WO2020235075A1 - 電動圧縮機及びこれを用いた空気調和機 - Google Patents

電動圧縮機及びこれを用いた空気調和機 Download PDF

Info

Publication number
WO2020235075A1
WO2020235075A1 PCT/JP2019/020427 JP2019020427W WO2020235075A1 WO 2020235075 A1 WO2020235075 A1 WO 2020235075A1 JP 2019020427 W JP2019020427 W JP 2019020427W WO 2020235075 A1 WO2020235075 A1 WO 2020235075A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
electric compressor
inlet pipe
accumulator
strainer
Prior art date
Application number
PCT/JP2019/020427
Other languages
English (en)
French (fr)
Inventor
田中 裕樹
量人 剱持
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2019/020427 priority Critical patent/WO2020235075A1/ja
Publication of WO2020235075A1 publication Critical patent/WO2020235075A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/16Filtration; Moisture separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present invention relates to an electric compressor equipped with an accumulator and an air conditioner using the electric compressor.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-163744
  • an inlet pipe is connected to the accumulator, and an outlet pipe is provided inside the accumulator.
  • a partition plate (baffle plate) and a strainer (filter) having substantially the same diameter as the inner diameter of the accumulator are installed between the opening end of the inlet pipe in the accumulator and the inlet opening of the outlet pipe. That is, the partition plate and the strainer are provided in an umbrella shape above the outlet pipe so that the liquid refrigerant that has entered the accumulator from the inlet pipe does not directly enter the outlet pipe.
  • the partition plate is provided between the inlet pipe and the outlet pipe inside the accumulator so that the liquid refrigerant that has entered the accumulator from the inlet pipe does not directly enter the outlet pipe. And a strainer is installed. Therefore, it is necessary to provide the large partition plate and the strainer so as to cover the outlet pipe, and there is a problem that the amount of materials used for the partition plate and the strainer increases and the cost increases. In recent years, due to the soaring prices of raw materials, electric compressors and air conditioners using the same are required to be cheaper while maintaining reliability.
  • An object of the present invention is to obtain an electric compressor capable of reducing costs while maintaining reliability and an air conditioner using the electric compressor.
  • the present invention comprises a compression mechanism for compressing the refrigerant, an electric mechanism for driving the compression mechanism, a closed container containing the compression mechanism and the electric mechanism, and the compression.
  • an electric compressor provided on the suction side of the mechanism unit and provided with an accumulator for storing the liquid refrigerant
  • the accumulator sends an inlet pipe for introducing the refrigerant into the accumulator and the refrigerant in the accumulator to the compression mechanism unit.
  • the lower end of the accumulator in the inlet pipe is provided with a refrigerant avoidance for preventing the liquid refrigerant flowing into the accumulator from the inlet pipe from flowing into the outlet pipe. It is a feature.
  • Another feature of the present invention is the electric motor in an air conditioner in which an electric compressor, a four-way valve, an outdoor heat exchanger, a throttle device and an indoor heat exchanger are connected in a ring shape by a refrigerant pipe to form a refrigeration cycle. It is characterized in that the above-mentioned electric compressor is used as the compressor.
  • FIG. 1 It is a refrigerating cycle block diagram which shows Example 1 of the air conditioner of this invention. It is a vertical sectional view which shows the structure of the electric compressor which concerns on Example 1.
  • FIG. It is a vertical cross-sectional view which shows the whole structure of the accumulator used for an electric compressor. It is an enlarged sectional view of the main part of the upper part of the accumulator shown in FIG. It is a perspective view which shows the refrigerant avoidance and strainer shown in FIG. 4 enlarged. It is a top view of the refrigerant avoidance and strainer shown in FIG. It is a side view of the refrigerant avoidance and strainer shown in FIG.
  • FIG. 2 It is a perspective view which shows the refrigerant avoidance and strainer provided in the accumulator of the electric compressor in Example 2.
  • FIG. It is a perspective view of the refrigerant avoidance shown in FIG. It is a top view of the refrigerant avoidance and strainer which shows the modification 1 of Example 2.
  • FIG. It is a side view of the refrigerant avoidance and strainer shown in FIG. It is a perspective view of the refrigerant avoidance explaining the modification 2 of the second embodiment. It is sectional drawing of the main part explaining the example of a general accumulator.
  • Example 1 of the electric compressor and the air conditioner of the present invention will be described with reference to FIGS. 1 to 7.
  • FIG. 1 is a refrigeration cycle configuration diagram showing Example 1 of the air conditioner of the present invention.
  • the electric compressor 100 the four-way valve 102, the outdoor heat exchanger 103, the throttle device 104 for heating and cooling such as the electronic expansion valve, and the indoor heat exchanger 105 are connected to the refrigerant pipe 106. They are connected in a ring to form a refrigeration cycle.
  • the air conditioner 101 uses the outdoor heat exchanger 103 as a condenser and the indoor heat exchanger 105 as an evaporator for cooling operation, and the indoor heat exchanger 105 as a condenser and outdoor heat. It is a heat pump type that performs a heating operation using the exchanger 103 as an evaporator.
  • the solid line arrow X indicates the refrigerant circulation direction during the cooling operation
  • the broken line arrow Y indicates the refrigerant circulation direction during the heating operation.
  • the high-temperature and high-pressure refrigerant (gas refrigerant) compressed by the electric compressor 100 passes through the four-way valve 102 and flows into the outdoor heat exchanger 103 to enter air. It dissipates heat and condenses by heat exchange with, and becomes a liquid refrigerant. After that, the liquid refrigerant undergoes equal enthalpy expansion by the throttle device 104, and flows into the indoor heat exchanger 105 as a gas-liquid two-phase flow in which a low-temperature low-pressure gas refrigerant and a liquid refrigerant are mixed.
  • the gas-liquid two-phase flow refrigerant flowing into the indoor heat exchanger 105 is vaporized into a gas refrigerant by the endothermic action from the indoor air. That is, when the liquid refrigerant is vaporized, the indoor heat exchanger 105 cools the surrounding air, so that the air conditioner 101 exerts a cooling function.
