WO2020235859A1 - 타일 바닥재 - Google Patents

타일 바닥재 Download PDF

Info

Publication number
WO2020235859A1
WO2020235859A1 PCT/KR2020/006354 KR2020006354W WO2020235859A1 WO 2020235859 A1 WO2020235859 A1 WO 2020235859A1 KR 2020006354 W KR2020006354 W KR 2020006354W WO 2020235859 A1 WO2020235859 A1 WO 2020235859A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tile flooring
weight
parts
flooring material
Prior art date
Application number
PCT/KR2020/006354
Other languages
English (en)
French (fr)
Inventor
장우경
남승백
손종석
신지희
노형문
Original Assignee
주식회사 엘지하우시스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200056920A external-priority patent/KR102706792B1/ko
Application filed by 주식회사 엘지하우시스 filed Critical 주식회사 엘지하우시스
Publication of WO2020235859A1 publication Critical patent/WO2020235859A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/02Flooring or floor layers composed of a number of similar elements
    • E04F15/10Flooring or floor layers composed of a number of similar elements of other materials, e.g. fibrous or chipped materials, organic plastics, magnesite tiles, hardboard, or with a top layer of other materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation

Definitions

  • the present invention relates to a tile flooring material, and to a tile flooring material having excellent sound insulation properties and cushioning properties.
  • the floor surface of a building structure is usually made of concrete and cement. At this time, if the floor surface of the building structure made of concrete and cement is exposed as it is, not only the aesthetic feeling is deteriorated, but also cold air rises.Therefore, a flooring material is installed on the floor to improve the aesthetics and block cold air coming up from the floor surface. .
  • a flooring material is a polyvinyl chloride (polyvinyl chloride, hereinafter referred to as'PVC') tile flooring material that is inexpensive and has a variety of designs while providing moisture-resistant properties.
  • a polyvinyl chloride polyvinyl chloride, hereinafter referred to as'PVC'
  • tile flooring material that is inexpensive and has a variety of designs while providing moisture-resistant properties.
  • Korean Patent Application Publication No. 10-2017-0130221 (hereinafter,'Patent Document 1') includes a non-slip layer 70 from the bottom to the top; A balance layer 20; An underlying layer 10; A glass fiber layer 30; A stop layer 40; Printing layer 50; And it discloses a PVC tile flooring comprising a surface layer (60).
  • the PVC tile flooring material disclosed in Patent Document 1 does not contain foam, and thus has poor sound insulation properties.
  • Korean Patent Laid-Open Publication No. 10-2018-0032764 (hereinafter,'Patent Document 2') is provided under the balance layer 20.
  • a foaming agent to the positioned non-slip layer 70, a tile flooring material including sound insulation and non-slip layer 70, which is a foamed foam, is proposed.
  • the tile flooring material of Patent Document 2 does not have a good cushioning feeling when walking because the foamed foam is located at the bottom of the tile flooring material, and contains a lot of open pores or open cells in the foam foam due to foaming with a chemical foaming agent. There was a problem that the cushioning properties were not maintained.
  • Korean Patent Laid-Open Publication No. 10-2018-0021446 (hereinafter,'Patent Document 3') describes the foaming of the foam sheet located at the bottom. It is proposing a loose ray tile with a magnification of 300-400%.
  • Patent Document 1 KR 10-2017-0130221 A (Published: 2017.11.28)
  • Patent Document 2 KR 10-2018-0032764 A (Published: 2018.04.02)
  • Patent Document 3 KR 10-2018-0021446 A (Published: 2018.03.05)
  • the present invention was conceived to solve the above-described problems, and an object thereof is to provide a tile flooring material having excellent sound insulation properties and cushioning properties.
  • the present invention from the bottom to the top, the base layer sequentially; Foam layer; And a tile flooring material including a dimensionally stable layer,
  • more than 90% of the pores contained in the cross-sectional area of 1 mm 2 are closed pores or closed cells, and the point of 1/2 of the thickness (M 1 ) is 1/ of the thickness of the tile flooring. It provides a tile flooring that is located above the two points (M 2 ).
  • the tile flooring material of the present invention has excellent effects in sound insulation and cushioning properties.
  • FIG. 1 is a side cross-sectional view showing an embodiment of a laminated structure of a tile flooring according to the present invention.
  • FIG. 1 is a side cross-sectional view showing an embodiment of a laminated structure of a tile flooring according to the present invention.
  • FIG. 2 is a side cross-sectional view showing another embodiment of the laminated structure of the tile flooring according to the present invention.
  • the inventors of the present invention made the tile flooring material, including the foam layer, to implement sound insulation after hard work in order to manufacture the tile flooring material having excellent sound insulation and cushioning properties, and the location of the foam layer located at the bottom of the existing tile flooring material It should be located in the middle part of the foam layer, but changed so that the point of 1/2 of the thickness of the foam layer is located above the point of 1/2 of the thickness of the tile flooring, and more than 90% of the pores contained within the cross-sectional area of 1 mm 2 are closed. It was confirmed that the cushioning property was remarkably improved when formed with closed pores or closed cells, and thus the tile flooring material of the present invention was completed.
  • the present invention includes a base layer 12 sequentially from bottom to top; Foam layer 20; And a tile flooring (1) comprising a dimensionally stable layer (30),
  • more than 90% of the pores included in the cross-sectional area of 1 mm 2 are closed pores or closed cells, and a point of 1/2 of the thickness (M 1 ) is the thickness of the tile flooring material 1 It relates to a tile flooring that is located above the 1/2 point (M 2 ).
  • the base layer 12 of the present invention is a layer that imparts physical properties required as a tile flooring material such as dimensional stability, durability, and cutability, and 30-50 parts by weight of a plasticizer and 500- It may contain 800 parts by weight.
  • the polyvinyl chloride resin is a vinyl chloride homopolymer, and a general-purpose polyvinyl chloride resin that can be applied to both soft and hard products may be used.
  • the polyvinyl chloride resin may have a degree of polymerization of 650-1000 or 700-900, for example, and has an effect of imparting excellent durability and mechanical properties to tile flooring while having excellent processability within the above range.
  • the plasticizer may be one or more selected from the group consisting of a phthalate plasticizer, a terephthalate plasticizer, a benzoate plasticizer, a citrate plasticizer, a phosphate plasticizer, and an adipate plasticizer. Phthalate plasticizers can be used.
  • the plasticizer may be used in an amount of 30-50 parts by weight or 35-45 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and there is an effect of imparting excellent processability within the above range.
  • the filler is at least one selected from the group consisting of calcium carbonate, wood flour, mica, amorphous silica, talc, zeolite, magnesium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, aluminum oxide, kaolin, ATH (Alumina trihydrate), and talc.
  • calcium carbonate which is advantageous in terms of price and versatility, and can increase heat resistance and durability, may be used.
  • the filler may be used in an amount of 500-800 parts by weight or 600-750 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, while maintaining an appropriate cost within the above range, and imparting excellent mechanical properties and workability to the tile flooring. It can have an effect.
  • the base layer 12 may have a thickness of 1.2-3.0mm or 1.5-2.5mm, and within the above range, dimensional stability, durability, and cutting properties of the tile flooring are excellent.
  • the foam layer 20 of the present invention is included to implement sound insulation, but it is located in the middle part of the tile flooring material and has excellent cushioning property when walking, and in particular, more than 90% of the pores contained in the cross-sectional area of 1 mm 2 are closed. As it is formed in the form of a closed pore or closed cell, it has the effect of maintaining cushioning properties (that is, a residual indentation rate of 20% or less, 15% or less, or 10% or less).
  • the foam layer 20 may implement a more excellent cushion property, if it is located on the upper side than the half point (M 2) of the 1/2 point (M 1) of the foam layer thickness tile flooring thickness (Fig. 2 Reference).
  • the foam layer 20 of the present invention may be a closed pore or closed cell in which 90% or more, 95% or more, or 98% or more of the pores contained in the cross-sectional area of 1 mm 2 are closed. Since there are many open pores or open cells and thus the improvement in pressing properties may be insignificant, it is preferable to include closed pores within the above range.
  • the upper limit of the ratio of closed pores included in the cross-sectional area of 1 mm 2 is not particularly limited, and may be, for example, 100%.
  • the closed-shaped pores included in the foam layer 20 may have an average diameter of 100-300 ⁇ m or 100-250 ⁇ m, and if it is less than the above range, the sound insulation properties of the tile flooring may be lowered, and the above range If it exceeds, the pore size may be excessive, so that the pressing property and durability of the tile flooring material may be deteriorated, and thus the average diameter may be within the above range.
  • the average diameter of the pores refers to the average value of the diameters that one pore can have, and if the pores are spherical, it means the average of the diameters, and if the pores have a shape other than the spherical shape, When classified, it may mean the average length of the long axis.
  • the closed-shaped pores may be included as 5-20 or 10-15 in a cross-sectional area of 1 mm 2 of the foam layer 20, and if it is less than the above range, sound insulation and cushioning properties of the tile flooring may be deteriorated, and the If it exceeds the range, the pressing property may be lowered, and thus the number of pores within the range may be obtained.
  • OM optical microscope
  • the ratio of the closed pores among the total pores formed within the cross-sectional area of (1mm 2 ), and the average diameter and number of pores can be measured.
  • the foam layer 20 may be formed by a mechanical foaming method.
  • mechanical foaming refers to forming pores in the foam layer 20 without using a chemical foaming agent, and may be mechanical foaming using, for example, a physical foaming agent, and preferably using air. Pore may be formed.
  • foaming is divided into chemical foaming using a chemical foaming agent and physical foaming using a physical foaming agent. More specifically, the chemical foaming refers to forming pores by generating gas while the chemical blowing agent is decomposed by a chemical reaction.
  • the chemical blowing agent is, for example, 4,4'-oxybis (benzenesulfonyl) hydrazide, 4,4'-oxybenzenesulfonyl semicarbazide, azodicarbonamide, p-toluenesulfonyl semicarbazide, Barium azodicarboxylate, azodiisobutyronitrile, benzenesulfone hydrazide, trihydrazinotriazine, metal salt of azodicarboxylic acid, oxalic acid hydrazide, hydrazocarboxylate, diphenyloxide-4, 4'-disulfohydrazide, tetrazole compound, sodium bicarbonate, ammonium bicarbonate, preparation of carbonate compound and polycarbonate, mixture of citric acid and sodium bicarbonate, N,N'-dimethyl-N,N'-dinitroso Terephthalamide, and N,N'-dinitrosopent
  • the physical foaming agent may include inorganic and organic foaming agents.
  • the inorganic physical blowing agent may include at least one selected from the group consisting of nitrogen, argon, oxygen, air, helium, and sulfur hexafluoride.
  • air means general air that exists in the atmosphere surrounding the earth, not gas that is artificially injected.
  • the organic physical blowing agent is, for example, carbon dioxide, aliphatic hydrocarbons (eg methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane, and combinations thereof), aliphatic alcohols (eg methanol, ethanol, n- Propanol and isopropanol and combinations thereof), fully and partially halogenated aliphatic hydrocarbons (eg, fluorocarbons, chlorocarbons and chlorofluorocarbons, and combinations thereof).
  • aliphatic hydrocarbons eg methane, ethane, propane, n-butane, isobutane, n-pentane, isopentane, and combinations thereof
  • aliphatic alcohols eg methanol, ethanol, n- Propanol and isopropanol and combinations thereof
  • fully and partially halogenated aliphatic hydrocarbons eg, fluorocarbons
  • mechanical foaming is a specific embodiment, by introducing air as a physical foaming agent into the foam layer sol by mechanical stirring to prepare a foam layer composition, and then foaming by gelling the foam layer composition. It may be to form pores in the layer.
  • the foam layer sol may include 60 to 100 parts by weight of a plasticizer and 30 to 70 parts by weight of a filler based on 100 parts by weight of the polyvinyl chloride resin.
  • the polyvinyl chloride resin may have a weight average molecular weight of 120,000-200,000 g/mole or 140,000-170,000 g/mole, and if it is less than the above range, the pore wall may not be hard, so that the improvement of pressability may be insignificant, and exceed the above range.
  • the weight average molecular weight may be within the above range.
  • the polyvinyl chloride resin may have a degree of polymerization of 900-1300, or 1000-1200, and within the above range, there is an effect of excellent pressing property of the tile flooring material.
  • plasticizer and filler may be of the same type as the plasticizer and filler included in the base layer 12 described above, overlapping descriptions will be omitted.
  • the plasticizer may be used in an amount of 60-100 parts by weight or 70-90 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and within the above range, the processability and cushioning feeling are excellent, and the plasticizer migration phenomenon does not occur. Has excellent mechanical properties.
  • the filler may be used in an amount of 30-70 parts by weight or 40-60 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, while maintaining an appropriate cost within the above range, and imparting excellent mechanical properties and workability to the tile flooring. It can have an effect.
  • the foam layer sol is selectively 0.5-5 parts by weight or 0.5-5 parts by weight based on 100 parts by weight of the polyvinyl chloride resin in order to eliminate air bubbles generated during the coating operation on the dimension stability layer 30 for forming the foam layer 20 It may further include 1-3 parts by weight of an antifoaming agent, and the type thereof is obvious to a person skilled in the art and is not limited thereto.
  • the foam layer composition may further include a surfactant to selectively form stable pores in the foam layer 20 in addition to the foam layer sol.
  • the surfactant is designed to stably maintain the gas mixed into the sol for the foam layer to form uniform pores in the foam layer.
  • Ion-based, non-ionic, fluorine-based and silicone It may be one or more selected from the group consisting of (Silicone)-based, and in the present invention, as a specific example, a silicone-based surfactant having excellent stable pore formation and high stability even when a small amount is used may be used.
  • the surfactant may be used in an amount of 1-15 parts by weight or 5-10 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and within the above range, pores having a specific shape and diameter are formed in a specific number in the foam layer 20. It is uniformly dispersed and has excellent pressing and cushioning properties of tile flooring.
  • the foam layer 20 of the present invention formed using the foam layer composition described above may have a foaming ratio of 130-180% or 140-170%, and if it is less than the above range, sound insulation and cushioning properties may be deteriorated, If it exceeds the above range, the pressing property may be deteriorated, and thus the foaming ratio may be within the above range.
  • the foaming ratio is then subjected to a pressure of 500kgf/cm 2 for 15 minutes at a temperature of 160°C. After pressing for a while, the pressure is removed and the density of the compressed specimen can be measured and calculated as shown in Equation 1 below.
  • the foam layer 20 may have a residual indentation rate of 20% or less, 15% or less, or 10% or less according to ASTM F 1914, and if it exceeds the above range, cushioning properties may not be maintained, so that the remaining in the above range. It can have an indentation rate.
  • the residual indentation rate is, for example, an initial thickness of a specimen (length and width of 50 mm x 50 mm) of a foam layer bonded to a dimensionally stable layer to be described later, and is 22.7 with a press-fit rod having a diameter of about 19.5 mm on the top of the specimen After applying a pressure of kg for 5 minutes, the pressure is removed, and the thickness after 60 minutes is measured again and calculated as shown in Equation 2 below.
  • Residual indentation rate T 0 -T 1 /T 0 X 100%
