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2203/00Specific aspects not provided for in the other groups of this subclass relating to the windings
    • H02K2203/03Machines characterised by the wiring boards, i.e. printed circuit boards or similar structures for connecting the winding terminations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2211/00Specific aspects not provided for in the other groups of this subclass relating to measuring or protective devices or electric components
    • H02K2211/03Machines characterised by circuit boards, e.g. pcb

Definitions

  • the present application relates to the field of electrical machinery, and in particular to an electric machine and a pan and mechanical arm having the same.
  • the motor currently used mostly uses the iron core as the carrier of the coil winding, and the magnetic field of the motor is radial, which has the disadvantages of long structure, large mass and low power density of the motor body; and the core hysteresis and eddy current loss are large.
  • the running efficiency is low; the cogging effect causes the output torque ripple, which interferes with the precise control of the servo drive; the rotor has a large moment of inertia, the armature winding inductance is large, the electromechanical time constant of the motor is large, and the dynamic performance is poor; the stator and the rotor are mutually tolerant Defects such as structure and poor heat dissipation.
  • the embodiment of the present application provides a motor with small volume and mass, high operating efficiency, a pan and a robot arm having the motor.
  • the embodiment of the present application provides the following technical solutions:
  • a motor comprising: a support, a circuit board, a rotating shaft and a permanent magnet.
  • the circuit board is mounted to the support, and the circuit board includes a coil circuit.
  • the support is mounted to a rotating shaft.
  • the permanent magnet is disposed adjacent to the coil circuit and has a gap with the coil circuit, and the permanent magnet is an axial magnetization structure.
  • the coil circuit includes a single layer or a plurality of linear circuits disposed along a radial direction of the rotating shaft.
  • the circuit board further includes a substrate
  • the coil circuit further includes a curved circuit
  • the linear circuit and the curved circuit are disposed on the substrate
  • the linear circuit disposed along a radial direction of the rotating shaft passes through the curved circuit
  • the series is connected in series to form windings of different phases.
  • phase windings are coupled to each other via a curved circuit.
  • the circuit board further includes a substrate, a driving control chip, a power circuit and a detecting circuit; a driving control chip, a power circuit and a detecting circuit are all disposed on the substrate; and the detecting circuit is configured to detect position information of the rotor of the motor;
  • the power circuit is electrically connected to the coil circuit, and the driving control chip is electrically connected to the power circuit and the detecting circuit, and the driving control chip is configured to control the power circuit according to the position information of the rotor fed back by the detecting circuit.
  • the detecting circuit is disposed on a surface of the substrate facing the permanent magnet, and the detecting circuit is configured to detect a leakage magnetic field of the permanent magnet and feed back position information of the rotor.
  • the substrate includes an annular body portion and a protruding portion extending from an edge of the body portion; the detecting circuit is disposed at the protruding portion.
  • the rotor includes a secondary magnet, which is sleeved on the rotating shaft, and a gap exists between the auxiliary magnet and the support; the support is disposed between the circuit board and the auxiliary magnet; the detecting circuit is configured The substrate is opposite to the permanent magnet, and the detecting circuit is configured to detect the main magnetic field of the auxiliary magnet and feed back the position information of the rotor.
  • the support is provided with a notch, and the position of the detecting circuit corresponds to the position of the notch.
  • the rotating shaft comprises a base, an intermediate portion and a shaft, and the intermediate portion is connected between the base and the shaft; the base, the intermediate portion and the shaft are all cylindrical, and the diameter of the intermediate portion is larger than that of the shaft The diameter is smaller than the diameter of the base; the auxiliary magnet is sleeved at the intermediate portion to abut the base; and the support is sleeved on the shaft.
  • the substrate includes an annular body portion; the detecting circuit is disposed at the body portion.
  • the permanent magnet is annular and has an outer diameter equal to an outer diameter of the annular body portion.
  • the coil circuit is disposed on the annular body portion.
  • the support comprises a body, which is cylindrical, and the circuit board is sleeved on the body; the support is further provided with a through hole extending axially through the body; the stator includes a bearing, which is received in the through hole, and Set on the rotating shaft.
  • the inner wall of the through hole is provided with an annular protrusion; the number of the bearings is two, which are respectively disposed on both sides of the protrusion and abut against the protrusion.
  • the support includes at least two extensions extending from the body in a radial direction of the body And out, and in the same plane.
  • the at least two extending portions are all fan-shaped, each of the fan-shaped extending portions includes a curved outer edge, and the curved outer edge is located in the same circle, and a gap is formed between each two fan-shaped extending portions;
  • the circuit board is in contact with the at least two extensions.
  • the support plate is sleeved and mounted on the rotating shaft; the permanent magnet is mounted on the support plate.
  • the support plate includes a support base and a boss disposed on a surface of the support base; the permanent magnet is sleeved on the boss, and the permanent magnet is disposed between the support base and the circuit board.
  • the number of the permanent magnets is two, and the number of the circuit boards is one; the circuit board is disposed between the two permanent magnets, and there is a gap between the two permanent magnets.
  • the support comprises a body, and the circuit board is sleeved and mounted on the body.
  • the number of the circuit boards is two; the number of the permanent magnets is one, which is disposed between the two circuit boards, and there is a gap between the two circuit boards, and the permanent magnets are Axial double-sided magnetization structure.
  • the number of the circuit boards is three; the number of the permanent magnets is two, and the permanent magnets are respectively located in two gaps formed by the three circuit boards, and each of the permanent magnets and the adjacent ones There is a gap between the two circuit boards; both of the permanent magnets are axial double-sided magnetization structures.
  • the embodiment of the present application further provides a cloud platform including an imaging device, a first motor and a second motor.
  • the rotor of the first motor is coupled to the imaging device, and the first motor is configured to drive the imaging device to rotate about a central axis of rotation thereof.
  • the rotor of the second motor is coupled to the stator of the first motor for driving the first motor and the imaging device to rotate about its central axis of rotation.
  • the imaging device includes a first camera and a second camera; the first camera and the second camera are respectively mounted at two ends of the first motor, an optical axis of the first camera, and the The optical axes of the second camera are recombined in opposite directions.
  • a support arm is further included; one end of the support arm is fixedly connected to the stator of the second motor.
  • an end of the support arm remote from the second motor is active with the first motor connection.
  • the support arm is a U-shaped structure, and an end of the support arm remote from the second motor is movably connected to the first motor through a rotating shaft, wherein an axial direction of the rotating shaft rotates with the The axial coincidence of the rotation of the second motor.
  • a third motor is further included, and the rotor of the third motor is fixedly coupled to the support arm.
  • the rotor of the third motor is fixedly connected to the U-shaped bottom of the support arm.
  • the first motor is a roll axis motor
  • the second motor is a pitch axis motor
  • at least one of the first motor and the second motor is the motor described above.
  • the embodiment of the present application further provides a mechanical arm including a first rotating arm, a second rotating arm, a driving gear, a driven gear, and a motor.
  • the first rotating arm is fixedly connected to the stator of the motor, and the rotor of the motor is fixedly connected to the driving gear.
  • the driven gear is fixedly coupled to the second rotating arm, and the driven gear meshes with the driving gear.
  • the motor of the embodiment of the present application adopts a circuit board as a carrier of the coil circuit, which replaces the traditional iron core, and eliminates the cogging torque and hysteresis and eddy current loss generated by the existing motor from the root source.
  • the defect improves the operating efficiency; the direction of the magnetic field of the permanent magnet is designed as the axial main magnetic flux, and the permanent magnet and the circuit board are arranged to face the axially butt air gap, shortening the axial dimension of the motor of the embodiment of the present application, and compressing The mass and volume of the motor of the embodiment of the present application.
  • the driving control chip, the power circuit and the detecting circuit are integrated on the circuit board, so that the motor of the embodiment of the present application has the function of detecting and controlling, and no additional driving control circuit and detecting circuit are needed, thereby further reducing weight and volume, and the present application further
  • the control of the motor of the embodiment is more intelligent.
  • FIG. 1 is an exploded view of a motor according to a first embodiment of the present application
  • Figure 2 is an exploded view of the motor of Figure 1 in another direction;
  • FIG. 3 is a perspective view of a motor according to a first embodiment of the present application.
  • Figure 4 is a cross-sectional view of the motor according to the first embodiment of the present application.
  • FIG. 5 is a front view of a circuit board in a motor according to a first embodiment of the present application.
  • FIG. 6 is a rear elevational view of a circuit board in a motor according to a first embodiment of the present application
  • FIG. 7 is a schematic circuit diagram of a coil circuit of a circuit board according to a first embodiment of the present application.
  • FIG. 8 is a schematic structural view of a permanent magnet according to a first embodiment of the present application.
  • Figure 9 is a cross-sectional view of a motor according to a second embodiment of the present application.
  • Figure 10 is a cross-sectional view of a motor according to a third embodiment of the present application.
  • Figure 11 is a cross-sectional view of a motor according to a fourth embodiment of the present application.
  • Figure 12 is a perspective view of a pan/tilt head according to a fifth embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a mechanical arm according to a sixth embodiment of the present application.
  • Figure 14 is a schematic view showing the structure of the robot arm of Figure 13 in another direction.
  • a first embodiment of the present application provides a motor 100 including a stator 10 and a rotor 20 .
  • the stator 10 includes a support 11, a bearing 12 and a circuit board 13.
  • the support 11 includes a body 110 and at least two extensions 114.
  • the body 110 has a cylindrical shape, and the at least two extending portions 114 extend from the body 110 in the radial direction of the body 110 and are located in the same plane.
  • the at least two extensions 114 are all fan-shaped, and each of the fan-shaped extensions 114 includes a curved outer edge, and the arcuate outer edges of all the fan-shaped extensions 114 are located in the same circle.
  • a notch 116 is defined between each of the two sector extensions 114.
  • the support 11 is further provided with a through hole 112 which is circular and penetrates the body 110 in the axial direction of the body 110.
