WO2020230893A1 - キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置 - Google Patents

キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置 Download PDF

Info

Publication number
WO2020230893A1
WO2020230893A1 PCT/JP2020/019479 JP2020019479W WO2020230893A1 WO 2020230893 A1 WO2020230893 A1 WO 2020230893A1 JP 2020019479 W JP2020019479 W JP 2020019479W WO 2020230893 A1 WO2020230893 A1 WO 2020230893A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
spin
chiral
chirality
layer
Prior art date
Application number
PCT/JP2020/019479
Other languages
English (en)
French (fr)
Inventor
欣彦 戸川
宍戸 寛明
山本 浩史
Original Assignee
公立大学法人大阪
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪, 大学共同利用機関法人自然科学研究機構 filed Critical 公立大学法人大阪
Priority to JP2021519505A priority Critical patent/JPWO2020230893A1/ja
Priority to US17/611,347 priority patent/US11698360B2/en
Priority to EP20806276.0A priority patent/EP3971562A4/en
Priority to CN202080036002.XA priority patent/CN113826003A/zh
Publication of WO2020230893A1 publication Critical patent/WO2020230893A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/007Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the electric dipolar moment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/023Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil
    • G01N27/025Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance where the material is placed in the field of a coil a current being generated within the material by induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields
    • G01N27/84Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields by applying magnetic powder or magnetic ink
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1284Spin resolved measurements; Influencing spins during measurements, e.g. in spintronics devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0017Means for compensating offset magnetic fields or the magnetic flux to be measured; Means for generating calibration magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0052Manufacturing aspects; Manufacturing of single devices, i.e. of semiconductor magnetic sensor chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a chirality detection device, a chirality detection method, a separation device, a separation method, and a chiral substance device.
  • chiral substances substances having a crystal structure with chirality and substances having a crystal structure with chirality
  • lactic acid C 3 H 6 O 3 has a chiral molecular structure
  • D-lactic acid and L-lactic acid which are in a mirror image relationship
  • quartz crystal of SiO 2
  • Quartz has a crystal structure with chirality. Quartz has a crystal structure in which the tetrahedron of SiO 4 shares a vertex, and focusing on how SiO 4 is connected, it forms a spiral in the elongation direction (c-axis) of the crystal, and the spiral is right-handed.
  • Crystal (right crystal) and left-handed crystal (left crystal) exist.
  • the crystal structure of the right crystal and the crystal structure of the left crystal are in a mirror image relationship.
  • the properties of a chiral substance may differ between a right-handed system and a left-handed system, and a method for detecting chirality of a chiral substance is known (see, for example, Patent Documents 1 and 2).
  • the test object is limited to the chiral substance or gaseous substance contained in the solution, and it is difficult to detect the chirality of the solid substance.
  • the present invention has been made in view of such circumstances, and provides a chirality detecting device capable of detecting the chirality of a chiral substance in various states.
  • the present invention is a clarity detection device for detecting the kirarity of a chiral substance, in which a first electrode and a second electrode for applying a voltage to a test object containing the chiral substance come into contact with the test object.
  • a spin detection layer, a power supply unit, and a control unit are provided so as to perform the test.
  • the power supply unit and the control unit are subjected to the test by applying a voltage between the first electrode and the second electrode.
  • the control unit is provided so as to form an electric field on an object, and the control unit detects a voltage generated in a direction crossing the direction of the electric field of the spin detection layer or a voltage generated between the spin detection layer and the test object.
  • the present invention provides a clarity detection device, which is provided in such a manner and is provided so as to detect the kirarity of the chiral substance based on the detected voltage.
  • the power supply unit and the control unit are provided so as to form an electric field in a test object containing a chiral substance by applying a voltage between the first electrode and the second electrode.
  • an electric field is formed in this way, spin-polarized electrons can be generated in a chiral material due to the chirality-induced spin selectivity (CISS) effect.
  • the CISS effect is an effect of spin polarization when an electron passes through a chiral polymer. It has been clarified by experiments conducted by the present inventors that the CISS effect also occurs in chiral substances other than polymers (for example, inorganic chiral crystals).
  • the control unit is provided so as to detect a voltage generated in a direction crossing the direction of the electric field of the spin detection layer provided in contact with the test object or a voltage generated between the spin detection layer and the test object. Be done. Since the detected voltage differs depending on the chirality of the chiral substance, the chirality of the chiral substance can be detected based on the detected voltage. This has been clarified by experiments conducted by the inventors of the present invention and the like.
  • the voltage generated in the spin detection layer is considered to be generated by the reverse spin Hall effect. Further, the voltage generated between the spin detection layer and the test object is considered to be generated by the same effect as the nonlocal spin valve.
  • the adverse effect of the CISS effect occurs in a chiral substance (for example, an inorganic chiral crystal).
  • a chiral substance for example, an inorganic chiral crystal.
  • the adverse effect of the reciprocity theorem is established, so that a voltage is generated in the chiral substance.
  • This voltage can be detected by using the voltage application unit. Since the detected voltage differs depending on the chirality of the chiral substance, the chirality of the chiral substance can be detected based on the detected voltage.
  • the chirality detection device operates in the reverse process by connecting the power supply unit and the control unit.
  • (A) is a photograph of a measuring device made of a left crystal as a test object, and (b) is a graph showing the result of a voltage detection experiment using this device.
  • (A) is a photograph of a measuring device made of a right crystal as a test object, and (b) is a graph showing the result of a voltage detection experiment using this device.
  • (A) is a photograph of a measuring device prepared by using a chiral molecular dispersion solution as a test object, and (b) is a graph showing the results of a voltage detection experiment using this device.
  • the clarity detection device of the present invention is a clarity detection device for detecting the kirarity of a chiral substance, and is a first electrode and a second electrode for applying a voltage to a test object containing the chiral substance, and the subject.
  • a spin detection layer provided so as to come into contact with an inspection object, a power supply unit, and a control unit are provided, and the power supply unit and the control unit apply a voltage between the first electrode and the second electrode.
  • the control unit is provided so as to form an electric field in the test object, and the control unit generates a voltage generated in a direction crossing the direction of the electric field of the spin detection layer or between the spin detection layer and the test object. It is characterized in that it is provided so as to detect a voltage and is provided so as to detect the chirality of the chiral substance based on the detected voltage.
  • the spin detection layer preferably contains a ferromagnet
  • the control unit is preferably provided so as to detect a voltage generated between the spin detection layer and the test object. Since the voltage detected by the control unit changes according to the spin polarization like a spin valve, it is possible to distinguish between a right-handed chiral substance and a left-handed chiral substance.
  • the present invention is a chirality detection device for detecting the chirality of a chiral substance, and the third electrode and the fourth electrode electrically connected to the test object containing the chiral substance come into contact with the test object.
  • the spin injection layer, the power supply unit, and the control unit are provided, the power supply unit and the control unit are provided so as to pass an electric current through the spin injection layer, and the control unit is a third electrode.
  • the fourth electrode is provided to detect the voltage generated in the direction of the chiral substance in the direction crossing the direction of the current, and the chiral substance is provided to detect the chirality based on the detected voltage.
  • a chirality detection device characterized by this is also provided.
  • a chirality detection method including a step of detecting a voltage generated between the subject and the subject and a step of detecting the chirality of the chiral substance based on the detected voltage.
  • the present invention is a separation device for separating a right-handed system and a left-handed system of a chiral substance, and includes a flow path provided so that a solution, liquid or gas containing the right-handed system and the left-handed system flows, and the above-mentioned A voltage application unit provided to form an electric field in the solution, the liquid or the gas flowing through the flow path, and a magnetic field provided in the solution, the liquid or the gas downstream of the electric field.
  • a separation device including a magnetic field application unit, which separates the right-handed system and the left-handed system by utilizing the interaction between the spin polarization of the chiral substance generated by the electric field and the magnetic field. Also provide.
  • the present invention comprises a step of applying a voltage to a solution, liquid or gas containing the chiral substance so that spin polarization occurs in the chiral substance including the right-handed system and the left-handed system, and the chiral substance in which the spin polarization occurs.
  • the right-handed system and the left-handed system include the step of applying a magnetic field so that a magnetic field is generated in the solution, the liquid or the gas, and utilizing the interaction between the spin polarization and the magnetic field.
  • a separation method characterized by separation is also provided.
  • FIGS. 1 to 5 are schematic perspective views of the chirality detection device of the present embodiment, respectively.
  • the clarity detection device 20 of the present embodiment is a clarity detection device for detecting the kirarity of a chiral substance, and is a voltage application electrode 3a, 3b for applying a voltage to a test object 9 containing the chiral substance.
  • a spin detection layer 4 provided in contact with the test object 9, a power supply unit 5, and a control unit 7 are provided, and the power supply unit 5 and the control unit 7 have a voltage between the voltage application electrodes 3a and 3b.
  • Is provided so as to form an electric field in the test object 9 by applying the voltage or spin detection layer 4 and the test object 9 generated in a direction crossing the direction of the electric field of the spin detection layer 4. It is characterized in that it is provided so as to detect the voltage generated between the two, and is provided so as to detect the chirality of the chiral substance based on the detected voltage.
  • a chiral substance is a substance having a molecular structure with chirality or a substance having a crystal structure with chirality.
  • the right-handed system and the left-handed system of chiral substances are enantiomers.
  • the chiral substance may be an inorganic substance, a polymer, an organic molecule, or a liquid crystal.
  • the chirality detection device 20 is a device that detects the chirality of a substance.
  • the chirality detection device 20 may be a device that detects whether or not the substance contained in the test object 9 has chirality.
  • the chirality detection device 20 is a device for determining whether the chiral substance contained in the test object 9 is a right-handed system, a left-handed system, or a chiral substance in which a right-handed system and a left-handed system are mixed (for example, a racemic body). You may.
  • the chirality detection device 20 may be a device that detects the ratio of the right-handed system to the left-handed system contained in the chiral substance.
  • the chirality detection device 20 may be a device for measuring the orientation / anisotropy of a chiral substance.
  • the test object 9 is a test target of the chirality detection device 20.
  • the test object 9 may be a solid, a liquid, or a gas.
  • the test object 9 may be a single crystal, a polycrystal, a microcrystalline material, or an agglomerate of powder. ..
  • the test object 9 is a chiral substance layer 2 as in the chirality detection device 20 shown in FIGS. 1 to 3.
  • the test object 9 When the test object 9 is a liquid, the test object 9 may be a solution containing chiral substance molecules or a liquid chiral substance, and a suspension in which particles of the chiral substance are dispersed in the liquid. It may be a liquid or a liquid crystal.
  • the test object 9 When the test object 9 is a gas, the test object 9 may be a gaseous chiral substance, a mixed gas containing the chiral substance, or a gas in which fine particles of the chiral substance are suspended. Good.
  • the test object 9 When the test object 9 is a liquid or a gas, the test object 9 is provided in a flow path 16 provided with voltage application electrodes 3a and 3b and a spin detection layer 4 as in the chirality detection device 20 shown in FIGS. (Solutions, liquids or gases 11 containing chiral substances) can be flowed or stored.
  • the power supply unit 5 is a portion that supplies electric power to the voltage application electrodes 3a and 3b. Further, the power supply unit 5 may be provided so as to supply electric power to the control unit 7. Further, the electric power supplied from the power supply unit 5 to the voltage application electrodes 3a and 3b may be controlled by the control unit 7.
  • the power supply unit 5 may be a battery or a power supply unit using electric power supplied from the electric power system. The power supplied from the power supply unit 5 to the voltage application electrodes 3a and 3b can be controlled by the control unit 7.
  • the control unit 7 is a part that controls the chirality detection device 20.
  • the control unit 7 may be a computer, a microcontroller, or a control board.
  • the control unit 7 can include a voltage detection circuit (voltage measurement units 6a, 6b, 6c) or a power adjustment circuit.
  • the voltage application electrodes 3a and 3b are electrodes for applying a voltage to the test object 9.
  • the voltage application electrodes 3a and 3b are provided so that an electric field is generated in the test object 9 by applying a voltage between the electrodes 3a and 3b.
  • spin-polarized electrons can be generated in the chiral substance contained in the test object 9 due to the chirality-induced spin selectivity (CISS) effect.
  • the CISS effect is an effect of spin polarization when an electron passes through a chiral polymer. Experiments conducted by the present inventors have revealed that the CISS effect also occurs in chiral substances other than polymers (for example, inorganic chiral crystals).
  • the voltage application electrodes 3a and 3b When the test object 9 is a solid, the voltage application electrodes 3a and 3b have the electrodes 3a on the side or upper surface of the test object 9 as in the chirality detection device 20 shown in FIGS. 1 to 3, for example. Electrodes 3b can be arranged.
  • the test object 9 is a liquid or a gas
  • the voltage application electrodes 3a and 3b are provided so that an electric field is generated in the flow path 16 as in the chirality detection device 20 shown in FIGS. Can be done.
  • the voltage application electrodes 3a and 3b may be plate-shaped electrodes, ring-shaped electrodes, or mesh-shaped electrodes.
  • the spin detection layer 4 is a layer that absorbs the spin of the spin polarization generated in the test object 9.
  • the spin detection layer 4 is provided so as to come into contact with the test object 9.
  • the material of the spin detection layer 4 can be a substance having a high spin flow-charge flow conversion efficiency.
  • the reverse spin Hall effect causes a charge flow in the spin detection layer 4.
  • the spin detection layer 4 can be provided as in the chirality detection device 20 shown in FIGS. 1, 2, 4, and 5.