  • the gas refrigerant flowing out of the indoor heat exchanger 105 returns to the electric compressor 100, is compressed, becomes a high-temperature and high-pressure gas refrigerant again, flows through the four-way valve 102, and flows to the outdoor heat exchanger 103 to be condensed. ..
  • the same circulation is repeated, and the refrigeration cycle is constructed by repeating this circulation.
  • FIG. 2 is a vertical cross-sectional view showing the configuration of the electric compressor 100 according to the first embodiment.
  • the electric compressor 100 includes a compression mechanism unit 1 for compressing a refrigerant, an electric motor unit 2 for driving the compression mechanism unit 1, a closed container 3 incorporating these, and a closed container 3 containing these. It has an accumulator 4 for storing a refrigerant and oil contained in the refrigerant.
  • the closed container 3 and the accumulator 4 have a vertical structure, and inside the closed container 3, the compression mechanism portion 1 is arranged on the lower side and the electric motor portion 2 is arranged on the upper side. Explain what you are doing.
  • the accumulator 4 is fixed to the side wall of the closed container 3 by a metal fitting 5.
  • the metal fitting 5 is connected to the side wall of the accumulator 4 at a position near the center in the height direction of the accumulator 4.
  • Reference numeral 6 denotes an inlet pipe for introducing the refrigerant from the refrigeration cycle into the accumulator 4
  • reference numeral 7 denotes an outlet pipe for sending the refrigerant in the accumulator 4 to the compression mechanism unit 1.
  • the closed container 3 and the accumulator 4 are connected by the outlet pipe 7.
  • the outlet pipe 7 is composed of a straight portion 7a formed in a straight shape and a curved pipe portion 7b.
  • the straight portion 7a is arranged inside the accumulator 4 so as to extend in the vertical direction.
  • the curved tube portion 7b is arranged outside the accumulator 4, one end side thereof is connected to the lower end portion 7aa of the straight portion 7a, and the other end side is arranged inside the closed container 3. It is connected to the suction port 8.
  • Reference numeral 10 denotes a power supply terminal for supplying electric power to the electric motor unit 2.
  • a support member 11 is arranged inside the accumulator 4.
  • the support member 11 is a member that supports the straight portion 7a of the outlet pipe 7 inside the accumulator 4.
  • the detailed configuration of the accumulator 4 is shown in FIG.
  • FIG. 3 is a vertical cross-sectional view showing the overall configuration of the accumulator 4 used in the electric compressor 100.
  • the support member 11 is a disk-shaped member, and is fixed to the inner wall of the accumulator 4 by, for example, press-fit welding or the like. Further, the support member 11 is formed with one or a plurality of through holes (not shown) penetrating in the axial direction. This through hole is formed particularly for allowing the liquid refrigerant to escape below the accumulator 4.
  • the lower end portion 7aa of the straight portion 7a in the outlet pipe 7 is fixed to the lower part of the accumulator 4 so as not to leak the refrigerant to the outside. Further, the upper end portion 7ab of the straight portion 7a of the outlet pipe 7 is arranged near the ceiling of the accumulator 4, and the upper end portion 7ab is an unfixed free end.
  • the inlet pipe 6 is connected to the ceiling of the accumulator 4.
  • a liquid refrigerant is stored in the bottom of the accumulator 4, and after the liquid refrigerant is vaporized, the vaporized gas refrigerant flows in through the opening (upper end opening) of the upper end 7ab of the straight portion 7a, and then passes through the outlet pipe 7. It is supplied to the suction port 8 (see FIG. 2) of the compression mechanism unit 1 via.
  • a small hole is provided in the lower part of the straight portion 7a of the outlet pipe 7 to collect the oil collected in the accumulator 4. It may be configured to supply to the compression mechanism unit 1.
  • FIG. 13 is a cross-sectional view of a main part for explaining an example of a general accumulator, and shows the upper half of the accumulator 4.
  • a partition plate 12 and a strainer 13 are provided between the inlet pipe 6 and the outlet pipe 7 inside the accumulator 4.
  • the partition plate 12 is formed in a cylindrical shape in the axial direction (vertical direction) from the central convex portion 12a, the flat plate portion 12b formed in a ring shape around the central convex portion 12a, and the outer peripheral portion of the flat plate portion 12b. It is composed of the outer peripheral mounting portion 12c. A plurality of axial through holes 12ba are formed in the flat plate portion 12b.
  • the partition plate 12 is fixed to the inner wall surface of the body portion of the accumulator 4 at the portion of the outer peripheral mounting portion 12c. Further, a strainer 13 is attached to the upper surface of the partition plate 12 so as to cover the upper surface of the partition plate 12.
  • the central convex portion 12a of the partition plate 12 is not formed with an opening through which the refrigerant can pass, so that the refrigerant flowing from the inlet pipe 6 into the upper part of the accumulator 4 is the partition plate 12. Flows to the outer peripheral side of the central convex portion 12a. After passing through the strainer 13, this refrigerant passes through the through hole 12ba of the flat plate portion 12b, flows downward in the accumulator 4, and the heavy liquid refrigerant collects in the bottom portion in the accumulator 4.
  • the light gas refrigerant rises, passes through the lower surface of the central convex portion 12a, flows into the outlet pipe 7 from the upper end opening of the outlet pipe 7, and is then sucked into the compression mechanism portion of the electric compressor.
  • the liquid refrigerant that has entered the accumulator 4 from the inlet pipe 6 is prevented from directly flowing into the outlet pipe 7.
  • the partition plate 12 needs to be provided over the entire inner diameter of the accumulator 4, and a large partition plate 12 is required.
  • the strainer 13 needs to be provided over almost the entire inner diameter of the accumulator 4, and a large strainer 13 is required. Therefore, the amount of materials used for the partition plate 12 and the strainer 13 increases, and the cost increases.
  • FIG. 4 is an enlarged cross-sectional view of a main part of the upper part of the accumulator shown in FIG. 3
  • FIG. 5 is an enlarged perspective view showing the refrigerant avoidance and strainer shown in FIG. 4
  • FIG. 6 is a plan view of the refrigerant avoidance and strainer shown in FIG.
  • FIG. 7 is a side view of the refrigerant avoidance and strainer shown in FIG.
  • the accumulator 4 in this embodiment is not provided with the partition plate 12 and the strainer 13 as described in FIG. 13, and instead, the lower end of the accumulator 4 in the inlet pipe 6 is provided.