  • the tile flooring material 1 of the present invention including the foam layer 20 formed as described above has a lower foaming ratio and a higher proportion of closed pores in the foam layer compared to the existing tile flooring material including the foam layer formed by chemical foaming. It has a very good effect.
  • the dimensionally stable layer 30 of the present invention is a layer that provides excellent dimensional stability to the tile flooring material and serves as a carrier for placing the foam layer in the middle of the tile flooring material.
  • glass fiber The sheet may be impregnated with polyvinyl chloride sol (hereinafter referred to as'PVC sol') and then gelled.
  • the glass fiber sheet may be a glass fiber woven fabric or a non-woven fabric, but is not limited thereto.
  • the PVC sol may include 60-100 parts by weight or 65-90 parts by weight of a plasticizer and 10-80 parts by weight or 50-70 parts by weight of a filler based on 100 parts by weight of the polyvinyl chloride resin.
  • the polyvinyl chloride resin may be preferably the same polyvinyl chloride resin used for the foam layer 20.
  • plasticizer and filler may be of the same type as the plasticizer and filler included in the base layer 12 described above, overlapping descriptions will be omitted.
  • the dimensional stability layer 30 may have a basis weight of 35-70g/m 2 , or 40-65g/m 2 , and within the above range, the dimensional stability of the tile flooring material is excellent.
  • the thickness of the dimensional stability layer 30 may be 0.05-0.5mm or 0.1-0.3mm, and the dimensional stability of the tile flooring material is excellent within the above range.
  • the sum of the thicknesses of the foam layer 20 and the dimension stability layer 30 described above may be 0.8-2.0mm or 1.0-1.8mm, and within the above range, excellent dimensional stability, sound insulation, and There is an effect that can impart pressing and cushioning properties.
  • the sum of the thicknesses of the foam layer 20 and the dimension stability layer 30 may be 15-35% or 20-30% of the total thickness of the tile flooring material, and sound insulation properties of the tile flooring material within the above range, It has excellent pressing and cushioning properties.
  • the tile flooring (1) of the present invention optionally includes a balance layer (11) under the base layer (12), and a stop layer (41), a white layer (42) sequentially over the dimensionally stable layer (30), A print layer 42 ′ and a transparent layer 43 may be further included (see FIG. 2 ).
  • the balance layer 11, the stop layer 41, the white layer 42, the printing layer 42', and the transparent layer 43 which may be additionally selectively included, will be described in detail.
  • the balance layer 11 of the present invention is a layer that is located under the base layer 12, which is the thickest layer of tile flooring, and serves to prevent warping and warping of the tile flooring material, based on 100 parts by weight of polyvinyl chloride resin. 40-80 parts by weight of a plasticizer, and 40-80 parts by weight of a filler may be included.
  • the polyvinyl chloride resin, plasticizer, and filler may be the same type as the polyvinyl chloride resin, plasticizer, and filler included in the base layer 12 described above, and thus overlapping descriptions will be omitted.
  • the plasticizer can be used in an amount of 40-80 parts by weight or 50-75 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and if it is less than the above range, it is impossible to apply without an adhesive when constructing a tile flooring material, and if it exceeds the above range Other physical properties, such as the structural balance of the tile flooring material, are deteriorated and can be used within the above range.
  • the amount of plasticizer in the balance layer 11 is increased compared to the existing tile flooring material, so that it is possible to construct the floor without a separate adhesive, so that the general people who are not technicians can easily construct it.
  • the plasticizer when selectively attaching a tile flooring material, may be used in an amount of 10-40 parts by weight or 20-30 parts by weight based on 100 parts by weight of the polyvinyl chloride resin.
  • the filler can be used in an amount of 40-80 parts by weight or 50-75 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and can impart excellent mechanical properties and processability to the tile floor while maintaining an appropriate cost within the above range. It works.
  • the balance layer 11 may have a thickness of 0.1-1.0mm or 0.2-0.6mm, and within the above range, there is an effect of preventing warping and bending of the tile flooring, as well as implementing excellent sound insulation and pressing properties. .
  • the tile flooring 1 of the present invention further includes the balance layer 11 under the base layer 12, the sum of the thicknesses of the balance layer 11 and the base layer 12 is the tile flooring material. It may be 40-58% or 42-55% of the total thickness of, and there is an excellent effect in the structural balance of the tile flooring within the above range.
  • the stopping layer 41 of the present invention is a layer that plays a role in imparting structural balance and pressing property to the tile flooring, and includes 10-28 parts by weight of a plasticizer and 100-200 parts by weight of a filler based on 100 parts by weight of the polyvinyl chloride resin. can do.
  • the polyvinyl chloride resin, plasticizer, and filler may be the same type as the polyvinyl chloride resin, plasticizer, and filler included in the base layer 12 described above, and thus overlapping descriptions will be omitted.
  • the plasticizer may be used in 10-28 parts by weight or 15-25 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and if it is less than the above range, the workability may be deteriorated, and if it exceeds the above range, It can not be given a specific range of hardness, the pressing properties may be lowered, and can be used within the above range.
  • the filler may be used in an amount of 100-200 parts by weight, or 130-180 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and it is possible to impart excellent mechanical properties to the tile floor while maintaining an appropriate cost within the above range. There is an effect.
  • the stopping layer 41 may have a thickness of 0.7-1.5mm or 0.9-1.3mm, and if it is less than the above range, it may not be able to impart a specific range of hardness to the tile flooring, so that the pressing property may be deteriorated. In this case, since the cushioning property is lowered, it may have a thickness within the above range.
  • the tile flooring 1 of the present invention further includes a stop layer 41 on the dimensionally stable layer 30, the thickness of the stop layer 41 is 15-30% of the total thickness of the tile flooring material. Alternatively, it may be 17-25%, and within the above range, there is an effect of excellent pressing properties and cushioning properties of the tile flooring material.
  • the white layer 42 of the present invention is a layer that serves to make the pattern or pattern of the printing layer 42 ′ to be described later stand out, and is 15 to 30 parts by weight of a plasticizer and 1 filler based on 100 parts by weight of a polyvinyl chloride resin. -15 parts by weight and 15-30 parts by weight of a pigment may be included.
  • the polyvinyl chloride resin may have a degree of polymerization of 800-1300 or 900-1200, for example, and has an effect of providing excellent durability and mechanical properties to tile flooring while having excellent processability within the above range.
  • plasticizer and filler may be of the same type as the plasticizer and filler included in the base layer 12 described above, overlapping descriptions will be omitted.
  • the plasticizer may be used in an amount of 15-30 parts by weight or 20-25 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and there is an effect of imparting excellent processability within the above range.
  • the filler can be used in an amount of 1-15 parts by weight or 5-10 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and has the effect of imparting excellent mechanical properties to the tile flooring material while maintaining an appropriate cost within the above range. have.
  • the pigment may be titanium dioxide, but is not particularly limited as long as it is a white pigment capable of reliably implementing the color of the printing layer 42 ′ described later.
  • the pigment may be used in an amount of 15-30 parts by weight or 20-25 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and within the above range, the pattern or pattern of the printing layer to be described later becomes more prominent, so that the appearance of the tile flooring material is improved. It has an excellent effect.
  • the white layer 42 may have a thickness of 0.01-0.3mm or 0.05-0.1mm, and within the above range, the pattern or pattern of the printed layer is more prominent, so that the appearance of the tile flooring material is excellent.
  • the printing layer 42 ′ of the present invention is a layer that provides various appearances and design effects to the tile flooring material, and is formed on the upper surface of the white layer 42 through transfer printing, or a predetermined pattern or pattern is printed. It may be formed on one side of the transparent layer 43 to be described later through transfer printing using a printing film.
  • the printed layer 42 ′ may be formed on the upper surface of the white layer 42, and may be selectively formed through a tuning embossing process.
  • the printing layer 42 ′ may be formed on one surface of the transparent layer 43.
  • the tuning embossing process refers to forming an embossed pattern that matches the printing pattern of the printed layer to realize an excellent appearance.
  • the print layer 42 ′ may have a thickness of 60-120 ⁇ m or 70-100 ⁇ m, for example, but is not limited thereto.
  • the transparent layer 43 of the present invention is a layer that serves to protect the printed pattern or pattern of the printed layer 42 ′ formed underneath, and contains 30-50 parts by weight of a plasticizer based on 100 parts by weight of the polyvinyl chloride resin. It may be a vinyl transparent film.
  • polyvinyl chloride resin may be of the same type as the polyvinyl chloride resin included in the white layer 42 described above, overlapping descriptions will be omitted.
  • plasticizer may be of the same type as the plasticizer included in the base layer 12 described above, duplicate descriptions will be omitted.
  • the plasticizer may be used in an amount of 30-50 parts by weight or 30-40 parts by weight based on 100 parts by weight of the polyvinyl chloride resin, and there is an effect of imparting excellent processability within the above range.
  • the transparent layer 43 may have a thickness of 0.1-1.0mm or 0.3-0.8mm, and has an effect of protecting the printed layer 42' formed underneath while maintaining an appropriate cost within the above range.
  • Each of the layers (11, 12, 20, 30, 41, 42, 43) described above further contains one or more additives selected from the group consisting of lubricants, processing aids, heat stabilizers, light stabilizers, antioxidants, and flame retardants.
  • the type and content thereof are not particularly limited, but may be included in 0.5-20 parts by weight or 1-17 parts by weight based on 100 parts by weight of the polyvinyl chloride resin as an example.
  • the tile flooring 1 of the present invention may further include a tuning emboss (not shown) formed on the other surface of the transparent layer 43 on which the printing layer 42 ′ is formed on one surface through a tuning embossing process.
  • the tile flooring 1 of the present invention is selectively formed on the transparent layer 43 to improve scratch resistance and abrasion resistance of the tile flooring surface, and a UV coating layer (not shown) to prevent adhesion of contaminants. May contain more
  • the UV coating layer may be formed by coating a conventional photocurable resin, and the thickness thereof may be 0.005-0.1mm or 0.01-0.05mm, but is not limited thereto.
  • the tile flooring 1 of the present invention having the above laminated structure is the sum of the thicknesses of the balance layer 11 and the base layer 12 (S 1 ), the stop layer 41, the white layer 42, printing
  • the sum of the thicknesses (S 3 ) of the layer 42 ′ and the transparent layer 43 may have a thickness ratio of 1.2-1.7:1 or 1.3-1.6:1, and within the above range, the tile flooring 1 of the present invention is Excellent cushioning and structural balance can be realized.
  • the tile flooring 1 of the present invention is the sum of the thicknesses of the balance layer 11 and the base layer 12 (S 1 ), and the sum of the thicknesses of the foam layer 20 and the dimensionally stable layer 30 ( S 2 ) and the sum of the thicknesses of the stop layer 41, the white layer 42, the printing layer 42 ′, and the transparent layer 43 (S 3 ) is 1.7-2.3:1:1.2-1.5 or 1.8-2.2 It can have a thickness ratio of :1:1.3-1.4, and within the above range, the tile flooring 1 of the present invention can realize excellent sound insulation, cushioning properties, and structural balance.
  • the tile flooring 1 of the present invention may have a sound insulation (ISO 10140) of ⁇ 10-20dB or ⁇ 13-18dB, and if it is less than the above range, the sound insulation improvement is insignificant, so it may have sound insulation within the above range. .
  • ISO 10140 sound insulation
  • the sound insulation may be a reduced noise ( ⁇ dB) compared to the control group after measuring the lightweight impact sound according to ISO 10140.
  • the control group was measured on a cement surface that is not finished with a floor material, and the light weight impact sound of the control group was 70-75dB.
  • the tile flooring 1 of the present invention may have a sound insulation (ASTM E989) of 52 Class or more or 53 Class or more, and if it is less than the above range, the sound insulation improvement is insignificant, and thus may have sound insulation within the above range.
  • the sound insulation may be impact sound transmission using a taping machine according to ASTM E989.
  • the tile flooring 1 of the present invention may have a pressability (ASTM F970, 1000psi) of 0.125mm or less or 0.120mm or less, and if it exceeds the above range, the pressability is not improved and thus may have a pressability within the above range. have.
  • the pressing property is based on ASTM F970, the initial thickness of the specimen (length and width is 50mm x 50mm) of the tile flooring is measured, a jig having a diameter of about 28.6mm is placed on the top of the specimen, and a pressure of 1000psi is applied. After applying for 1 day, the pressure is removed and the thickness after 1 day is measured again, and the thickness may be changed compared to the initial thickness.
  • the tile flooring 1 of the present invention may have a pressability (ASTM F970, static load) of 800-1200 psi or 900-1100 psi, and the pore wall in the foam layer is hard within the above range, so that it is more than that of the existing tile flooring. It has the effect of withstanding high pressure.
  • a jig with a diameter of about 28.6 mm is placed on the top of the tile flooring specimen (length and width is 50 mm x 50 mm) and a certain pressure is applied for 1 day, and then the pressure is removed. Then, after 1 day, the thickness of the specimen is measured, and it may be the maximum value of the pressure when the change in thickness is 0.125 mm or less.
  • the tile flooring 1 of the present invention may have a pressability (EN 433, mm) of 0.10mm or less or 0.08mm or less, and if it exceeds the above range, the pressability is not improved and thus may have a pressability within the above range. have.
  • the initial thickness of the specimen (length and width is 50mm x 50mm) is measured, and a pressure of 500N is applied to the top of the specimen for 150 minutes, and the pressure is removed.
  • the thickness after 150 minutes may be measured and may be a changed thickness compared to the initial thickness.
  • the tile flooring 1 of the present invention may have an impact absorption value of 750 mm or less or 740 mm or less, and within the above range, the cushioning property of the tile flooring material is excellent.
  • the lower limit thereof is not limited, but may be, for example, 400 mm or more or 500 mm or more.
  • the shock absorption may be measured as the height at which the golf ball bounces when the golf ball freely falls from a height of 1.5 m to the tile flooring material.
  • the tile flooring 1 of the present invention may have a curling property (ISO 23999) of 0.7 mm or less or 0.5 mm or less, and the structure balance of the tile flooring material within the above range is excellent.
  • the tile flooring 1 of the present invention may have an apparent density of 1.5-3 g/cm 3 or 1.8-2.5 g/cm 3 , and the tile flooring material is lightweight within the above range.
  • the apparent density can be measured using a UK apparent density meter (RAY-RAN, Apparent Bulk Density).
  • the tile flooring 1 of the present invention further includes a tuning emboss
  • the synchronization rate between the printed pattern of the printed layer 42 ′ formed on one side of the transparent layer 43 and the embossed pattern formed on the other side is 95% or more or 98 May be greater than or equal to %.
  • the tuning rate can be measured using a Lupe (PEAK, Scale 10x) to determine the degree of deviation in the length or width direction of the print pattern and the tuning emboss of the printed layer.
  • Lupe PEAK, Scale 10x