  • the inner wall of the through hole 112 is provided with an annular projection 118 (see Fig. 4).
  • the number of the bearings 12 is two, and is disposed in the through hole 112 and abuts against both sides of the protrusion 118. When the two bearings 12 are mounted to the through holes 112, the end faces of each of the bearings 12 are flush with the end faces of the body 110.
  • a circular mounting hole 134 is formed in the center of the circuit board 13 described above.
  • the body 110 passes through the mounting hole 134, and the circuit board 13 is sleeved on the body 110 and contacts the three extensions 114.
  • the rotor 20 described above includes a rotating shaft 21, a secondary magnet 22, a permanent magnet 23, and a support plate 24.
  • the above rotating shaft 21 includes a base 212, an intermediate portion 214, and a shaft 216.
  • the base 212, the intermediate portion 214 and the shaft 216 are all cylindrical, and the intermediate portion 214 is connected between the base 212 and the shaft 216.
  • the diameter of the intermediate portion 214 is greater than the diameter of the shaft 216 and is smaller than the diameter of the base 212.
  • Two bearings 12 are sleeved on the shaft 216 and are located on both sides of the protrusion 118. The bearing 12 is used to support the shaft 216 to reduce the coefficient of friction of the shaft 216 during rotation.
  • the body 110 contacts the intermediate portion 214.
  • the auxiliary magnet 22 is annular and sleeved on the intermediate portion 214 to abut the base 212.
  • the auxiliary magnet 22 is located between the support 11 and the base 212 with a gap between the support 11.
  • the main magnetic field of the auxiliary magnet 22 may be either axial or radial.
  • the above permanent magnet 23 is annular.
  • the support plate 24 is mounted to an end of the shaft 216 away from the intermediate portion 214 and includes a support base 242 and a boss 244. Both the support base 242 and the boss 244 are annular, and the boss 244 is disposed at the center of a surface of the support base 242.
  • the outer diameter of the permanent magnet 23 is equal to the outer diameter of the support base 242.
  • the permanent magnet 23 is sleeved on the boss 244, contacts the support base 242, and is disposed between the support base 242 and the circuit board 13. There is a gap between the permanent magnet 23 and the circuit board 13.
  • the motor 100 in the embodiment of the present application may be a brushless motor.
  • the circuit board 13 is a printed circuit board including a substrate 130, a detection circuit 132, a drive control circuit 136, and a coil circuit 138.
  • the substrate 130 includes an annular body portion 1302 and three convex portions 1304 extending from edges of the body portion 1304, the three protruding portions 1304 being evenly distributed on the outer edge of the body portion 1302, and the three protrusions
  • the position of the portion 1304 corresponds to the position of the three notches 116, respectively.
  • the mounting hole 134 extends through the center of the body portion 1302.
  • the support 11, the main body portion 1302, the permanent magnet 23 and the support plate 24 have equal outer diameters.
  • the detection circuit 132 is provided on the substrate 130 for detecting positional information such as a rotational position or an angle of the rotor 20.
  • the detection circuit 132 can include a magnetic encoding device disposed on a surface of the body portion 1302 facing away from the permanent magnet 23.
  • the position of the detecting circuit 132 corresponds to the position of a notch 116 of the support 11, for sensing the main magnetic field of the auxiliary magnet 22 mounted on the rotor 20, outputting a corresponding analog voltage signal, and feeding back the position information of the rotor 20. , for example, angle, rotational position.
  • the detection circuit 132 can include a Hall element disposed on one of the three raised portions 1304 facing the permanent magnet 23.
  • the Hall element senses the leakage magnetic field of the permanent magnet 23 by the Hall effect, outputs an analog/digital voltage signal, and feeds back the position information of the rotor 10, for example, the rotational position and the angle.
  • the Hall element can be a linear Hall sensor or a switching Hall sensor.
  • the drive control circuit 136 includes a drive control chip 1362 and a power circuit 1364, both of which are disposed on the substrate 130.
  • the power circuit 1364 is electrically connected to the coil circuit 138 for transmitting current to the coil circuit 138.
  • the driving control chip 1362 is electrically connected to the power circuit 1364 and the detecting circuit 132 for triggering the turning on or off of the corresponding electronic switching element according to the position information of the rotor 20 fed back by the detecting circuit 132, and adjusting the power output of the power circuit 1364. Operation control of the power circuit 1364 is achieved.
  • the positions of the drive control chip 1362, the power circuit 1364, and the detection circuit 132 correspond to the positions of the three notches 116 of the holder 11, respectively.
  • the coil circuit 138 is disposed on the main body portion 1302 and faces the permanent magnet 23. Embedding a single layer or multiple layers of radial radiation in the coil circuit 138 by etching copper
  • the line circuit 1380, each of the radial linear circuits 1380 is sequentially connected in series by the arc circuit 1382 to form a phase winding equivalent to a general motor (see FIG. 6); the phase windings are then coupled to each other via the curved circuit 1382 (for example, a star
  • the junction or delta connection constitutes the coil circuit 138 of the motor 100 of the embodiment of the present application (see Fig. 6).
  • Such a winding structure can reduce the weight of the rotor 20, and the volume of the rotor 20 is also greatly reduced, thereby reducing the moment of inertia of the rotor 20, thereby making the motor 100 lighter in weight than existing motors. Small size.
  • the coil circuit 138 includes three-phase windings, and the phase windings are sequentially connected in series by the arc circuit 1382 to form the coil circuit 138.
  • the permanent magnet 23 adopts a HALBACH matrix axial magnetization structure, which may be a whole piece structure or a plurality of magnets arranged in a HALBACH matrix to provide an axial direction for the coil circuit 138 of the circuit board 13. magnetic field.
  • the above-mentioned rotating shaft 21 is a metal rod for supporting the support plate 24 and the permanent magnet 23, and is rotated together with the support plate 24 and the permanent magnet 23.
  • the rotating shaft 21 may be other rod-shaped members as long as the supporting plate 24 and the permanent magnet 23 can be supported and rotated together with the supporting plate 24 and the permanent magnet 23, for example, an imaging device having a camera, including Rod-shaped part.
  • the rod portion passes through the support plate 24 for supporting the support plate 24 and the permanent magnet 23, and is rotated together with the support plate 24 and the permanent magnet 23.
  • the rotating shaft 21 can be used to support the support 11 and rotate together with the support 11 and the circuit board 13, and the bearing 12 is mounted to the through hole of the support plate 24, so that the support plate 24 and the permanent magnet 23 can be Rotation with respect to the rotation shaft 21.
  • the magnetic induction line of the permanent magnet 23 is parallel to the axial line of the rotating shaft 21, and the stator 10 and the rotor 20 are arranged to face the axial gap of the end face, which can eliminate the end winding of the ineffective electromagnetic reaction and greatly shorten the axial direction.
  • Dimensions, compression mass and volume improve power density; reduce rotor inertia, winding inductance and electromechanical time constant, effectively improve dynamic performance; open heat conduction space to enhance heat dissipation.
  • the circuit board 13 of the embodiment of the present application is a carrier of the coil circuit 138.
  • the coil circuit 138 is printed on the circuit board 13 by etching copper, and the existing motor is eliminated from the root source. Cogging torque and hysteresis, eddy current loss defects, weaken torque disturbance and improve The efficiency of operation.
  • the driving control chip 1362, the power circuit 1364 and the detecting circuit 132 are integrated on the circuit board 13, so that the motor 100 of the embodiment of the present application has a detection and control function, and no additional driving control circuit and detecting circuit are needed, thereby further reducing weight and The volume, and the control of the motor 100 of the embodiment of the present application is more intelligent.
  • the motor 200 provided by the second embodiment of the present application includes a support 11 , a bearing 12 and a circuit board 13 .
  • the circuit board 13 is sleeved on the body 110 of the support 11 , and the bearing 12 is received in the through hole of the support 11 . 112.
  • the motor 200 further includes a rotating shaft 21, two permanent magnets 23 and two supporting plates 24, and one permanent magnet 23 is correspondingly mounted to a supporting plate 24.
  • a support plate 24 is sleeved on the shaft 216 of the rotating shaft 21 and contacts the intermediate portion 214.
  • the other support plate 24 is sleeved and fixed to one end of the shaft 216 away from the intermediate portion 214.
  • Two permanent magnets 23 are disposed on both sides of the circuit board 13 and each face two opposite surfaces of the circuit board 13.
  • Each permanent magnet 23 is the same as the permanent magnet 23 in the first embodiment, and may be a full-piece structure for HALBACH axial magnetization or a loose-film structure for HALBACH matrix arrangement.
  • the detecting circuit 132 may include a Hall element disposed on one of the three protruding portions 1304 of the circuit board 13 facing one permanent magnet 23, or disposed on two surfaces of one protruding portion 1304, respectively facing the two aforementioned Magnet 23.
  • the auxiliary magnet 22 is omitted.
  • the bearing 12, the circuit board 13, the rotating shaft 21, and the support plate 24 are the same as those in the first embodiment, and the detailed description thereof will not be repeated here.
  • the support 11 includes only the body 110 compared to the first embodiment, while the three extensions 114 are omitted.
  • the direction of the magnetic field of the permanent magnet 23 is designed as an axial main magnetic flux, and the permanent magnet 23 and the circuit board 13 are arranged to face the axial gap of the end face, which can eliminate the end winding of the ineffective electromagnetic reaction and greatly shorten the axis.
  • compression mass and volume improve the power density; reduce the moment of inertia of the motor 200, winding inductance and electromechanical time constant, effectively improve the dynamic performance; open the heat conduction space to enhance the heat dissipation performance.
  • the circuit board 13 of the embodiment of the present application is a carrier of the coil circuit 138, replacing the traditional iron core.
  • the method of over-etching copper covers the coil circuit 138 in the circuit board 13, and eliminates the cogging torque and the hysteresis and eddy current loss defects of the existing motor from the root source, weakens the torque disturbance and improves the operation efficiency.
  • two permanent magnets 23 are disposed on both sides of the circuit board 13, which enhances the magnetic flux of the motor 200, improves the operating efficiency, and further increases the power of the motor 100.
  • the embodiments of the present application can exert the advantages of strong power and high efficiency.
  • the driving control chip 1362, the power circuit 1364 and the detecting circuit 132 are integrated on the circuit board 13, so that the motor 200 of the embodiment of the present application has a detection and control function, and no additional driving control circuit and detecting circuit are needed, thereby further reducing weight and The volume, and the control of the motor 200 of the embodiment of the present application is more intelligent.
  • a motor 300 includes two supports 11, two bearings 12 and two circuit boards 13, each of which is sleeved on a body 110 of a corresponding support 11. And contacting the extension portion 114.
  • Each bearing 12 is received in a through hole 112 of a corresponding holder 11.
  • the motor 300 described above further includes a rotating shaft 21 and a permanent magnet 23.
  • One support 11 is sleeved on the intermediate portion 214 of the rotating shaft 21, and the other support 11 is sleeved and mounted on one end of the shaft 216 away from the intermediate portion 214.