  • a refrigerant avoidance 14 and a strainer 15 having substantially the same diameter as the inlet pipe 6 are provided in the portion. That is, the refrigerant avoiding 14 is provided at a position facing the inlet opening (upper end opening) of the upper end portion 7ab of the outlet pipe 7, and is configured to have substantially the same diameter as the diameter of the upper end opening of the outlet pipe 7.
  • the center of the lower end opening of the inlet pipe 6 and the center of the straight portion 7a of the outlet pipe 7 are arranged so as to coincide with each other, and the diameters of the inlet pipe 6 and the outlet pipe 7 are also substantially the same.
  • the refrigerant avoidance 14 and the strainer 15 are integrally configured, and the inner peripheral surface of the strainer 15 is inserted so as to be in contact with the outer peripheral surface of the lower end portion of the inlet pipe 6 and fixed to the inlet pipe 6 by welding or the like.
  • the refrigerant avoiding 14 is formed of a steel plate or the like in a conical shape, and is fixed to the strainer 15 by welding or the like at the outer peripheral portion thereof.
  • the top portion of the refrigerant avoidance 14 at the center is configured to coincide with the center of the inlet pipe 6, and the diameter of the bottom portion is larger than the diameter of the upper end opening of the outlet pipe 7. It is configured to be large and covers the entire upper end opening of the outlet pipe 7. Therefore, the refrigerant flowing into the accumulator 4 from the inlet pipe 6, particularly the liquid refrigerant, is prevented from directly flowing into the outlet pipe 7.
  • the strainer 15 is formed of a steel screen wire or the like in a cylindrical shape, and the inner diameter of the strainer 15 is the same as or slightly smaller than the outer diameter of the inlet pipe 6. As shown in FIG. 4, the inlet pipe 6 is inserted into the outer peripheral surface of the inlet pipe 6 by press-fitting or the like and appropriately welded to fix the inlet pipe 6.
  • the refrigerant flowing into the upper part of the accumulator 4 from the inlet pipe 6 shown in FIGS. 3 and 4 is shown by a white arrow in FIG.
  • the flow is guided by the refrigerant avoidance 14 so as to avoid the upper end opening of the outlet pipe 7, passes through the strainer 15, and then flows downward.
  • the heavy liquid refrigerant collects at the bottom of the accumulator 4, the light gas refrigerant rises and passes between the refrigerant avoider 14 and the outlet pipe 7, and the outlet pipe is opened from the upper end opening of the outlet pipe 7. It flows into 7. After that, it is sucked into the compression mechanism unit 1 of the electric compressor 100.
  • the refrigerant avoiding 14 and the strainer 15 having substantially the same diameter as the inlet pipe 6 are provided at the lower end of the inlet pipe 6 in the accumulator 4, so that the liquid refrigerant is directly supplied.
  • the material cost can be reduced by significantly reducing the size of the refrigerant avoidance 14 and the strainer 15 while reliably preventing the refrigerant from flowing into the outlet pipe 7. Therefore, according to this embodiment, it is possible to reliably prevent a large amount of liquid refrigerant from being sucked into the compression mechanism portion 1 of the electric compressor 100 and to be in a liquid compressed state, so that the reliability of the compressor can be maintained.
  • the material cost can be reduced by significantly reducing the size of the refrigerant avoidance 14 and the strainer 15, and the electric compressor 100 capable of reducing the cost can be obtained.
  • the electric compressor 100 as the electric compressor 100 of the air conditioner 101 shown in FIG. 1, it is possible to obtain an air conditioner capable of reducing costs while maintaining reliability.
  • the strainer 15 is provided so as to be in contact with the outer peripheral surface of the inlet pipe 6 so as to be in contact with the outer peripheral surface of the inlet pipe 6 has been described, but the outer diameter of the strainer is made equal to or slightly larger than the inner diameter of the inlet pipe.
  • the strainer 15 may be inserted by press fitting or the like so as to be in contact with the inner peripheral surface of the inlet pipe 6 and fixed to the inner peripheral surface of the inlet pipe 6 by welding or the like.
  • FIG. 8 is a perspective view showing a refrigerant avoidance and a strainer provided in the accumulator of the electric compressor in the second embodiment
  • FIG. 9 is a perspective view of the refrigerant avoidance shown in FIG. 8
  • FIG. 10 shows a modification 1 of the second embodiment.
  • a plan view of the refrigerant avoidance and the strainer FIG. 11 is a side view of the refrigerant avoidance and the strainer shown in FIG. 10
  • FIG. 12 is a perspective view of the refrigerant avoidance for explaining the second modification of the second embodiment.
  • the inlet pipe in the accumulator is shown by a alternate long and short dash line.
  • the configurations other than the refrigerant avoidance and the strainer are the same as those shown in FIGS. 1 to 4, and the description thereof will be omitted.
  • the strainer 15 is formed in a cylindrical shape by a steel screen wire or the like as in the first embodiment, and the inner diameter of the strainer 15 is the outer diameter of the inlet pipe 6. It is configured to be the same or slightly smaller, and is inserted into the outer peripheral surface of the lower end portion of the inlet pipe 6 indicated by the alternate long and short dash line by press-fitting or the like, and welded and fixed as necessary.
  • the difference between the second embodiment and the first embodiment described above is the configuration of avoiding the refrigerant.
  • the refrigerant avoidance 14 described in the first embodiment is formed of a steel plate or the like in a conical shape.
  • the refrigerant avoidance 16 of the second embodiment is integrally formed with the disk-shaped disk portion 16a and the disk portion 16a, and is on the side of the inlet pipe 6. It is provided with a support portion 16b extending to and fixed to the inlet pipe 6.
  • the support portion 16b is formed of a plate-shaped member in a cross shape, is integrally fixed to the upper surface of the disc portion 16a, and is configured to extend upward from the disc portion 16a. Further, the support portion 16b is inserted into the inlet pipe 6 from the lower end opening of the inlet pipe 6 and fixed to the inner surface of the inlet pipe 6 by welding or the like. The support portion 16b is provided with an opening forming a sufficient flow path for the refrigerant to flow out between the upper surface of the disk portion 16a of the refrigerant avoiding 16 and the lower end portion of the inlet pipe 6. The attachment position to the inlet pipe 6 is determined.
  • the outer diameter of the disc portion 16a is equal to or less than the inner diameter of the inlet pipe 6, but the outer diameter of the disc portion 16a is the outer diameter of the inlet pipe 6 or the outer diameter of the outlet pipe 7. It may be configured to be substantially the same as.