  • the material of the spin detection layer 4 is preferably a spin absorption material having a large spin Hall angle.
  • a spin absorption material having a large spin Hall angle For example, substances with large spin-orbit interaction (Pt, W, etc.), topological insulators, (Weyl) semimetals, two-dimensional gas systems, hybrid films such as metals / oxides and metals / molecules, oxides, molecules, and dielectrics. Examples include bodies, semiconductors, and Rashba systems.
  • the material of the spin detection layer 4 may be a ferromagnetic material.
  • the spin polarization of the chiral substance contained in the test object 9 is between the spin detection layer 4 and the test object 9 like a spin valve.
  • the spin detection layer 4 has an anisotropic shape so as to be in a uniformly magnetized state.
  • the spin detection layer 4 can be provided like the chirality detection device 20 shown in FIG.
  • the spin detection layer 4 may be arranged between the voltage application electrodes 3a and 3b, for example, as in the chirality detection device 20 shown in FIGS. 1 and 4. Further, the spin detection layer 4 does not have to be arranged between the voltage application electrodes 3a and 3b as in the chirality detection device 20 shown in FIGS. 2, 3 and 5, for example.
  • the spin polarization generated in the chiral material of the test object 9 by using the voltage application electrodes 3a and 3b does not occur only in the chiral material between the electrodes 3a and 3b, but in the test object 9. Spin polarization is also generated in the chiral material in the part where the electric field is not generated. This was clarified by the experiments conducted by the present inventors.
  • the chirality detection device 20 can have voltage detection electrodes 8a to 8c.
  • the chirality detection device 20 shown in FIG. 1 has electrodes 8a and 8b provided so as to be able to detect a voltage in the x direction of the test object 9.
  • the chirality detection device 20 shown in FIG. 3 has an electrode 8c electrically connected to the test object 9, and detects the voltage between the spin detection layer 4 and the test object 9 using the electrode 8c. can do.
  • the voltage application electrodes 3a and 3b, the spin detection layer 4, the voltage detection electrodes 8a to 8c and the like can be formed by, for example, a vapor deposition method, a spray method, a coating method or the like.
  • the following method can be executed by controlling the chirality detection device 20 by the control unit 7. Further, the control unit 7 is provided so that the following methods can be executed. Further, the following method may be manually executed without using the control unit 7.
  • the detection method using the chirality detection device 20 shown in FIGS. 1, 2, 4 and 5 will be described.
  • the voltage measuring unit 6a or the control unit 7 is provided so as to be able to detect the voltage in the y direction of the spin detection layer 4.
  • the material of the spin detection layer 4 can be a material that converts spin polarization into a charge flow.
  • the material of the spin detection layer 4 is Pt, W, or the like.
  • a voltage is applied between the voltage application electrodes 3a and 3b to generate an electric field in the test object 9.
  • spin polarization can be generated in the chiral substance contained in the test object 9 due to the chirality-induced spin selectivity (CISS) effect.
  • the polarization direction of the spin polarization that occurs when the test object 9 contains a right-handed chiral substance is opposite to the polarization direction of the spin polarization that occurs when the inspection object 9 contains a left-handed chiral substance. It is considered to be.
  • the voltage measuring unit 6a or the control unit 7 is used to detect the voltage in the y direction of the spin detection layer 4. Since the spin detection layer 4 is provided so as to be in contact with the test object 9, the chiral substance contained in the test object 9 comes into contact with the spin detection layer 4, and the spin polarization of the chiral substance is spin-detected by the reverse spin Hall effect. Causes a charge flow in layer 4. Since the direction of spin polarization is opposite between the right-handed chiral substance and the left-handed chiral substance, it is considered that the direction of the charge flow caused by the spin detection layer 4 is also opposite and the direction of the electromotive force is opposite.
  • test object 9 it is included in the test object 9 by detecting the voltage in the y direction of the spin detection layer 4 using the voltage measuring unit 6a or the control unit 7 and comparing the direction and magnitude of the electromotive force with the discrimination standard. It is possible to determine whether the chiral substance is right-handed or left-handed.
  • a detection method using the chirality detection device 20 shown in FIG. 3 will be described.
  • a ferromagnetic material is used as the material of the spin detection layer 4.
  • the voltage measuring unit 6a or the control unit 7 is provided so as to be able to detect the voltage between the spin detection layer 4 and the test object 9. In this method, no magnetic field other than the magnetic field generated from the spin detection layer 4 is applied to the test object 9.
  • a voltage is applied between the voltage application electrodes 3a and 3b to generate an electric field in the test object 9.
  • an electric field is generated in this way, spin polarization can be generated in the chiral substance contained in the test object 9 due to the chirality-induced spin selectivity (CISS) effect.
  • CISS chirality-induced spin selectivity
  • the voltage between the spin detection layer 4 and the test object 9 is detected using the voltage measurement unit 6a or the control unit 7. Since the spin detection layer 4 made of a ferromagnet is provided so as to be in contact with the test object 9, the spin polarization of the chiral material is the spin detection layer according to the magnetization state of the ferromagnet, like a non-local spin valve. A electromotive force is generated between 4 and the test object 9. Since the spin polarization directions of the right-handed chiral material and the left-handed chiral material are opposite, the electromotive force generated between the spin detection layer 4 and the test object 9 is the right-handed chiral material and the left-handed chiral material. Is different from.
  • the voltage measurement unit 6a or the control unit 7 is used to detect the voltage between the spin detection layer 4 and the test object 9, and the direction and magnitude of the electromotive force are compared with the discrimination criteria to be tested. It is possible to determine whether the chiral substance contained in the object 9 is a right-handed system or a left-handed system.
  • the spin detection layer 4 is the spin injection layer 4, and the voltage application electrodes 3a and 3b are the electrodes 3a and 3b for detecting the voltage generated in the test object 9.
  • the configuration of the device is the same as that of the chirality detection device 20 described above.
  • the chirality detection device 20 of the present embodiment is a chirality detection device for detecting the chirality of a chiral substance, and is an electrode 3a and an electrode 3b electrically connected to a test object 9 containing the chiral substance, and a test object.
  • a spin injection layer 4 provided in contact with the spin injection layer 4, a power supply unit 5, and a control unit 7 are provided, and the power supply unit 5 and the control unit 7 are provided so as to allow an electric current to flow through the spin injection layer 4 to control.
  • the unit 7 is provided so as to detect a voltage generated in a direction crossing the direction of the current of the chiral substance using the electrodes 3a and 3b, and detects the chirality of the chiral substance based on the detected voltage.
  • the power supply unit 5 supplies electric power to the spin injection layer 4, the control unit 7 detects the voltage using the electrodes 3a and 3b, and detects the chirality of the chiral substance based on the detected voltage.
  • FIGS. 6 and 7 are schematic views of the separation device of the present embodiment.
  • the separation device 25 of the present embodiment is a separation device 25 for separating the right-hand system and the left-hand system of the chiral substance, and is provided so that a solution, liquid, or gas containing the right-hand system and the left-hand system flows.
  • the voltage application unit 12 provided to form an electric field in the liquid or the gas, and the solution, the liquid or the gas downstream of the electric field.
  • the right-handed system and the left-handed system are provided by providing a magnetic field application unit 13 provided so as to form a magnetic field, and utilizing the interaction between the spin polarization of the chiral substance generated by the electric field and the magnetic field. It is characterized by being separated.
  • the separation device 25 of the present embodiment is a device that separates the right-handed chiral substance 17 and the left-handed chiral substance 18 in a solution, a liquid, or a gas. Therefore, the solution, liquid, or gas before separation contains both the right-handed chiral substance 17 and the left-handed chiral substance 18.
  • the separation device 25 of the present embodiment includes a flow path 16 provided for flowing a solution, liquid, or gas 11 containing a chiral substance.
  • a flow path 16 provided for flowing a solution, liquid, or gas 11 containing a chiral substance.
  • voltage application electrodes 3a and 3b (voltage application unit 12) provided so as to generate an electric field in a solution, liquid or gas 11 containing a chiral substance are provided.
  • the voltage application electrodes 3a and 3b can be provided so that the direction of the generated electric field is parallel to the direction of the flow of the flow path 16.
  • the magnetic field application unit 13 is provided so as to form a magnetic field in the flow path 16 downstream of the electric field generated between the voltage application electrodes 3a and 3b.
  • the magnetic field application unit 13 can include, for example, power supply units 5a, 5b, 5c and coils 19, 19a, 19b.
  • the magnetic field application portions 13, 13a and 13b may be permanent magnets or minute magnets.
  • the direction of the magnetic field formed in the flow path 16 is the direction of the flow of the flow path 16, the direction of the electric field generated between the voltage application electrodes 3a and 3b, or the right hand. It can be provided so as to be parallel to the spin polarization direction of the system chiral substance 17 and the left-handed chiral substance 18.
  • the magnetic field application unit 13 can be provided as in the separation device 25 shown in FIG.
  • a coil 19 is provided so as to wind around the flow path 16, and a direct current is passed through the coil 19 by using the power supply unit 5b.
  • a magnetic field parallel to the flow direction can be generated in the flow path 16.
  • the magnetic field application units 13a and 13b can be provided as in the separation device 25 shown in FIG.
  • the magnetic field application portions 13a and 13b are provided so as to form a magnetic field in the flow path 16 by utilizing the leakage magnetic field.
  • the magnetic field application unit 13a includes the power supply unit 5b and the coil 19a, and is provided so as to form a leakage magnetic field in the flow path 16.
  • the magnetic field application unit 13b includes a power supply unit 5c and a coil 19b, and is provided so as to form a leakage magnetic field in the flow path 16.
  • the magnetic field formed by the magnetic field application unit 13a and the magnetic field formed by the magnetic field application unit 13b are located on the same flow path cross section.
  • the chiral material flowing in the magnetic field formed by the magnetic field application unit 13a flows through the flow path 16a, and the chiral material flowing in the magnetic field formed by the magnetic field application unit 13b flows through the flow path 16b. It is branched. Therefore, it is possible to suppress the mixing of the right-handed chiral substance 17 and the left-handed chiral substance 18 separated by using a magnetic field. Therefore, by recovering the chiral substances from the flow paths 16a and 16b, respectively, the right-handed chiral substances 17 and the left-handed chiral substances 18 can be recovered separately.
  • the chiral substance apparatus FIG. 8 is a schematic perspective view of the chiral substance apparatus of the present embodiment.
  • the chiral material device 30 of the present embodiment includes a chiral material layer 2, a first voltage application electrode 3a and a second voltage application electrode 3b provided so as to be able to form an electric field in the chiral material layer 2.
  • a spin detection layer 4 provided in contact with the chiral material layer 2 is provided, and the first voltage application electrode 3a and the second voltage application electrode 3b are for the first voltage application electrode 3a and the second voltage application.
  • At least one of the electrodes 3b is provided so as to input an input signal, and is provided so as to form an electric voltage in the chiral material layer 2 by inputting the input signal, and the spin detection layer 4 is provided according to the input signal. It is characterized in that the voltage generated in the direction across the electric field changes.
  • the chiral substance device 30 is a device that utilizes the characteristics of the chiral substance, and may be a transistor, a memory, or a logic element.
  • the chiral substance layer 2 is a layer containing a chiral substance.
  • the chiral substance layer 2 can be a layer mainly containing either a right-handed chiral substance or a left-handed chiral substance. Further, the chiral substance layer 2 may have a structure in which a layer made of a right-handed chiral substance and a layer made of a left-handed chiral substance are combined.
  • the chiral material layer 2 may be a single crystal, a polycrystal, a microcrystalline material, a liquid crystal, or an agglomerate of powder. Further, the chiral substance layer 2 may be a gel containing a chiral substance. Further, the chiral material layer 2 may be a conductor, a semiconductor, or an insulator.
  • the first voltage application electrode 3a and the second voltage application electrode 3b are electrodes for forming an electric field in the chiral material layer 2.
  • An electric field is formed in the chiral material layer 2 by applying a voltage between the first voltage application electrode 3a and the second voltage application electrode 3b.
  • the chiral substance device 30 may have a pair of voltage application electrodes 3a and 3b as in the device shown in FIG. 8, and may have a plurality of pairs of voltage application electrodes 3a and 3b.
  • the spin detection layer 4 is a layer that absorbs spins of spin polarization generated in the chiral material layer 2.
  • the spin detection layer 4 may be arranged between the voltage application electrodes 3a and 3b, for example, as in the chiral material device 30 shown in FIG. Further, the spin detection layer 4 does not have to be arranged between the voltage application electrodes 3a and 3b.
  • a plurality of spin detection layers 4 are arranged between the pair of voltage application electrodes 3a and 3b and the pair of adjacent voltage application electrodes 3a and 3b. May be good. This makes it possible to select the spin detection layer 4 that outputs the output signal.
  • the input unit 26 is provided so as to input an input signal to at least one of the voltage application electrodes 3a and 3b and form an electric field in the chiral material layer 2 between the voltage application electrodes 3a and 3b. Therefore, an electric field that changes according to the input signal can be formed in the chiral material layer 2.
  • the input unit 26 can be provided so that the direction of the electric field formed in the chiral material layer 2 changes according to the input signal.
  • the direction of the electric field of the chiral material layer 2 changes, the direction of the spin polarization of the chiral material layer 2 also changes. Therefore, when the spin detection layer 4 is provided as in the device 30 shown in FIG.
  • the direction of the voltage generated in the direction across the electric field of the spin detection layer 4 also changes according to the input signal.
  • the input signal can be converted into an output signal.
  • the resistivity of the Pt layer was 450 ⁇ cm, and the resistivity of the CrNb 3 S 6 single crystal was 650 ⁇ cm.
  • a photograph of the produced apparatus A is shown in FIG.
  • Wiring (1) and (2) are electrodes for applying voltage, and electrodes for applying voltage in the x direction of a CrNb 3 S 6 single crystal.
  • Wiring (5) and (6) are electrodes for voltage detection and are electrodes for detecting the voltage in the x direction of the CrNb 3 S 6 single crystal.
  • the wirings (4) and (8) are electrodes connected to the end of the Pt layer and detecting the voltage of the Pt layer in the y direction.
  • a device B as shown in FIG. 1 was produced using the test object as a non-chiral substance, WC (tungsten carbide).
  • WC tungsten carbide
  • the spin detection layer was a Pt layer having a size of 2 ⁇ m ⁇ 8.4 ⁇ m ⁇ 25 nm.
  • the resistivity of the Pt layer is 450 ⁇ cm, and the resistivity of the WC is 530 ⁇ cm.
  • a photograph of the produced apparatus B is shown in FIG.
  • the wirings (1) and (2) are electrodes for applying voltage and electrodes for applying voltage in the x direction of the WC.
  • the wirings (4) and (5) are electrodes for voltage detection and electrodes for detecting the voltage in the x direction of the WC.
  • the wirings (3) and (6) are electrodes connected to the end of the Pt layer and detecting the voltage of the Pt layer in the y direction.
  • Wiring (5) by changing the voltage applied between wiring (1) and (2) so that the current ((1) ⁇ (2)) flowing through the CrNb 3 S 6 single crystal of device A changes from -5mA to 5mA.
  • V xx CrNb 3 S 6 single crystal x-direction voltage
  • voltage V xy pt layer y-direction voltage
  • the resistance value R xx of the Cr Nb 3 S 6 single crystal and the resistance value R xy of the Pt layer were calculated from the measured values.
  • the current value when the current flowing through the CrNb 3 S 6 single crystal flows from the wiring (1) to the wiring (2) is positive, and the current value when the current flows from the wiring (2) to the wiring (1) is negative. ..
  • the voltage V xx was set to a positive voltage when the potential of the wiring (5) was higher than the potential of the wiring (6).
  • the voltage V xy is such that the potential of wiring (4) (on the right side facing the direction in which a positive current flows through CrNb 3 S 6 ) is on the left side facing the potential of wiring (8) (facing the direction in which a positive current flows through CrNb 3 S 6 ). ) Is higher than the positive voltage.
  • the voltage applied between the wires (1) and (2) is changed so that the current ((1) ⁇ (2)) flowing through the WC of the device B changes from -5 mA to 5 mA between the wires (4) and (5).
  • the voltage V xx (voltage in the x direction of the WC) and the voltage V xy (voltage in the y direction of the Pt layer) between the wirings (3) and (6) were measured. Further, the resistance value R xx of WC and the resistance value R xy of the Pt layer were calculated from the measured values.
  • the current value when the current flowing through the WC flows from the wiring (1) to the wiring (2) is positive, and the current value when the current flows from the wiring (2) to the wiring (1) is negative.
  • the voltage V xx was set to a positive voltage when the potential of the wiring (4) was higher than the potential of the wiring (5).
  • the voltage V xy is when the potential of the wiring (3) (on the right side facing the direction in which the positive current flows through the WC) is higher than the potential of the wiring (6) (on the left side facing the direction in which the positive current flows through the WC). The voltage was positive.
  • FIG. 11 (a) A graph showing a change in the measured voltage value V xx in the lateral direction is shown in FIG. 11 (a), and a graph showing a change in the calculated resistance value R xx is shown in FIG. 11 (b).
  • V xx changed according to the voltage applied between the wirings (1) and (2).
  • R xx was constant.
  • FIG. 12 (a) A graph showing the change in the measured voltage value V xy in the vertical direction of the Pt layer is shown in FIG. 12 (a), and a graph showing the change in the calculated resistance value R xy is shown in FIG. 12 (b).
  • V xy was not output and R xy was zero
  • Pt was applied when a voltage was applied so that a positive current flowed through CrNb 3 S 6.
  • a positive voltage V xy was generated in the layer, and when a voltage was applied so that a negative current flowed through CrNb 3 S 6 , a negative voltage V xy was generated in the Pt layer.
  • the voltage V xy and the current I flowing through CrNb 3 S 6 were in a proportional relationship. Further, in the manufactured apparatus A, R xy gradually increased as the current I flowing through CrNb 3 S 6 increased, and showed a slightly non-linear behavior.
  • the voltage V xy (voltage in the y direction of the Pt layer) was measured by changing the voltage application electrode using the device A. Specifically, as shown by the solid arrow shown in FIG. 13 (a), the voltage V xy between the wires (4) and (8) when a current is passed between the wires (5) and the wires (2) ( The voltage of the Pt layer in the y direction) was measured. Further, as shown by the dotted arrow shown in FIG. 13A, the voltage V xy (Pt layer) between the wirings (4) and (8) when a current is passed between the wirings (6) and the wirings (2). The voltage in the y direction) was measured. The resistance value R xy of the Pt layer was calculated from the voltage V xy .
  • the distance between the applied voltage electrodes (the distance through which the current flows in the CrNb 3 S 6 single crystal) is longer in the solid line arrow than in the dotted line arrow. Further, the plus / minus of the current I and the plus / minus of the voltage V xy are the same as the measurement using the device A described above.
  • FIG. 13 (b) is a graph showing a change in voltage V xy
  • FIG. 13 (c) is a graph showing a change in resistance value R xy .
  • the voltage V xy similar to the measurement result in the device A of FIG. 12 (a), when a voltage is applied so that a positive current flows through CrNb 3 S 6 , a positive voltage V xy is generated in the Pt layer, and CrNb 3 When a voltage was applied so that a negative current flowed through S 6 , a negative voltage V xy was generated in the Pt layer.
  • FIG. 14 (a) shows a photograph of the apparatus C manufactured by using a CrSi 2 bulk polycrystal.
  • Wiring (1) and (2) which are electrodes for applying voltage, are provided at both ends of the CrSi 2 bulk polycrystalline.
  • Two Pt layers are provided between the wirings (1) and (2), the wirings (3) and (5) are connected to both ends of the left Pt layer, and the wirings (4) and (6) are connected to both ends of the right Pt layer. ) was connected.
  • Wiring (3) by changing the voltage applied between the wiring (1) and (2) so that the current ((1) ⁇ (2)) flowing through the CrSi 2 bulk polycrystal of the device C changes from -21 mA to 21 mA.
  • the voltage V xx (voltage in the x direction of the CrSi 2 bulk polycrystal) between (4) and the voltage V xy (voltage in the y direction of the Pt layer) between the wirings (4) and (6) were measured.
  • the current value when the current flowing through the CrSi 2 bulk polycrystalline flows from the wiring (1) to the wiring (2) is positive, and the current value when the current flows from the wiring (2) to the wiring (1) is negative.
  • the voltage V xx was set to a positive voltage when the potential of the wiring (3) was higher than the potential of the wiring (4).
  • FIG. 14 (b) A graph showing the change in the measured voltage value V xx in the x direction is shown in FIG. 14 (b), and a graph showing the change in the measured voltage value V xy in the y direction of the Pt layer is shown in FIG. 14 (c).
  • the voltage value V xx changed according to the voltage applied between the wirings (1) and (2).
  • Voltage value V xy when CrSi 2 bulk polycrystalline voltage as positive current flows is applied becomes a negative voltage, when a voltage is applied to flow a negative current is CrSi 2 bulk polycrystal Plus It became the voltage of.
  • the voltage V xy and the current I flowing through the CrSi 2 bulk polycrystal had a negative proportionality constant.
  • FIG. 15A shows a photograph of the apparatus D manufactured by using NbSi 2 bulk polycrystal.
  • Wiring (1) and (2) which are electrodes for applying voltage, are provided at both ends of the NbSi 2 bulk polycrystalline.
  • Two Pt layers are provided between the wirings (1) and (2), the wirings (3) and (5) are connected to both ends of the left Pt layer, and the wirings (4) and (6) are connected to both ends of the right Pt layer. ) was connected.
  • Wiring (5) by changing the voltage applied between wirings (1) and (2) so that the current ((1) ⁇ (2)) flowing through the NbSi 2 bulk polycrystal of device D changes from -21 mA to 21 mA.
  • the voltage V xx (voltage in the x direction of the NbSi 2 bulk polycrystal) between (6) and the voltage V xy (voltage in the y direction of the Pt layer) between the wirings (4) and (6) were measured.
  • the current value when the current flowing through the NbSi 2 bulk polycrystalline flows from the wiring (1) to the wiring (2) is positive, and the current value when the current flows from the wiring (2) to the wiring (1) is negative.
  • the voltage V xx was set to a positive voltage when the potential of the wiring (5) was higher than the potential of the wiring (6).
  • FIG. 15 (b) A graph showing the change in the measured voltage value V xx in the x direction is shown in FIG. 15 (b), and a graph showing the change in the measured voltage value V xy in the y direction of the Pt layer is shown in FIG. 15 (c).
  • the voltage value V xx changed according to the voltage applied between the wirings (1) and (2).
  • Voltage value V xy when NbSi 2 bulk polycrystalline voltage as positive current flows is applied becomes a positive voltage, when a voltage is applied to flow a negative current to the NbSi 2 bulk polycrystal negative It became the voltage of.
  • the voltage V xy and the current I flowing through the NbSi 2 bulk polycrystal had a positive proportionality constant.
  • the reason why the direction of the electromotive force generated in the spin detection layer is reversed is that the polarization direction of the spin polarization state of the chiral material is reversed between the right-handed system and the left-handed system due to the chirality-induced spin selectivity (CISS) effect. Conceivable. Therefore, it is considered that the direction of the electromotive force of the spin detection layer generated by converting the spin current by the reverse spin Hall effect is also opposite between the right-handed system and the left-handed system.
  • CISS chirality-induced spin selectivity
  • the direction of the electromotive force generated in the spin detection layer is the chiral material regardless of the direction of the spin axis.
  • the CISS effect is established at the molecular level (or crystal level) of the chiral substance. From this, it is considered that the chiral substance in the solution, the liquid crystal which is the chiral substance, and the insulator which is the chiral substance can be similarly discriminated as right-handed or left-handed.
  • Second chirality detection experiment In the above-mentioned first chirality detection experiment and chirality discrimination experiment, a conductor was used for the chiral substance as the test object, but in the second chirality detection experiment, the left crystal which is an insulator was used as the test object. An experiment was conducted using the right crystal. The left crystal is a left-handed chiral substance having a left-handed spiral atomic arrangement in the crystal structure, and the right crystal is a right-handed chiral substance having a right-handed spiral atomic arrangement in the crystal structure. Since quartz is an insulator, no current flows through the chiral substance. Therefore, the measurement was performed using the adverse effect of the CISS effect. That is, a voltage is applied across the Pt layer to detect the voltage generated in the chiral substance.
  • FIG. 16A shows a photograph of the apparatus E manufactured by using the left crystal.
  • Wiring (1) and (2) which are electrodes for voltage detection, are provided at both ends of the left crystal.
  • a Pt layer was provided between the wirings (1) and (2), and the wirings (3) and (4) were connected to both ends of the Pt layer.
  • This Pt layer functions as a spin detection layer in the first chirality detection experiment, but functions as a voltage application electrode in the second chirality detection experiment using the adverse effect.
  • the voltage V yx (voltage in the x direction of the crystal) between the wirings (1) and (2) was measured by changing the voltage (pulse voltage) applied to the Pt layer using the wirings (3) and (4).
  • the current value when the current flowing through the Pt layer flows from the wiring (3) to the wiring (4) is positive, and the current value when the current flows from the wiring (4) to the wiring (3) is negative.
  • the voltage V yx is higher than the potential of the wiring (1) (on the right side facing the direction in which the positive current flows in the Pt layer) and the potential in the wiring (2) (on the left side facing the direction in which the positive current flows in the Pt layer). Sometimes it was a positive voltage.
  • FIG. 16 (b) A graph showing the change in the measured voltage value V yx in the x direction of the crystal is shown in FIG. 16 (b).
  • the voltage applied to the Pt layer is shown by the current value I (mA).
  • I the current value
  • the measured voltage value V yx generated in the left crystal and the voltage applied to the Pt layer had a negative proportionality constant.
  • the tendency of the voltage value V yx to change was the same as in the first chirality detection experiment and the chirality discrimination experiment.
  • FIG. 17A shows a photograph of the apparatus F manufactured by using the right crystal.
  • Wiring (1) and (2) which are electrodes for voltage detection, are provided at both ends of the right crystal.
  • a Pt layer was provided between the wirings (1) and (2), and the wirings (3) and (4) were connected to both ends of the Pt layer.
  • This Pt layer functioned as a spin detection layer in the first chirality detection experiment, but when the adverse effect is used, it functions as a voltage application electrode.
  • the voltage V yx (voltage in the x direction of the crystal) between the wirings (1) and (2) was measured by changing the voltage (pulse voltage) applied to the Pt layer using the wirings (3) and (4).
  • the current value when the current flowing through the Pt layer flows from the wiring (3) to the wiring (4) is positive, and the current value when the current flows from the wiring (4) to the wiring (3) is negative.
  • the voltage V yx is higher than the potential of the wiring (1) (on the right side facing the direction in which the positive current flows in the Pt layer) and the potential in the wiring (2) (on the left side facing the direction in which the positive current flows in the Pt layer). Sometimes it was a positive voltage.
  • FIG. 17 (b) A graph showing the change in the measured voltage value V yx in the x direction of the right crystal is shown in FIG. 17 (b).
  • the voltage applied to the Pt layer is shown by the current value I (mA).
  • I the current value
  • the measured voltage value V yx generated in the right crystal and the voltage applied to the Pt layer had a positive proportionality constant.
  • the tendency of the voltage value V yx to change was the same as in the first chirality detection experiment and the chirality discrimination experiment.
  • FIG. 18A shows a photograph of the device G.
  • three platinum electrodes are provided on a glass substrate, wirings (1) and (2) are connected to both ends of the upper platinum electrode, and wirings (3) and (4) are connected to both ends of the intermediate platinum electrode. Are connected, and wirings (5) and (6) are connected to both ends of the lower platinum electrode. Then, the chiral molecule dispersion solution is dropped on the substrate so as to overlap the three platinum electrodes.
  • the voltage applied between the wirings (2) and (6) is changed so that the current flowing through the chiral molecular dispersion solution of the apparatus G (the current flowing from the upper platinum electrode to the lower platinum electrode) changes from -100 ⁇ A to +100 ⁇ A.
  • the voltage V between the wirings (3) and (4) was measured.
  • the current value when the current flowing through the chiral molecular dispersion solution flows from the wiring (2) to the wiring (6) is positive, and the current value when the current flows from the wiring (6) to the wiring (2) is negative.
  • the voltage V is such that the potential of wiring (3) (on the right side facing the direction in which a positive current flows through the chiral molecular dispersion solution) is the potential of wiring (4) (on the left side facing the direction in which a positive current flows through the chiral molecular dispersion solution). ) Is higher than the positive voltage.
  • FIG. 18 (b) A graph showing the change in the measured voltage value V is shown in FIG. 18 (b).
  • the voltage value V changed according to the voltage applied between the wirings (2) and (6).
  • the voltage value V becomes a negative voltage when a voltage is applied so that a positive current flows through the chiral molecular dispersion solution, and becomes a positive voltage when a voltage is applied so that a negative current flows through the chiral molecular dispersion solution. became.
  • the voltage V and the current I flowing through the chiral molecular dispersion solution had a negative proportionality constant.
  • the tendency of the voltage value V to change was the same as in the first and second chirality detection experiments and the chirality discrimination experiment.

Abstract

本発明のキラリティ検出装置は、キラル物質のキラリティを検出するためのキラリティ検出装置であって、前記キラル物質を含む被検物に電圧を印加するための第1電極及び第2電極と、前記被検物と接触するように設けられたスピン検出層と、電源部と、制御部とを備える。前記電源部及び前記制御部は、第1電極と第2電極との間に電圧を印加することにより前記被検物に電界を形成するように設けられる。前記制御部は、前記スピン検出層の前記電界の方向を横切る方向に生じる電圧又は前記スピン検出層と前記被検物との間に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられる。

Description

キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置
 本発明は、キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置に関する。
 対掌性(キラリティ)がある分子構造を有する物質やキラリティがある結晶構造を有する物質(以後、これらをまとめてキラル物質という)が知られている。例えば、乳酸C3H6O3はキラリティがある分子構造を有し、像と鏡像の関係にあるD-乳酸とL-乳酸が存在する。また、水晶(SiO2の結晶)はキラリティがある結晶構造を有する。水晶は、SiO4の四面体が頂点を共有する結晶構造を有し、SiO4のつながり方に注目すると、結晶の伸長方向(c軸)に対してラセンを形成しており、ラセンが右巻きの結晶(右水晶)と左巻きの結晶(左水晶)とが存在する。右水晶の結晶構造と左水晶の結晶構造は像と鏡像の関係にある。
 キラル物質は右手系と左手系とで性質が異なる場合があり、キラル物質のキラリティの検出方法が知られている(例えば、特許文献1、2参照)。
 分子性のキラル物質では、キラル誘発スピン選択(CISS)効果によりスピン偏極電子が生成されることが知られている(例えば、特許文献3参照)。また、強磁性体などが示すスピン偏極がスピン吸収材に吸収されると、スピンの向きとスピンの流れの直交した方向に電荷の流れが生じること(逆スピンホール効果)が知られている(例えば、非特許文献1参照)。また、スピン流を検出することができる非局所スピンバルブが知られている(例えば、非特許文献2参照)。
特開2018-13351号公報 特開2015-31605号公報 特表2015-512159号公報
T. Kimura et al., Phys. Rev. Lett. 98, 156601 (2007) F. J. Jedema et al., Nature 416, 713 (2002)
 従来のキラリティ検出方法では、被検物が溶液に含まれるキラル物質又はガス状物質などに限定され、固体状物質のキラリティを検出することは難しい。
 本発明は、このような事情に鑑みてなされたものであり、様々な状態のキラル物質のキラリティを検出することができるキラリティ検出装置を提供する。
 本発明は、キラル物質のキラリティを検出するためのキラリティ検出装置であって、前記キラル物質を含む被検物に電圧を印加するための第1電極及び第2電極と、前記被検物と接触するように設けられたスピン検出層と、電源部と、制御部とを備え、前記電源部及び前記制御部は、第1電極と第2電極との間に電圧を印加することにより前記被検物に電界を形成するように設けられ、前記制御部は、前記スピン検出層の前記電界の方向を横切る方向に生じる電圧又は前記スピン検出層と前記被検物との間に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられたことを特徴とするキラリティ検出装置を提供する。
 前記電源部及び前記制御部は、第1電極と第2電極との間に電圧を印加することによりキラル物質を含む被検物に電界を形成するように設けられる。このように電界を形成すると、キラリティ誘起スピン選択性(CISS)効果によりキラル物質にスピン偏極電子を生成することができる。
 CISS効果とは、電子がキラル高分子を通過するとスピン偏極する効果である。CISS効果が高分子以外のキラル物質(例えば無機系キラル結晶)でも生じることは本発明者等が行った実験により明らかになった。
 前記制御部は、被検物と接触するように設けられたスピン検出層の前記電界の方向を横切る方向に生じる電圧又はスピン検出層と被検物との間に生じる電圧を検出するように設けられる。検出される電圧は、キラル物質のキラリティにより異なるため、検出された電圧に基づきキラル物質のキラリティを検出することができる。このことは、本発明の発明者等が行った実験により明らかになった。
 スピン検出層に生じる電圧は、逆スピンホール効果で生じると考えられる。
 また、スピン検出層と被検物との間に生じる電圧は、非局所スピンバルブと同様の効果で生じると考えられる。
 また、CISS効果の逆効果がキラル物質(例えば無機系キラル結晶)で生じることは本発明者等が行った実験により明らかになった。前記スピン検出層に電界を印加すると、相反定理で結びつく逆効果が成立するため、キラル物質に電圧が発生する。この電圧は前記電圧印加部を利用して検出することが可能である。検出される電圧は、キラル物質のキラリティにより異なるため、検出された電圧に基づきキラル物質のキラリティを検出することができる。キラリティ検出装置に対して、電源部と制御部をつなぎかえることにより、逆過程に対して動作することは、本発明の発明者等が行った実験により明らかになった。
本発明の一実施形態のキラリティ検出装置の概略斜視図である。 本発明の一実施形態のキラリティ検出装置の概略斜視図である。 本発明の一実施形態のキラリティ検出装置の概略斜視図である。 本発明の一実施形態のキラリティ検出装置の概略斜視図である。 本発明の一実施形態のキラリティ検出装置の概略斜視図である。 本発明の一実施形態の分離装置の概略図である。 本発明の一実施形態の分離装置の概略図である。 本発明の一実施形態のキラル物質装置の概略斜視図である。 CrNb3S6を被検物として作製した測定用デバイスの写真である。 WCを被検物として作製した測定用デバイスの写真である。 CrNb3S6又はWCに電圧を印加した際の電圧検出用電極間の電圧の変化及び電気抵抗値の変化を示すグラフである。 CrNb3S6又はWCに電圧を印加した際のスピン検出層(Pt層)に生じる電圧の変化を示すグラフ及びスピン検出層の電気抵抗値を示すグラフである。 CrNb3S6に電圧を印加した際のスピン検出層(Pt層)に生じる電圧の変化を示すグラフ及びスピン検出層の電気抵抗値を示すグラフである。 (a)はCrSi2を被検物として作製した測定用デバイスの写真であり、(b)(c)はこのデバイスを用いた電圧検出実験の結果を示すグラフである。 (a)はNbSi2を被検物として作製した測定用デバイスの写真であり、(b)(c)はこのデバイスを用いた電圧検出実験の結果を示すグラフである。 (a)は左水晶を被検物として作製した測定用デバイスの写真であり、(b)はこのデバイスを用いた電圧検出実験の結果を示すグラフである。 (a)は右水晶を被検物として作製した測定用デバイスの写真であり、(b)はこのデバイスを用いた電圧検出実験の結果を示すグラフである。 (a)はキラル分子分散溶液を被検物として作製した測定用デバイスの写真であり、(b)はこのデバイスを用いた電圧検出実験の結果を示すグラフである。
 本発明のキラリティ検出装置は、キラル物質のキラリティを検出するためのキラリティ検出装置であって、前記キラル物質を含む被検物に電圧を印加するための第1電極及び第2電極と、前記被検物と接触するように設けられたスピン検出層と、電源部と、制御部とを備え、前記電源部及び前記制御部は、第1電極と第2電極との間に電圧を印加することにより前記被検物に電界を形成するように設けられ、前記制御部は、前記スピン検出層の前記電界の方向を横切る方向に生じる電圧又は前記スピン検出層と前記被検物との間に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられたことを特徴とする。
 前記スピン検出層は強磁性体を含むことが好ましく、前記制御部は前記スピン検出層と前記被検物との間に生じる電圧を検出するように設けられたことが好ましい。制御部により検出される電圧は、スピンバルブのようにスピン偏極に応じて変化するため、右手系キラル物質と左手系キラル物質とを判別することが可能になる。
 本発明は、キラル物質のキラリティを検出するためのキラリティ検出装置であって、前記キラル物質を含む被検物に電気的に接続した第3電極及び第4電極と、前記被検物と接触するように設けられたスピン注入層と、電源部と、制御部とを備え、前記電源部及び前記制御部は、前記スピン注入層に電流を流すように設けられ、前記制御部は、第3電極及び第4電極を用いて前記キラル物質の前記電流の方向を横切る方向に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられたことを特徴とするキラリティ検出装置も提供する。
 本発明は、キラル物質を含む被検物に電界を生じさせた際に前記被検物と接触するように設けられたスピン検出層の前記電界の方向を横切る方向に生じる電圧又は前記スピン検出層と前記被検物との間に生じる電圧を検出するステップと、検出された電圧に基づき前記キラル物質のキラリティを検出するステップとを含むキラリティ検出方法も提供する。
 本発明は、キラル物質の右手系と左手系とを分離するための分離装置であって、前記右手系及び前記左手系を含む溶液、液体又は気体が流れるように設けられた流路と、前記流路を流れる前記溶液、前記液体又は前記気体に電界を形成するように設けられた電圧印加部と、前記電界よりも下流の前記溶液、前記液体又は前記気体に磁場を形成するように設けられた磁場印加部とを備え、前記電界により生じた前記キラル物質のスピン偏極と、前記磁場との相互作用を利用して前記右手系と前記左手系とを分離することを特徴とする分離装置も提供する。
 本発明は、右手系及び左手系とを含むキラル物質にスピン偏極が生じるように前記キラル物質を含む溶液、液体又は気体に電圧を印加するステップと、前記スピン偏極が生じた前記キラル物質を含む前記溶液、前記液体又は前記気体に磁場が生じるように磁場を印加するステップとを含み、前記スピン偏極と、前記磁場との相互作用を利用して前記右手系と前記左手系とを分離することを特徴とする分離方法も提供する。
 以下、図面を用いて本発明の一実施形態を説明する。図面や以下の記述中で示す構成は、例示であって、本発明の範囲は、図面や以下の記述中で示すものに限定されない。
キラリティ検出装置及びキラリティ検出方法
 図1~5は、それぞれ本実施形態のキラリティ検出装置の概略斜視図である。
 本実施形態のキラリティ検出装置20は、キラル物質のキラリティを検出するためのキラリティ検出装置であって、キラル物質を含む被検物9に電圧を印加するための電圧印加用電極3a、3bと、被検物9と接触するように設けられたスピン検出層4と、電源部5と、制御部7とを備え、電源部5及び制御部7は、電圧印加用電極3a、3bの間に電圧を印加することにより被検物9に電界を形成するように設けられ、制御部7は、スピン検出層4の前記電界の方向を横切る方向に生じる電圧又はスピン検出層4と被検物9との間に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づきキラル物質のキラリティを検出するように設けられたことを特徴とする。
 キラル物質とは、対掌性(キラリティ)がある分子構造を有する物質やキラリティがある結晶構造を有する物質である。キラル物質には右手系と左手系とが存在する。キラル物質の右手系と左手系とは鏡像異性体である。キラル物質は、無機系物質であってもよく、高分子であってもよく、有機分子であってもよく、液晶であってもよい。
 キラリティ検出装置20は、物質のキラリティを検出する装置である。例えば、キラリティ検出装置20は、被検物9に含まれる物質がキラリティを有するか否かを検出する装置であってもよい。また、キラリティ検出装置20は、被検物9に含まれるキラル物質が右手系か、左手系か、又は右手系と左手系とが混在したキラル物質(例えばラセミ体)かを判別する装置であってもよい。また、キラリティ検出装置20は、キラル物質に含まれる右手系と左手系との比率を検出する装置であってもよい。また、キラリティ検出装置20は、キラル物質の配向性・異方性を計測する装置であってもよい。
 被検物9は、キラリティ検出装置20の被検対象である。被検物9は、固体であってもよく、液体であってもよく、気体であってもよい。被検物9が固体である場合、被検物9は、単結晶であってもよく、多結晶であってもよく、微晶質であってもよく、粉末の凝集体であってもよい。被検物9が固体である場合、図1~3に示したキラリティ検出装置20のように被検物9はキラル物質層2である。
 被検物9が液体である場合、被検物9は、キラル物質分子を含む溶液であってもよく、液状のキラル物質であってもよく、キラル物質の粒子が液体中に分散した懸濁液であってもよく、液晶であってもよい。
 被検物9が気体である場合、被検物9は、気体のキラル物質であってもよく、キラル物質を含む混合ガスであってもよく、キラル物質の微粒子が浮遊する気体であってもよい。
 被検物9が液体又は気体である場合、図4、5に示したキラリティ検出装置20のように、電圧印加用電極3a、3b及びスピン検出層4を設けた流路16に被検物9(キラル物質を含む溶液、液体又は気体11)を流す又は溜めることができる。
 電源部5は、電圧印加用電極3a、3bに電力を供給する部分である。また、電源部5は、制御部7に電力を供給するように設けられてもよい。また、電源部5から電圧印加用電極3a、3bに供給する電力は制御部7により制御されてもよい。電源部5は、電池であってもよく、電力系統から供給される電力を利用した電源部であってもよい。電源部5から電圧印加用電極3a、3bに供給される電力は制御部7により制御することができる。
 制御部7はキラリティ検出装置20を制御する部分である。制御部7はコンピュータであってもよく、マイクロコントローラであってもよく、制御基板であってもよい。制御部7は、電圧検出回路(電圧計測部6a、6b、6c)又は電力調節回路を含むことができる。
 電圧印加用電極3a、3bは、被検物9に電圧を印加するための電極である。電圧印加用電極3a、3bは、電極3aと電極3bとの間に電圧を印加することにより被検物9に電界が生じるように設けられる。電極3a、3bを用いて被検物9に電界を発生させると、キラリティ誘起スピン選択性(CISS)効果により被検物9に含まれるキラル物質にスピン偏極電子を生じさせることができる。
 CISS効果とは、電子がキラル高分子を通過するとスピン偏極する効果である。CISS効果が高分子以外のキラル物質(例えば無機系キラル結晶)でも生じることが本発明者等が行った実験により明らかになった。
 被検物9が固体である場合、電圧印加用電極3a、3bは、例えば、図1~図3に示したキラリティ検出装置20のように被検物9の側部又は上面上に電極3aと電極3bを配置することができる。
 被検物9が液体又は気体である場合、電圧印加用電極3a、3bは、例えば、図4、5に示したキラリティ検出装置20のように、流路16中に電界が生じるように設けることができる。この場合、電圧印加用電極3a、3bは、板状電極であってもよく、リング状電極であってもよく、メッシュ状電極であってもよい。
 スピン検出層4は、被検物9で生じさせたスピン偏極のスピンを吸収する層である。スピン検出層4は、被検物9と接触するように設けられる。スピン検出層4の材料は、スピン流―電荷流の変換効率が大きい物質とすることができる。この場合、逆スピンホール効果により、スピン検出層4に電荷の流れが生じる。逆スピンホール効果では、スピン偏極がスピン吸収材に吸収されると、スピンの向きとスピンの流れの直交した方向に電荷の流れが生じる。このため、スピン検出層4に生じる起電力の向きや大きさは、被検物9で生じさせたスピン偏極のスピンの向きに応じて変わる。
 この場合、スピン検出層4は、図1、2、4、5に示したキラリティ検出装置20のように設けることができる。
 スピン検出層4の材料は、スピンホール角が大きいスピン吸収材料が好ましい。例えば、スピン軌道相互作用が大きい物質(Pt, W など)、トポロジカル絶縁体、(ワイル)半金属、2次元ガス系、金属/酸化物や金属/分子などのハイブリッド膜、酸化物、分子、誘電体、半導体、ラシュバ系などが挙げられる。
 スピン検出層4の材料は、強磁性材料であってもよい。このようなスピン検出層4を被検物9と接触させることにより、スピンバルブのように、被検物9に含まれるキラル物質のスピン偏極がスピン検出層4と被検物9との間に起電力を発生させることができる。この場合、スピン検出層4は、一様磁化状態となるように形状が異方的なものが望ましい。
 この場合、スピン検出層4は、図3に示したキラリティ検出装置20のように設けることができる。
 スピン検出層4は、例えば、図1、図4に示したキラリティ検出装置20のように、電圧印加用電極3a、3bの間に配置してもよい。また、スピン検出層4は、例えば、図2、3、5に示したキラリティ検出装置20のように電圧印加用電極3a、3bの間に配置しなくてもよい。なお、電圧印加用電極3a、3bを用いて被検物9のキラル物質に生じさせたスピン偏極は、電極3aと電極3bの間のキラル物質にのみ生じるのではなく、被検物9の電界を発生させていない部分のキラル物質にもスピン偏極を生じさせる。このことは本発明者等が行った実験により明らかになった。
 キラリティ検出装置20は、電圧検出用電極8a~8cを有することができる。例えば、図1に示したキラリティ検出装置20は、被検物9のx方向の電圧を検出することができるように設けられた電極8a、8bを有している。また、図3に示したキラリティ検出装置20は、被検物9と電気的に接続した電極8cを有し、電極8cを用いてスピン検出層4と被検物9との間の電圧を検出することができる。
 電圧印加用電極3a・3b、スピン検出層4、電圧検出用電極8a~8cなどは、例えば、蒸着法、吹付法、塗布法などで形成することができる。
 次に、キラリティ検出装置20を用いて被検物9に含まれるキラル物質のキラリティを検出する方法について説明する。以下の方法は制御部7によりキラリティ検出装置20を制御することにより実行することができる。また、制御部7は、以下の方法を実行できるように設けられる。また、以下の方法は、制御部7を用いずに手動で実行してもよい。
 図1、2、4、5に示したキラリティ検出装置20を用いた検出方法について説明する。この方法では、被検物9に磁場は印加しない。これらの装置では、電圧計測部6a又は制御部7は、スピン検出層4のy方向の電圧を検出できるように設けられる。また、スピン検出層4の材料には、スピン偏極を電荷流に変換するような材料とすることができる。例えば、スピン検出層4の材料はPt、Wなどである。
 まず、電圧印加用電極3a、3bの間に電圧を印加し、被検物9に電界を生じさせる。このように電界を生じさせると、キラリティ誘起スピン選択性(CISS)効果により被検物9に含まれるキラル物質にスピン偏極を生じさせることができる。被検物9に右手系のキラル物質が含まれる場合に生じるスピン偏極の偏極方向は、検物9に左手系のキラル物質が含まれる場合に生じるスピン偏極の偏極方向と逆になると考えられる。
 次に、電圧計測部6a又は制御部7を用いてスピン検出層4のy方向の電圧を検出する。スピン検出層4は被検物9と接触するように設けられるため、被検物9に含まれるキラル物質がスピン検出層4に接触し、逆スピンホール効果によりキラル物質のスピン偏極がスピン検出層4に電荷流を引き起こす。右手系キラル物質と左手系キラル物質とではスピン偏極の偏極方向が逆であるため、スピン検出層4に引き起こされる電荷流の向きも逆となり起電力の向きが逆になると考えられる。このため、電圧計測部6a又は制御部7を用いてスピン検出層4のy方向の電圧を検出して起電力の向きや大きさを判別基準と比較することにより、被検物9に含まれるキラル物質が右手系か左手系かなどを判別することができる。
 図3に示したキラリティ検出装置20を用いた検出方法について説明する。この装置では、スピン検出層4の材料に強磁性材料を用いる。また、電圧計測部6a又は制御部7は、スピン検出層4と被検物9との間の電圧を検出できるように設けられる。この方法では、スピン検出層4から生じる磁場以外の磁場は被検物9に印加しない。
 まず、電圧印加用電極3a、3bの間に電圧を印加し、被検物9に電界を生じさせる。このように電界を生じさせると、キラリティ誘起スピン選択性(CISS)効果により被検物9に含まれるキラル物質にスピン偏極を生じさせることができる。
 次に、電圧計測部6a又は制御部7を用いてスピン検出層4と被検物9との間の電圧を検出する。強磁性体からなるスピン検出層4は被検物9と接触するように設けられるため、非局所スピンバルブのように、強磁性体の磁化状態に応じてキラル物質のスピン偏極がスピン検出層4と被検物9との間に起電力を生じさせる。右手系キラル物質と左手系キラル物質とではスピン偏極の偏極方向が逆であるため、スピン検出層4と被検物9との間に生じる起電力は右手系キラル物質と左手系キラル物質とでは異なる。このため、電圧計測部6a又は制御部7を用いてスピン検出層4と被検物9との間の電圧を検出して起電力の向きや大きさを判別基準と比較することにより、被検物9に含まれるキラル物質が右手系か左手系かなどを判別することができる。
CISS効果の逆効果によるキラリティ検出装置
 上述のキラリティ検出装置20では、CISS効果を利用してキラル物質のキラリティを検出していたが、本実施形態では、CISSの逆効果を利用してキラル物質のキラリティを検出する。従って、本実施形態では、上述のスピン検出層4がスピン注入層4となり、上述の電圧印加用電極3a、3bが被検物9に生じる電圧を検出するための電極3a、3bとなる。装置の構成は、上述のキラリティ検出装置20と同様である。
 本実施形態のキラリティ検出装置20は、キラル物質のキラリティを検出するためのキラリティ検出装置であって、キラル物質を含む被検物9に電気的に接続した電極3a及び電極3bと、被検物9と接触するように設けられたスピン注入層4と、電源部5と、制御部7とを備え、電源部5及び制御部7は、スピン注入層4に電流を流すように設けられ、制御部7は、電極3a及び電極3bを用いて前記キラル物質の前記電流の方向を横切る方向に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられたことを特徴とする。
 本実施形態では、電源部5はスピン注入層4に電力を供給し、制御部7は電極3a、3bを用いて電圧を検出し、検出された電圧に基づきキラル物質のキラリティを検出する。
分離装置、分離方法
 図6、図7は、本実施形態の分離装置の概略図である。
 本実施形態の分離装置25は、キラル物質の右手系と左手系とを分離するための分離装置25であって、前記右手系及び前記左手系を含む溶液、液体又は気体が流れるように設けられた流路16と、流路16を流れる前記溶液、前記液体又は前記気体に電界を形成するように設けられた電圧印加部12と、前記電界よりも下流の前記溶液、前記液体又は前記気体に磁場を形成するように設けられた磁場印加部13とを備え、前記電界により生じた前記キラル物質のスピン偏極と、前記磁場との相互作用を利用して前記右手系と前記左手系とを分離することを特徴とする。
 本実施形態の分離装置25は、溶液中、液体中又は気体中の右手系キラル物質17と左手系キラル物質18とを分離する装置である。従って、分離前の溶液、液体、又は気体には、右手系キラル物質17と左手系キラル物質18の両方が含まれる。
 本実施形態の分離装置25は、キラル物質を含む溶液、液体又は気体11を流すように設けられた流路16を備える。流路16中には、キラル物質を含む溶液、液体又は気体11に電界を生じさせるように設けられた電圧印加用電極3a、3b(電圧印加部12)が設けられている。電圧印加用電極3a、3bは、生じさせる電界の方向が流路16の流れの方向と平行になるように設けることができる。
 電源部5a(電圧印加部12)を用いて電極3aと電極3bとの間に電圧を印加し電界を生じさせると、キラリティ誘起スピン選択性(CISS)効果により流路16を流れる右手系キラル物質17と左手系キラル物質18にスピン偏極を生じさせることができる。右手系キラル物質17で生じるスピン偏極の偏極方向は、左手系キラル物質18で生じるスピン偏極の偏極方向と逆になると考えられる。なお、図6、図7における右手系キラル物質17と左手系キラル物質18の矢印の向きの関係は模式的なものであり、その向きに限定するものではない。
 磁場印加部13は、電圧印加用電極3a、3bの間に生じさせた電界よりも下流の流路16中に磁場を形成するように設けられる。磁場印加部13は、例えば、電源部5a、5b、5cとコイル19、19a、19bを含むことができる。また、磁場印加部13、13a、13bは、永久磁石であってもよく、微小磁石であってもよい。また、磁場印加部13、13a、13bは、流路16中に形成する磁場の向きが流路16の流れの方向、電圧印加用電極3a、3bの間に生じさせた電界の向き、又は右手系キラル物質17と左手系キラル物質18のスピン偏極方向と平行となるように設けることができる。
 例えば、磁場印加部13は、図6に示した分離装置25のように設けることができる。この装置では、流路16に巻きつくようにコイル19が設けられており、このコイル19に電源部5bを用いて直流電流を流す。このことにより、流路16中に流れの方向と平行な磁場を発生させることができる。
 スピン偏極が生じた右手系キラル物質17と、スピン偏極が生じた左手系キラル物質18とがこのような磁場中を流れると、スピン偏極の偏極方向と磁場の方向との関係で、右手系キラル物質17と左手系キラル物質18とのうち一方が流路16を流れる速度が速くなり、他方が流路16を流れる速度が遅くなる。このため、流路16の流れ中において右手系キラル物質17と左手系キラル物質18とを分離することができる。従って、この分離装置25ではクロマトグラフィー的に右手系キラル物質17と左手系キラル物質18とを分離する。
 例えば、磁場印加部13a、13bを、図7に示した分離装置25のように設けることができる。磁場印加部13a、13bは、漏れ磁場を利用して流路16中に磁場を形成するように設けられる。磁場印加部13aは、電源部5bとコイル19aとを含み漏れ磁場を流路16中に形成するように設けられる。磁場印加部13bは、電源部5cとコイル19bとを含み、漏れ磁場を流路16中に形成するように設けられる。磁場印加部13aにより形成される磁場と磁場印加部13bにより形成される磁場は同じ流路断面に位置する。
 スピン偏極が生じた右手系キラル物質17と、スピン偏極が生じた左手系キラル物質18とがこのような磁場中を流れると、スピン偏極の偏極方向と磁場の方向との関係で、右手系キラル物質17と左手系キラル物質18とのうち一方が磁場印加部13aにより形成される磁場中を流れ、他方が磁場印加部13bにより形成される磁場中を流れる。このため、流路16の流れ中において右手系キラル物質17と左手系キラル物質18とを分離することができる。
 流路16は、磁場印加部13aにより形成される磁場中を流れたキラル物質が流路16aを流れ、磁場印加部13bにより形成される磁場中を流れたキラル物質が流路16bを流れるように分岐している。このため、磁場を用いて分離した右手系キラル物質17と左手系キラル物質18とが混合することを抑制することができる。従って、流路16aと流路16bからそれぞれキラル物質を回収することにより、右手系キラル物質17と左手系キラル物質18と分けて回収することができる。
キラル物質装置
 図8は、本実施形態のキラル物質装置の概略斜視図である。
 本実施形態のキラル物質装置30は、キラル物質層2と、キラル物質層2に電界を形成することができるように設けられた第1電圧印加用電極3a及び第2電圧印加用電極3bと、キラル物質層2と接触するように設けられたスピン検出層4とを備え、第1電圧印加用電極3a及び第2電圧印加用電極3bは、第1電圧印加用電極3a及び第2電圧印加用電極3bのうち少なくとも一方が入力信号を入力するように設けられ、かつ、入力信号を入力することによりキラル物質層2に電界を形成するように設けられ、入力信号に応じてスピン検出層4の電界を横切る方向に生じる電圧が変化することを特徴とする。
 キラル物質装置30は、キラル物質の特性を利用した装置であり、トランジスタであってもよく、メモリであってもよく、論理素子であってもよい。
 キラル物質層2は、キラル物質を含む層である。キラル物質層2は、右手系キラル物質及び左手系キラル物質のうちどちらか一方を主に含む層とすることができる。また、キラル物質層2は、右手系キラル物質からなる層と左手系キラル物質からなる層とが組み合わされた構造を有してもよい。
 キラル物質層2は、単結晶であってもよく、多結晶であってもよく、微晶質であってもよく、液晶であってもよく、粉末の凝集体であってもよい。また、キラル物質層2は、キラル物質を含むゲルであってもよい。また、キラル物質層2は、導電体であってもよく、半導体であってもよく、絶縁体であってもよい。
 第1電圧印加用電極3a及び第2電圧印加用電極3bは、キラル物質層2に電界を形成するための電極である。第1電圧印加用電極3aと第2電圧印加用電極3bとの間に電圧を印加することによりキラル物質層2に電界が形成される。キラル物質装置30は、図8に示した装置のように一対の電圧印加用電極3a、3bを有してもよく、電圧印加用電極3a、3bの対を複数有してもよい。
 電極3a、3bを用いてキラル物質層2に電界を発生させると、キラリティ誘起スピン選択性(CISS)効果によりキラル物質層2に含まれるキラル物質にスピン偏極電子を生じさせることができる。また、キラル物質層2に形成する電界の向きが変わると、スピン偏極の向きが変わる。
 スピン検出層4は、キラル物質層2で生じさせたスピン偏極のスピンを吸収する層である。スピン検出層4は、例えば、図8に示したキラル物質装置30のように、電圧印加用電極3a、3bの間に配置してもよい。また、スピン検出層4は、電圧印加用電極3a、3bの間に配置しなくてもよい。
 また、一対の電圧印加用電極3a、3bを複数設ける場合、電圧印加用電極3a、3bの対と隣接する電圧印加用電極3a、3bの対との間にスピン検出層4を複数配置してもよい。このことにより、出力信号を出力するスピン検出層4を選択することが可能になる。
 入力部26は、電圧印加用電極3a、3bのうち少なくとも一方に入力信号を入力し、電圧印加用電極3a、3bの間のキラル物質層2に電界を形成するように設けられる。このため、入力信号に応じて変化する電界をキラル物質層2に形成することができる。例えば、入力部26は、入力信号に応じてキラル物質層2に形成される電界の向きが変わるように設けることができる。キラル物質層2の電界の向きが変わると、キラル物質層2のスピン偏極の向きも変わる。このため、図8に示した装置30のようにスピン検出層4を設けている場合、入力信号に応じてスピン検出層4の電界を横切る方向に生じる電圧の向きも変わる。この電圧の向きを出力部27から出力信号として出力することにより、入力信号を出力信号に変換することができる。
 なお、上記のキラリティ検出装置20などについての説明は、矛盾がない限りキラル物質装置についても当てはまる。
第1キラリティ検出実験
 被検物をキラル物質であるCrNb3S6として図1のような装置Aを作製した。CrNb3S6には、16.9μm×9.5μm×500nmの単結晶を用いた。CrNb3S6のc軸(らせん軸)はx方向となるようにCrNb3S6を配置した。また、スピン検出層は、2μm×9.5μm×25nmのPt層とした。Pt層の抵抗率は450μΩcmであり、CrNb3S6単結晶の抵抗率は650μΩcmであった。
 作製した装置Aの写真を図9に示す。配線(1)(2)が電圧印加用電極でありCrNb3S6単結晶のx方向に電圧を印加する電極である。配線(5)(6)が電圧検出用電極でありCrNb3S6単結晶のx方向の電圧を検出する電極である。配線(4)(8)は、Pt層の端部に接続し、Pt層のy方向の電圧を検出する電極である。
 被検物を非キラル物質であるWC(タングステンカーバイト)として図1のような装置Bを作製した。WCには、16.4μm×8.4μm×40nmのサイズのものを用いた。また、スピン検出層は、2μm×8.4μm×25nmのPt層とした。Pt層の抵抗率は450μΩcmであり、WCの抵抗率は530μΩcmである。
 作製した装置Bの写真を図10に示す。配線(1)(2)が電圧印加用電極でありWCのx方向に電圧を印加する電極である。配線(4)(5)が電圧検出用電極でありWCのx方向の電圧を検出する電極である。配線(3)(6)は、Pt層の端部に接続し、Pt層のy方向の電圧を検出する電極である。
 装置AのCrNb3S6単結晶に流れる電流((1)→(2))が-5mAから5mAとなるように配線(1)(2)の間に印加する電圧を変化させて配線(5)(6)間の電圧Vxx(CrNb3S6単結晶のx方向の電圧)及び配線(4)(8)間の電圧Vxy(Pt層のy方向の電圧)を測定した。また、測定値からCrNb3S6単結晶の抵抗値Rxx及びPt層の抵抗値Rxyを算出した。
 CrNb3S6単結晶を流れる電流が配線(1)から配線(2)へ流れるときの電流値をプラスとし、電流が配線(2)から配線(1)へ流れるときの電流値をマイナスとした。電圧Vxxは、配線(5)の電位が配線(6)の電位より高いときにプラスの電圧とした。電圧Vxyは、配線(4)の電位(CrNb3S6にプラスの電流が流れる方向を向いて右側)が配線(8)の電位(CrNb3S6にプラス電流が流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 装置BのWCに流れる電流((1)→(2))が-5mAから5mAとなるように配線(1)(2)の間に印加する電圧を変化させて配線(4)(5)間の電圧Vxx(WCのx方向の電圧)及び配線(3)(6)間の電圧Vxy(Pt層のy方向の電圧)を測定した。また、測定値からWCの抵抗値Rxx及びPt層の抵抗値Rxyを算出した。
 WCを流れる電流が配線(1)から配線(2)へ流れるときの電流値をプラスとし、電流が配線(2)から配線(1)へ流れるときの電流値をマイナスとした。電圧Vxxは、配線(4)の電位が配線(5)の電位より高いときにプラスの電圧とした。電圧Vxyは、配線(3)の電位(WCにプラスの電流が流れる方向を向いて右側)が配線(6)の電位(WCにプラスの電流の流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 横方向の測定電圧値Vxxの変化を示すグラフを図11(a)に示し、算出された抵抗値Rxxの変化を示すグラフを図11(b)に示す。装置A、BのいずれでもVxxは、配線(1)(2)間に印加する電圧に応じて変化した。また、Rxxは一定であった。
 Pt層の縦方向の測定電圧値Vxyの変化を示すグラフを図12(a)に示し、算出された抵抗値Rxyの変化を示すグラフを図12(b)に示す。装置B(WC)ではVxyは出力されずRxyはゼロであったのに対し、装置A(CrNb3S6)では、CrNb3S6にプラスの電流が流れるように電圧が印加するとPt層にプラスの電圧Vxyが生じ、CrNb3S6にマイナスの電流が流れるように電圧が印加するとPt層にマイナスの電圧Vxyが生じた。電圧Vxyと、CrNb3S6に流れる電流Iとは比例関係にあった。また、作製した装置AにおいてRxyはCrNb3S6に流す電流Iが大きくなるほど少しずつ大きくなりやや非線形な振舞いを示した。
 従って、被検物がキラル物質である場合、被検物に電流を流すとスピン検出層であるPt層に起電力が生じることがわかった。このことから、被検物に電流を流しスピン検出層に起電力が生じるか否かを調べることにより、キラル物質か否かを判別することができることがわかった。
 スピン検出層に起電力が生じた理由は、キラリティ誘起スピン選択性(CISS)効果によりキラル物質にスピン偏極状態が生じ、このスピン偏極状態が、逆スピンホール効果によりスピン軌道相互作用が大きい物質であるPt(スピン検出層)の電荷流に変換され起電力が生じたためと考えられる。
 次に、装置Aを用いて電圧印加電極を変更して電圧Vxy(Pt層のy方向の電圧)を測定した。具体的には、図13(a)に示した実線矢印のように配線(5)と配線(2)との間に電流を流した際の配線(4)(8)間の電圧Vxy(Pt層のy方向の電圧)を測定した。また、図13(a)に示した点線矢印のように配線(6)と配線(2)との間に電流を流した際の配線(4)(8)間の電圧Vxy(Pt層のy方向の電圧)を測定した。電圧VxyからPt層の抵抗値Rxyを算出した。
 なお、印加電圧電極間の距離(CrNb3S6単結晶における電流が流れる距離)は、実線矢印のほうが点線矢印よりも長い。また、電流Iのプラス・マイナス及び電圧Vxyのプラス・マイナスは、上述の装置Aを用いた測定と同じである。
 図13(b)は電圧Vxyの変化を示すグラフであり、図13(c)は抵抗値Rxyの変化を示すグラフである。電圧Vxyは、図12(a)の装置Aでの測定結果と同様に、CrNb3S6にプラスの電流が流れるように電圧が印加するとPt層にプラスの電圧Vxyが生じ、CrNb3S6にマイナスの電流が流れるように電圧が印加するとPt層にマイナスの電圧Vxyが生じた。
 従って、スピン検出層であるPt層を印加電圧用電極の間に配置していない場合でもスピン検出層に起電力が生じることがわかった。
 キラル物質の電流が流れていない領域に接触するように設けたスピン検出層に起電力が生じる理由としては、キラリティ誘起スピン選択性(CISS)効果によりキラル物質に生じるスピン偏極状態は、キラル物質の電流が流れていない部分のスピン偏極を引き起こすと考えられる。この引き起こされたスピン偏極が逆スピンホール効果によりPt(スピン検出層)の電荷流に変換され起電力が生じたと考えられる。距離依存性はあるものの、比較的長い距離に渡って 起電力が検出可能であることがわかった。具体的には、数μm 程度の検出に加えて 10mm 程度の距離まで信号を検出している。
キラリティ判別実験
 スピン検出層に生じる起電力からキラル物質の左手系と右手系を判別できるかどうかを確かめる実験を行った。
 左手系のキラル物質にはCrSi2(P6422(D6 5))のバルク多結晶を用いた。CrSi2は、左巻きらせんの原子配列を有する結晶構造を有する。多結晶中のらせん軸の向きはバラバラである(無配向試料)。
 図14(a)にCrSi2バルク多結晶を用いて作製した装置Cの写真を示す。CrSi2バルク多結晶の両端には電圧印加用電極である配線(1)(2)を設けている。配線(1)(2)の間には、2つのPt層を設け、左側のPt層の両端に配線(3)(5)を接続し、右側のPt層の両端に配線(4)(6)を接続した。
 装置CのCrSi2バルク多結晶に流れる電流((1)→(2))が-21mAから21mAとなるように配線(1)(2)の間に印加する電圧を変化させて配線(3)(4)間の電圧Vxx(CrSi2バルク多結晶のx方向の電圧)及び配線(4)(6)間の電圧Vxy(Pt層のy方向の電圧)を測定した。
 CrSi2バルク多結晶を流れる電流が配線(1)から配線(2)へ流れるときの電流値をプラスとし、電流が配線(2)から配線(1)へ流れるときの電流値をマイナスとした。電圧Vxxは、配線(3)の電位が配線(4)の電位より高いときにプラスの電圧とした。電圧Vxyは、配線(4)の電位(CrSi2バルク多結晶にプラスの電流が流れる方向を向いて右側)が配線(6)の電位(CrSi2バルク多結晶にプラスの電流が流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 x方向の測定電圧値Vxxの変化を示すグラフを図14(b)に示し、Pt層のy方向の測定電圧値Vxyの変化を示すグラフを図14(c)に示す。電圧値Vxxは、配線(1)(2)間に印加する電圧に応じて変化した。電圧値Vxyは、CrSi2バルク多結晶にプラスの電流が流れるように電圧が印加されるとマイナスの電圧となり、CrSi2バルク多結晶にマイナスの電流が流れるように電圧が印加されるとプラスの電圧となった。電圧Vxyと、CrSi2バルク多結晶に流れる電流Iとは比例定数がマイナスの比例関係にあった。
 右手系のキラル物質にはNbSi2(P6422(D6 4))のバルク多結晶を用いた。NbSi2は、右巻きらせんの原子配列を有する結晶構造を有する。多結晶中のらせん軸の向きはバラバラである(無配向試料)。
 図15(a)にNbSi2バルク多結晶を用いて作製した装置Dの写真を示す。NbSi2バルク多結晶の両端には電圧印加用電極である配線(1)(2)を設けている。配線(1)(2)の間には、2つのPt層を設け、左側のPt層の両端に配線(3)(5)を接続し、右側のPt層の両端に配線(4)(6)を接続した。
 装置DのNbSi2バルク多結晶に流れる電流((1)→(2))が-21mAから21mAとなるように配線(1)(2)の間に印加する電圧を変化させて配線(5)(6)間の電圧Vxx(NbSi2バルク多結晶のx方向の電圧)及び配線(4)(6)間の電圧Vxy(Pt層のy方向の電圧)を測定した。
 NbSi2バルク多結晶を流れる電流が配線(1)から配線(2)へ流れるときの電流値をプラスとし、電流が配線(2)から配線(1)へ流れるときの電流値をマイナスとした。電圧Vxxは、配線(5)の電位が配線(6)の電位より高いときにプラスの電圧とした。電圧Vxyは、配線(4)の電位(NbSi2バルク多結晶にプラスの電流が流れる方向を向いて右側)が配線(6)の電位(NbSi2バルク多結晶にプラスの電流が流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 x方向の測定電圧値Vxxの変化を示すグラフを図15(b)に示し、Pt層のy方向の測定電圧値Vxyの変化を示すグラフを図15(c)に示す。電圧値Vxxは、配線(1)(2)間に印加する電圧に応じて変化した。電圧値Vxyは、NbSi2バルク多結晶にプラスの電流が流れるように電圧が印加されるとプラスの電圧となり、NbSi2バルク多結晶にマイナスの電流が流れるように電圧が印加されるとマイナスの電圧となった。電圧Vxyと、NbSi2バルク多結晶に流れる電流Iとは比例定数がプラスの比例関係にあった。
 これらの実験から右手系キラル物質を用いた装置のスピン検出層に生じる起電力の向きは、左手系キラル物質を用いた装置のスピン検出層に生じる起電力の向きと逆であることがわかった。このことから、被検物(キラル物質)に電流を流しスピン検出層に生じる起電力の向きを調べることにより、キラル物質を右手系か左手系かを判別することができることがわかった。
 スピン検出層に生じる起電力の向きが逆になる理由としては、キラリティ誘起スピン選択性(CISS)効果によりキラル物質のスピン偏極状態の偏極方向が、右手系と左手系とで逆になると考えられる。このため、逆スピンホール効果によりスピン流が変換されて生じるスピン検出層の起電力の向きも、右手系と左手系とで逆になると考えられる。
 無配向試料である多結晶キラル物質を用いた装置C、Dでも、スピン検出層に起電力が生じたことから、スピン検出層で生じる起電力の向きは、スピン軸の向きに関わらずキラル物質が右手系か左手系かで決まることがわかった。従って、CISS効果は、キラル物質の分子レベル(又は結晶レベル)で成立することがわかった。このことから、溶液中のキラル物質、キラル物質である液晶、キラル物質である絶縁体でも同様に右手系か左手系かを判別することができると考えられる。
第2キラリティ検出実験
 上述の第1キラリティ検出実験及びキラリティ判別実験では、被検物であるキラル物質に導電体を用いたが、第2キラリティ検出実験では被検物に絶縁体である左水晶と右水晶を用いて実験を行った。左水晶は、結晶構造に左巻きのらせんの原子配列を有する左手系のキラル物質であり、右水晶は、結晶構造に右巻きのらせんの原子配列を有する右手系のキラル物質である。なお、水晶は絶縁体であるため、キラル物質には電流は流れない。そこで、CISS効果の逆効果を用いて測定を行った。つまり、Pt層の両端に電圧を印加し、キラル物質に発生する電圧を検出する。
 図16(a)に左水晶を用いて作製した装置Eの写真を示す。左水晶の両端には電圧検出用電極である配線(1)(2)を設けている。配線(1)(2)の間にPt層を設け、Pt層の両端に配線(3)(4)を接続した。このPt層は第1キラリティ検出実験ではスピン検出層として機能したが、逆効果を用いる第2キラリティ検出実験では、電圧印加用電極として機能する。
 配線(3)(4)を用いてPt層に印加する電圧(パルス電圧)を変化させて配線(1)(2)間の電圧Vyx(水晶のx方向の電圧)を測定した。
 Pt層を流れる電流が配線(3)から配線(4)へ流れるときの電流値をプラスとし、電流が配線(4)から配線(3)へ流れるときの電流値をマイナスとした。電圧Vyxは、配線(1)の電位(Pt層にプラスの電流が流れる方向を向いて右側)が配線(2)の電位(Pt層にプラス電流が流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 水晶のx方向の測定電圧値Vyxの変化を示すグラフを図16(b)に示す。図16(b)ではPt層に印加する電圧を電流値I(mA)で示している。
 配線(3)(4)に印加する電圧を変化させると、水晶に起電力が生じた。また、左水晶に発生する測定電圧値Vyxと、Pt層に印加する電圧とは比例定数がマイナスの比例関係にあった。このように電圧値Vyxの変化傾向は、第1キラリティ検出実験及びキラリティ判別実験と同様であった。
 図17(a)に右水晶を用いて作製した装置Fの写真を示す。右水晶の両端には電圧検出用電極である配線(1)(2)を設けている。配線(1)(2)の間にPt層を設け、Pt層の両端に配線(3)(4)を接続した。このPt層は第1キラリティ検出実験ではスピン検出層として機能したが、逆効果を用いる場合は、電圧印加用電極として機能する。
 配線(3)(4)を用いてPt層に印加する電圧(パルス電圧)を変化させて配線(1)(2)間の電圧Vyx(水晶のx方向の電圧)を測定した。
 Pt層を流れる電流が配線(3)から配線(4)へ流れるときの電流値をプラスとし、電流が配線(4)から配線(3)へ流れるときの電流値をマイナスとした。電圧Vyxは、配線(1)の電位(Pt層にプラスの電流が流れる方向を向いて右側)が配線(2)の電位(Pt層にプラス電流が流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 右水晶のx方向の測定電圧値Vyxの変化を示すグラフを図17(b)に示す。図17(b)ではPt層に印加する電圧を電流値I(mA)で示している。
 配線(3)(4)に印加する電圧を変化させると、水晶に起電力が生じた。また、右水晶に発生する測定電圧値Vyxと、Pt層に印加する電圧とは比例定数がプラスの比例関係にあった。このように電圧値Vyxの変化傾向は、第1キラリティ検出実験及びキラリティ判別実験と同様であった。
 装置Eと装置Fにおける実験結果から、キラル物質に生じる起電力の向きを調べることにより、絶縁体であるキラル物質が右手系か左手系かであるかを判別することができることがわかった。
 絶縁体であるキラル物質を用いた装置Eと装置Fのキラル物質に起電力が生じる理由は、次のように考えられる。Pt層に電圧を印加した場合、スピンホール効果によりスピン流がPt層からキラル物質に注入され、キラル物質にスピン偏極が生じる。このキラル物質のスピン偏極は、キラリティ誘起スピン選択性(CISS)効果の逆効果により、キラル物質中に起電力を生じさせると考えられる。
第3キラリティ検出実験
 第3キラリティ検出実験では、キラル分子である酒石酸を分散させたキラル分子分散溶液を被検物として実験を行った。
 図18(a)に装置Gの写真を示す。装置Gでは、ガラス基板上に3本の白金電極を設けており、上の白金電極の両端に配線(1)(2)を接続し、中間の白金電極の両端に配線(3)(4)を接続し、下の白金電極の両端に配線(5)(6)を接続している。そして、3本の白金電極と重なるように基板上にキラル分子分散溶液を滴下している。
 装置Gのキラル分子分散溶液に流れる電流(上の白金電極から下の白金電極へ流れる電流)が-100μAから+100μAとなるように配線(2)(6)の間に印加する電圧を変化させて配線(3)(4)間の電圧Vを測定した。
 キラル分子分散溶液を流れる電流が配線(2)から配線(6)へ流れるときの電流値をプラスとし、電流が配線(6)から配線(2)へ流れるときの電流値をマイナスとした。
 電圧Vは、配線(3)の電位(キラル分子分散溶液にプラスの電流が流れる方向を向いて右側)が配線(4)の電位(キラル分子分散溶液にプラスの電流が流れる方向を向いて左側)よりも高いときにプラスの電圧とした。
 測定電圧値Vの変化を示すグラフを図18(b)に示す。電圧値Vは、配線(2)(6)間に印加する電圧に応じて変化した。電圧値Vは、キラル分子分散溶液にプラスの電流が流れるように電圧が印加されるとマイナスの電圧となり、キラル分子分散溶液にマイナスの電流が流れるように電圧が印加されるとプラスの電圧となった。電圧Vと、キラル分子分散溶液に流れる電流Iとは比例定数がマイナスの比例関係にあった。
 このように電圧値Vの変化傾向は、第1及び第2キラリティ検出実験並びにキラリティ判別実験と同様であった。
 2:キラル物質層  3a、3b: 電圧印加用電極  4:スピン検出層  5、5a、5b、5c:電源部  6a、6b、6c:電圧計測部  7:制御部  8a、8b、8c:電圧検出用電極  9:被検物  11:キラル物質を含む溶液、液体又は気体  12:電圧印加部  13、13a、13b:磁場印加部  15:流路部材  16、16a、16b:流路  17:右手系キラル物質  18:左手系キラル物質  19、19a、19b:コイル  20:キラリティ検出装置  25:分離装置  26:入力部  27:出力部  30:キラル物質装置

Claims (7)

  1.  キラル物質のキラリティを検出するためのキラリティ検出装置であって、
    前記キラル物質を含む被検物に電圧を印加するための第1電極及び第2電極と、前記被検物と接触するように設けられたスピン検出層と、電源部と、制御部とを備え、
    前記電源部及び前記制御部は、第1電極と第2電極との間に電圧を印加することにより前記被検物に電界を形成するように設けられ、
    前記制御部は、前記スピン検出層の前記電界の方向を横切る方向に生じる電圧又は前記スピン検出層と前記被検物との間に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられたことを特徴とするキラリティ検出装置。
  2.  前記スピン検出層は、強磁性体を含み、
    前記制御部は、前記スピン検出層と前記被検物との間に生じる電圧を検出するように設けられた請求項1に記載のキラリティ検出装置。
  3.  キラル物質のキラリティを検出するためのキラリティ検出装置であって、
    前記キラル物質を含む被検物に電気的に接続した第3電極及び第4電極と、前記被検物と接触するように設けられたスピン注入層と、電源部と、制御部とを備え、
    前記電源部及び前記制御部は、前記スピン注入層に電流を流すように設けられ、
    前記制御部は、第3電極及び第4電極を用いて前記キラル物質の前記電流の方向を横切る方向に生じる電圧を検出するように設けられ、かつ、検出された電圧に基づき前記キラル物質のキラリティを検出するように設けられたことを特徴とするキラリティ検出装置。
  4.  キラル物質を含む被検物に電界を生じさせた際に前記被検物と接触するように設けられたスピン検出層の前記電界の方向を横切る方向に生じる電圧又は前記スピン検出層と前記被検物との間に生じる電圧を検出するステップと、
    検出された電圧に基づき前記キラル物質のキラリティを検出するステップとを含むキラリティ検出方法。
  5.  キラル物質の右手系と左手系とを分離するための分離装置であって、
    前記右手系及び前記左手系を含む溶液、液体又は気体が流れるように設けられた流路と、前記流路を流れる前記溶液、前記液体又は前記気体に電界を形成するように設けられた電圧印加部と、前記電界よりも下流の前記溶液、前記液体又は前記気体に磁場を形成するように設けられた磁場印加部とを備え、
    前記電界により生じた前記キラル物質のスピン偏極と、前記磁場との相互作用を利用して前記右手系と前記左手系とを分離することを特徴とする分離装置。
  6.  右手系及び左手系とを含むキラル物質にスピン偏極が生じるように前記キラル物質を含む溶液、液体又は気体に電圧を印加するステップと、
    前記スピン偏極が生じた前記キラル物質を含む前記溶液、前記液体又は前記気体に磁場が生じるように磁場を印加するステップとを含み、
    前記スピン偏極と、前記磁場との相互作用を利用して前記右手系と前記左手系とを分離することを特徴とする分離方法。
  7.  キラル物質層と、前記キラル物質層に電界を形成することができるように設けられた第1電極及び第2電極と、前記キラル物質層と接触するように設けられたスピン検出層とを備え、
    第1及び第2電極は、第1及び第2電極のうち少なくとも一方が入力信号を入力するように設けられ、かつ、前記入力信号を入力することにより前記キラル物質層に前記電界を形成するように設けられ、
    前記入力信号に応じて前記スピン検出層の前記電界を横切る方向に生じる電圧が変化することを特徴とするキラル物質装置。
PCT/JP2020/019479 2019-05-16 2020-05-15 キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置 WO2020230893A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021519505A JPWO2020230893A1 (ja) 2019-05-16 2020-05-15
US17/611,347 US11698360B2 (en) 2019-05-16 2020-05-15 Chirality detection device, chirality detection method, separation device, separation method, and chiral substance device
EP20806276.0A EP3971562A4 (en) 2019-05-16 2020-05-15 CHIRALITY DETECTION DEVICE, CHIRALITY DETECTION METHOD, SEPARATION DEVICE, SEPARATION METHOD AND CHIRAL SUBSTANCE DEVICE
CN202080036002.XA CN113826003A (zh) 2019-05-16 2020-05-15 手性检测装置、手性检测方法、分离装置、分离方法和手性物质装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092958 2019-05-16
JP2019-092958 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230893A1 true WO2020230893A1 (ja) 2020-11-19

Family

ID=73288894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019479 WO2020230893A1 (ja) 2019-05-16 2020-05-15 キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置

Country Status (5)

Country Link
US (1) US11698360B2 (ja)
EP (1) EP3971562A4 (ja)
JP (1) JPWO2020230893A1 (ja)
CN (1) CN113826003A (ja)
WO (1) WO2020230893A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024512A1 (ja) * 2022-07-27 2024-02-01 Blue Industries株式会社 検出装置及び分析装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005181071A (ja) * 2003-12-18 2005-07-07 New Industry Research Organization スピン波励振・検出装置、前記装置を用いた高周波信号処理装置及びカーボンナノチューブの構造評価装置
JP2005526207A (ja) * 2002-02-14 2005-09-02 アロイス・ヴォベン 風力タービン
WO2009075359A1 (ja) * 2007-12-13 2009-06-18 Public University Corporation Osaka Prefecture University キラル物質の異性体分離方法及びその装置
JP2010527284A (ja) * 2007-04-17 2010-08-12 ダイナミック コネクションズ エルエルシー キラル体の分離および操作
US20140099238A1 (en) * 2012-10-08 2014-04-10 Waters Technologies Corporation Chiral Separation System
JP2015512159A (ja) * 2012-03-13 2015-04-23 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド メモリーおよびロジックデバイスおよびその実行のための方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0211931D0 (en) 2002-05-23 2002-07-03 Univ Liverpool Methods & device utilizing adsorption of molecules at a surface or interface
US7466523B1 (en) * 2003-07-10 2008-12-16 Yingjian Chen Nanotube spin valve and method of producing the same
US10641843B2 (en) * 2009-03-26 2020-05-05 Biomimetics Technologies, Inc. Embedded crystal circuit for the detection of weak electrical and magnetic fields
JP6202307B2 (ja) 2013-08-02 2017-09-27 国立研究開発法人産業技術総合研究所 キラリティ測定方法及びキラリティ測定装置
EP2982662A1 (en) 2014-08-08 2016-02-10 Université de Strasbourg Method for chiral resolution and device therefor
US20160057859A1 (en) * 2014-08-21 2016-02-25 Juan José de Miguel Electron spin filter
WO2017221250A1 (en) * 2016-06-23 2017-12-28 Yeda Research And Development Co. Ltd. System and method for use in analysis of chiral molecules
JP6875673B2 (ja) 2016-07-19 2021-05-26 学校法人 中央大学 キラル化合物の検出方法
JP7284739B2 (ja) * 2020-09-14 2023-05-31 株式会社東芝 磁気センサ及び検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005526207A (ja) * 2002-02-14 2005-09-02 アロイス・ヴォベン 風力タービン
JP2005181071A (ja) * 2003-12-18 2005-07-07 New Industry Research Organization スピン波励振・検出装置、前記装置を用いた高周波信号処理装置及びカーボンナノチューブの構造評価装置
JP2010527284A (ja) * 2007-04-17 2010-08-12 ダイナミック コネクションズ エルエルシー キラル体の分離および操作
WO2009075359A1 (ja) * 2007-12-13 2009-06-18 Public University Corporation Osaka Prefecture University キラル物質の異性体分離方法及びその装置
JP2015512159A (ja) * 2012-03-13 2015-04-23 イエダ リサーチ アンド ディベロップメント カンパニー リミテッド メモリーおよびロジックデバイスおよびその実行のための方法
US20140099238A1 (en) * 2012-10-08 2014-04-10 Waters Technologies Corporation Chiral Separation System

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
CLAUDIO FONTANESI, EYAL CAPUA, YOSSI PALTIEL, DAVID H. WALDECK, RON NAAMAN: "Spin-Dependent Processes Measured without a Permanent Magnet", ADVANCED MATERIALS, VCH PUBLISHERS, vol. 30, no. 41, 1 October 2018 (2018-10-01), pages 1707390, XP055647289, ISSN: 0935-9648, DOI: 10.1002/adma.201707390 *
F. J. JEDEMA ET AL., NATURE, vol. 416, 2002, pages 713
JOHN M. ABENDROTH, DOMINIK M. STEMER, BRIAN P. BLOOM, PARTHA ROY, RON NAAMAN, DAVID H. WALDECK, PAUL S. WEISS, PRAKASH CHANDRA MON: "Spin Selectivity in Photoinduced Charge-Transfer Mediated by Chiral Molecules", ACS NANO, AMERICAN CHEMICAL SOCIETY, vol. 13, no. 5, 28 May 2019 (2019-05-28), pages 4928 - 4946, XP055764726, ISSN: 1936-0851, DOI: 10.1021/acsnano.9b01876 *
See also references of EP3971562A4
T. KIMURA ET AL., PHYS. REV. LETT., vol. 98, 2007, pages 156601
T. KIMURA; Y. OTANI; T. SATO; S. TAKAHASHI; S. MAEKAWA: "Room Temperature Reversible Spin Hall Effect", ARXIV.ORG, CORNELL UNIVERSITY LIBRARY, 201 OLIN LIBRARY CORNELL UNIVERSITY ITHACA, NY 14853, 13 September 2006 (2006-09-13), 201 Olin Library Cornell University Ithaca, NY 14853, XP080251184, DOI: 10.1103/PhysRevLett.98.156601 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024024512A1 (ja) * 2022-07-27 2024-02-01 Blue Industries株式会社 検出装置及び分析装置

Also Published As

Publication number Publication date
EP3971562A4 (en) 2023-06-07
JPWO2020230893A1 (ja) 2020-11-19
EP3971562A1 (en) 2022-03-23
CN113826003A (zh) 2021-12-21
US20220214308A1 (en) 2022-07-07
US11698360B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP6438532B2 (ja) スピンフィルタ構造体を含む磁気トンネル接合素子
US9087593B2 (en) Random bit generator that applies alternating current (AC) to magnetic tunnel junction to generate a random bit
US11280856B2 (en) Direct electrical detection of current-induced spin polarization due to spin-momentum locking in topological insulators
EP3683829A1 (en) METHOD FOR MANUFACTURING LAYERED STRUCTURE OF MAGNETIC BODY AND BiSb, MAGNETORESISTIVE MEMORY, AND PURE SPIN INJECTION SOURCE
US9786837B2 (en) Multibit self-reference thermally assisted MRAM
Zaffalon et al. Zero-dimensional spin accumulation and spin dynamics in a mesoscopic metal island
US20200350487A1 (en) Semiconductor device with asymmetrical pinned magnets, and method of manufacture
US10204678B2 (en) Multi-state magnetic memory device
US20170082697A1 (en) Spin hall effect magnetic structures
Gao et al. Enhancement of ferroelectric performance in PVDF: Fe3O4 nanocomposite based organic multiferroic tunnel junctions
WO2020230893A1 (ja) キラリティ検出装置、キラリティ検出方法、分離装置、分離方法及びキラル物質装置
Takahashi et al. Spin-orbit torque-induced switching of in-plane magnetized elliptic nanodot arrays with various easy-axis directions measured by differential planar Hall resistance
Hung et al. Experimental observation of coupled valley and spin Hall effect in p‐doped WSe2 devices
KR20070048657A (ko) 스핀 민감성을 갖는 묽은 반도체를 포함하는 터널 접합배리어층
WO2021002115A1 (ja) 乱数発生ユニット及びコンピューティングシステム
Numata et al. Scalable cell technology utilizing domain wall motion for high-speed MRAM
Smith et al. External field free spin Hall effect device for perpendicular magnetization reversal using a composite structure with biasing layer
KR101763073B1 (ko) 자기 나노 발진 소자
Sun et al. Geometric factors in the magnetoresistance of n-doped InAs epilayers
Blon et al. Spin momentum transfer effects observed in electrodeposited Co/Cu/Co nanowires
JP7291345B2 (ja) キラル物質装置
JP6777364B2 (ja) 外部磁界の非存在下での、スピン・軌道トルクによる垂直磁化ナノ磁石のスイッチング
TWI546971B (zh) 全電控自旋場效電晶體
Sun et al. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer
Sun et al. Au/GaAs magnetoresistive-switch-effect devices fabricated by wet etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806276

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020806276

Country of ref document: EP

Effective date: 20211216