  • the permanent magnet 23 is sleeved on the shaft 216 and disposed between the two circuit boards 13 .
  • the two circuit boards 13 each face two opposite surfaces of the permanent magnet 23 and have a gap with the permanent magnet 23.
  • the permanent magnet 23 is a HALBACH axial double-sided magnetizing structure, and the whole structure can be used for HALBACH axial double-sided magnetization, or the whole piece can be used for HALBACH axial single-sided magnetization for back-to-back bonding, or the fragment structure can be used as HALBACH matrix.
  • Three implementations of double-sided arrangement Three implementations of double-sided arrangement.
  • the circuit board 13 remote from the auxiliary magnet 22 can omit the detection circuit 132 as compared with the circuit board 13 of the first embodiment.
  • the circuit board 13 remote from the auxiliary magnet 22 can also include the detection circuit 132.
  • the detecting circuit 132 may include a Hall element disposed at one of the three convex portions 1304 of the circuit board 13 remote from the auxiliary magnet 22, facing the permanent magnet 23.
  • the bearing 12, the circuit board 13 close to the auxiliary magnet 22, and the rotating shaft 21 are the same as those in the first embodiment, and the detailed description thereof will not be repeated here.
  • the through hole 112 of the support 11 of the embodiment of the present invention accommodates only one bearing 12, so that the thickness is reduced and the other structures are the same as those of the first embodiment, and the detailed description thereof will not be repeated here.
  • the direction of the magnetic field of the permanent magnet 23 is designed as an axial main magnetic flux, and the permanent magnet 23 and the circuit board 13 are arranged to face the axial gap of the end face, which can eliminate the end winding of the ineffective electromagnetic reaction and greatly shorten the axis.
  • compression mass and volume improve the power density; reduce the moment of inertia of the motor 200, winding inductance and electromechanical time constant, effectively improve the dynamic performance; open the heat conduction space to enhance the heat dissipation performance.
  • the circuit board 13 of the embodiment of the present application is a carrier of the coil circuit 138.
  • the coil circuit 138 is printed on the circuit board 13 by etching copper, and the existing gears generated by the motor are eliminated from the root source. Defects in torque and hysteresis, eddy current losses, weaken torque disturbances and improve operating efficiency.
  • circuit boards 13 are disposed on both sides of the permanent magnet 23, and the number of turns of the induction coil is increased on the basis of double-sided magnetization of the permanent magnet 23, thereby effectively increasing the output power and improving the operation efficiency.
  • the embodiments of the present application can exert the advantages of strong power and high efficiency.
  • the driving control chip 1362, the power circuit 1364 and the detecting circuit 132 are integrated on the circuit board 13, so that the motor 300 of the embodiment of the present application has a detection and control function, and no additional driving control circuit and detecting circuit are needed, thereby further reducing the weight and The volume, and the control of the motor 300 of the embodiment of the present application is more intelligent.
  • the motor 400 provided by the fourth embodiment of the present application includes two supports 11 , two bearings 12 and three circuit boards 13 .
  • Two of the three circuit boards 13 are sleeved on the body 110 of a corresponding support 11 and contact the extension 114; the other circuit board 13 is located between the two supports 11.
  • Each bearing 12 is received in a through hole 112 of a corresponding holder 11.
  • Two circuit boards 13 are oppositely disposed.
  • the motor 400 described above further includes a rotating shaft 21 and two permanent magnets 23.
  • One support 11 is sleeved on the intermediate portion 214 of the rotating shaft 21, and the other support 11 is sleeved and mounted on one end of the shaft 216 away from the intermediate portion 214.
  • the two permanent magnets 23 are sleeved on the shaft 216 and disposed between the two circuit boards 13 on the two supports 11 and on both sides of the other circuit board 13. There is a gap between each permanent magnet 23 and an adjacent circuit board 13.
  • the permanent magnet 23 is an HALBACH axial magnetization structure, which may be The sheet structure is used for HALBACH axial magnetization, or the fragment structure is used for HALBACH matrix arrangement.
  • the magnetization coverage can be single-sided or double-sided.
  • the circuit board 13 remote from the auxiliary magnet 22 can omit the detecting circuit 132 as compared with the circuit board 13 of the first embodiment.
  • the circuit board 13 remote from the auxiliary magnet 22 can also include the detection circuit 132.
  • the detecting circuit 132 may include a Hall element disposed at one of the three convex portions 1304 of the circuit board 13 remote from the auxiliary magnet 22, facing the permanent magnet 23.
  • the bearing 12, the circuit board 13 close to the auxiliary magnet 22, and the rotating shaft 21 are the same as those in the first embodiment, and the detailed description thereof will not be repeated here.
  • the through hole 112 of the support 11 of the embodiment of the present application accommodates only one bearing 12, so that the thickness is reduced and the other structures are the same as those of the first embodiment, and the details are not repeated herein.
  • the direction of the magnetic field of the permanent magnet 23 is designed as an axial main magnetic flux, and the permanent magnet 23 and the circuit board 13 are arranged to face the axial gap of the end face, which can eliminate the end winding of the ineffective electromagnetic reaction and greatly shorten the axis.
  • compression mass and volume improve the power density; reduce the moment of inertia of the motor 200, winding inductance and electromechanical time constant, effectively improve the dynamic performance; open the heat conduction space to enhance the heat dissipation performance.
  • the circuit board 13 of the embodiment of the present application is a carrier of the coil circuit 138.
  • the coil circuit 138 is printed on the circuit board 13 by etching copper, and the existing gears generated by the motor are eliminated from the root source. Defects in torque and hysteresis, eddy current losses, weaken torque disturbances and improve operating efficiency.
  • the embodiment of the present application is disposed on the two permanent magnets 23 and the three circuit boards 13, which enhances the magnetic flux of the motor 200, increases the number of turns of the induction coil, effectively increases the output power, and improves the operating efficiency.
  • the embodiments of the present application can exert the advantages of strong power and high efficiency.
  • the driving control chip 1362, the power circuit 1364 and the detecting circuit 132 are integrated on the circuit board 13, so that the motor 400 of the embodiment of the present application has a detection and control function, and no additional driving control circuit and detecting circuit are needed, thereby further reducing the weight and The volume, and the control of the motor 400 of the embodiment of the present application is more intelligent.
  • a pan/tilt 500 includes a first motor 530, Two motors 520 and an imaging device 540.
  • the rotor of the first motor 530 is coupled to an imaging device 540 for driving the imaging device 540 to rotate about its central axis of rotation.
  • the rotor of the second motor 520 is coupled to the stator of the first motor 530 for driving the first motor 530 and the imaging device 540 to rotate about its central axis of rotation.
  • the platform 500 further includes a third motor 510, the rotor of the third motor 510 is coupled to the stator of the second motor 520, and the third motor 510 is configured to drive the second motor 520, the first motor 530 and the imaging device 540. Rotating around the central axis of rotation of the third motor 510.
  • the first motor 530, the second motor 520, and the third motor 510 are a roll axis motor, a pitch axis motor, and a heading axis motor, respectively.
  • the central axes of rotation of the first motor 530, the second motor 520, and the third motor 510 are a roll axis, a pitch axis, and a heading axis, respectively.
  • the platform 500 further includes a support arm 550.
  • the support arm 550 is fixedly coupled to the rotor of the third motor 510 and is fixedly coupled to the stator of the second motor 520.
  • the support arm 550 may be an L-shaped structure, one end of the support arm 550 is fixedly coupled to the stator of the second motor 520, and the other end of the support arm 550 is fixedly coupled to the rotor of the third motor 510.
  • the support arm 550 can be a U-shaped structure, one end of the support arm 550 is fixedly coupled to the stator of the second motor 520, and one end of the support arm 550 remote from the second motor 520 is movably connected to the first motor 530. .
  • An end of the support arm 550 remote from the second motor 520 may be movably coupled to the first motor 530 via a rotating shaft 560, wherein an axis of rotation of the rotating shaft 560 coincides with an axial direction of rotation of the second motor 520.
  • the U-shaped bottom of the support arm 550 is fixedly coupled to the rotor of the third motor 510.
  • the imaging device 540 described above includes a first camera 5402 and a second camera 5404.
  • the first camera 5402 and the second camera 5404 are respectively mounted at both ends of the first motor 530 and face in opposite directions.
  • the first motor 530 is configured to drive the first camera 5402 and the second camera 5404 to rotate about their roll axes.
  • the optical axis of the first camera 5402 and the optical axis of the second camera 5404 coincide, and the first camera 511 and the second camera 512 cooperate to achieve 360 degrees while taking images.
  • the optical axes of the first camera 511 and the second camera 512 may be at an angle, but it must be ensured that the first camera 511 and the second camera 512 can achieve 360 degrees while taking images.
  • At least one of the first motor 530, the second motor 520, and the third motor 510 is the motor 100 of the first embodiment, or the motor 200 of the second embodiment, or the motor 300 of the third embodiment, or the fourth embodiment Example of motor 400.
  • the above-mentioned pan/tilt 500 can be applied to a drone.
  • the imaging device 540 described above may include only one camera.
  • the mechanical arm 600 provided by the sixth embodiment of the present application includes a first rotating arm 601 , a second rotating arm 602 , a driving gear 603 , a driven gear 604 , and a motor 605 .
  • the motor 605 is disposed at an end of the first rotating arm 601 near the second rotating arm 602.
  • the stator of the motor 605 is fixedly coupled to the first rotating arm 601, and a rotor thereof is fixedly coupled to the driving gear 603 for driving the driving gear 603 to rotate.
  • the driven gear 604 is fixed to an end of the second rotating arm 602 close to the first rotating arm 601, and the driven gear 604 is meshed with the driving gear 603.
  • the motor 605 drives the drive gear 603 to rotate
  • the driven gear 604 rotates with the drive gear 603, thereby moving the second rotating arm 602 relative to the first rotating arm 601.
  • the second rotating arm 602 is rotated relative to the first rotating arm 601 by the motor 605, as shown in FIG.
  • the second rotating arm 602 is translated in translation relative to the first rotating arm 601 by the motor 605.
  • the second rotating arm 602 is translated in translation with respect to the first rotating arm 601 by the motor 605.
  • the second rotating arm 602 is translated in translation relative to the first rotating arm 601 by the motor 605.
  • the embodiment of the present application does not limit the shapes of the drive gear 603 and the driven gear 604.
  • the shape of the drive gear 603 or the driven gear 604 may also be elliptical.
  • the second turning arm 602 moves relative to the first rotating arm 601 according to the shape of the driving gear 603 and the driven gear 604.
  • the motor 605 described above is the motor 100 of the first embodiment, or the motor 200 of the second embodiment, or the motor 300 of the third embodiment, or the motor 400 of the fourth embodiment.
  • the above-described robot arm 600 can be applied to a robot, a medical instrument, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Brushless Motors (AREA)