  • the cylindrical strainer 15 is inserted into the outer peripheral surface of the inlet pipe 6, and the refrigerant avoider 16 is arranged inside the strainer 15. The lower end of the strainer 15 is vertically aligned with the disc portion 16a of the refrigerant avoiding 16 and is connected to the disc portion 16a by welding or the like.
  • the strainer 15 may be fixed to the outer peripheral surface of the inlet pipe 6 by welding or the like instead of being fixed to the refrigerant avoiding 16 by welding or the like.
  • the refrigerant introduced into the accumulator 4 from the inlet pipe 6 is rectified by the plate-shaped support portion 16b of the refrigerant avoidance 16 and reaches the disc portion 16a, and the flow direction is in the radial direction. It is converted (deflected), passes through the opening of the strainer 15, and flows downward in the accumulator 4 as shown by the white arrow shown in FIG. 4, as in the first embodiment described above.
  • the heavy liquid refrigerant collects at the bottom of the accumulator 4, the light gas refrigerant rises, passes between the refrigerant avoider 16 and the strainer 15, and the outlet pipe 7, and passes through the upper end opening of the outlet pipe 7. It flows into the outlet pipe 7.
  • the refrigerant that has flowed into the outlet pipe 7 is then sucked into the compression mechanism unit 1 of the electric compressor 100.
  • the refrigerant avoiding 16 and the strainer 15 having substantially the same diameter as the inlet pipe 6 are provided at the lower end of the inlet pipe 6 in the accumulator 4, the liquid refrigerant is directly supplied.
  • the material cost can be reduced by significantly reducing the size of the refrigerant avoidance 16 and the strainer 15 while surely preventing the flow into the outlet pipe 7. Therefore, while maintaining the reliability of the compressor, the material cost can be reduced by significantly reducing the size of the refrigerant avoidance 16 and the strainer 15, and the cost of the electric compressor can be reduced.
  • the support portion 16b of the refrigerant avoiding 16 is formed of a plate-shaped member in a cross shape, it is possible to suppress the drift of the refrigerant introduced into the accumulator 4 from the inlet pipe 6. ..
  • the refrigerant avoidant 16 and the strainer 15 are integrally formed by welding or the like as shown in FIGS. 10 and 11 before incorporating the refrigerant avoidant 16 and the strainer 15 into the inlet pipe 6.
  • the outer diameter of the strainer 15 is substantially the same as or slightly larger than the inner diameter of the inlet pipe 6.
  • the integrated refrigerant avoider 16 and strainer 15 are inserted or press-fitted into the inlet pipe 6, and the strainer 15 is fixed to the inlet pipe 6 by welding or the like.
  • the strainer 15 is provided with an opening forming a sufficient flow path for the refrigerant to flow out between the upper surface of the disk portion 16a of the refrigerant avoiding 16 and the lower end portion of the inlet pipe 6. Determine the attachment position to the inlet pipe 6. Even with such a configuration, the same effect as that of the second embodiment can be obtained, and since the refrigerant avoidance 16 and the strainer 15 are integrated and incorporated into the inlet pipe 6, there is an effect that the assembly work can be further facilitated.
  • the strainer 15 is omitted from the second embodiment described with reference to FIG.
  • the refrigerant avoidance 16 is composed of a disk-shaped disk portion 16a and a cross-shaped support portion 16b integrally provided so as to extend upward from the upper surface of the disk portion 16a. Has been done. Similar to the one shown in FIG. 8, the refrigerant avoider 16 inserts the support portion 16b into the inlet pipe 6 from the lower end opening of the inlet pipe 6 and fixes it to the inner surface of the inlet pipe 6 by welding or the like.
  • the support portion 16b is formed with an opening forming a sufficient flow path for the refrigerant to flow out between the upper surface of the disk portion 16a of the refrigerant avoidance 16 and the lower end portion of the inlet pipe 6.
  • the attachment position to the inlet pipe 6 is determined.
  • Example 2 shown in FIG. 8 Even with this configuration, almost the same effect as in Example 2 shown in FIG. 8 can be obtained. That is, the refrigerant introduced from the inlet pipe 6 is rectified by the support portion 16b of the refrigerant avoidance 16 and reaches the disc portion 16a, the flow direction is changed in the radial direction, and the refrigerant flows out into the accumulator 4. As a result, the heavy liquid refrigerant collects at the bottom of the accumulator 4, the light gas refrigerant rises, passes between the refrigerant avoider 16 and the outlet pipe 7, and flows into the outlet pipe 7 from the upper end opening of the outlet pipe 7. , Is sucked into the compression mechanism unit 1. Even with the configuration as in the second modification, it is possible to reliably prevent the liquid refrigerant from directly flowing into the outlet pipe 7.
  • the refrigerant avoidance 16 is supported by a disk-shaped disk portion 16a and a plate-shaped member in a cross shape.
  • the disk portion 16a and the support portion 16b are not limited to the shape shown in FIG.
  • the support portion 16b may be configured to have an X shape or a Y shape with a plate-shaped member as long as the disc portion 16a can be positioned at a predetermined position with respect to the inlet pipe 6.
  • the support portion 16b may be formed of a rod member that connects the inlet pipe 6 and the disk portion 16a, instead of being formed of a plate-shaped member that is long in the axial direction.
  • the upper end of the strainer 15 is applied to the lower end of the inlet pipe 6 without inserting the strainer 15 into the inlet pipe 6. It may be configured to be in contact with each other. In this case, the strainer 15 is configured to be fixed to the refrigerant avoider 16.
  • a refrigerant avoidance having a diameter substantially the same as that of the inlet pipe, or a refrigerant avoidance and a strainer is provided at the lower end portion of the accumulator in the inlet pipe, as in the conventional case. It is not necessary to provide a large partition plate or strainer over the entire inner diameter of the accumulator. Therefore, it is possible to obtain an electric compressor that can reduce material costs and reduce costs while maintaining reliability. If this electric compressor is adopted as a compressor for an air conditioner, the air conditioner can be used. It is possible to reduce the cost of.
  • the present invention is not limited to the above-described examples, and includes various modifications.
  • the case where the present invention is applied to a closed rotary compressor has been described, but the present invention can be similarly applied to a closed scroll compressor and the like.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