  • the base layer composition is kneaded at 160-190°C or 170-180°C, and then the kneaded composition is passed through a calender roll having a temperature of 150-190°C or 160-180°C to prepare a base layer.
  • the balance layer 11 when the balance layer 11, the stop layer 41, the white layer 42, the printing layer 42' and the transparent layer 43 are further included, a balance layer composition, a stop layer composition, a white layer composition, and After kneading the transparent layer composition at 160-190°C or 170-180°C, respectively, by passing the kneaded composition through a calender roll having a temperature of 150-190°C or 160-180°C, the balance layer, the middle layer, the white layer and the transparent layer are respectively To manufacture.
  • the balance layer composition, the base layer composition, the stop layer composition, the white layer composition, and the transparent layer composition are the same as the composition of each layer described above, so overlapping descriptions will be omitted.
  • a print layer is formed on the white layer through transfer printing.
  • a glass fiber sheet is impregnated and gelled with a PVC sol to prepare a dimensionally stable layer.
  • the mixed sol for the foaming layer and the surfactant were added to a foam mixer, respectively, and 2000 Mechanically agitated so that air is sufficiently blown at -3500 rpm or 2500-3200 rpm for 15-30 minutes or 20-30 minutes so that the foaming ratio of the foaming layer composition is 130-250% or 150-230%.
  • the composition for a foam layer in which the air is blown may be aged for 1-5 hours, 2-5 hours, or 1-3 hours in a portable tank in order to control the expansion ratio.
  • the coating may use knife coater, comma coater, gravure coater or roll coater, but is not limited thereto.
  • a balance layer a base layer, a foam layer bonded to the dimensionally stable layer (so that the foam layer contacts the base layer), a stop layer, a white layer and a transparent layer having a printed layer formed on the upper part are sequentially formed.
  • the tile flooring is manufactured by heat plying at a temperature of 140-165°C or 145-160°C.
  • a printed layer may be formed on one side of the transparent layer instead of forming a printed layer on the white layer, and other layers may be manufactured in the same manner as described above. have. Specifically, transfer printing is performed at 100-130° C., or 110-130° C. using a transfer printing film on which a predetermined pattern or pattern is printed on one side of the transparent layer, and 130-160° C., or 135- By forming a tuned embossing process at 155°C, a transparent layer with a printed layer on one side and a tuned emboss on the other side is manufactured.
  • the transfer printing film is not recovered until the tuning emboss is formed.
  • the transfer printing film may be removed after cooling the transparent layer to 10-60°C, 20-40°C, or 20-30°C in order to prevent restoration of the synchronous embossing.
  • the transfer printing film is capable of suppressing irregular elongation of the transparent layer, which is a material of the polyvinyl chloride transparent film, from transfer printing to the formation of a tuned emboss.
  • the thermal expansion rate and high-temperature elongation are significantly lower, while the strength and It may be formed using one or more materials selected from the group consisting of polyethylene terephthalate (PET), polyethylene terephthalate glycol (PETG), and Teflon having excellent rigidity.
  • PET polyethylene terephthalate
  • PETG polyethylene terephthalate glycol
  • Teflon Teflon having excellent rigidity.
  • a film made of polyethylene terephthalate which has excellent polarity and heat resistance, and can enhance the three-dimensional effect with a sense of depth, may be used.
  • the thickness of the transfer printing film may be, for example, 0.01-0.50mm or 0.02-0.40mm, and there is an effect of securing appropriate strength and rigidity at an appropriate level of manufacturing cost within the above range.
  • the tile flooring material of the present invention improves the scratch resistance and abrasion resistance of the tile flooring surface, and further forms a UV coating layer by coating a conventional photocurable resin on the upper surface of the transparent layer to prevent adhesion of contaminants. I can.
  • the tile flooring material of the present invention manufactured by the above manufacturing method has excellent cushioning properties, sound insulation properties, and pressing properties.
  • a balance layer composition comprising 100 parts by weight of a polyvinyl chloride resin (a), 60 parts by weight of a plasticizer, 60 parts by weight of a filler, 3 parts by weight of a heat stabilizer, and 3 parts by weight of a processing aid at 180°C with a Banbari mixer, the The kneaded balance layer composition was calendered at a temperature of 160° C. to prepare a balance layer having a thickness of 0.4 mm.
  • a base layer composition comprising 100 parts by weight of a polyvinyl chloride resin (a), 40 parts by weight of a plasticizer, 650 parts by weight of a filler, and 4 parts by weight of a heat stabilizer at 180°C with a Banbari mixer
  • the kneaded base layer composition was calendered at a temperature of 160° C. to prepare a base layer having a thickness of 2.0 mm.
  • Glass fiber nonwoven fabric is impregnated in a PVC sol containing 100 parts by weight of polyvinyl chloride resin (c), 80 parts by weight of plasticizer, 60 parts by weight of filler, and 2 parts by weight of heat stabilizer and then gelled, and the basis weight is 52 g/m 2 and the thickness is 0.2 A dimensionally stable layer of mm was prepared.
  • the foaming layer composition is coated on the top of the dimensionally stable layer using a comma coater, and then gelled through a three-chamber oven at a temperature of 200-210°C at a speed of 7m/min, thereby foaming in a mechanical foaming method.
  • a foam layer having a foaming ratio of 150% was obtained.
  • the sum of the thicknesses of the bonded dimensional stability layer and foam layer was 1.2 mm.
  • a middle layer composition comprising 100 parts by weight of a polyvinyl chloride resin (a), 24 parts by weight of a plasticizer, 160 parts by weight of a filler, and 4 parts by weight of a heat stabilizer at 180°C with a Banbari mixer
  • the kneaded middle layer composition Calender molding was performed at a temperature of 160° C. to prepare a middle layer having a thickness of 1.0 mm.
  • a white layer composition comprising 100 parts by weight of a polyvinyl chloride resin (b), 25 parts by weight of a plasticizer, 8 parts by weight of a filler, 20 parts by weight of titanium dioxide (TiO 2 ) as a pigment, and 3 parts by weight of a heat stabilizer was mixed at 180°C with a Banbari mixer. After kneading at, the kneaded white layer composition was calendered at a temperature of 180° C. to prepare a white layer having a thickness of 0.07 mm.
  • a print layer having a thickness of 80 ⁇ m was formed on the white layer through transfer printing.
  • a transparent layer composition comprising 100 parts by weight of a polyvinyl chloride resin (b), 30 parts by weight of a plasticizer and 3 parts by weight of a heat stabilizer at 180°C with a Banbari mixer, the kneaded transparent layer composition is calendered at a temperature of 180°C.
  • a transparent layer having a thickness of 0.5 mm was prepared.
  • a balance layer a base layer, a foam layer bonded to the dimensionally stable layer (so that the foam layer contacts the base layer), a stop layer, a white layer and a transparent layer with a printed layer formed on the top are placed in sequence.
  • the tile flooring material of Example 1 having a thickness of 5.25 mm was prepared by heat plying at a temperature of 150°C.
  • a printed layer having a thickness of 80 ⁇ m was formed by transferring printing at 130° C. on one side of the transparent layer using a PET transfer printing film having a thickness of 0.025 mm on which a predetermined pattern was printed. However, the transfer printing film remained in contact with one side of the transparent layer without removing it yet.
  • a tuning emboss was formed on the other surface of the transparent layer on which a printing layer was formed on one side through a tuning embossing process at 150°C to match the print pattern.
  • the transparent layer was cooled to 25° C. and the transfer printing film was removed.
  • a composition for a foam layer was prepared by mixing 100 parts by weight of a polyvinyl chloride resin (d), 100 parts by weight of a plasticizer, 20 parts by weight of a filler, 8 parts by weight of a chemical foaming agent, and 3 parts by weight of a heat stabilizer with a mixer.
  • the foam layer composition was coated on the top of the dimensionally stable layer using a knife coater and then gelled at 160° C. for 15 seconds. Thereafter, the foam layer bonded with the dimensionally stable layer was placed in a foaming oven at 200° C. and foamed to obtain a foam layer having a foaming ratio of 150% and chemically foamed.
  • the sum of the thicknesses of the bonded dimensional stability layer and foam layer was 1.2 mm.
  • a balance layer sequentially from bottom to top of each of the layers prepared above; Base layer; A foam layer bonded to the dimensionally stable layer (so that the foam layer contacts the base layer); Middle layer; A white layer having a printed layer formed thereon; And a transparent layer (so that the transparent layer contacts the printing layer). After positioning, it was thermally laminated at a temperature of 150° C. to prepare a tile flooring material having a thickness of 5.25 mm.
  • a tile flooring was manufactured in the same manner as in Example 1, except that the thickness of the balance layer was 0.4 mm, the thickness of the base layer was 1.45 mm, and the sum of the thickness of the balance layer and the base layer was 1.85 mm.
  • composition of all layers was the same as in Example 1, but a tile flooring was manufactured through the following manufacturing method.
  • a balance layer, a base layer, a middle layer, and a white layer and a transparent layer having a printed layer formed thereon were each prepared by calendering.
  • a foamed layer having a foaming ratio of 150% and a mechanical foaming method was prepared by applying and gelling a composition for a foaming layer on the upper part of the dimensionally stable layer.
  • the foam layer is sequentially bonded to the dimension stability layer from the bottom to the top; A balance layer (so that the dimensional stability layer contacts the balance layer); Base layer; Middle layer; A white layer having a printed layer formed thereon; And after placing the transparent layer, the tile flooring material of Comparative Example 3 was manufactured by thermally plying at a temperature of 150°C.
  • Foaming magnification After measuring the initial density of a specimen (length and width of 50mm x 50mm) of the bonded dimensional stability layer and foam layer, the specimen was subjected to a pressure of 500kgf/cm 2 at a temperature of 160°C. After pressing for a minute, the pressure was removed, and the density of the compressed specimen was measured and calculated through Equation 1 below.
  • Ratio of closed pores, average diameter and number of pores After cutting the tile flooring in the vertical or horizontal direction, the cross-sectional area of the foam layer cut using an optical microscope (OM) (1mm 2 ) The ratio, average diameter, and number of closed pores were measured among the total pores formed in).
  • Pressability 2 According to ASTM F970 (static load), a jig with a diameter of about 28.6 mm is placed on the top of the specimen (length and width of 50 mm x 50 mm) of the tile flooring material and a certain pressure is applied for 1 day. , After 1 day after removing the pressure, the thickness of the specimen was measured, and the maximum value of the pressure was measured when the change in thickness was 0.125 mm or less.
  • Pressability 3 In accordance with EN 433, the initial thickness of the specimen (length and width is 50mm x 50mm) of the tile flooring is measured, and a pressure of 500N is applied to the top of the specimen for 150 minutes, and then the pressure is removed. Then, the thickness after 150 minutes was measured, and the changed thickness compared to the initial thickness (the value obtained by subtracting the later thickness from the initial thickness) was measured.
  • Curling property according to ISO 23999, 6 specimens (length and width of 150mm x 1260mm) of tile flooring are allowed to stand under high temperature deformation conditions (80°C for 6 hours), and take them out at room temperature for 25 Wait for it to reach °C, leave it under low temperature deformation condition (-5°C for 6 hours), take it out to room temperature, wait for it to reach 25°C sufficiently, and then make a gap at the edge of the tile floor where curling occurs from the floor under each condition. It was measured with a gauge (MITUTOYO, 184-304S) and the average value under each deformation condition was calculated.
  • ISO 23999 6 specimens (length and width of 150mm x 1260mm) of tile flooring are allowed to stand under high temperature deformation conditions (80°C for 6 hours), and take them out at room temperature for 25 Wait for it to reach °C, leave it under low temperature deformation condition (-5°C for 6 hours), take it out to room temperature, wait for it to reach 25°C sufficiently, and then make a gap at the
  • Apparent density The apparent density was measured using a British apparent density meter (RAY-RAN, Apparent Bulk Density).
  • Example 1 Example 2 Comparative Example 1 Comparative Example 2 Comparative Example 3 Laminated structure - Tuning emboss - - - Transparent layer Transparent layer Transparent layer Transparent layer Transparent layer Transparent layer Printed layer Printed layer Printed layer Printed layer Printed layer White layer White layer White layer White layer White layer Middle floor Middle floor Middle floor Middle floor Middle floor Middle floor Middle floor
  • Dimensional stability layer Dimensional stability layer
  • Dimensional stability layer Dimensional stability layer
  • S 1 sum of the thicknesses of the balance layer and the base layer
  • S 2 the sum of the thicknesses of the foam layer and the dimensionally stable layer
  • S 3 the sum of the thicknesses of the middle layer, white layer, printing layer, and transparent layer
  • the foam layer is formed by mechanical foaming, so that the proportion of closed pores is large, and the pores are included in a specific range within the cross-sectional area. As a result, it was confirmed that the tile flooring material was excellent in sound insulation and pressing properties.
  • the dimensional stability layer is used as a carrier to form the foam layer by mechanical foaming, but it is placed in the middle part of the tile flooring material, and in particular, the 1/2 point (M 1 ) of the thickness of the foam layer is tiled. It was confirmed that the floor material (1) was positioned above the half point (M 2 ) of the thickness (Examples 1, 2-M 1 : 2.9 mm, M 2 : 2.625 mm), and it was excellent in shock absorption and cushioning properties.
  • tile flooring materials of Examples 1 to 2 are the sum of the thicknesses of the balance layer and the base layer located at the lower part (S 1 ) based on the foam layer and the dimensionally stable layer, and the stop layer, white layer, printing layer and The sum of the thicknesses of the transparent layer (S 3 ) had a thickness ratio of 1.2-1.7:1, indicating that curling did not occur, indicating that the structural stability was excellent.
  • Example 2 of the present invention has a very good appearance due to high tuning rate of the print pattern and the tuning emboss.
  • the tile flooring material of Comparative Example 1 in which the foam layer is chemically foamed has a smaller proportion of closed pores in the foam layer compared to Examples 1 to 2, so that the pressing property is very low compared to Examples 1 to 2, and shock absorption and structure It was confirmed that the balance was also slightly lowered.
  • the 1/2 point (M 1 ) of the thickness of the foam layer is the same as the 1/2 point (M 2 ) of the thickness of the tile flooring (1) (M 1 : 2.35mm, M 2 : 2.35mm).
  • Tile flooring (1) of Comparative Example 2 in which the foam layer is located in the center, as the thickness ratio of (S 1 ) and (S 3 ) and (S 1 ), (S 2 ) and (S 3 ) are different from the present invention It was confirmed that the shock absorption properties and structural balance were deteriorated, and the sound insulation properties were also slightly deteriorated.
  • the foam layer is located at the bottom and the 1/2 point (M 1 ) of the thickness of the foam layer is located below the 1/2 point (M 2 ) of the thickness of the tile flooring (1) (M 1 : 0.5mm, M 2 : 2.625 mm) It was confirmed that the tile flooring material 1 of Comparative Example 3 had lower impact absorption properties and lowered cushioning properties compared to Examples 1 to 2.
  • the dimensional stability layer which serves as a carrier for forming the foam layer by mechanical foaming, is also inevitable to be located under the tile flooring, resulting in curling, which reduces structural stability, and sound insulation. It was confirmed that the degree was also reduced.
  • the foam layer is located at the bottom, unlike Examples 1 and 2, it has no choice but to use an adhesive, and when the adhesive is applied, deformation occurs in the foam layer due to the hera bone of the adhesive. In addition, as time elapses, the foam foam absorbs the adhesive, so that the pressing and cushioning properties of the tile flooring material deteriorate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Floor Finish (AREA)

Abstract

본 발명은 타일 바닥재에 관한 것으로, 차음성 및 쿠션성 등이 우수한 타일 바닥재에 관한 것이다. 〔대표도〕도 1

Description

타일 바닥재
본 발명은 타일 바닥재에 관한 것으로, 차음성 및 쿠션성 등이 우수한 타일 바닥재에 관한 것이다.
건축구조물의 바닥면은 콘크리트 및 시멘트로 되는 것이 일반적이다. 이때, 콘크리트 및 시멘트로 되는 건축구조물의 바닥면이 그대로 노출될 경우, 미감이 저하될 뿐만 아니라 냉기가 올라오게 되므로 바닥면에 바닥재를 시공하여 미감을 향상시키고 바닥면으로부터 올라오는 냉기를 차단하고 있다.
상기와 같은 바닥재의 일 예로는 가격이 저렴하고, 다양한 디자인을 부여하면서 수분에 강한 특성을 가진 폴리염화비닐(PolyvinylChloride, 이하 'PVC'라 함) 타일 바닥재가 있다.
일 예로, 대한민국 공개특허공보 제10-2017-0130221호(이하, '특허문헌 1')는 하부에서 상부로 논 슬립층(70); 발란스층(20); 하지층(10); 글라스 파이버층(30); 중지층(40); 인쇄층(50); 및 표면층(60)을 포함하는 PVC 타일 바닥재를 개시하고 있다.
그러나, 상기 특허문헌 1이 개시한 PVC 타일 바닥재는 발포 폼(foam)을 포함하지 않아 차음성이 좋지 않은 문제점이 있다.
최근에는 공동주택에서의 층간 소음으로 인한 갈등이 고조되고, 도서관이나 독서실 등 소음 저하가 요구되는 장소에서는 발소리, 의자 끄는 소리 등 바닥재와의 접촉을 통해 발생되는 소음 저하가 특히 요구되기에 타일 바닥재의 차음성은 더욱 중요시되고 있다.
따라서 상기 특허문헌 1과 같이 차음성이 좋지 않은 타일 바닥재의 문제점을 개선하기 위해, 대한민국 공개특허공보 제10-2018-0032764호(이하, '특허문헌 2')는 상기 발란스층(20) 하부에 위치한 논 슬립층(70)에 발포제를 첨가하여, 발포 폼인 차음 및 논 슬립층(70)을 포함하는 타일 바닥재를 제안하고 있다.
하지만, 상기 특허문헌 2의 타일 바닥재는 발포 폼이 타일 바닥재 최하부에 위치하고 있어 보행 시 쿠션감이 좋지 않고, 화학 발포제로 발포시킴으로 인해 발포 폼 내 열린 형상의 기공(opened pore or open cell)이 많이 포함되어 쿠션성이 유지되지 않는 문제점이 있었다.
한편, 따라서 상기 특허문헌 2와 같이 타일 바닥재의 쿠션성이 좋지 않은 문제점을 개선하기 위해, 대한민국 공개특허공보 제10-2018-0021446호(이하, '특허문헌 3')는 최하부에 위치한 발포시트의 발포배율을 300-400%로 높인 루즈레이 타일을 제안하고 있다.
그러나, 상기 특허문헌 3의 루즈레이 타일은 쿠션성은 개선되었으나, 화학 발포제로 고배율로 발포 시킴으로 인해 쿠션성이 유지되지 못하는 문제점이 있었다.
따라서, 발포 폼을 포함하여 차음성을 구현할 수 있으면서, 보행 시 쿠션감도 우수하며, 쿠션성이 유지될 수 있는 타일 바닥재의 출현이 절실한 상황이다.
〔선행기술문헌〕
〔특허문헌〕
(특허문헌 1) KR 10-2017-0130221 A (공개일: 2017.11.28)
(특허문헌 2) KR 10-2018-0032764 A (공개일: 2018.04.02)
(특허문헌 3) KR 10-2018-0021446 A (공개일: 2018.03.05)
본 발명은 상술한 문제점을 해결하고자 안출된 것으로, 차음성 및 쿠션성 등이 우수한 타일 바닥재를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여,
본 발명은 하부에서 상부로, 순차적으로 베이스층; 발포층; 및 치수안정층을 포함하는 타일 바닥재로,
상기 발포층(20)은 1mm2의 단면적 내에 포함된 기공의 90% 이상이 닫힌 형상의 기공(closed pore or closed cell)이고, 두께의 1/2 지점(M1)이 타일 바닥재 두께의 1/2 지점(M2) 보다 상측에 위치하는 것인 타일 바닥재를 제공한다.
본 발명의 타일 바닥재는 차음성 및 쿠션성 등이 우수한 효과가 있다.
도 1은 본 발명에 따른 타일 바닥재의 적층구조의 일 실시예를 보여주는 측단면도다.도 1은 본 발명에 따른 타일 바닥재의 적층구조의 일 실시예를 보여주는 측단면도다.
도 2는 본 발명에 따른 타일 바닥재의 적층구조의 다른 일 실시예를 보여주는 측단면도다.
본 발명자들은 차음성 및 쿠션성 등이 우수한 타일 바닥재를 제조하기 위해 각고의 노력 끝에 타일 바닥재가 발포층을 포함하여 차음성을 구현하도록 하고, 기존 타일 바닥재의 최하부에 위치하였던 발포층의 위치를 타일 바닥재의 중간부에 위치하도록 하되 발포층 두께의 1/2 지점이 타일 바닥재 두께의 1/2 지점보다 상측에 위치하도록 변경함과 아울러 발포층을 1mm2의 단면적 내에 포함된 기공의 90% 이상이 닫힌 형상의 기공(closed pore or closed cell)으로 형성할 경우 쿠션성이 현저하게 개선됨을 확인하여 본 발명의 타일 바닥재를 완성하게 되었다.
이하에서는, 첨부된 도면을 참조하여 본 발명의 타일 바닥재에 대해 보다 구체적으로 설명해보기로 한다.
도 1을 참조하면, 본 발명은 하부에서 상부로, 순차적으로 베이스층(12); 발포층(20); 및 치수안정층(30)을 포함하는 타일 바닥재(1)로,
상기 발포층(20)은 1mm2의 단면적 내에 포함된 기공의 90% 이상이 닫힌 형상의 기공(closed pore or closed cell)이고, 두께의 1/2 지점(M1)이 타일 바닥재(1) 두께의 1/2 지점(M2) 보다 상측에 위치하는 것인 타일 바닥재에 관한 것이다.
이하, 각 층에 대해 구체적으로 설명하면 다음과 같다.
베이스층(12)
본 발명의 베이스층(12)은 치수안정성, 내구성, 및 재단성 등의 타일 바닥재로서 요구되는 물성을 부여하는 층으로, 폴리염화비닐 수지 100중량부에 대해 가소제 30-50중량부 및 충전제 500-800중량부를 포함할 수 있다.
상기 폴리염화비닐 수지는 염화비닐 단독중합체로서 연, 경질 제품 모두에 적용될 수 있는 범용 폴리염화비닐 수지가 사용될 수 있다.
또한, 상기 폴리염화비닐 수지는 중합도가 일례로, 650-1000 또는 700-900일 수 있으며, 상기 범위 내에서 가공성이 우수하면서도 타일 바닥재에 우수한 내구성 및 기계적 물성을 부여할 수 있는 효과가 있다.
상기 가소제는 프탈레이트계 가소제, 테레프탈레이트계 가소제, 벤조에이트계 가소제, 시트레이트계 가소제, 포스페이트계 가소제 및 아디페이트계 가소제로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 구체적인 일 실시예로 친환경적인 테레프탈레이트계 가소제를 사용할 수 있다.
상기 가소제는 상기 폴리염화비닐 수지 100중량부에 대해 30-50중량부 또는 35-45중량부로 사용할 수 있으며, 상기 범위 내에서 우수한 가공성을 부여할 수 있는 효과가 있다.
상기 충전제는 탄산칼슘, 목분, 운모, 비정질 실리카, 활석, 제올라이트, 탄산마그네슘, 황산칼슘, 인산칼슘, 인산마그네슘, 산화알루미늄, 카올린, ATH(Alumina trihydrate) 및 탈크로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 본 발명에서는 구체적 일 실시예로 가격 및 범용성 측면에서 유리하고, 내열성 및 내구성을 높일 수 있는 탄산칼슘을 사용할 수 있다.
또한, 상기 충전제는 상기 폴리염화비닐 수지 100중량부에 대해 500-800중량부 또는 600-750중량부로 사용할 수 있으며, 상기 범위 내에서 적절한 원가를 유지하면서 타일 바닥재에 우수한 기계적 물성 및 가공성을 부여할 수 있는 효과가 있다.
상기 베이스층(12)은 두께가 1.2-3.0mm 또는 1.5-2.5mm일 수 있으며, 상기 범위 내에서 타일 바닥재의 치수안정성, 내구성 및 재단성이 우수한 효과가 있다.
발포층(20)
본 발명의 발포층(20)은 차음성을 구현하기 위해 포함되되, 타일 바닥재 최하부가 아닌 중간부에 위치하여 보행 시 쿠션성이 우수하면서도, 특히 1mm2의 단면적 내에 포함된 기공의 90% 이상이 닫힌 형상의 기공(closed pore or closed cell) 형태로 형성되어 쿠션성이 유지(즉, 잔류압입률이 20% 이하, 15% 이하 또는 10% 이하)되는 효과가 있다.
바람직하게는 발포층(20)은 발포층 두께의 1/2 지점(M1)이 타일 바닥재 두께의 1/2 지점(M2) 보다 상측에 위치할 경우 더욱 우수한 쿠션성을 구현할 수 있다(도 2 참조).
본 발명의 발포층(20)은 1mm2의 단면적 내에 포함된 기공의 90% 이상, 95% 이상 또는 98% 이상이 닫힌 형상의 기공(closed pore or closed cell)일 수 있으며, 상기 범위 미만일 경우 열린 형상의 기공(opened pore or open cell)이 많아 눌림성 개선이 미미할 수 있으므로, 상기 범위 내의 닫힌 형상의 기공을 포함하는 것이 바람직하다.
상기 1mm2의 단면적 내에 포함된 닫힌 형상의 기공 비율의 상한치는 특별히 제한하지 않으며, 일 예로 100%일 수 있다.
또한, 상기 발포층(20) 내 포함되는 상기 닫힌 형상의 기공은 평균 직경이 100-300㎛ 또는 100-250㎛일 수 있으며, 상기 범위 미만일 경우 타일 바닥재의 차음성이 저하될 수 있고, 상기 범위를 초과할 경우 기공 크기가 과도하여 타일 바닥재의 눌림성 및 내구성이 저하될 수 있어 상기 범위 내의 평균 직경을 가질 수 있다.
본 발명에서 상기 기공의 평균 직경이란 하나의 기공이 가질 수 있는 직경의 평균치를 나타내는 것으로, 상기 기공이 구 형상인 경우는 지름의 평균을 의미하고, 구 형상 외의 다른 형상인 경우는 장축과 단축으로 구분시 장축의 평균 길이를 의미하는 것일 수 있다.
또한, 상기 닫힌 형상의 기공은 발포층(20)의 1mm2의 단면적 내에 5-20개 또는 10-15개로 포함될 수 있으며, 상기 범위 미만일 경우 타일 바닥재의 차음성 및 쿠션성이 저하될 수 있고, 상기 범위를 초과할 경우 눌림성이 저하될 수 있어 상기 범위 내의 기공 수를 가질 수 있다.
상기 닫힌 형상의 기공의 비율, 기공의 평균 직경 및 개수는 예를 들어 타일 바닥재를 수직 방향으로 또는 수평 방향으로 절단한 후, 광학현미경(Optical Microscope, OM)을 이용하여 절단된 발포층(20)의 단면적(1mm2) 내에 형성된 전체 기공 중 닫힌 형상의 기공의 비율, 기공의 평균 직경 및 개수를 측정할 수 있다.
상기 발포층(20)은 기계적 발포 방식에 의해 형성된 것일 수 있다.
본 발명에서 기계적 발포란 화학 발포제를 사용하지 않고 발포층(20) 내에 기공을 형성시키는 것을 의미하는 것으로, 예를 들어 물리적 발포제를 사용한 기계적 발포일 수 있으며, 바람직하게는 공기(air)를 사용하여 기공을 형성한 것일 수 있다.
통상, 발포는 화학 발포제를 이용한 화학 발포 및 물리 발포제를 이용한 물리 발포로 나뉜다. 더욱 구체적으로 설명하면, 상기 화학 발포는 화학 발포제가 화학 반응에 의해 분해되면서 가스를 발생시켜 기공을 형성하는 것을 의미한다.
상기 화학 발포제는 일 예로 4,4'-옥시비스(벤젠술포닐)히드라지드, 4,4'-옥시벤젠술포닐 세미카르바지드, 아조디카본아미드, p-톨루엔술포닐 세미카르바지드, 바륨 아조디카르복실레이트, 아조디이소부티로니트릴, 벤젠술폰히드라지드, 트리히드라지노트리아진, 아조디카르복실산의 금속염, 옥살산 히드라지드, 히드라조카르복실레이트, 디페닐옥시드-4,4'-디술포히드라지드, 테트라졸화합물, 중탄산나트륨, 중탄산암모늄, 카르보네이트 화합물과 폴리탄산의 제제, 시트르산과 중탄산나트륨의 혼합물, N,N'-디메틸-N,N'-디니트로소테레프탈아미드, 및 N,N'-디니트로소펜타메틸렌테트라아민으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
상기 물리 발포제는 무기 및 유기 발포제를 포함하는 것일 수 있다.
상기 무기 물리 발포제는 일 예로 질소, 아르곤, 산소, 공기, 헬륨 및 육불화황으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다. 여기서 공기란 인위적으로 주입하는 가스(gas)가 아닌 지구를 둘러싼 대기 중에 존재하는 일반적인 에어(air)를 의미한다.
상기 유기 물리 발포제는 일 예로 이산화탄소, 지방족 탄화수소(일 예로 메탄, 에탄, 프로판, n-부탄, 이소부탄, n-펜탄, 이소펜탄 및 이들의 조합), 지방족 알코올(일 예로 메탄올, 에탄올, n-프로판올 및 이소프로판올 및 이들의 조합), 완전 및 부분 할로겐화 지방족 탄화수소(일 예로 플루오로카본, 클로로카본 및 클로로플루오로카본 및 이들의 조합)으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.
본 발명에서 기계적 발포는 구체적 일 실시예로, 기계적 교반에 의해 물리 발포제로서 공기(air)를 발포층용 졸에 도입하여 발포층용 조성물을 제조한 후, 상기 발포층용 조성물의 겔링(gelling)에 의해 발포층 내에 기공을 형성하는 것일 수 있다.
상기 발포층용 졸은 폴리염화비닐 수지 100중량부에 대해 가소제 60-100중량부, 충전제 30-70중량부를 포함할 수 있다.
상기 폴리염화비닐 수지는 중량평균분자량이 120,000-200,000g/mole 또는 140,000-170,000g/mole일 수 있으며, 상기 범위 미만일 경우 기공 벽이 단단하지 못해 눌림성 개선이 미미할 수 있고, 상기 범위를 초과할 경우 발포층용 졸의 형성이 어려워 이를 이용하여 발포층을 형성하기 곤란하므로 결과적으로 차음성이 저하되므로 상기 범위 내의 중량평균분자량을 가질 수 있다.
또한, 상기 폴리염화비닐 수지는 중합도가 900-1300, 또는 1000-1200일 수 있으며, 상기 범위 내에서 타일 바닥재의 눌림성이 우수한 효과가 있다.
상기 가소제 및 충전제는 위에서 서술한 베이스층(12)에 포함되는 가소제 및 충전제와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
또한, 상기 가소제는 상기 폴리염화비닐 수지 100중량부에 대해 60-100중량부 또는 70-90중량부로 사용할 수 있으며, 상기 범위 내에서 가공성 및 쿠션감이 우수하면서 가소제 이행 현상이 발생하지 않아 타일 바닥재의 기계적 물성이 우수한 효과가 있다.
또한, 상기 충전제는 상기 폴리염화비닐 수지 100중량부에 대해 30-70중량부 또는 40-60중량부로 사용할 수 있으며, 상기 범위 내에서 적절한 원가를 유지하면서 타일 바닥재에 우수한 기계적 물성 및 가공성을 부여할 수 있는 효과가 있다.
또한, 상기 발포층용 졸은 선택적으로 발포층(20) 형성을 위해 치수안정층(30) 상부에 코팅 작업 시 발생하는 기포를 없애기 위해 상기 폴리염화비닐 수지 100중량부에 대해 0.5-5중량부 또는 1-3중량부의 소포제를 더 포함할 수 있으며, 이의 종류는 통상의 기술자에게 자명한 것으로 본 명세서에는 제한하지 않는다.
