WO2020233529A1 - 抬头显示系统、主动发光像源、抬头显示器和机动车 - Google Patents

抬头显示系统、主动发光像源、抬头显示器和机动车 Download PDF

Info

Publication number
WO2020233529A1
WO2020233529A1 PCT/CN2020/090610 CN2020090610W WO2020233529A1 WO 2020233529 A1 WO2020233529 A1 WO 2020233529A1 CN 2020090610 W CN2020090610 W CN 2020090610W WO 2020233529 A1 WO2020233529 A1 WO 2020233529A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
head
display system
light sources
emitted
Prior art date
Application number
PCT/CN2020/090610
Other languages
English (en)
French (fr)
Inventor
吴慧军
徐俊峰
方涛
Original Assignee
未来(北京)黑科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 未来(北京)黑科技有限公司 filed Critical 未来(北京)黑科技有限公司
Priority to EP20810541.1A priority Critical patent/EP3971631A4/en
Priority to JP2021568708A priority patent/JP7345209B2/ja
Priority to US17/611,993 priority patent/US20220252899A1/en
Priority to KR1020217040998A priority patent/KR20220006646A/ko
Publication of WO2020233529A1 publication Critical patent/WO2020233529A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • G02B30/29Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays characterised by the geometry of the lenticular array, e.g. slanted arrays, irregular arrays or arrays of varying shape or size
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0132Head-up displays characterised by optical features comprising binocular systems
    • G02B2027/0134Head-up displays characterised by optical features comprising binocular systems of stereoscopic type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0181Adaptation to the pilot/driver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other

Definitions

  • the present disclosure relates to a head-up display system, an active luminous image source, a head-up display and a motor vehicle.
  • HUD head up display
  • the imaging window imaging plate, windshield, etc.
  • the distraction caused by looking down at the instrument panel during driving can improve driving safety and at the same time bring a better driving experience.
  • the brightness of the picture displayed by the HUD through the imaging window is low, and it is often difficult to see the HUD image clearly under strong light conditions such as direct sunlight.
  • To ensure the brightness of the HUD display image on the windshield it is necessary to increase the brightness of the HUD image source.
  • the traditional HUD design basically uses the Liquid Crystal Display (LCD) as the image source, and the LCD image source has a very low utilization rate of light from the light source. Therefore, by increasing the brightness of the image source to ensure the brightness of the HUD display imaging, it will lead to The power consumption of the image source increases, which in turn leads to problems such as increased power consumption and large heat generation, which restrict the further promotion and application of HUD. Therefore, there is an urgent need for a HUD design that can achieve high-brightness screen display with low power consumption.
  • a head-up display system which includes: a plurality of light sources arranged according to a preset rule; a microlens array, the microlens array includes a plurality of microlenses, each The microlens corresponds to one or more of the light sources, and adjusts the optical axis direction of the light emitted by the corresponding one or more light sources; the microlens array converges the optical axis of the light emitted by the multiple light sources, So as to make the optical axis of the light emitted from the microlens array point to a predetermined range; reflective imaging device, the reflective imaging device is arranged on the side of the microlens array away from the light source, and the light source After the light passes through the micro lens array, it exits to the reflective imaging device and is reflected on the surface of the reflective imaging device, and the reflected light exits to the observation area.
  • At least some of the light sources are configured to be independently controlled to emit light to form image light.
  • the area of the preset range is smaller than the area of the observation area.
  • the preset rule includes that the plurality of light sources are arranged in a first direction and a second direction, and the first direction is different from the second direction.
  • the microlens includes a condenser microlens.
  • the condensing microlens is a convex lens, and the convex lens and the light source are arranged in a light emitting direction of the light source in a one-to-one correspondence.
  • the main axis of the convex lens does not coincide with the optical axis of the light emitted by the corresponding light source.
  • the condensing microlens includes a first cylindrical lens, and the first cylindrical lens is correspondingly arranged in a light exit direction of the plurality of light sources arranged in a first direction.
  • the plane on which the optical axes of the plurality of light sources arranged in the first direction are located is a first plane; the main axis of the first cylindrical lens does not completely coincide with the first plane.
  • the condensing microlens further includes a second cylindrical lens, the second cylindrical lens is disposed between the first cylindrical lens and the reflective imaging device, and the second cylindrical lens The principal axis of the surface lens is perpendicular to the principal axis of the first cylindrical lens.
  • the plurality of light sources includes at least one of red light emitting diodes, green light emitting diodes, and blue light emitting diodes.
  • the shape and arrangement of the light emitting diodes adopt at least one of the following: the shape of the light emitting diode is circular, and the plurality of light emitting diodes are closely arranged; the shape of the light emitting diode is triangle , And the plurality of light-emitting diodes are closely arranged; the shape of the light-emitting diode is rectangular, and the plurality of light-emitting diodes are closely arranged; the shape of the light-emitting diode is hexagonal, and the plurality of light-emitting diodes are closely arranged.
  • the shape of the light-emitting diode is octagonal, and the plurality of light-emitting diodes are closely arranged; the shape of the light-emitting diode is circular or octagonal, the plurality of light-emitting diodes are closely arranged, and every four The gap between the light-emitting diodes is additionally provided with light-emitting diodes whose
  • the head-up display system further includes a dispersion element; the dispersion element is arranged on a side of the microlens array away from the light source, and the light emitted by the microlens array is diffused after passing through the dispersion element, The diffused light is emitted to the reflective imaging device.
  • the dispersion element includes at least one of a diffractive optical element and a scattering optical element.
  • the dispersion element converts the light emitted by the microlens array into a light beam with a predetermined cross-sectional shape.
  • the dispersion element is a separate dispersion element, and the dispersion element converts the light emitted from the microlens array into at least two light beams that have a predetermined cross-sectional shape and are separated from each other.
  • the head-up display system further includes a light emitting control unit; the light emitting control unit is electrically connected to the multiple light sources, and the light emitting control unit controls the light emitting states of the multiple light sources and forms image light.
  • the head-up display system further includes a light blocking element; the light blocking element is disposed on a side of the micro lens array away from the light source, and the light blocking element limits the amount of light emitted by the micro lens array. Exit angle.
  • the head-up display system includes a plurality of microlens arrays; each of the microlens arrays converges the optical axis of the light emitted from the plurality of light sources corresponding to the microlens array, so that the light emitted from the microlens array The optical axis of the light is directed to different predetermined ranges; the microlens array emits light to the reflective imaging device, and is reflected on the surface of the reflective imaging device, and the reflected light exits to different observation areas.
  • the head-up display system further includes: a stereoscopic vision forming layer disposed on the side of the microlens array away from the light source, and the stereoscopic vision forming layer emits light passing through it respectively To the first position and the second position.
  • the stereoscopic vision forming layer includes: a plurality of blocking units arranged at intervals; a preset distance is set between the blocking units and the microlens array.
  • the stereoscopic vision forming layer includes a dichroic lens layer; the dichroic lens layer includes a plurality of dichroic lenses.
  • the head-up display system further includes at least one reflective element; the reflective element is disposed between the microlens array and the reflective imaging device; the reflective element includes a curved reflective element and a flat reflective element. At least one of.
  • the main axes of at least two of the plurality of microlenses are different from each other, so that the optical axis of the light rays emitted from the microlens array is directed to the predetermined range.
  • the multiple light sources are excited by an electric field to generate light.
  • an active light-emitting image source including: a light source array, including a plurality of light sources arranged in an array; a light control device, which converges the optical axes of the light emitted from the plurality of light sources so as The optical axis of the light emitted by the microlens array points to a predetermined range; the dispersing element is arranged on the light emitting side of the light control device, and the light emitted by the light control device is diffused after passing through the dispersing element to diffuse the light The light emitted by the control device is transformed into a light beam with a preset cross-sectional shape.
  • a heads-up display including the above-mentioned active light-emitting image source and a reflective imaging device, the reflective imaging device being arranged on the light-emitting side of the dispersing element, so that the light emitted from the dispersing element Shoot out to the observation area.
  • a motor vehicle which includes any of the above-mentioned head-up display systems or the above-mentioned head-up display.
  • Figure 1 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 3a shows a schematic diagram of light sources provided by an embodiment of the present disclosure arranged according to a preset rule
  • FIG. 3b shows a schematic diagram of light sources provided by an embodiment of the present disclosure arranged according to a preset rule
  • FIG. 4 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 5 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 6 shows a schematic diagram of corresponding arrangement of multiple light sources and cylindrical lenses provided by an embodiment of the present disclosure
  • FIG. 7 shows a schematic diagram of a first plane where the optical axes of multiple light sources provided by an embodiment of the present disclosure are located
  • FIG. 8a shows a first schematic diagram of the positional relationship between the first plane on which the optical axes of multiple light sources are located and the main axis of the cylindrical lens provided by an embodiment of the present disclosure
  • FIG. 8b shows a second schematic diagram of the positional relationship between the first plane on which the optical axes of multiple light sources are located and the main axis of the cylindrical lens provided by an embodiment of the present disclosure
  • FIG. 8c shows a third schematic diagram of the positional relationship between the first plane on which the optical axes of multiple light sources are located and the main axis of the cylindrical lens provided by an embodiment of the present disclosure
  • FIG. 9 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure.
  • FIG. 10 shows a schematic diagram of a first cylindrical lens and a second cylindrical lens provided by an embodiment of the present disclosure
  • FIG. 11a shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 11b shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 12a shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 12b shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 13a shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 13b shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 14 shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 15a shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 15b shows a schematic diagram of the arrangement of light-emitting diodes of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 16a shows an imaging schematic diagram of a distorted virtual image reflected from an image source provided by an embodiment of the present disclosure
  • FIG. 16b shows a first imaging schematic diagram of the image source provided by an embodiment of the present disclosure for eliminating distortion reflection imaging
  • FIG. 16c shows a second imaging schematic diagram of the image source provided by an embodiment of the present disclosure for eliminating distortion reflection imaging
  • FIG. 17 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 18 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 19a shows a schematic diagram of the principle of the dispersion element provided by an embodiment of the disclosure.
  • FIG. 19b shows a schematic diagram of the principle of diffusing light by a dispersing element provided by an embodiment of the present disclosure
  • FIG. 20 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 21 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 22 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 23 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 24 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 25 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 26 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 27 shows a schematic structural diagram of a head-up display system provided by an embodiment of the present disclosure
  • FIG. 28 shows a schematic structural diagram of an active light-emitting image source provided by an embodiment of the present disclosure
  • FIG. 29 shows a schematic structural diagram of an active light-emitting image source provided by an embodiment of the present disclosure.
  • FIG. 30 shows a schematic structural diagram of an active light-emitting image source provided by an embodiment of the present disclosure
  • FIG. 31 shows a schematic structural diagram of an active light-emitting image source provided by an embodiment of the present disclosure
  • Fig. 32 shows a schematic structural diagram of an active light-emitting image source provided by an embodiment of the present disclosure
  • FIG. 33 shows a schematic structural diagram of an active light-emitting image source provided by an embodiment of the present disclosure.
  • This embodiment provides a head-up display system, as shown in FIG. 1, comprising: a plurality of light sources 10, the plurality of light sources 10 generate light by electric field excitation, the plurality of light sources 10 are arranged according to a preset rule; a micro lens array 20, a micro lens
  • the array 20 includes a plurality of microlenses 201, and each microlens 201 corresponds to one or more light sources 10, and adjusts the optical axis direction of the light emitted by the corresponding one or more light sources 10; the microlens array 20 combines the multiple light sources 10 The optical axis of the emitted light converges to a predetermined range 100; the reflective imaging device 30 is arranged on the side of the microlens array 20 away from the light source 10, and the light emitted by the multiple light sources 10 passes through the microlens array 20 and exits to The reflective imaging device 30 is reflected on the surface of the reflective imaging device 30, and the reflected light is emitted to the observation area 200.
  • optical axis refers to the centerline of the light beam.
  • the foregoing embodiment has been described by taking multiple light sources 10 generating light through electric field excitation as an example, but the embodiment according to the present disclosure is not limited thereto, and other types of light sources may also be used for the multiple light sources.
  • all or part of the above-mentioned multiple light sources may be independently controlled to emit light to form image light.
  • the multiple light sources may be white light sources to form grayscale images; or, the multiple light sources may also include light sources of different colors such as red, green, and blue, and color images can be formed by controlling the brightness of the light sources of different colors.
  • the light source 10 is excited by an electric field to generate light.
  • the light source 10 may be a point light source, that is, the light emitted by the light source 10 has a certain divergence angle, and the light is directed in different directions.
  • the direction of the optical axis of the light emitted by the multiple light sources 10 can be adjusted, and the optical axis can be converged to a predetermined range, thereby changing the propagation direction of the light.
  • the collected light is then reflected by the reflective imaging device 30, and the reflected light reaches the observation area 200, so that the observer whose eyes are at the observation area 200 can see the virtual image 300.
  • the virtual image 300 is a plurality of light sources 10 arranged according to a preset rule
  • the formed image passes through the reflection imaging device 30 to reflect the virtual image formed by the imaging device.
  • the observer can be a driver or a passenger.
  • the area where the observer needs to view the imaging can be preset according to actual needs, namely the eyebox area, which refers to the area where the observer’s eyes are located and can see The area of the HUD image.
  • the above-mentioned observation area 200 can cover the eye box area; in some examples, the size of the observation area 200 is close to the eye box area, which just covers the eye box area. In this embodiment, the eye box area and the observation area 200 both have a certain size.
  • Fig. 2 shows the specific working principle of the head-up display system of this embodiment.
  • the head-up display system includes a plurality of light sources 10, and the light source 10 may be, for example, an electroluminescent device, such as a light emitting diode (LED), an organic light emitting diode (OLED), or a mini light emitting diode (Mini LED) , Micro LED, Cold Cathode Fluorescent Lamp (CCFL), Cold LED Light (CLL), Electro Luminescent (EL) devices, Field Emission Display (Field Emission) Display, FED) or Quantum Dot (QD) light-emitting devices, etc.
  • LED light emitting diode
  • OLED organic light emitting diode
  • Mini LED mini light emitting diode
  • Micro LED Micro LED
  • Cold Cathode Fluorescent Lamp CCFL
  • Cold LED Light CLL
  • Electro Luminescent (EL) devices Field Emission Display (Field Emission) Display, FED) or Quantum Dot (QD
  • image light can be formed, such as a sequential LED array.
  • the use of LED arrays that can emit different brightness can form a grayscale image; if the LED is a color LED, it can emit red light, Green or blue light can form a color image by controlling the on-off and brightness of the LED.
  • the light source 10 may be a Mini LED or a Micro LED, and the image formed by the arrangement of the multiple light sources 10 is clearer and more delicate, with higher resolution and lower energy consumption.
  • the solid arrow in FIG. 2 represents the optical axis direction of the light emitted by the light source 10.
  • the optical axis direction passes through the center of the energy distribution of the light source 10 and points to the direction of the maximum light intensity of the light source 10; for example, the optical axis direction may also be symmetrical in the light intensity distribution of the light source 10
  • the direction of the axis is generally the central axis direction of the light emitted by the light source 10; the direction of the optical axis represents the main direction of light propagation, and the light intensity of the light in the direction of the optical axis and the direction close to the optical axis is stronger than the light intensity of the light in other directions.
  • the direction of the optical axis of the light emitted from the light source 10 is the direction of the central axis of the light source 10, which changes after passing through the microlens 201.
  • the direction of the optical axis changes from A to A1, and the multiple microlenses 201 change and The direction of the optical axis corresponding to the light emitted by the light source. Therefore, after the light emitted by the multiple light sources 10 passes through the microlens array 20, the multiple optical axis directions change and converge to a predetermined range 100.
  • the predetermined range may be a point or a small area, which is not limited in this embodiment.
  • the optical axes of the multiple light sources 10 converge to a small area as an example for illustration.
  • the multiple optical axes converge to a predetermined range 100; when the reflective imaging device 30 is not present, the light
  • the axis A1 is along the dashed line shown in the figure, and multiple optical axes still converge to a certain range.
  • this range is the mirror position 1001 of the predetermined range 100 relative to the reflective imaging device 30, and the mirror position 1001 can be regarded as
  • the predetermined range 100 is relative to the position of the virtual image formed by the reflective imaging device 30.
  • the microlens array 20 converges the optical axes of the light emitted by the multiple light sources 10 to a predetermined range 100, which means that the microlens array 20 converges the optical axes of the light emitted by the multiple light sources 10 and forms images by reflection.
  • the device 30 converges to a predetermined range 100 after reflection.
  • the microlens array converges the optical axes of the light emitted by the multiple light sources, so that the optical axis of the light emitted from the microlens array can point to a predetermined range
  • the predetermined range may refer to the predetermined range in FIG. 2 1001.
  • “pointing to a predetermined range” may mean that the optical axis of the light emitted from the micro lens array or its extension reaches the predetermined range 1001.
  • the optical axis of the light emitted from the microlens array converges to a predetermined range 1001 without changing the direction of other optical elements after exiting the microlens; and after exiting the microlens, it passes through other optical elements
  • the extension line of the optical axis of the light emitted from the microlens array converges to a predetermined range 1001.
  • the microlens array 20 gathers the light rays emitted by the multiple light sources 10.
  • the ray B dashed arrow in the figure
  • the ray B passes through the microlens array 20, the propagation direction of the ray changes and is collected to the observation area 200.
  • the direction of the optical axis changes, and this part of the light will converge to a predetermined range 100; while the light with a certain angle to the optical axis passes through the microlens After the array 20, it will gather in the observation area 200.
  • the rectangular area in FIG. 2 is used for illustration, but it does not mean that the shape of the observation area 200 is rectangular.
  • the observation area 200 includes and is larger than the predetermined range 100, the light emitted by the multiple light sources 10 will be concentrated in the range of the observation area 200, and the optical axis is concentrated in the predetermined range 100 in the observation area, so the observation area 200 is not in the predetermined range.
  • the light intensity in the area of 100 will be less than the light intensity in the predetermined range 100.
  • the reflective imaging device 30 When the reflective imaging device 30 is present, the light emitted by the light source 10 will converge to the observation area 200; when the reflective imaging device 30 is not present, the light emitted by the light source 10 will still converge to a certain range. It can be understood that this range is relative to the observation area 200.
  • the mirror position 2001 of the reflective imaging device 30 the mirror position 2001 can be considered as the position of the observation area 200 relative to the virtual image formed by the reflective imaging device 30.
  • the areas of the predetermined ranges 100 and 1001 are both smaller than the area of the observation area 200.
  • the microlens 201 includes a condensing microlens, which can collect light.
  • the condensing microlens includes but is not limited to a convex lens, a Fresnel lens or a cylindrical lens, and also includes a combination of lenses with a condensing effect, such as the above A combination of several lenses or a combination of the above several lenses and a concave lens; the diameter of the microlens includes millimeter, micrometer, or nanometer, for example, the diameter of the microlens is 10-1000nm or 1-1000 ⁇ m or 1-100mm.
  • the reflective imaging device 30 is arranged on the side of the microlens array 20 far away from the light source 10. After passing through the microlens array 20, the light emitted by the multiple light sources 10 exits to the reflective imaging device 30 and is reflected on the surface of the reflective imaging device 30, and the reflected light exits To the observation area 200, the HUD image can be viewed when the eyes of an observer (such as a driver, a passenger, etc.) are located in the observation area 200.
  • the embodiments of the present disclosure and the drawings in the specification use the reflective imaging device as a plane for schematic illustration. The light emitted by the microlens array 20 is reflected by the reflective imaging device 30 and reaches the observation area 200, so that the eyes are in the observation area 200.
  • the user can view the image, and what the observer sees at this time is like a virtual image formed by the reflection imaging device 30 in a reflection imaging manner.
  • the observer can be a driver or a passenger.
  • the area where the observer needs to view the imaging can be preset according to actual needs, namely the eyebox area, which refers to the area where the observer’s eyes are located and can see The HUD image area.
  • the eyebox area which refers to the area where the observer’s eyes are located and can see The HUD image area.
  • the preset range 100 can be set to coincide with the eye box area, so that observers with both eyes within the eye box can be See a higher brightness image.
  • the eye box area has a certain size.
  • the reflective imaging device 30 may have a curved surface shape with a curvature, and its imaging principle is similar to that shown in FIG. 2, and will not be repeated here.
  • the curved reflective imaging device 30 is like a windshield, and the position of the virtual image is not fixed when viewed at different positions.
  • the virtual image in this embodiment refers to the virtual image that can be seen when viewed from the observation area 200, that is, the position of the virtual image 300 is the position of the virtual image when the observer observes from the observation area 200.
  • the head-up display system described in this embodiment is installed on vehicles such as vehicles.
  • the reflective imaging device 30 in this embodiment may be a windshield of a vehicle; or a transflective affixed to the windshield. Film; or a transparent material, including a transparent resin, a polymer transparent material or an imaging window formed by glass, such as the imaging window of a combined head-up display system (Combiner-HUD, C-HUD).
  • the reflective imaging device 30 has the characteristics of transflective.
  • the light from outside the vehicle can also pass through the reflective imaging device 30 and reach the observation area 200, so that the observer whose eyes are located at the observation area 200 can also Observe the scene outside the vehicle normally;
  • the multiple light sources 10 and microlens array 20 in this embodiment can be arranged under the windshield of the vehicle and on the surface of the console. Further, the multiple light sources 10 and the microlens array 20 can be large By setting the area, the light emitted by the microlens array 20 can form a large-scale image after being reflected by the reflective imaging device 30, which further enhances the experience of using the head-up display system.
  • a plurality of light sources 10 are arranged to form an image.
  • the optical axis of the light emitted by the light source 10 can be concentrated to a predetermined range 100, that is, the light emitted by the multiple light sources 10 can be concentrated to the observation area 200 , And reflect on the surface of the reflective imaging device 30 to form an image, so that the observer whose eyes are at the observation area 200 where the light is concentrated can observe the image, and because the light is concentrated, the imaging brightness is higher, and the observer can see higher brightness
  • the image improves the utilization rate of light.
  • the multiple light sources 10 are arranged according to a preset rule.
  • the preset rule includes that the multiple light sources are arranged in a first direction and a second direction, and the first direction and the second direction are different.
  • the first direction is perpendicular to the second direction.
  • Fig. 3a is a schematic view from the top of the light emitting direction of the light source 10.
  • the first direction includes the horizontal direction, and the light sources 10 are arranged in the horizontal direction.
  • the second direction includes the vertical direction.
  • the light sources 10 are expanded and arranged in a vertical direction, and the light sources 10 are expanded and arranged in a vertical first direction and a second direction (array arrangement) as a surface light source.
  • the second direction also includes other directions that are not perpendicular to the first direction. As shown in Figure 3b, the second direction is not perpendicular to the first direction, and there is an angle ⁇ between the second direction and the first direction, ⁇ (0, 90°), specifically may be 10°, 20°, 30°, 45° or 80°.
  • the light source 10 can also be formed as a surface light source by expanding and arranging in the first direction and the second direction.
  • the condensing microlens may specifically be a convex lens 2011.
  • the convex lens 2011 is arranged in a one-to-one correspondence with the light source 10, as shown in FIGS. 1, 2 and 4, each light source 10 is provided with a corresponding one Convex lens 2011.
  • the convex lens 2011 is arranged in the light emitting direction of the light source 10.
  • the convex lens 2011 adjusts the optical axis direction of the light emitted from the corresponding light source 10; for example, the convex lens 2011 adjusts the optical axis direction of the light emitted from the corresponding light source 10, for example, including not changing The direction of the optical axis of the light emitted by the light source 10 and the direction of the optical axis of the light emitted by the light source 10 are changed.
  • the main axis C of the convex lens 2011 does not coincide with the optical axis A of the light emitted by the light source 10, and the convex lens 2011 changes the direction of the optical axis of the light emitted by the light source 10 corresponding to it.
  • the main axis of a convex lens refers to a straight line that passes through the optical center of the convex lens and is perpendicular to the lens.
  • the optical axis A of the light emitted by the light source 10 coincides with the main axis of the convex lens 2011, after passing the convex lens 2011, the optical axis The direction of A will not change, so the main axis of the convex lens 2011 does not coincide with the optical axis of the light source 10. After the light passes through the convex lens 2011, the direction of the optical axis A will change.
  • the main axis C and the optical axis A can be parallel and not coincident . It can be understood that after the light emitted by the light source 10 passes through the convex lens 2011, the optical axis directions of the light emitted by all the light sources 10 are changed and concentrated to a predetermined range 100, as shown in FIG.
  • the optical axis directions of the light emitted by some light sources 10 No change, the direction of the optical axis of the light emitted by the remaining part of the light source 10 is changed, and the optical axis is concentrated to a predetermined range 100, as shown in FIG.
  • the optical axis of the light emitted by each light source 10 is not limited to change after passing through the microlens array 20, and the optical axis is condensed to a predetermined range 100.
  • the convex lens 2011 includes a plano-convex lens, a double-convex lens or a meniscus lens, which is not limited in this embodiment.
  • the direction of the optical axis of the light emitted by the light source 10 is adjusted through the condensing effect of the convex lens 2011 on the light, so that the optical axes of the light emitted by the multiple light sources 10 converge to a predetermined range 100.
  • the light emitted by the multiple light sources 10 is reflected by the reflective imaging device 30 and then collected in the observation area 200.
  • the reflective imaging has a higher brightness. Observers whose eyes are in the observation area 200 can watch the image with higher brightness, which improves the light utilization rate. .
  • the condensing microlens includes a first cylindrical lens 2012, and the first cylindrical lens 2012 is correspondingly arranged in the light emission direction of the plurality of light sources 10 arranged in a first direction.
  • the cylindrical lens adjusts the optical axis direction of the light emitted by the corresponding multiple light sources 10, as shown in FIGS. 5 and 6,
  • the microlens array 20 includes a plurality of first cylindrical lenses 2012, and the first cylindrical lenses are correspondingly arranged in In the light emitting direction of the plurality of light sources 10 arranged in the first direction; as shown in FIG.
  • each first cylindrical lens 2012 corresponds to the optical axis A of the light emitted from the plurality of light sources 10 arranged in the first direction
  • the plane of is the first plane.
  • the optical axis is condensed to a predetermined range 100.
  • the cylindrical lens 2012 adjusts the optical axis direction of the light emitted by the multiple light sources 10 corresponding thereto, for example, including not changing the optical axis direction of the light emitted by the multiple light sources 10 and changing the optical axis direction of the light emitted by the multiple light sources 10.
  • the main axis of the first cylindrical lens 2012 does not completely coincide with the first plane, and the first cylindrical lens 2012 changes the direction of the optical axis of the light emitted by the plurality of light sources 10 corresponding thereto.
  • the main axis of the first cylindrical lens is the axial meridian of the cylindrical surface of the first cylindrical lens.
  • concentration of light rays passing through the axial meridian will not change. That is to say, the propagation direction of the light will not change. Therefore, if the first plane is completely coincident with the main axis of the first cylindrical lens 2012, that is, the main axis is on the first plane.
  • the multiple light sources 10 After passing through the first cylindrical lens 2012, the multiple light sources 10 emit light.
  • the direction of the optical axis A will not change, so the main axis of the first cylindrical lens 2012 does not completely coincide with the first plane, as shown in Figures 8a and 8b, the main axis of the first cylindrical lens 2012 is parallel to the first plane However, if they do not overlap, the directions of the optical axes emitted by the multiple light sources 10 will change and converge to the predetermined range 100.
  • the first plane may also intersect the main axis of the first cylindrical lens. As shown in FIG.
  • the optical axis of one or more light sources 10 corresponding to the intersection passes through the main axis of the first cylindrical lens 2012, and the direction It will not change, but will eventually converge to a predetermined range 100.
  • This embodiment does not limit that the optical axis of each light source 10 will change after passing through the microlens array 20, and the optical axis can be converged to the predetermined range 100.
  • the first cylindrical lens includes a plano-convex cylindrical lens, a double-convex cylindrical lens, a meniscus cylindrical lens, a cylindrical cylindrical lens, a special-shaped cylindrical lens, and one of the above lens combinations.
  • the first cylindrical lens can be a plano-convex cylindrical lens, a double-convex cylindrical lens, a meniscus cylindrical lens, a cylindrical cylindrical lens, a special-shaped cylindrical lens and a lens combination (such as a plano-convex cylindrical lens) Combination with meniscus cylindrical lens), this embodiment does not limit this.
  • the optical axis direction of the light from the light source 10 is adjusted through the condenser effect of the cylindrical lens, so that more The optical axis of the light emitted by the two light sources 10 converges to a predetermined range 100, so that the light emitted by the multiple light sources 10 is concentrated in an observation area 200, and the reflected imaging brightness is higher. Observers whose eyes are in the observation area 200 can see higher brightness. Imaging improves the utilization rate of light; and adopting the embodiment in which one cylindrical lens 2012 corresponds to multiple light sources 10 is more convenient and feasible in practical applications, and is easy to install and disassemble.
  • the condensing microlens further includes a second cylindrical lens 2013.
  • the second cylindrical lens 2013 is disposed between the first cylindrical lens 2012 and the reflective imaging device 30, and the second cylindrical lens
  • the principal axis of the lens 2013 is perpendicular to the principal axis of the first cylindrical lens 2012.
  • the second cylindrical lens 2013 is disposed between the first cylindrical lens 2012 and the reflective imaging device 30, and the light emitted from the first cylindrical lens 2012 passes through the second cylindrical lens 2013 and then exits to Reflect the imaging device 30 and focus on the observation area 200;
  • the main axis of the second cylindrical lens 2013 is the axial meridian of the cylindrical surface of the second cylindrical lens.
  • the cylindrical lens After the light emitted by the light source 10 passes through the first cylindrical lens 2012, the cylindrical lens does not change the direction and concentration of the light passing through the main axis of the cylindrical lens. Therefore, the light passing through the first cylindrical lens is shown in FIG.
  • the direction perpendicular to the main axis of the first cylindrical lens 2012 that is, the direction of the refractive power of the cylindrical lens will change the direction and concentration of light.
  • the predetermined range 100 where the optical axes of the multiple light sources 10 converge is a strip-shaped area, and the final observation area 200 where light is collected is also a strip-shaped area; in order to achieve a higher degree of light concentration and further improve light utilization, A second cylindrical lens 2013 is provided between the first cylindrical lens 2012 and the reflective imaging device 30. As shown in FIG.
  • the microlens array 20 includes a plurality of first cylindrical lenses 2012 and a plurality of second cylindrical lenses 2013, the plurality of second cylindrical lenses 2013 and the plurality of first cylindrical lenses 2012 are stacked, and The main axis of the second cylindrical lens 2013 and the main axis of the first cylindrical lens 2012 are perpendicular to each other, and part of the light that cannot be changed in the direction and the degree of concentration of the first cylindrical lens 2012 is collected by the second cylindrical lens 2013, and collected twice The subsequent light is condensed to the observation area 200, which further improves the degree of light concentration, thereby increasing the light utilization rate.
  • the microlens array 20 includes a first cylindrical lens 2012 and a second cylindrical lens 2013 whose main axes are perpendicular to each other, and the first cylindrical lens and the second cylindrical lens are used to treat light in different directions.
  • the focusing effect of the light source 10 is to adjust the optical axis direction of the light emitted by the light source 10, so that the optical axis of the light emitted by the multiple light sources 10 converge to a predetermined range 100, and the light emitted by the multiple light sources 10 is concentrated to an observation area 200, and the reflected imaging brightness is higher.
  • Observers whose eyes are in the observation area 200 can view images with higher brightness, which further improves the utilization of light; and the implementation of cylindrical lenses corresponding to multiple light sources 10 is more convenient and easy to implement in practical applications, easy to install and Disassembly operation.
  • the light source 10 includes at least one of a red light emitting diode, a green light emitting diode, and a blue light emitting diode.
  • a red light emitting diode such as gallium arsenide diodes emitting red bands, gallium phosphide diodes emitting green bands, silicon carbide diodes emitting yellow bands, and gallium nitride diodes emitting blue light.
  • the light source 10 is composed of a red light-emitting diode, a green light-emitting diode, and a blue light-emitting diode, and a color image can be formed by controlling the on-off and light-emitting brightness of the LED.
  • the light emitted by the light source 10 in this embodiment is narrow-band light.
  • the narrow-band means, for example, that the full width at half maximum (FWHM) of the wavelength band of the light is less than or equal to 60 nm.
  • the full width at half maximum is less than or equal to 30 nm, and more preferably, the full width at half maximum of the band is less than or equal to 10 nm.
  • the light source 10 is a red light emitting diode, the peak of the narrowband light emitted by the light source 10 is in the range of 590nm-690nm; the light source 10 is a green light emitting diode, and the peak of the narrowband light emitted by the light source 10 is in the range of 500nm to 580nm; 10 is a blue light-emitting diode, and the peak of the narrow-band light emitted by the light source 10 is in the range of 400 nm to 470 nm.
  • the multiple light sources 10 include red light emitting diodes, green light emitting diodes, and blue light emitting diodes.
  • the red narrowband light emitted by the light source 10 is at 630nm ⁇ 10nm, and the green light The narrowband light is at 540nm ⁇ 10nm, and the blue narrowband light is at 450nm ⁇ 10nm (blue). It can be understood that multiple light sources 10 that emit narrowband light are arranged to form an image, which can form a wider spectral color gamut, and the image is more Bright and colorful.
  • the light source 10 is a light emitting diode 101, and a plurality of light emitting diodes are closely arranged.
  • the light-emitting diodes are generally point light sources. If they are arranged dispersedly, there will be gaps between the multiple light-emitting diodes 101, and the finally observed image will have a strong graininess. Therefore, the multiple light-emitting diodes 101 are arranged closely to increase the space. Utilization rate can also provide a good viewing experience.
  • the “closely arranged” in this embodiment means that after the arrangement, there may be no gaps or small gaps between the light emitting diodes 101.
  • the "shape of the light-emitting diode” in this embodiment specifically refers to the shape feature of the light-emitting surface of the light-emitting diode.
  • the shape of the light emitting diode 101 is a triangle (for example, a regular triangle), a quadrilateral (for example, a rhombus, a rectangle, etc.), or a hexagon (for example, a regular hexagon), a completely close-packed arrangement can be realized.
  • a triangle for example, a regular triangle
  • a quadrilateral for example, a rhombus, a rectangle, etc.
  • a hexagon for example, a regular hexagon
  • the shape of the light-emitting diode 101 is circular, and the plurality of light-emitting diodes 101 are closely arranged, and there will be a large gap between the plurality of light-emitting diodes; see FIGS. 12a and 12b , Showing two forms in which the light-emitting diodes 101 with a triangular shape are completely tightly arranged.
  • the light-emitting diode 101 has a triangular shape and a plurality of light-emitting diodes 101 are completely tightly arranged without gaps; see Figures 13a and 13b, which show a rectangular shape. There are two forms in which the shape of the light emitting diode 101 is completely tightly arranged.
  • the shape of the light emitting diode 101 is rectangular, and the plurality of light emitting diodes 101 are completely tightly arranged; referring to FIG. 14, the shape of the light emitting diode 101 is a regular hexagon, and the shape of the light emitting diode 101 is a regular hexagon. 101 are completely tightly packed.
  • the shape of the light-emitting diode 101 may also be an octagon (for example, a regular octagon), and the plurality of light-emitting diodes 101 are closely arranged; further, because the octagonal shape cannot be completely tightly arranged, the multiple light-emitting diodes
  • the gaps between 101 can be filled with small light-emitting diodes.
  • light-emitting diodes 101 with a size matching the gap are additionally provided in the gaps between the plurality of light-emitting diodes 101.
  • the light emitting diode 101 that fills the gap can be of any shape, and the figure is also an octagonal shape for illustration.
  • matching the size of the light-emitting diode with the gap here refers to whether the gap can fit a light-emitting diode of a specific size.
  • the reflective imaging device 30 is a windshield on a vehicle or a transparent imaging window of a C-HUD
  • the windshield and the imaging window are often not flat, they have a certain curvature, and the windshield or imaging is directly used.
  • Window reflection imaging will have the problem of distortion.
  • the plurality of light emitting diodes 101 are arranged according to the first distortion form, and the first distortion form is in an opposite and corresponding relationship with the second distortion form of the reflective imaging device 30.
  • the second distortion form of the reflection imaging device 30 refers to the distortion form of the virtual image when the image source 1 of the head-up display system is reflected and imaged by the reflection imaging device 30.
  • the image source 1 includes a plurality of light sources 10 and a microlens array 20, etc., and the image source 1 emits image light.
  • the image source 1 is used to replace the multiple light sources 10 and the microlens array 20 for explanation.
  • the image source 1 is reflected and imaged on the reflective imaging device 30, but since the curved reflective imaging device 30 has the second distortion form, the virtual image is a distorted virtual image.
  • the grid pattern on the reflective imaging device 30 in FIG. 16a represents the distortion Virtual image.
  • the first distortion shape corresponding and opposite to it is determined, and the plurality of light emitting diodes 101 in the image source 1 are arranged according to the first distortion shape, for example, each The position of the light-emitting diode 101 to eliminate the distortion caused by the reflective imaging device 30.
  • the light-emitting diodes 101 in the image source 1 in this embodiment are arranged according to the first distortion form, and each grid in the image source 1 in FIG. 16b represents a light-emitting diode 101 or image source 1.
  • a virtual image without distortion can be formed by the reflective imaging device 30.
  • the grid pattern on the reflective imaging device 30 in FIG. 16b represents a virtual image without distortion. That is, the light-emitting diodes 101 are arranged according to the first distortion form to at least partially or completely offset the virtual image distortion caused by the second distortion form of the reflective imaging device 30, so that the observer can see the reflection imaging device 30 Normal image formed by reflection.
  • the image emitted by the image source 1 itself can be set as an image with the first distortion form Therefore, a virtual image without distortion can also be formed on the reflective imaging device 30, for example, as shown in FIG. 16c.
  • the head-up display system further includes a dispersion element 40.
  • the microlens array 20 can collect the light emitted by the multiple light sources 10, the light is reflected by the reflective imaging device 30 and then exits to the observation area 200, but because the light intensity in the optical axis direction is relatively large, This part of the light converges to the predetermined range 100, so the light intensity in the area of the observation area 200 that is not the predetermined range 100 will be less than the light intensity in the predetermined range 100, and the brightness of the edge part is relatively weak.
  • the diffusing element 40 is provided to uniform the brightness of the light. As shown in FIG.
  • the optical axis A of the light emitted by the light source 10 changes direction to A1 after passing through the microlens array 20. After passing through the diffusing element 40, the light deviates from the original light.
  • the predetermined diffusion angle in the direction of axis A1 is diffused.
  • A2 and A3 in the figure represent the light diffused along the predetermined diffusion angle deviating from the original optical axis A1.
  • the diffused light converges to the predetermined diffusion range 1002 and the area of the diffusion region 1002 Larger than the preset area 100; similar to the principle of light diffusion in the optical axis direction, the light emitted from the light source 10 that has a certain angle with the optical axis direction and finally converges to an area within the observation area 200 that is not within the predetermined range 100 passes through the dispersion element 40 Later, it will also diffuse at a preset diffusion angle that deviates from the original propagation direction. Therefore, through the diffusion effect of the dispersion element 40 on the light, the light will eventually diffuse and gather in the diffusion observation area 2002. After the light in the area is diffused, the intensity will be uniformly distributed, as shown in FIG. 18.
  • the dispersing element 40 may be, for example, a low-cost scattering optical element, such as a homogenizing sheet, a diffuser, etc., or the dispersing element 40 may also be a diffractive optical element (DOE) that controls the diffusion effect more accurately, such as Beam shapers (Beam Shaper), etc.; among them, light will be scattered when passing through scattering optical elements such as homogenizing plates, and the light will be transmitted to many different angles, and a small amount of diffraction will occur, but the scattering of light plays a major role.
  • DOE diffractive optical element
  • the formed light spot is relatively large; while the diffractive optical element designs a specific microstructure on the surface, mainly through diffraction to expand the light beam, the light spot is small, and the size and shape of the light spot are controllable. It can be understood that after the light passes through the diffuser 40, the predetermined cross-sectional shape of the diffused beam corresponds to the shape of the diffused observation area 2002.
  • the dispersive element 40 converts the light emitted by the microlens array 20 into a beam having a predetermined cross-sectional shape.
  • the dispersive element 40 is, for example, a diffractive optical element. After the light passes through the dispersive element 40, the diffused light beam is perpendicular to The cross-section in the propagation direction of the optical axis has a specific shape.
  • the preset cross-sectional shape of the light beam includes, but is not limited to, linear, circular, elliptical, square, or rectangular.
  • Fig. 19a shows that after the light passes through the dispersion element 40, such as a diffractive optical element, the light is diffused and forms a predetermined cross-sectional shape.
  • Fig. 19a takes the predetermined cross-sectional shape as a rectangle as an example.
  • the dispersion element 40 can also be a separate dispersion element, that is, the dispersion element 40 can disperse the light passing through it into multiple ranges, and the shape of each range includes but is not limited to linear, circular, elliptical, square, or Rectangle, the shape of each area after diffusion can be the same or different.
  • FIG. 19b after the light passes through the separated dispersing element 40, it can be diffused to multiple areas, and each area corresponds to a diffuse observation area 2002; FIG. 19b takes the light to diffuse to two rectangular areas as an example.
  • the head-up display system is provided with a dispersing element to diffuse the light, so that the brightness of the light can be uniform, so that the imaging brightness of the head-up display system in the observation area is uniform, and the use experience is improved.
  • the head-up display system further includes a light-emitting control unit 50, which is electrically connected to the multiple light sources 10, and the light-emitting control unit 50 controls the light-emitting states of the multiple light sources 10 and forms an image, as shown in FIG. 20 shown.
  • the light emission control unit 50 turns on the light source 10 by transmitting a digital signal, forms a monochrome or color image by controlling the light emission state of the light source 10, and emits image light.
  • the light-emitting state here can be the on or off of light-emitting, or it can be the adjustment of light-emitting brightness.
  • the light emitting state of each light source in the plurality of light sources 10 may be independently controlled by the light emitting control unit 50.
  • the light-emitting control unit 50 includes, for example, a transmitter, a receiver, and a processor.
  • the receiver receives a digital signal in a wired or wireless manner.
  • the processor converts the digital signal into a control signal for controlling the light source 10, and then passes the It is electrically connected, and the control signal is transmitted through a circuit such as a wire to realize the control of the light source 10, thereby forming an image.
  • the light-emitting control unit 50 may be a light-emitting diode display screen controller, and the light source 10 is a light-emitting diode, and the light-emitting diode is switched through the arrangement and the controller of the light source 10 to form an image.
  • the head-up display system realizes the control of the on-off state of the multiple light sources 10 by providing a light-emitting control unit, forms an image and emits image light, so that the head-up display system realizes image information display.
  • the head-up display system further includes a light blocking element 60 arranged on the side of the micro lens array 20 away from the light source 10 to limit the exit angle of the light emitted by the micro lens array 20.
  • the light blocking element 60 includes a plurality of light blocking barriers with a predetermined height, and a plurality of raised light blocking barriers form a barrier array to physically block the propagation of light in certain directions. By designing the height and width of the light blocking fence, the angle at which the observer can see the light can be limited. As shown in FIG.
  • the light emitted by the microlens array 20 is restricted to an angle ⁇ by the light blocking element 60, thereby forming an observable area; that is, the human eye eye-1 is located in the observable area, and the image can be seen at this time Light, but the human eye eye-2 is located outside the observable area, so that the human eye eye-2 cannot see the image light.
  • the light blocking layer 60 may be a layer of fence array, which may be horizontal, vertical, or at any angle, so that only light in a direction parallel to the fence can pass through.
  • the viewing angle of the light blocking layer 60 can be 48 degrees, 60 degrees, 75 degrees, or any other desired angles.
  • the light blocking layer 60 may be an orthogonal stack of two layers of barrier arrays, or a stack of two layers of barriers staggered at a certain angle.
  • the fence array of each layer can be horizontal, vertical, or at any angle.
  • the viewing angle can be 45 degrees, 60 degrees, 75 degrees, or any other angle required.
  • the light blocking layer 60 may be a privacy grating.
  • the light blocking element 60 further includes a light scattering layer, and the light scattering layer can prevent the reflection of external ambient light on the surface of the light blocking element 60 to generate glare, thereby affecting normal driving.
  • the light scattering layer is disposed on the side of the light blocking layer 60 away from the microlens array 20, and the light scattering layer is used to scatter light from the external environment.
  • adding a light scattering layer on the outside of the light blocking layer 80 can scatter external ambient light, such as sunlight, so as to prevent glare caused by external sunlight irradiating the surface of the light blocking layer 60.
  • the light scattering layer and the light blocking layer 60 may be integrally formed, such as a frosted privacy grating.
  • a light blocking layer 60 is added to the outer surface of the microlens array 20 to limit the angle of light emission.
  • the image source 1 without the light blocking layer 60 is set on the surface of the vehicle console, so that the driver may The virtual image reflected by the image source 1 and the windshield will be seen at the same time, which will affect the driver's driving of the vehicle.
  • the light blocking layer 60 can make the light exit only in the direction of the windshield, that is, the image of the image source 1 itself cannot be seen from the driver's perspective, so that when the user drives the vehicle, the screen of the head-up display system can be prevented from becoming a real image
  • the brightness at the time affects the user's field of vision, or causes dizziness to the user, which can improve driving safety.
  • a light scattering layer can be added to avoid glare caused by external light such as sunlight reflection, which further improves driving safety.
  • the head-up display system includes a plurality of microlens arrays 20, and each microlens array 20 converges the optical axis of the light emitted by the corresponding multiple light sources 10 to different predetermined ranges 100, and different microlens arrays 20
  • the lens array 20 emits light to the reflective imaging device 30 and reflects on the surface of the reflective imaging device, and the reflected light exits to different observation areas 200.
  • FIG. 22 for the case of multiple observers, when multiple microlens arrays 20 are used, the imaging schematic diagram is shown in FIG. 22. In FIG. 22, two microlens arrays 20 form two observation areas 200.
  • the light from multiple light sources 10 corresponding to each of the microlens arrays 20 is collected to different observation areas 200, which can realize multi-view imaging. Users whose eyes are in different observation areas 200 You can see different or the same images at the same time, which further improves the practicability and user experience of the head-up display system.
  • the head-up display system further includes a stereoscopic vision forming layer 70.
  • the stereoscopic vision forming layer 70 is arranged on the side of the microlens array 20 away from the light source 10, and the stereoscopic vision forming layer 70 separates the light passing through it. Shoot to the first and second positions, as shown in Figure 23.
  • the first position and the second position are the left eye and the right eye of the user, respectively.
  • the stereoscopic vision forming layer 70 includes a blocking layer 701, and the blocking layer 701 includes a plurality of blocking units 7011 arranged at intervals, the blocking units 7011 and the microlens array 20. There is a preset distance between them, as shown in Figure 24.
  • the image source 1 is used to replace the microlens array 20 and the multiple light sources 10 in FIGS. 24 and 25 for explanation.
  • the image source 1 corresponds to 6 pixel units
  • the barrier layer 701 includes 5 barrier units 7011 as an example for illustration.
  • Each pixel unit includes light emitted by at least one light source 10.
  • the barrier layer 701 can block light, so the light emitted by some pixel units (R1, R2, R3) corresponding to the image source 1 cannot reach the left eye position. Therefore, the left eye can only see the light emitted by the pixel units L1, L2, and L3; similarly, the right eye can only see the light emitted by the pixel units R1, R2, R3. Therefore, the barrier layer 701 can divide the pixel unit corresponding to the image source 1 into two parts.
  • the light emitted by some pixel units can only reach the left eye position, such as the pixel units L1, L2, and L3; while the light emitted by the other pixel units only Can reach the right eye position, such as pixel units R1, R2, R3.
  • Two images with parallax are displayed through different pixel units corresponding to the image source 1, so that the image viewed by the left eye and the image viewed by the right eye have parallax, thereby realizing stereoscopic imaging.
  • the size of each blocking unit 7011 in the blocking layer 701 and the position between the blocking units 7011 are specially designed after precise calculation, so that imaging can be performed at a specific position. This method does not require the observer to wear special eyes to watch the stereo vision image, but it requires the observer to be in a specific position to see a better 3D imaging effect.
  • the barrier unit 7011 of the barrier layer 701 includes a liquid crystal or a grating; when the barrier unit 7011 is a liquid crystal, the 2D image or stereoscopic image display can be switched by controlling the working state of the liquid crystal, for example, when the observer needs to watch 2D
  • the liquid crystal in the barrier layer 701 presents an arrangement state so as not to form a barrier unit.
  • the pixel unit normally displays a 2D image.
  • the liquid crystal of the barrier layer 701 forms a barrier unit, and the pixel unit displays an image with parallax, so that the observer can view the stereoscopic image at a specific position.
  • the first position and the second position are the left eye and the right eye of the user, respectively
  • the stereoscopic vision forming layer 70 includes a dichroic lens layer 702, and the dichroic lens layer 702 includes a plurality of dichroic lenses, and the dichroic lens may specifically be a cylindrical lens.
  • the dichroic lens may specifically be a cylindrical lens.
  • the spectroscopic lens layer 702 includes a plurality of vertically arranged cylindrical lenses, and each cylindrical lens covers at least two different columns of pixel units of the image source 1; the cylindrical lenses are used to combine one column
  • the light emitted by the pixel unit of the pixel unit is directed toward the first position, and the light emitted by the pixel unit of the other column is directed toward the second position, so that stereoscopic imaging can be realized.
  • the image source 1 in Figure 25 corresponds to 12 columns of pixel units.
  • the spectroscopic lens layer 702 contains 6 cylindrical lenses, each of which covers two columns of pixel units.
  • the uppermost cylindrical lens in Figure 25 covers the pixel units R1 and L1. .
  • the light emitted by a row of pixel units can be emitted to the first position after passing through the cylindrical lens, for example, the light emitted by the pixel unit R1 is directed to the right eye position;
  • the light emitted by another column of pixel units passes through the cylindrical lens and then is directed to the second position.
  • the light emitted from the pixel unit L1 is directed to the left eye position.
  • the cylindrical lens in this embodiment can be either an optical cylindrical lens or a liquid crystal cylindrical lens.
  • stereo vision display can be realized. Users with both eyes in the first position and the second position can see stereo vision images, which further improves the practicability and use experience of the head-up display system. .
  • the head-up display system further includes at least one reflective element 80; the reflective element 80 is disposed between the microlens array 20 and the reflective imaging device 30, and the reflective element 80 includes a curved reflective element 801 and a flat reflective element At least one of 802.
  • the reflective element 80 is provided between the micro lens array 20 and the reflective imaging device 30, which means that the reflective element 80 is provided on the optical path of the image light emitted by the micro lens array 20.
  • the image source 1 is used to replace the microlens array 20 and the light source 10 in FIGS. 26 and 27.
  • the reflective element 80 can be a curved reflective element 801.
  • the reflective element 801 By providing the curved reflective element 801, the imaging distance of the virtual image of the head-up display system can be increased, and the curved reflective element 801 can also magnify the image to a certain extent, as shown in FIG. 26
  • the reflective element 80 also includes a planar reflective element 802.
  • the addition of the planar reflective element 802 can fold the light path, reduce the volume of the head-up display system, and increase the applicability of the device, as shown in Figure 27.
  • the curved reflective element 801 can be a free-form surface mirror, and the planar reflective element 802 can be a flat aluminum mirror or a flat dielectric film reflective mirror, which is not limited in this embodiment.
  • the reflective element 80 reflects the light to the reflective imaging device 30, wherein the concave reflective surface of the curved reflective element 801 can enlarge the imaging area of the image source 1, even if the size of the image source 1 is not large, it can make the head up
  • the display system is forming a larger virtual image; the flat reflective element 802 can further compress the volume of the head-up display system, which facilitates the installation and use of the head-up display system.
  • multiple light sources and microlens arrays are provided, and the optical axes of the light emitted by the multiple light sources are converged to a predetermined range through the microlens array, and the collected light is emitted to the reflective imaging device and reflected
  • the surface of the imaging device is reflected to form an image; the light with a certain divergence angle emitted by the light source can be directed in the same direction, so that the utilization rate and brightness of the light emitted by the light source can be improved.
  • the head-up display provided by this embodiment The system can form a high-brightness image with less power consumption, which can reduce power consumption.
  • the active light-emitting image source includes: a light control device 1000 and a plurality of light sources 104; the multiple light sources 104 are distributed at different positions; the light control device 1000 includes Aligning element 107.
  • the collimating element 107 covers one or more light sources 104 for collimating and emitting light from the covered light sources 104.
  • the active light-emitting image source further includes a light gathering element 105.
  • the light condensing element 105 is arranged on the side of the collimating element 107 away from the light source 104, and is used to converge the light emitted by all the light sources 104 to converge the light to the same position, as shown in FIG.
  • the preset position 1062 As shown in FIG. 28, the light collecting element 105 may be provided with a plurality of collimating elements 107 correspondingly.
  • the preset position 1062 may be a preset range, and the optical axis of the light passing through the light collecting element 105 points to the preset range.
  • the collimating element 107 is used to adjust the exit direction of the light within the preset angle range.
  • one light source is provided with one collimating element 107 as an example.
  • the light source 104 may be an LED, for example, and a collimating element 107 is provided on the surface of each LED to collimate the diffused light emitted by the LED so that most of the light emitted by the LED faces the same direction.
  • the collimating element 107 may be a collimating collimating lens or a collimating film; the collimating lens includes a convex lens, a Fresnel lens, a lens combination (such as a combination of a convex lens and a concave lens, a combination of a Fresnel lens and a concave lens) Etc.) one or more of.
  • the collimating lens includes a convex lens, a Fresnel lens, a lens combination (such as a combination of a convex lens and a concave lens, a combination of a Fresnel lens and a concave lens) Etc.) one or more of.
  • the collimating element 107 may be a convex lens, and the light source 104 may be set at the focal length of the convex lens, that is, the distance between the convex lens and the position of the light source is the focal length of the convex lens, so that the light from the light source 104 in different directions passes through the collimating element After 107, it can be shot in parallel.
  • the collimating element 107 may be a collimating film, such as a BEF film (Brightness Enhancement Film), which is used to adjust the exit direction of the light to a preset angle range, for example, the light is collected in the collimating film method. Within the angle range of ⁇ 35° of the line.
  • the light source 104 may specifically be an electroluminescent device, such as a light emitting diode (LED), an incandescent lamp, a laser, a quantum dot light source, etc., for example, an organic light emitting diode (OLED), a mini light emitting diode (OLED), etc. Mini LED), Micro LED, Cold Cathode Fluorescent Lamp (CCFL), Electroluminescent Display (ELD), LED Cold Light Source (Cold LED Light, CLL), Electrically Excited Light (Electro Luminescent, EL), electron emission (Field Emission Display, FED), tungsten halogen lamp, metal halide lamp, etc.
  • LED light emitting diode
  • OLED organic light emitting diode
  • OLED mini light emitting diode
  • Mini LED Micro LED
  • ELD Electroluminescent Display
  • LED Cold Light Source Cold LED Light, CLL
  • Electrically Excited Light Electro Luminescent, EL
  • electron emission Field Emission
  • the active light-emitting image source provided by this embodiment collimates the light emitted by the light source through a collimating element, so that the scattered light emitted by the light source can be uniformly directed in the same direction, avoiding the light source from scattering out the light, and in addition, the light is converged by the optical fiber
  • the element converges the light emitted from the collimating element, thereby improving the brightness of the light emitted by the light source; compared with the traditional active light-emitting image source, under the same brightness requirements, the active light-emitting image source provided by this embodiment is smaller Enough brightness can be ensured under the power consumption, and power consumption can be reduced.
  • the light source light can be converged by adjusting the direction of the optical axis of each light source.
  • the light control device 1000 further includes a direction control element 108; the direction control element 108 corresponds to one or more light sources 104 and is used to adjust the direction of the optical axis of the corresponding light source 104, The light emitted by the light source 104 at different positions converges; as shown in FIG. 29, the light emitted by the light source 104 is converged to a preset position 1062.
  • multiple direction control elements 108 are used to converge the light emitted by the light source 104.
  • the light sources 104 are set in different positions.
  • seven light sources 104 are set as an example; correspondingly, seven direction control elements 108 are set to control the direction of light emitted by the light source 104.
  • the direction control element 108 converges the light emitted by the multiple light sources 104 to a preset position 1062.
  • 1062 is a point position as an example.
  • the preset position 1062 in this embodiment can also be a small area, that is, only the light emitted by the light source 104 needs to be condensed into this area.
  • the direction of light emitted by the light source 104 is adjusted by setting the direction of the direction control element 108 at different positions, that is, the direction of the optical axis of the light source is adjusted, so as to achieve light convergence.
  • the direction control element is a concave substrate 1081
  • the light source 104 is disposed on the concave surface of the substrate 1081
  • the plane where the light source 104 is located is the same as the inner surface of the substrate 1081.
  • the concave surface is tangent.
  • the direction control element 108 is a lens 1082 with a tilt angle, and the optical axis of the lens 1082 faces the preset position 1062.
  • the orientation of the lens 1082 is used to realize the adjustment of the optical axis of the light source 104.
  • the light control device 100 further includes a dispersion element 106.
  • the dispersion element 106 is arranged on the side of the light concentrating element 105 away from the light source 104, or the direction control element 108 is away from the light source 104, and the dispersion element 106 is used to diffuse the light emitted by the light source 104 , And form a light spot 1061.
  • multiple direction control elements 108 are used to achieve the convergence of the light emitted by the light source 104.
  • light sources 104 are set in different positions.
  • seven light sources 104 are set as an example; correspondingly, seven direction control elements 108 are set to control the direction of light emitted by the light source 104.
  • the direction control element 108 condenses the light emitted by the multiple light sources 104 to a preset position 1062.
  • a point position 1062 is taken as an example for illustration.
  • the preset position 1062 in this embodiment can also be a small area, that is, only the light emitted by the light source 104 needs to be concentrated into the area.
  • the direction of light emitted by the light source 104 can be adjusted by setting the orientation of the direction control element 108 at different positions, so as to achieve light convergence.
  • the active light-emitting image source can only image in a small range, which is not convenient for the observer to view the image formed by the image source.
  • the light is diffused by the diffusing element 106 to form a light spot 1061 with a preset shape and a larger imaging range, so that it is convenient for the observer to view the image of the image source in a large range.
  • the light A emitted by the leftmost light source 104 can be directed along the optical path a to the preset Set position 1062; when dispersing element 106 is provided outside direction control element 108, dispersing element 106 will disperse light A into multiple light rays (including light A1, light A2, etc.) and disperse them into a range, namely spot 1061, which is convenient for observation
  • anyone can view the imaging of the active light-emitting image source within the range of the light spot 1061.
  • the dispersion element 106 includes, but is not limited to, diffractive optical elements (DOE), such as a beam shaper (Beam Shaper).
  • DOE diffractive optical elements
  • Beam Shaper Beam Shaper
  • the size and shape of the light spot are determined by the microstructure of the diffractive optical element.
  • the spot shape includes, but is not limited to, round, oval, square, rectangular, and batwing shapes.
  • the dispersion angle of the diffused light spot in the side view direction may be 10 degrees, preferably 5 degrees; the dispersion angle in the front view direction may be 50 degrees, preferably 30 degrees.
  • the number of direction control elements 108 is multiple, and different direction control elements 108 are arranged at different positions to adjust the exit direction of light emitted by light sources at different positions, and the exit directions of light emitted by light sources at different positions all point to the same A preset position. As shown in FIG. 33, the number of direction control elements 108 in FIG. 33 is seven.
  • One direction control element 108 can adjust the light emitted by one light source 104, and can also adjust the light emitted by multiple light sources 104, which is not limited in this embodiment.
  • the diffusing effect of the dispersing element 106 in FIG. 33 is only a schematic illustration, and the dispersing element 106 can diffuse light into the range of the light spot 1061, but does not completely limit the light emitted by the light source 104 to the light spot 1061. That is, the light A may form a larger range of light spots after passing through the dispersing element 106, and the light emitted by other light sources 104 may form other light spots through the dispersing element 106, but the light emitted by all the light sources 104 can reach the light spot 1061.
  • light from different positions can be condensed to the same position through a direction control element, which can improve the brightness of the light; at the same time, the light is diffused by the dispersion element, thereby forming a light spot with a preset shape , To facilitate subsequent imaging within the range of the light spot, so that while improving the brightness of the light, it can also expand the imaging range.
  • the direction control element 108 is used to adjust the exit direction of the light emitted by one or more light sources 104.
  • x p , y p , z p respectively represent the x-axis coordinate, y-axis coordinate and z-axis coordinate of the preset position 1062
  • x 0 , y 0 , z 0 respectively represent a known position on the plane where the direction control element 108 is located.
  • the plane where the direction control element 108 is located refers to the arrangement plane of the multiple light sources 104 when the direction control element 108 is used to adjust the emission direction of the light emitted by the multiple light sources 104. That is, the exit direction of the light is perpendicular to the plane where the direction control element 108 is located. If the preset position 1062 of the light direction is set to point P, its coordinates are (x p , y p , z p ); and the coordinates of a known point M 0 on the plane where the direction control element 108 is located are (x 0 , y 0 ,z 0 ), the vector corresponding to the exit direction of the light is:
  • the size of the direction control element 108 needs to be as small as possible, and the size of the direction control element 108 can be determined according to actual requirements.
  • the point (x, y, z) on the plane where the direction control element 108 is located satisfies the following value range:
  • x 1 , x 2 , y 1 , y 2 , z 1 , and z 2 are values determined according to the position of each direction control element 108, and x 1 , x 2 , corresponding to different direction control elements 108
  • the values of y 1 , y 2 , z 1 , and z 2 are not completely the same; or,
  • the point (x, y, z) on the plane where the direction control element 108 is located satisfies the following value range:
  • Dx 1 , Dx 2 , Dy 1 , Dy 2 , Dz 1 , and Dz 2 are values determined based on the size of the direction control element 108.
  • the light control device 1000 further includes a light blocking element; the light blocking element is arranged on the outermost side of the light control device, for example, on the side of the dispersion element 106 away from the light source 104, and the light blocking element is used to restrict active The exit angle of the light emitted by the luminous image source.
  • the light blocking element here can be the same as the light blocking element in the above-mentioned embodiment, and the repetition will not be repeated.
  • the direction control element 108 further includes a reflecting element; the reflecting element includes a lamp cup; the lamp cup is a hollow shell surrounded by a reflective surface, and the opening direction of the lamp cup faces the collimating element 107; The end of the cup away from the opening is used for setting the light source 104.
  • the active light-emitting image source according to this embodiment may further include a stereoscopic vision forming layer as in the foregoing embodiment, for example, the stereoscopic vision forming layer may be disposed on the light exit side of the optical control device 1000.
  • the stereo vision forming layer reference may be made to the above-mentioned embodiments, and the repetitions are not repeated here.
  • the shape and arrangement of the light sources 104 in the active light-emitting image source according to this embodiment may be the same as that of the light-emitting diode 101 in the above-mentioned embodiment, and the repetition will not be repeated.
  • a head-up display is further provided, and the image source of the head-up display is any active light-emitting image source in the foregoing embodiments.
  • the heads-up display may also include a reflective element 80 and a reflective imaging device 30 as shown in FIG. 27. The corresponding arrangement can also refer to FIG. 27 and related descriptions, and the repetition will not be repeated. .
  • an active light-emitting image source including: a light source array, including a plurality of light sources arranged in an array; a light control device, which converges the optical axes of the light emitted from the plurality of light sources, so that The optical axis of the light emitted by the microlens array points to a predetermined range; the dispersing element is arranged on the light emitting side of the light control device, and the light emitted by the light control device is diffused after passing through the dispersing element to diffuse the light The light emitted by the control device is transformed into a light beam with a preset cross-sectional shape.
  • the "light control device” herein may refer to any one of the microlens array 20 or the light control device 1000 in the foregoing embodiment.
  • a heads-up display including the active light-emitting image source.
  • the heads-up display can be arranged on the light-exit side of the dispersion element to emit light emitted from the dispersion element to the observation area.
  • a motor vehicle which includes the head-up display system, the head-up display, or the active light-emitting image source described in any of the above-mentioned embodiments.
  • the active light-emitting image source described in FIGS. 28-34 can also be applied to the head-up display system in the foregoing embodiment.
  • a head-up display including: an active light-emitting image source; the active light-emitting image source includes an image source substrate and a plurality of light sources, and all the light sources are arranged on the image source substrate and are arranged on the The same side of the image source substrate; the shape of the light source is circular, and the plurality of light sources are closely packed; or the shape of the light source is rectangular, and the plurality of light sources are completely tightly packed; or the shape of the light source is six The shape of the light source is polygonal, and the multiple light sources are completely densely packed; or the shape of the light source is octagonal, and the multiple light sources are closely packed; or the shape of the light source is round or octagonal, and the multiple light sources are closely packed Arranged, and the gaps between the four light sources are additionally provided with sub-light sources whose sizes match the gaps; or a plurality of the light sources are arranged according to a first distortion form, and the first distortion form is connected to the windshield The second distortion form is opposite and a
  • the active light-emitting image source includes: a light control device and a plurality of light sources; the plurality of light sources are arranged in different positions; the light control device includes A collimating element and a light concentrating element; the collimating element covers one or more light sources, and is used to collimate and emit light emitted by the covered light source; the light concentrating element is arranged on the collimating element away from the One side of the light source is used to converge all the light emitted by the light source.
  • the light control device further includes a direction control element; the direction control element corresponds to one or more light sources and is used to adjust the direction of the optical axis of the corresponding light source, Converge the light emitted by the corresponding light sources at different positions.
  • the direction control element is a concave substrate
  • the light source is disposed on the concave surface of the substrate
  • the plane on which the light source is located is the same as the substrate
  • the direction control element is a lens with a tilt angle, and the optical axis of the lens faces the preset position.
  • the direction control element further includes a reflecting element;
  • the reflecting element includes a lamp cup;
  • the lamp cup is a hollow shell surrounded by a reflective surface, and
  • the opening direction of the lamp cup faces the collimating element; the end of the lamp cup away from the opening is used for setting a light source.
  • the light control device further includes a dispersing element; the dispersing element is arranged on the side of the light concentrating element away from the light source, Or the direction control element is far away from the light source, and the dispersion element is used to diffuse the light emitted by the light source and form a light spot.
  • the active light-emitting image source further includes: a blocking layer disposed on a side of the collimating element away from the light source, and the blocking layer A preset distance is provided between the layer and the collimating element; the barrier layer includes a plurality of barrier units arranged at intervals.
  • the active light-emitting image source further comprises: a lenticular lens layer, the lenticular lens layer is disposed on a side of the collimating element away from the light source; the The lenticular lens layer includes a plurality of vertically arranged lenticular lenses, and each lenticular lens covers at least two different rows of light sources; the lenticular lens is used to direct the light emitted by one row of light sources to the first position and direct the light from the other row The light emitted by the light source is directed to the second position.
  • the head-up display according to any one of (2) to (11), wherein the light control device further includes a light blocking element; the light blocking element is arranged on the outermost side of the light control device, and The light blocking element is used to limit the exit angle of the light emitted from the head-up display.
  • the light blocking element includes a plurality of light blocking fences with a predetermined height, and the height direction of the light blocking fence faces the windshield.
  • the head-up display according to (1) characterized in that it further comprises: a reflector and a curved mirror; the curved mirror has a concave reflective surface; the reflector is arranged on the active light-emitting image source On the exit path of the emitted light, the reflector is used to reflect the light emitted by the active light-emitting image source to the curved mirror; the curved mirror is used to reflect the light emitted by the reflector to the imaging area.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Geometry (AREA)
  • Instrument Panels (AREA)

Abstract

一种抬头显示系统、主动发光像源、抬头显示器和机动车。该抬头显示系统包括:多个光源(10),多个光源(10)按照预设规则排列;微透镜阵列(20),微透镜阵列(20)包括多个微透镜(201),每个微透镜(201)对应一个或多个光源(10),并调整与其对应的一个或多个光源(10)发出的光线的光轴方向;微透镜阵列(20)将多个光源(10)发出光线的光轴会聚,以使从微透镜阵列(20)出射的光线的光轴指向至预定范围(100);反射成像装置(30),设置在微透镜阵列(20)的远离光源(10)的一侧,将光线出射到观察区域(200)。通过设置微透镜阵列(20),可以将光源(10)发出的具有一定发散角度的光线朝向同一方向,从而可以提高光源(10)出射光线的利用率和光线亮度。

Description

抬头显示系统、主动发光像源、抬头显示器和机动车
本申请要求于2019年5月17日递交的中国专利申请第CN201910412213.8号以及于2020年4月22日递交的中国专利申请第CN202010321007.9号的优先权,出于所有目的,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种抬头显示系统、主动发光像源、抬头显示器和机动车。
背景技术
HUD(head up display)是通过反射式的光学设计,将图像源发出的光线最终投射到成像窗(成像板、挡风玻璃等)上,驾驶员无需低头就可以直接看到画面,避免驾驶员在驾驶过程中低头看仪表盘所导致的分心,提高驾驶安全系数,同时也能带来更好的驾驶体验。
目前,HUD通过成像窗显像的画面亮度较低,在光线较强烈的情况如日光直射下,往往难以看清HUD图像。而保证HUD在挡风玻璃上显示成像的亮度,就需要提高HUD图像源亮度。传统的HUD设计基本采用液晶显示器(Liquid Crystal Display,LCD)作为图像源,而LCD图像源对光源光线的利用率很低,因此通过提高图像源的亮度来保证HUD显示成像的亮度,就会导致图像源的功耗提高,进而导致功耗增加和发热量大等问题,这些都限制了HUD的进一步推广应用。因此,亟需一种能够在较小功耗下就可实现高亮度画面显示的HUD设计。
发明内容
根据本公开的至少一个实施例提供一种抬头显示系统,包括:多个光源,所述多个光源按照预设规则排列;微透镜阵列,所述微透镜阵列包括多个微透镜,每个所述微透镜对应一个或多个所述光源,并调整与其对应的一个或多个所述光源发出的光线的光轴方向;所述微透镜阵列将所述多个光源发出 光线的光轴会聚,以使从所述微透镜阵列出射的光线的光轴指向预定范围;反射成像装置,所述反射成像装置设置在所述微透镜阵列的远离所述光源的一侧,所述多个光源发出的光线经过所述微透镜阵列后,出射至所述反射成像装置并在所述反射成像装置表面发生反射,反射光线出射至观察区域。
在一些示例中,所述多个光源中的至少部分光源配置为被独立控制发光以形成图像光线。
在一些示例中,所述预设范围的面积小于所述观察区域的面积。
在一些示例中,所述预设规则包括所述多个光源沿第一方向和第二方向展开排列,且所述第一方向与所述第二方向不同。
在一些示例中,所述微透镜包括聚光微透镜。
在一些示例中,所述聚光微透镜为凸透镜,所述凸透镜与所述光源一一对应地设置于所述光源的出光方向上。
在一些示例中,所述凸透镜的主轴与所述对应光源发出光线的光轴不重合。
在一些示例中,所述聚光微透镜包括第一柱面透镜,所述第一柱面透镜对应地设置在所述沿第一方向展开排列的多个光源的出光方向上。
在一些示例中,所述沿第一方向展开排列的多个所述光源的光轴所在的平面为第一平面;所述第一柱面透镜的主轴与所述第一平面不完全重合。
在一些示例中,所述聚光微透镜还包括第二柱面透镜,所述第二柱面透镜设置在所述第一柱面透镜与所述反射成像装置之间,且所述第二柱面透镜的主轴与所述第一柱面透镜的主轴垂直。
在一些示例中,所述多个光源包括红色发光二极管、绿色发光二极管和蓝色发光二极管中的至少一种。
在一些示例中,所述发光二极管的外形和排列方式采用以下各项至少之一:所述发光二极管的外形为圆形,且所述多个发光二极管紧密排列;所述发光二极管的外形为三角形,且所述多个发光二极管紧密排列;所述发光二极管的外形为矩形,且所述多个发光二极管紧密排列;所述发光二极管的外形为六边形,且所述多个发光二极管紧密排列;所述发光二极管的外形为八边形,且所述多个发光二极管紧密排列;所述发光二极管的外形为圆形或八边形,所述多个发光二极管紧密排列,且每四个所述发光二极管之间的空隙 中额外设置大小与所述空隙尺寸相匹配的发光二极管;以及多个所述发光二极管按照第一畸变形态排布,所述第一畸变形态与所述反射成像装置的第二畸变形态呈相反且对应的关系。
在一些示例中,所述抬头显示系统还包括弥散元件;所述弥散元件设置在所述微透镜阵列远离所述光源的一侧,所述微透镜阵列出射的光线经过所述弥散元件后扩散,扩散后的光线出射至所述反射成像装置。
在一些示例中,所述弥散元件包括衍射光学元件和散射光学元件中的至少一种。
在一些示例中,所述弥散元件将所述微透镜阵列出射的光线转变为具有预设截面形状的光束。
在一些示例中,所述弥散元件为分离式弥散元件,所述弥散元件将所述微透镜阵列出射的光线转变为分别具有预设截面形状且彼此分离的至少两个光束。
在一些示例中,所述抬头显示系统还包括发光控制单元;所述发光控制单元与所述多个光源电连接,所述发光控制单元控制所述多个光源的发光状态并形成图像光线。
在一些示例中,所述抬头显示系统还包括光线阻隔元件;所述光线阻隔元件设置在所述微透镜阵列远离所述光源的一侧,所述光线阻隔元件限制所述微透镜阵列出射光线的出射角度。
在一些示例中,所述抬头显示系统包括多个微透镜阵列;每个所述微透镜阵列将与其对应的多个所述光源发出光线的光轴进行会聚,以使从所述微透镜阵列出射的光线的光轴指向不同的预定范围;所述微透镜阵列出射光线至所述反射成像装置,并在所述反射成像装置表面发生反射,反射光线出射至不同的观察区域。
在一些示例中,抬头显示系统还包括:立体视觉形成层,所述立体视觉形成层设置在所述微透镜阵列远离所述光源的一侧,所述立体视觉形成层将经过其的光线分别出射至第一位置和第二位置。
在一些示例中,所述立体视觉形成层包括:多个间隔设置的阻挡单元;所述阻挡单元与所述微透镜阵列之间设有预设距离。
在一些示例中,所述立体视觉形成层包括分光透镜层;所述分光透镜层 包括多个分光透镜。
在一些示例中,所述抬头显示系统还包括至少一个反射元件;所述反射元件设置在所述微透镜阵列与所述反射成像装置之间;所述反射元件包括曲面反射元件和平面反射元件中的至少一种。
在一些示例中,所述多个微透镜中的至少两个的主轴彼此不同,以使从所述微透镜阵列出射的光线的光轴指向所述预定范围。
在一些示例中,所述多个光源通过电场激发产生光线。
根据本公开的至少一个实施例提供一种主动发光像源,包括:光源阵列,包括阵列排布的多个光源;光线控制装置,将所述多个光源发出光线的光轴会聚,以使从所述微透镜阵列出射的光线的光轴指向预定范围;弥散元件,设置在所述光线控制装置的出光侧,所述光线控制装置出射的光线经过所述弥散元件后扩散,以将所述光线控制装置出射的光线转变为具有预设截面形状的光束。
根据本公开的至少一个实施例提供一种抬头显示器,包括上述主动发光像源以及反射成像装置,所述反射成像装置设置在所述弥散元件的出光侧,以将从所述弥散元件发出的光线出射至观察区域。
根据本公开的至少一个实施例提供一种机动车,包括上述任一种抬头显示系统或者上述抬头显示器。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本发明的限制。
图1示出了本公开实施例提供的抬头显示系统的结构示意图;
图2示出了本公开实施例提供的抬头显示系统的结构示意图;
图3a示出了本公开实施例提供的光源按照预设规则排列的示意图;
图3b示出了本公开实施例提供的光源按照预设规则排列的示意图;
图4示出了本公开实施例提供的抬头显示系统的结构示意图;
图5示出了本公开实施例提供的抬头显示系统的结构示意图;
图6示出了本公开实施例提供的多个光源与柱面透镜对应设置的示意图;
图7示出了本公开实施例提供的多个光源光轴所在的第一平面的示意图;
图8a示出了本公开实施例提供的多个光源光轴所在的第一平面与柱面透镜的主轴位置关系的第一示意图;
图8b示出了本公开实施例提供的多个光源光轴所在的第一平面与柱面透镜的主轴位置关系的第二示意图;
图8c示出了本公开实施例提供的多个光源光轴所在的第一平面与柱面透镜的主轴位置关系的第三示意图;
图9示出了本公开实施例提供的抬头显示系统的结构示意图;
图10示出了本公开实施例提供的第一柱面透镜和第二柱面柱面透镜的示意图;
图11a示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图11b示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图12a示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图12b示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图13a示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图13b示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图14示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图15a示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图15b示出了本公开实施例提供的抬头显示系统发光二极管的排布示意图;
图16a示出了本公开实施例提供的图像源反射成畸变虚像的成像示意图;
图16b示出了本公开实施例提供的图像源消除畸变反射成像的第一成像 示意图;
图16c示出了本公开实施例提供的图像源消除畸变反射成像的第二成像示意图;
图17示出了本公开实施例提供的抬头显示系统的结构示意图;
图18示出了本公开实施例提供的抬头显示系统的结构示意图;
图19a示出了本公开实施例提供的弥散元件弥散光线的原理示意图;
图19b示出了本公开实施例提供的弥散元件弥散光线的原理示意图;
图20示出了本公开实施例提供的抬头显示系统的结构示意图;
图21示出了本公开实施例提供的抬头显示系统的结构示意图;
图22示出了本公开实施例提供的抬头显示系统的结构示意图;
图23示出了本公开实施例提供的抬头显示系统的结构示意图;
图24示出了本公开实施例提供的抬头显示系统的结构示意图;
图25示出了本公开实施例提供的抬头显示系统的结构示意图;
图26示出了本公开实施例提供的抬头显示系统的结构示意图;
图27示出了本公开实施例提供的抬头显示系统的结构示意图;
图28示出了本公开实施例所提供的主动发光像源的结构示意图;
图29示出了本公开实施例所提供的主动发光像源的结构示意图;
图30示出了本公开实施例所提供的主动发光像源的结构示意图;
图31示出了本公开实施例所提供的主动发光像源的结构示意图;
图32示出了本公开实施例所提供的主动发光像源的结构示意图;
图33示出了本公开实施例所提供的主动发光像源的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本公开的基本构想,遂图式中仅显示与本公开中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一 种随意的改变,且其组件布局型态也可能更为复杂。
需要说明的是,为了描述上的简洁和直观,下文通过描述若干代表性的实施方式来对本公开的方案进行阐述。实施方式中大量的细节仅用于帮助理解本公开的方案。但是很明显,本公开的技术方案实现时可以不局限于这些细节。为了避免不必要地模糊了本公开的方案,一些实施方式没有进行细致地描述,而是仅给出了框架。下文中,“包括”是指“包括但不限于”,“根据……”是指“至少根据……,但不限于仅根据……”。“第一”、“第二”等仅用于对特征的指代,而并不意图对该特征进行任何限制、例如顺序上的限制。由于汉语的语言习惯,下文中没有特别指出一个成分的数量时,意味着该成分可以是一个也可以是多个,或可理解为至少一个。
本实施例提供一种抬头显示系统,参见图1所示,包括:多个光源10,多个光源10通过电场激发产生光线,多个光源10按照预设规则排列;微透镜阵列20,微透镜阵列20包括多个微透镜201,每个微透镜201对应一个或多个光源10,并调整与其对应的一个或多个光源10发出的光线的光轴方向;微透镜阵列20将多个光源10发出光线的光轴会聚至预定范围100;反射成像装置30,反射成像装置30设置在微透镜阵列20的远离光源10的一侧,多个光源10发出的光线经过微透镜阵列20后,出射至反射成像装置30并在反射成像装置30表面发生反射,反射光线出射至观察区域200。例如,上述“光轴”指光束的中心线。另外,上述实施例以多个光源10通过电场激发产生光线为例进行了描述,但根据本公开的实施例不限于此,所述多个光源也可以使用其他类型的光源。
在一些示例中,上述多个光源中的全部或一部分光源可以被独立控制发光以形成图像光线。例如,多个光源可以白光光源,从而能够形成灰度图像;或者,多个光源还可以包括诸如红、绿和蓝等不同颜色的光源,通过控制不同颜色的光源的亮度,可以形成彩色图像。
本实施例中,光源10通过电场激发产生光线,光源10可以为点光源,即光源10发出的光线具有一定的发散角度,光线射向不同的方向。本实施例通过设置微透镜阵列20,可调整多个光源10发出的光线的光轴方向,并将光轴会聚至预定范围,从而对光线的传播方向进行改变。被聚集后的光线再经反射成像装置30反射,反射后的光线到达观察区域200,使得眼睛位于观 察区域200处的观察者可以看到虚像300,虚像300是多个光源10按照预设规则排列形成的图像经反射成像装置30后以反射成像装置所成的虚像。例如,观察者可为驾驶员或乘客,此时可以根据实际需求预设观察者需要观看成像的区域,即眼盒区域(eyebox),该眼盒区域是指观察者双眼所在的、可以看到HUD图像的区域。此时,只需要上述的观察区域200可以覆盖该眼盒区域即可;在一些示例中,观察区域200的尺寸与眼盒范围接近,恰好覆盖眼盒范围。本实施例中,眼盒区域及观察区域200均具有一定的尺寸,即使观察者双眼相对于眼盒区域的中心偏离一定距离,如上下、左右移动一定距离,只要观察者双眼仍处于眼盒区域内,观察者仍然可以看到HUD的图像。
图2示出了本实施例抬头显示系统具体的工作原理,为方便解释说明,图1及图2中均以平面面形的反射成像装置30为例进行说明。抬头显示系统包括多个光源10,光源10例如可以为电致发光器件,如发光二极管(Light Emitting Diode,LED)、有机发光二极管(Organic Light-Emitting Diode,OLED)、迷你发光二极管(Mini LED)、微发光二极管(Micro LED)、冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,CCFL)、LED冷光源(Cold LED Light,CLL)、电激发光(Electro Luminescent,EL)器件、场发射显示器(Field Emission Display,FED)或量子点(Quantum Dot,QD)发光器件等。多个光源10按照预设规则排列后,可以形成图像光线,比如顺序排列的LED阵列,利用可以发出不同亮度的LED阵列,可以形成灰度图像;若LED为彩色LED,其可以发出红光、绿光或蓝光,则通过控制LED的通断以及发光亮度,可以形成彩色图像。在一些示例中,光源10可为Mini LED或Micro LED,多个光源10排列后形成的图像更加清晰细腻,分辨率更高,能耗更低。
图2中以实线箭头代表光源10发出光线的光轴方向,光轴方向通过光源10能量分布的中心,指向光源10光强最大的方向;光轴方向例如也可以是光源10光强分布对称轴的方向,一般为光源10发出光线的中心轴方向;光轴的方向代表了光线传播的主要方向,光轴方向和接近光轴方向的光线的光强大于其他方向光线的光强。图2中每个微透镜201对应一个光源10,光源10发出光线的光轴方向为光源10的中心轴方向,经过微透镜201后发生改变。以图2中最左侧的光源10发出光线的光轴方向A为例进行说明,光线经过微透镜后,光轴的方向发生改变,由A变为A1,多个微透镜201则分 别改变与其对应的光源发出光线的光轴方向,因此多个光源10发出的光线经过微透镜阵列20后,多个光轴方向改变并会聚至预定范围100。可以理解,预定范围可以是一个点,也可以是一个较小的区域,本实施例对此不做限定。图2中以多个光源10的光轴会聚至一较小区域为例进行说明,当存在反射成像装置30时,多个光轴会聚至预定范围100;当不存在反射成像装置30时,光轴A1沿图中所示的虚线方向,多个光轴仍会会聚至一定范围内,可以理解,此范围是预定范围100相对于反射成像装置30的镜像位置1001,该镜像位置1001可以认为是预定范围100相对于反射成像装置30所成虚像的位置。也即,本实施例中所述微透镜阵列20将多个光源10发出光线的光轴会聚至预定范围100,是指微透镜阵列20将多个光源10发出光线的光轴会聚并经反射成像装置30反射后会聚至预定范围100。
基于上述描述可知,微透镜阵列将多个光源发出的光线的光轴会聚,以使从微透镜阵列出射的光线的光轴可以指向预定范围,例如,该预定范围可以指图2中的预定范围1001。这里的“指向预定范围”可以指从微透镜阵列发出的光线的光轴或其延长线达到预定范围1001。例如图2所示,在从微透镜出射后未经其他光学元件改变方向的情况下,从微透镜阵列发出的光线的光轴会聚到预定范围1001;而在从微透镜出射后经过其他光学元件改变方向的情况下,则从微透镜阵列发出的光线的光轴的延长线会聚到预定范围1001。
光源10发出的其他的相对于光轴方向具有一定角度的光线经过微透镜201后也会改变方向,微透镜阵列20将多个光源10发出的光线聚集,图2中以光源10出射的与光轴方向存在一定角度的光线B(图中虚线箭头)为例进行示意,光线B经过微透镜阵列20后,光线传播方向发生改变,聚集至观察区域200。可以理解,光源10发出的与光轴方向相同或接近的光线经过微透镜阵列后,光轴方向改变,这部分光线会会聚至预定范围100;而与光轴方向存在一定角度的光线经过微透镜阵列20后,会聚集至观察区域200,图2中以长方形区域进行示意,但并不代表观察区域200的形状为长方形。应当理解,观察区域200包含且大于预定范围100,多个光源10发出的光线都会聚集在观察区域200的范围内,光轴聚集在观察区域内的预定范围100,因此观察区域200内非预定范围100的区域内的光线强度会小于预定范围100内的光线强度。当存在反射成像装置30时,光源10发出的光线会聚至 观察区域200;当不存在反射成像装置30时,光源10发出的光线仍会会聚至一定范围,可以理解,此范围是观察区域200相对于反射成像装置30的镜像位置2001,该镜像位置2001可以认为是观察区域200相对于反射成像装置30所成虚像的位置。
例如,预定范围100和1001的面积均小于观察区域200的面积。
例如,微透镜201包括聚光微透镜,聚光微透镜可将光线聚集,聚光微透镜包括但不限于凸透镜、菲涅尔透镜或柱透镜,还包括具有聚光效果透镜的组合,如以上几种透镜的组合或以上几种透镜与凹透镜的组合;微透镜的直径包括毫米量级、微米量级或纳米量级,如微透镜的直径为10-1000nm或1-1000μm或1-100mm。
反射成像装置30设置在微透镜阵列20远离光源10的一侧,多个光源10发出的光线经过微透镜阵列20后,出射至反射成像装置30并在反射成像装置30表面发生反射,反射光线出射至观察区域200,使得观察者(如驾驶员、乘客等)的双眼位于观察区域200处时可以观看到HUD图像。为方便说明,本公开实施例及说明书附图中以反射成像装置为平面进行示意说明,微透镜阵列20出射的光线经反射成像装置30反射后到达观察区域200,使得眼睛处于观察区域200的观察者可以观看到图像,此时观察者观看到的像是反射成像装置30以反射成像的方式所成的虚像。例如,观察者可为驾驶员或乘客,此时可以根据实际需求预设观察者需要观看成像的区域,即眼盒区域(eyebox),该眼盒区域是指观察者双眼所在的、可以看到HUD图像的区域,此时,只需要上述的观察区域200可以覆盖眼盒区域即可;进一步地,可以设置预设范围100与眼盒区域重合,这样双眼在眼盒范围内的观察者就可以看到更高亮度的图像。本实施例中,眼盒区域具有一定的尺寸,即使观察者双眼相对于眼盒区域的中心偏离一定距离,如上下、左右移动一定距离,只要观察者双眼仍处于眼盒区域内,观察者仍然可以看到HUD的图像。在实际应用中,反射成像装置30可以具有带弧度的曲面面形,其成像原理与图2所示的类似,此处不做赘述。本领域技术人员应当理解,曲面的反射成像装置30如挡风玻璃,在不同的位置观察,虚像的位置是不固定的,因此当反射成像装置30为带有弧度的挡风玻璃或成像窗时,本实施例中的虚像是指从观察区域200处观察时所能看到的虚像,即虚像300的位置为观察者从观察 区域200处观察时的虚像位置。
在一些示例中,本实施例所述的抬头显示系统安装在车辆等交通工具上,本实施例中的反射成像装置30可以是车辆的挡风玻璃;或者是贴在挡风玻璃上的透反膜;或者是透明材质,包括透明树脂、高分子透明材料或玻璃形成的成像窗,如组合式抬头显示系统(Combiner-HUD,C-HUD)的成像窗。反射成像装置30具有透反的特性,不仅可以观察到经反射形成的虚像,车辆外部的光线也可以透过反射成像装置30并到达观察区域200,使得双眼位于观察区域200处的观察者也可以正常观看车辆外部的景象;本实施例中的多个光源10和微透镜阵列20可以设置在车辆的挡风玻璃下方、控制台的表面,进一步地,多个光源10和微透镜阵列20可以大面积设置,微透镜阵列20出射的光线经反射成像装置30反射后可形成大尺寸的图像,进一步提升抬头显示系统的使用体验。
本实施例中,多个光源10通过排列形成图像,通过设置微透镜阵列20,可以将光源10发出的光线的光轴聚集到预定范围100,即将多个光源10发出光线集中聚集至观察区域200,并在反射成像装置30表面发生反射形成图像,进而使得眼睛在光线聚集的观察区域200处的观察者能够观察到图像,且由于光线聚集,成像亮度更高,观察者可以观看到亮度更高的像,提高了光线利用率。
在本公开上述实施例的基础上,多个光源10按照预设规则排列,预设规则包括多个光源沿第一方向和第二方向展开排列,且第一方向与第二方向不同。例如,参见图3a所示,第一方向与第二方向垂直,图3a为从光源10出光方向俯视的示意图,第一方向包括水平方向,光源10沿水平方向展开排列;第二方向包括垂直方向,光源10沿垂直方向展开排列,光源10通过沿垂直的第一方向和第二方向展开排列(阵列排布)为面光源。第二方向还包括与第一方向不垂直的其他方向,如图3b所示,第二方向与第一方向不垂直,第二方向与第一方向之间存在夹角θ,θ∈(0,90°),具体可为10°、20°、30°、45°或80°,光源10通过沿第一方向和第二方向展开排列,也可形成面光源。
在本公开上述实施例的基础上,聚光微透镜具体可为凸透镜2011,凸透镜2011与光源10一一对应的设置,如图1、图2及图4所示,每个光源10 对应设置一个凸透镜2011,凸透镜2011设置在光源10的出光方向上,凸透镜2011调整与其对应的光源10发出光线的光轴方向;例如,凸透镜2011调整与其对应的光源10发出光线的光轴方向,例如包括不改变光源10发出光线的光轴方向和改变光源10发出光线的光轴方向。
进一步地,凸透镜2011的主轴C与光源10发出光线的光轴A不重合,凸透镜2011改变与其对应的光源10发出光线的光轴方向。例如,凸透镜的主轴(Main axis)是指通过凸透镜的光心且垂直于透镜的直线。本领域技术人员可以理解,与凸透镜主轴重合的光线经过凸透镜后,光线的传播方向不会发生改变,因此光源10发出光线的光轴A如果与凸透镜2011的主轴重合,经过凸透镜2011后,光轴A的方向不会发生改变,因此设置凸透镜2011的主轴与光源10发出光线的光轴不重合,光线经过凸透镜2011后光轴A的方向会发生改变,主轴C与光轴A可以平行且不重合。可以理解,光源10发出的光线经过凸透镜2011后,所有的光源10发出的光线的光轴方向均发生改变并聚集至预定范围100,如图1所示;部分光源10发出的光线的光轴方向未改变,其余部分光源10发出光线的光轴方向改变,光轴聚集至预定范围100,如图4所示,虽然部分光源10发出光线的光轴方向未改变,但最终会聚集至预定范围100,本实施例不限定每个光源10发出光线的光轴经过微透镜阵列20后均会发生改变,光轴聚集至预定范围100即可。可选的,凸透镜2011包括平凸透镜、双凸透镜或凹凸透镜,本实施例对此不做限定。
本实施例中,通过设置与光源10一一对应的凸透镜2011,通过凸透镜2011对光线的聚集作用,调整光源10出光线的光轴方向,使得多个光源10发出光线的光轴会聚至预定范围100,多个光源10发出的光线经反射成像装置30反射后聚集至观察区域200,反射成像亮度更高,双眼处于观察区域200的观察者可以观看到亮度更高的成像,提高了光线利用率。
在本公开上述实施例的基础上,聚光微透镜包括第一柱面透镜2012,第一柱面透镜2012对应地设置在沿第一方向展开排列的多个光源10的出光方向上,第一柱面透镜调整与其对应的多个光源10发出光线的光轴方向,如图5、图6所示,微透镜阵列20包括多个第一柱面透镜2012,第一柱面透镜对应地设置在沿第一方向展开排列的多个光源10的出光方向上;如图7所示,每个第一柱面透镜2012对应的沿第一方向展开排列的多个光源10发出光线 的光轴A所在的平面为第一平面,多个光源10发出的光线经过与其对应的第一柱面透镜后,光轴聚集至预定范围100。例如,柱面透镜2012调整与其对应的多个光源10发出光线的光轴方向,例如包括不改变多个光源10发出光线的光轴方向和改变多个光源10发出光线的光轴方向。
进一步地,第一柱面透镜2012的主轴与第一平面不完全重合,第一柱面透镜2012改变与其对应的多个光源10发出光线的光轴方向。例如,参见图8a所示,第一柱面透镜的主轴为第一柱面透镜柱面的轴向子午线,本领域技术人员可以理解,经过轴向子午线的光线不会发生聚集程度的改变,也即光线的传播方向不会发生改变,因此如果第一平面与第一柱面透镜2012的主轴完全重合,即主轴在第一平面上,经过第一柱面透镜2012后,多个光源10发出光线的光轴A的方向不会发生改变,因此设置第一柱面透镜2012的主轴与第一平面不完全重合,如图8a、8b所示,第一柱面透镜2012的主轴与第一平面平行但不重合,多个光源10发出的光轴的方向会发生改变并聚集至预定范围100。可以理解,第一平面也可以与第一柱面透镜的主轴相交,如图8c所示,相交处对应的一个或多个光源10发出光线的光轴经过第一柱面透镜2012的主轴,方向不会发生改变,但最终会聚集至预定范围100,本实施例不限定每个光源10发出光线的光轴经过微透镜阵列20后均会发生改变,光轴聚集至预定范围100即可。可选的,第一柱面透镜包括平凸柱面透镜、双凸柱面透镜、弯月柱面镜、柱交柱面镜、异形类柱面透镜和以上几种透镜组合中的一项或多项,即第一柱面透镜可为平凸柱面透镜、双凸柱面透镜、弯月柱面透镜、柱交柱面透镜、异形类柱面透镜及透镜组合(如平凸柱面透镜与弯月柱面透镜的组合),本实施例对此不做限定。
本实施例中,通过设置与多个沿第一方向展开排列的光源10对应的第一柱面透镜2012,通过柱面透镜对光线的聚集作用,调整光源10出光线的光轴方向,使得多个光源10发出光线的光轴会聚至预定范围100,使得多个光源10发出的光线聚集至一个观察区域200,反射成像亮度更高,双眼处于观察区域200的观察者可以观看到亮度更高的成像,提高了光线利用率;并且采用一个柱面透镜2012对应多个光源10的实施方式,在实际应用中更加简便易行,易于安装和拆卸操作。
在本公开上述实施例的基础上,聚光微透镜还包括第二柱面透镜2013, 第二柱面透镜2013设置在第一柱面透镜2012与反射成像装置30之间,且第二柱面透镜2013的主轴与第一柱面透镜2012的主轴垂直。例如,参见图9所示,第二柱面透镜2013设置在第一柱面透镜2012与反射成像装置30之间,从第一柱面透镜2012出射的光线经过第二柱面透镜2013后出射至反射成像装置30,并聚集至观察区域200;第二柱面透镜2013的主轴为第二柱面透镜柱面的轴向子午线。光源10出射的光线经过第一柱面透镜2012后,柱面透镜不会改变通过柱面透镜主轴的光线的方向和聚集程度,因此经过第一柱面透镜的光线,如图5所示,在垂直于第一柱面透镜2012主轴的方向上(也即柱面透镜的屈光力子午线方向)会改变光线的方向和聚集程度,因此在平行于第一柱面透镜2012主轴的方向上,光线不会聚集,多个光源10的光轴聚集的预定范围100为长条型的区域,最终光线聚集的观察区域200也为长条形的区域;为了使光线聚集程度更高,进一步提高光线利用率,在第一柱面透镜2012与反射成像装置30之间设置第二柱面透镜2013。如图10所示,微透镜阵列20包括多个第一柱面透镜2012和多个第二柱面透镜2013,多个第二柱面透镜2013与多个第一柱面透镜2012堆叠设置,且第二柱面透镜2013的主轴与第一柱面透镜2012的主轴相互垂直,将第一柱面透镜2012无法改变方向和聚集程度的部分光线再通过第二柱面透镜2013进行聚集,两次聚集后的光线会聚至观察区域200,进一步提高了光线聚集程度,进而提高了光线利用率。
本实施例中,微透镜阵列20通过设置包括多个主轴相互垂直的第一柱面透镜2012和第二柱面透镜2013,通过第一柱面透镜和第二柱面透镜在不同方向上对光线的聚集作用,调整光源10出光线的光轴方向,使得多个光源10发出光线的光轴会聚至预定范围100,多个光源10发出的光线聚集至一个观察区域200,反射成像亮度更高,双眼处于观察区域200的观察者可以观看到亮度更高的成像,进一步提高了光线利用率;并且采用柱面透镜对应多个光源10的实施方式,在实际应用中更加简便易行,易于安装和拆卸操作。
在本公开上述实施例的基础上,光源10包括红色发光二极管、绿色发光二极管和蓝色发光二极管中的至少一种。如发出红光谱带的砷化镓二极管、发出绿光谱带的磷化镓二极管,发出黄光谱带的碳化硅二极管和发出蓝光的氮化镓二极管。在一个示范性实施方式中,光源10由红色发光二极管、绿色 发光二极管和蓝色发光二极管组成,通过控制LED的通断以及发光亮度,可以形成彩色图像。
在一些示例中,本实施例中光源10发出的光线为窄带光,窄带例如是指光线波长谱带的半高宽(Full width at half maximum,FWHM)小于或等于60nm,优选地,谱带的半高宽小于或等于30nm,更优选地,谱带的半高宽小于或等于10nm。如光源10为红色发光二极管,光源10发出的窄带光的峰值位于590nm-690nm的区间范围内;光源10为绿色发光二极管,光源10发出的窄带光的峰值位于500nm~580nm的区间范围内;光源10为蓝色发光二极管,光源10发出的窄带光的峰值位于400nm~470nm区间范围内。可以理解,为了HUD可以显示彩色的图像,多个光源10包括红色发光二极管、绿色发光二极管和蓝色发光二极管,在一个优选的实施方式中,光源10发出的红色窄带光在630nm±10nm,绿色窄带光在540nm±10nm,蓝色窄带光在450nm±10nm(蓝色)这三个波段;可以理解,发出窄带光的多个光源10排列形成图像,可以形成更宽的光谱色域,图像更加鲜艳多彩。
进一步地,光源10为发光二极管101,多个发光二极管紧密排列。可以理解,发光二极管一般为点光源,如果分散排列,多个发光二极管101之间存在间隙,最终观察到的图像会有较强的颗粒感,因此将多个发光二极管101紧密排列,可以提高空间利用率,还可提供良好的观看体验。本实施例中的“紧密排列”指的是排列后,发光二极管101之间可以不存在空隙或空隙很小。
例如,通过设计发光二极管的外形,可实现发光二极管的紧密排列。本实施例中的“发光二极管的外形”,具体是指发光管二极管出光面的形状特征。发光二极管101的外形为三角形(例如为正三角形)、四边形(如菱形、矩形等)或六边形(例如为正六边形)时,可以实现完全紧密堆积排列。可选的,如图11a和图11b所示,发光二极管101的外形为圆形,且多个发光二极管101紧密排列,多个发光二极管之间会有较大的空隙;参见图12a和图12b,示出了三角形外形的发光二极管101完全紧密排列的两种形式,发光二极管101的外形为三角形,且多个发光二极管101完全紧密排列,没有空隙;参见图13a和图13b,示出了矩形外形的发光二极管101完全紧密排列的两种形式,发光二极管101的外形为矩形,且多个发光二极管101完全 紧密排列;参见图14,发光二极管101的外形为正六边形,且多个发光二极管101完全紧密排列。
可选的,发光二极管101的外形还可为八边形(例如为正八边形),且多个发光二极管101紧密排列;进一步地,由于八边形不能实现完全紧密排列,在多个发光二极管101的空隙之间可以再利用小的发光二极管填充。例如,如图15a和图15b所示,多个发光二极管101之间的空隙中额外设置大小与空隙相匹配的发光二极管101。填充空隙的发光二极管101可以为任意形状,图中以其也为八边形为例进行说明。例如,这里的发光二极管的大小与空隙相匹配是指该空隙恰好能否放入特定大小的发光二极管。
可选的,反射成像装置30为交通工具上的挡风玻璃或C-HUD的透明成像窗时,挡风玻璃和成像窗往往不是平面的,其具有一定的弧度,直接借助挡风玻璃或成像窗反射成像会存在畸变的问题。本实施例中多个发光二极管101按照第一畸变形态排布,该第一畸变形态与反射成像装置30的第二畸变形态呈相反且对应的关系。例如,反射成像装置30的第二畸变形态,是指抬头显示系统的图像源1通过反射成像装置30反射成像时,虚像的畸变形态。图像源1包括多个光源10和微透镜阵列20等,图像源1出射图像光线。
例如参见图16a和图16b所示,为方便描述,以图像源1代替多个光源10和微透镜阵列20等进行解释说明。图像源1在反射成像装置30上反射成像,但是由于带有弧度的反射成像装置30具有第二畸变形态,故该虚像是畸变的虚像,图16a中反射成像装置30上的网格图形表示畸变的虚像。本实施例根据反射成像装置30的第二畸变形态来确定与其呈对应且相反关系的第一畸变形态,并按照第一畸变形态排布图像源1中的多个发光二极管101,例如排布每个发光二极管101的位置,以消除反射成像装置30带来的畸变。例如参见图16b所示,本实施例中的图像源1中的发光二极管101按照第一畸变形态来排布,图16b中图像源1中的每个网格表示一个发光二极管101或图像源1的一个像素单元,从而通过反射成像装置30可以形成不存在畸变的虚像,图16b中反射成像装置30上的网格图形表示不存在畸变的虚像。也就是说,发光二极管101按照第一畸变形态来排布,以至少部分或完全抵消由反射成像装置30的第二畸变形态所带来的虚像畸变,从而使得观察者能够看到由反射成像装置反射形成的正常图像。
可选的,当发光二极管101按照正常排列方式规则排布时,例如按照图11a至图15b中的一种排列方式排列,可以将图像源1本身发出的图像设为具有第一畸变形态的图像,从而在反射成像装置30上也可以形成不存在畸变的虚像,例如参见图16c所示。
本实施例中,通过设置发出不同颜色光线的发光二极管101,可实现单色或多色显示,可观察到单色或彩色的HUD图像;进一步设置发光二极管101的形状,可实现多个发光二极管101的紧密排列,可以提高空间利用率,提升图像显示质量,提供良好的观看体验;通过对发光二极管按照特定的排列方式进行排列,可以消除因有弧度的反射成像装置30造成的成像畸变,使得抬头显示系统的成像更加规则,提升抬头显示系统的使用体验。
在本公开上述实施例的基础上,抬头显示系统还包括弥散元件40。在上述实施例的基础上,微透镜阵列20虽然可以将多个光源10发出的光线聚集,经反射成像装置30反射后光线出射至观察区域200,但因为光轴方向的光线光强较大,这部分光线会聚至预定范围100,因此观察区域200内非预定范围100的区域内的光线强度会小于预定范围100内的光线强度,边缘部位的亮度相对较弱。本实施例中通过设置弥散元件40来均匀光线亮度,如图17所示,光源10发出光线的光轴A经过微透镜阵列20后改变方向为A1,再经过弥散元件40后光线以偏离原光轴A1方向的预设扩散角度进行扩散,图中的A2、A3表示沿偏离原光轴A1方向的预设扩散角度扩散的光线,扩散后的光线会聚至扩散预定范围1002,扩散区域1002的面积大于预设区域100;与光轴方向光线扩散的原理类似,光源10出射的与光轴方向存在一定夹角的、最终会聚至观察区域200内非预定范围100的区域内的光线经过弥散元件40后也会以偏离原传播方向的预设扩散角度扩散。因此经过弥散元件40对光线的扩散作用,最终光线会扩散并聚集至扩散观察区域2002,区域内的光线经过扩散后,强度会均匀分布,如图18所示。弥散元件40例如可以是成本较低的散射光学元件,如匀光片、扩散片等,或者,弥散元件40也可以为对扩散效果控制更加精确的衍射光学元件(Diffractive Optical Elements,DOE),例如光束整形片(Beam Shaper)等;其中,光线透过匀光片等散射光学元件时会发生散射,光线会透射至许多不同的角度,还会发生少量的衍射,但光线的散射起主要作用,形成的光斑较大;而衍射光学元件通过在表面设计特 定的微结构,主要通过衍射起到光扩束作用,光斑较小,且光斑的大小和形状可控。可以理解,光线经过弥散元件40后,扩散光束的预设截面形状即对应扩散观察区域2002的形状。
进一步地,弥散元件40将微透镜阵列20出射的光线转变为具有预设截面形状的光束,本实施例中,弥散元件40例如为衍射光学元件,光线经过弥散元件40后扩散的光束在垂直于光轴传播方向的截面具有特定的形状,可选的,光束的预设截面形状包括但不限于线形、圆形、椭圆形、正方形或长方形。如图19a示出了光线经过例如为衍射光学元件的弥散元件40之后,光线弥散并形成预设截面形状,图19a以预设截面形状为矩形为例说明。
更进一步地,弥散元件40还可以为分离式的弥散元件,即弥散元件40可将经过其的光线分散至多个范围,每个范围的形状包括但不限于线形、圆形、椭圆形、正方形或长方形,扩散后的每个范围的形状可以相同或者不同。如图19b所示,光线经过分离式的弥散元件40之后,可以弥散至多个区域,每个区域对应一个扩散观察区域2002;图19b中以光线弥散至两个矩形区域为例说明。
本实施例中,抬头显示系统通过设置弥散元件,对光线起到弥散作用,可以均匀光线亮度,使得在观察区域内抬头显示系统的成像亮度均匀,提升了使用体验。
在本公开上述实施例的基础上,抬头显示系统还包括发光控制单元50,发光控制单元50与多个光源10电连接,发光控制单元50控制多个光源10的发光状态并形成图像,如图20所示。例如,发光控制单元50通过传输数字信号将光源10点亮,通过控制光源10的发光状态,形成单色或彩色的图像,并发出图像光线。例如,这里的发光状态可以为发光的开启或关闭,也可以为发光亮度的调节。例如,多个光源10中的每个光源的发光状态可以被发光控制单元50独立控制。发光控制单元50例如包括发送端、接收端和处理器,其中接收端通过有线或无线的方式接收数字信号,处理器将数字信号转换为控制光源10的控制信号,再通过与光源10之间的电连接,通过电路如导线进行控制信号的传输,实现对光源10的控制,进而形成图像。在一些示例中,发光控制单元50可为发光二极管显示屏控制器,光源10为发光二极管,通过光源10的排列和控制器实现发光二极管的开关,进而形成图像。
本实施例中,抬头显示系统通过设置发光控制单元,实现对多个光源10开关状态的控制,形成图像并发出图像光线,使得抬头显示系统实现图像信息显示。
在本公开上述实施例的基础上,抬头显示系统还包括光线阻隔元件60,光线阻隔元件设置在微透镜阵列20远离光源10的一侧,限制微透镜阵列20出射光线的出射角度。本实施例中,光线阻隔元件60包括多个设有预设高度的光线阻隔栅栏,通过多个凸起的光线阻隔栅栏形成栅栏阵列,来物理阻挡光线在某些方向的传播。通过设计光线阻隔栅栏的高度和宽度,可以限制观测者可看到光线的角度。如图21所示,通过光线阻隔元件60将微透镜阵列20射出的光线限制在角度α内,从而形成了可观察区域;即人眼eye-1位于可观察区域内,此时可以看到图像光线,但是人眼eye-2位于可观察区域之外,使得人眼eye-2并不能看到图像光线。本实施例中,光线阻隔层60可以是一层栅栏阵列,该栅栏阵列可以是水平方向,或是垂直方向,或是任意角度,这样只有与栅栏平行的方向的光才可以透过。光线阻隔层60的可视角度可以是48度、60度、75度,或是其他所需的任意角度。此外,光线阻隔层60可以是两层栅栏阵列正交堆叠,或是两层栅栏成一定角度错开的堆叠。每一层的栅栏阵列可以是水平方向,或是垂直方向,或是任意角度。可视角度可以是45度,60度,75度,或是其他所需的任意角度。例如,光线阻隔层60可以为防窥光栅。
可选的,光线阻隔件60还包括光线散射层,光线散射层可防止外部环境光线在光线阻隔元件60表面反射产生眩光,进而影响正常的驾驶。光线散射层设置在光线阻隔层60远离微透镜阵列20的一侧,光线散射层用于散射外部环境光线。本公开实施例中,在光线阻隔层80的外侧增设光线散射层可以散射外部的环境光线,例如太阳光等,从而可以防止外部太阳光照射在光线阻隔层60表面引起的眩光。例如,光线散射层和光线阻隔层60可一体成型,如磨砂式防窥光栅。
本实施例中,在微透镜阵列20的外表面增设光线阻隔层60,可以限制光线出射的角度,例如将没有该光线阻隔层60的图像源1设置在车辆的控制台表面,这样驾驶员可能会同时看到图像源1和挡风玻璃反射后的虚像,影响驾驶员驾驶车辆。而该光线阻隔层60可以使光线只朝向挡风玻璃的方向出 射,即从驾驶员的角度无法看到图像源1本身的图像,从而在用户驾驶车辆时,可以避免因抬头显示系统屏幕成实像时的亮度影响用户的视野,或者对用户造成眩晕,可以提高驾驶时的安全性。进一步地,还可增设光线散射层,避免外部光线如太阳光反射产生眩光,进一步提高了驾驶安全性。
在本公开上述实施例的基础上,抬头显示系统包括多个微透镜阵列20,每个微透镜阵列20将与其对应的多个光源10发出光线的光轴会聚至不同的预定范围100,不同微透镜阵列20出射光线至反射成像装置30,并在所述反射成像装置表面发生反射,反射光线出射至不同的观察区域200。例如,参见图22所示,对于多个观察者的情况,当采用多个微透镜阵列20时,其成像示意图参见图22所示,图22中两个微透镜阵列20形成两个观察区域200,可分别对应不同的观察者,如分别对应司机和乘客即两个眼盒范围。可以理解,两个微透镜阵列20各自对应的多个光源10,可显示相同或不同的内容,从而实现多视角同时观察。
本实施例中,通过设置多个微透镜阵列20,将微透镜阵列20各自对应的多个光源10的光线聚集至不同的观察区域200,可实现多视角成像,双眼处于不同观察区域200的用户可以同时看到不同或相同的图像,进一步提高了抬头显示系统的实用性和使用体验。
在本公开上述实施例的基础上,抬头显示系统还包括立体视觉形成层70,立体视觉形成层70设置在微透镜阵列20远离光源10的一侧,立体视觉形成层70将经过其的光线分别出射至第一位置和第二位置,如图23所示。
例如,第一位置和第二位置分别为用户的左眼和右眼,立体视觉形成层70包括阻挡层701,阻挡层701包括多个间隔设置的阻挡单元7011,阻挡单元7011与微透镜阵列20之间设有预设距离,如图24所示。为方便描述,图24及图25中均以图像源1代替微透镜阵列20及多个光源10等进行解释说明。图24中,以图像源1对应6个像素单元、阻挡层701包含5个阻挡单元7011为例说明,每个像素单元包括至少一个光源10发出的光线。如图所示,由于阻挡层701与图像源1之间存在间隔,阻挡层701可以阻挡光线,故图像源1对应的部分像素单元(R1、R2、R3)发出的光线不能到达左眼位置,故左眼只能观看到像素单元L1、L2、L3发出的光线;同理,右眼只能观看到像素单元R1、R2、R3发出的光线。因此,阻挡层701可以将图像源1对 应的像素单元分为两部分,一部分像素单元发出的光线只能到达左眼位置,比如像素单元L1、L2、L3;而另一部分像素单元发出的光线只能到达右眼位置,比如像素单元R1、R2、R3。通过图像源1对应的不同像素单元显示具有视差的两种图像,从而使得左眼观看的图像和右眼观看的图像存在视差,进而实现立体视觉成像。阻挡层701中每个阻挡单元7011的大小、以及阻挡单元7011之间的位置是经过精密计算后特殊设计,进而在特定位置可以成像。该方式不需要观察者佩戴特殊眼睛即可观看立体视觉图像,但是需要观察者在特定的位置才能观看到比较好的3D成像效果。
可选的,阻挡层701的阻挡单元7011包括液晶或光栅;当阻挡单元7011为液晶时,可通过控制液晶的工作状态实现2D图像或立体视觉图像显示的切换,例如,当观察者需要观看2D图像时,阻挡层701中的液晶呈现一种排列状态以不形成阻挡单元,此时的像素单元正常显示2D图像。当观察者需要观看立体视觉图像时,阻挡层701的液晶形成阻挡单元,像素单元显示具有视差的图像,使得观察者在特定位置可以观看到立体视觉图像。
或者,第一位置和第二位置分别为用户的左眼和右眼,立体视觉形成层70包括分光透镜层702,分光透镜层702包括多个分光透镜,分光透镜具体可为柱面透镜。例如,参见图25所示,分光透镜层702包括多个竖直设置的柱面透镜,且每个柱面透镜至少覆盖两个不同列的图像源1的像素单元;柱面透镜用于将一列的像素单元发出的光线射向第一位置、将另一列的像素单元发出的光线射向第二位置,从而可以实现立体视觉成像。图25中图像源1对应12列像素单元,分光透镜层702包含6个柱面透镜,每个柱面透镜覆盖两列像素单元,如图25中最上面的柱面透镜覆盖像素单元R1和L1。基于柱面透镜的折射特性,通过设置柱面透镜的曲面,可以使得一列像素单元发出的光线经过柱面透镜后射向第一位置,比如像素单元R1发出的光线射向右眼位置;同时使得另一列像素单元发出的光线经过柱面透镜后射向第二位置,比如像素单元L1发出的光线射向左眼位置。通过精确设置柱面透镜的形状,可以使得部分像素单元发出的光线射向某个位置,并使得另一部分像素单元发出的光线射向另外一个位置。即如图25所示,像素单元R1、R2、R3、R4、R5、R6等发出的光线可以会聚至右眼位置,像素单元L1、L2、L3、L4、L5、L6等发出的光线可以会聚至左眼位置,进而使得观察者在特 定位置观看到立体视觉的图像。例如,本实施例中的柱面透镜既可以是光学柱状透镜,也可以液晶柱状透镜。
本实施例中,通过设置立体视觉形成层70,可实现立体视觉显示,双眼处于第一位置和第二位置的用户可以看到立体视觉的图像,进一步提高了抬头显示系统的实用性和使用体验。
在本公开上述实施例的基础上,抬头显示系统还包括至少一个反射元件80;反射元件80设置在微透镜阵列20与反射成像装置30之间,反射元件80包括曲面反射元件801和平面反射元件802中的至少一种。例如,反射元件80设置在微透镜阵列20与反射成像装置30之间,是指反射元件80设置在微透镜阵列20出射的图像光线的光路上。为方便解释说明,图26及图27中以图像源1代替微透镜阵列20和光源10等。例如,反射元件80可为曲面反射元件801,通过设置曲面反射元件801,可增加抬头显示系统虚像的成像距离,同时曲面反射元件801还可对图像起到一定的放大作用,如图26所示;反射元件80还包括平面反射元件802,增加平面反射元件802可对光路起到折叠作用,减小抬头显示系统的体积,增加装置的适用性,如图27所示。进一步地,曲面反射元件801可为自由曲面镜,平面反射元件802可为平面铝镜或平面介质膜反射镜,本实施例对此不做限制。
本实施例中,反射元件80将光线反射至反射成像装置30处,其中曲面反射元件801内凹的反光面可以扩大图像源1的成像区域,即使图像源1的尺寸不大,也可以使得抬头显示系统在形成尺寸较大的虚像;平面反射元件802还可进一步压缩抬头显示系统的体积,方便抬头显示系统的安装使用。
本公开实施例提供的上述方案中,通过设置多个光源及微透镜阵列,通过微透镜阵列将多个光源发出光线的光轴会聚至预定范围,聚集后的光线出射至反射成像装置并在反射成像装置表面发生反射形成图像;可以将光源发出的具有一定发散角度的光线朝向同一方向,从而可以提高光源出射光线的利用率和光线亮度,在同等亮度的要求下,本实施例提供的抬头显示系统在较小的功耗下即可形成高亮度的图像,可以减小功耗。
本实施例提供一种主动发光像源,参见图28所示,该主动发光像源包括:光线控制装置1000和多个光源104;多个光源104分布设置在不同的位置;光线控制装置1000包括准直元件107。所述准直元件107覆盖一个或多个光 源104,用于对覆盖的光源104发出的光线进行准直并射出。该主动发光像源还包括光线聚集元件105。所述光线聚集元件105设置在所述准直元件107远离所述光源104的一侧,用于对所有的所述光源104发出的光线进行会聚,将光线会聚到同一个位置,即图2中的预设位置1062。如图28所示,光线聚集元件105可以对应设置多个准直元件107。例如,该预设位置1062可为以预设范围,经过光线聚集元件105的光线的光轴指向该预设范围。
本实施例中,准直元件107用于将光线的出射方向调整至预设角度范围内,图1中以一个光源设置一个准直元件107为例说明。其中的光源104例如可以是LED,每个LED表面设置一个准直元件107,将LED发出的扩散光线进行准直,使得LED发出的大部分光线朝向同一个方向。
可选的,准直元件107可以为准直准直透镜或准直膜;该准直透镜包括凸透镜、菲涅尔透镜、透镜组合(比如凸透镜与凹透镜的组合,菲涅尔透镜与凹透镜的组合等)中的一种或多种。例如,该准直元件107可以为凸透镜,则光源104可以设置在凸透镜的焦距处,即凸透镜与光源位置之间的距离为凸透镜的焦距,以使得光源104发出的不同方向的光线经准直元件107后可以平行射出。或者,该准直元件107可以为准直膜,比如BEF膜(Brightness Enhancement Film,增亮薄膜),用于将光线的出射方向调整至预设角度范围内,例如将光线聚集在准直膜法线的±35°的角度范围内。
光源104具体可以为电致发光器件,比如发光二极管(Light Emitting Diode,LED)、白炽灯、激光、量子点光源等,例如,有机发光二极管(Organic Light-Emitting Diode,OLED)、迷你发光二极管(Mini LED)、微发光二极管(Micro LED)、冷阴极荧光灯管(Cold Cathode Fluorescent Lamp,CCFL)、电致发光显示器(Electroluminescent Display,ELD)、LED冷光源(Cold LED Light,CLL)、电激发光(Electro Luminescent,EL)、电子发射(Field Emission Display,FED)、卤钨灯、金属卤化物灯等。
本实施例提供的一种主动发光像源,通过准直元件将光源发出的光线进行准直,可以将光源发出的散射光统一朝向同一个方向,避免光源发散射出光线,此外,又通过光纤会聚元件对从准直元件发出的光线进行了会聚,从而可以提高光源出射光线的亮度;与传统主动发光像源相比,在同等亮度的要求下,本实施例提供的主动发光像源在较小的功率下即可保证足够的亮度, 可以减小功耗。
可选的,为了实现光线会聚,除了利用该会聚元件105中,还可以通过调整每个光源光轴的朝向实现光源光线的会聚。参见图29所示,所述光线控制装置1000还包括方向控制元件108;所述方向控制元件108对应一个或多个光源104,用于调整所对应的光源104的光轴朝向,将所对应的不同位置的光源104发出的光线进行会聚;如图29所示,将光源104发出的光线会聚到预设位置1062。
本实施例中,通过多个方向控制元件108实现对光源104发出的光线的会聚。例如,参见图29所示,不同位置均设置有光源104,图29中以设置7个光源104为例说明;相应的,设置7个方向控制元件108,控制光源104发出光线的方向。如图29所示,方向控制元件108将多个光源104发出的光线会聚至预设位置1062处。图29中以1062为一个点位置为例说明,本实施例中的预设位置1062也可以为一个很小的区域,即只需要将光源104发出的光线会聚至该区域内即可。例如,通过设置不同位置的方向控制元件108的朝向来调整光源104发出光线的方向,即调整光源的光轴朝向,从而实现光线会聚。
可选的,参见图30所示,方向控制元件为内凹的基板1081,所述光源104设置在所述基板1081的内凹面上,且所述光源104所在的平面与所述基板1081的内凹面相切。通过设置基板1081的形状,也可以调整光源104的光轴方向,进而实现会聚功能。
可选的,参见图31所示,方向控制元件108为设有倾斜角度的透镜1082,所述透镜1082的光轴朝向所述预设位置1062。利用透镜1082的朝向实现对光源104的光轴的调整。
在上述实施例的基础上,当采用光线聚集元件105或方向控制元件108实现会聚时,主动发光像源的成像亮度虽然很高,但是成像较小,且观看范围较小,不适合多人观看。本实施例中,该光线控制装置100还包括弥散元件106。参见图32或图33所示,弥散元件106设置在光线聚集元件105远离光源104的一侧、或者方向控制元件108远离光源104的一侧,弥散元件106用于将光源104发出的光线弥散开、并形成光斑1061。
以图33为例说明,本实施例中,通过多个方向控制元件108实现对光源 104发出的光线的会聚。例如,参见图33所示,不同位置均设置有光源104,图33中以设置7个光源104为例说明;相应的,设置7个方向控制元件108,控制光源104发出光线的方向。如图33所示,在不存在弥散元件106时,方向控制元件108将多个光源104发出的光线会聚至预设位置1062处。图33中以1062为一个点位置为例说明,本实施例中的预设位置1062也可以为一个很小的区域,即只需要将光源104发出的光线会聚至该区域内即可。例如,通过设置不同位置的方向控制元件108的朝向来调整光源104发出光线的方向,从而实现光线会聚。
同时,若只是将不同位置的光线会聚至很小范围的预设位置1062处,该主动发光像源只能在很小范围内成像,不方便观察者观看像源所成的像。本实施例中通过弥散元件106将光弥散开,并形成预设形状的、成像范围更大的光斑1061,从而方便观察者在大范围内观看像源成像。例如,以图33中最左侧的方向控制元件108为例说明,如图33所示,在不存在弥散元件106时,最左侧的光源104发出的光线A可以沿着光路a射向预设位置1062;当在方向控制元件108外部设置弥散元件106后,弥散元件106将光线A分散成多个光线(包括光线A1、光线A2等)并分散至一个范围内,即光斑1061,方便观察者在光斑1061的范围内均可以查看该主动发光像源的成像。
可选的,弥散元件106包括但不限于衍射光学元件(Diffractive Optical Elements,DOE),例如光束整形片(Beam Shaper),光线经过衍射光学元件之后,会弥散开来并且形成一个特定几何形状的光斑,光斑的大小和形状由衍射光学元件的微观结构所决定。光斑形状包括但不限于圆形、椭圆形、正方形、长方形、蝙蝠翼形状。弥散后的光斑在侧视方向的弥散角可以为10度,优选为5度;在正视方向的弥散角可以为50度,优选为30度。
方向控制元件108的数量为多个,不同的方向控制元件108设置在不同的位置,用于调整不同位置的光源所发出光线的出射方向,且不同位置的光源发出的光线的出射方向均指向同一个预设位置。如图33所示,图33中的方向控制元件108的数量为7个。一个方向控制元件108可以调整一个光源104发出的光线,也可以调整多个光源104发出的光线,本实施例对此不做限定。
本领域技术人员可以理解,图33中对弥散元件106的弥散作用只是示意 性说明,弥散元件106可以将光线弥散至光斑1061范围内,并不是将光源104发出的光线完全限制在光斑1061内。即光线A经弥散元件106后可能可以形成更大范围的光斑,其他光源104发出的光线经弥散元件106可形成其他光斑,但是所有光源104发出的光线均可以到达光斑1061。
本实施例提供的一种主动发光像源,通过方向控制元件将不同位置的光线会聚至同一个位置,可以提高光线亮度;同时,通过弥散元件将光线弥散开,从而可以形成预设形状的光斑,方便后续在光斑范围内成像,从而在提高光线亮度的同时,还可以扩大成像范围。
在上述实施例的基础上,方向控制元件108用于调整一个或多个光源104发出的光线的出射方向。
方向控制元件108所在平面上的点(x,y,z)满足以下方程:
(x p-x 0)(x-x 0)+(y p-y 0)(y-y 0)+(z p-z 0)(z-z 0)=0;
其中,x p,y p,z p分别表示预设位置1062的x轴坐标、y轴坐标和z轴坐标,x 0,y 0,z 0分别表示方向控制元件108所在平面上的一个已知点的x轴坐标、y轴坐标和z轴坐标。
本实施例中,方向控制元件108所在的平面指的是当方向控制元件108用于调整多个光源104发出的光线的出射方向时,多个光源104的排列平面。即,光线的出射方向垂直于该方向控制元件108所在平面。若光线朝向的预设位置1062设为点P,其坐标为(x p,y p,z p);而该方向控制元件108所在平面上的一个已知点M 0的坐标为(x 0,y 0,z 0),则光线的出射方向对应的向量为:
Figure PCTCN2020090610-appb-000001
Figure PCTCN2020090610-appb-000002
为方向控制元件108所在平面的法向量,而(x 0,y 0,z 0)是该平面上的一个点,根据点法式方程可知,方向控制元件108所在平面上的点(x,y,z)满足以下方程:
(x p-x 0)(x-x 0)+(y p-y 0)(y-y 0)+(z p-z 0)(z-z 0)=0。
同时,为了保证主动发光像源的会聚效果,方向控制元件108的尺寸需 要尽量小,方向控制元件108的尺寸具体可根据实际需求而定。其中,方向控制元件108所在平面上的点(x,y,z)满足如下的取值范围:
Figure PCTCN2020090610-appb-000003
其中的x 1,x 2,y 1,y 2,z 1,z 2是根据每个方向控制元件108所在位置而确定的数值,且不同的方向控制元件108所对应的x 1,x 2,y 1,y 2,z 1,z 2的数值不完全相同;或者,
方向控制元件108所在平面上的点(x,y,z)满足如下的取值范围:
Figure PCTCN2020090610-appb-000004
其中的Dx 1,Dx 2,Dy 1,Dy 2,Dz 1,Dz 2是基于方向控制元件108的尺寸大小而确定的数值。
在上述实施例的基础上,光线控制装置1000还包括光线阻隔元件;光线阻隔元件设置在光线控制装置的最外侧,比如设置在弥散元件106远离光源104的一侧,光线阻隔元件用于限制主动发光像源的出射光线的出射角度。这里的光线阻隔元件可以与上述实施例中的光线阻隔元件相同,重复之处不再赘述。
在上述实施例的基础上,方向控制元件108还包括反射元件;反射元件包括灯杯;灯杯为由反光面围成的中空壳体,且灯杯的开口方向朝向准直元件107;灯杯远离开口的尾端用于设置光源104。
此外,根据本实施例的主动发光像源还可以包括如上述实施例中的立体视觉形成层,例如,该立体视觉形成层可以设置在光学控制装置1000的出光侧。对于立体视觉形成层的描述可以参照上述实施例,重复之处不再赘述。例如,根据本实施例中的主动发光像源中的光源104的外形和排列方式可以与上述实施例中的发光二极管101的方式相同,重复之处不再赘述。根据本公开的另外一些实施例还提供一种抬头显示器,该抬头显示器的像源为上述实施例中的任何一种主动发光像源。此外,除了该主动发光像源外,该抬头显示器还可以包括如图27中所示的反射元件80以及反射成像装置30,相应的布置也可以参照图27以及相关描述,重复之处不再赘述。
根据本公开的一些实施例还提供一种主动发光像源,包括:光源阵列, 包括阵列排布的多个光源;光线控制装置,将所述多个光源发出光线的光轴会聚,以使从所述微透镜阵列出射的光线的光轴指向预定范围;弥散元件,设置在所述光线控制装置的出光侧,所述光线控制装置出射的光线经过所述弥散元件后扩散,以将所述光线控制装置出射的光线转变为具有预设截面形状的光束。例如,这里的“光线控制装置”可以指上述实施例中的微透镜阵列20或者光线控制装置1000的任何一种。根据本公开的实施例还提供一种包括该主动发光像源的抬头显示器,该抬头显示器可以设置在所述弥散元件的出光侧,以将从所述弥散元件发出的光线出射至观察区域。
根据本公开的另外一些实施例还提供一种机动车,该机动车包括上述任一实施例所述抬头显示系统、抬头显示器或主动发光像源。
此外,需要说明的是,根据图28-34说明的主动发光像源也可以应用于前述实施例中的抬头显示系统。
基于上述实施例,本公开还提供了以下技术方案:
(1)一种抬头显示器,包括:主动发光像源;所述主动发光像源包括像源基板和多个光源,且所有的所述光源设置在所述像源基板上,且设置在所述像源基板的同一侧;所述光源的外形为圆形,且多个光源紧密堆积排列;或者所述光源的外形为矩形,且多个光源完全紧密堆积排列;或者所述光源的外形为六边形,且多个光源完全紧密堆积排列;或者所述光源的外形为八边形,且多个光源紧密堆积排列;或者所述光源的外形为圆形或八边形,多个光源紧密堆积排列,且四个所述光源之间的空隙中额外设置大小与所述空隙相匹配的子光源;或者多个所述光源按照第一畸变形态排布,所述第一畸变形态与挡风玻璃的第二畸变形态呈相反且对应的关系。
(2)根据(1)所述的抬头显示器,其中,所述主动发光像源,包括:光线控制装置和多个光源;多个所述光源分布设置在不同的位置;所述光线控制装置包括准直元件和光线聚集元件;所述准直元件覆盖一个或多个光源,用于对覆盖的光源发出的光线进行准直并射出;所述光线聚集元件设置在所述准直元件远离所述光源的一侧,用于对所有的所述光源发出的光线进行会聚。
(3)根据(2)所述的抬头显示器,其中,所述光线控制装置还包括方向控制元件;所述方向控制元件对应一个或多个光源,用于调整所对应的光源的光轴朝向,将所对应的不同位置的光源发出的光线进行会聚。
(4)根据(3)所述的抬头显示器,其中,所述方向控制元件的数量为多个,且不同的方向控制元件设置在不同的位置,用于调整不同位置的光源发出的光线的出射方向,且不同位置的光源发出的光线的出射方向均指向同一个预设位置。
(5)根据(3)所述的抬头显示器,其中,所述方向控制元件用于调整一个或多个光源发出的光线的出射方向;所述方向控制元件所在平面上的点(x,y,z)满足以下方程:(x p-x 0)(x-x 0)+(y p-y 0)(y-y 0)+(z p-z 0)(z-z 0)=0;其中,x p,y p,z p分别表示所述预设位置的x轴坐标、y轴坐标和z轴坐标,x 0,y 0,z 0分别表示所述方向控制元件所在平面上的一个已知点的x轴坐标、y轴坐标和z轴坐标。
(6)根据(3)所述的抬头显示器,其中,所述方向控制元件为内凹的基板,所述光源设置在所述基板的内凹面上,且所述光源所在的平面与所述基板的内凹面相切;或者所述方向控制元件为设有倾斜角度的透镜,所述透镜的光轴朝向所述预设位置。
(7)根据(3)所述的抬头显示器,其中,所述方向控制元件还包括反射元件;所述反射元件包括灯杯;所述灯杯为由反光面围成的中空壳体,且所述灯杯的开口方向朝向所述准直元件;所述灯杯远离开口的尾端用于设置光源。
(8)根据(2)-(7)任一所述的抬头显示器,其中,所述光线控制装置还包括弥散元件;所述弥散元件设置在所述光线聚集元件远离所述光源的一侧、或者所述方向控制元件远离所述光源的一侧,所述弥散元件用于将所述光源发出的光线弥散开、并形成光斑。
(9)根据(2)所述的抬头显示器,其中,所述主动发光像源还包括:阻挡层,所述阻挡层设置在所述准直元件远离所述光源的一侧,且所述阻挡层与所述准直元件之间设有预设距离;所述阻挡层包括多个间隔设置的阻挡单元。
(10)根据(9)所述的抬头显示器,其中,所述阻挡单元为液晶;或者所述阻挡层是整体式液晶,通过控制所述整体式液晶的液晶单元的工作状态,形成多个间隔设置的阻挡单元。
(11)根据(2)所述的抬头显示器,其中,所述主动发光像源还包括:柱状透镜层,所述柱状透镜层设置在所述准直元件远离所述光源的一侧;所 述柱状透镜层包括多个竖直设置的柱状透镜,且每个柱状透镜至少覆盖两个不同列的光源;所述柱状透镜用于将一列的光源发出的光线射向第一位置、将另一列的光源发出的光线射向第二位置。
(12)根据(2)-(11)任一所述的抬头显示器,其中,所述光线控制装置还包括光线阻隔元件;所述光线阻隔元件设置在所述光线控制装置的最外侧,所述光线阻隔元件用于限制所述抬头显示器的出射光线的出射角度。
(13)根据(12)所述的抬头显示器,其中,所述光线阻隔元件包括多个设有预设高度的光线阻隔栅栏,且所述光线阻隔栅栏的高度方向朝向挡风玻璃。
(14)根据(1)所述的抬头显示器,其特征在于,还包括:反光镜和曲面镜;所述曲面镜具有内凹的反光面;所述反光镜设置在所述主动发光像源的出射光线的出射路径上,所述反光镜用于将所述主动发光像源发出的光线反射至所述曲面镜;所述曲面镜用于将所述反光镜发出的光线反射至成像区域。
以上所述仅是本公开的示范实施方式,应当指出:对于本技术领域的技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (27)

  1. 一种抬头显示系统,包括:
    多个光源,所述多个光源按照预设规则排列;
    微透镜阵列,所述微透镜阵列包括多个微透镜,每个所述微透镜对应一个或多个所述光源,并调整与其对应的一个或多个所述光源发出的光线的光轴方向;
    所述微透镜阵列将所述多个光源发出光线的光轴会聚,以使从所述微透镜阵列出射的光线的光轴指向预定范围;
    反射成像装置,所述反射成像装置设置在所述微透镜阵列的远离所述光源的一侧,所述多个光源发出的光线经过所述微透镜阵列后,出射至所述反射成像装置并在所述反射成像装置表面发生反射,反射光线出射至观察区域。
  2. 根据权利要求1所述的抬头显示系统,其中,所述多个光源中的至少部分光源配置为被独立控制发光以形成图像光线。
  3. 根据权利要求1或2所述的抬头显示系统,其中,所述预设范围的面积小于所述观察区域的面积。
  4. 根据权利要求1-3任一项所述的抬头显示系统,其中,所述预设规则包括所述多个光源沿第一方向和第二方向展开排列,且所述第一方向与所述第二方向不同。
  5. 根据权利要求4所述的抬头显示系统,其中,所述微透镜包括聚光微透镜。
  6. 根据权利要求5所述的抬头显示系统,其中,所述聚光微透镜为凸透镜,所述凸透镜与所述光源一一对应地设置于所述光源的出光方向上。
  7. 根据权利要求6所述的抬头显示系统,其中,所述凸透镜的主轴与所述对应光源发出光线的光轴不重合。
  8. 根据权利要求5所述的抬头显示系统,其中,所述聚光微透镜包括第一柱面透镜,所述第一柱面透镜对应地设置在所述沿第一方向展开排列的多个光源的出光方向上。
  9. 根据权利要求8所述的抬头显示系统,其中,所述沿第一方向展开排列的多个所述光源的光轴所在的平面为第一平面;所述第一柱面透镜的主轴 与所述第一平面不完全重合。
  10. 根据权利要求8所述的抬头显示系统,其中,所述聚光微透镜还包括第二柱面透镜,所述第二柱面透镜设置在所述第一柱面透镜与所述反射成像装置之间,且所述第二柱面透镜的主轴与所述第一柱面透镜的主轴垂直。
  11. 根据权利要求1-10任一项所述的抬头显示系统,其中,所述多个光源包括红色发光二极管、绿色发光二极管和蓝色发光二极管中的至少一种。
  12. 根据权利要求11所述的抬头显示系统,其中,所述发光二极管的外形和排列方式采用以下各项至少之一:
    所述发光二极管的外形为圆形,且所述多个发光二极管紧密排列;
    所述发光二极管的外形为三角形,且所述多个发光二极管紧密排列;
    所述发光二极管的外形为矩形,且所述多个发光二极管紧密排列;
    所述发光二极管的外形为六边形,且所述多个发光二极管紧密排列;
    所述发光二极管的外形为八边形,且所述多个发光二极管紧密排列;
    所述发光二极管的外形为圆形或八边形,所述多个发光二极管紧密排列,且每四个所述发光二极管之间的空隙中额外设置大小与所述空隙尺寸相匹配的发光二极管;以及
    多个所述发光二极管按照第一畸变形态排布,所述第一畸变形态与所述反射成像装置的第二畸变形态呈相反且对应的关系。
  13. 根据权利要求1-12任一项所述的抬头显示系统,其中,所述抬头显示系统还包括弥散元件;
    所述弥散元件设置在所述微透镜阵列远离所述光源的一侧,所述微透镜阵列出射的光线经过所述弥散元件后扩散,扩散后的光线出射至所述反射成像装置。
  14. 根据权利要求13所述的抬头显示系统,其中,所述弥散元件包括衍射光学元件和散射光学元件中的至少一种。
  15. 根据权利要求13或14所述的抬头显示系统,其中,所述弥散元件将所述微透镜阵列出射的光线转变为具有预设截面形状的光束。
  16. 根据权利要求1-15任一项所述的抬头显示系统,其中,所述抬头显示系统还包括发光控制单元;
    所述发光控制单元与所述多个光源电连接,所述发光控制单元控制所述 多个光源的发光状态并形成图像光线。
  17. 根据权利要求1-16任一项所述的抬头显示系统,其中,所述抬头显示系统还包括光线阻隔元件;
    所述光线阻隔元件设置在所述微透镜阵列远离所述光源的一侧,所述光线阻隔元件限制所述微透镜阵列出射光线的出射角度。
  18. 根据权利要求1-17任一项所述的抬头显示系统,其中,所述抬头显示系统包括多个微透镜阵列;
    每个所述微透镜阵列将与其对应的多个所述光源发出光线的光轴进行会聚,以使从所述微透镜阵列出射的光线的光轴指向不同的预定范围;
    所述微透镜阵列出射光线至所述反射成像装置,并在所述反射成像装置表面发生反射,反射光线出射至不同的观察区域。
  19. 根据权利要求1-18任一项所述的抬头显示系统,还包括:立体视觉形成层,所述立体视觉形成层设置在所述微透镜阵列远离所述光源的一侧,所述立体视觉形成层将经过其的光线分别出射至第一位置和第二位置。
  20. 根据权利要求19所述的抬头显示系统,其中,所述立体视觉形成层包括:多个间隔设置的阻挡单元;
    所述阻挡单元与所述微透镜阵列之间设有预设距离。
  21. 根据权利要求19所述的抬头显示系统,其中,所述立体视觉形成层包括分光透镜层;
    所述分光透镜层包括多个分光透镜。
  22. 根据权利要求1-21任一项所述的抬头显示系统,其中,所述抬头显示系统还包括至少一个反射元件;
    所述反射元件设置在所述微透镜阵列与所述反射成像装置之间;
    所述反射元件包括曲面反射元件和平面反射元件中的至少一种。
  23. 根据权利要求1-22任一项所述的抬头显示系统,其中,所述多个微透镜中的至少两个的主轴彼此不同,以使从所述微透镜阵列出射的光线的光轴指向所述预定范围。
  24. 根据权利要求1-23任一项所述的抬头显示系统,其中,所述多个光源通过电场激发产生光线。
  25. 一种主动发光像源,包括:
    光源阵列,包括阵列排布的多个光源;
    光线控制装置,将所述多个光源发出光线的光轴会聚,以使从所述微透镜阵列出射的光线的光轴指向预定范围;
    弥散元件,设置在所述光线控制装置的出光侧,所述光线控制装置出射的光线经过所述弥散元件后扩散,以将所述光线控制装置出射的光线转变为具有预设截面形状的光束。
  26. 一种抬头显示器,包括如权利要求25所述的主动发光像源以及反射成像装置,所述反射成像装置设置在所述弥散元件的出光侧,以将从所述弥散元件发出的光线出射至观察区域。
  27. 一种机动车,包括如权利要求1-24任一项所述的抬头显示系统或者如权利要求26所述的抬头显示器。
PCT/CN2020/090610 2019-05-17 2020-05-15 抬头显示系统、主动发光像源、抬头显示器和机动车 WO2020233529A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20810541.1A EP3971631A4 (en) 2019-05-17 2020-05-15 HEAD-UP DISPLAY SYSTEM, ACTIVE LIGHT EMITTING IMAGE SOURCE, HEAD-UP DISPLAY AND MOTOR VEHICLE
JP2021568708A JP7345209B2 (ja) 2019-05-17 2020-05-15 ヘッドアップディスプレイシステム、アクティブ発光型イメージソース、ヘッドアップディスプレイ及び自動車
US17/611,993 US20220252899A1 (en) 2019-05-17 2020-05-15 Head-up display system, active light-emitting image source, head-up display and motor vehicle
KR1020217040998A KR20220006646A (ko) 2019-05-17 2020-05-15 헤드-업 디스플레이 시스템, 능동 발광 이미지 원, 헤드-업 디스플레이 및 자동차

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910412213.8 2019-05-17
CN201910412213 2019-05-17
CN202010321007.9 2020-04-22
CN202010321007.9A CN111948813A (zh) 2019-05-17 2020-04-22 一种抬头显示系统

Publications (1)

Publication Number Publication Date
WO2020233529A1 true WO2020233529A1 (zh) 2020-11-26

Family

ID=73337847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090610 WO2020233529A1 (zh) 2019-05-17 2020-05-15 抬头显示系统、主动发光像源、抬头显示器和机动车

Country Status (6)

Country Link
US (1) US20220252899A1 (zh)
EP (1) EP3971631A4 (zh)
JP (1) JP7345209B2 (zh)
KR (1) KR20220006646A (zh)
CN (2) CN212255878U (zh)
WO (1) WO2020233529A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124028A1 (ja) * 2020-12-09 2022-06-16 株式会社小糸製作所 ヘッドアップディスプレイ
CN116047788A (zh) * 2023-03-31 2023-05-02 成都工业学院 一种超分辨率立体显示装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212255878U (zh) * 2019-05-17 2020-12-29 未来(北京)黑科技有限公司 一种抬头显示系统
WO2021147973A1 (zh) * 2020-01-21 2021-07-29 未来(北京)黑科技有限公司 多视角抬头显示系统和方法以及交通工具
CN113866997B (zh) * 2021-09-17 2023-10-24 深圳技术大学 显示系统
CN114879290B (zh) * 2022-05-13 2024-09-10 宁波舜宇奥来技术有限公司 扩散片和抬头显示设备
WO2024018339A1 (en) * 2022-07-21 2024-01-25 3M Innovative Properties Company Display and display system
CN116500804B (zh) * 2023-06-29 2023-09-15 成都工业学院 一种时分复用的逆反射立体显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732969B2 (ja) * 2011-03-30 2015-06-10 日本精機株式会社 ヘッドアップディスプレイ装置
CN105204172A (zh) * 2014-06-25 2015-12-30 罗伯特·博世有限公司 用于为车辆的乘客显示图像的视场显示设备
US20180088255A1 (en) * 2016-09-28 2018-03-29 Kohji Sakai Microlens array, image display apparatus, object apparatus, and mold
CN207817313U (zh) * 2018-01-15 2018-09-04 深圳市恒晨电器有限公司 一种在挡风玻璃成像的激光抬头显示光学系统
CN108983423A (zh) * 2018-07-26 2018-12-11 京东方科技集团股份有限公司 一种双目显示系统及车载抬头显示系统
CN208297842U (zh) * 2017-06-22 2018-12-28 现代摩比斯株式会社 车用抬头显示器装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2653186B2 (ja) * 1989-09-27 1997-09-10 キヤノン株式会社 ヘッドアップディスプレイ装置
US5867134A (en) * 1995-08-25 1999-02-02 Alvelda; Phillip VLSI visual display
DE19948889C1 (de) * 1999-10-11 2001-06-07 Unique M O D E Ag Vorrichtung zur Symmetrierung der Strahlung von linearen optischen Emittern und Verwendung der Vorrichtung
US6536907B1 (en) * 2000-02-08 2003-03-25 Hewlett-Packard Development Company, L.P. Aberration compensation in image projection displays
US7762683B2 (en) 2007-02-23 2010-07-27 Raytheon Company Optical device with tilt and power microlenses
JP6207850B2 (ja) 2013-03-13 2017-10-04 株式会社日立エルジーデータストレージ 虚像表示装置
JP6078798B2 (ja) * 2014-12-08 2017-02-15 パナソニックIpマネジメント株式会社 ヘッドアップディスプレイ、照明装置およびそれを備えた移動体
WO2017183556A1 (ja) * 2016-04-20 2017-10-26 日本精機株式会社 ヘッドアップディスプレイ装置
JP2018185437A (ja) 2017-04-26 2018-11-22 京セラ株式会社 3次元表示装置、3次元表示システム、ヘッドアップディスプレイシステム、および移動体
JP6791058B2 (ja) * 2017-08-09 2020-11-25 株式会社デンソー 立体表示装置
WO2019212633A1 (en) * 2018-05-04 2019-11-07 Harman International Industries, Incorporated Adjustable three-dimensional augmented reality heads up display
CN212255878U (zh) * 2019-05-17 2020-12-29 未来(北京)黑科技有限公司 一种抬头显示系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732969B2 (ja) * 2011-03-30 2015-06-10 日本精機株式会社 ヘッドアップディスプレイ装置
CN105204172A (zh) * 2014-06-25 2015-12-30 罗伯特·博世有限公司 用于为车辆的乘客显示图像的视场显示设备
US20180088255A1 (en) * 2016-09-28 2018-03-29 Kohji Sakai Microlens array, image display apparatus, object apparatus, and mold
CN208297842U (zh) * 2017-06-22 2018-12-28 现代摩比斯株式会社 车用抬头显示器装置
CN207817313U (zh) * 2018-01-15 2018-09-04 深圳市恒晨电器有限公司 一种在挡风玻璃成像的激光抬头显示光学系统
CN108983423A (zh) * 2018-07-26 2018-12-11 京东方科技集团股份有限公司 一种双目显示系统及车载抬头显示系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022124028A1 (ja) * 2020-12-09 2022-06-16 株式会社小糸製作所 ヘッドアップディスプレイ
CN116047788A (zh) * 2023-03-31 2023-05-02 成都工业学院 一种超分辨率立体显示装置
CN116047788B (zh) * 2023-03-31 2023-09-29 成都工业学院 一种超分辨率立体显示装置

Also Published As

Publication number Publication date
JP7345209B2 (ja) 2023-09-15
JP2022533657A (ja) 2022-07-25
US20220252899A1 (en) 2022-08-11
CN212255878U (zh) 2020-12-29
EP3971631A1 (en) 2022-03-23
CN111948813A (zh) 2020-11-17
EP3971631A4 (en) 2023-10-18
KR20220006646A (ko) 2022-01-17

Similar Documents

Publication Publication Date Title
WO2020233529A1 (zh) 抬头显示系统、主动发光像源、抬头显示器和机动车
WO2020233530A1 (zh) 光线控制装置、被动发光像源以及抬头显示系统
US9784974B2 (en) Virtual image display apparatus
JP6403216B2 (ja) 指向性バックライトにおけるクロストークの抑制
CN213092010U (zh) 一种抬头显示装置及机动车
WO2016047621A1 (ja) ヘッドアップディスプレイ装置
CN212569297U (zh) 一种抬头显示装置及抬头显示系统
CN110573930B (zh) 分割出瞳平视显示器系统和方法
JP2017015955A (ja) 表示装置
CN210666196U (zh) 一种抬头显示器
CN111948808A (zh) 一种抬头显示器
CN114077057A (zh) 一种抬头显示装置及抬头显示系统
CN210666197U (zh) 一种主动发光像源
CN210038331U (zh) 一种光线控制装置和被动发光像源
CN213240676U (zh) 一种平视显示设备、车辆
JP2005018056A (ja) 三次元画像表示装置
CN210038332U (zh) 一种光线控制装置和被动发光像源
CN111948809A (zh) 一种主动发光像源
US20240248306A1 (en) Virtual image display device and head-mounted display apparatus
CN112034619A (zh) 一种光线控制装置和被动发光像源
CN114114682A (zh) 一种平视显示设备、车辆及控制系统
CN117930513A (zh) 像源、抬头显示设备和车辆
CN112034618A (zh) 一种光线控制装置和被动发光像源
WO2017026327A1 (ja) 透過型スクリーンおよびヘッドアップディスプレイ
CN117930512A (zh) 方向控制装置、像源、抬头显示设备和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810541

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217040998

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020810541

Country of ref document: EP

Effective date: 20211217