電動圧縮機は、冷媒を圧縮する圧縮機構部と、前記圧縮機構部を駆動する電動機構部と、前記圧縮機構部と前記電動機構部を内蔵する密閉容器と、前記圧縮機構部の吸込側に設けられ液冷媒を貯留するアキュムレータを備える。前記アキュムレータは、該アキュムレータに冷媒を導入するための入口管と、前記アキュムレータ内の冷媒を前記圧縮機構部に送るための出口管を備え、前記入口管におけるアキュムレータ内の下端部には、前記入口管から前記アキュムレータ内に流入する液冷媒が前記出口管に流入するのを防止する冷媒避けを設けている。

Description

電動圧縮機及びこれを用いた空気調和機
 本発明は、アキュムレータを備えている電動圧縮機及びこれを用いた空気調和機に関する。
 アキュムレータを備えている従来の電動圧縮機としては、特開2005-163744号公報(特許文献1)に記載されたものなどが知られている。
  この特許文献1に記載されている電動圧縮機においては、そのアキュムレータに入口管が接続され、また前記アキュムレータの内部には出口管が設けられている。前記入口管のアキュムレータ内の開口端部と前記出口管の入口開口との間には、アキュムレータ内径と略同径の仕切板(バッフルプレート)及びストレーナ(フィルター)が設置されている。即ち、前記入口管からアキュムレータ内に入った液冷媒が前記出口管に直接入らないように、前記仕切板とストレーナが前記出口管の上方に傘状に設けられている。
特開2005-163744号公報
 上記特許文献1のものでは、アキュムレータの内部における前記入口管と前記出口管のとの間に、前記入口管からアキュムレータ内に入った液冷媒が前記出口管に直接入らないように、前記仕切板及びストレーナを設置する構成としている。このため、前記出口管を覆うように大きな前記仕切板及び前記ストレーナを設ける必要があり、仕切板とストレーナの材料の使用量が多くなり、コストが増大する課題があった。
  近年、原材料の高騰のため、電動圧縮機や、これを用いる空気調和機では、特に、信頼性を維持しつつ、より安価なものが求められている。
 本発明の目的は、信頼性を維持しつつ、コスト低減を図ることのできる電動圧縮機及びこれを用いた空気調和機を得ることにある。
 上記目的を達成するため、本発明は、冷媒を圧縮する圧縮機構部と、前記圧縮機構部を駆動する電動機構部と、前記圧縮機構部と前記電動機構部を内蔵する密閉容器と、前記圧縮機構部の吸込側に設けられ液冷媒を貯留するアキュムレータを備える電動圧縮機において、前記アキュムレータは、該アキュムレータに冷媒を導入するための入口管と、前記アキュムレータ内の冷媒を前記圧縮機構部に送るための出口管を備え、前記入口管におけるアキュムレータ内の下端部には、前記入口管から前記アキュムレータ内に流入する液冷媒が前記出口管に流入するのを防止する冷媒避けを設けていることを特徴とする。
 本発明の他の特徴は、電動圧縮機、四方弁、室外熱交換器、絞り装置及び室内熱交換器が冷媒配管で環状に接続されて冷凍サイクルを構成している空気調和機において、前記電動圧縮機として、上述した電動圧縮機を用いていることを特徴とする
 本発明によれば、信頼性を維持しつつ、コスト低減を図ることのできる電動圧縮機及びこれを用いた空気調和機を得ることができる効果がある。
本発明の空気調和機の実施例1を示す冷凍サイクル構成図である。 実施例1に係る電動圧縮機の構成を示す縦断面図である。 電動圧縮機に用いられるアキュムレータの全体構成を示す縦断面図である。 図3に示すアキュムレータの上部の要部拡大断面図である。 図4に示す冷媒避けとストレーナを拡大して示す斜視図である。 図4に示す冷媒避けとストレーナの平面図である。 図4に示す冷媒避けとストレーナの側面図である。 実施例2における電動圧縮機のアキュムレータに設けられる冷媒避け及びストレーナを示す斜視図である。 図8に示す冷媒避けの斜視図である。 実施例2の変形例1を示す冷媒避け及びストレーナの平面図である。 図10に示す冷媒避け及びストレーナの側面図である。 実施例2の変形例2を説明する冷媒避けの斜視図である。 一般的なアキュムレータの例を説明する要部断面図である。
 以下、本発明の具体的実施例を図面に基づいて説明する。各図において、同一符号を付した部分は同一或いは相当する部分を示している。
 本発明の電動圧縮機及び空気調和機の実施例1を図1~図7を用いて説明する。
  まず、図1を用いて、本実施例1の空気調和機の全体構成を説明する。図1は本発明の空気調和機の実施例1を示す冷凍サイクル構成図である。
 図1に示すように、空気調和機101は、電動圧縮機100、四方弁102、室外熱交換器103、電子膨張弁等の冷暖房用の絞り装置104及び室内熱交換器105が冷媒配管106で環状に接続されて冷凍サイクルを構成している。
 この空気調和機101は、四方弁102を切替えることにより、室外熱交換器103を凝縮器、室内熱交換器105を蒸発器として使用する冷房運転と、室内熱交換器105を凝縮器、室外熱交換器103を蒸発器として使用する暖房運転とを行うヒートポンプ式のものである。なお、図1中、実線矢印Xは冷房運転時における冷媒の循環方向を示し、破線矢印Yは暖房運転時における冷媒の循環方向を示している。
 例えば、空気調和機101が冷房運転を行う場合には、電動圧縮機100で圧縮された高温高圧の冷媒(ガス冷媒)は、四方弁102を通過して室外熱交換器103に流入し、空気との熱交換により放熱して凝縮し、液冷媒となる。その後、液冷媒は、絞り装置104により等エンタルピ膨張し、低温低圧のガス冷媒と液冷媒とが混在した気液二相流となって室内熱交換器105へ流入する。室内熱交換器105に流入した気液二相流の冷媒は、室内空気からの吸熱作用によりガス冷媒に気化する。つまり、液冷媒が気化する際に室内熱交換器105が周囲の空気を冷却することで空気調和機101は冷房機能を発揮する。
 室内熱交換器105から流出したガス冷媒は、電動圧縮機100へ戻って圧縮され、再び高温高圧のガス冷媒となって、前記四方弁102を通り前記室外熱交換器103へと流れて凝縮する。以下、同様の循環が繰り返され、この循環が繰り返されることにより冷凍サイクルが構成される。
 次に、図1に示す本実施例1における電動圧縮機100の具体的構成を、図2を用いて説明する。ここでは、電動圧縮機100が、密閉型の縦形ロータリ圧縮機として構成されている場合を想定して説明する。ただし、電動圧縮機100は、密閉型の縦形ロータリ圧縮機以外の構成であっても良い。図2は、本実施例1に係る電動圧縮機100の構成を示す縦断面図である。
 図2に示すように、本実施例に係る電動圧縮機100は、冷媒を圧縮する圧縮機構部1と、この圧縮機構部1を駆動する電動機部2と、これらを内蔵する密閉容器3と、冷媒や冷媒中に含まれる油を貯留するアキュムレータ4を有している。本実施例では、密閉容器3とアキュムレータ4が縦型構造になっているものについて、また、密閉容器3の内部において、圧縮機構部1が下側に配置され、電動機部2が上側に配置されているものについて説明する。
 前記アキュムレータ4は密閉容器3の側壁に金具5により固定されている。金具5は、アキュムレータ4の高さ方向における中央付近の位置でアキュムレータ4の側壁に接続されている。6は冷凍サイクルからの冷媒をアキュムレータ4内に導入するための入口管、7はアキュムレータ4内の冷媒を前記圧縮機構部1に送るための出口管である。密閉容器3とアキュムレータ4とは前記出口管7で接続されている。
 前記出口管7は、ストレート状に形成されたストレート部7aと、曲管部7bとで構成されている。前記ストレート部7aは、上下方向に延在するようにアキュムレータ4の内部に配置されている。一方、前記曲管部7bは、アキュムレータ4の外部に配置されており、その一端側が前記ストレート部7aの下端部7aaに接続され、他端側が密閉容器3の内部に配置された圧縮機構部1の吸込口8に接続されている。
 前記吸込口8から前記圧縮機構部1に吸入されて圧縮された冷媒は、前記電動機部2を通過し、密閉容器3の上部に設けられた吐出管9から冷凍サイクルに送られる。10は前記電動機部2に電力を供給するための電源端子である。