Abstract

一种电机(100)以及具有此电机的云台(500)和机械臂(600),该电机(100)包括支座(11),电路板(13),转动轴(21)和永磁体(23)。电路板(13)安装于支座(11),电路板(13)包括线圈电路(138)。所述支座(11)安装于转动轴(21)。所述永磁体(23)与所述线圈电路(138)相邻设置,并与线圈电路(138)之间存在间隙,所述永磁体(23)为轴向充磁结构。采用电路板(13)为线圈电路(138)的载体,替代传统的铁芯,消除了现有的电机产生的齿槽转矩及磁滞、涡流损耗的缺陷;永磁体(23)的磁场作用方向设计为轴向主磁通,永磁体(23)和电路板(13)设置为端面轴向对接气隙,缩短了电机的轴向尺寸,减小了电机的质量和体积。

Description

一种电机及具有此电机的云台和机械臂 【技术领域】
本申请涉及电机技术领域,尤其涉及一种电机及具有此电机的云台和机械臂。
【背景技术】
电机产品已广泛应用于电子设备,数控机床,雕刻机,激光设备,包装机械,医疗设备和自动化设备等领域,例如,无人机的云台,机器人的机械臂等。
然而,目前使用的电机多采用铁芯作为线圈绕组的载体,电机的磁场皆为径向,存在电机机身结构冗长,质量体积大,功率密度低的缺点;而且铁芯磁滞和涡流损耗大,运行效率低;齿槽效应引起输出转矩脉动,对伺服驱动的精准控制产生干扰;转子转动惯量大,电枢绕组电感大,电机的机电时间常数大,动态性能差;定、转子相互包容结构,散热性能差等缺陷。
【发明内容】
为了解决上述技术问题,本申请实施例提供一种体积和质量小、运行效率高的电机、具有该电机的云台和机械臂。
为解决上述技术问题,本申请实施例提供以下技术方案:
一种电机,包括:支座,电路板,转动轴和永磁体。电路板安装于支座,电路板包括线圈电路。所述支座安装于转动轴。所述永磁体与所述线圈电路相邻设置,并与线圈电路之间存在间隙,所述永磁体为轴向充磁结构。
进一步地,所述线圈电路包括单层或多层沿转动轴的径向而设置的直线电路。
进一步地,所述电路板还包括基板,所述线圈电路还包括弧形电路;所述直线电路和弧形电路设置于基板;所述沿转动轴的径向而设置的直线电路通过弧形电路依次串联,组成不同相的绕组。
进一步地,各相绕组经过弧形电路相互联接。
进一步地,所述电路板还包括基板,驱动控制芯片,功率电路和检测电路;驱动控制芯片,功率电路和检测电路都设置于基板;所述检测电路用于检测电机的转子的位置信息;所述功率电路电性连接线圈电路,所述驱动控制芯片与功率电路和检测电路电性连接,所述驱动控制芯片用于根据检测电路反馈的转子的位置信息,控制功率电路。
进一步地,所述检测电路设置于基板的一表面,该表面朝向永磁体,检测电路用于检测永磁体的漏磁场,反馈转子的位置信息。
进一步地,所述基板包括环形的主体部分和从主体部分的边缘延伸而出的凸出部分;所述检测电路设置于凸出部分。
进一步地,所述转子包括辅感磁体,其套设于转动轴,辅感磁体与支座之间存在间隙;所述支座设置于电路板和辅感磁体之间;所述检测电路,设置于基板,背向永磁体,所述检测电路用于检测辅感磁体的主磁场,反馈转子的位置信息。
进一步地,所述支座设有缺口,所述检测电路的位置与缺口的位置相对应。
进一步地,所述转动轴包括基座,中间部和轴杆,中间部连接于基座和轴杆之间;基座,中间部和轴杆皆为圆柱形,中间部的直径大于轴杆的直径,小于基座的直径;所述辅感磁体套设于中间部,抵紧基座;所述支座套设于轴杆。
进一步地,所述基板包括环形的主体部分;所述检测电路设置于主体部分。
进一步地,所述永磁体为环形,其外径与环形的主体部分的外径相等。
进一步地,所述线圈电路设置于环形的主体部分。
进一步地,所述支座包括本体,其为圆柱形,电路板套设于本体;所述支座还设有轴向贯穿本体的通孔;所述定子包括轴承,其收容于通孔,并套设于转动轴。
进一步地,所述通孔的内壁设有环形的凸起;所述轴承的数量为二个,分别设置于凸起的两侧,并抵紧凸起。
进一步地,所述支座包括至少两个延伸部,其沿本体的径向从本体延伸 而出,并位于同一平面。
进一步地,所述至少两个延伸部皆为扇形,每个扇形延伸部包括弧形外边缘,且所述弧形外边缘位于同一个圆圈,每两个扇形延伸部之间设有一缺口;所述电路板与所述至少两个延伸部接触。
进一步地,包括支板,其套设并安装于转动轴;所述永磁体安装于支板。
进一步地,所述支板包括支板座和设置于支板座一表面的凸台;所述永磁体套设于凸台,所述永磁体设置于支板座和电路板之间。
进一步地,所述永磁体的数量为两个,所述电路板的数量为一个;所述电路板设置于两个所述永磁体之间,并与两个所述永磁体之间存在间隙。
进一步地,所述支座包括本体,所述电路板套设并安装于本体。
进一步地,所述电路板的数量为两个;所述永磁体的数量为一个,其设置于两个所述电路板之间,并与两个所述电路板之间存在间隙,永磁体为轴向双面充磁结构。
进一步地,所述电路板的数量为三个;所述永磁体的数量为两个,所述永磁体分别位于所述三个电路板所形成的两个空隙,每个永磁体与相邻的两个所述电路板之间皆存在间隙;两个所述永磁体皆为轴向双面充磁结构。
本申请实施例还提供一种云台,包括成像装置,第一电机和第二电机,第一电机的转子连接所述成像装置,第一电机用于驱动所述成像装置绕其旋转中心轴转动;第二电机的转子连接第一电机的定子,所述第二电机用于驱动第一电机和成像装置绕其旋转中心轴转动。
进一步地,所述成像装置包括第一摄像头和第二摄像头;所述第一摄像头和所述第二摄像头分别安装于所述第一电机的两端,所述第一摄像头的光轴和所述第二摄像头的光轴重合并朝向相反的方向。
进一步地,还包括支撑臂;所述支撑臂的一端与所述第二电机的定子固定连接。
进一步地,所述支撑臂的远离所述第二电机的一端与所述第一电机活动 连接。
进一步地,所述支撑臂为U型结构,所述支撑臂的远离所述第二电机的一端通过旋转轴与所述第一电机活动连接,其中,所述旋转轴旋转的轴向与所述第二电机旋转的轴向重合。
进一步地,还包括第三电机,所述第三电机的转子与所述支撑臂固定连接。
进一步地,当所述支撑臂为U型结构时,所述第三电机的转子与所述支撑臂的U型底部固定连接。
进一步地,所述第一电机为横滚轴电机,所述第二电机为俯仰轴电机,所述第一电机和第二电机中的至少一个电机为上述的电机。
本申请实施例还提供一种机械臂,包括第一转动臂、第二转动臂、驱动齿轮、从动齿轮,以及电机。所述第一转动臂与所述电机的定子固定连接,电机的转子与驱动齿轮固定连接。从动齿轮与第二转动臂固定连接,所述从动齿轮与所述驱动齿轮啮合。
与现有技术相比较,本申请实施例的电机采用电路板为线圈电路的载体,替代传统的铁芯,从根源上消除现有的电机会产生的齿槽转矩及磁滞、涡流损耗的缺陷,提升了运行效率;永磁体的磁场作用方向设计为轴向主磁通,永磁体和电路板设置为端面轴向对接气隙,缩短了本申请实施例的电机的轴向尺寸,压缩了本申请实施例的电机的质量和体积。
另外,驱动控制芯片,功率电路和检测电路集成于电路板,使得本申请实施例的电机自带检测和控制功能,无需额外的驱动控制电路和检测电路,可进一步减少重量和体积,而且本申请实施例的电机的控制更智能。
【附图说明】
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1为本申请第一实施例提供的一种电机的分解图;
图2为图1的电机另一方向的分解图;
图3为本申请第一实施例提供的电机的立体图;
图4为本申请第一实施例提供的电机的剖视图;
图5为本申请第一实施例提供的电机中电路板的主视图;
图6为本申请第一实施例提供的电机中电路板的后视图;
图7为本申请第一实施例提供的电路板的线圈电路的电路结构示意图;
图8为本申请第一实施例提供的永磁体的结构示意图;
图9为本申请第二实施例提供的一种电机的剖视图;
图10为本申请第三实施例提供的一种电机的剖视图;
图11为本申请第四实施例提供的一种电机的剖视图;
图12为本申请第五实施例提供的一种云台的立体图;
图13为本申请第六实施例提供的一种机械臂的结构示意图;
图14为图13的机械臂的另一方向的结构示意图。
【具体实施方式】
为了便于理解本申请,下面结合附图和具体实施方式,对本申请进行更详细的说明。需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”、“内”、“外”以及类似的表述只是为了说明的目的。
除非另有定义,本说明书所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是用于限制本申请。本说明书所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图4,本申请第一实施例提供的一种电机100,包括定子10和转子20。
所述定子10包括支座11,轴承12和电路板13。
上述支座11包括本体110和至少二个延伸部114。本体110为圆柱形,上述至少二个延伸部114沿本体110的径向从本体110延伸而出,并位于同一平面。上述至少二个延伸部114皆为扇形,每一个扇形延伸部114包括弧形外边缘,所有扇形延伸部114的弧形外边缘位于同一个圆圈。每两个扇形延伸部114之间设有一缺口116。
