WO2019033797A1 - 电机的定子组件、电机和无人机 - Google Patents

电机的定子组件、电机和无人机 Download PDF

Info

Publication number
WO2019033797A1
WO2019033797A1 PCT/CN2018/085370 CN2018085370W WO2019033797A1 WO 2019033797 A1 WO2019033797 A1 WO 2019033797A1 CN 2018085370 W CN2018085370 W CN 2018085370W WO 2019033797 A1 WO2019033797 A1 WO 2019033797A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
stator assembly
stator
motor
printed layer
Prior art date
Application number
PCT/CN2018/085370
Other languages
English (en)
French (fr)
Inventor
陈法全
吉志鹏
孙雪峰
Original Assignee
深圳市道通智能航空技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术有限公司 filed Critical 深圳市道通智能航空技术有限公司
Publication of WO2019033797A1 publication Critical patent/WO2019033797A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/26Windings characterised by the conductor shape, form or construction, e.g. with bar conductors consisting of printed conductors

Definitions

  • the invention relates to the field of electric machines, in particular to a stator assembly, a motor and a drone of an electric machine.
  • Disc motors are gaining popularity due to their small size, light weight and high operating efficiency.
  • the difference between a disc motor and a conventional motor is that the coil is fixed to the disc-shaped stator, and the rotor cover is on the stator.
  • the toroidal coil 102 is formed.
  • the coils are arranged from the outside to the inside, and the area of the coil is also gradually reduced from the outside to the inside, resulting in a decrease in the area through which the magnetic induction lines pass, and a decrease in the magnetic flux; and the above winding method makes the PCB There are many blank areas on the edge of the board that are not covered by the coil, resulting in a limited space for the PCB board being underutilized.
  • N the area of the perpendicular magnetic induction intensity
  • N is the number of turns of the coil
  • B the magnetic induction
  • One of the objects of the present invention is to provide a stator assembly of a motor capable of making full use of the PCB board space to increase the coil area in order to solve the above problems.
  • One of the objects of the present invention is to provide an electric motor in order to solve the above problems.
  • One of the objects of the present invention is to provide a drone in order to solve the above problems.
  • the invention provides a stator assembly for an electric machine, comprising at least one printed layer set, the printed layer set comprising:
  • each of the two printed layers comprising a plurality of sets of conductive patterns
  • a first core board the two layers of printed layers are printed on both sides of the first core board; the first core board is provided with a plurality of connection holes filled with a dielectric; the two layers of the printed layer A plurality of sets of conductive patterns of each layer are electrically connected to the plurality of sets of conductive patterns of the other layer through the connection holes such that each set of conductive patterns forms a continuous line of conductive coils.
  • the printed layer set is a plurality
  • the stator assembly further includes a second core board disposed between two adjacent printed layer groups, the second core The board is provided with a plurality of connection holes filled with a dielectric, and adjacent two printed layers are electrically connected through the connection holes on the second core board to form a multilayer conductive coil of the continuous line.
  • the number of the continuous lines is three, which are respectively three-phase lines.
  • the plurality of sets of conductive patterns are three groups, each set of conductive patterns includes a plurality of patterns, and corresponding patterns of the respective groups are sequentially arranged, and the traces of the adjacent two patterns have the same phase difference.
  • the first core board includes a coil portion and a connecting portion, the coil portion is annular, the coil portion includes the printed layer, and two ends of the continuous line are disposed at the connecting portion .
  • an angular velocity sensor is further included, the angular velocity sensor being soldered to the connecting portion.
  • the angular velocity sensor comprises any one of a linear Hall device, a magnetic encoding IC, a Hall switch, and a grating encoder.
  • the inner edge of the coil portion forms a through hole
  • the single conductive pattern sequentially includes an inner extension portion extending toward the through hole, a middle portion, and an outwardly extending extension portion, the inner extension portion and the extension portion
  • the segment extends in the opposite direction and gradually decreases in width
  • the single conductive pattern extends from the outer edge of the through hole to the outer edge of the coil portion.
  • the plurality of sets of conductive patterns are sequentially arranged along the circumferential direction of the coil portion, and are radially distributed around the through holes of the coil portion, and each group on the same layer of the printed layer is electrically conductive.
  • the patterns of the patterns are uniformly inclined in one direction, and the respective conductive patterns extend from the outer edge of the through hole to the outer edge of the coil portion.
  • the same set of conductive patterns on the same printed layer is divided into a positive pattern and a negative pattern, and the positive pattern and the negative pattern are alternately arranged in the circumferential direction of the coil portion;
  • the positive pattern of the same set of conductive patterns is electrically connected to the positive pattern of another adjacent printed layer through a connection hole on the first core board, and the negative pattern of the same set of conductive patterns passes through the connection hole on the first core board
  • the negative patterns of the adjacent printed layers are electrically connected to form a positive continuous line and a negative continuous line, and the tail end of the positive connecting line is electrically connected to the tail end of the negative continuous line so that the positive pole is continuous
  • the line and the negative continuous line form a continuous line;
  • the positive continuous line and the negative continuous line intersect on a projection surface to form a plurality of annular conductive coils on the projection surface.
  • a positive pattern or a negative pattern formed between the positive pattern and the negative pattern of the same set of conductive patterns of the same printed layer is a trace of two adjacent positive patterns or negative patterns belonging to different groups. Has a predetermined phase difference.
  • the projection of the same set of corresponding patterns on the two printed layers in the axial direction of the first core is a mirror image.
  • the invention further provides a motor comprising:
  • stator assembly being the stator assembly described above;
  • At least one rotor assembly including at least one permanent magnet
  • stator assembly and the rotor assembly are stacked in an axial direction, and each stator assembly and each rotor assembly are integrally connected by a shaft branch, and adjacent stator assemblies and rotor assemblies form an air gap in an axial direction to generate an axis. Magnetic line in the direction.
  • the rotor assembly comprises a plurality of permanent magnets, each permanent magnet comprises an S pole magnet portion and an N pole magnet portion with opposite magnetic pole directions, each permanent magnet is arranged according to a Halbach array, and each permanent magnet is continuous between Arrange or arrange in intervals.
  • the number of the stator assemblies is one, the number of the rotor assemblies is two, the stator assembly is located between two rotor assemblies, and the two rotor assemblies are respectively fixed on two oppositely disposed brackets.
  • the permanent magnet of the rotor assembly is single-sided magnetized.
  • the number of the stator assemblies is two, and the number of the rotor assemblies is one.
  • the two stator assemblies are respectively fixed on two seats disposed opposite to each other in the axial direction, and the rotor assembly is located at the two stator assemblies.
  • Between the permanent magnets of the rotor assembly is double-sided magnetized or bonded by two single-sided magnetized single-sided permanent magnets back-to-back.
  • the number of the stator components is multiple, the number of the rotor components is multiple, and the plurality of stator components and the plurality of rotor components are alternately stacked in the axial direction of the motor, and the rotor between the two stator components is arranged.
  • the permanent magnets of the assembly are double-sided magnetized or bonded by two single-sided magnetized single-sided magnets back-to-back.
  • the present invention further provides a drone comprising a fuselage, a pan/tilt head and the above-described electric machine disposed on the fuselage and/or the pan/tilt.
  • the stator assembly of the motor of the present invention comprises at least one printed layer set comprising a first core plate and a printed layer printed on both sides of the first core plate, each printed layer comprising a plurality of sets of conductive patterns,
  • the core plate is provided with a plurality of connection holes filled with a dielectric, and each set of conductive patterns of the two printed layers is electrically connected through the dielectric of the first core plate, so that each set of conductive patterns forms a conductive coil of a continuous line (per A set of conductive patterns corresponds to a phase coil).
  • the coils are formed by the interconnection of the patterns of the double-layer printed layers, so that the pattern printed by the single-layer printed layer is only a partial line constituting the coil, instead of the full-circle line, thereby maximizing the wiring space of the first core board.
  • the layout of the pattern is made more compact and reasonable, and in the case where the number of coils is sufficiently large, the area size of the coil is maximized, thereby increasing the magnetic flux.
  • the motor of the present invention increases the magnetic flux of the motor by using the above-described stator assembly, thereby improving the controllability and robustness of the motor.
  • the unmanned aerial vehicle of the present invention adopts the above motor, the magnetic flux is large, and the controllability of the motor is strong.
  • FIG. 1 is a schematic diagram of a coil layout of a conventional PCB board.
  • FIG. 2 is a schematic view showing the structure of a printed layer corresponding to the A-phase coil on one side of the first core board.
  • FIG 3 is a schematic view showing the structure of a printed layer corresponding to the A-phase coil on the other side of the first core board.
  • FIG. 4 is a schematic view showing a coil of a pattern of two adjacent printed layers projected along the axial direction of the first core plate on the projection surface.
  • Figure 5 is a schematic illustration of a plurality of printed layer sets and a plurality of second core sheets stacked in a stator assembly.
  • Figure 6 is a schematic view showing the structure of the printed layer corresponding to the B-phase coil on one side of the first core board.
  • Figure 7 is a schematic view showing the structure of the printed layer corresponding to the C-phase coil on one side of the first core board.
  • Figure 8 is a schematic view showing the structure of the printed layer corresponding to the B-phase coil on the other side of the first core board.
  • Figure 9 is a schematic view showing the structure of the printed layer corresponding to the C-phase coil on the other side of the first core board.
  • Figure 10 is a schematic view of a coil presented on a projection surface after lamination of a plurality of printed layer sets.
  • Figure 11 is a front elevational view of the motor.
  • Figure 12 is a schematic rear view of the motor.
  • Figure 13 is an axial cross-sectional view of the motor.
  • Figure 14 is a schematic view showing the structure of a permanent magnet of a rotor assembly.
  • Figure 15 is a schematic view of the structure of a motor including two rotor assemblies and one stator assembly.
  • Figure 16 is a schematic view of the structure of a motor including two stator assemblies and one rotor assembly.
  • 17 is a schematic view of the structure of a motor including a plurality of stator assemblies and a plurality of rotor assemblies.
  • the radial magnetic field core brushless motor is widely used.
  • This type of motor has a long structure, large mass and large volume, low power density, large core hysteresis and eddy current loss, and operating efficiency.
  • Low, cogging effect causes output torque ripple, interference to precise control of servo drive, large rotor inertia, large armature winding inductance, large electromechanical time constant, poor dynamic performance, poor heat dissipation and other defects.
  • the inventor thought of replacing the radial magnetic core brushless motor in the traditional drone with a disc motor, but as mentioned above.
  • the existing disc type motor is limited by the wiring mode of the PCB board, and the PCB board space cannot be fully utilized, resulting in a small coil area, which leads to a problem of small magnetic flux and poor controllability of the motor.
  • the inventor has proposed an improved PCB board wiring structure through ingenious conception and innovative labor, that is, a stator assembly of a motor capable of fully utilizing the PCB board space to increase the coil area.
  • the invention further proposes a motor consisting of the stator assembly. The motor can be applied to drones to improve the drone's controllability.
  • a single-phase coil is disposed on the stator assembly as an example, and then extended to a two-phase or multi-phase coil on the stator assembly.
  • FIG. 2 it is a schematic structural view of a printed layer corresponding to the A-phase coil located on one side of the first core board.
  • the stator assembly 10 includes a printed layer set including a first core plate 110 and printed layers disposed on opposite sides of the first core plate 110, respectively.
  • Each printed layer includes a plurality of sets of conductive patterns, and each set of conductive patterns corresponds to a pattern corresponding to one phase coil. Only the printed layer 120 corresponding to the A-phase coil on one side of the first core board 110 is shown in FIG.
  • the first core plate 110 includes a coil portion 111 and a connecting portion 112.
  • the coil portion 111 has an annular shape, and its inner edge forms a through hole 1111 through which the rotating shaft passes.
  • the connecting portion 112 protrudes outward from the coil portion 111 to form a projection on which the negative poles of the coils of the respective phases can be connected to form a neutral point. Further, components such as a sensor and a connector may be disposed in the connecting portion 112.
  • the first core plate 110 is provided with a plurality of dielectric-filled connection holes, and patterns of the printed layers on both sides of the first core plate 110 are electrically connected through the dielectric of the first core plate 110.
  • the material of the first core plate 110 may be a resin composite material such as FR-4 (epoxy glass fiber-4).
  • FR-4 epoxy glass fiber-4
  • a thin layer of copper may be applied to both surfaces of the first core plate 110, and the copper layer of the non-line portion may be etched by a chemical reaction method to obtain a desired printed layer 120.
  • the printed layer 120 includes a plurality of patterns 121 corresponding to the A-phase coils, and the patterns 121 are sequentially arranged in the circumferential direction of the coil portion 111, and are radially distributed around the through holes 1111 of the coil portion 111.
  • the single pattern 121 sequentially includes an inner extension 1211 extending toward the through hole 1111, an intermediate portion 1212, and an outwardly extending epitaxial segment 1213.
  • the inner extension 1211 and the epitaxial segment 1213 extend in opposite directions and gradually decrease in width.
  • the width of the inner extension 1211 and the epitaxial section 1213 is slightly smaller than the width of the intermediate section 1212, and is designed to maximize the area of the coil to be formed by the pattern 121.
  • An end of the inner extension 1211 and the extension 1212 away from the intermediate section 1212 is provided with a plurality of perforations through which the pattern 121 communicates with the connection hole on the first core board 110, and the dielectric and adjacent printing in the connection hole
  • the pattern corresponding to the layer is electrically connected.
  • Each of the patterns 121 is uniformly inclined in one direction, and each of the patterns 121 extends from the outer edge of the through hole 1111 to the outer edge of the coil portion 111.
  • FIG. 3 it is a schematic structural view of a printed layer corresponding to the A-phase coil on the other side of the first core board.
  • the pattern 131 of the printed layer 130 disposed on the other side of the first core board 110 is similar in shape to the pattern 121 of the printed layer 120, except that the layout direction of the pattern 131 and the pattern 121 is different, that is, along the first core board 110.
  • the pattern 131 on the projection surface is a mirror image of the pattern 121.
  • the pattern 131 also includes an inner extension 1311 extending toward the through hole 1111, an intermediate portion 1312, and an outwardly extending epitaxial segment 1313.
  • the inner extension 1311 and the epitaxial segment 1313 extend in opposite directions and gradually decrease in width.
  • FIG. 4 it is a schematic diagram of a coil projected on the projection surface by the pattern of two adjacent printed layers projected along the axial direction of the first core.
  • the pattern 131 of the printed layer 130 and the pattern 121 of the printed layer 120 form a plurality of continuously distributed loop coils on the projection surface.
  • each pattern 121 of the printed layer 120 intersects the pattern 131 corresponding to the printed layer 13, and each pattern 121 is connected to the two printed layers 13 which are not intersecting and adjacent.
  • the end of the inner extension 1211 of each pattern 121 of the printed layer 120 and the end of the inner extension 1311 of the pattern 131 that does not intersect on the projection surface pass through the first core plate 110.
  • the dielectric is electrically connected.
  • the end of the epitaxial segment 1213 of each pattern 121 and the end of the epitaxial segment 1313 of the adjacent pattern 131 that are not intersecting on the projection surface are connected to the dielectric in the hole through the first core 110.
  • Electrical connection Similarly, the end of the inner extension 1311 of each pattern 131 of the printed layer 130 and the end of the inner extension 1211 of the pattern 121 that does not intersect on the projection surface and pass through the first core plate 110 are connected to the hole.
  • the dielectric is electrically connected.
  • each pattern 131 is electrically connected to the end of the epitaxial segment 1213 of the pattern 121 that does not intersect on the projection surface and passes through the first core plate 110.
  • the intersecting patterns 121 and patterns 131 form an X-shaped pattern on the projection surface, the X-shaped pattern and the adjacent X-shaped pattern forming an annular conductive coil on the projection surface.
  • the patterns on the same printed layer are divided into a positive pattern and a negative pattern (a pattern in which a positive current i+ flows is a positive pattern, and a pattern through which a negative current i ⁇ flows is a negative pattern), Further, the positive electrode pattern and the negative electrode pattern are alternately arranged in the circumferential direction of the coil portion 111.
  • the positive electrode pattern is electrically connected to the positive electrode pattern of the adjacent printed layer through the connection hole on the first core board
  • the negative electrode pattern is electrically connected to the negative electrode pattern of the adjacent printed layer through the connection hole on the first core board, thereby forming a positive continuous line and a negative continuous line
  • the final end of the positive connecting line is electrically connected with the tail end of the negative continuous line, so that the positive continuous line and the negative continuous line form a continuous line, and both ends of the continuous line extend to the connecting portion 112.
  • the pattern 121 on the printed layer 120 corresponding to the A-phase coil forms a positive continuous line corresponding to the A-phase coil and the negative continuous line corresponding to the A-phase coil, and the positive electrode is connected to the pattern 131 of the printed layer 130.
  • the electrical connection between the trailing end of the line and the trailing end of the negative continuous line forms a continuous line.
  • the positive continuous line and the negative continuous line intersect on the projection surface to form a plurality of annular conductive coils arranged in the circumferential direction of the coil portion 111 on the projection surface.
  • FIG. 5 it is a schematic view of a plurality of printed layer sets of the stator assembly and a plurality of second core sheets stacked.
  • the stator assembly 10 includes a plurality of printed layer groups 11 and a plurality of second core sheets 140 stacked in the axial direction, and each of the printed layer groups 11 includes a first core board 110 and is disposed on both sides of the first core board 110.
  • the second core plate 140 is disposed between the adjacent two printed layer groups 11 for isolating two adjacent printed layers.
  • the second core plate 140 is provided with a plurality of connection holes filled with the dielectric 13, and the adjacent two printed layers 11 are electrically connected through the connection holes on the second core plate 140, thereby forming a multilayer A-phase coil of a continuous line.
  • the patterns of any two adjacent printed layers are projected along the axial direction of the first core board 110 and mirror images on the projection surface, and the patterns of any two adjacent printed layers are interconnected by lines to form a layer A phase.
  • the toroidal coil as shown in Figure 5, can form at least nine layers of A-phase toroidal coils.
  • the plurality of printed layer groups 11 and the plurality of second core plates 140 are superposed in the axial direction of the stator assembly 10.
  • the alternate traces of the printed layer 120 and the printed layer 130 corresponding to the laminates L1, L2 are completed to form a pattern as shown in FIGS. 2 and 3, and then through the connection on the first core 110.
  • the conductive medium 13 in the hole electrically connects the pattern of the printed layer 120 and the printed layer 130, and then, alternately traces the corresponding printed layer 120 and the printed layer 130 on the laminates L3, L4, and then passes through the second core.
  • the conductive medium 13 in the connection hole on the board 140 electrically connects the printed layer group 11 formed by the layers L1, L2 and the printed layer group 11 formed by the layers L3, L4; and so on, until the stack L9 and L10 traces and lines are interconnected. Finally, starting from stack L10, at the position of 24° from the entrance of stack L1, the wiring of stack L10 to stack L1 is interconnected to complete the routing of a continuous line. And thereby forming a multilayer A-phase coil.
  • the present invention forms a connection hole on the first core plate 110 and the second core plate 140 by means of laser drilling, so that the first core plate 110 and the second core plate 140 can be made thinner, for example, first
  • the core 110 (or the second core 140) may have a thickness of less than 0.1 mm.
  • the thickness of the first core plate 110 can be reduced to a minimum of 0.07 mm while ensuring sufficient magnetic flux. Therefore, even if the stator assembly includes nine core sheets (including four second core sheets 140 and five first core sheets 110) as shown in FIG. 5 and ten layers of printed layers, the total thickness is only 1.0 mm, and With the conventional mechanical blind blind hole punching method, the core plate is as thin as 2.0 mm.
  • the laminated stator assembly and the laser drilling method of the present invention can reduce the thickness of the stator assembly.
  • the partial printed layer 120 and the printed layer 130 shown in FIG. 4 are not covered on the first chip 110, and the layout is only for the sake of clarity.
  • the printed layer 120 is printed.
  • the printed layer 130 is overlaid on the first core 110 because the printed layer 120 and the printed layer 130 are formed by etching of a copper layer overlying the first core 110.
  • the above mainly describes the layout of the patterns used for forming the multilayer A-phase coils, the routing method and the interconnection method of the lines.
  • the first core plate 110 of the stator assembly 10 needs to be printed with a three-phase coil. Therefore, the first core plate 110 of the stator assembly 10 also needs to form a B-phase coil and a C-phase. Coil.
  • the B-phase coil and the C-phase coil can be formed by the A-phase coil.
  • FIG. 6 is a schematic structural view of a printed layer corresponding to the B-phase coil on one side of the first core board
  • FIG. 7 is located on the C side of one side of the first core board.
  • a schematic diagram of the structure of the printed layer corresponding to the coil, the printed layer 120 further includes a pattern 122 corresponding to the B-phase coil and a pattern 123 corresponding to the C-phase coil, and the pattern 122 and the C-phase coil corresponding to the B-phase coil correspond to
  • the pattern 123 is similar in shape to the pattern 121 corresponding to the A-phase coil, except that the pattern 122, the pattern 123 and the pattern 121 have different routing directions, and there is a certain phase difference between them, for example, the pattern 122 corresponding to the B-phase coil.
  • the phase difference of the pattern 121 corresponding to the A-phase coil is 12°
  • the phase difference between the pattern 121 corresponding to the A-phase coil and the pattern 123 corresponding to the C-phase coil is
  • phase difference of the corresponding patterns of the coils of the respective phases is not limited herein, and the phase difference of the patterns of the adjacent two-phase coils may be other degrees, for example, 13°, 14° or other degrees.
  • the scheme in which the phase difference of the patterns of the adjacent two phases is 12° can maximize the space of the first core board 110 (ie, the PCB board) of the stator assembly 10, and the pattern corresponding to each phase coil can be covered.
  • FIG. 8 is a schematic structural view of a printed layer corresponding to the B-phase coil on the other side of the first core board
  • FIG. 9 is a C located on the other side of the first core board.
  • the structure of the printed layer corresponding to the phase coil, the printed layer 130 further includes a pattern 132 corresponding to the B-phase coil and a pattern 133 corresponding to the C-phase coil, and a pattern 132 and a C-phase coil corresponding to the B-phase coil.
  • the corresponding pattern 133 is similar in shape to the pattern 131 corresponding to the A-phase coil, except that the pattern 132, the pattern 133 and the pattern 131 have different routing directions, and there is a certain phase difference between them, for example, a pattern corresponding to the B-phase coil.
  • the phase difference of the pattern 131 corresponding to the A-phase coil is 12°
  • the phase difference between the pattern 131 corresponding to the A-phase coil and the pattern 133 corresponding to the C-phase coil is 24°.
  • phase difference of the corresponding pattern of each phase coil is not limited herein, and the phase difference of the patterns of the adjacent two phases may be other degrees, for example, 13°, 14° or other degrees.
  • the scheme in which the phase difference of the patterns of the adjacent two phases is 12° can maximize the space of the first core plate 110 of the stator assembly 10, so that the corresponding pattern of each phase coil fills the coil portion of the entire first core plate 110. 111 spaces.
  • the projection 122 corresponding to the B-phase coil on the printed layer 120 and the pattern 132 corresponding to the B-phase coil on the printed layer 130 in the axial direction of the first core 110 are mirror images.
  • the projection of the pattern 123 and the pattern 133 corresponding to the C-phase coil in the axial direction of the first core 110 is a mirror image.
  • the corresponding first core board 110 in FIGS. 6 to 9 respectively. Only the pattern 122 corresponding to the B-phase coil, the pattern 123 corresponding to the C-phase coil, the pattern 132 corresponding to the B-phase coil, and the pattern 133 corresponding to the C-phase coil are displayed, and the pattern corresponding to the other two-phase coil is omitted.
  • the pattern 121 corresponding to the A-phase coil, the pattern 122 corresponding to the B-phase coil, and the pattern 123 corresponding to the C-phase coil are all disposed on the same printed layer 120, and the pattern corresponding to the A-phase coil. 131.
  • the pattern 132 corresponding to the B-phase coil and the pattern 133 corresponding to the C-phase coil are all disposed on the same printed layer 130.
  • the pattern 121, the pattern 122, and the pattern 123 may be a positive pattern, and the pattern 131, the pattern 132, and the pattern 133 may be a negative pattern.
  • the patterns of the patterns may be arranged in a positive pattern, and the negative patterns are arranged in Together, for example, the order of arrangement of the patterns on the first core board 110 is, in order, the pattern 121, the pattern 122, the pattern 123, the pattern 131, the pattern 132, the pattern 133, or the pattern 131, the pattern 132, the pattern 133, and the pattern 121. , pattern 122, pattern 123.
  • Formed between the positive electrode pattern and the negative electrode pattern of the same phase coil of the same printed layer is a positive electrode pattern or a negative electrode pattern corresponding to the remaining phase coils.
  • a positive pattern (ie, a pattern 122, a pattern 123) or a negative pattern (ie, a pattern 132, a pattern) of the B-phase coil and the C-phase coil is formed between the positive electrode pattern 121 and the negative electrode pattern 131 of the A-phase coil of the same printed layer 120.
  • the pattern 122 corresponding to the B-phase coil on the printed layer 120, the pattern 123 corresponding to the C-phase coil, and the pattern 132 corresponding to the B-phase coil on the printed layer 130 and the pattern 133 corresponding to the C-phase coil are connected.
  • the pattern of the pattern 121 corresponding to the A-phase coil is the same as that of the pattern 131, and will not be described herein.
  • a B-phase toroid coil of a continuous line and a C-direction toroid of a continuous line are respectively formed by interconnection of lines corresponding to the patterns, thereby forming a three-phase continuous line.
  • the printed layer 120 including the three-phase pattern and the printed layer 130 including the three-phase pattern can also constitute a multilayer three-phase coil in the manner shown in FIG.
  • FIG. Coil is a schematic view of a coil presented on a projection surface after lamination of a plurality of printed layer sets.
  • the patterns 121, 122, 123, 131, 132, and 133 corresponding to the A, B, and C three-phase coils are alternately arranged in the circumferential direction of the coil portion 111 on the projection surface.
  • the pattern of the three-phase coils of A, B, and C fills the surface of the entire coil portion 111, and the edge portion of the coil portion 111 does not have an extra blank space.
  • the wiring method adopted by the present invention is fully utilized with respect to the conventional coil winding method.
  • the space of the coil portion 111, and the width of each coil occupies almost the entire width of the coil portion 111, maximizing the area of the coil.
  • the two ends of the continuous lines of the A, B, and C three-phase coils correspond to the positive end and the negative end of each phase coil. As shown in FIG. 10, the positive end and the negative end of the A-phase coil are the positive end 121a and the negative end, respectively.
  • the positive end and the negative end of the B-phase coil are a positive end 122a and a negative end 132b, respectively, and the positive end and the negative end of the C-phase coil are divided into a positive end 123a and a negative end 133b. Both ends of the continuous line of each phase coil are led to the connecting portion 112 through a line.
  • the negative ends 131b, 132b, and 133b of the A, B, and C three-phase coils are connected together by a line on the connecting portion 112 to form a neutral point.
  • the pattern layout method and the line interconnection method of the above-mentioned multilayer three-phase coil are also applicable to the formation of coils of different phase numbers, for example, the formation of a two-phase coil or a four-phase coil.
  • the present invention further provides a motor, as shown in FIGS. 11 to 13, FIG. 11 is a front view of the motor, FIG. 12 is a schematic view of the back of the motor, and FIG. 13 is an axial sectional view of the motor.
  • the electric machine 1 comprises at least a certain subassembly 10 and at least one rotor assembly 20.
  • the motor 1 includes a boss portion 40 and a circular portion 50 which is formed by the circular portion 50 projecting to the outer periphery.
  • the boss 40 is provided with an angle sensor 41 for detecting the rotation of the motor rotor assembly 20 and a connector 42 for connecting to the motor controller.
  • the positive ends of the coils of the respective phases are connected to the connector 42 of the boss 40, and the negative ends of the coils of the respective phases are connected together to form a neutral line.
  • the angle sensor 41 is connected to the connector 42 and is connected to the motor controller through the connector 42.
  • the angle sensor 41 can be a linear hall device.
  • the linear Hall device is directly soldered on the PCB, thereby utilizing the permanent magnet leakage of the motor as the detection signal of the motor position, without the need for additional magnets as the detection input of the linear Hall device, and the structural design is simpler and more cost-effective. low.
  • the angle sensor 41 can be replaced with a magnetically encoded IC, a Hall switch, a grating encoder or other angle sensor as needed.
  • the motor 1 includes a stator assembly 10 and a rotor assembly 20.
  • the stator assembly 10 and the rotor assembly 20 are disposed in the axial direction, and are disposed opposite each other to form an air gap 31 in the axial direction.
  • the rotor assembly 20 is fixed to the support plate 32, and the stator assembly 10 is fixed to the support 33.
  • a shaft branch 34 (rotation shaft) sequentially passes through the support plate 32, the rotor assembly 20, the stator assembly 10 and the support 33 in the axial direction.
  • the central shaft hole connects the support plate 32, the rotor assembly 20, the stator assembly 10 and the support 33 into one body.
  • the shaft branch 34 performs a rotary motion in the central shaft hole.
  • the friction coefficient during the movement of the shaft branch 34 is reduced, and a bearing 35 is further disposed in the central shaft hole, and the bearing 35 is sleeved on the shaft branch 34. Peripheral surface.
  • the rotor assembly 20 includes at least one permanent magnet 21.
  • FIG. 14 it is a schematic structural view of a permanent magnet of a rotor assembly.
  • the rotor assembly 20 includes four permanent magnets 21, each of which includes an S pole magnet portion 211 and an N pole magnet portion 212 having opposite magnetic pole directions, and four permanent magnets 21 according to a Halbach array (HALBACH array)
  • HALBACH array Halbach array
  • the alignment is performed, and the permanent magnets are successively arranged to form a circular entire piece structure. Further, each of the permanent magnets may be spaced apart from each other to distribute the permanent magnet on the carrier substrate (not shown).
  • the number of permanent magnets included in the rotor assembly 20 can vary depending on the actual application.
  • the rotor assembly 20 can include one permanent magnet, two permanent magnets, three permanent magnets, or more than four permanent magnets.
  • the permanent magnets can be double-sided magnetized or single-sidedly magnetized depending on the actual application.
  • the motor includes one stator assembly 10 and one rotor assembly 20 is shown in FIG. 13, but is not limited thereto. In practical applications, in order to improve the utilization rate of the permanent magnet, the output power/torque of the motor is enhanced.
  • the design goal is to extend the structure of the motor, for example, to design the motor as a structure of two rotor assemblies and one stator assembly, or to design the motor as a structure of two stator assemblies and one rotor assembly, or The motor is designed as a structure of a plurality of stator assemblies and a plurality of rotor assemblies. This will be explained in detail below.
  • FIG 15 it is a schematic view of the structure of the motor including two rotor assemblies and one stator assembly.
  • the stator assembly 10 and the two rotor assemblies 20 are disposed in the axial direction.
  • the stator assembly 10 is located between the two rotor assemblies 20, and the two rotor assemblies 20 are fixed to the two brackets 32 on one side away from the stator assembly 10.
  • the shaft 34 (rotation shaft) sequentially passes through the center shaft hole of one of the plates 32, the rotor assembly 20, the stator assembly 10, the rotor assembly 20 and the other support plate 32 in the axial direction, and the two plates 32 and the rotor assembly 20.
  • the stator assembly 10 is connected in one piece.
  • the rotor assembly 20 is disposed adjacent one side of the stator assembly 10 with at least one permanent magnet 21, i.e., the rotor assembly 20 is magnetized on one side.
  • the permanent magnets may be arranged in a continuous arrangement according to the Herbeck array to form a whole structure as shown in FIG. 14, or may be arranged in a dispersed manner according to the Herbeck array.
  • Two air gaps 31 are formed between the stator assembly 10 and the two rotor assemblies 20 in the axial direction. That is, the motor structure of the present embodiment can form two axial magnetic lines of inductance. Thereby, the magnetic flux of the motor is increased, the output power/torque of the motor is enhanced, and the controllable performance of the motor is enhanced.
  • FIG 16 it is a schematic view of the structure of the motor including two stator assemblies and one rotor assembly.
  • the two stator assemblies 10 and the rotor assembly 20 are disposed along the axial direction of the motor.
  • the rotor assembly 20 is located between the two stator assemblies 10.
  • the two stator assemblies 10 are fixed to the two seats 33 away from the rotor assembly 20, respectively.
  • the shaft branches 34 (rotating shafts) sequentially pass through the central shaft holes of one of the seats 33, the stator assembly 10, the rotor assembly 20, the stator assembly 10 and the other abutment 33 in the axial direction, and the two stator assemblies 10 and the rotor assembly 20.
  • the two bases 33 are connected in one body.
  • the permanent magnet of the rotor assembly 20 is double-sided magnetized, or the permanent magnet of the rotor assembly 20 is bonded back-to-back by two single-sided magnetized single-sided permanent magnets, and each permanent magnet (whether single-sided magnetized or not)
  • the magnets or double-sided magnetized permanent magnets can be arranged in a continuous arrangement according to the Herbeck array to form a monolithic structure as shown in FIG. 14, or can be arranged in a dispersed arrangement according to the Herbeck array.
  • Two air gaps 31 are formed between the two stator assemblies 10 and the rotor assembly 20 in the axial direction. That is, the motor structure of the present embodiment can form two axial magnetic lines of inductance. Thereby, the magnetic flux of the motor is increased, the output power/torque of the motor is enhanced, and the controllable performance of the motor is enhanced.
  • FIG. 17 it is a schematic view of a motor structure including a plurality of stator assemblies and a plurality of rotor assemblies.
  • the plurality of stator assemblies 10 and the plurality of rotor assemblies 20 are alternately stacked one after another in the axial direction of the motor, and an air gap 31 is formed between each adjacent stator assembly 10 and the rotor assembly 20.
  • a single-sided magnetized stator assembly or a double-sided magnetized stator assembly is selected.
  • the motor includes two rotor assemblies 20 and three stator assemblies 10, wherein the two stator assemblies 10 are respectively located outside the two rotor assemblies 20, and are respectively fixed on the two seats 33 disposed opposite each other in the axial direction, and A stator assembly 10 is located between the two rotor assemblies 10.
  • Either rotor assembly is located between the two stator assemblies 10, and the permanent magnets of either rotor assembly 20 are double-sided magnetized or bonded by two single-sided magnetized single-sided magnets back-to-back.
  • the permanent magnets may be arranged in a continuous arrangement according to the Herbeck array to form a whole structure as shown in FIG. 14, or may be arranged in a dispersed manner according to the Herbeck array.
  • the shaft branches 34 (rotating shafts) penetrate the stator assemblies 10, the rotor assemblies 20, and the two seats 33 in the axial direction, and the stator assemblies 10, the rotor assemblies 20, and the two bases 33 are integrally connected.
  • the two stator assemblies 10 are respectively arranged at the topmost and bottommost ends in the axial direction (except for the support 33), but are not limited thereto. In other embodiments, the two rotor assemblies may also be used. 20 is arranged at the topmost and bottommost ends in the axial direction, in which case the rotor assembly 20 at the topmost and bottommost ends is magnetized on one side.
  • a plurality of axial air gaps can be formed, thereby further increasing the magnetic flux of the motor, thereby further enhancing the output power/torque of the motor and enhancing the controllability of the motor. performance.
  • the electric machine of the present invention may be an electric motor or a generator.
  • the present invention further provides a drone comprising a fuselage, a pan/tilt head and the above-described motor 1 disposed on the fuselage and/or the pan/tilt.
  • the motor 1 can be arranged on the rotor of the fuselage to drive the propeller movement of the drone, or can be set on the pan/tilt to adjust the shooting angle of the drone. Since the stator assembly 10 adopts the foregoing wiring structure, the area of the first core board of the stator assembly can be fully utilized, the coil area can be increased, and the magnetic flux of the motor 1 can be increased, and the connection holes connecting the adjacent two layers of the printed layer can be used.
  • the HDI hole can reduce the thickness of the first core plate and the second core plate, thereby reducing the overall thickness of the motor, which is advantageous for miniaturization of the drone.
  • the motor of the present invention can also be applied to a robot arm, a robot, a smart machine, and the like which require high miniaturization and thinness of the motor.
  • the stator assembly of the motor of the present invention comprises at least one printed layer set comprising a first core plate and a printed layer printed on both sides of the first core plate, each printed layer comprising a plurality of sets of conductive patterns,
  • the core plate is provided with a plurality of connection holes filled with a dielectric, and each set of conductive patterns of the two printed layers is electrically connected through the dielectric of the first core plate, so that each set of conductive patterns forms a conductive coil of a continuous line (per A set of conductive patterns corresponds to a phase coil).
  • the coils are formed by the interconnection of the patterns of the double-layer printed layers, so that the pattern printed by the single-layer printed layer is only a partial line constituting the coil, instead of the full-circle line, thereby maximizing the wiring space of the first core board.
  • the layout of the pattern is made more compact and reasonable, and in the case where the number of coils is sufficiently large, the area size of the coil is maximized, thereby increasing the magnetic flux.
  • connection holes on the first core board are high-density interconnection holes formed by laser drilling, the first core board carrying the printed layer and the first layer for isolation are provided.
  • the two core plates can be made extremely thin and light, which in turn makes the stator assembly comprising the multilayer printed layer set lighter and thinner.
  • the motor of the present invention increases the magnetic flux of the motor by using a motor including the stator assembly, thereby improving the controllability and robustness of the motor. And since the thicknesses of the first core plate and the second core plate constituting the stator assembly are reduced, the thickness of the motor is also correspondingly reduced.
  • the unmanned aerial vehicle of the present invention adopts the above motor, the magnetic flux is large, and the controllability of the motor is strong. Moreover, in the case of ensuring the magnetic flux of the motor, the thickness of the motor becomes small, which is advantageous for miniaturization and thinning of the drone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

一种电机的定子组件、电机和无人机。该定子组件包括:两层印制层(120),该两层印制层的每一层包括多组导电图案;第一芯板(110),两层印制层印制在第一芯板的两侧;第一芯板设有多个填有电介质的连接孔(1111);两层印制层的每一层的多组导电图案通过连接孔与另一层的多组导电图案电连接,以使每一组导电图案形成一条连续线路的导电线圈。该电机和无人机包括该定子组件,能够充分利用定子组件的空间,增大磁感线通过的面积,进而增大磁通量。

Description

电机的定子组件、电机和无人机
申请要求于2017年8月18日申请的、申请号为201710712401.3、申请名称为“电机的定子组件、电机和无人机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电机领域,特别涉及一种电机的定子组件、电机和无人机。
背景技术
盘式电机由于体积小、重量轻和运行效率高而逐渐被人们青睐。盘式电机与普通电机的区别主要是线圈固定在盘形的定子上,转子盖在定子上。现有的盘式电机的定子绕线方法主要有两种方法,一种是在定子上直接绕环形线圈,另一种是,如图1所示,在PCB板101(printed circuit board)上印制环形线圈102。对于这两种绕线方式,线圈都是由外而内布设,线圈的面积也由外而内逐渐减小,导致供磁感应线通过的面积减小,磁通量减小;并且上述绕线方式使PCB板的边缘存在许多没有被线圈覆盖的空白区域,导致PCB板有限的空间没有得到充分的利用。由公式Ф=NBS(S是垂直磁感强度的面积,N为线圈匝数,B为磁感应强度)可知,在线圈匝数N和磁感应强度B一定的情况下,面积S越小,磁通量Ф越小,驱动转子转动的电磁力矩就小,最终使得电机的可控制性能差。
发明内容
本发明的目的之一在于,为了解决上述问题提供一种能够充分利用PCB板空间增加线圈面积的电机的定子组件。
本发明的目的之一在于,为了解决上述问题提供一种电机。
本发明的目的之一在于,为了解决上述问题提供一种无人机。
本发明提供一种电机的定子组件,包括至少一印制层组,所述印制层组包括:
两层印制层,所述两层印制层的每一层包括多组导电图案;
第一芯板,所述两层印制层印制在所述第一芯板的两侧;所述第一芯板设有多个填有电介质的连接孔;所述两层印制层的每一层的多组导电图案通过所述连接孔与另一层的多组导电图案电连接,以使每一组导电图案形成一条连续线路的导电线圈。
可选的,所述印制层组为多个,所述定子组件进一步包括第二芯板,所述第二芯板设置在二相邻所述印制层组之间,所述第二芯板设有多个填有电介质的连接孔,相邻两印制层通过所述第二芯板上的连接孔电连接,从而形成所述连续线路的多层导电线圈。
可选的,所述连续线路的数量是三条,分别是三相线路。
可选的,所述多组导电图案为三组,每一组导电图案包括多个图案,各组对应的图案依次排布,相邻两图案的走线具有相同的相位差。
可选的,所述第一芯板包括线圈部和连接部,所述线圈部为圆环状,所述线圈部包括所述印制层,所述连续线路的二端设在所述连接部。
可选的,还包括角速度传感器,所述角速度传感器焊接在所述连接部。
可选的,所述角速度传感器包括线性霍尔器件、磁编码IC、霍尔开关和光栅编码器中任意一种。
可选的,所述线圈部内缘形成一通孔,单个所述导电图案依次包括向所述通孔延伸的内延段、中间段及向外延伸的外延段,所述内延段和所述外延段反方向延伸并宽度逐渐减小,所述单个所述导电图案从所述通孔的外缘延伸至所述线圈部的外缘。
可选的,所述多组导电图案沿所述线圈部的周向方向依次间隔排布,且以所述线圈部的通孔为中心呈辐射状分布,同一层印制层上的各组导电图案的图案统一向一个方向倾斜,且各个导电图案从所述通孔的外缘一直延伸至所述线圈部的外缘。
可选的,同一印制层上的同一组导电图案分为正极图案和负极图案,所述正极图案和所述负极图案沿所述线圈部周向方向依次交替布设;
同一组导电图案的正极图案通过第一芯板上的连接孔与相邻的另一印制层的正极图案电连接,同一组导电图案的负极图案通过第一芯板上的连接孔与所述相邻的另一印制层的负极图案电连接,以形成一条正极连续线路和一条负极连续线路,所述正极连接线路的尾端与所述负极连续线路的尾端电连接,以使 正极连续线路和负极连续线路形成一条连续线路;
所述正极连续线路和所述负极连续线路在投影面上相交,以在投影面上形成多个环形导电线圈。
可选的,同一印制层的同一组导电图案的正极图案和负极图案之间形成的是其余组导电图案的正极图案或负极图案,属于不同组的两相邻正极图案或负极图案的走线具有预定的相位差。
可选的,所述两层印制层上的同一组对应的图案在所述第一芯板的轴向方向上的投影是镜像图案。
本发明又提供一种电机,包括:
至少一定子组件,所述定子组件为上述所述的定子组件;
至少一转子组件,所述转子组件包括至少一个永磁体;
所述定子组件和所述转子组件沿轴向方向叠加,且各定子组件和各转子组件通过轴枝连接成一体,相邻的定子组件和转子组件在轴向方向上形成气隙,以产生轴向方向的磁感线。
可选的,所述转子组件包括多个永磁体,每个永磁体包括磁极方向相反的S极磁体部分和N极磁体部分,各永磁体按海尔贝克阵列进行排列,且各永磁体之间连续排布或间隔排布。
可选的,所述定子组件的数量为一个,所述转子组件的数量为两个,所述定子组件位于两个转子组件之间,两所述转子组件分别固定在两相对设置的支板上,所述转子组件的永磁体为单面充磁。
可选的,所述定子组件的数量为两个,所述转子组件的数量为一个,两定子组件分别固定在沿轴向相对设置的两支座上,所述转子组件位于所述两定子组件之间,所述转子组件的永磁体为双面充磁或由两个单面充磁的单面永磁体背对背粘接而成。
可选的,所述定子组件的数量为多个,所述转子组件的数量为多个,多个定子组件和多个转子组件沿电机的轴线方向依次交替叠加,位于两定子组件之间的转子组件的永磁体为双面充磁或由两个单面充磁的单面磁体背对背粘接而成。
本发明又提供一种无人机,包括机身、云台和设置在所述机身和/或所述云台上的上述电机。
本发明的实施例提供的技术方案可以包括以下有益效果:
本发明电机的定子组件至少包括一印制层组,该印制层组包括第一芯板和印制在第一芯板两侧的印制层,各印制层包括多组导电图案,第一芯板设有多个填有电介质的连接孔,两层印制层的各组导电图案通过第一芯板的电介质电连接,以使每一组导电图案形成一条连续线路的导电线圈(每一组导电图案对应一相线圈)。通过双层印制层的图案的互联形成线圈,使得单层印制层印制的图案仅是构成线圈的局部线路,而非整圈线路,进而能够最大化利用第一芯板的布线空间,使图案的布局更加紧凑和合理,在保证线圈数量足够多的情况下,最大化线圈的面积尺寸,由此增大磁通量。
本发明的电机通过采用包括上述定子组件,使得该电机的磁通量大,进而提高了电机的可控性和和鲁棒性。
本发明的无人机因采用上述电机,磁通量大,电机的可控性能强。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本发明。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并于说明书一起用于解释本发明的原理。
图1为传统PCB板的线圈布设示意图。
图2为位于第一芯板其中一侧的A相线圈所对应的印制层的结构示意图。
图3为位于第一芯板另一侧的A相线圈所对应的印制层的结构示意图。
图4为两相邻印制层的图案沿第一芯板轴向方向进行投影在投影面所呈现的线圈示意图。
图5为定子组件的多个印制层组和多个第二芯板层叠的示意图。
图6为位于第一芯板其中一侧的B相线圈所对应的印制层的结构示意图。
图7为位于第一芯板其中一侧的C相线圈所对应的印制层的结构示意图。
图8为位于第一芯板另一侧的B相线圈所对应的印制层的结构示意图。
图9为位于第一芯板另一侧的C相线圈所对应的印制层的结构示意图。
图10为多个印制层组层叠后在投影面所呈现的线圈示意图。
图11为电机的正面示意图。
图12为电机的背面示意图。
图13为电机的轴向剖视图。
图14为转子组件的永磁体的结构示意图。
图15为包括两个转子组件和一个定子组件的电机结构示意图。
图16为包括两个定子组件和一个转子组件的电机结构示意图。
图17为包括多个定子组件和多个转子组件的电机结构示意图。
具体实施方式
为了进一步说明本发明的原理和结构,现结合附图对本发明的优选实施例进行详细说明。
在无人机行业,目前使用较为广泛的是径向磁场铁芯无刷电机,该类型电机存在机身结构冗长,质量和体积大,功率密度低;铁芯磁滞和涡流损耗大,运行效率低,齿槽效应引起输出转矩脉动,对伺服驱动的精准控制产生干扰,转子转动惯量大,电枢绕组电感大,机电时间常数大,动态性能差,散热性能差等系列缺陷。
考虑到无人机中采用的径向磁场铁芯无刷电机存在的诸多缺陷,发明人想到用盘式电机替代传统无人机中的径向磁场铁芯无刷电机,但是,如前所述,现有的盘式电机受限于PCB板的布线方式而导致PCB板空间无法得到充分利用,导致线圈面积较小,进而导致磁通量小、电机的可控制性能差的问题。针对现有盘式电机的缺陷,发明人经过巧妙的构思和创新性的劳动,提出一种改善的PCB板布线结构,即提出一种能够充分利用PCB板空间增加线圈面积的电机的定子组件,在此基础上,本发明另提出一种由该定子组件组成的电机。该电机可应用到无人机上,提高无人机的可控性。
为了清楚说明本发明的电机的定子组件布线结构,在此,先以在定子组件上布设单相线圈为例进行说明,再扩展到在定子组件上布设两相或多相线圈。在实际应用中,在定子组件上布设两相、三相或四相线圈的应用较多,其中又以在定子组件上布设三相线圈的应用更为广泛。
如图2所示,其为位于第一芯板其中一侧的A相线圈所对应的印制层的结构示意图。定子组件10包括一印制层组,该印制层组包括第一芯板110和分别布设于第一芯板110两侧的印制层。每一印制层包括多组导电图案,每一组导电图案对应为一相线圈对应的图案。在图2中仅示出第一芯板110其中一侧的A相线圈所对应的印制层120。
第一芯板110包括线圈部111和连接部112。线圈部111为圆环状,且其内缘形成一供转轴穿过的通孔1111。连接部112从线圈部111向外突出形成一突块,在该突块上可将各相线圈的负极连接在一起形成中性点。此外,也可在该连接部112布设传感器和连接器等部件。
第一芯板110设有多个填有电介质的连接孔,位于第一芯板110两侧的印制层的图案通过第一芯板110的电介质电连接。
第一芯板110的材质可以是树脂复合材料,例如FR-4(环氧树脂玻璃纤维-4)。在制作印制层120时,可先在第一芯板110的两表面覆一层薄铜,再利用化学反应法将非线路部位的铜层腐蚀,便可得到所需的印制层120。
印制层120包括A相线圈所对应的多个图案121,该些图案121沿线圈部111的周向方向依次间隔排布,且以线圈部111的通孔1111为中心呈辐射状分布。单个图案121依次包括向通孔1111方向延伸的内延段1211、中间段1212及向外延伸的外延段1213,内延段1211和外延段1213反方向延伸并宽度逐渐减小。内延段1211和外延段1213的宽度略小于中间段1212的宽度,如此设计可最大化图案121所要构成的线圈的面积。内延段1211和外延段1213远离中间段1212的一端设置有多个穿孔,通过该些穿孔使图案121与第一芯板110上的连接孔相通,且通过连接孔内的电介质与相邻印制层对应的图案进行电连接。各图案121统一向一个方向倾斜,且各个图案121从通孔1111的外缘一直延伸至线圈部111的外缘。
如图3所示,其为位于第一芯板另一侧的A相线圈所对应的印制层的结构示意图。在第一芯板110另一侧布设的印制层130的图案131与上述印制层120的图案121结构形状相似,区别在于图案131和图案121的布设方向不同,即沿第一芯板110的轴向方向进行投影时,投影面上的图案131为图案121的镜像图案。图案131同样也包括向通孔1111方向延伸的内延段1311、中间段1312及向外延伸的外延段1313,内延段1311和外延段1313反方向延伸并宽度逐渐减小。
如图4所示,其为两相邻印制层的图案沿第一芯板轴向方向进行投影在投影面所呈现的线圈示意图。沿第一芯板110的轴向方向进行投影,印制层130的图案131与印制层120的图案121在投影面形成多个连续分布的环形线圈。其中,在投影面上,印制层120的各图案121与印制层13对应的图案131相交, 并且各图案121与不相交且相邻的两印制层13相连接。在线路连接方面,印制层120的各图案121的内延段1211的端部与在投影面上不相交且相邻的图案131的内延段1311的端部通过第一芯板110连接孔内的电介质电连接,同样的,各图案121的外延段1213的端部与在投影面上不相交且相邻的图案131的外延段1313的端部通过第一芯板110连接孔内的电介质电连接。同理,印制层130的各图案131的内延段1311的端部与在投影面上不相交且相邻的图案121的内延段1211的端部通过第一芯板110连接孔内的电介质电连接,同样的,各图案131的外延段1313的端部与在投影面上不相交且相邻的图案121的外延段1213的端部通过第一芯板110连接孔内的电介质电连接。相交的图案121和图案131在投影面形成一X型图案,该X型图案与相邻的X型图案在投影面上组成环形导电线圈。
结合图2和图3所示,同一印制层上的图案分为正极图案和负极图案(供正电流i+流过的图案为正极图案,供负电流i-流过的图案为负极图案),且正极图案和负极图案沿线圈部111的周向方向依次交替布设。正极图案通过第一芯板上的连接孔与相邻印制层的正极图案电连接,负极图案通过第一芯板上的连接孔与相邻印制层的负极图案电连接,由此,形成一条正极连续线路和一条负极连续线路,最终正极连接线路的尾端与负极连续线路的尾端电连接,使正极连续线路和负极连续线路形成一条连续线路,该连续线路的两端延伸至连接部112。如图4所示,A相线圈对应的印制层120上的图案121与印制层130的图案131形成一条A相线圈对应的正极连续线路和一条A相线圈对应的负极连续线路,正极连接线路的尾端与负极连续线路的尾端的电连接形成一条连续线路。正极连续线路和负极连续线路在投影面上相交,以在投影面上形成多个沿线圈部111周向方向布设的环形导电线圈。
如图5所示,其为定子组件的多个印制层组和多个第二芯板层叠的示意图。定子组件10包括沿轴向方向层叠的多个印制层组11和多个第二芯板140,每一印制层组11包括第一芯板110和设于第一芯板110两侧的印制层120和印制层130。第二芯板140布设在相邻两印制层组11之间,用于隔离两相邻的印制层。第二芯板140设有多个填有电介质13的连接孔,相邻两印制层11通过第二芯板140上的连接孔电连接,从而形成连续线路的多层A相线圈。此外,任意两相邻印制层的图案沿第一芯板110轴向方向进行投影后在投影面上互为镜 像图案,且任意两相邻印制层的图案通过线路互联形成一层A相环形线圈,如图5所示,十层印制层至少可形成九层A相环形线圈。
多个印制层组11和多个第二芯板140沿定子组件10的轴向方向进行叠加。在布线时,先完成叠层L1、L2对应的印制层120和印制层130的交替走线,以形成如图2和图3所示的图案,再通过第一芯板110上的连接孔内的导电介质13电连接印制层120和印制层130的图案,接着,进行叠层L3、L4上对应印制层120和印制层130的交替走线,然后,通过第二芯板140上的连接孔内的导电介质13电连接由叠层L1、L2形成的印制层组11和由叠层L3、L4形成的印制层组11;依次类推,直至完成叠层L9和L10的走线和线路互联,最后从叠层L10开始,在与叠层L1入口处相位为24°的位置,进行叠层L10至叠层L1的线路互联,便完成一条连续线路的走线过程,并由此形成多层A相线圈。
此外,本发明通过激光打孔的方式在第一芯板110和第二芯板140上形成连接孔,如此,第一芯板110和第二芯板140可以变得更薄,例如,第一芯板110(或第二芯板140)的厚度可少于0.1mm。在保证足够磁通量的情况下,第一芯板110的厚度最低可减少至0.07mm。因此,即使定子组件包括如图5所示的九个芯板(包括四个第二芯板140和五个第一芯板110)和十层印制层,其总厚度也才1.0mm,而采用传统的机械盲埋孔的打孔方式,芯板最薄为2.0mm,相较而言,本发明的采用层叠式定子组件和激光打孔的方式,能够减少定子组件的厚度。
需说明的是,图4中示出的部分印制层120和印制层130并没有覆盖在第一芯片110上,如此布设仅是为了清楚地图示,在实际制作过程中,印制层120和印制层130是覆盖在第一芯板110上的,因为印制层120和印制层130是通过覆盖在第一芯板110上的铜层腐蚀形成。
以上主要阐述的是形成多层A相线圈采用的图案的布设方式、走线方式和线路互联方式。在实际应用中,绝大多数情况下,定子组件10的第一芯板110上需印制的三相线圈,因此,该定子组件10的第一芯板110还需形成B相线圈和C相线圈。B相线圈和C相线圈可采用A相线圈的形成方式。
具体的,如图6和图7所示,图6为位于第一芯板其中一侧的B相线圈所对应的印制层的结构示意图,图7位于第一芯板其中一侧的C相线圈所对应的印制层的结构示意图,上述印制层120还包括B相线圈所对应的图案122和C 相线圈所对应的图案123,B相线圈所对应的图案122、C相线圈所对应的图案123与A相线圈所对应的图案121的形状相似,区别在于图案122、图案123与图案121的走线方向不同,彼此之间存在一定的相位差,例如B相线圈所对应的图案122与A相线圈所对应的图案121的相位差为12°,A相线圈所对应的图案121与C相线圈所对应的图案123的相位差为24°。
可以理解,在此并不限制各相线圈对应图案的相位差,相邻两相线圈的图案的相位差可为其他度数,例如,13°、14°或其他度数。其中,采用相邻两相的图案的相位差为12°的方案可最大化利用定子组件10的第一芯板110(即PCB板)的空间,能够使各相线圈对应的图案布满整个第一芯板110(的线圈部111的空间。
同理,如图8和图9所示,图8为位于第一芯板另一侧的B相线圈所对应的印制层的结构示意图,图9为位于第一芯板另一侧的C相线圈所对应的印制层的结构示意图,上述印制层130还包括B相线圈所对应的图案132和C相线圈所对应的图案133,B相线圈所对应的图案132、C相线圈所对应的图案133与A相线圈所对应的图案131的形状相似,区别在于图案132、图案133与图案131的走线方向不同,彼此之间存在一定的相位差,例如B相线圈所对应的图案132与A相线圈所对应的图案131的相位差为12°,A相线圈所对应的图案131与C相线圈所对应的图案133的相位差为24°。
可以理解,在此并不限制各相线圈对应图案的相位差,相邻两相的图案的相位差可为其他度数,例如,13°、14°或其他度数。其中,采用相邻两相的图案的相位差为12°的方案可最大化利用定子组件10第一芯板110的空间,使各相线圈对应的图案布满整个第一芯板110的线圈部111的空间。
印制层120上B相线圈所对应的图案122和印制层130上B相线圈所对应的图案132在第一芯板110的轴向方向上的投影是镜像图案。类似的,C相线圈所对应的图案123和图案133在第一芯板110的轴向方向上的投影是镜像图案。
在此,需说明的是,为了清楚显示B相线圈所对应的图案122、图案132和C相线圈所对应的图案123、图案133,分别在图6至图9中对应的第一芯板110上仅显示B相线圈所对应的图案122、C相线圈所对应的图案123、B相线圈所对应的图案132、C相线圈所对应的图案133,而省略了其他两相线圈对应的图案,当然,在实际制作中,A相线圈所对应的图案121、B相线圈所对应的 图案122和C相线圈所对应的图案123均布设在同一印制层120上,A相线圈所对应的图案131、B相线圈所对应的图案132和C相线圈所对应的图案133均布设在同一印制层130上。图案121、图案122和图案123可以是正极图案,图案131、图案132和图案133可以是负极图案,在同一印制层120上,各图案的排列方式可以正极图案排列在一起,负极图案排列在一起,例如,各图案在第一芯板110上的排列顺序依次是图案121、图案122、图案123、图案131、图案132、图案133,或也可以图案131、图案132、图案133、图案121、图案122、图案123。同一印制层的同一相线圈的正极图案和负极图案之间形成的是其余相线圈对应的正极图案或负极图案。即同一印制层120的A相线圈的正极图案121和负极图案131之间形成的是B相线圈和C相线圈的正极图案(即图案122、图案123)或负极图案(即图案132、图案133),或者是同一印制层120的B相线圈的正极图案122和负极图案132之间形成的是C相线圈的正极图案(即图案123)和A相线圈的负极图案(即图案131)。
印制层120上的B相线圈所对应的图案122、C相线圈所对应的图案123与印制层130上的B相线圈所对应的图案132和C相线圈所对应的图案133线路连接方式与前述的A相线圈所对应的图案121与图案131的线路连接方式一致,在此不再赘述。通过对应图案的线路的互联,再分别形成一条连续线路的B相环形线圈和一条连续线路的C向环形线圈,由此,形成三相连续线路。
包括三相图案的印制层120和包括三相图案的印制层130也可根据图5所示的方式构成多层三相线圈。
按照前述形成多层A相线圈的走线方式和线路互联方式,分别进行B相线圈对应图案和C相线圈对应图案的走线和线路互联,如此,形成如图10所示的多层三相线圈。图10为多个印制层组层叠后在投影面所呈现的线圈示意图。A、B、C三相线圈对应的图案121、122、123、131、132、133在投影面上依次沿线圈部111的周向方向交替排列。A、B、C三相线圈的图案布满整个线圈部111的表面,且线圈部111的边缘区域并没有多余的空白空间,相对于传统的线圈绕线方式,本发明采用的布线方式充分利用了线圈部111的空间,并且各线圈的宽度几乎占据线圈部111的整个宽度,最大化线圈的面积。A、B、C三相线圈各自的连续线路的两端对应为各相线圈的正极端和负极端,如图10所示,A相线圈的正极端和负极端分别为正极端121a、负极端131b,B相线圈的正极端 和负极端分别为正极端122a、负极端132b,C相线圈的正极端和负极端分为正极端123a、负极端133b。各相线圈的连续线路的两端通过线路引至连接部112上。在连接部112上将A、B、C三相线圈的负极端131b、132b、133b通过线路连接在一起形成中性点。
由此,多层三相线圈便形成了。同理上述多层三相线圈的图案布设方式、线路互联方式同样也适用于不同相数的线圈形成,例如,两相线圈或四相线圈的形成。
本发明另提供一种电机,如图11至图13所示,图11为电机的正面示意图,图12为电机的背面示意图,图13为电机的轴向剖视图。电机1包括至少一定子组件10和至少一转子组件20。
该电机1包括凸起部40和圆形部50,凸起部40由圆形部50向外周边突出而形成。该凸起部40上设置有用于检测电机转子组件20转动的角度传感器41和用于与电机控制器连接的连接器42。各相线圈的正极端连接至凸起部40的连接器42上,各相线圈的负极端连接在一起形成中性线。角度传感器41连接到连接器42上,并通过连接器42连接至电机控制器。该角度传感器41可以是线性霍尔(hall)器件。线性霍尔器件直接焊接在PCB上,藉此利用电机的永磁铁漏磁作为电机位置的检测信号,而不需再另外加磁铁来作为线性霍尔器件的检测输入,结构设计更简单、成本更低。此外,角度传感器41可以根据需要更换为磁编码IC,霍尔开关,光栅编码器或其他角度传感器。
如图13所示,电机1包括一个定子组件10和一个转子组件20。定子组件10和转子组件20沿轴向方向布设,且两者相对设置,在轴向方向上形成气隙31。转子组件20固定在支板32上,定子组件10固定在支座33上,一轴枝34(转轴)沿轴向方向依次穿过支板32、转子组件20、定子组件10和支座33上的中心轴孔,将支板32、转子组件20、定子组件10和支座33连接成一体。轴枝34在中心轴孔中做旋转运动,为了支撑轴枝34,降低轴枝34运动过程中的摩擦系数,在中心轴孔中还设有轴承35,该轴承35套设在轴枝34的外周表面。
转子组件20包括至少一个永磁体21。如图14所示,其为转子组件的永磁体的结构示意图。在图14中,转子组件20包括四个永磁体21,每个永磁体21包括磁极方向相反的S极磁体部分211和N极磁体部分212,四个永磁体21按海尔贝克阵列(HALBACH阵列)进行排列,且各永磁体连续排布形成圆形的 整片结构。此外,各永磁体还可以彼此相互间隔以分散排布方式布设永磁体的承载基板上(未图示)。
可以理解,转子组件20包含的永磁体个数可依据实际的应用进行变化,例如,转子组件20可包括一个永磁体、两个永磁体、三个永磁体或四个以上的永磁体。
此外,永磁体依据实际应用可双面充磁或单面充磁。
在图13中仅示出电机包括一个定子组件10和一个转子组件20的情形,但并不受限于此,在实际应用中,为达到提升永磁体的利用率,增强电机的输出功率/力矩等方面的设计目标,可将电机的结构进行延伸设计,例如,将电机设计成两个转子组件和一个定子组件的结构,或将电机设计成两个定子组件和一个转子组件的结构,或将电机设计成多个定子组件和多个转子组件的结构。下文将详细说明。
在一实施例中,如图15所示,其为包括两个转子组件和一个定子组件的电机结构示意图。定子组件10和两转子组件20沿轴向方向布设,定子组件10位于两个转子组件20之间,两转子组件20远离定子组件10的一面分别固定在两支板32上。轴枝34(转轴)沿轴向方向依次穿过其中一支板32、转子组件20、定子组件10、转子组件20和另一支板32上的中心轴孔,将两支板32、转子组件20、定子组件10连接成一体。转子组件20靠近定子组件10的一面设置有至少一个永磁体21,即转子组件20单面充磁。各永磁体可按海尔贝克阵列进行连续排列形成如图14所示的整片结构,也可按海尔贝克阵列间隔分散排列。定子组件10与两转子组件20之间在轴向方向上形成两层气隙31,也即是说,本实施例的电机结构可形成两场轴向磁感线。藉此,增加电机的磁通量,增强电机的输出功率/力矩,增强电机的可控性能。
在另一实施例中,如图16所示,其为包括两个定子组件和一个转子组件的电机结构示意图。两定子组件10和转子组件20沿电机的轴向方向布设,转子组件20位于两个定子组件10之间,两定子组件10远离转子组件20的一面分别固定在两支座33上。轴枝34(转轴)沿轴向方向依次穿过其中一支座33、定子组件10、转子组件20、定子组件10和另一支座33上的中心轴孔,将两定子组件10、转子组件20、两支座33连接成一体。转子组件20的永磁体为双面充磁,或转子组件20的永磁体由两个单面充磁的单面永磁体背对背粘接而成, 且各永磁体(无论是单面充磁的永磁体还是双面充磁的永磁体)可按海尔贝克阵列进行连续排列形成如图14所示的整片结构,也可按海尔贝克阵列间隔分散排列。两定子组件10与转子组件20之间在轴向方向上形成两层气隙31,也即是说,本实施例的电机结构可形成两场轴向磁感线。藉此,增加电机的磁通量,增强电机的输出功率/力矩,增强电机的可控性能。
在另一实施例中,如图17所示,其为包括多个定子组件和多个转子组件的电机结构示意图。多个定子组件10和多个转子组件20沿电机的轴向方向依次交替叠加,每相邻定子组件10和转子组件20之间形成气隙31。依据各定子组件10和转子组件20的实际的排布顺序,选择单面充磁的定子组件或双面充磁的定子组件。在本实施例中,电机包括两转子组件20和三个定子组件10,其中两定子组件10分别位于两转子组件20的外侧,且分别固定在沿轴向相对设置的两支座33上,另一个定子组件10位于两个转子组件10之间。任一个转子组件位于两定子组件10之间,且任一转子组件20的永磁体均为双面充磁或由两个单面充磁的单面磁体背对背粘接而成。各永磁体可按海尔贝克阵列进行连续排列形成如图14所示的整片结构,也可按海尔贝克阵列间隔分散排列。轴枝34(转轴)沿轴向方向贯穿各定子组件10、各转子组件20和两支座33,将各定子组件10、各转子组件20、两支座33连接成一体。
在本实施例中,两定子组件10分别排列在轴向方向的最顶端和最底端(除支座33外),但并不受限于此,在其他实施例中,也可是两转子组件20排列在轴向方向的最顶端和最底端,此种情况下,位于最顶端和最底端的转子组件20为单面充磁。
由多个定子组件10和多个转子组件20组成的电机中,可形成多个轴向气隙,藉此,进一步增加电机的磁通量,进而进一步增强电机的输出功率/力矩,增强电机的可控性能。
可以理解,本发明的电机可以是电动机,也可以是发电机。
本发明另提供一种无人机,包括机身、云台和设置在机身和/或云台上的上述电机1。电机1可设置在机身的旋翼上,用于驱动无人机的螺旋桨运动,也可以设置在云台上,用于调整无人机的拍摄角度。由于定子组件10采用的是前述的布线结构,可充分利用定子组件的第一芯板的面积,增大线圈面积,进而增加电机1的磁通量,并且连接相邻两层印制层的连接孔采用的是HDI孔,由此 可减少第一芯板和第二芯板的厚度,进而减小电机的整体厚度,有利于无人机的小型化。
此外,本发明的电机也可应用于对电机的小型化和轻薄化要求高的机械臂、机器人和智能机械设备等。
本发明电机的定子组件至少包括一印制层组,该印制层组包括第一芯板和印制在第一芯板两侧的印制层,各印制层包括多组导电图案,第一芯板设有多个填有电介质的连接孔,两层印制层的各组导电图案通过第一芯板的电介质电连接,以使每一组导电图案形成一条连续线路的导电线圈(每一组导电图案对应一相线圈)。通过双层印制层的图案的互联形成线圈,使得单层印制层印制的图案仅是构成线圈的局部线路,而非整圈线路,进而能够最大化利用第一芯板的布线空间,使图案的布局更加紧凑和合理,在保证线圈数量足够多的情况下,最大化线圈的面积尺寸,由此增大磁通量。
再者,由于第一芯板(或第二芯板)上的连接孔是通过激光打孔形成的高密度互连孔,因此,承载印制层的第一芯板和用于隔离作用的第二芯板可以变得极为轻薄,进而使得包括多层印制层组的定子组件可以更为轻薄。
本发明的电机通过采用包括定子组件的电机,使得该电机的磁通量大,进而提高了电机的可控性和和鲁棒性。并且由于构成定子组件的第一芯板和第二芯板的厚度减小了,电机的厚度也相应减小了。
本发明的无人机因采用上述电机,磁通量大,电机的可控性能强。并且在保证电机磁通量的情况下,电机的厚度变小,有利于无人机的小型化和轻薄化。
以上仅为本发明的较佳可行实施例,并非限制本发明的保护范围,凡运用本发明说明书及附图内容所作出的等效结构变化,均包含在本发明的保护范围内。

Claims (18)

  1. 一种电机的定子组件,其特征在于,包括至少一印制层组,所述印制层组包括:
    两层印制层,所述两层印制层的每一层包括多组导电图案;
    第一芯板,所述两层印制层印制在所述第一芯板的两侧;所述第一芯板设有多个填有电介质的连接孔;所述两层印制层的每一层的多组导电图案通过所述连接孔与另一层的多组导电图案电连接,以使每一组导电图案形成一条连续线路的导电线圈。
  2. 根据权利要求1所述的电机的定子组件,其特征在于,所述印制层组为多个,所述定子组件进一步包括第二芯板,所述第二芯板设置在二相邻所述印制层组之间,所述第二芯板设有多个填有电介质的连接孔,相邻两印制层通过所述第二芯板上的连接孔电连接,从而形成所述连续线路的多层导电线圈。
  3. 根据权利要求1或2所述的电机的定子组件,其特征在于,所述连续线路的数量是三条,分别是三相线路。
  4. 根据权利要求3所述的电机的定子组件,其特征在于,所述多组导电图案为三组,每一组导电图案包括多个图案,各组对应的图案依次排布,相邻两图案的走线具有相同的相位差。
  5. 根据权利要求1所述的电机的定子组件,其特征在于,所述第一芯板包括线圈部和连接部,所述线圈部为圆环状,所述线圈部包括所述印制层,所述连续线路的二端设在所述连接部。
  6. 根据权利要求5所述的电机的定子组件,其特征在于,还包括角速度传感器,所述角速度传感器焊接在所述连接部。
  7. 根据权利要求6所述的电机的定子组件,其特征在于,所述角速度传感器包括线性霍尔器件、磁编码IC、霍尔开关和光栅编码器中任意一种。
  8. 根据权利要求5所述的电机的定子组件,其特征在于,所述线圈部内缘形成一通孔,单个所述导电图案依次包括向所述通孔延伸的内延段、中间段及向外延伸的外延段,所述内延段和所述外延段反方向延伸并宽度逐渐减小,所述单个所述导电图案从所述通孔的外缘延伸至所述线圈部的外缘。
  9. 根据权利要求8所述的电机的定子组件,其特征在于,所述多组导电图案沿所述线圈部的周向方向依次间隔排布,且以所述线圈部的通孔为中心呈辐射状分布,同一层印制层上的各组导电图案的图案统一向一个方向倾斜,且各个导电图案从所述通孔的外缘一直延伸至所述线圈部的外缘。
  10. 根据权利要求5所述的电机的定子组件,其特征在于,同一印制层上的同一组导电图案分为正极图案和负极图案,所述正极图案和所述负极图案沿所述线圈部周向方向依次交替布设;
    同一组导电图案的正极图案通过第一芯板上的连接孔与相邻的另一印制层的正极图案电连接,同一组导电图案的负极图案通过第一芯板上的连接孔与所述相邻的另一印制层的负极图案电连接,以形成一条正极连续线路和一条负极连续线路,所述正极连接线路的尾端与所述负极连续线路的尾端电连接,以使正极连续线路和负极连续线路形成一条连续线路;
    所述正极连续线路和所述负极连续线路在投影面上相交,以在投影面上形成多个环形导电线圈。
  11. 根据权利要求10所述的电机的定子组件,其特征在于,同一印制层的同一组导电图案的正极图案和负极图案之间形成的是其余组导电图案的正极图案或负极图案,属于不同组的两相邻正极图案或负极图案的走线具有预定的相位差。
  12. 根据权利要求1所述的电机的定子组件,其特征在于,所述两层印制层上的同一组对应的图案在所述第一芯板的轴向方向上的投影是镜像图案。
  13. 一种电机,其特征在于,包括:
    至少一定子组件,所述定子组件为权利要求1至12任一项所述的电机的定子组件;
    至少一转子组件,所述转子组件包括至少一个永磁体;
    所述定子组件和所述转子组件沿轴向方向叠加,且各定子组件和各转子组件通过轴枝连接成一体,相邻的定子组件和转子组件在轴向方向上形成气隙,以产生轴向方向的磁感线。
  14. 根据权利要求13所述的电机,其特征在于,所述转子组件包括多个永磁体,每个永磁体包括磁极方向相反的S极磁体部分和N极磁体部分,各永磁体按海尔贝克阵列进行排列,且各永磁体之间连续排布或间隔排布。
  15. 根据权利要求13所述的电机,其特征在于,所述定子组件的数量为一个,所述转子组件的数量为两个,所述定子组件位于两个转子组件之间,两所述转子组件分别固定在两相对设置的支板上,所述转子组件的永磁体为单面充磁。
  16. 根据权利要求13所述的电机,其特征在于,所述定子组件的数量为两个,所述转子组件的数量为一个,两定子组件分别固定在沿轴向相对设置的两支座上,所述转子组件位于所述两定子组件之间,所述转子组件的永磁体为双面充磁或由两个单面充磁的单面永磁体背对背粘接而成。
  17. 根据权利要求13所述的电机,其特征在于,所述定子组件的数量为多个,所述转子组件的数量为多个,多个定子组件和多个转子组件沿电机的轴线方向依次交替叠加,位于两定子组件之间的转子组件的永磁体为双面充磁或由两个单面充磁的单面磁体背对背粘接而成。
  18. 一种无人机,其特征在于,包括机身、云台和设置在所述机身和/或所述云台上的如权利要求13至17任一所述的电机。
PCT/CN2018/085370 2017-08-18 2018-05-02 电机的定子组件、电机和无人机 WO2019033797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710712401.3A CN107359718A (zh) 2017-08-18 2017-08-18 电机的定子组件、电机和无人机
CN201710712401.3 2017-08-18

Publications (1)

Publication Number Publication Date
WO2019033797A1 true WO2019033797A1 (zh) 2019-02-21

Family

ID=60286784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085370 WO2019033797A1 (zh) 2017-08-18 2018-05-02 电机的定子组件、电机和无人机

Country Status (2)

Country Link
CN (1) CN107359718A (zh)
WO (1) WO2019033797A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359718A (zh) * 2017-08-18 2017-11-17 深圳市道通智能航空技术有限公司 电机的定子组件、电机和无人机
WO2019105124A1 (zh) * 2017-11-29 2019-06-06 深圳市道通智能航空技术有限公司 云台、拍摄组件及无人飞行器
CN107878773A (zh) * 2017-11-29 2018-04-06 深圳市道通智能航空技术有限公司 云台、拍摄组件及无人飞行器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188696A (ja) * 2010-03-11 2011-09-22 Daihatsu Motor Co Ltd ステータのコイル構造
CN202940709U (zh) * 2012-11-19 2013-05-15 腾达电动科技镇江有限公司 印刷电路板无铁芯盘式电机
CN205610362U (zh) * 2016-05-03 2016-09-28 周翔 直流电机
CN107359718A (zh) * 2017-08-18 2017-11-17 深圳市道通智能航空技术有限公司 电机的定子组件、电机和无人机

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188696A (ja) * 2010-03-11 2011-09-22 Daihatsu Motor Co Ltd ステータのコイル構造
CN202940709U (zh) * 2012-11-19 2013-05-15 腾达电动科技镇江有限公司 印刷电路板无铁芯盘式电机
CN205610362U (zh) * 2016-05-03 2016-09-28 周翔 直流电机
CN107359718A (zh) * 2017-08-18 2017-11-17 深圳市道通智能航空技术有限公司 电机的定子组件、电机和无人机

Also Published As

Publication number Publication date
CN107359718A (zh) 2017-11-17

Similar Documents

Publication Publication Date Title
US7291956B2 (en) Laminate coil and brushless motor using same
US11081914B2 (en) Stack-type stator using multi-layer substrate, slim motor using same, and blower for air purification system
EP1354390B1 (en) Rotary electric motor having axially aligned stator poles and/or rotor poles
JP3897122B2 (ja) モータ
WO2015111579A1 (ja) 発電装置および発電装置用電機子構造並びに電機子の製造方法
JP5957649B2 (ja) 薄型スピンドルモータ
US20120001502A1 (en) Multi-unit Modular Stackable Switched Reluctance Motor System with Parallely Excited Low Reluctance Circumferential Magnetic Flux loops for High Torque Density Generation
KR20050109480A (ko) 도체 최적화된 축 방향 필드 회전 에너지 장치
JP2010041907A (ja) スピンドルモータ
WO2019033797A1 (zh) 电机的定子组件、电机和无人机
CN109478806B (zh) 旋转致动器
CN207251339U (zh) 电机的定子组件、电机和无人机
EP3386074A1 (en) Motor, and pan-tilt and robotic arm having same
JP2016540484A (ja) 電磁モータ
JP2007325484A (ja) 平面空隙の軸方向空隙型ディスク多層回転電機
JPH10248224A (ja) ハードディスクドライブ用モータ
US20200091805A1 (en) Dynamo-electric machine with reduced cogging torque
CN114337172A (zh) 轴向磁通式pcb绕组永磁同步电机及其定子
JP2006081269A (ja) 積層コイルおよびこれを用いたモータ
KR101926472B1 (ko) 다층 인쇄회로기판을 이용한 적층형 스테이터, 이를 이용한 단상 모터와 쿨링 팬
JP2004222492A (ja) 三次元ステーター構造の回転機
JPH01315244A (ja) アキシャルフラックス型ブラシレスモータ
US5462763A (en) Method for manufacturing a laminated coil
CN205178689U (zh) 盘式无刷电机的双层pcb板线圈绕组结构
KR101897219B1 (ko) 데드 포인트 방지 기능을 갖는 쿨링 팬

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18846531

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18846531

Country of ref document: EP

Kind code of ref document: A1