또한, 상기 발포층용 조성물은 발포층용 졸 외에 선택적으로 발포층(20) 내 안정적인 기공 형성을 위해 계면활성제를 더 포함할 수 있다. 상기 계면활성제는 발포층용 졸 내로 혼입된 기체가 안정적으로 유지되어 발포층 내 균일한 기공을 형성할 수 있도록 한 것으로, 이온(ion)계, 비이온(Nonion)계, 불소(Fluorine)계 및 실리콘(Silicone)계로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 본 발명에서는 구체적 일 실시예로 소량을 사용하여도 안정적인 기공 형성이 우수하고 안정성이 높은 실리콘계 계면활성제를 사용할 수 있다.
상기 계면활성제는 상기 폴리염화비닐 수지 100중량부에 대해 1-15중량부 또는 5-10중량부로 사용할 수 있으며, 상기 범위 내에서 특정 형상 및 직경을 가진 기공이 발포층(20) 내에 특정 개수로 균일하게 분산되어 타일 바닥재의 눌림성 및 쿠션성이 우수한 효과가 있다.
위에서 서술한 상기 발포층용 조성물을 이용하여 형성된 본 발명의 발포층(20)은 발포배율이 130-180% 또는 140-170%일 수 있으며, 상기 범위 미만일 경우 차음성 및 쿠션성이 저하될 수 있고, 상기 범위를 초과할 경우 눌림성이 저하될 수 있어 상기 범위 내의 발포배율을 가질 수 있다.
상기 발포배율은 후술할 치수안정층과 접합된 발포층의 시편(길이, 너비가 50mm x 50mm)의 초기 밀도를 측정한 후, 상기 시편을 160℃의 온도에서 500kgf/cm2의 압력으로 15분동안 누른 후 압력을 제거하고 압착된 시편의 밀도를 측정하여 하기 식 1과 같이 계산할 수 있다.
[식 1]
발포배율 = T1/T0 X 100%
T0 : 시편의 초기 밀도
T1 : 시편의 압착 후 밀도
또한, 상기 발포층(20)은 ASTM F 1914에 의거한 잔류압입률이 20% 이하, 15% 이하 또는 10% 이하일 수 있으며, 상기 범위를 초과할 경우 쿠션성이 유지되지 않을 수 있어 상기 범위의 잔류압입률을 가질 수 있다.
상기 잔류압입률은 일례로 후술할 치수안정층과 접합된 발포층의 시편(길이, 너비가 50mm x 50mm)의 초기 두께를 측정하고, 상기 시편의 상부에 직경이 약 19.5mm인 압입봉으로 22.7kg의 압력을 5분 동안 가하고 난 후, 상기 압력을 제거하고 다시 60분 지난 후의 두께를 측정하여 하기 식 2와 같이 계산할 수 있다.
[식 2]
잔류압입률 = T0-T1/T0 X 100%
T0 : 시편의 초기 두께
T1 : 시편의 나중 두께
상기와 같이 형성된 발포층(20)을 포함하는 본 발명의 타일 바닥재(1)는 화학 발포로 형성된 발포층을 포함하는 기존 타일 바닥재에 비해 발포배율이 낮고 발포층 내 닫힌 형상의 기공 비율이 높아 눌림성이 매우 우수한 효과가 있다.
치수안정층(30)
본 발명의 치수안정층(30)은 타일 바닥재에 우수한 치수안정성을 부여함과 아울러, 발포층을 타일 바닥재 중간부에 위치시키기 위한 캐리어 역할을 하는 층으로, 일 실시예로 유리섬유(glass fiber) 시트를 폴리염화비닐 졸(이하 'PVC 졸'이라 함)로 함침 후 겔링시켜 제조된 것일 수 있다.
상기 유리섬유 시트는 유리섬유 직포 또는 부직포일 수 있으며, 이에 제한하지 않는다.
상기 PVC 졸은 일 실시예로, 폴리염화비닐 수지 100중량부에 대해 가소제 60-100중량부 또는 65-90중량부 및 충전제 10-80중량부 또는 50-70중량부를 포함할 수 있다.
상기 폴리염화비닐 수지는 바람직하게 상기 발포층(20)에 사용되는 폴리염화비닐 수지와 동일한 것을 사용할 수 있다.
상기 가소제 및 충전제는 위에서 서술한 베이스층(12)에 포함되는 가소제 및 충전제와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
상기 치수안정층(30)의 평량은 35-70g/m2, 또는 40-65g/m2일 수 있으며, 상기 범위 내에서 타일 바닥재의 치수안정성이 우수한 효과가 있다.
또한, 상기 치수안정층(30)의 두께가 0.05-0.5mm 또는 0.1-0.3mm일 수 있으며, 상기 범위 내에서 타일 바닥재의 치수안정성이 우수한 효과가 있다.
한편, 위에서 서술한 발포층(20) 및 상기 치수안정층(30)의 두께의 합은 0.8-2.0mm 또는 1.0-1.8mm일 수 있으며, 상기 범위 내에서 타일 바닥재에 우수한 치수안정성, 차음성, 눌림성 및 쿠션성을 부여할 수 있는 효과가 있다.
또한, 상기 발포층(20) 및 상기 치수안정층(30)의 두께의 합은 타일 바닥재의 전체 두께의 15-35% 또는 20-30%일 수 있으며, 상기 범위 내에서 타일 바닥재의 차음성, 눌림성 및 쿠션성이 우수한 효과가 있다.
본 발명의 타일 바닥재(1)는 선택적으로, 상기 베이스층(12) 하부에는 밸런스층(11)을, 상기 치수안정층(30) 상부에는 순차적으로 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)을 더 포함할 수 있다(도 2 참조).
이하에서는 선택적으로 더 포함될 수 있는 밸런스층(11), 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)에 대해 구체적으로 설명한다.
밸런스층(11)
본 발명의 밸런스층(11)은 타일 바닥재의 가장 두꺼운 층인, 상기 베이스층(12)의 하부에 위치하여 타일 바닥재의 뒤틀림 및 휨을 방지하는 역할을 하는 층으로, 폴리염화비닐 수지 100중량부에 대해 가소제 40-80중량부, 및 충전제 40-80중량부를 포함할 수 있다.
상기 폴리염화비닐 수지, 가소제 및 충전제는 위에서 서술한 베이스층(12)에 포함되는 폴리염화비닐 수지, 가소제 및 충전제와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
상기 가소제는 상기 폴리염화비닐 수지 100중량부에 대해 40-80중량부 또는 50-75중량부로 사용할 수 있으며, 상기 범위 미만인 경우 타일 바닥재의 시공 시 접착제 없이 시공이 불가능하고, 상기 범위를 초과할 경우 타일 바닥재의 구조 밸런스 등 타 물성이 저하되어 상기 범위 내로 사용할 수 있다.
보다 구체적으로, 본 발명은 밸런스층(11) 내 가소제의 함량을 기존 타일 바닥재에 비해 증량하여 별도의 접착제 없이도 바닥면에 시공이 가능한 바, 기술자가 아닌 일반인들도 쉽게 시공이 가능한 효과가 있다.
또는, 선택적으로 타일 바닥재를 접착 시공할 경우, 상기 가소제는 폴리염화비닐 수지 100중량부에 대해 10-40중량부 또는 20-30중량부로 사용할 수 있다.
상기 충전제는 상기 폴리염화비닐 수지 100중량부에 대해 40-80중량부 또는 50-75중량부로 사용할 수 있으며, 상기 범위 내에서 적절한 원가를 유지하면서 타일 바닥재에 우수한 기계적 물성 및 가공성을 부여할 수 있는 효과가 있다.
상기 밸런스층(11)은 두께가 0.1-1.0mm 또는 0.2-0.6mm일 수 있으며, 상기 범위 내에서 타일 바닥재의 뒤틀림 및 휨을 방지함과 아울러, 우수한 차음성 및 눌림성을 구현할 수 있는 효과가 있다.
한편, 본 발명의 타일 바닥재(1)가 상기 베이스층(12) 하부에 상기 밸런스층(11)을 더 포함하는 경우, 상기 밸런스층(11) 및 베이스층(12)의 두께의 합은 타일 바닥재의 전체 두께의 40-58% 또는 42-55%일 수 있으며, 상기 범위 내에서 타일 바닥재의 구조 밸런스가 우수한 효과가 있다.
중지층(41)
본 발명의 중지층(41)은 타일 바닥재에 구조 밸런스 및 눌림성을 부여하는 역할을 하는 층으로, 폴리염화비닐 수지 100중량부에 대해 가소제 10-28중량부, 및 충전제 100-200중량부를 포함할 수 있다.
상기 폴리염화비닐 수지, 가소제 및 충전제는 위에서 서술한 베이스층(12)에 포함되는 폴리염화비닐 수지, 가소제 및 충전제와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
또한, 상기 가소제는 상기 폴리염화비닐 수지 100중량부에 대해 10-28중량부 또는 15-25중량부로 사용할 수 있으며, 상기 범위 미만일 경우 가공성이 저하될 수 있고, 상기 범위를 초과할 경우 타일 바닥재에 특정 범위의 경도를 부여하지 못해 눌림성이 저하될 수 있어 상기 범위 내로 사용할 수 있다.
또한, 상기 충전제는 상기 폴리염화비닐 수지 100중량부에 대해 100-200중량부, 또는 130-180중량부로 사용할 수 있으며, 상기 범위 내에서 적절한 원가를 유지하면서 타일 바닥재에 우수한 기계적 물성을 부여할 수 있는 효과가 있다.
상기 중지층(41)은 두께가 0.7-1.5mm 또는 0.9-1.3mm일 수 있으며, 상기 범위 미만일 경우 타일 바닥재에 특정 범위의 경도를 부여하지 못해 눌림성이 저하될 수 있고, 상기 범위를 초과할 경우 쿠션성이 저하되므로 상기 범위 내의 두께를 가질 수 있다.
한편, 본 발명의 타일 바닥재(1)가 상기 치수안정층(30) 상부에 중지층(41)을 더 포함할 경우, 상기 중지층(41)의 두께는 타일 바닥재의 전체 두께의 15-30% 또는 17-25%일 수 있으며, 상기 범위 내에서 타일 바닥재의 눌림성 및 쿠션성이 우수한 효과가 있다.
백색층(42)
본 발명의 백색층(42)은 후술되는 인쇄층(42')의 무늬 또는 패턴을 더 돋보일 수 있도록 역할을 하는 층으로, 폴리염화비닐 수지 100중량부에 대해 가소제 15-30중량부, 충전제 1-15중량부 및 안료 15-30중량부를 포함할 수 있다.
상기 폴리염화비닐 수지는 중합도가 일례로, 800-1300 또는 900-1200일 수 있으며, 상기 범위 내에서 가공성이 우수하면서도 타일 바닥재에 우수한 내구성 및 기계적 물성을 부여할 수 있는 효과가 있다.
상기 가소제 및 충전제는 위에서 서술한 베이스층(12)에 포함되는 가소제 및 충전제와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
상기 가소제는 상기 폴리염화비닐 수지 100중량부에 대해 15-30중량부 또는 20-25중량부로 사용할 수 있으며, 상기 범위 내에서 우수한 가공성을 부여할 수 있는 효과가 있다.
상기 충전제는 상기 폴리염화비닐 수지 100중량부에 대해 1-15중량부 또는 5-10중량부로 사용할 수 있으며, 상기 범위 내에서 적절한 원가를 유지하면서 타일 바닥재에 우수한 기계적 물성을 부여할 수 있는 효과가 있다.
상기 안료는 이산화티탄일 수 있으나, 후술되는 인쇄층(42')의 색을 확실히 구현할 수 있는 백색 안료라면 특별히 제한하지 않는다. 또한, 상기 안료는 상기 폴리염화비닐 수지 100중량부에 대해 15-30중량부 또는 20-25중량부로 사용할 수 있으며, 상기 범위 내에서 후술되는 인쇄층의 무늬 또는 패턴이 더욱 돋보여 타일 바닥재의 외관이 우수한 효과가 있다.
상기 백색층(42)은 두께가 0.01-0.3mm 또는 0.05-0.1mm일 수 있으며, 상기 범위 내에서 인쇄층의 무늬 또는 패턴이 더욱 돋보여 타일 바닥재의 외관이 우수한 효과가 있다.
인쇄층(42')
본 발명의 인쇄층(42')은 타일 바닥재에 다양한 외관 및 디자인 효과를 부여하는 역할을 하는 층으로, 상기 백색층(42)의 상면에 전사인쇄를 통해 형성되거나 소정 무늬 또는 패턴이 인쇄된 전사인쇄 필름을 이용한 전사인쇄를 통해 후술되는 투명층(43)의 일면에 형성될 수 있다.
구체적으로, 일 실시예로 본 발명의 타일 바닥재가 동조엠보를 포함하지 않을 경우 상기 인쇄층(42')은 백색층(42)의 상면에 형성될 수 있으며, 선택적으로 동조엠보싱 공정을 통해 형성된 동조엠보(미도시)를 더 포함할 경우 상기 인쇄층(42')은 투명층(43)의 일면에 형성될 수 있다.
본 발명에서 동조엠보싱 공정이란 인쇄층의 인쇄 무늬와 일치하는 엠보 무늬를 형성하여 우수한 외관을 구현하도록 하는 것을 의미한다.
상기 인쇄층(42')은 두께가 일 예로 60-120㎛ 또는 70-100㎛일 수 있으나 이로 제한되는 것은 아니다.
투명층(43)
본 발명의 투명층(43)은 하부에 형성된 인쇄층(42')의 인쇄 무늬 또는 패턴을 보호하는 역할을 하는 층으로, 폴리염화비닐 수지 100중량부에 대해 가소제 30-50중량부를 포함하는 폴리염화비닐 투명필름일 수 있다.
상기 폴리염화비닐 수지는 위에서 서술한 백색층(42)에 포함되는 폴리염화비닐 수지와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
상기 가소제는 위에서 서술한 베이스층(12)에 포함되는 가소제와 동일한 종류를 사용할 수 있으므로 중복된 기재는 생략하도록 한다.
또한, 상기 가소제는 상기 폴리염화비닐 수지 100중량부에 대해 30-50중량부 또는 30-40중량부로 사용할 수 있으며, 상기 범위 내에서 우수한 가공성을 부여할 수 있는 효과가 있다.
상기 투명층(43)은 두께가 0.1-1.0mm 또는 0.3-0.8mm일 수 있으며, 상기 범위 내에서 적절한 원가를 유지하면서 하부에 형성된 인쇄층(42')을 보호할 수 있는 효과가 있다.
위에서 서술한 각 층(11, 12, 20, 30, 41, 42, 43)들은 활제, 가공조제, 열안정제, 광안정제, 산화방지제, 및 난연제로 이루어진 군으로부터 선택되는 1종 이상의 첨가제를 더 포함할 수 있으며, 이들의 종류 및 함량은 특별히 제한되지 않으나 일 실시예로 상기 폴리염화비닐 수지 100중량부에 대해 0.5-20중량부 또는 1-17중량부로 포함될 수 있다.
또한, 본 발명의 타일 바닥재(1)는 선택적으로 일면에 인쇄층(42')이 형성된 투명층(43)의 타면에 동조엠보싱 공정을 통해 형성된 동조엠보(미도시)를 더 포함할 수 있다.
또한, 본 발명의 타일 바닥재(1)는 선택적으로 상기 투명층(43) 상에 형성되어 타일 바닥재 표면의 내스크래치성 및 내마모성을 향상시켜주며, 오염물이 부착되는 것을 방지해주는 UV코팅층(미도시)을 더 포함할 수 있다
상기 UV코팅층은 통상의 광경화형 수지를 코팅하여 형성할 수 있으며, 이의 두께는 0.005-0.1mm 또는 0.01-0.05mm일 수 있으나 이로 제한하지 않는다.
위와 같은 적층구조를 가지는 본 발명의 타일 바닥재(1)는 상기 밸런스층(11) 및 베이스층(12)의 두께의 합(S1)과 상기 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)의 두께의 합(S3)이 1.2-1.7:1 또는 1.3-1.6:1의 두께비를 가질 수 있으며, 상기 범위 내에서 본 발명의 타일 바닥재(1)는 우수한 쿠션성 및 구조 밸런스를 구현할 수 있다.
또한, 본 발명의 타일 바닥재(1)는 상기 밸런스층(11) 및 베이스층(12)의 두께의 합(S1)과 상기 발포층(20) 및 치수안정층(30)의 두께의 합(S2)과 상기 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)의 두께의 합(S3)이 1.7-2.3:1:1.2-1.5 또는 1.8-2.2:1:1.3-1.4의 두께비를 가질 수 있으며, 상기 범위 내에서 본 발명의 타일 바닥재(1)는 우수한 차음성, 쿠션성 및 구조밸런스를 구현할 수 있다.
또한, 본 발명의 타일 바닥재(1)는 차음성(ISO 10140)이 △10-20dB 또는 △13-18dB일 수 있으며, 상기 범위 미만일 경우 차음성 개선이 미미하므로 상기 범위 내의 차음성을 가질 수 있다.
상기 차음성은 ISO 10140에 의거하여 경량충격음을 측정한 후, 대조군 대비 저감된 소음(△dB)일 수 있다. 대조군은 바닥재로 마감되어 있지 않은 시멘트면인 바닥면을 대상으로 측정한 것으로, 상기 대조군의 경량충격음은 70-75dB이다.
또한, 본 발명의 타일 바닥재(1)는 차음성(ASTM E989)이 52 Class 이상 또는 53 Class 이상일 수 있으며, 상기 범위 미만일 경우 차음성 개선이 미미하므로 상기 범위 내의 차음성을 가질 수 있다.
상기 차음성은 ASTM E989에 의거하여 테이핑 기계를 이용한 충격음 전달일 수 있다.
또한, 본 발명의 타일 바닥재(1)는 눌림성(ASTM F970, 1000psi)이 0.125mm 이하 또는 0.120mm이하일 수 있으며, 상기 범위를 초과할 경우 눌림성이 개선되지 않아 상기 범위 내의 눌림성을 가질 수 있다.
상기 눌림성은 ASTM F970에 의거하여 상기 타일 바닥재의 시편(길이, 너비가 50mm x 50mm)의 초기 두께를 측정하고, 상기 시편의 상부에 직경이 약 28.6mm인 지그(jig)를 올려놓고 1000psi 압력을 1day동안 가하고 난 후, 상기 압력을 제거하고 다시 1day 지난 후의 두께를 측정하여, 초기 두께 대비 변화된 두께일 수 있다.
또한, 본 발명의 타일 바닥재(1)는 눌림성(ASTM F970, static load)이 800-1200psi 또는 900-1100psi일 수 있고, 상기 범위 내에서 발포층 내 기공 벽이 단단하여 기존 타일 바닥재에 비해 더 높은 압력을 견딜 수 있는 효과가 있다.
상기 눌림성은 ASTM F970에 의거하여 상기 타일 바닥재의 시편(길이, 너비가 50mm x 50mm) 상부에 직경이 약 28.6mm인 지그(jig)를 올려놓고 일정 압력을 1day동안 가하고 난 후, 상기 압력을 제거하고 다시 1day 지난 후 상기 시편의 두께를 측정하여, 두께의 변화가 0.125mm이하인 경우의 압력의 최대값일 수 있다.
또한, 본 발명의 타일 바닥재(1)는 눌림성(EN 433, mm)이 0.10mm 이하 또는 0.08mm이하일 수 있으며, 상기 범위를 초과할 경우 눌림성이 개선되지 않아 상기 범위 내의 눌림성을 가질 수 있다.
상기 눌림성은 EN 433에 의거하여 상기 타일 바닥재의 시편(길이, 너비가 50mm x 50mm)의 초기 두께를 측정하고, 상기 시편의 상부에 500N의 압력을 150분 동안 가하고 난 후, 상기 압력을 제거하고 150분이 지난 후의 두께를 측정하여 초기 두께 대비 변화된 두께일 수 있다.
또한, 본 발명의 타일 바닥재(1)는 충격 흡수성 값이 750mm이하 또는 740mm이하일 수 있으며, 상기 범위 내에서 타일 바닥재의 쿠션성이 우수한 효과가 있다. 또한, 이의 하한치는 제한하지 않으나 일 예로 400mm이상 또는 500mm이상일 수 있다.
상기 충격 흡수성은 골프공을 1.5m 높이에서 타일 바닥재로 자유낙하 시 상기 골프공이 튀어오르는 높이로 측정할 수 있다.
또한, 본 발명의 타일 바닥재(1)는 컬링성(ISO 23999)이 0.7mm이하 또는 0.5mm이하일 수 있으며, 상기 범위 내에서 타일 바닥재의 구조 밸런스가 우수한 효과가 있다.
상기 컬링성은 ISO 23999에 의거하여 타일 바닥재의 시편(길이, 너비가 150mm x 1260mm) 6 개를 각각 고온 변형 조건(80℃에서 6시간 동안)에서 방치하고 이를 상온에 꺼내 충분히 25℃가 되도록 기다리고 또는, 저온 변형 조건(-5℃에서 6시간 동안)에서 방치한 후 이를 상온에 꺼내 충분히 25℃가 되도록 기다린 후, 각 조건에서 타일 바닥재의 가장자리가 바닥으로부터 컬링이 발생하는 높낮이를 틈새 게이지로 측정하여 각 변형 조건에서의 평균치를 계산할 수 있다.
또한, 본 발명의 타일 바닥재(1)는 겉보기 밀도가 1.5-3g/cm3 또는 1.8-2.5g/cm3일 수 있으며, 상기 범위 내에서 타일 바닥재가 경량화되는 효과가 있다.
상기 겉보기 밀도는 영국 겉보기 밀도계(RAY-RAN社, Apparent Bulk Density)를 이용하여 측정할 수 있다.
또한, 본 발명의 타일 바닥재(1)가 동조엠보를 더 포함할 경우 투명층(43) 일면에 형성된 인쇄층(42')의 인쇄 무늬와 타면에 형성된 엠보 무늬와의 동조율은 95% 이상 또는 98% 이상일 수 있다.
상기 동조율은 인쇄층의 인쇄 무늬 및 동조엠보의 길이 또는 폭방향으로 벗어난 정도를 Lupe(PEAK, Scale 10x)를 이용해서 측정할 수 있다.
이하에서는, 본 발명의 타일 바닥재를 제조하기 위한 구체적인 제조방법의 일 실시예를 설명해보기로 한다.
먼저, 베이스층 조성물을 160-190℃ 또는 170-180℃에서 혼련 후, 상기 혼련된 조성물을 150-190℃ 또는 160-180℃ 온도의 캘린더롤을 통과시킴으로써 베이스층을 제조한다.
선택적으로, 밸런스층(11), 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)을 더 포함할 경우, 밸런스층 조성물, 중지층 조성물, 백색층 조성물 및 투명층 조성물을 각각 160-190℃ 또는 170-180℃에서 혼련 후, 상기 혼련된 조성물을 150-190℃ 또는 160-180℃ 온도의 캘린더롤을 통과시킴으로써 밸런스층, 중지층, 백색층 및 투명층을 각각 제조한다.
상기 밸런스층 조성물, 베이스층 조성물, 중지층 조성물, 백색층 조성물 및 투명층 조성물은 위에서 서술한 각 층의 조성과 동일하므로 중복된 기재는 생략하도록 한다.
이어서, 상기 백색층의 상부에 전사 인쇄를 통해 인쇄층을 형성한다.
이와 별도로, 유리섬유(glass fiber) 시트를 PVC졸로 함침 및 겔링하여 치수안정층을 제조한다.
또한, 발포층용 졸을 믹서에서 2000-3500rpm 또는 2500-3200rpm으로 15-40분 또는 20-30분 동안 혼합한 후, 폼 믹서(mixer)에 상기 혼합된 발포층용 졸과 계면활성제를 각각 투입하여 2000-3500rpm 또는 2500-3200rpm으로 15-30분 또는 20-30분 동안 공기가 충분히 취입되도록 기계적 교반하여 발포층용 조성물 의 발포배율이 130-250% 또는 150-230%가 되도록 하였다. 또한 선택적으로, 발포배율을 조절하기 위해 상기 공기가 취입된 발포층용 조성물을 포터블 탱크(portable tank)에서 1-5시간, 2-5시간 또는 1-3시간 동안 숙성시킬 수 있다.
상기 PVC졸 및 발포층용 졸은 위에서 서술한 바와 동일하므로 중복된 기재는 생략하도록 한다.
이어서, 상기 치수안정층 상부에 상기 발포층용 조성물을 도포한 후 5-10m/min 또는 6-9m/min의 속도로 185-220℃ 또는 190-210℃의 온도의 오븐을 통과시켜 겔화(gelling)시킴으로써 기계적으로 발포된, 발포층을 제조한다.
상기 도포는 나이프 코타, 콤마 코타, 그라비아 코타 또는 롤 코타를 이용할 수 있으며 이에 제한하지 않는다.
그리고 나서, 하부에서 상부로 순차적으로 밸런스층, 베이스층, 상기 치수안정층과 접합된 발포층(발포층이 베이스층과 접하도록), 중지층, 상기 상부에 인쇄층이 형성된 백색층 및 투명층을 위치시킨 후 140-165℃ 또는 145-160℃ 온도에서 열합판하여 타일 바닥재를 제조한다.
또는, 선택적으로 타일 바닥재에 동조엠보를 형성할 경우 상기 백색층 상부에 인쇄층을 형성하는 것이 아닌, 투명층의 일면에 인쇄층을 형성할 수 있으며 이 외의 층들은 위에서 서술한 바와 동일하게 제조할 수 있다. 구체적으로, 상기 투명층의 일면에 소정 무늬 또는 패턴이 인쇄된 전사인쇄 필름을 이용하여 100-130℃, 또는 110-130℃에서 전사인쇄를 하고, 상기 투명층의 타면에는 130-160℃, 또는 135-155℃에서 동조엠보싱 공정을 통해 동조엠보를 형성하여 일면에는 인쇄층이, 다른 일면에는 동조엠보가 형성된 투명층을 제조한다.
이때, 상기 전사인쇄 필름은 동조엠보를 형성할 때까지 회수하지 않는 것이 바람직하다. 구체적으로, 상기 전사인쇄 필름은 동조엠보의 복원을 방지하기 위해 상기 투명층을 10-60℃, 20-40℃ 또는 20-30℃로 냉각시키는 과정을 거친 후 제거할 수 있다.
상기 전사인쇄 필름은 전사인쇄부터 동조엠보 형성까지 상기 폴리염화비닐 투명필름 재질인 투명층의 불규칙한 연신을 억제할 수 있는, 일 예로 상기 폴리염화비닐 수지에 비하여 열 팽창율 및 고온 신율이 현저히 낮으면서도 강도 및 강성이 우수한 폴리에틸렌테레프탈레이트(Polyethylene terephthalate, PET), 폴리에틸렌테레프탈레이트 글리콜(Polyethylene terephthalate glycol, PETG) 및 테프론(Teflon)으로 이루어진 군으로부터 선택되는 1종 이상의 재질을 이용하여 형성된 것일 수 있다. 본 발명에서는 구체적 일 실시예로 우수한 극성 및 내열성을 가지고, 깊이감 있는 동조 입체 효과를 증진시킬 수 있는 폴리에틸렌테레프탈레이트 재질의 필름을 이용할 수 있다.
상기 전사인쇄 필름의 두께는 일 예로, 0.01-0.50mm 또는 0.02-0.40mm일 수 있으며, 상기 범위 내에서 적정 수준의 제조단가로 적정 강도 및 강성을 확보할 수 있는 효과가 있다.
이후, 하부에서 상부로 순차적으로 밸런스층, 베이스층, 상기 치수안정층과 접합된 발포층(발포층이 베이스층과 접하도록), 중지층 및 백색층을 위치시킨 후 145-165℃ 또는 150-160℃ 온도에서 1차 열합판을 한다. 이어서, 상기 백색층 상부에, 상기 일면에는 인쇄층이 타면에는 동조엠보가 형성된 투명층(인쇄층이 백색층과 접하도록)을 위치시킨 후 110-140℃ 또는 120-130℃의 온도에서 2차 열합판하여 타일 바닥재를 제조한다.
또한, 선택적으로, 본 발명의 타일 바닥재는 타일 바닥재 표면의 내스크래치성 및 내마모성을 향상시켜주며, 오염물이 부착되는 것을 방지해주도록 투명층 상면에 통상의 광경화형 수지를 코팅하여 UV코팅층을 더 형성할 수 있다.
위와 같은 제조방법으로 제조된 본 발명의 타일 바닥재는 쿠션성, 차음성 및 눌림성 등이 우수한 효과가 있다.
이하에서는 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
후술되는 실시예 및 비교예에 사용되는 각 성분은 하기와 같다.
종류 제조사 및 그레이드
폴리염화비닐 수지(a) 중합도가 770-830인 폴리염화비닐 수지(LG화학社, LS080S)
폴리염화비닐 수지(b) 중합도가 950-1050인 폴리염화비닐 수지(LG화학社, LS100)
폴리염화비닐 수지(c) 중량평균분자량이 150,000g/mole이고, 중합도가 1000-1100인폴리염화비닐 수지(LG화학社, PB1202)
폴리염화비닐 수지(d) 중량평균분자량이 110,000g/mole이고, 중합도가 950-1050인 폴리염화비닐 수지(LG화학社, PB1120)
가소제 디옥틸테레프탈레이트(LG화학社, DOTP)
계면활성제 실리콘계 계면활성제(BYK社, BYK-8020)
소포제 폴리디메틸실록산 중합체(DOW Chemical社, XIAMETER PMX-200)
충전제 탄산칼슘(렉셈社, S1000)
화학 발포제 아조디카본아미드(동진쎄미켐社, D200)
열안정제 Ca-Zn계(송원산업社, SW-300)
가공조제 아크릴계 가공조제(LG화학社, PA828)
1. 타일 바닥재 제조<실시예 1>
(밸런스층)
폴리염화비닐 수지(a) 100중량부, 가소제 60중량부, 충전제 60중량부, 열안정제 3중량부 및 가공조제 3중량부를 포함하는 밸런스층 조성물을 반바리 믹서로 180℃에서 혼련한 후, 상기 혼련된 밸런스층 조성물을 160℃의 온도에서 캘린더 성형하여 두께가 0.4mm인 밸런스층을 제조하였다.
(베이스층)
폴리염화비닐 수지(a) 100중량부, 가소제 40중량부, 충전제 650중량부, 및 열안정제 4중량부를 포함하는 베이스층 조성물을 반바리 믹서로 180℃에서 혼련한 후, 상기 혼련된 베이스층 조성물을 160℃의 온도에서 캘린더 성형하여 두께가 2.0mm인 베이스층을 제조하였다.
(치수안정층)
유리섬유 부직포를 폴리염화비닐 수지(c) 100중량부, 가소제 80중량부, 충전제 60중량부 및 열안정제 2중량부를 포함하는 PVC졸에 함침 후 겔링하여, 평량이 52g/m2이고 두께가 0.2mm인 치수안정층을 제조하였다.
(발포층)
폴리염화비닐 수지(c) 100중량부, 가소제 80중량부, 충전제 50중량부, 소포제 1중량부 및 열안정제 1.5중량부를 포함하는 발포층용 졸을 믹서(Mondo社, MONDOMIX)에서 3000rpm으로 30분 동안 혼합하였다. 이후, 폼 믹서(Mondo社, MONDOMIX VB25)에 상기 혼합된 발포층용 졸과 계면활성제 5중량부를 투입하여 3000rpm으로 20분동안 공기가 충분히 취입되도록 기계적 교반하여 발포층용 조성물의 발포배율이 200%가 되도록 하고, 이를 포터블 탱크(portable tank)로 옮겨 4시간 정도 숙성시켜 발포배율이 150%가 되도록 조정하였다.
이어서, 상기 치수안정층 상부에 상기 발포층용 조성물을 콤마 코타를 이용하여 코팅한 후 7m/min의 속도로 200-210℃ 온도의 3챔버 오븐을 통과시켜 겔화(gelling)시킴으로써, 기계적 발포 방식으로 발포되되 발포배율이 150%인 발포층을 수득하였다.
상기 접합된 치수안정층과 발포층의 두께의 합은 1.2mm이였다.
(중지층)
폴리염화비닐 수지(a) 100중량부, 가소제 24중량부, 충전제 160중량부 및 열안정제 4중량부를 포함하는 중지층 조성물을 반바리 믹서로 180℃에서 혼련한 후, 상기 혼련된 중지층 조성물을 160℃의 온도에서 캘린더 성형하여 두께가 1.0mm인 중지층을 제조하였다.
(백색층)
폴리염화비닐 수지(b) 100중량부, 가소제 25중량부, 충전제 8중량부, 안료인 이산화티탄(TiO2) 20중량부 및 열안정제 3중량부를 포함하는 백색층 조성물을 반바리 믹서로 180℃에서 혼련한 후, 상기 혼련된 백색층 조성물을 180℃의 온도에서 캘린더 성형하여 두께가 0.07mm인 백색층을 제조하였다.
(인쇄층)
상기 백색층 상부에 전사 인쇄를 통해 두께가 80㎛인 인쇄층을 형성하였다.
(투명층)
폴리염화비닐 수지(b) 100중량부, 가소제 30중량부 및 열안정제 3중량부를 포함하는 투명층 조성물을 반바리 믹서로 180℃에서 혼련한 후, 상기 혼련된 투명층 조성물을 180℃의 온도에서 캘린더 성형하여 두께가 0.5mm인 투명필름인 투명층을 제조하였다.
(타일 바닥재)
이후, 하부에서 상부로 순차적으로 밸런스층, 베이스층, 상기 치수안정층과 접합된 발포층(발포층이 베이스층과 접하도록), 중지층, 상기 상부에 인쇄층이 형성된 백색층 및 투명층을 위치시킨 후 150℃ 온도에서 열합판하여 두께가 5.25mm인 실시예 1의 타일 바닥재를 제조하였다.
<실시예 2>
인쇄층을 제외한 모든 층(밸런스층, 베이스층, 치수안정층, 발포층, 중지층, 백색층 및 투명층)은 실시예 1과 동일하게 제조하였으며, 인쇄층은 하기 방식으로 형성하였다.
(인쇄층 및 동조엠보)
소정 무늬가 인쇄된, 두께가 0.025mm인 PET 전사인쇄 필름을 이용하여 상기 투명층의 일면에 130℃에서 전사인쇄하여 두께가 80㎛인 인쇄층을 형성하였다. 다만, 전사인쇄 필름은 아직 제거하지 않은 채 투명층 일면에 접면된 상태를 유지하였다.
그리고 나서, 일면에 인쇄층이 형성된 상기 투명층의 타면에는 상기 인쇄 무늬와 일치하도록 150℃에서 동조엠보싱 공정을 통해 동조엠보를 형성하였다.
이후, 동조엠보의 복원을 방지하기 위해 상기 투명층을 25℃로 냉각시킨 후 상기 전사인쇄 필름을 제거하였다.
(타일 바닥재)
이 후, 하부에서 상부로 순차적으로 밸런스층, 베이스층, 상기 치수안정층과 접합된 발포층(발포층이 베이스층과 접하도록), 중지층 및 백색층을 위치시킨 후 150℃ 온도에서 1차 열합판을 하였다. 이어서, 상기 백색층 상부에, 일면에는 인쇄층이 타면에는 동조엠보가 형성된 투명층(인쇄층이 백색층과 접하도록)을 위치시킨 후 130℃의 온도에서 2차 열합판하여 두께가 5.25mm인 실시예 2의 타일 바닥재를 제조하였다.
<비교예 1>
발포층을 제외한 모든 층(밸런스층, 베이스층, 치수안정층, 중지층, 백색층, 인쇄층 및 투명층)은 실시예 1과 동일하게 제조하였다.
(발포층)
폴리염화비닐 수지(d) 100중량부, 가소제 100중량부, 충전제 20중량부, 화학 발포제 8중량부 및 열안정제 3중량부를 포함하는 발포층용 졸을 믹서로 혼합하여 발포층용 조성물을 제조하였다.
이어서, 치수안정층 상부에 상기 발포층용 조성물을 나이프 코타를 이용하여 코팅한 후 160℃에서 15초간 겔링하였다. 이 후, 상기 치수안정층과 접합된 발포층을 200℃의 발포 오븐에 넣어 발포시켜 발포배율이 150%이고 화학 발포된, 발포층을 수득하였다.
상기 접합된 치수안정층과 발포층은 두께의 합이 1.2mm이였다.
(타일 바닥재)
상기에서 제조된 각 층을 하부에서 상부로 순차적으로 밸런스층; 베이스층; 상기 치수안정층과 접합된 발포층(발포층이 베이스층과 접하도록); 중지층; 상부에 인쇄층이 형성된 백색층; 및 투명층(투명층이 인쇄층과 접하도록); 을 위치시킨 후 150℃의 온도에서 열합판하여 두께가 5.25mm인, 비교예 1의 타일 바닥재를 제조하였다.
<비교예 2>
밸런스층의 두께가 0.4mm, 베이스층의 두께가 1.45mm으로, 밸런스층 및 베이스층의 두께의 합이 1.85mm인 것을 제외하고는, 실시예 1과 동일한 방법으로 타일 바닥재를 제조하였다.
<비교예 3>
모든 층의 조성은 실시예 1과 동일하게 하되, 하기와 같은 제조방법을 통해 타일 바닥재를 제조하였다.
밸런스층, 베이스층, 중지층, 상부에 인쇄층이 형성된 백색층 및 투명층을 각각 캘린더 성형하여 제조하였다.
이와 별도로, 치수안정층 상부에 발포층용 조성물을 도포 및 겔링하여 치수안정층과 접합된, 발포배율이 150%이고 기계적 발포 방식으로 발포된 발포층을 제조하였다.
이 후, 하부에서 상부로 순차적으로 치수안정층과 접합된 발포층; 밸런스층(치수안정층이 밸런스층과 접하도록); 베이스층; 중지층; 상부에 인쇄층이 형성된 백색층; 및 투명층을 위치시킨 후 150℃ 온도에서 열합판하여 비교예 3의 타일 바닥재를 제조하였다.
2. 타일 바닥재 및 발포층의 특성 측정
위에서 제조한 실시예 1 내지 2, 비교예 1 내지 3의 타일 바닥재의 밸런스층 및 베이스층의 두께의 합(S1)과 중지층, 백색층, 인쇄층 및 투명층의 두께의 합(S3)의 두께비, 밸런스층 및 베이스층의 두께의 합(S1)과 발포층 및 치수안정층의 두께의 합(S2)과 중지층, 백색층, 인쇄층 및 투명층의 두께의 합(S3)의 두께비를 계산하여 하기 표 2에 그 결과를 나타내었다.
또한, 위에서 제조한 실시예 1 내지 2, 비교예 1 내지 3의 타일 바닥재의 발포층의 발포배율, 상기 발포층의 단면적(1mm2) 내 형성된 전체 기공 중 닫힌 형상의 기공의 비율, 평균 직경, 개수 및 발포층의 위치를 측정하여 하기 표 2에 그 결과를 나타내었다.
(1) 발포배율 : 상기 접합된 치수안정층과 발포층의 시편(길이, 너비가 50mm x 50mm)의 초기 밀도를 측정한 후, 상기 시편을 160℃의 온도에서 500kgf/cm2의 압력으로 15분 동안 누른 후 압력을 제거하고 압착된 시편의 밀도를 측정하여 하기 식 1을 통해 계산하였다.
[식 1]
발포배율 = T1/T0 X 100%
T0 : 시편의 초기 밀도
T1 : 시편의 압착 후 밀도
(2) 닫힌 형상의 기공의 비율, 기공의 평균 직경 및 개수 : 타일 바닥재를 수직 방향 또는 수평 방향으로 절단한 후, 광학현미경(Optical Microscope, OM)을 이용하여 절단된 발포층의 단면적(1mm2) 내에 형성된 전체 기공 중 닫힌 형상의 기공의 비율, 평균 직경 및 개수를 측정하였다
(3) 발포층의 위치: 발포층 두께의 1/2 지점(M1) 및 타일 바닥재 두께의 1/2 지점(M2)을 측정하였다.
M1>M2인 경우 발포층이 타일 바닥재의 상측, M1=M2인 경우 발포층이 타일 바닥재의 정중앙, M1<M2인 경우 발포층이 타일 바닥재의 하측에 위치한 것으로 하기 표 2에 나타내었다.
3. 타일 바닥재 물성 측정
위에서 제조한 실시예 1 내지 2, 비교예 1 내지 3의 타일 바닥재의 차음성, 눌림성, 충격흡수성, 컬링성, 겉보기 밀도 및 동조율을 측정하여 하기 표 2에 그 결과를 나타내었다.
(1) 차음성1 : ISO 10140에 의거하여 경량충격음을 측정한 후, 대조군 대비 저감된 소음(△dB)을 측정하였다. 대조군은 바닥재로 마감되어 있지 않은 시멘트면인 바닥면을 대상으로 측정한 것으로, 상기 대조군의 경량충격음은 70-75dB이다.
차음성2 : ASTM E989에 의거하여 테이핑 기계를 이용한 충격음 전달을 측정하였다.
(2) 눌림성1 : ASTM F970에 의거하여 상기 타일 바닥재의 시편(길이, 너비가 50mm x 50mm)의 초기 두께를 측정하고, 상기 시편의 상부에 직경이 약 28.6mm인 지그(jig)를 올려놓고 1000psi 압력을 1day 동안 가하고 난 후, 상기 압력을 제거하고 다시 1day 지난 후의 두께를 측정하여, 초기 두께 대비 변화된 두께(초기 두께에서 나중 두께를 뺀 값)를 측정하였다.
눌림성2 : ASTM F970(static load)에 의거하여 상기 타일 바닥재의 시편(길이, 너비가 50mm x 50mm) 상부에 직경이 약 28.6mm인 지그(jig)를 올려놓고 일정 압력을 1day 동안 가하고 난 후, 상기 압력을 제거하고 다시 1day 지난 후 상기 시편의 두께를 측정하여, 두께의 변화가 0.125mm이하인 경우의 압력의 최대값을 측정하였다.
눌림성3 : EN 433에 의거하여 상기 타일 바닥재의 시편(길이, 너비가 50mm x 50mm)의 초기 두께를 측정하고, 상기 시편의 상부에 500N의 압력을 150분 동안 가하고 난 후, 상기 압력을 제거하고 150분이 지난 후의 두께를 측정하여 초기 두께 대비 변화된 두께(초기 두께에서 나중 두께를 뺀 값)를 측정하였다.
(3) 충격 흡수성 : 골프공을 1.5m 높이에서 타일 바닥재로 자유낙하 시 상기 골프공이 튀어오르는 높이로 측정하였다.
상기 값이 작을수록 쿠션성이 우수한 것을 의미한다.
(4) 컬링성 : 컬링성은 ISO 23999에 의거하여 타일 바닥재의 시편(길이, 너비가 150mm x 1260mm) 6 개를 각각 고온 변형 조건(80℃에서 6시간 동안)에서 방치하고 이를 상온에 꺼내 충분히 25℃가 되도록 기다리고, 저온 변형 조건(-5℃에서 6시간 동안)에서 방치한 후 이를 상온에 꺼내 충분히 25℃가 되도록 기다린 후, 각 조건에서 타일 바닥재의 가장자리에 바닥으로부터 컬링이 발생하는 높낮이를 틈새 게이지(MITUTOYO社, 184-304S)로 측정하여 각 변형 조건에서의 평균치를 계산하였다.
(+ : 컬의 방향이 위로 향함, - : 컬의 방향이 아래로 향함)
(5) 겉보기 밀도 : 겉보기 밀도는 영국 겉보기 밀도계(RAY-RAN社, Apparent Bulk Density)를 이용하여 측정하였다.
(6) 동조율 (%) : 인쇄층의 인쇄 무늬와 동조엠보의 길이 또는 폭방향으로 벗어난 정도를 Lupe(PEAK社, Scale 10x)를 이용해서 측정하였다.
실시예 1 실시예 2 비교예 1 비교예 2 비교예 3
적층구조 - 동조엠보 - - -
투명층 투명층 투명층 투명층 투명층
인쇄층 인쇄층 인쇄층 인쇄층 인쇄층
백색층 백색층 백색층 백색층 백색층
중지층 중지층 중지층 중지층 중지층
치수안정층 치수안정층 치수안정층 치수안정층 베이스층
발포층 발포층 발포층 발포층 밸런스층
베이스층 베이스층 베이스층 베이스층 치수안정층
밸런스층 밸런스층 밸런스층 밸런스층 발포층
두께비1) S1:S3 1) 1.45:1(2.4mm:1.65mm) 1.45:1(2.4mm:1.65mm) 1.45:1(2.4mm:1.65mm) 1.12:1(1.85mm:1.65mm) 1.45:1(2.4mm:1.65mm)
S1:S2:S3 1) 2:1:1.375(2.4mm:1.2mm:1.65mm) 2:1:1.375(2.4mm:1.2mm:1.65mm) 2:1:1.375(2.4mm:1.2mm:1.65mm) 1.54:1:1.375(1.85mm:1.2mm:1.65mm) 2:1:1.375(2.4mm:1.2mm:1.65mm)
발포층 기계적 발포 -
화학적 발포 - - - -
발포배율(%) 150 150 150 150 150
닫힌 형상의 기공 비율(%) 100 100 20 100 100
닫힌 형상의 기공의 평균직경(㎛) 200 200 350 200 200
닫힌 형상의 기공 개수(개/mm2) 13 13 2 13 12
타일 바닥재 내 발포층의 위치2) 상측 상측 상측 정중앙 하측
타일 바닥재
차음성 1(ISO 10140, △dB) 13 13 13 12 12
2 (ASTM E989,class) 53-54 53-54 53-54 51 50
눌림성 1 (ASTM F970, 1000psi, mm) 0.116 0.116 0.170 0.117 0.120
2 (ASTM F970, static load, psi) 1000 1000 200 1000 1000
3 (EN 433,mm) 0.06 0.06 0.2 0.06 0.06
충격 흡수성 (mm) 730 730 750 765 770
컬링성 (mm)(80℃/-5℃) +0.15/+0.2 +0.15/+0.2 +0.3/+0.3 +0.8/+1.0 +0.9/+1.1
겉보기 밀도 (g/cm3) 2.30 2.3 2.40 2.3 2.3
동조율 (%) - 99 - - -
두께 (mm) 5.25 5.25 5.25 4.7 5.25
1)S1: 밸런스층 및 베이스층의 두께의 합, S2: 발포층 및 치수안정층의 두께의 합, S3: 중지층, 백색층, 인쇄층 및 투명층의 두께의 합2)발포층 두께의 1/2 지점(M1) 및 타일 바닥재 두께의 1/2 지점(M2)을 측정하여 M1>M2인 경우 상측, M1=M2인 경우 정중앙, M1<M2인 경우 하측이라 기재함.
상기 표 2에서 확인된 바와 같이, 본 발명에 따른 실시예 1 내지 2의 타일 바닥재는 발포층이 기계적 발포로 형성되어 닫힌 형상의 기공의 비율이 크고, 상기 기공이 단면적 내 특정 범위의 개수로 포함되어, 타일 바닥재의 차음성 및 눌림성이 우수한 것을 확인할 수 있었다.
또한, 치수안정층을 캐리어(carrier)로 이용하여 발포층을 기계적 발포로 형성하되 타일 바닥재의 최하부가 아닌 중간부에 위치하도록 하며, 특히 발포층의 두께의 1/2 지점(M1)을 타일 바닥재(1) 두께의 1/2 지점(M2) 보다 상측에 위치하도록 하여(실시예 1, 2 - M1: 2.9mm, M2 : 2.625mm), 충격 흡수성이 우수하여 쿠션성이 우수한 것을 확인할 수 있었다.
또한 실시예 1 내지 2의 타일 바닥재는 발포층 및 치수안정층을 기준으로하부에 위치하는 밸런스층 및 베이스층의 두께의 합(S1)과 상부에 위치하는 중지층, 백색층, 인쇄층 및 투명층의 두께의 합(S3)이 1.2-1.7:1의 두께비를 가져 컬링이 발생하지 않은 결과를 나타내어, 구조 안정성이 우수한 것을 확인할 수 있었다.
나아가, 본 발명의 실시예 2의 타일 바닥재는 인쇄 무늬와 동조엠보의 동조율이 높아 외관이 매우 우수한 것을 확인할 수 있었다.
반면, 발포층이 화학 발포된 비교예 1의 타일 바닥재는 실시예 1 내지 2에 비해 발포층 내 닫힌 형상의 기공 비율이 작아 실시예 1 내지 2에 비해 눌림성이 매우 저하되고, 충격 흡수성 및 구조 밸런스도 다소 저하되는 것을 확인할 수 있었다.
한편, 발포층의 두께의 1/2 지점(M1)이 타일 바닥재(1) 두께의 1/2 지점(M2)과 동일하여(M1 : 2.35mm, M2: 2.35mm) 타일 바닥재 내 정중앙에 발포층이 위치하는 비교예 2의 타일 바닥재(1)는 (S1) 및 (S3)의 두께비 및 (S1), (S2) 및 (S3)가 본 발명과 상이함에 따라 충격 흡수성 및 구조 밸런스가 저하되고, 차음성도 다소 저하된 것을 확인할 수 있었다.
또한, 발포층이 최하부에 위치하고 발포층의 두께의 1/2 지점(M1)이 타일 바닥재(1) 두께의 1/2 지점(M2) 보다 하측에 위치하는(M1 : 0.5mm, M2 : 2.625mm) 비교예 3의 타일 바닥재(1)는 실시예 1 내지 2에 비해 충격 흡수성이 저하되어 쿠션성이 저하된 것을 확인할 수 있었다.
또한, 비교예 3의 타일 바닥재(1)는 발포층을 기계적 발포로 형성하기 위한 캐리어 역할을 하는 치수안정층도 타일 바닥재의 하부에 위치할 수밖에 없어 컬링이 발생하는 등 구조안정성이 저하되고 차음성도 저하되는 것을 확인할 수 있었다. 이에 더해, 비교예 3의 타일 바닥재는 발포층이 최하부에 위치하므로 실시예 1, 2와는 달리 접착제를 사용하여 시공할 수밖에 없고, 접착제 시공할 경우 접착제의 헤라골에 의해 발포층에 변형이 발생하며 또한 시간이 경과할수록 발포 폼이 접착제를 흡수함으로 인해 타일 바닥재의 눌림성 및 쿠션성이 저하되는 단점이 있다.
〔부호의 설명〕
1: 타일 바닥재 11: 밸런스층
12: 베이스층 20: 발포층
30: 치수안정층 41: 중지층
42: 백색층 42': 인쇄층
43: 투명층

Claims (13)

  1. 하부에서 상부로, 순차적으로 베이스층(12); 발포층(20); 및 치수안정층(30)을 포함하는 타일 바닥재(1)로,
    상기 발포층(20)은 1mm2의 단면적 내에 포함된 기공의 90% 이상이 닫힌 형상의 기공(closed pore or closed cell)이고, 두께의 1/2 지점(M1)이 타일 바닥재(1) 두께의 1/2 지점(M2) 보다 상측에 위치하는 것인 타일 바닥재.
  2. 제 1항에 있어서,
    상기 타일 바닥재(1)는 충격 흡수성(mm)이 750mm 이하인 것인 타일 바닥재.
  3. 제 1항에 있어서,
    상기 타일 바닥재(1)는 충격 흡수성(mm)이 740mm 이하인 것인 타일 바닥재.
  4. 제 1항에 있어서,
    상기 타일 바닥재는 하부에서 상부로, 순차적으로 밸런스층(11); 베이스층(12); 발포층(20); 치수안정층(30); 중지층(41); 백색층(42); 인쇄층(42'); 및 투명층(43)을 포함하되,
    상기 밸런스층(11) 및 베이스층(12)의 두께의 합(S1)과 상기 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)의 두께의 합(S3)은 두께비가 1.2-1.7:1 인 것인 타일 바닥재.
  5. 제 4항에 있어서,
    상기 밸런스층(11) 및 베이스층(12)의 두께의 합(S1)과 상기 발포층(20) 및 치수안정층(30)의 두께의 합(S2)과 상기 중지층(41), 백색층(42), 인쇄층(42') 및 투명층(43)의 두께의 합(S3)은 두께비가 1.7-2.3:1:1.2-1.5인 것인 타일 바닥재.
  6. 제 1항에 있어서,
    상기 발포층(20)은 화학 발포제를 포함하지 않는 것인 타일 바닥재.
  7. 제 1항에 있어서,
    상기 발포층(20)은 기계적 발포로 형성된 것인 타일 바닥재.
  8. 제 1항에 있어서,
    상기 닫힌 형상의 기공은 상기 발포층(20)의 1mm2의 단면적 내에 5-20개로 포함되는 것인 타일 바닥재.
  9. 제 1항에 있어서,
    상기 발포층(20)은 발포배율이 130-180%인 것인 타일 바닥재.
  10. 제 1항 내지 제 9항 중 어느 한 항에 있어서,
    상기 타일 바닥재(1)는 컬링성(ISO 23999)이 0.7mm이하인 것인 타일 바닥재.
  11. 제 1항 내지 제 9항 중 어느 한 항에 있어서,
    상기 타일 바닥재(1)는 컬링성(ISO 23999)이 0.5mm이하인 것인 타일 바닥재.
  12. 제 1항 내지 제 9항 중 어느 한 항에 있어서,
    상기 타일 바닥재(1)는 차음성(ISO 10140)이 △10-20dB인 것인 타일 바닥재.
  13. 제 1항 내지 제 9항 중 어느 한 항에 있어서,
    상기 타일 바닥재(1)는 눌림성(ASTM F970, 1000psi)이 0.125mm이하인 것인 타일 바닥재.
PCT/KR2020/006354 2019-05-17 2020-05-14 타일 바닥재 WO2020235859A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0058353 2019-05-17
KR20190058353 2019-05-17
KR10-2020-0056920 2020-05-13
KR1020200056920A KR102706792B1 (ko) 2019-05-17 2020-05-13 타일 바닥재

Publications (1)

Publication Number Publication Date
WO2020235859A1 true WO2020235859A1 (ko) 2020-11-26

Family

ID=73458683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006354 WO2020235859A1 (ko) 2019-05-17 2020-05-14 타일 바닥재

Country Status (1)

Country Link
WO (1) WO2020235859A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080018024A (ko) * 2006-08-23 2008-02-27 주식회사 엘지화학 부직포를 포함하는 건축용 층간 차음/완충재
KR100920823B1 (ko) * 2008-08-26 2009-10-08 엔브이에이치코리아(주) 자동차 천정재용 적층패널
US20150375471A1 (en) * 2013-05-02 2015-12-31 Tower Ipco Company Limited Floor plank with foam core
KR20160045237A (ko) * 2014-10-17 2016-04-27 (주)엘지하우시스 층간소음 저감용 바닥재
KR20190036690A (ko) * 2017-09-28 2019-04-05 (주)엘지하우시스 발포쿠션층 및 이를 포함하는 쿠션 바닥장식재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080018024A (ko) * 2006-08-23 2008-02-27 주식회사 엘지화학 부직포를 포함하는 건축용 층간 차음/완충재
KR100920823B1 (ko) * 2008-08-26 2009-10-08 엔브이에이치코리아(주) 자동차 천정재용 적층패널
US20150375471A1 (en) * 2013-05-02 2015-12-31 Tower Ipco Company Limited Floor plank with foam core
KR20160045237A (ko) * 2014-10-17 2016-04-27 (주)엘지하우시스 층간소음 저감용 바닥재
KR20190036690A (ko) * 2017-09-28 2019-04-05 (주)엘지하우시스 발포쿠션층 및 이를 포함하는 쿠션 바닥장식재

Similar Documents

Publication Publication Date Title
WO2014182083A1 (ko) 에스테르계 가소제의 제조방법 및 이로부터 제조된 에스테르계 가소제
WO2013151230A1 (en) Display panel with curved shape and radius acquision method for the same
WO2014209056A1 (ko) 폴리에스테르 필름 및 이의 제조방법
WO2020235773A1 (ko) 타일 바닥재
WO2020022848A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2019054732A1 (ko) 인조가죽 및 이의 제조방법
WO2020235859A1 (ko) 타일 바닥재
WO2020055188A1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
WO2014185685A1 (ko) 편광판
WO2020235772A1 (ko) 타일 바닥재
WO2018043807A1 (ko) Pedot/pss 분산액, 상기 분산액으로 제조된 광경화형 대전 방지 코팅조성물, 및 상기 코팅조성물을 포함하는 집진통
WO2021045322A1 (ko) 실리콘 커버를 포함하는 인체에 무해한 고탄성 항균 매트
WO2018004288A2 (ko) 폴리에스테르 다층필름
WO2022045737A1 (ko) 포지티브형 감광성 수지 조성물
WO2021066496A1 (ko) 주름진 표면을 갖는 적층 필름
WO2020262969A1 (ko) 가연성 박막 건축내장 소재가 접착된 금속소재 및 이를 부착하기 위한 부착구조물
WO2019045336A1 (ko) 무기재형 실리콘 점착필름
WO2018135916A1 (ko) 충격흡수용 복합시트
WO2015119443A1 (ko) 에스테르계 화합물, 이를 포함하는 가소제 조성물, 이의 제조방법, 및 이를 포함하는 수지 조성물
WO2020004748A1 (ko) 탄산칼슘을 포함하는 발포시트, 이의 제조방법 및 이를 포함하는 식품용기
WO2021246851A1 (ko) 폴리에스테르 이형 필름 및 이의 제조 방법
WO2023054837A1 (ko) 커버 윈도우용 필름, 및 이를 포함하는 디스플레이 장치
WO2021145492A1 (ko) 페놀 수지 발포체, 이의 제조방법 및 이를 포함하는 단열재
WO2019054731A1 (ko) 우수한 표면 외관을 갖는 인조가죽 및 그 제조방법
WO2022260363A1 (ko) 폴리우레탄 폼 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810172

Country of ref document: EP

Kind code of ref document: A1