 前記アキュムレータ4の内部には、支持部材11が配置されている。支持部材11は、アキュムレータ4の内部で出口管7のストレート部7aを支持する部材である。
  このアキュムレータ4の詳細構成を図3に示す。図3は、電動圧縮機100に用いられているアキュムレータ4の全体構成を示す縦断面図である。
 前記支持部材11は、円板状の部材であって、例えば圧入溶接等によって、アキュムレータ4の内壁に固定されている。また、この支持部材11には軸方向に貫通する1乃至複数の貫通孔(図示せず)が形成されている。この貫通孔は、特に液冷媒をアキュムレータ4の下方に逃がすために形成されている。
 前記出口管7におけるストレート部7aの下端部7aaは、冷媒を外部に漏らさないように、アキュムレータ4の下部に固定されている。また、出口管7のストレート部7aの上端部7abはアキュムレータ4の天井近くに配置され、この上端部7abは固定されていない自由端となっている。アキュムレータ4の天井には、前記入口管6が連結されている。
 アキュムレータ4の底部には液冷媒が貯留され、この液冷媒が気化した後、その気化したガス冷媒は、前記ストレート部7aの上端部7abの開口(上端開口)から流入した後、出口管7を介して圧縮機構部1の吸込口8(図2参照)に供給される。なお、冷媒中に油が混入して、この油が前記アキュムレータ4内下部に溜まる場合には、前記出口管7のストレート部7a下部に小孔を設けて、アキュムレータ4内に溜まった油を前記圧縮機構部1に供給するように構成すると良い。
 ここで、一般的なアキュムレータの例を、図13を用いて説明する。図13は一般的なアキュムレータの例を説明する要部断面図で、アキュムレータ4の上半分を示している。アキュムレータ4の内部における入口管6と出口管7のとの間には、仕切板12とストレーナ13が設けられている。
 前記仕切板12は、中央凸部12aと、この中央凸部12aの周囲にリング状に形成された平板部12bと、この平板部12bの外周部から軸方向(上下方向)に円筒形状に形成された外周取付部12cで構成されている。前記平板部12bには軸方向の貫通孔12baが複数個形成されている。
 前記仕切板12は、前記外周取付部12cの部分でアキュムレータ4の胴部内壁面に固定されている。また、前記仕切板12の上面には該仕切板12の上面を覆うようにストレーナ13が取り付けられている。
 このように構成することにより、前記仕切板12の中央凸部12aには冷媒が通過できる開孔が形成されていないので、入口管6からアキュムレータ4内の上部に流入した冷媒は、仕切板12における中央凸部12aの外周側に流れる。この冷媒はストレーナ13を通過後、平板部12bの貫通孔12baを通過して、アキュムレータ4内の下方に流れ、重い液冷媒はアキュムレータ4内の底部に溜まる。
 一方、軽いガス冷媒は上昇して前記中央凸部12aの下面を通り、出口管7の上端開口から出口管7内に流入し、その後、電動圧縮機の圧縮機構部に吸入される。これにより、前記入口管6からアキュムレータ4内に入った液冷媒が前記出口管7に直接流入するのを防止している。
 しかし、この図13に示すものでは、前記仕切板12をアキュムレータ4の内径の全範囲に亘って設ける必要があり、大きな仕切板12が必要となる。また、前記ストレーナ13についても同様に、アキュムレータ4の内径のほぼ全範囲に亘って設ける必要があり、大きなストレーナ13が必要となる。従って、前記仕切板12とストレーナ13の材料の使用量が多くなり、コストが増大する。
 そこで、本実施例1においては、電動圧縮機100に用いられるアキュムレータ4を、図3~図7に示すように構成している。図4は図3に示すアキュムレータ上部の要部拡大断面図、図5は図4に示す冷媒避けとストレーナを拡大して示す斜視図、図6は図4に示す冷媒避けとストレーナの平面図、図7は図4に示す冷媒避けとストレーナの側面図である。
 図3、図4に示すように、本実施例におけるアキュムレータ4では、図13で説明したような仕切板12やストレーナ13を設けておらず、その代わりに、入口管6におけるアキュムレータ4内の下端部に、入口管6と略同径の冷媒避け14とストレーナ15を設けている。即ち、前記冷媒避け14は、前記出口管7における上端部7abの入口開口(上端開口)に対向する位置に設けられ、前記出口管7の上端開口の径と略同径に構成されている。
 更に詳しく説明すると、入口管6の下端部開口の中心と出口管7のストレート部7aの中心は一致するように配置されており、入口管6と出口管7の直径も略同一に構成されている。前記冷媒避け14とストレーナ15は一体に構成され、入口管6の下端部外周面に接するように前記ストレーナ15の内周面が挿入され、溶接などにより前記入口管6に固定されている。
 また、前記冷媒避け14は、図4、図5に示すように、鋼板などで円錐形状に構成されており、その外周部で前記ストレーナ15に溶接などで固定されている。また、冷媒避け14の中心となる頂部は、図4に示すように、入口管6の中心と一致するように構成され、底辺となる部分の直径は前記出口管7の上端開口の径よりも大きくなるように構成されて、出口管7の上端開口全体を覆うように構成している。従って、入口管6からアキュムレータ4内に流入した冷媒、特に液冷媒が直接、出口管7に流入するのを防止するようにしている。
 前記ストレーナ15は、図5~図7に示すように、鋼製のスクリーンワイヤなどで円筒形状に構成されており、このストレーナ15の内径は前記入口管6の外径と同一か若干小さく構成して、図4に示すように、入口管6の外周面に圧入等により挿入して適宜溶接を施し、固定している。
 本実施例においては、上述したようにアキュムレータ4を構成しているので、図3、図4に示す入口管6からアキュムレータ4内の上部に流入した冷媒は、図4に白抜き矢印で示すように、冷媒避け14に案内されて出口管7の上端開口部を避けるように流れ、ストレーナ15を通過後、下方に流れる。この結果、重い液冷媒はアキュムレータ4内の底部に溜まり、軽いガス冷媒は上昇して前記冷媒避け14と前記出口管7との間を通過して、前記出口管7の上端開口から該出口管7内に流入する。その後、電動圧縮機100の圧縮機構部1に吸入される。
 このように、本実施例によれば、アキュムレータ4内における入口管6の下端部に、入口管6の径と略同径の冷媒避け14及びストレーナ15を設ける構成としたので、液冷媒が直接、前記出口管7に流入するのを確実に防止しつつ、冷媒避け14及びストレーナ15を大幅に小形化して、材料費を低減することができる。従って、本実施例によれば、電動圧縮機100の圧縮機構部1に多量の液冷媒が吸い込まれて液圧縮状態になることを確実に防止できるので、圧縮機の信頼性を維持しつつ、冷媒避け14及びストレーナ15の大幅小形化により材料費を低減して、コスト低減を図ることのできる電動圧縮機100を得ることができる。
 また、前記電動圧縮機100を、図1に示す空気調和機101の電動圧縮機100として用いることにより、信頼性を維持しつつコスト低減を図ることのできる空気調和機を得ることができる。
 なお、上述した実施例1では、前記ストレーナ15を、前記入口管6の外周面に接するように設ける例を説明したが、前記ストレーナの外径を前記入口管の内径と同等か若干大きくして、前記ストレーナ15を前記入口管6の内周面に接するように圧入等により挿入し、前記入口管6の内周面に溶接等により固定するようにしても良い。
 本発明の実施例2を図8~図12を用いて説明する。図8は本実施例2における電動圧縮機のアキュムレータに設けられる冷媒避け及びストレーナを示す斜視図、図9は図8に示す冷媒避けの斜視図、図10は実施例2の変形例1を示す冷媒避け及びストレーナの平面図、図11は図10に示す冷媒避け及びストレーナの側面図、図12は実施例2の変形例2を説明する冷媒避けの斜視図である。なお、図8、図12においては、アキュムレータにおける入口管を一点鎖線で図示している。また、本実施例2において、冷媒避け及びストレーナ以外の構成については図1~図4に示すものと同一であるので、それらの説明については省略する。
 まず、図8により本実施例2を説明する。本実施例2においても、ストレーナ15については、実施例1のものと同様に、鋼製のスクリーンワイヤなどで円筒形状に構成されており、このストレーナ15の内径は前記入口管6の外径と同一か若干小さく構成して、一点鎖線で示す入口管6の下端部外周面に圧入等により挿入し、必要に応じて溶接を施し、固定している。
 本実施例2が上述した実施例1と異なる点は、冷媒避けの構成である。実施例1で説明した冷媒避け14は鋼板などで円錐形状に構成されている。これに対し、本実施例2の冷媒避け16は、図8及び図9に示すように、円板形状の円板部16aと、この円板部16aと一体に構成され且つ入口管6の側に延びて前記入口管6に固定される支持部16bを備えている。
 具体的には、前記支持部16bは、板状の部材で十字形状に構成されて円板部16aの上面に一体に固定され、円板部16aから上方に延びるように構成されている。また、前記支持部16bは、入口管6の下端開口から入口管6内に挿入され、入口管6の内面に溶接などで固定されている。前記冷媒避け16の円板部16aの上面と入口管6の下端部との間には、冷媒を流出させるために十分な流路を形成する開口が形成されるように、前記支持部16bの入口管6への取り付け位置を決めている。
 前記円板部16aの外径は、本実施例では、前記入口管6の内径以下に構成しているが、円板部16aの外径を入口管6の外径や出口管7の外径と略同一に構成しても良い。
  円筒形状の前記ストレーナ15は、前記入口管6の外周面に挿入され、このストレーナ15の内側に前記冷媒避け16が配置されている。前記ストレーナ15は、その下端部を冷媒避け16の円板部16aと上下方向に一致させ、前記円板部16aに溶接等により接続されている。なお、前記ストレーナ15については、前記冷媒避け16に溶接等で固定せずに、入口管6の外周面に溶接等により固定するようにしても良い。
 このように構成することにより、入口管6からアキュムレータ4内に導入された冷媒は、冷媒避け16の板状の支持部16bで整流されて円板部16aに到達し、流れる方向が径方向に転換(偏向)されて、ストレーナ15の開口を通過し、上述した実施例1と同様に、図4に示す白抜き矢印で示すように、アキュムレータ4内の下方に流れる。この結果、重い液冷媒はアキュムレータ4内の底部に溜まり、軽いガス冷媒は上昇して、前記冷媒避け16及びストレーナ15と、前記出口管7との間を通り、出口管7の上端開口から該出口管7内に流入する。出口管7内に流入した冷媒は、その後電動圧縮機100の圧縮機構部1に吸入される。
 このように、本実施例2においても、アキュムレータ4内における入口管6の下端部に、入口管6の径と略同径の冷媒避け16及びストレーナ15を設ける構成としたので、液冷媒が直接出口管7に流入するのを確実に防止しつつ、冷媒避け16及びストレーナ15を大幅に小形化して、材料費を低減することができる。従って、圧縮機の信頼性を維持しつつ、冷媒避け16及びストレーナ15の大幅小形化により材料費を低減して、電動圧縮機のコスト低減を図ることができる。
 また、本実施例では、前記冷媒避け16の支持部16bを板状の部材で十字形状に構成しているので、入口管6からアキュムレータ4内に導入される冷媒の偏流を抑制することもできる。
 次に、上記実施例2の変形例1を、図10及び図11を用いて説明する。この変形例1では、前記冷媒避け16とストレーナ15を入口管6に組み込む前に、図10及び図11に示すように、冷媒避け16とストレーナ15を溶接等で一体に構成する。このとき、ストレーナ15の外径は入口管6の内径と略同一或いは若干大きく構成する。この一体化された冷媒避け16とストレーナ15を、前記入口管6内に挿入或いは圧入し、該ストレーナ15を溶接等で入口管6に固定する。
 なお、冷媒避け16の円板部16aの上面と入口管6の下端部との間には、冷媒を流出させるために十分な流路を形成する開口が形成されるように、前記ストレーナ15の入口管6への取り付け位置を決める。
  このように構成しても、上記実施例2と同様の効果が得られ、また、冷媒避け16とストレーナ15を一体化して入口管6に組み込むので、組立て作業を更に容易にできる効果がある。
 次に、上記実施例2の変形例2を、図12を用いて説明する。この変形例2は、図8で説明した実施例2に対し、ストレーナ15を省略したものである。冷媒避け16は、図9に示すものと同様に、円板形状の円板部16aと、この円板部16aの上面から上方に延びるように一体に設けられた十字形状の支持部16bにより構成されている。この冷媒避け16は、図8に示すものと同様に、その支持部16bを、入口管6の下端開口から該入口管6内に挿入し、入口管6の内面に溶接などで固定する。また、冷媒避け16の円板部16aの上面と入口管6の下端部との間には、冷媒を流出させるために十分な流路を形成する開口が形成されるように、前記支持部16bの入口管6への取り付け位置を決めている。
 このように構成しても、図8に示す実施例2とほぼ同様の効果が得られる。即ち、入口管6から導入された冷媒は、冷媒避け16の支持部16bで整流されて円板部16aに到達し、流れる方向が径方向に転換されて、アキュムレータ4内に流出される。この結果、重い液冷媒はアキュムレータ4内の底部に溜まり、軽いガス冷媒は上昇して冷媒避け16と出口管7との間を通り、出口管7の上端開口から該出口管7内に流入し、圧縮機構部1に吸入される。この変形例2のように構成しても、液冷媒が直接出口管7に流入するのを確実に防止できる。
 また、この変形例2では、ストレーナを有していないため、異物の除去機能は低下するものの、冷媒中に含まれる異物の量が少なく、ストレーナを設けなくても信頼性が確保できる場合には、構成を大幅に簡素化できるので材料費を大幅に低減でき、組立ても容易になるから、更にコスト低減を図ることができる。
 なお、上述した実施例2の説明、及び実施例2の変形例1、2の説明では、冷媒避け16を、円板形状の円板部16aと、板状部材で十字形状に構成された支持部16bで構成する例を説明したが、前記円板部16aや前記支持部16bは、図9に示す形状に限られるものではない。
 例えば、前記支持部16bは、前記円板部16aを入口管6に対し、所定位置に位置決めできる構成であれば良く、板状部材でX形状やY形状に構成しても良い。更に、前記支持部16bは、軸方向に長い板状部材で構成するのではなく、入口管6と円板部16aを接続する棒材の部材で構成しても良い。
 また、前記ストレーナ15を入口管6の外周面或いは内周面に挿入する構成について説明したが、ストレーナ15を入口管6に挿入せずに、ストレーナ15の上端を入口管6の下端部に当接させるように構成しても良い。この場合、ストレーナ15は冷媒避け16に固定されるように構成する。
 以上説明した本発明の各実施例によれば、入口管におけるアキュムレータ内の下端部に、入口管とほぼ同径の冷媒避け、或いは冷媒避けとストレーナを設ける構成としているので、従来のように、アキュムレータの内径の全範囲に亘って、大きな仕切板やストレーナを設ける必要がない。従って、信頼性を維持しつつ、材料費を低減してコスト低減を図ることのできる電動圧縮機を得ることができ、この電動圧縮機を空気調和機の圧縮機として採用すれば、空気調和機のコスト低減を図ることができる。
 なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上述した実施例では密閉型ロータリ圧縮機に本発明を適用した場合について説明したが、本発明は、密閉型スクロール圧縮機等にも同様に適用できるものである。
  また、上記した実施例は本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
1:圧縮機構部、2:電動機部、3:密閉容器、4:アキュムレータ、5:金具、6:入口管、7:出口管、7a:ストレート部、7aa:下端部、7ab:上端部、7b:曲管部、8:吸込口、9:吐出管、10電源端子、11:支持部材、12:仕切板、12a:中央凸部、12b:平板部、12ba:貫通孔、12c:外周取付部、13:ストレーナ、14:冷媒避け、15:ストレーナ、16:冷媒避け、16a:円板部、16b:支持部、100:電動圧縮機、101:空気調和機、102:四方弁、103:室外熱交換器、104:絞り装置、105:室内熱交換器、106:冷媒配管。

Claims (17)

  1.  冷媒を圧縮する圧縮機構部と、前記圧縮機構部を駆動する電動機構部と、前記圧縮機構部と前記電動機構部を内蔵する密閉容器と、前記圧縮機構部の吸込側に設けられ液冷媒を貯留するアキュムレータを備える電動圧縮機において、
     前記アキュムレータは、該アキュムレータに冷媒を導入するための入口管と、前記アキュムレータ内の冷媒を前記圧縮機構部に送るための出口管を備え、前記入口管におけるアキュムレータ内の下端部には、前記入口管から前記アキュムレータ内に流入する液冷媒が前記出口管に流入するのを防止する冷媒避けを設けていることを特徴とする電動圧縮機。
  2.  請求項1に記載の電動圧縮機において、
     前記冷媒避けは、前記入口管から流出する冷媒の流れを径方向に偏向させることにより、液冷媒が前記出口管に流入するのを防止するものであることを特徴とする電動圧縮機。
  3.  請求項2に記載の電動圧縮機において、
     前記入口管と前記冷媒避けとの間には、前記入口管からアキュムレータ内に冷媒を流出させるための開口が形成されていることを特徴とする電動圧縮機。
  4.  請求項3に記載の電動圧縮機において、
     前記冷媒避けは、前記出口管の上端部に対向する位置に設けられ、前記出口管の上端開口の径と略同径に構成されていることを特徴とする電動圧縮機。
  5.  請求項4に記載の電動圧縮機において、
     前記入口管の中心と前記出口管の中心は一致するように配置されており、前記入口管と前記出口管の直径も略同一に構成されていることを特徴とする電動圧縮機。
  6.  請求項3に記載の電動圧縮機において、
     前記入口管におけるアキュムレータ内の下端部にはストレーナが設けられ、前記ストレーナ内に前記冷媒避けが設けられていることを特徴とする電動圧縮機。
  7.  請求項6に記載の電動圧縮機において、
     前記ストレーナは前記入口管の外周面に接するように設けられていることを特徴とする電動圧縮機。
  8.  請求項6に記載の電動圧縮機において、
     前記ストレーナは前記入口管の内周面に接するように設けられていることを特徴とする電動圧縮機。
  9.  請求項6に記載の電動圧縮機において、
     前記ストレーナは前記入口管の下端に接するように設けられていることを特徴とする電動圧縮機。
  10.  請求項6に記載の電動圧縮機において、
     前記冷媒避けは、円錐形状に形成されて前記ストレーナと一体に構成され、前記ストレーナを前記入口管に固定していることを特徴とする電動圧縮機。
  11.  請求項10に記載の電動圧縮機において、
     円錐形状に形成されている前記冷媒避けの中心となる頂部は、前記入口管の中心と一致するように構成され、底辺となる部分の直径は前記出口管の上端開口の径よりも大きく構成されて、前記出口管の上端開口全体を覆うように構成されていることを特徴とする電動圧縮機。
  12.  請求項3に記載の電動圧縮機において、
     前記冷媒避けは、円板形状の円板部と、前記円板部と一体に構成され且つ前記入口管の側に延びて前記入口管に固定される支持部を備えていることを特徴とする電動圧縮機。
  13.  請求項12に記載の電動圧縮機において、
     前記冷媒避けの支持部は、板状の部材で構成され、その幅を前記入口管の内径と略同一にして前記入口管に挿入し、前記支持部を前記入口管の内面に溶接で固定していることを特徴とする電動圧縮機。
  14.  請求項12に記載の電動圧縮機において、
     前記入口管におけるアキュムレータ内の下端部にはストレーナが設けられ、前記ストレーナ内に前記冷媒避けが配置されていることを特徴とする電動圧縮機。
  15.  請求項14に記載の電動圧縮機において、
     前記ストレーナは前記冷媒避けの円板部または前記入口管に固定されていることを特徴とする電動圧縮機。
  16.  請求項14に記載の電動圧縮機において、
     前記冷媒避けと前記ストレーナを一体に構成し、この一体化された冷媒避けとストレーナが前記入口管内に挿入されて固定されていることを特徴とする電動圧縮機。
  17.  電動圧縮機、四方弁、室外熱交換器、絞り装置及び室内熱交換器が冷媒配管で環状に接続されて冷凍サイクルを構成している空気調和機において、
     前記電動圧縮機として、請求項1~16の何れか一項に記載の電動圧縮機を用いていることを特徴とする空気調和機。
PCT/JP2019/020427 2019-05-23 2019-05-23 電動圧縮機及びこれを用いた空気調和機 WO2020235075A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020427 WO2020235075A1 (ja) 2019-05-23 2019-05-23 電動圧縮機及びこれを用いた空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020427 WO2020235075A1 (ja) 2019-05-23 2019-05-23 電動圧縮機及びこれを用いた空気調和機

Publications (1)

Publication Number Publication Date
WO2020235075A1 true WO2020235075A1 (ja) 2020-11-26

Family

ID=73459350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020427 WO2020235075A1 (ja) 2019-05-23 2019-05-23 電動圧縮機及びこれを用いた空気調和機

Country Status (1)

Country Link
WO (1) WO2020235075A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115218569A (zh) * 2021-04-20 2022-10-21 Lg电子株式会社 压缩机用储液器及具备其的压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496556U (ja) * 1972-04-19 1974-01-21
JPS5820179U (ja) * 1981-07-31 1983-02-07 三菱電機株式会社 気液分離装置
JPS59145682U (ja) * 1983-03-22 1984-09-28 鈴木 茂 冷凍機用アキユムレ−タ−
JPH0979707A (ja) * 1995-09-11 1997-03-28 Matsushita Refrig Co Ltd アキュムレーター

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496556U (ja) * 1972-04-19 1974-01-21
JPS5820179U (ja) * 1981-07-31 1983-02-07 三菱電機株式会社 気液分離装置
JPS59145682U (ja) * 1983-03-22 1984-09-28 鈴木 茂 冷凍機用アキユムレ−タ−
JPH0979707A (ja) * 1995-09-11 1997-03-28 Matsushita Refrig Co Ltd アキュムレーター

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115218569A (zh) * 2021-04-20 2022-10-21 Lg电子株式会社 压缩机用储液器及具备其的压缩机
CN115218569B (zh) * 2021-04-20 2024-03-22 Lg电子株式会社 压缩机用储液器及具备其的压缩机

Similar Documents

Publication Publication Date Title
JP4640142B2 (ja) 冷凍装置
EP2778569B1 (en) Air conditioner
WO2020235075A1 (ja) 電動圧縮機及びこれを用いた空気調和機
JP2008051373A (ja) 気液分離器
US11215387B2 (en) Accumulator
US20040031283A1 (en) Compressor having vibration reducing structure
US10502469B2 (en) Accumulator
JP2002081802A (ja) 空気調和機
KR20130032682A (ko) 오일분리기 및 이를 구비하는 공기조화기
EP2944364A1 (en) Oil separator and air conditioner having the same
JPH10111047A (ja) 空気調和機
CN111656107B (zh) 空调装置
JP4180874B2 (ja) アキュムレータ
JP6380515B2 (ja) 気液分離器およびこれを備えた空気調和装置
JP2010043832A (ja) 空気調和装置の室外機およびその製造方法
JP2002372345A (ja) 空気調和機
JP2002031438A (ja) 空気調和装置及びその製作方法
KR102536383B1 (ko) 냉매 사이클을 구비하는 기기
JP2014085104A (ja) 冷凍サイクル装置
CN114867974B (zh) 气液分离装置以及制冷循环装置
WO2022118383A1 (ja) 圧縮機及び冷凍サイクル装置
KR100300593B1 (ko) 공기조화기의오일분리장치
JP2002090005A (ja) 横形密閉形圧縮機用横形アキュムレータ
WO2020039489A1 (ja) 圧縮機、及び、これを備える冷凍サイクル装置
KR20050007066A (ko) 공기조화기의 가변용량형 어큐물레이터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP