WO2020232973A1 - 一种双D-π-A型柱[5]芳烃染料及其合成方法与应用 - Google Patents

一种双D-π-A型柱[5]芳烃染料及其合成方法与应用 Download PDF

Info

Publication number
WO2020232973A1
WO2020232973A1 PCT/CN2019/113790 CN2019113790W WO2020232973A1 WO 2020232973 A1 WO2020232973 A1 WO 2020232973A1 CN 2019113790 W CN2019113790 W CN 2019113790W WO 2020232973 A1 WO2020232973 A1 WO 2020232973A1
Authority
WO
WIPO (PCT)
Prior art keywords
dye
arene
double
column
application according
Prior art date
Application number
PCT/CN2019/113790
Other languages
English (en)
French (fr)
Inventor
曹德榕
廖超强
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2020232973A1 publication Critical patent/WO2020232973A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Definitions

  • the invention relates to the application field of photoelectric conversion materials in fine chemical industry and the technical field of dye-sensitized solar cells, in particular to a double D- ⁇ -A column [5] arene dye and its synthesis method and application.
  • Dye-sensitized solar cells are a new type of flexible device that converts solar energy into electrical energy. Because of its simple and convenient preparation, this type of battery can obtain higher energy conversion efficiency under outdoor light and indoor low light, making it possible to be applied in commercial fields such as interior decoration and building curtain walls, which has attracted market attention.
  • the advantage is that a small amount of dye can be used to prepare a large number of devices through the dye bath, the cost is low, and the preparation process is simple and repeatable.
  • the structure of the sensitizing dye is very important, which plays a decisive role in the photoelectric conversion efficiency of the cell.
  • dyes with the highest photoelectric conversion efficiency based on iodine-based electrolytes are polypyridine ruthenium and metalloporphyrin complex dyes. These two types of high-efficiency dyes are metal complexes.
  • the preparation process is relatively long and separation and purification are relatively more difficult.
  • the advantages of simple synthesis of pure organic dyes, easy design and modification of molecular structure, and high molar extinction coefficient have been widely developed and applied.
  • the D- ⁇ -A structure can effectively capture solar photons through intramolecular photoelectron transfer, which has been proven to be a structure required for efficient dye molecules.
  • Double (D- ⁇ -A) type dyes have two independent D- ⁇ -A structural units in a dye molecule, which is equivalent to a molecule with twice the light-harvesting unit, and the light-harvesting ability is significantly enhanced .
  • the column [5] aromatic hydrocarbon has an excellent three-dimensional structure, which can effectively branch the ⁇ - ⁇ stacking caused by the conjugated surface of the dye molecule, and the conjugate bridge structure provided by its benzene ring can inhibit the intermolecular ⁇ - ⁇ gathers.
  • the invention designs and synthesizes a kind of pure organic dyes with column [5] aromatic hydrocarbon as conjugated bridge structure and double (D- ⁇ -A) structure.
  • the dye has the advantages of simple structure, easy synthesis, and good photoelectric conversion performance.
  • the purpose of the present invention is to provide a method and application for the synthesis of double D- ⁇ -A column [5] arene dye.
  • the purpose of the present invention is to provide a double D- ⁇ -A column [5] arene dye that inhibits the aggregation and enhances the light-harvesting ability in view of the serious aggregation of the dyes currently used for DSSCs.
  • This type of dye is a bilateral pure organic dye with alkoxy column [5] aromatic hydrocarbon as the bridge structure, phenothiazine as the electron donor, thiophene/furan as the ⁇ bridge, and cyanoacetic acid as the electron acceptor and anchor group.
  • Such dyes have good application performance in dye-sensitized solar cells.
  • the double D- ⁇ -A column [5] aromatic dye provided by the invention has simple preparation method and high efficiency, can effectively carry out large-scale production, and has universality.
  • the present invention also provides the application of a kind of double D- ⁇ -A type pillar [5] arene dyes in DSSCs, specifically as a sensitizer applied to the photoanode of DSSCs devices, which can effectively inhibit electronic recombination, Increase the open circuit voltage, the double D- ⁇ -A structure enhances the light-harvesting ability of the dye, and effectively increases the short-circuit current, thereby effectively improving the photoelectric performance of the dye-sensitized sun.
  • a kind of double D- ⁇ -A type pillar [5] arene dyes in DSSCs specifically as a sensitizer applied to the photoanode of DSSCs devices, which can effectively inhibit electronic recombination, Increase the open circuit voltage, the double D- ⁇ -A structure enhances the light-harvesting ability of the dye, and effectively increases the short-circuit current, thereby effectively improving the photoelectric performance of the dye-sensitized sun.
  • the present invention provides a double D- ⁇ -A column [5] arene dye, the general structural formula is as follows:
  • n is 0-3;
  • R 1 is a branched chain with 1-20 carbon atoms or a straight-chain alkyl group with 1-20 carbon atoms;
  • R 2 is a straight chain with 1-4 carbon atoms Alkyl;
  • X is O atom or S atom.
  • the present invention provides a method for synthesizing the above-mentioned double D- ⁇ -A column [5] arene dyes, when the value of n is 0-3, R 1 is a branched alkyl group with 1-20 carbon atoms or The straight-chain alkyl group with 1-20 carbon atoms, R 2 is the straight-chain alkyl group with 1-4 carbon atoms, and X is an O atom or S atom, including the following steps:
  • Intermediate 1 is efficiently prepared by bromination reaction with N-bromosuccinimide at room temperature to obtain Intermediate 2;
  • Intermediate 2 is converted into phenylboronic acid pinnacle of intermediate 3 under the catalysis of divalent palladium Alcohol ester structure;
  • further intermediate 3 and intermediate 4 are catalyzed by zero-valent palladium to efficiently synthesize key intermediate 5 under normal pressure; at room temperature, key intermediate 5 is hydrolyzed in trifluoroacetic acid,
  • the double D- ⁇ -A column [5] aromatic dye can be obtained.
  • the double D- ⁇ -A type column [5] arene dyes provided by the invention can be applied to prepare dye-sensitized solar cells.
  • the method includes the following steps:
  • the organic solvent in step (1) is a mixed solvent of chloroform and ethanol, wherein the volume ratio of chloroform to ethanol is 1-5:1.
  • the concentration of the dye solution in step (1) is 1-5 ⁇ 10 -4 M.
  • the glass with a transparent conductive layer has a width of 1.2 cm and a length of 1.7 cm;
  • step (2) is performed in a dark environment, and the dye bath treatment time is 6-24 hours.
  • the electrolyte solution in step (3) contains 1,2-dimethyl-3-propylimidazolium iodide with a concentration of 0.3-0.6M, LiI with a concentration of 0.1M, and I with a concentration of 0.05M. 2 And the concentration of 0.5M 4-tert-butylpyridine in acetonitrile solution.
  • the synthesis method of the bis(D- ⁇ -A) dye containing column [5] aromatic hydrocarbon of the present invention is simple, and the raw materials are cheap and easy to obtain.
  • the synthesis is carried out according to the following reaction formula:
  • the dye material sensitized solar cell prepared by the synthesized double D- ⁇ -A type column [5] arene dye in the present invention is tested for battery performance, and the measured photoelectric conversion efficiency is 7.1-8.3%.
  • the performance test includes the following steps: lead wires from the photoanode and photocathode of the dye-sensitized solar cell, and connect them to the battery performance test device (Keithley 2400), and use the solar simulator model (Newport-94043A, 450W).
  • Xenon lamp, AM1.5G filter adjust the light intensity to 100mW/cm 2 , the working area of the battery is 0.12cm 2 , test the JV curve based on the dye-sensitized battery, the measured photoelectric conversion efficiency is 7.1-8.3% .
  • the present invention has the following advantages and beneficial effects:
  • the double D- ⁇ -A column [5] arene dye provided by the present invention, in order to inhibit the aggregation of dye molecules, a double D- ⁇ -A is synthesized by introducing two D- ⁇ -A structures into a dye molecule Type column [5] arene dyes; the double D- ⁇ -A type column [5] arene dyes can be used to prepare dye-sensitized solar cells, where the open-circuit voltage can be increased; The light absorption capacity increases the short-circuit current. Therefore, dye-sensitized solar cells based on this type of dye can obtain a large photovoltage and photocurrent, thereby achieving a higher photoelectric conversion efficiency.
  • Figure 1 is an ultraviolet/visible absorption spectrum of the dye synthesized in Example 1 in a chloroform solution.
  • Fig. 2 is the measured current-voltage curve of the dye-assembled battery synthesized in Example 1.
  • n 1
  • R 1 is a branched alkyl group with 8 carbon atoms
  • R 2 is an alkyl group with 1 carbon atom
  • X is an S atom.
  • the method for synthesizing double D- ⁇ -A column [5] aromatic dye includes the following steps:
  • the double D- ⁇ -A column [5] aromatic dye prepared in Example 1 shows two main absorption peaks, one is the absorption peak of the ⁇ - ⁇ * transition The other is the absorption peak of intramolecular charge transfer (I CT).
  • the molar extinction coefficient of the dye is relatively high and the absorption range is wide. It exceeds 30000M -1 ⁇ cm -1 in the range of 400-550nm, which indicates that the dye has Good light trapping ability.
  • the mixture After adding ethanol, acetic acid, terpineol and ethyl cellulose to the prepared TiO 2 nanocrystalline particles, the mixture is ground to obtain a slurry-like substance.
  • the desired white viscous TiO 2 nanocrystalline slurry is obtained by ultrasound.
  • Sensitization of the photoanode soak the photoanode prepared in step (3) in the dye solution prepared in step (4) and dye bath in a dark and dark environment for 12 hours, then take it out and rinse the surface with ethanol to remove residual or physical Dyes adsorbed on the surface of the film should be dried and stored in a dry and dark environment to be packaged for later use;
  • Battery assembly Insulating epoxy resin film is coated around the sensitized photoanode TiO 2 film, with the TiO 2 layer in the middle. Add 1-2 drops of electrolyte to the surface of the TiO 2 film (prepared in step (5)), and cover the prepared platinum counter electrode on the photoanode (perforate first, remove bubbles and seal with epoxy resin), with clamps on both sides After fixing, the open sensitized dye solar cell to be tested is formed, and the dye sensitized solar cell is obtained.
  • the lead wires from the photoanode and photocathode of the dye-sensitized solar cell prepared in Example 3 were connected to the battery performance test device (Keithley 2400), and the solar simulator model (Newport-94043A, 450W xenon lamp, AM1.5G) was used. filter) the light intensity was adjusted to 100mW / cm 2, the battery operating area of 0.12cm 2, the test based on the JV curve of the dye-sensitized cells.
  • Table 1 is a data table of the performance of the dye-sensitized solar cell prepared in Example 3 and the performance of the solar cell prepared with existing dyes).
  • the performance parameters of the solar cell prepared with dye a as the reference in Example 1 are from Org Electron, 14 (2013), 2662-2672.
  • the solar cell prepared by using the dye obtained in Example 1 exhibits a higher photoelectric conversion efficiency, and has a higher short-circuit current and open-circuit voltage.
  • the main reason is that the double (D- ⁇ -A) column [5] arene dye has good light trapping ability, the electron is injected into titanium dioxide with high efficiency, and the columnarene inhibits electronic recombination; from the data in Table 1, the present invention provides The performance of the solar cell prepared by the dye is better than the solar cell prepared by the existing dye a.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种双D-π-A型柱[5]芳烃染料及其合成方法与应用。所述双D-π-A型柱[5]芳烃染料具有共轭结构,双D-π-A型柱[5]芳烃染料的合成及其在染料敏化太阳电池中的应用。本发明以烷氧基柱[5]芳烃的苯环为共轭桥连结构,增加染料分子的共轭性,通过烷氧基柱[5]芳烃桥连左右两个D-π-A结构单元来增强染料的摩尔吸光系数和拓宽染料的捕光范围,用柱芳烃的三维立体空间结构抑制染料分子的聚集。该染料具有优良的捕光能力,用此染料构建的染料敏化太阳电池,能够获得较大的光电流和电压,从而取得较高的光电转换效率。

Description

一种双D-π-A型柱[5]芳烃染料及其合成方法与应用 技术领域
本发明涉及属于精细化工中的光电转化材料应用领域及染料敏化太阳电池技术领域,具体涉及一种双D-π-A型柱[5]芳烃染料及其合成方法与应用。
背景技术
染料敏化太阳能电池(DSSCs)是一种新型的将太阳能转化为电能的柔性装置。这类电池因为其制备简单方便,在室外光和室内弱光下均可获得较高的能量转换效率,使之在室内装饰和建筑幕墙等商业领域的应用成为可能,引起了市场的关注。其优点在于少量的染料,通过染浴可以制备大量的器件,成本廉价,制备工艺简单可重复。对于一个高性能的染料敏化太阳能电池来说,敏化染料的结构至关重要,其对电池的光电转换效率起着决定性作用。当前,基于碘基电解液有着最高光电转换效率的染料的是多吡啶钌和金属卟啉配合物染料,这两类高效的染料为金属配合物,制备工艺较长,分离提纯相对更加困难。而纯有机染料的合成简单、分子结构易于设计与修饰、摩尔消光系数高等优点,得到了广泛的开发与应用。
D-π-A型结构通过分子内光电子转移可以有效的捕获太阳光子,已经被证实是高效的染料分子需要具备的结构。双(D-π-A)型染料是在一个染料分子中,具有两个独立的D-π-A结构单元,这样就相当于一个分子具有了两倍的捕光单元,捕光能力显著增强。同时,柱[5]芳烃具有优异的空间立体结构,可以有效的支开染料分子由共轭面引起的π-π堆积,通过其苯环提供的共轭桥连结构,抑制分子间的π-π聚集。目前还没有报道以柱[5]芳烃为共轭桥连结构的双边染料。
本发明设计并合成一类以柱[5]芳烃为共轭桥连结构,具有双(D-π-A)结构的纯有机染料。该染料具有结构简单,易于合成,光电转换性能良好等优点。
发明概述
技术问题
问题的解决方案
技术解决方案
为了克服现有技术存在的不足,本发明的目的是提供一种双D-π-A型柱[5]芳烃染料的合成方法与应用。
本发明的目的在于针对现在DSSCs用染料存在严重聚集,提供了一种抑制聚集和增强捕光能力的双D-π-A型柱[5]芳烃染料。这类染料以烷氧基柱[5]芳烃为桥连结构,吩噻嗪为电子给体,噻吩/呋喃为π桥,氰基乙酸为电子受体和锚固基团的双边纯有机染料。这类染料在染料敏化太阳电池上具有良好的应用性能。
本发明提供的双D-π-A型柱[5]芳烃染料,制备方法工艺简单,效率高,能有效进行规模化生产,具有普适性。
本发明还在于提供所述的一类双D-π-A型柱[5]芳烃染料在DSSCs中的应用,具体作为敏化剂应用于DSSCs器件的的光阳极,能够有效地抑制电子复合,提高开路电压,双D-π-A结构增强了染料的捕光能力,有效的提高了短路电流,从而有效地提高染料敏化太阳的光电性能。
本发明提供的合成方法,在具有空间三维结构的柱[5]芳烃两侧通过共轭结构引入两个具有D-π-A结构单元,得到所述双D-π-A型柱[5]芳烃染料,该染料可以应用于制备染料敏化太阳电池。
本发明的目的至少通过如下技术方案之一实现。
本发明提供的一种双D-π-A型柱[5]芳烃染料,结构通式如下所示:
Figure PCTCN2019113790-appb-000001
其中,n的取值为0-3;R 1为碳原子数为1-20的支链或碳原子数为1-20的直链烷基;R 2为碳原子数为1-4的直链烷基;X为O原子或S原子。
本发明提供的一种合成上述双D-π-A型柱[5]芳烃染料的方法,当n的取值为0-3、R 1为碳原子数为1-20的支链烷基或碳原子数为1-20的直链烷基、R 2为碳原子数为1-4的直链烷基及X为O原子或S原子,包括如下步骤:
Figure PCTCN2019113790-appb-000002
Figure PCTCN2019113790-appb-000003
中间体1在室温下通过与N-溴代琥珀酰亚胺的溴代反应,高效的制备得到中间体2;中间体2在二价钯的催化下,转化为中间体3的苯硼酸频哪醇酯结构;进一步的中间体3与中间体4在零价钯的催化下,常压条件下高效的合成出关键中间体5;在室温下,关键中间体5在三氟乙酸中水解,就可以得到所述双D-π-A型柱[5]芳烃染料。
本发明提供的双D-π-A型柱[5]芳烃染料能够应用于制备染料敏化太阳电池。
进一步地,本发明提供的双D-π-A型柱[5]芳烃染料应用于制备染料敏化太阳电池时,包括如下步骤:
(1)将所述双D-π-A型柱[5]芳烃染料加入有机溶剂中,完全溶解得到染料的溶液;
(2)将吸附有纳米TiO 2薄膜的透明导电玻璃(具有掺F的SnO 2涂层的玻璃,FTO)浸泡在步骤(1)所述染料的溶液中进行染浴处理,得到光阳极;
(3)在另一块透明导电玻璃中间沉积Pt催化剂层,作为光阴极;将附有所述光阳极的纳米TiO 2薄膜层与光阴极催化剂层面对面排布,周边密封成密闭腔体,腔体内填充有电解质,得到所述染料敏化太阳电池。
进一步地,步骤(1)所述有机溶剂为氯仿和乙醇的混合溶剂,其中,氯仿与乙醇的体积比为1-5∶1。
进一步地,步骤(1)所述染料的溶液浓度为1-5×10 -4M。
优选地,步骤(2)所述透明导电玻璃为具有掺F的SnO 2涂层的玻璃;所述纳米TiO 2薄膜的厚度为5-17μm,所述纳米TiO 2膜的长度为4mm,所述纳米TiO 2膜的宽度为3mm。
优选地,具有透明导电层(掺F的SnO 2涂层)的玻璃宽为1.2cm,长为1.7cm;
进一步地,步骤(2)所述染浴处理是在避光环境下进行的,所述染浴处理的时间为6-24小时。
进一步地,步骤(3)所述电解质溶液为含有浓度为0.3-0.6M的1,2-二甲基-3-丙基碘化咪唑嗡、浓度为0.1M的LiI、浓度为0.05M的I 2及浓度为0.5M 4-叔丁基吡啶的乙腈溶液。
本发明的含柱[5]芳烃的双(D-π-A)型染料的合成方法简单,原料价廉易得,举例说明,其合成按如下反应式进行:
Figure PCTCN2019113790-appb-000004
Figure PCTCN2019113790-appb-000005
由中间体1至中间体2的合成方法:
以重蒸的四氢呋喃为溶剂,溶入1份中间体1,冰水浴下降温至0℃,逐滴加入1.2份NBS的四氢呋喃溶液,让其自然反应至常温12h;倒入水中,加入二氯甲烷萃取,有机层水洗,干燥,浓缩,粗产物通过柱层析分离提纯,洗脱剂比列为石油醚∶二氯甲烷∶乙酸乙酯=30∶1∶1(v/v)。
由中间体2至中间体3的合成方法:
称取1份的中间体2、2份的联二硼酸频哪醇酯、2份的醋酸钾和重蒸的1,4-二氧六环在两口反应瓶中,抽换氩气3次;惰性气氛下,加入催化量的Pd(dppf) 2Cl 2,室温下搅拌5-10min,升温到100℃,反应过夜,TLC监控,展开剂用石油醚∶二氯甲烷∶乙酸乙酯=20∶2∶1(v/v);冷却,往反应瓶中加入水,用二氯甲烷萃取,有机层水洗,干燥,浓缩,粗产物通过柱层析分离提纯。
中间体5的合成方法:
在Ar气氛下,以四氢呋喃/水(v/v=4∶1)为溶剂,加入1份的中间体4和2.3份的中间体3,0.1份的Pd(PPh 3) 4,5份的无水K 2CO 3;升温至70℃反应24h;冷却,往反应瓶中加入水,用二氯甲烷萃取,有机层水洗,干燥,浓缩粗产物通过柱层析纯化,石油醚∶二氯甲烷∶乙酸乙酯=10∶1∶1(v/v)过柱子。
目标染料的合成方法:
纯化干燥后的中间体5转移到单口反应瓶中,加入20mL三氟乙酸,室温下避光搅拌反应4-8h;搅拌下,反应液倒入去离子水中,待固体析出,过滤收集固体,并用去离子水反复洗涤直至洗涤产生的液体的pH为中性,干燥,即得双D-π-A 型柱[5]芳烃染料。
本发明合成的双D-π-A型柱[5]芳烃染料制备的染料料敏化太阳电池,进行电池性能测试,测得的光电转换效率为7.1-8.3%。
所述性能测试包括如下步骤:从所述染料料敏化太阳电池的光阳极和光阴极分别引出导线,接到电池性能测试装置(Keithley 2400)上,用太阳光模拟器模(Newport-94043A,450W氙灯,AM1.5G滤波器)将光强度调节至100mW/cm 2,电池的工作面积为0.12cm 2,测试基于该染料敏化的电池的J-V曲线,测得的光电转换效率为7.1-8.3%。
发明的有益效果
有益效果
与现有技术相比,本发明具有如下优点和有益效果:
本发明提供的双D-π-A型柱[5]芳烃染料,为抑制染料分子间聚集,通过在一个染料分子中引入两个D-π-A结构合成出一种双D-π-A型柱[5]芳烃染料;所述双D-π-A型柱[5]芳烃染料能够应用于制备染料敏化太阳电池,在所述染料敏化太阳电池能够提高开路电压;增强电池对太阳光的吸收能力,提升了短路电流,因此基于该类型染料的染料敏化太阳电池能获得到大的光电压和光电流,从而取得较高的光电转换效率。
对附图的简要说明
附图说明
图1为实施例1中所合成的染料在氯仿溶液中紫外/可见吸收谱图。
图2为实施例1中所合成的染料组装的电池测得的电流-电压曲线。
发明实施例
本发明的实施方式
以下结合附图和实例对本发明的具体实施作进一步说明,但本发明的实施和保护不限于此。需指出的是,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现或理解的。所用试剂或仪器未注明生产厂商者,视为可以通过市售购买得到的常规产品。
实施例1
双D-π-A型柱[5]芳烃染料的合成
作为举例,实施例1合成的双D-π-A型柱[5]芳烃染料的结构式如下所示:
Figure PCTCN2019113790-appb-000006
n取值为1,R 1为碳原子数为8的支链烷基,R 2为碳原子数为1的烷基;X为S原子。
合成双D-π-A型柱[5]芳烃染料的方法,包括如下步骤:
(1)化合物2的合成
Figure PCTCN2019113790-appb-000007
以重蒸的四氢呋喃为溶剂,溶入3.11g(5mmol)化合物1,冰水浴下降温至0 ℃,逐滴加入溶有1.068g(6mmol)NBS的四氢呋喃溶液,让其自然升温至常温反应12h。倒入水中,加入二氯甲烷萃取3次,有机层饱和食盐水洗,合并有机相,干燥,浓缩,粗产物通过柱层析分离提纯,洗脱剂比列为石油醚∶二氯甲烷∶乙酸乙酯=30∶1∶1(v/v/v),旋干目标产物,得到2.86g深红色固体,收率:80%。熔点123.8-125.1℃。
1H NMR(400MHz,Chloroform-d,ppm)δ8.15(s,1H),8.64-8.65(d,J=3.8Hz,1H),7.39(s,1H),7.21-7.25(m,5H),7.08-7.13(m,3H),6.12-6.13(d,J=3.8Hz,1H),6.10-6.11(d,J=4.2,1H),3.92-3.93(d,J=5.5,2H),1.75-1.81(m,1H),1.56(s,9H),1.42-1.53(m,4H),1.31-1.40(m,4H),0.95(m,6H).
(2)化合物3的合成
Figure PCTCN2019113790-appb-000008
称取1.43g(2mmol)的上述化合物2、1.01g(4mmol)联硼酸频哪醇酯、0.39g(4mmol)醋酸钾和50mL重蒸的1,4-二氧六环在100mL两口反应瓶中,抽换氩气3次,加入催化量的Pd(dppf) 2Cl 2,室温下搅拌5-10min,油浴升温到100℃,搅拌24小时后结束反应。冷却至室温,反应液倒入水中,用25mL二氯甲烷萃取3次,合并有机相,饱和食盐水洗涤后用无水硫酸钠干燥,旋蒸移去二氯甲烷,残余物以石油醚∶二氯甲烷∶乙酸乙酯=20∶2∶1(v/v/v)为洗脱剂经硅胶柱层析色谱分离纯化,真空干燥后得棕黑色固体3(961mg,1.3mmol),产率为64%,熔点:169.2-171.5℃。
1H NMR(400MHz,Chloroform-d,ppm)δ8.15(s,1H),7.64-7.65(d,J=3.9Hz,1H),7.39(s,1H),7.20-7.25(m,5H),7.09-7.13(m,3H),6.12-6.13(d,J=2.8Hz,1H),6.10-6.11(d,J=3.4,1H),3.92-3.94(d,J=5.6,2H),1.75-1.81(m,1H),1.56(s,9H), 1.44-1.51(m,4H),1.30-1.36(m,4H),1.30(s,12H),0.95(m,6H).
(3)化合物5的合成
Figure PCTCN2019113790-appb-000009
称取0.8876mg(0.876mmol,1eq)的化合物4、1.4953g(1.9597mmol,2.3eq)化合物3,464mg(4.4mmol,5eq)无水碳酸钠,转移到100mL两口反应瓶中,加入50mL的四氢呋喃/水(v/v=4∶1)混合溶剂,抽换氩气,加入催化量的Pd(PPh 3) 4,室温下搅拌10分钟,油浴锅升温到70℃,搅拌24小时后结束反应。冷却至室温,反应液倒入水中,用25mL二氯甲烷萃取3次,合并有机相,饱和食盐水洗涤后用无水硫酸钠干燥,旋蒸移去二氯甲烷,残余物以石油醚∶二氯甲烷∶乙酸乙酯=10∶1∶1(v/v/v)为洗脱剂经硅胶柱层析色谱分离纯化,真空干燥后得黑色固体4(1.19g,0.56mmol),产率是64%。熔点:218.3-220.7℃。
1H NMR(400MHz,Chloroform-d,ppm)δ8.15(s,2H),7.63(d,J=4.0Hz,2H),7.30-7.27(m,6H),7.21-7.24(m,4H),7.12-7.17(m,8H),7.98-7.00(m,4H),6.67-6.68(d,J=2.8Hz,4H),6.63-6.64(d,J=3.4Hz,2H),6.54(s,2H),6.19(s,2H),6.17(s,2H),6.10(s,2H),4.11-4.15(d,J=14.0Hz,2H),3.94-3.95(d,J=5.6Hz,4H),3.82-3.85(d,J=14.1Hz,2H),3.82(s,2H),3.74(s,4H),3.60(s,6H),3.52(s,6H),3.41(s,6H),3.34(s,6H),1.77-1.83(m,2H),1.57(s,18H),1.44-1.54(m,8H),1.32-1.40(m,8H),0.91-1.02(m,12H).
(4)化合物6的合成
Figure PCTCN2019113790-appb-000010
真空干燥后的637mg(0.3mmol)化合物5,直接加入,50mL的单口瓶中再加入三氟乙酸(20mL)于常温下搅拌6h。反应结束后,将反应液倒入200mL的去离子水中。在600rpm的转速下搅拌60分钟,待固体析出,过滤收集固体,并用去离子水反复洗涤直至洗涤产生的液体的pH为中性。将固体干燥得黑色固体柱芳烃吩噻嗪染料(537mg,0.13mmol),产率为89%,熔点为264.3-267.7℃。
1H NMR(400MHz,THF-d 8,ppm)δ10.69(s,2H),8.20(s,2H),7.69-7.70(d,J=3.9Hz,2H),7.33-7.34(m,4H),7.22-7.27(m,6H),7.12-7.16(m,8H),7.06(d,J=3.5Hz,2H),6.97-6.98(d,J=8.5Hz,2H),6.69-6.70(d,J=3.5Hz,2H),6.65(s,4H),6.54(s,2H),6.13-6.14(d,J=3.0Hz,2H),6.11-6.12(d,J=2.9Hz,2H),6.00(s,2H),3.98-4.01(d,J=13.7Hz,2H),3.89-3.90(d,J=5.4Hz,4H),3.77-3.80(d,J=13.6Hz,2H),3.67(s,2H),3.58(s,4H),3.53(s,6H),3.50(s,6H),3.41(s,6H),3.28(s,6H),1.66-1.72(m,2H),1.36-1.53(m,8H),1.25-1.34(m,8H),0.83-0.91(m,12H).
实施例2
对实施例1制得的双D-π-A型柱[5]芳烃染料进行紫外-可见吸收光谱测试,紫外-可见吸收光谱如图1所示。
其中,紫外-可见吸收光谱测试的相关参数及仪器如下所示。
溶剂:氯仿;
浓度:2×10 -5M;
温度:室温;
仪器:Shimadzu UV-2450紫外可见分光光度计。
从图1中可以看出在氯仿溶液中,实施例1制得的双D-π-A型柱[5]芳烃染料表现为两个主要的吸收峰,一个是π-π*跃迁的吸收峰,另一个是分子内电荷转移(I CT)的吸收峰,染料的摩尔消光系数较高,吸收范围宽,在400-550nm的范围内都超过了30000M -1·cm -1,这表明染料具有良好的光捕获能力。
实施例3
将本发明实施例1制得的双D-π-A型柱[5]芳烃染料应用于制备染料敏化太阳电池中,包括如下步骤:
(1)附着有透明导电层(掺F的SnO 2涂层)的玻璃的预处理:将裁剪好的FTO(宽1.2cm,长1.7cm)超声清洗,并用去离子水冲洗数次。再置于KOH的饱和乙醇溶液中浸泡24h。再依次用去离子水、丙酮、去离子水和乙醇超声清洗,干燥后保存待用;
(2)TiO 2纳晶浆料的制备:室温下,将15mL Ti(OBu) 2和20mL EtOH的混合液剧烈搅拌(转速600rmp)下加入50mL乙酸和去离子水并继续搅拌1h。将此混合液移入内衬特氟隆(聚四氟乙烯)的高压釜于230℃处理12h后自然冷却至室温。将所得的悬浊液过滤取沉淀,依次用去离子水和乙醇洗涤多次,50℃下于烘箱中烘6h至干后得到TiO 2纳晶颗粒。向制备的TiO 2纳晶颗粒分别加入乙醇、乙酸、松油醇及乙基纤维素后,将该混合物研磨得到泥浆状物质。经超声得到所需的白色粘性TiO 2纳晶浆料。
(3)纳晶TiO 2膜的制备:将处理好的导电玻璃导电面朝上,将丝网板置于玻璃上方,控制1cm的网距,将制备好的TiO 2纳晶浆料置于丝网上进行印刷。控制TiO 2膜厚度为12μm(面积为3×4mm)。将制备的光阳极需放入烘箱于125℃干燥。再放于马弗炉中依次在不同的温度下处理(325℃烘焙5min,375℃烘焙5min,450℃烘焙15min,500℃烘焙15min),以除去膜上的有机物质。然后浸于制备的0.2M的TiCl 4水溶液中处理半小时。处理结束用去离子水和乙醇冲洗干净,置于马弗炉中升温500℃再次烘焙30min。冷至70℃后备用;
(4)染料溶液的配制:将实施例1制得的双D-π-A型柱[5]芳烃染料溶于氯仿溶液中,配制成2×10 -4mol·L -1染料溶液;
(5)电解质溶液的配制:配制含有浓度为0.6M的1,2-二甲基-3-丙基碘化咪唑嗡、浓度为0.1M的LiI、浓度为0.05M的I 2及浓度为0.5M的4-叔丁基吡啶的乙腈溶液;
(6)光阳极的敏化:将步骤(3)制备的光阳极浸泡于步骤(4)配制的染料溶液中在阴暗避光环境中染浴12小时后,取出并用乙醇冲洗表面除去残留或物理吸附于膜表面的染料,吹干后保存干燥避光环境以待封装,备用;
(7)电池装配:在完成敏化的光阳极TiO 2薄膜周围涂上绝缘环氧树脂薄膜,TiO 2层位于中间。向TiO 2膜表面滴加1-2滴电解液(步骤(5)制备),并在光阳极上盖制备的铂对电极(先打孔,排除气泡后用环氧树脂密封),两边用夹子固定即形成待测的开放性敏化染料太阳电池,得到所述染料敏化太阳电池。
实施例4
染料敏化太阳电池性能测试:
分别从实施例3制得的染料敏化太阳电池的光阳极和光阴极引出导线,接到电池性能测试装置(Keithley 2400)上,用太阳光模拟器模(Newport-94043A,450W氙灯,AM1.5G滤波器)将光强度调节至100mW/cm 2,电池的工作面积为0.12cm 2,测试基于该染料敏化的电池的J-V曲线。
将所测得的J-V曲线图如图2所示,数据汇总于表1(表1为实施例3制得染料敏化太阳电池性能及现有染料制得的太阳能电池性能的数据表)。
表1
Figure PCTCN2019113790-appb-000011
与实施例1参比的染料a制备的太阳能电池性能参数来源于Org Electron,14(2013),2662-2672.。
从图2和表1的数据可以看出,利用实施例1得到的染料制备的太阳能电池展现出较高的光电转换效率,拥有较高的短路电流和开路电压。主要是由于双(D-π -A)柱[5]芳烃染料具有较好的光捕获能力,电子注入二氧化钛效率高,同时柱芳烃抑制了电子复合;从表1的数据可得,本发明提供的染料制备的太阳能电池性能比现有的染料a制备的太阳能电池好。
以上实施例仅为本发明较优的实施方式,仅用于解释本发明,而非限制本发明,本领域技术人员在未脱离本发明精神实质下所作的改变、替换、修饰等均应属于本发明的保护范围。

Claims (10)

  1. 一种双D-π-A型柱[5]芳烃染料,其特征在于,结构通式如下所示:
    Figure PCTCN2019113790-appb-100001
    其中,n的取值为0-3;R 1为碳原子数为1-20的支链烷基或碳原子数为1-20的直链烷基;R 2为碳原子数为1-4的直链烷基;X为O原子或S原子。
  2. 一种合成权利要求1所述双D-π-A型柱[5]芳烃染料的方法,其特征在于,包括如下步骤:
    Figure PCTCN2019113790-appb-100002
    Figure PCTCN2019113790-appb-100003
    中间体1在室温下通过与N-溴代琥珀酰亚胺的溴代反应,制备得到中间体2;中间体2在二价钯化合物的催化下,转化为中间体3的苯硼酸频哪醇酯结构;进一步的中间体3与中间体4在零价钯化合物的催化下,常压条件下合成出关键中间体5;关键中间体5在三氟乙酸中水解,得到所述双D-π-A型柱[5]芳烃染料。
  3. 根据权利要求2所述的制备方法,其特征在于,所述二价钯化合物包括Pd(dPPf) 2Cl 2;所述零价钯化合物包括Pd(PPh 3) 4
  4. 权利要求1所述双D-π-A型柱[5]芳烃染料在制备染料敏化太阳电池中的应用。
  5. 根据权利要求4所述的应用,其特征在于,包括如下步骤:
    (1)将所述双D-π-A型柱[5]芳烃染料加入有机溶剂中,混合均匀得到染料的溶液;
    (2)将吸附有纳米TiO 2薄膜的透明导电玻璃浸泡在步骤(1)所述染料的溶液中进行染浴处理,得到光阳极;
    (3)在另一块透明导电玻璃中间沉积Pt催化剂层,作为光阴极;将附有所述光阳极的纳米TiO 2薄膜层与光阴极催化剂层面对面排布,周边密封成密闭腔体,腔体内填充有电解质,得到所述染料敏化太阳电池。
  6. 根据权利要求5所述的应用,其特征在于,步骤(1)所述有机溶剂为氯仿和乙醇的混合溶剂,其中,氯仿与乙醇的体积比为1-5∶1。
  7. 根据权利要求5所述的应用,其特征在于,步骤(1)所述染料的溶液浓度为1-5×10 -4M。
  8. 根据权利要求5所述的应用,其特征在于,步骤(2)所述透明导电玻璃为具有掺F的SnO 2涂层的玻璃;所述纳米TiO 2薄膜的厚度为5-17μm。
  9. 根据权利要求5所述的应用,其特征在于,步骤(2)所述染浴处理是在避光环境下进行的,所述染浴处理的时间为6-24小时。
  10. 根据权利要求5所述的应用,其特征在于,步骤(3)所述电解质溶液为含有浓度为0.3-0.6M的1,2-二甲基-3-丙基碘化咪唑嗡、浓度为0.1M的LiI、浓度为0.05M的I 2及浓度为0.5M 4-叔丁基吡啶的乙腈溶液。
PCT/CN2019/113790 2019-05-21 2019-10-28 一种双D-π-A型柱[5]芳烃染料及其合成方法与应用 WO2020232973A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910426051.3A CN110183437B (zh) 2019-05-21 2019-05-21 一种双D-π-A型柱[5]芳烃染料及其合成方法及其应用
CN201910426051.3 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020232973A1 true WO2020232973A1 (zh) 2020-11-26

Family

ID=67717115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113790 WO2020232973A1 (zh) 2019-05-21 2019-10-28 一种双D-π-A型柱[5]芳烃染料及其合成方法与应用

Country Status (2)

Country Link
CN (1) CN110183437B (zh)
WO (1) WO2020232973A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437822A (zh) * 2019-08-23 2019-11-12 西北民族大学 一种基于柱[5]芳烃的超分子白光材料及其制备方法
CN115672295A (zh) * 2022-11-05 2023-02-03 中国科学院兰州化学物理研究所 一种亚胺型柱[5]芳烃修饰硅胶色谱填料的制备和应用
CN115739054A (zh) * 2022-11-09 2023-03-07 兰州城市学院 一种羧酸柱[5]芳烃改性凹凸棒石的制备和应用

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183437B (zh) * 2019-05-21 2021-10-26 华南理工大学 一种双D-π-A型柱[5]芳烃染料及其合成方法及其应用
CN111423365B (zh) * 2020-04-03 2020-11-20 华东师范大学 一种双官能团柱芳烃衍生物配体及金属有机笼和制备方法
CN112011034B (zh) * 2020-08-19 2021-09-28 盐城海关综合技术服务中心 二甲氧基柱[n]芳烃打结共轭聚合物及其制备方法和应用
CN113200941B (zh) * 2021-04-21 2022-08-26 华东理工大学 一类含吩噻嗪的柱芳烃荧光吸附材料及其制备方法
CN113980009B (zh) * 2021-10-08 2023-08-22 华南理工大学 一种用于二胺检测的aie柱芳烃荧光探针及其制法与应用
CN114479838B (zh) * 2022-01-20 2023-10-31 常州大学 一种基于柱芳烃的光捕获体系及其制备方法和应用
CN115286620B (zh) * 2022-06-28 2024-04-05 中山大学 杯芳烃化合物、复合材料及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103497532A (zh) * 2013-07-02 2014-01-08 华南理工大学 一类三向延长共轭链吩噻嗪染料及其在染料敏化太阳电池中的应用
CN108148055A (zh) * 2018-02-06 2018-06-12 陕西师范大学 一种基于萘的D-π-A型有机荧光材料及制备方法
CN108276795A (zh) * 2018-02-27 2018-07-13 华南理工大学 桥环二噻吩-吩噻嗪染料及其在染料敏化太阳电池中的应用
CN110183437A (zh) * 2019-05-21 2019-08-30 华南理工大学 一种双D-π-A型柱[5]芳烃染料及其合成方法及其应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102618066B (zh) * 2012-02-28 2013-12-11 中山大学 含杯芳烃衍生物的有机染料、制备方法及其应用
CN103788679B (zh) * 2014-01-24 2015-09-16 华南理工大学 在π桥中引入苯并三氮唑的双链吩噻嗪染料及其在制备染料敏化太阳电池中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103497532A (zh) * 2013-07-02 2014-01-08 华南理工大学 一类三向延长共轭链吩噻嗪染料及其在染料敏化太阳电池中的应用
CN108148055A (zh) * 2018-02-06 2018-06-12 陕西师范大学 一种基于萘的D-π-A型有机荧光材料及制备方法
CN108276795A (zh) * 2018-02-27 2018-07-13 华南理工大学 桥环二噻吩-吩噻嗪染料及其在染料敏化太阳电池中的应用
CN110183437A (zh) * 2019-05-21 2019-08-30 华南理工大学 一种双D-π-A型柱[5]芳烃染料及其合成方法及其应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110437822A (zh) * 2019-08-23 2019-11-12 西北民族大学 一种基于柱[5]芳烃的超分子白光材料及其制备方法
CN115672295A (zh) * 2022-11-05 2023-02-03 中国科学院兰州化学物理研究所 一种亚胺型柱[5]芳烃修饰硅胶色谱填料的制备和应用
CN115672295B (zh) * 2022-11-05 2023-12-15 中国科学院兰州化学物理研究所 一种亚胺型柱[5]芳烃修饰硅胶色谱填料的制备和应用
CN115739054A (zh) * 2022-11-09 2023-03-07 兰州城市学院 一种羧酸柱[5]芳烃改性凹凸棒石的制备和应用

Also Published As

Publication number Publication date
CN110183437B (zh) 2021-10-26
CN110183437A (zh) 2019-08-30

Similar Documents

Publication Publication Date Title
WO2020232973A1 (zh) 一种双D-π-A型柱[5]芳烃染料及其合成方法与应用
JP4576494B2 (ja) 光増感色素
Tang et al. New starburst sensitizer with carbazole antennas for efficient and stable dye-sensitized solar cells
Pasunooti et al. Synthesis, characterization and application of trans-D–B–A-porphyrin based dyes in dye-sensitized solar cells
WO2017016177A1 (zh) 异吡咯并吡咯二酮染料及其应用
JP2004095450A (ja) 有機色素を光増感剤とする半導体薄膜電極、光電変換素子及び光電気化学太陽電池
Babu et al. From Molecular Design to Co-sensitization; High performance indole based photosensitizers for dye-sensitized solar cells
Iqbal et al. Impact of hydroxy and octyloxy substituents of phenothiazine based dyes on the photovoltaic performance
Iqbal et al. Influence of spatial arrangements of π-spacer and acceptor of phenothiazine based dyes on the performance of dye-sensitized solar cells
Dai et al. Synthesis and photovoltaic performance of asymmetric di-anchoring organic dyes
CN101899223B (zh) 三聚茚基三芳胺有机染料及制备和用途
WO2006120939A1 (ja) 新規アミノ基含有複素環誘導体および該複素環誘導体を含有する光電変換用増感色素
CN108164546B (zh) 吲哚啉-二噻吩并喹喔啉-二苯并[a,c]吩嗪染料及其在染料敏化太阳电池中的应用
Wu et al. Novel 4, 4′-bis (alkylphenyl/alkyloxyphenyl)-2, 2′-bithiophene bridged cyclic thiourea functionalized triphenylamine sensitizers for efficient dye-sensitized solar cells
Liang et al. New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells
Shivashimpi et al. Effect of nature of anchoring groups on photosensitization behavior in unsymmetrical squaraine dyes
WO2008102962A1 (en) Noble ruthenium-type sensitizer and method of preparing the same
Karjule et al. Heterotriangulene-based unsymmetrical squaraine dyes: synergistic effects of donor moieties and out-of-plane branched alkyl chains on dye cell performance
CN102618066B (zh) 含杯芳烃衍生物的有机染料、制备方法及其应用
Manfredi et al. Performance enhancement of a dye-sensitized solar cell by peripheral aromatic and heteroaromatic functionalization in di-branched organic sensitizers
CN103788679B (zh) 在π桥中引入苯并三氮唑的双链吩噻嗪染料及其在制备染料敏化太阳电池中的应用
JP5280853B2 (ja) 新規アミノ基含有芳香族化合物および該芳香族化合物を含有する光電変換用増感色素
CN104403351A (zh) 基于对称的吡咯并吡咯二酮为共轭桥的有机光敏染料
Houarner-Rassin et al. Improved efficiency of a thiophene linked ruthenium polypyridine complex for dry dye-sensitized solar cells
JP2013164970A (ja) 光増感色素ならびに該色素を含む金属酸化物半導体電極および色素増感太陽電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930150

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19930150

Country of ref document: EP

Kind code of ref document: A1