上述支座11还设有一通孔112,通孔112为圆形,其沿本体110的轴向贯穿本体110。通孔112的内壁设有环形的凸起118(见图4)。
上述轴承12的数量为二个,设置于通孔112内,并抵紧凸起118的两侧。二个轴承12安装于通孔112时,每个轴承12的端面与本体110的端面齐平。
上述电路板13的中央设有一圆形的安装孔134。上述本体110穿过安装孔134,电路板13套设于本体110,并接触三个上述延伸部114。
上述转子20包括转动轴21,辅感磁体22,永磁体23和支板24。
上述转动轴21包括基座212,中间部214和轴杆216。基座212,中间部214和轴杆216皆为圆柱形,中间部214连接于基座212和轴杆216之间。中间部214的直径大于轴杆216的直径,小于基座212的直径。两个轴承12均套设于所述轴杆216,并且位于所述凸起118的两侧。轴承12用于支撑轴杆216,降低轴杆216在转动过程中的摩擦系数。本体110接触中间部214。
上述辅感磁体22为环形,套设于中间部214,抵紧基座212。辅感磁体22位于支座11和基座212之间,与支座11之间存在间隙。辅感磁体22的主磁场可为轴向,也可为径向。
上述永磁体23为环形。
上述支板24安装于轴杆216的远离中间部214的一端,其包括支板座242和凸台244。支板座242和凸台244皆为环形,凸台244设置于支板座242一表面的中央。永磁体23的外径与支板座242的外径相等。永磁体23套设于凸台244,接触支板座242,并设置于支板座242和电路板13之间。永磁体23和电路板13之间存在间隙。
本申请实施例中的电机100可以是无刷电机。
请参阅图5-6,上述电路板13为印刷电路板,其包括基板130,检测电路132,驱动控制电路136和线圈电路138。
上述基板130包括环形的主体部分1302和从主体部分1304的边缘延伸而出的三个凸出部分1304,该三个凸出部分1304均匀分布于主体部分1302的外边缘,并且该三个凸出部分1304的位置分别与三个所述缺口116的位置相对应。上述安装孔134贯穿主体部分1302的中央。支座11,主体部分1302,永磁体23和支板24具有相等的外径。
上述检测电路132,设置于基板130,用于检测转子20的旋转位置或角度等位置信息。
在一些实施例中,请参阅图5,检测电路132可包括磁编码器件,设置于主体部分1302的一表面,背向永磁体23。检测电路132的位置与支座11的一个缺口116的位置相对应,用于感应装配在转子20上的辅感磁体22的主磁场,输出对应的模拟电压信号,反馈所述转子20的位置信息,例如,角度、旋转位置。
在一些其他实施例中,请参阅图6,检测电路132可包括霍尔元件,设置于上述三个凸出部分1304中的一个,面向永磁体23。霍尔元件利用霍尔效应感应、检测永磁体23的漏磁场,输出模拟/数字电压信号,反馈出转子10的位置信息,例如,旋转位置、角度。霍尔元件可为线型霍尔传感器或开关型霍尔传感器。
上述驱动控制电路136包括驱动控制芯片1362和功率电路1364,两者皆设置于基板130。功率电路1364电性连接上述线圈电路138,用于向线圈电路138传输电流。驱动控制芯片1362与功率电路1364和检测电路132电性连接,用于根据检测电路132反馈的转子20的位置信息,触发相应电子开关元件的导通或者关断,调节功率电路1364的功率输出,实现对功率电路1364的工作控制。所述驱动控制芯片1362、功率电路1364和检测电路132的位置分别与所述支座11的三个缺口116的位置相对应。
请参阅图6和图7,上述线圈电路138设置于主体部分1302,面向永磁体23。通过腐蚀覆铜的方式在线圈电路138中嵌入单层或多层径向辐射的直 线电路1380,各径向直线电路1380再通过弧形电路1382依次串联,组成等效于一般电机的一相绕组(见图6);各相绕组再经过弧形电路1382相互联接(例如,星形接法或三角形接法),构成本申请实施例的电机100的线圈电路138(见图6)。此种绕组结构可以减小所述转子20的重量,所述转子20的体积也大幅缩小,进而减小转子20的转动惯量,从而使所述电机100的相较于现有的电机具有质量轻、体积小的特点。
在一些实施例中,上述线圈电路138包括三相绕组,各相绕组通过弧形电路1382依次串联,构成线圈电路138。
请参阅图8,上述永磁体23采用HALBACH(海尔贝克)矩阵轴向充磁结构,可为整片结构,也可以是多片磁铁作HALBACH矩阵排列,为电路板13的线圈电路138提供轴向磁场。
在本实施例中,上述转动轴21为金属杆,用于支承支板24和永磁铁23,并与支板24和永磁铁23一起回转。
在一些实施例中,转动轴21可为其他杆状元件,只要能支承支板24和永磁铁23,并与支板24和永磁铁23一起回转即可,例如,具有摄像头的成像装置,包括杆状部分。该杆状部分穿过支板24,用于支承支板24和永磁铁23,并与支板24和永磁铁23一起回转。
在一些实施例中,上述转动轴21可用于支承支座11,并与支座11和电路板13一起回转,而轴承12安装于支板24的通孔,使得支板24和永磁体23可相对于转动轴21转动。
本申请实施例永磁体23的磁感线与转动轴21的轴心线平行,定子10和转子20设置为端面轴向对接气隙,可消除无效电磁反应的端部绕组,极大地缩短轴向尺寸,压缩质量和体积,提高功率密度;减小转子20的转动惯量、绕组电感和机电时间常数,有效提升动态性能;开放热传导空间,增强散热性能。
而且,本申请实施例的电路板13为线圈电路138的载体,替代传统的铁芯,通过腐蚀覆铜的方式在电路板13印刷上线圈电路138,从根源上消除现有的电机会产生的齿槽转矩及磁滞、涡流损耗的缺陷,削弱转矩扰动并提升 了运行效率。
另外,驱动控制芯片1362,功率电路1364和检测电路132集成于电路板13,使得本申请实施例的电机100自带检测和控制功能,无需额外的驱动控制电路和检测电路,可进一步减少重量和体积,而且本申请实施例的电机100的控制更智能。
请参阅图9,本申请第二实施例提供的电机200包括支座11,轴承12和电路板13,电路板13套设于支座11的本体110,轴承12收容于支座11的通孔112。
上述电机200还包括转动轴21,二个永磁体23和二个支板24,一个永磁体23对应安装于一个支板24。一个支板24套设于转动轴21的轴杆216,并接触中间部214,另一个支板24套设、并固定于轴杆216的远离中间部214的一端。两个永磁体23设置于电路板13的两侧,并各面向电路板13的两个相对表面。
每个永磁体23与第一实施例中的永磁体23相同,可以是整片结构作HALBACH轴向充磁,也可以是散片结构作HALBACH矩阵排列。
检测电路132可包括霍尔元件,设置于电路板13的三个凸出部分1304中的一个,面向一个永磁体23;或者设置于一个凸出部分1304的两个表面,分别面向二个上述永磁体23。
而在本实施例中,辅感磁体22省略。
轴承12、电路板13、转动轴21、支板24与第一实施例中的相同,在此不再重复赘述。
在一种实施方式中,支座11与第一实施例的相比,仅包括本体110,而省略了三个延伸部114。
本申请实施例将永磁体23的磁场作用方向设计为轴向主磁通,永磁体23和电路板13设置为端面轴向对接气隙,可消除无效电磁反应的端部绕组,极大地缩短轴向尺寸,压缩质量和体积,提高功率密度;减小电机200的转动惯量、绕组电感和机电时间常数,有效提升动态性能;开放热传导空间,增强散热性能。
本申请实施例的电路板13为线圈电路138的载体,替代传统的铁芯,通 过腐蚀覆铜的方式在电路板13中印刷线圈电路138,从根源上消除现有的电机会产生的齿槽转矩及磁滞、涡流损耗的缺陷,削弱转矩扰动并提升了运行效率。
而且,电路板13的两侧设置了两个永磁体23,增强了电机200的磁通量,提高了运行效率,进而增大了所述电机100的功率。对于部分有特殊外形/接口的应用场合,本申请实施例可以发挥动力强、效率高的优势。
另外,驱动控制芯片1362,功率电路1364和检测电路132集成于电路板13,使得本申请实施例的电机200自带检测和控制功能,无需额外的驱动控制电路和检测电路,可进一步减少重量和体积,而且本申请实施例的电机200的控制更智能。
请参阅图10,本申请第三实施例提供的电机300包括两个支座11,两个轴承12和两个电路板13,每个电路板13套设于一个相应的支座11的本体110,并接触延伸部分114。每个轴承12收容于相应的支座11的通孔112。
上述电机300还包括转动轴21和永磁体23。
一个支座11套设于转动轴21的中间部214,另一个支座11套设并安装于轴杆216的远离中间部214的一端。
永磁体23套设于轴杆216,并设置于两个电路板13之间。两个电路板13各自面向永磁体23的两个相对表面,并与永磁体23之间存在间隙。永磁体23为HALBACH轴向双面充磁结构,可整片结构作HALBACH轴向双面充磁,或者整片作HALBACH轴向单面充磁作背靠背粘接,再或者散片结构作HALBACH矩阵双面排列三种实现方法。
两个电路板13中的一个较另一个远离辅感磁体22。远离辅感磁体22的电路板13与第一实施例的电路板13相比,可省略了检测电路132。而在一些实施中,远离辅感磁体22的电路板13也可包括检测电路132。检测电路132可包括霍尔元件,设置于远离辅感磁体22的电路板13的三个凸出部分1304中的一个,面向永磁体23。
轴承12、靠近辅感磁体22的电路板13、转动轴21与第一实施例中的相同,在此不再重复赘述。
本申请实施例的支座11的通孔112仅收容一个轴承12,因此其与第一实施例的相比,厚度减少,其他结构都相同,在此不再重复赘述。
本申请实施例将永磁体23的磁场作用方向设计为轴向主磁通,永磁体23和电路板13设置为端面轴向对接气隙,可消除无效电磁反应的端部绕组,极大地缩短轴向尺寸,压缩质量和体积,提高功率密度;减小电机200的转动惯量、绕组电感和机电时间常数,有效提升动态性能;开放热传导空间,增强散热性能。
本申请实施例的电路板13为线圈电路138的载体,替代传统的铁芯,通过腐蚀覆铜的方式在电路板13中印刷线圈电路138,从根源上消除现有的电机会产生的齿槽转矩及磁滞、涡流损耗的缺陷,削弱转矩扰动并提升了运行效率。
而且,永磁体23的两侧设置了两个电路板13,在永磁体23双面充磁的基础上增加了感应线圈的匝数,有效增加了输出功率,提高了运行效率。对于部分有特殊外形/接口的应用场合,本申请实施例可以发挥动力强、效率高的优势。
另外,驱动控制芯片1362,功率电路1364和检测电路132集成于电路板13,使得本申请实施例的电机300自带检测和控制功能,无需额外的驱动控制电路和检测电路,可进一步减少重量和体积,而且本申请实施例的电机300的控制更智能。
请参阅图11,本申请第四实施例提供的电机400包括两个支座11,两个轴承12和三个电路板13。三个电路板13中的两个各套设于一个相应的支座11的本体110,并接触延伸部114;另一个电路板13位于两个支座11之间。每个轴承12收容于一个相应的支座11的通孔112内。两个电路板13相对设置。
上述电机400还包括转动轴21和两个永磁体23。
一个支座11套设于转动轴21的中间部214,另一个支座11套设并安装于轴杆216的远离所述中间部214的一端。
上述两个永磁体23套设于轴杆216,设置于两个支座11上的两个电路板13之间,并位于另一个电路板13的两侧。每个永磁体23与相邻的电路板13之间存在间隙。
在本申请实施例中,上述永磁体23为HALBACH轴向充磁结构,可为整 片结构作HALBACH轴向充磁,或者散片结构作HALBACH矩阵排列两类,充磁覆盖面可为单面或者双面两种。
三个电路板13中的两个较另一个远离辅感磁体22。远离辅感磁体22的电路板13与第一实施例的电路板13相比,可省略检测电路132。而在一些实施中,远离辅感磁体22的电路板13也可包括检测电路132。检测电路132可包括霍尔元件,设置于远离辅感磁体22的电路板13的三个凸出部分1304中的一个,面向永磁体23。
轴承12、靠近辅感磁体22的电路板13、转动轴21与第一实施例中的相同,在此不再重复赘述。
本申请实施例的支座11的通孔112仅收容一个轴承12,因此其与第一实施例的相比,厚度减少,其他结构都相同,在此不得重复赘述。
本申请实施例将永磁体23的磁场作用方向设计为轴向主磁通,永磁体23和电路板13设置为端面轴向对接气隙,可消除无效电磁反应的端部绕组,极大地缩短轴向尺寸,压缩质量和体积,提高功率密度;减小电机200的转动惯量、绕组电感和机电时间常数,有效提升动态性能;开放热传导空间,增强散热性能。
本申请实施例的电路板13为线圈电路138的载体,替代传统的铁芯,通过腐蚀覆铜的方式在电路板13中印刷线圈电路138,从根源上消除现有的电机会产生的齿槽转矩及磁滞、涡流损耗的缺陷,削弱转矩扰动并提升了运行效率。
而且,本申请实施例设置于二个永磁体23和三个电路板13,增强了电机200的磁通量,增加了感应线圈的匝数,有效增加了输出功率,提高了运行效率。对于部分有特殊外形/接口的应用场合,本申请实施例可以发挥动力强、效率高的优势。
另外,驱动控制芯片1362,功率电路1364和检测电路132集成于电路板13,使得本申请实施例的电机400自带检测和控制功能,无需额外的驱动控制电路和检测电路,可进一步减少重量和体积,而且本申请实施例的电机400的控制更智能。
请参阅图12,本申请第五实施例提供的云台500,包括第一电机530,第 二电机520和成像装置540。第一电机530的转子连接成像装置540,用于驱动成像装置540绕其旋转中心轴转动。第二电机520的转子连接第一电机530的定子,用于驱动第一电机530和成像装置540绕其旋转中心轴转动。在本实施例中,云台500还包括第三电机510,第三电机510的转子连接第二电机520的定子,第三电机510用于驱动第二电机520,第一电机530和成像装置540绕第三电机510的旋转中心轴转动。
本申请实施例中,第一电机530、第二电机520和第三电机510分别是横滚轴电机、俯仰轴电机和航向轴电机。第一电机530、第二电机520和第三电机510的旋转中心轴分别是横滚轴、俯仰轴和航向轴。
优选地,云台500还包括支撑臂550。支撑臂550与第三电机510的转子固定连接,并与第二电机520的定子固定连接。
在其中一种实现方式中,支撑臂550可以是L型结构,支撑臂550的一端与第二电机520的定子固定连接,支撑臂550的另一端与第三电机510的转子固定连接。
在另外一种实现方式中,支撑臂550可以是U型结构,支撑臂550的一端与第二电机520的定子固定连接,支撑臂550的远离第二电机520的一端与第一电机530活动连接。支撑臂550的远离第二电机520的一端可以通过旋转轴560与第一电机530活动连接,其中,旋转轴560旋转的轴向与第二电机520旋转的轴向重合。支撑臂550的U型底部与第三电机510的转子固定连接。
上述成像装置540包括第一摄像头5402和第二摄像头5404。第一摄像头5402和第二摄像头5404分别安装于第一电机530的两端,并朝向相反方向。第一电机530用于驱动第一摄像头5402和第二摄像头5404绕其横滚轴转动。
在本实施例中,第一摄像头5402的光轴和第二摄像头5404的光轴重合,第一摄像头511和第二摄像头512协同能达到360度同时取像。在一些其他实施例中,第一摄像头511和第二摄像头512的光轴可以有一定角度,但必须保证第一摄像头511和第二摄像头512能达到360度同时取像。
上述第一电机530,第二电机520和第三电机510中的至少一个为第一实施例的电机100,或者第二实施例的电机200,或者第三实施例的电机300,或者第四实施例的电机400。上述云台500可应用于无人机。
而在一些实施例中,上述成像装置540可仅包括一个摄像头。
请参阅图13和图14,本申请第六实施例提供的机械臂600,包括第一转动臂601、第二转动臂602、驱动齿轮603、从动齿轮604、电机605。所述电机605设置于所述第一转动臂601靠近所述第二转动臂602的一端。所述电机605的定子与所述第一转动臂601固定连接,其转子与所述驱动齿轮603固定连接,用于驱动所述驱动齿轮603转动。所述从动齿轮604固定于所述第二转动臂602靠近所述第一转动臂601的一端,并且所述从动齿轮604与所述驱动齿轮603啮合。当电机605驱使驱动齿轮603转动时,从动齿轮604会随着驱动齿轮603一起转动,从而使所述第二转动臂602相对于所述第一转动臂601运动。
当驱动齿轮603和从动齿轮604的形状均为圆形时,在电机605的驱动下,第二转动臂602会相对于第一转动臂601转动,如图14所示。
当驱动齿轮603是圆形结构、从动齿轮604是带状的直线型结构时,在电机605的驱动下,第二转动臂602会相对于第一转动臂601做平移运动。
当驱动齿轮603是带状的直线型结构、从动齿轮604是圆形结构时,在电机605的驱动下,第二转动臂602会相对于第一转动臂601做平移运动。
当驱动齿轮603和从动齿轮604均是带状的直线型结构时,在电机605的驱动下,第二转动臂602会相对于第一转动臂601做平移运动。
本申请实施例并不限定驱动齿轮603和从动齿轮604的形状。驱动齿轮603或从动齿轮604的形状还可以是椭圆形。第二转动臂602会根据驱动齿轮603和从动齿轮604的形状,相对于第一转动臂601运动。
上述电机605为第一实施例的电机100,或者第二实施例的电机200,或者第三实施例的电机300,或者第四实施例的电机400。
上述机械臂600可应用于机器人、医疗器械等。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;在本申请的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本申请的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然 可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (33)

  1. 一种电机,其特征在于,包括:
    支座(11);
    电路板(13),其安装于支座(11),所述电路板(13)包括线圈电路(138);
    转动轴(21),所述支座(11)安装于转动轴(21);
    永磁体(23),其与所述线圈电路(138)相邻设置,并与线圈电路(138)之间存在间隙,所述永磁体(23)为轴向充磁结构。
  2. 如权利要求1所述的电机,其特征在于,所述线圈电路(138)包括单层或多层沿转动轴(21)的径向而设置的直线电路(1380)。
  3. 如权利要求2所述的电机,其特征在于,所述电路板(13)还包括基板(130),所述线圈电路(138)还包括弧形电路(1382);所述直线电路(1380)和弧形电路(1382)设置于基板(130);所述沿转动轴(21)的径向而设置的直线电路(1380)通过弧形电路(1382)依次串联,组成不同相的绕组。
  4. 如权利要求3所述的电机,其特征在于,各相绕组经过弧形电路(1382)相互联接。
  5. 如权利要求1-2任一项所述的电机,其特征在于,所述电路板(13)还包括基板(130),驱动控制芯片(1362),功率电路(1364)和检测电路(132);驱动控制芯片(1362),功率电路(1364)和检测电路(132)都设置于基板(130);
    所述检测电路(132)用于检测电机的转子(20)的位置信息;
    所述功率电路(1364)电性连接线圈电路(138),所述驱动控制芯片(1362)与功率电路(1364)和检测电路(132)电性连接,所述驱动控制芯片(1362)用于根据检测电路(132)反馈的转子(20)的位置信息,控制功率电路(1364)。
  6. 如权利要求5所述的电机,其特征在于,所述检测电路(132)设置 于基板(130)的一表面,该表面朝向永磁体(23),检测电路(132)用于检测永磁体(23)的漏磁场,反馈转子的位置信息。
  7. 如权利要求6所述的电机,其特征在于,所述基板(130)包括环形的主体部分(1302)和从主体部分(1302)的边缘延伸而出的凸出部分(1304);所述检测电路(132)设置于凸出部分(1304)。
  8. 如权利要求5所述的电机,其特征在于,所述转子(20)包括辅感磁体(22),其套设于转动轴(21),辅感磁体(22)与支座(11)之间存在间隙;所述支座(11)设置于电路板(13)和辅感磁体(22)之间;
    所述检测电路(132),设置于基板(130),背向永磁体(23),所述检测电路(132)用于检测辅感磁体(22)的主磁场,反馈转子的位置信息。
  9. 如权利要求8所述的电机,其特征在于,所述支座(11)设有缺口(116),所述检测电路(132)的位置与缺口(116)的位置相对应。
  10. 如权利要求8或9所述的电机,其特征在于,所述转动轴(21)包括基座(212),中间部(214)和轴杆(216),中间部(214)连接于基座(212)和轴杆(216)之间;基座(212),中间部(214)和轴杆(216)皆为圆柱形,中间部(214)的直径大于轴杆(216)的直径,小于基座(212)的直径;所述辅感磁体(22)套设于中间部(214),抵紧基座(212);所述支座(11)套设于轴杆(216)。
  11. 如权利要求8-10任一项所述的电机,其特征在于,所述基板(130)包括环形的主体部分(1302);所述检测电路(132)设置于主体部分(1302)。
  12. 如权利要求7或11所述的电机,其特征在于,所述永磁体(23)为环形,其外径与环形的主体部分(1302)的外径相等。
  13. 如权利要求7或11或12所述的电机,其特征在于,所述线圈电路 (138)设置于环形的主体部分(1302)。
  14. 如权利要求1-13任一项所述的电机,其特征在于,所述支座(11)包括本体(110),电路板(13)套设于本体(110);所述支座(11)还设有轴向贯穿本体(110)的通孔(112);所述定子(10)包括轴承(12),其收容于通孔(112),并套设于转动轴(21)。
  15. 如权利要求14所述的电机,其特征在于,所述通孔(112)的内壁设有环形的凸起(118);所述轴承(12)的数量为二个,分别设置于凸起(118)的两侧,并抵紧凸起(118)。
  16. 如权利要求14或15所述的电机,其特征在于,所述支座(11)包括至少两个延伸部(114),其沿本体(110)的径向从本体(110)延伸而出,并位于同一平面。
  17. 如权利要求16所述的电机,其特征在于,所述至少两个延伸部(114)皆为扇形,每个扇形延伸部(114)包括弧形外边缘,且所述弧形外边缘位于同一个圆圈,每两个扇形延伸部(114)之间设有一缺口(116);所述电路板(13)与所述至少两个延伸部(114)接触。
  18. 如权利要求1-17任一项所述的电机,其特征在于,包括支板(24),其套设并安装于转动轴(21);所述永磁体(23)安装于支板(24)。
  19. 如权利要求18所述的电机,其特征在于,所述支板(24)包括支板座(242)和设置于支板座(242)一表面的凸台(244);所述永磁体(23)套设于凸台(244),所述永磁体(23)设置于支板座(242)和电路板(13)之间。
  20. 如权利要求1-5任一项所述的电机,其特征在于,所述永磁体(23)的数量为两个,所述电路板(13)的数量为一个;所述电路板(13)设置于 两个所述永磁体(23)之间,并与两个所述永磁体(23)之间存在间隙。
  21. 如权利要求20所述的电机,其特征在于,所述支座(11)包括本体(110),所述电路板(13)安装于本体(110)。
  22. 如权利要求1-5所述的电机,其特征在于,所述电路板(13)的数量为两个;所述永磁体(23)的数量为一个,其设置于两个所述电路板(13)之间,并与两个所述电路板(13)之间存在间隙,永磁体(23)为轴向双面充磁结构。
  23. 如权利要求1-5所述的电机,其特征在于,所述电路板(13)的数量为三个;所述永磁体(23)的数量为两个,所述永磁体(23)分别位于所述三个电路板(13)所形成的两个空隙,每个永磁体(23)与相邻的两个所述电路板(13)之间皆存在间隙;两个所述永磁体(23)皆为轴向双面充磁结构。
  24. 一种云台,其特征在于,包括成像装置(540),第一电机(530)和第二电机(520),第一电机(530)的转子连接所述成像装置(540),第一电机(530)用于驱动所述成像装置(540)绕其旋转中心轴转动;第二电机(520)的转子连接第一电机(530)的定子,所述第二电机(520)用于驱动第一电机(530)和成像装置(540)绕其旋转中心轴转动。
  25. 如权利要求24所述的云台,其特征在于,所述成像装置(540)包括第一摄像头(5402)和第二摄像头(5404);
    所述第一摄像头(5402)和所述第二摄像头(5404)分别安装于所述第一电机(530)的两端,所述第一摄像头(5402)的光轴和所述第二摄像头(5404)的光轴重合并朝向相反的方向。
  26. 如权利要求24或25所述的云台,其特征在于,还包括支撑臂(550);
    所述支撑臂(550)的一端与所述第二电机(520)的定子固定连接。
  27. 如权利要求26所述的云台,其特征在于,所述支撑臂(550)的远离所述第二电机(520)的一端与所述第一电机(530)活动连接。
  28. 如权利要求27所述的云台,其特征在于,所述支撑臂(550)为U型结构,所述支撑臂(550)的远离所述第二电机(520)的一端通过旋转轴(560)与所述第一电机(530)活动连接,其中,所述旋转轴(560)旋转的轴向与所述第二电机(520)旋转的轴向重合。
  29. 如权利要求26-28中任一所述的云台,其特征在于,还包括第三电机(510),所述第三电机(510)的转子与所述支撑臂(550)固定连接。
  30. 如权利要求29所述的云台,其特征在于,当所述支撑臂(550)为U型结构时,所述第三电机(510)的转子与所述支撑臂(550)的U型底部固定连接。
  31. 如权利要求24-30中任一所述的云台,其特征在于,所述第一电机(530)为横滚轴电机,所述第二电机(520)为俯仰轴电机,所述第一电机(530)和第二电机(520)中的至少一个电机为权利要求1至23中任一项所述的电机。
  32. 一种机械臂,其特征在于,包括第一转动臂(601)、第二转动臂(602)、驱动齿轮(603)、从动齿轮(604),以及电机(605);
    所述第一转动臂(601)与所述电机(605)的定子固定连接,所述电机(605)的转子与驱动齿轮(603)固定连接;
    从动齿轮(604)与第二转动臂(602)固定连接,所述从动齿轮(604)与所述驱动齿轮(603)啮合。
  33. 如权利要求32所述的机械臂,其特征在于,所述电机(605)为权利要求1至23中任一项所述的电机。
PCT/CN2017/080460 2017-02-27 2017-04-13 一种电机及具有此电机的云台和机械臂 WO2018152944A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17777149.0A EP3386074A4 (en) 2017-02-27 2017-04-13 Motor, and pan-tilt and robotic arm having same
US15/784,556 US10141823B2 (en) 2017-02-27 2017-10-16 Motor, gimbal, and mechanical arm having the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710108024.2A CN106787293B (zh) 2017-02-27 2017-02-27 一种电机及具有此电机的云台和机械臂
CN201710108024.2 2017-02-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/784,556 Continuation US10141823B2 (en) 2017-02-27 2017-10-16 Motor, gimbal, and mechanical arm having the same

Publications (1)

Publication Number Publication Date
WO2018152944A1 true WO2018152944A1 (zh) 2018-08-30

Family

ID=58960608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080460 WO2018152944A1 (zh) 2017-02-27 2017-04-13 一种电机及具有此电机的云台和机械臂

Country Status (3)

Country Link
EP (1) EP3386074A4 (zh)
CN (2) CN106787293B (zh)
WO (1) WO2018152944A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220463A (zh) * 2023-11-07 2023-12-12 天津九信科技有限公司 云台电机及增稳云台

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206948130U (zh) * 2017-07-17 2018-01-30 深圳市道通智能航空技术有限公司 电机及具有此电机的云台和机械臂
US10447120B2 (en) 2017-07-17 2019-10-15 Autel Robotics Co., Ltd. Motor, gimbal and mechanical arm having same
CN108312137B (zh) * 2018-03-26 2023-08-15 河南工程学院 基于多关节机械臂的无人机着陆对接机构
CN114175462A (zh) * 2019-05-24 2022-03-11 奇跃公司 环形轴向磁通电机
CN111293798B (zh) * 2020-02-18 2022-07-12 天津大学 轴向磁场复合pcb定子有铁心永磁同步电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102075051A (zh) * 2009-11-25 2011-05-25 建准电机工业股份有限公司 微型马达
CN105207408A (zh) * 2015-10-26 2015-12-30 深圳市道通智能航空技术有限公司 一种电机、云台及飞行器
CN205244760U (zh) * 2015-11-20 2016-05-18 深圳市道通智能航空技术有限公司 双臂云台
CN105703510A (zh) * 2016-03-15 2016-06-22 江苏河谷矿业科技发展有限公司 轴向磁场印刷电路板永磁无刷直流电机
CN106003007A (zh) * 2016-06-14 2016-10-12 东莞市联洲知识产权运营管理有限公司 一种应用于夹持杆件的联动式机械臂
EP2382701B1 (en) * 2009-01-16 2016-11-30 Boulder Wind Power, Inc. Segmented stator for an axial field device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6856054B2 (en) * 2001-09-25 2005-02-15 Matsushita Electric Industrial Co., Ltd Brushless DC motor, pump, and electronic apparatus
US20140125154A1 (en) * 2009-12-22 2014-05-08 Kress Motors, LLC Poly gap transverse flux machine
US8154161B2 (en) * 2009-12-23 2012-04-10 Sunonwealth Electric Machine Industry Co., Ltd. Miniature motor
CN103001426A (zh) * 2012-11-19 2013-03-27 腾达电动科技镇江有限公司 印刷电路板无铁芯盘式电机
TWI467896B (zh) * 2013-01-24 2015-01-01 Sunonwealth Electr Mach Ind Co 易於啓動之馬達及其基座
CN105892218B (zh) * 2016-06-08 2017-11-10 极翼机器人(上海)有限公司 一种全景云台及其控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2382701B1 (en) * 2009-01-16 2016-11-30 Boulder Wind Power, Inc. Segmented stator for an axial field device
CN102075051A (zh) * 2009-11-25 2011-05-25 建准电机工业股份有限公司 微型马达
CN105207408A (zh) * 2015-10-26 2015-12-30 深圳市道通智能航空技术有限公司 一种电机、云台及飞行器
CN205244760U (zh) * 2015-11-20 2016-05-18 深圳市道通智能航空技术有限公司 双臂云台
CN105703510A (zh) * 2016-03-15 2016-06-22 江苏河谷矿业科技发展有限公司 轴向磁场印刷电路板永磁无刷直流电机
CN106003007A (zh) * 2016-06-14 2016-10-12 东莞市联洲知识产权运营管理有限公司 一种应用于夹持杆件的联动式机械臂

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117220463A (zh) * 2023-11-07 2023-12-12 天津九信科技有限公司 云台电机及增稳云台
CN117220463B (zh) * 2023-11-07 2024-03-01 天津九信科技有限公司 云台电机及增稳云台

Also Published As

Publication number Publication date
EP3386074A1 (en) 2018-10-10
CN106787293A (zh) 2017-05-31
CN117578760A (zh) 2024-02-20
CN106787293B (zh) 2023-11-21
EP3386074A4 (en) 2018-10-10

Similar Documents

Publication Publication Date Title
WO2018152944A1 (zh) 一种电机及具有此电机的云台和机械臂
US10141823B2 (en) Motor, gimbal, and mechanical arm having the same
WO2011096134A1 (ja) 回転電機
JP2012125088A (ja) 電気機械装置及びロボット及び車輪
TWI413347B (zh) 具斷電自鎖功能之磁控式機器臂關節致動器
US11258342B2 (en) Electrical machine
JP2008236866A (ja) 永久磁石埋め込み型回転電機の回転子及び永久磁石埋め込み型回転電機
WO2019033797A1 (zh) 电机的定子组件、电机和无人机
JP4303579B2 (ja) 三次元ステーター構造の回転機
CN206834860U (zh) 一种电机及具有此电机的云台和机械臂
EP1432105B1 (en) Coreless Motor
CN111293798B (zh) 轴向磁场复合pcb定子有铁心永磁同步电机
JP2010141991A (ja) 回転モーター
JP2022084160A (ja) 回転モーターおよびロボット
JP2023546289A (ja) 軸方向磁束および径方向磁束を組み合わせた電気機械
JP5894414B2 (ja) 発電機
CN111865034A (zh) 一种侧面驱动线性马达
JP4771278B2 (ja) 永久磁石形電動機およびその製造方法
JP3214913B2 (ja) ラジアル型アウターロータ方式ブラシレスモータ
CN215870939U (zh) 一种超薄紧凑型电机、电机设备、电机系统及发电系统
JP2005253280A (ja) リング状の固定子コイルを有するアウターロータ形のブラシレスdcモータ及びacサーボモータ
KR101976399B1 (ko) 양방향 속도편차를 갖는 전동모터
JP2008199879A (ja) 電気モータ又は発電機
WO2019171673A1 (ja) アキシャルギャップ型回転電機
JPH0678507A (ja) ラジアル型アウターロータ方式ブラシレスモータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017777149

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE