WO2020230384A1 - 移動体、および、移動体の制御方法 - Google Patents

移動体、および、移動体の制御方法 Download PDF

Info

Publication number
WO2020230384A1
WO2020230384A1 PCT/JP2020/005230 JP2020005230W WO2020230384A1 WO 2020230384 A1 WO2020230384 A1 WO 2020230384A1 JP 2020005230 W JP2020005230 W JP 2020005230W WO 2020230384 A1 WO2020230384 A1 WO 2020230384A1
Authority
WO
WIPO (PCT)
Prior art keywords
moving body
support legs
caster
control unit
joint
Prior art date
Application number
PCT/JP2020/005230
Other languages
English (en)
French (fr)
Inventor
克文 杉本
康久 神川
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US17/604,645 priority Critical patent/US20220185401A1/en
Priority to CN202080034111.8A priority patent/CN113784824A/zh
Priority to JP2021519263A priority patent/JPWO2020230384A1/ja
Publication of WO2020230384A1 publication Critical patent/WO2020230384A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0891Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for land vehicles

Definitions

  • This technology is related to moving objects. More specifically, the present invention relates to a moving body that can be moved by a plurality of support legs, and a method of controlling the moving body.
  • a moving body that can overcome obstacles and steps by moving a plurality of support legs and walking has been used for various purposes such as carrying luggage, security, and providing entertainment.
  • a moving body is also called a robot.
  • the walking movement of a moving body that moves the support legs is slower than the wheel running. Therefore, a moving body has been proposed in which casters are attached to the tips of the support legs so that the wheels can run in addition to walking (see, for example, Patent Document 1).
  • the above-mentioned moving body shifts to a running mode in which the wheels run when moving on a flat ground where the wheels are easy to run, and shifts to a walking mode in which the moving body walks when moving on an rough terrain where the wheels are difficult to run.
  • the posture may be lost as a result of changing the ground contact position of the support legs in order to avoid obstacles and steps on the road surface in the traveling mode.
  • the moving body can regain its posture by, for example, taking another support leg off the ground and stepping on it so that the posture is stable.
  • re-stepping on the support leg during running is not possible.
  • There is a risk of falling Temporarily lowering the running speed can reduce the risk of falling when stepping on the support leg, but it is not preferable because the average speed is lowered. As described above, it is difficult to improve the stability of the above-mentioned moving body when traveling on wheels.
  • This technology was created in view of such a situation, and aims to improve the stability during wheel running in a moving body provided with multiple support legs with casters.
  • the first side surface thereof is a plurality of support legs having their roots attached to the body and casters attached to the tips, and the above.
  • a stabilizer that controls the ground contact position of each of the casters of the plurality of support legs based on the target value of the posture of the body portion, and a caster angle control that controls the caster angle of each of the casters based on the target value. It is a moving body including a part and a control method thereof. This has the effect of controlling the caster angle based on the target value of the posture.
  • the caster angle control unit is based on the mechanical impedance and the torsional rigidity of each of the plurality of support legs when the moving body shifts to the traveling mode in which the moving body travels on wheels.
  • the ratio of the height from the road surface to the base of the caster to the caster trail and the new target value may be obtained. This has the effect of requiring a height ratio to the caster trail and a new target value in the driving mode.
  • the caster angle control unit when the moving body shifts to the walking mode in which the moving body walks, has the torsional rigidity of each of the plurality of support legs, the target value, and the root from the road surface.
  • the mechanical impedance may be determined based on the height up to and the caster trail of the caster. This has the effect that mechanical impedance is required in the walking mode.
  • a plurality of lifts that support the loading platform and a lift control unit that controls the plurality of lifts based on the above target values can be further provided. This has the effect of controlling the lift based on the target value.
  • the fuselage portion may include a front fuselage portion, a rear fuselage portion, and a connecting portion for connecting the front fuselage portion to the rear fuselage portion. This has the effect of independently controlling the postures of the front torso and the rear torso.
  • the caster may be provided with a wheel portion and a damper that expands and contracts along the direction perpendicular to the road surface. This has the effect of increasing the caster angle when a load is applied.
  • each of the plurality of support legs includes a first joint and a second joint provided at the base, and a third joint provided at the tip, and the first joint is It may be a biaxial joint. This has the effect of widening the movable range of the support legs.
  • the plurality of support legs may be composed of a pair of front support legs and a pair of rear support legs. This has the effect of controlling the caster angles of each of the four legs.
  • the attachment angle of the base of each of the pair of front support legs may be different from that of the pair of rear support legs. This has the effect that the caster angle in the initial state is different between the front and the rear.
  • the number of the plurality of support legs may be two. This has the effect of controlling the caster angles of the two legs.
  • FIG. 1 is an example of an external view of the moving body 100 according to the first embodiment of the present technology.
  • the mobile body 100 is an unmanned robot used for various purposes such as carrying luggage, security, and providing entertainment, and includes a body portion 110 and a plurality of support legs.
  • four support legs 120, 130, 140 and 150 are provided on the moving body 100.
  • the body portion 110 is an elongated part, and a control unit 180 for controlling four support legs (support legs 120, etc.) is provided inside the body portion 110.
  • the bases of the support legs 120, 130, 140 and 150 are attached to the body portion 110, and casters 161 to 164 are attached to the tips.
  • the members attached to the tips of the robot's arms and legs in this way are also called end effectors.
  • the support legs 120 and 140 are attached to the front side, and the support legs 130 and 150 are attached to the rear side, with the direction from one end to the other of both ends of the elongated body portion 110 as the front side.
  • the support legs 120 and 140 are examples of the front support legs described in the claims, and the support legs 130 and 150 are examples of the rear support legs described in the claims.
  • Each of the support legs 120 and the like is provided with a plurality of joints and an actuator for driving those joints.
  • the number of joints and joint axes will be described later.
  • the moving body 100 is provided with various sensors (not shown) such as a sensor that detects the angle of the actuator, an image sensor that images the road surface, an acceleration sensor, and a gyro sensor.
  • the acceleration sensor and the gyro sensor are provided in, for example, an inertial measurement unit (IMU: Inertial Measurement Unit).
  • IMU Inertial Measurement Unit
  • FIG. 2 is a block diagram showing a configuration example of the mobile body 100 according to the first embodiment of the present technology.
  • the moving body 100 includes a sensor group 171, a control unit 180, and four support legs (support legs 120 and the like).
  • An actuator group 172 is provided on each of the support legs.
  • the control unit 180 includes a stabilizer 181, a road surface condition analysis unit 182, and a caster angle control unit 200.
  • the sensor group 171 is a sensor group that detects the internal and external conditions of the moving body 100.
  • a sensor that detects the angle of the actuator, an image sensor that images the road surface, an acceleration sensor, a gyro sensor, and the like are provided as the sensor group 171.
  • the sensor group 171 supplies the detected data to the control unit 180.
  • the actuator group 172 is an actuator group that operates each joint such as the support leg 120.
  • the stabilizer 181 performs stabilization control (for example, ZMP control) for avoiding a fall.
  • ZMP control the stabilizer 181 sets the ground contact position of each leg tip (casters 161 to 164) of the support leg 120 and the like as the target value of the posture of the zero moment point (ZMP: Zero Moment Point) and the body portion 110.
  • ZMP means the center of gravity of action of the vertical floor reaction force
  • ZMP control the attitude control performed by using ZMP.
  • the posture of the body portion 110 is represented by, for example, the pitch angle of the body portion 110.
  • the stabilizer 181 acquires the current value of the current posture (pitch angle, etc.) of the body portion 110 from the IMU or the like. Then, from the difference between the current value and the target value of the posture in which the ZMP is located in the support polygon, the stabilizer 181 is the position where the current swing leg should be next grounded and the support leg which is currently grounded. Calculate the force that should be generated in the vertical direction of.
  • the swing leg is a support leg whose leg tip is separated from the road surface
  • the support polygon is a polygon drawn by the leg tip.
  • the stabilizer 181 inputs the calculated value to the inverse dynamics solver together with the current ground contact position of the leg tip and the mechanical impedance of the leg tip.
  • the inverse dynamics solver is a program for calculating the torque applied to the joint when the joint angle, angular velocity, and angular acceleration are input.
  • the stabilizer 181 outputs the torque value calculated from the posture target value as the torque target value to the corresponding actuator in the actuator group 172. Further, the stabilizer 181 supplies the posture information indicating the target value of the posture to the caster angle control unit 200.
  • the stabilizer 181 is an example of the stabilizer described in the claims.
  • the road surface condition analysis unit 182 analyzes the road surface condition using data from an image sensor or the like.
  • the road surface condition analysis unit 182 generates a mode signal indicating either the walking mode or the traveling mode based on the analysis result, and outputs the mode signal to the caster angle control unit 200.
  • the walking mode is a mode in which the moving body 100 moves by walking
  • the running mode is a mode in which the moving body 100 moves by wheel running. For example, when the road surface is flat and there are almost no obstacles, the traveling mode is preferentially set, and when the road surface is uneven or there are obstacles, the walking mode is preferentially set.
  • the caster angle control unit 200 controls the caster angles of the casters 161 to 164 based on the attitude information.
  • the caster angle control unit 200 calculates a torque target value based on the control content and outputs the torque target value to the corresponding actuator in the actuator group 172.
  • the moving body 100 switches the mode to either a walking mode or a running mode based on the analysis result of the road surface condition, but the mode is not limited to this configuration.
  • a communication interface for communicating with the outside of the mobile body 100 is further provided, and the mode can be switched according to a command from the outside.
  • FIG. 3 is a block diagram showing a configuration example of the caster angle control unit 200 according to the first embodiment of the present technology.
  • the caster angle control unit 200 includes a torsional rigidity map 210 for each posture, a torsional rigidity acquisition unit 220, a walking mode control unit 230, a running mode control unit 240, and a selection unit 250.
  • the torsional rigidity map 210 for each posture stores the torsional rigidity of the support legs 120 and the like at that time for each typical posture of the body portion 110.
  • the torsional rigidity acquisition unit 220 obtains the torsional rigidity for each support leg based on the posture information from the stabilizer 181.
  • the torsional rigidity acquisition unit 220 reads out the torsional rigidity corresponding to the posture indicated by the posture information from the torsional rigidity map 210 for each posture.
  • the torsional rigidity acquisition unit 220 obtains the torsional rigidity by linear interpolation.
  • the torsional rigidity acquisition unit 220 supplies the obtained torsional rigidity Kt to the walking mode control unit 230 and the traveling mode control unit 240.
  • Walking mode control unit 230 is used for the mode signal from the road status analyzing unit 182 to indicate walking mode, calculating the mechanical impedance K 1 constant satisfying joints.
  • the walking mode control unit 230 generates actuator control information that supports the angle and torque of the actuator based on the calculation result, and supplies the actuator control information to the selection unit 250. Further, the walking mode control unit 230 supplies the calculated mechanical impedance K 1 to the traveling mode control unit 240.
  • the travel mode control unit 240 calculates a parameter related to the caster angle when the mode signal indicates a travel mode. The contents of the parameters to be calculated will be described later.
  • the traveling mode control unit 240 generates actuator control information based on the calculation result and supplies it to the selection unit 250.
  • the selection unit 250 selects the actuator control information of either the walking mode control unit 230 or the travel mode control unit 240 according to the mode signal, and supplies the actuator control information to the actuator group 172.
  • the output of the walking mode control unit 230 is selected, and in the traveling mode, the output of the traveling mode control unit 240 is selected.
  • FIG. 4 is a side view showing a configuration example of the support legs 120 according to the first embodiment of the present technology.
  • the support leg 120 includes a first joint 121, a link 122, a second joint 123, a link 124, and a third joint 125.
  • the axis parallel to the traveling direction of the moving body 100 is referred to as the "X axis", and the direction perpendicular to the road surface is referred to as the "Z axis”. Further, the axis perpendicular to the X-axis and the Z-axis is referred to as the "Z-axis”.
  • the X-axis corresponds to the roll axis
  • the Y-axis corresponds to the pitch axis
  • the Z-axis corresponds to the yaw axis.
  • the first joint 121 is a joint provided at the base of the support leg 120, and when the support leg 120 is likened to a human arm, it corresponds to a shoulder joint. And the straight line perpendicular to the axis of the link 122, as an attachment angle a pitch angle formed between a straight line parallel to the longitudinal direction of the body portion 110, the first joint 121 is mounted so that its mounting angle is a fixed value phi 0 ..
  • the rotation axis of the first joint 121 does not correspond to a roll axis when ⁇ 0 is not “0” degree, but for convenience of explanation, even in that case, it will be treated as a roll axis hereafter.
  • the second joint 123 is rotated around the pitch axis by an actuator, and if the support leg 120 is likened to a human arm, it corresponds to an elbow joint.
  • the third joint 125 is rotated around a pitch axis and a yaw axis by an actuator, and if the support leg 120 is likened to a human arm, it corresponds to a wrist joint.
  • the link 122 is a member that connects the first joint 121 and the second joint 123.
  • the link 124 is a member that connects the second joint 123 and the third joint 125.
  • the respective configurations of the support legs 130, 140 and 150 are the same as those of the support legs 120.
  • FIG. 5 is a diagram for explaining the rotation axes of the first joint 121 and the third joint 125 in the first embodiment of the present technology.
  • a is a view of the first joint 121 viewed from the rotation axis (that is, the roll axis) of the first joint 121.
  • b is a top view of the caster 161 viewed from the yaw axis of the rotation axis of the third joint 125.
  • the stabilizer 181 performs stabilization control (ZMP control, etc.) for avoiding a fall, but as a result of the control, the tip of the support leg opens (or closes) from the initial state.
  • ZMP control stabilization control
  • a disturbance acts on the casters 161 and the like, and the position may be slightly deviated.
  • a force acts on the casters 161 and the like in a direction perpendicular to the side surface (in other words, a lateral direction). This force is hereinafter referred to as "lateral force".
  • lateral force when a lateral force is generated during straight running, the direction and posture of the casters 161 are restored without divergence or vibration, and a condition for converging to a specific direction and posture is considered.
  • p z is the height from the road surface to the base of the support leg 120, and the unit is, for example, meters (m).
  • cos () indicates a sine function.
  • is an angle (in other words, a pitch angle) formed by the longitudinal direction of the body portion 110 and the road surface.
  • is a minute change in the yaw angle of the caster 161.
  • the units of ⁇ and ⁇ are, for example, radians.
  • the unit of the lateral force Fs is, for example, Newton (N).
  • K t ⁇ F F S p x ... Equation 2
  • the unit of torsional rigidity K t is, for example, Newton per meter (N / m).
  • the unit of the angle ⁇ F is, for example, a radian.
  • tan ⁇ ⁇ sin ⁇ tan ⁇ ⁇ ⁇ Equation 3
  • tan is a tangent function and sin is a cosine function.
  • the units of the angles ⁇ ⁇ and ⁇ are, for example, radians.
  • Equation 2 atan (sin ⁇ tan ⁇ ) -F S p x / K t ⁇ formula 5
  • atan () is an inverse tangent function
  • p x is from the point where the straight line along the link 124 intersects the road surface, the distance on the X axis to the base unit is, for example, meters (m). This p x is commonly referred to as the caster trail.
  • Equation 1 atan ⁇ tan ⁇ sin (F S p z cos ⁇ / K 1) ⁇ - (F S p x / K t) ⁇ formula 7
  • Equation 7 can be approximated to the following equation.
  • Lateral force F S is the direction from the outside of the body portion 110 inward and forward direction, the angle beta, to the interior of the body 110 the polarity of the change amount of the outward and forward.
  • the nature of the lateral force F S when the following condition relating to the right side of the equation 8 is satisfied, restoring moment is generated, casters 161 maintains stability without skidding.
  • Equation 10 K 1 ⁇ ⁇ (p z ⁇ ) / p x ⁇ K t ... Equation 10
  • the height p z and caster trail p x of the rear support legs 130 and 150 when controlling the height p z and caster trail p x of the rear support legs 130 and 150, it may be fixed height or the like of the front support leg in its control in.
  • walking mode control unit 230 includes a torsional stiffness K t, and a ratio of the current height p z and caster trail p x into equation 10, the maximum mechanical impedance K 1 satisfying the formula 10 To do. Then, the walking mode control unit 230 controls the torque and angle of each joint based on the calculated value.
  • the running mode control unit 240 calculates the minimum p z / p x satisfying Equation 10 , The torque of each joint is controlled so as to reach that value.
  • the larger the calculated p z / p x the larger the caster angle ⁇ of the caster 161.
  • the caster angle ⁇ is an angle formed by a straight line parallel to the link 124 and a perpendicular line perpendicular to the road surface. Making the caster angle ⁇ larger than "0" degrees is generally expressed as "adding a caster angle".
  • the posture of the caster (yaw angle, etc.) is based on the assumption that the moving body 100 travels straight, but even if it is controlled so as to be stable in a specific posture (yaw angle), assuming a turning time or the like. Good.
  • the posture of the support legs to which the casters are fixed (such as the pitch angle of the joints) is assumed to go straight, but it may be designed with any posture such as when turning in mind. In this case, it may be calculated sequentially according to the posture such as when switching or turning.
  • stable mechanical impedance during wheel running is obtained by single-axis impedance control.
  • the traveling mode may be controlled by changing the torsional rigidity of the support leg and changing the torsional rigidity.
  • FIG. 6 is a block diagram showing a configuration example of the walking mode control unit 230 according to the first embodiment of the present technology.
  • the walking mode control unit 230 includes a parameter calculation unit 231, a mechanical impedance calculation unit 232, and an actuator control unit 233.
  • the parameter calculation unit 231 calculates the ratio p z / p x according to the posture (pitch angle ⁇ ).
  • the parameter calculation unit 231, the orientation of the stabilizer 181 is input, and calculates the ratio p z / p x using Equation 11, and supplies the mechanical impedance calculation unit 232.
  • Mechanical impedance calculation unit 232 is for calculating the mechanical impedance K 1 of the joint.
  • the mechanical impedance calculation unit 232, the orientation of the stabilizer 181 is input, and its orientation, and torsional stiffness K t from torsional rigidity acquisition unit 220, and a ratio p z / p x from the parameter calculating unit 231 Enter in Equation 11. Then, the mechanical impedance calculation unit 232 calculates the maximum mechanical impedance K 1 that satisfies the equation 11.
  • Mechanical impedance calculation unit 232 calculates a mechanical impedance K 1 at a constant period in the running mode, and supplies the calculated value to the actuator control unit 233 and a traveling mode control unit 240.
  • Actuator control unit 233 is for controlling the torque and angle of the joint on the basis of mechanical impedance K 1.
  • the actuator control unit 233 holds in advance the mechanical impedance K 0, which is premised on walking operation, as the current value. Then, when the mechanical impedance K 1 is newly calculated, the actuator control unit 233 controls the joint torque and the like by the actuator so that the impedance gain K 1 / K 0 can be maintained at a constant value in the assumed speed range. To do.
  • FIG. 7 is a block diagram showing a configuration example of the traveling mode control unit 240 according to the first embodiment of the present technology.
  • the traveling mode control unit 240 includes a parameter calculation unit 241, a mechanical impedance calculation unit 242, and an actuator control unit 243.
  • the parameter calculation unit 241 calculates the ratio p z / p x .
  • the parameter calculating unit 241 when the transition to the driving mode, the mechanical impedance K 1 from the walking mode control unit 230, the torsional and torsional stiffness K t from rigid acquisition unit 220, and a formula 11 into Equation 10 , Calculate the minimum ratio p z / p x that satisfies Equation 10.
  • the parameter calculating unit 241, using Equation 11, corresponding to the calculated ratio p z / p x calculates a new attitude (pitch angle phi). Then, the parameter calculation unit 241 supplies the calculated value to the mechanical impedance calculation unit 242 and the actuator control unit 243.
  • Mechanical impedance calculation unit 242 in the running mode, and calculates a mechanical impedance K 1 at a constant period.
  • the mechanical impedance calculation unit 242 acquires a new torsional rigidity K t corresponding to the pitch angle ⁇ from the parameter calculation unit 241.
  • the torsional stiffness Kt is acquired by reading from the torsional stiffness map 210 for each posture or by linear interpolation.
  • the mechanical impedance calculation unit 242 substitutes the acquired torsional rigidity K t , the ratio p z / p x from the parameter calculation unit 241 and the pitch angle ⁇ into the equation 10, and the maximum mechanical impedance K satisfying the equation 10. 1 is newly calculated.
  • the mechanical impedance calculation unit 242 supplies the calculated value to the parameter calculation unit 241 and the actuator control unit 243.
  • the parameter calculation unit 241 monitors the mechanical impedance K 1 from mechanical impedance calculation unit 242. Then, the parameter calculating unit 241 when deviating from the range defined in the design phase likely is again supplied to the mechanical impedance calculation unit 242 and the actuator control unit 243 calculates the like ratio p z / p x.
  • the actuator control unit 243 controls the joint torque and angle based on the calculated values of the parameter calculation unit 241 or the mechanical impedance calculation unit 242.
  • the bases of the support legs 120, 130, 140 and 150 are attached to the body portion 110, and the casters 161 to 164 are attached to the tips.
  • the stabilizer 181 controls the ground contact positions of the casters 161 to 164 based on the ZMP and the target value of the posture of the body portion 110. Further, the caster angle control unit 200 controls the caster angles of the casters 161 to 164 based on the target value.
  • the walking mode control unit 230 of the caster angle control unit 200 includes a torsional stiffness K t when the transition to the walking mode, the target value of the orientation (such as pitch angle phi), based on the ratio p z / p x Te, determine the mechanical impedance K 1 of the joint.
  • the traveling mode control unit 240 in the caster angle control unit 200 shifts to the traveling mode, the ratio p z / p x and the target value of the new posture are set based on the mechanical impedance K 1 and the torsional rigidity K t. And ask.
  • FIG. 8 is a side view showing an example of the mounting angle according to the first embodiment of the present technology.
  • a in this figure is a side view of the moving body 100 fitted with supporting legs mounted angle phi 0 of less than 90 degrees.
  • B in the figure is a side view of the moving body 100 fitted with supporting legs mounted angle phi 0 of 90 °.
  • the caster angle ⁇ is larger than “0” degrees in the initial state. That is, it is in a state where the caster angle is attached.
  • the caster angle ⁇ is “0” degrees in the initial state.
  • the caster angle can be added by the control of the control unit 180.
  • FIG. 9 is a diagram for explaining a process when traveling on a slope according to the first embodiment of the present technology.
  • the angle formed by the plane perpendicular to gravity and the slope around the Y axis (that is, the pitch axis) is defined as the slope ⁇ g .
  • the control unit 180 obtains an inclination ⁇ g by an IMU or the like and adds it to the posture (pitch angle ⁇ ) of the body unit 110. Then, the control unit 180 calculates the ratio p z / p x and the mechanical impedance K 1 with the added value as ⁇ in the equation 11.
  • the control unit 180 may also determine the inclination phi g by using a magnetic sensor a GPS (Global Positioning System) sensor.
  • GPS Global Positioning System
  • the moving body 100 may travel on the slope with a slope around the X-axis.
  • the control unit 180 controls the left and right support legs independently, so that the moving body 100 , Can operate stably.
  • FIG. 10 is a diagram for explaining the effect of adding a caster angle in the first embodiment of the present technology.
  • a in the figure is a side view for explaining the road surface resistance force acting when the caster angle ⁇ is attached.
  • Reference numeral b in the figure is a top view of the caster 161 for explaining the restoration moment due to the road surface resistance.
  • Reference numeral c in the figure is a top view of the caster 161 in a stable state due to the restoration moment.
  • the control unit 180 attaches a caster angle ⁇ to the casters 161 by controlling the actuator in the traveling mode.
  • a road surface resistance force is generated on the ground contact surface in the direction opposite to the traveling direction. This road surface resistance increases as the caster angle ⁇ increases.
  • the white arrows in the figure indicate the road surface resistance.
  • the orientation of the caster 161 means the orientation of a straight line perpendicular to the axle of the caster 161 and parallel to the road surface (that is, the alternate long and short dash line in the figure).
  • the above-mentioned restoration moment acts in the direction opposite to the direction in which the casters 161 face. This restoration moment increases as the road surface resistance increases.
  • the thick dotted line in the figure indicates the restoration moment.
  • the restoration moment when the restoration moment is sufficiently large, as illustrated in c in the figure, the restoration moment causes the caster 161 to be in the same direction as the traveling direction, and the caster 161 is prevented from skidding.
  • the caster angle ⁇ is increased to generate a road surface resistance force, so that a restoration moment corresponding to the road surface resistance force is applied. Can be done. Due to this restoring moment, the direction of the caster 161 returns to the traveling direction, and skidding is suppressed.
  • FIG. 11 is a diagram for explaining the control of the control unit 180 according to the first embodiment of the present technology.
  • a is an external view showing an example of the state of the moving body 100 in the traveling mode.
  • Reference numeral b in the figure is a front view of the moving body 100 in the state of a in the figure when viewed from the front.
  • FIG. C in the figure is an external view showing an example of a state in which the support legs 120 are opened.
  • Reference numeral d in the figure is a front view of the moving body 100 in the state of c in the figure when viewed from the front.
  • the pitch angle of the body portion 110 is "0" degrees and the caster angle is ⁇ 1 as illustrated in a and b in the figure. Then, while the moving body 100 is traveling, it is assumed that the moving body 100 detects the presence of the obstacle 500 in front of the moving body 100 by, for example, analyzing the image data captured by the image sensor.
  • control unit 180 may control the support leg 120 and open the leg tip.
  • the moving body 100 may open the support legs in order to avoid a step.
  • the support legs may collide with obstacles or steps during traveling, and the support legs may open.
  • FIG. 12 is a diagram for explaining the control of the stabilizer 181 and the caster angle control unit 200 in the first embodiment of the present technology.
  • a in the figure is an external view for explaining the control of the stabilizer 181.
  • Reference numeral b in the figure is a front view of the moving body 100 in the state of a in the figure when viewed from the front.
  • FIG. C in the figure is an external view for explaining the control of the caster angle control unit 200.
  • the stabilizer 181 sets the leg tip of the support leg 140 as the support leg 120 as illustrated in a and b in the figure. Open to the same extent.
  • the pitch angle ⁇ of the body portion 110 becomes large.
  • a lateral force acts outward on the leg tips (casters) of the support legs 120 and 140.
  • the solid arrow in the figure indicates the lateral force. If this lateral force is large, the casters may tilt in a direction different from the traveling direction, and the legs may gradually open.
  • the caster angle control unit 200 increases the caster angle as the pitch angle ⁇ increases by controlling the actuator, as illustrated in c in the figure.
  • the caster angle is controlled to ⁇ 2 which is larger than ⁇ 1 which is the value before opening the leg tip.
  • the restoration moment according to the road surface resistance causes the casters to return to the direction of travel, and the legs are prevented from opening further.
  • the stabilizer temporarily separates the support legs from the ground and steps on them so that the posture is stabilized by stabilization control (ZMP control). If it is corrected, the posture of the body portion 110 can be restored. However, re-stepping on the leg while driving carries the risk of falling. Temporarily reducing the running speed can reduce the risk of falling when stepping on the leg, but it is not preferable because the average speed is reduced.
  • ZMP control stabilization control
  • the caster angle control unit 200 even if a disturbance is applied during wheel running, the caster angle can be controlled to correct the direction of the casters without applying torque. For this reason, it is possible to compensate for the influence of disturbance and production error applied to the leg tips and realize stable running. In addition, even if the tip of the leg shifts during running due to disturbance, it is compensated by controlling the caster angle, so there is no need to specially consider re-stepping.
  • the above effect can be realized within the framework of a normal control system without adding an actuator, a special mechanism, or a sensor.
  • the caster angle control unit 200 it is not necessary to strengthen the mechanical impedance control of the leg tip as in the comparative example in order to maintain the position of the leg tip with respect to the body. Therefore, it becomes difficult for the disturbance to be transmitted to the body portion, and the influence of the disturbance generated by the road surface on the movement of the moving body 100 itself becomes small. In addition to these effects, the load applied to the links and joints connecting the body to the legs can be reduced, and the strength and rigidity can be reduced, so that the links can be made lighter.
  • FIG. 13 is a flowchart showing an example of the operation of the control unit 180 according to the first embodiment of the present technology. This operation is started, for example, when a predetermined application for moving the moving body 100 is executed.
  • the control unit 180 performs ZMP control by the stabilizer 181 (step S901) and calculates the torsional rigidity K t (step S902). Then, the control unit 180 determines whether or not the current mode is the traveling mode (step S903).
  • step S903 If a running mode (step S903: Yes), the control unit 180 calculates the parameters relating to the caster angle (such as p z / p x and phi) (step S904). On the other hand, if the walking mode (step S903: No), the control unit 180 calculates the mechanical impedance K 1 (step S905). After step S904 or S905, the control unit 180 controls the actuator based on the calculated value (step S906). After step S906, the control unit 180 ends the operation.
  • the parameters relating to the caster angle such as p z / p x and phi
  • the control unit 180 considers not only the stabilization characteristics of the relative position and posture of the leg tips but also the dynamic characteristics of the tire expressed by the magic formula tire model and the like, and is stable only in the disturbance of a specific frequency band. Control may be performed so as to secure the above. For example, it can be designed to suppress a desired frequency band by constructing a control system by a loop shaping method. Specifically, the control unit 180 may adjust the calculated values of S904 and S905 if a disturbance in a specific frequency band occurs immediately before step S906 in the figure.
  • the control unit 180 controls the support legs based on the target value of the posture and the ZMP, and controls the caster angle based on the target value.
  • Road surface resistance can be generated according to the caster angle. Due to this road surface resistance, the restoring moment acts on the casters, so that the stability during wheel running can be improved.
  • the moving body 100 changes its posture without assuming that it carries the luggage, but when the moving body 100 changes its posture while carrying the luggage, the luggage changes. There is a risk of falling.
  • the moving body 100 of the second embodiment is different from the first embodiment in that it further includes a loading platform and a lift that keeps the loading platform horizontal.
  • FIG. 14 is a side view showing a configuration example of the mobile body 100 according to the second embodiment of the present technology.
  • the moving body 100 of the second embodiment is different from the first embodiment in that the lifts 191 and 192 and the loading platform 193 are further provided.
  • the loading platform 193 is a plate-shaped member on which luggage is placed.
  • the lifts 191 and 192 are members that support the loading platform 193.
  • the lift 191 is located at the front of the fuselage 110 and the lift 192 is located at the rear.
  • Each of the lifts 191 and 192 comprises, for example, two links and joints connecting the links. This joint can be rotated about the pitch axis by an actuator. By controlling the pitch angle of the joints of the lifts 191 and 192, the lifts 191 and 192 can be expanded and contracted to move the front and rear parts of the loading platform 193 up and down independently.
  • the lifts 191 and 192 are composed of links and joints, but the lifts 191 and 192 are not limited to this configuration as long as they can move the loading platform up and down.
  • a single link that expands and contracts along the Z axis with an actuator can also be used as lifts 191 and 192.
  • FIG. 15 is a block diagram showing a configuration example of the mobile body 100 according to the second embodiment of the present technology.
  • the moving body 100 of the second embodiment is different from the first embodiment in that a lift control unit 183 is further provided in the control unit 180.
  • the stabilizer 181 of the second embodiment also supplies the attitude information to the lift control unit 183.
  • the sensor group 171 of the second embodiment further includes sensors for detecting the respective angles of the lifts 191 and 192, and the sensor data thereof is supplied to the lift control unit 183.
  • the actuator group 172 of the second embodiment further includes an actuator for driving the joints of the lifts 191 and 192, respectively.
  • the lift control unit 183 controls the lifts 191 and 192 so that the loading platform 193 is horizontal based on the posture indicated by the posture information.
  • the lift control unit 183 makes one of the lifts 191 and 192 higher than the other by controlling the actuator according to the pitch angle.
  • FIG. 16 is a diagram for explaining a control method of the lifts 191 and 192 in the second embodiment of the present technology.
  • the lift control unit 183 extends the front lift 191 and contracts the rear lift 192.
  • the loading platform 193 can be kept horizontal and the luggage can be prevented from falling.
  • the lift control unit 183 may contract the front lift 191 and extend the rear lift 192.
  • the lift control unit 183 controls the lifts 191 and 192 based on the posture, so that the loading platform 193 is horizontal even when the posture is changed. It can be kept and the loading platform can be prevented from falling.
  • the body portion 110 is composed of one member, but the body portion 110 can be separated into two.
  • the moving body 100 of the third embodiment is different from the first embodiment in that the body portion is separated into two.
  • FIG. 17 is a side view showing a configuration example of the mobile body 100 according to the third embodiment of the present technology.
  • the moving body 100 of the third embodiment is different from the first embodiment in that the body portion 110 includes a front body portion 111, a rear body portion 112, and a connecting portion 310.
  • the front body portion 111 is a member to which the support legs 120 and 140 are attached, and is provided on the front side of the moving body 100.
  • the rear body portion 112 is a member to which the support legs 130 and 150 are attached, and is provided on the rear side of the moving body 100.
  • the connecting portion 310 connects the front fuselage portion 111 to the rear fuselage portion 112.
  • the connection 310 comprises anterior joints 311s, links 312 and posterior joints 313.
  • the anterior joint 311 is a joint that connects the anterior body portion 111 and the link 312, and can be rotated around the pitch axis by an actuator.
  • the posterior joint 313 is a joint that connects the posterior fuselage portion 112 and the link 312, and can be rotated around the pitch axis by an actuator.
  • the link 312 is a member that connects the front joint 311 and the rear body portion 112.
  • control unit 180 can independently control the posture of the front body portion 111 and the posture of the rear body portion 112. As a result, even if one of the front body portion 111 and the rear body portion 112 slightly loses its posture, the other posture is not significantly affected, so that the stability of the entire moving body 100 can be further improved.
  • control unit 180 independently controls the postures of the front body portion 111 and the rear body portion 112, so that the entire moving body 100 is stable.
  • the sex can be improved.
  • the moving body 100 changes its posture without assuming that it will carry the luggage, but when the moving body 100 changes its posture while carrying the luggage, the luggage is changed. There is a risk of falling.
  • the moving body 100 of the fourth embodiment is different from the third embodiment in that it further includes a loading platform and a lift that keeps the loading platform horizontal.
  • FIG. 18 is a side view showing a configuration example of the mobile body 100 according to the fourth embodiment of the present technology.
  • the moving body 100 of the fourth embodiment is different from the third embodiment in that the lifts 194 and 195 and the loading platform 193 are further provided.
  • the lifts 194 and 195 consist of a single link that supports the loading platform 193 and expands and contracts along the Z direction.
  • control unit 180 of the fourth embodiment is the same as that of the second embodiment.
  • the lift control unit 183 controls the lifts 191 and 192 based on the posture, so that the loading platform 193 is horizontal even when the posture is changed. It can be kept and the loading platform can be prevented from falling.
  • the moving body 100 has the same mounting angles of the front support legs 120 and 140 and the rear support legs 130 and 150, and the caster angle in the initial state is set to the front. It was the same as the rear. However, since the minimum turning radius becomes larger as the caster angle is larger, it is particularly desirable to make the caster angle of the front support leg smaller than that of the rear in order to make it easier to bend.
  • This fifth embodiment differs from the first embodiment in that the mounting angles of the front support legs 120 and 140 and the mounting angles of the rear support legs 130 and 150 are different.
  • FIG. 19 is a side view showing a configuration example of the mobile body 100 according to the fifth embodiment of the present technology.
  • Mobile unit 100 in the fifth embodiment, the first embodiment and the mounting angle phi 0f the front support legs 120 and 140, in the mounting angle phi 0r of the rear support legs 130 and 150 are different Different from.
  • the front mounting angle ⁇ 0f is set to a value smaller than the rear mounting angle ⁇ 0r .
  • the front caster angle in the initial state can be made smaller than that of the rear. Therefore, the moving body 100 is more likely to bend than when the front mounting angle and the rear mounting angle are the same.
  • the straight-line stability of the front support legs 120 and 140 may be prioritized over the rear, and the front mounting angle ⁇ 0f may be set to a value larger than the rear mounting angle ⁇ 0r .
  • each of the first to fourth embodiments can be applied to the fifth embodiment.
  • the caster angle in the initial state is set to the front. It can be a different value from the rear.
  • the control unit 180 controls the caster angle to improve the stability of the moving body 100, but when the unevenness or step on the road surface is larger than expected, the posture is lost. There is a risk.
  • the moving body 100 in the sixth embodiment is different from the first embodiment in that a damper is provided in the caster to improve the stability.
  • FIG. 20 is a cross-sectional view showing a configuration example of the caster 161 according to the sixth embodiment of the present technology.
  • the caster 161 of the sixth embodiment includes a wheel portion 166 and a damper 165.
  • the wheel portion 166 is a circular part attached to the axle.
  • the damper 165 is a component that expands and contracts along the Z direction perpendicular to the road surface.
  • the damper 165 is provided between the axle and the tip of the link 124.
  • an elastic body spring, oil damper, etc.
  • Each configuration of casters 162 to 164 is the same as that of casters 161.
  • the damper 165 expands and contracts, the caster angle can be increased according to the load, and the stability of the moving body 100 can be improved.
  • the support leg 120 or the like is provided with the first joint 121 that rotates about only one axis (roll axis), but in this configuration, the movable range of the first joint is increased. It may not be possible to secure enough.
  • the moving body 100 of the seventh embodiment is different from the first embodiment in that a first joint that rotates about two axes is provided to widen the movable range.
  • FIG. 21 is a side view showing a configuration example of the mobile body 100 according to the seventh embodiment of the present technology.
  • the moving body 100 of the seventh embodiment is different from the first embodiment in that the support leg 120 is provided with the first joint 126 instead of the first joint 121.
  • the first joint 126 is a biaxial joint that rotates around two axes (roll axis, pitch axis, etc.).
  • Each of the support legs 130, 140 and 150 is provided with a biaxial first joint as in the support leg 120.
  • the movable range of the support leg 120 can be widened as compared with the first embodiment in which the first joint 121 is uniaxial.
  • the movable range of the support leg is increased as compared with the case where the uniaxial first joint is provided. Can be wide.
  • Eighth Embodiment> In the first embodiment described above, four support legs are attached to the body portion 110, but as the number of support legs increases, the number of parts increases, and the manufacturing cost of the moving body 100 may increase. is there. Further, as the number of supporting legs increases, the area of the supporting polygon increases, which may make it difficult to move to a narrow place.
  • the moving body 100 of the eighth embodiment is different from the first embodiment in that the number of supporting legs is reduced to two.
  • FIG. 22 is a side view showing a configuration example of the mobile body 100 according to the eighth embodiment of the present technology.
  • the moving body 100 of the eighth embodiment is different from the first embodiment in that only the support legs 120 and 140 are attached to the body portion 110.
  • the support legs are set to two legs, the manufacturing cost is reduced as compared with the case of four legs, and the movement to a narrow place becomes easy.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, and as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), MD (MiniDisc), DVD (Digital Versatile Disc), memory card, Blu-ray Disc (Blu-ray (registered trademark) Disc) and the like can be used.
  • the present technology can have the following configurations. (1) Multiple support legs with their roots attached to the body and casters attached to the tips, A stabilizer that controls the ground contact position of the caster of each of the plurality of support legs based on the target value of the posture of the body portion, and A moving body including a caster angle control unit that controls each caster angle of the casters based on the target value. (2) The caster angle control unit has a road surface with respect to the caster trail of the caster based on the mechanical impedance and the torsional rigidity of each of the plurality of support legs when the moving body shifts to the traveling mode in which the moving body travels on wheels.
  • the moving body according to (1) above wherein the ratio of the height from the base to the base and a new target value are obtained.
  • the caster angle control unit has the torsional rigidity of each of the plurality of support legs, the target value, the height from the road surface to the base, and the caster.
  • the moving body according to (1) or (2) above wherein the mechanical impedance is obtained based on the caster trail of the above.
  • Multiple lifts that support the loading platform and The moving body according to any one of (1) to (3) above, further comprising a lift control unit that controls a plurality of lifts based on the target value.
  • the caster includes a wheel portion and a damper that expands and contracts along a direction perpendicular to the road surface.
  • Each of the plurality of support legs includes a first joint and a second joint provided at the base, and a third joint provided at the tip.
  • the first joint is a biaxial joint.
  • Moving body 110 Body part 111 Front body part 112 Rear body part 120, 130, 140, 150 Support legs 121, 126 First joint 122, 124, 312 Link 123 Second joint 125 Third joint 161 to 164 Caster 165 Damper 166 Wheel part 171 Sensor group 172 Actuator group 180 Control unit 181 Stabilizer 182 Road surface condition analysis unit 183 Lift control unit 191 Mode control unit 231 and 241 Parameter calculation unit 232, 242 Mechanical impedance calculation unit 233, 243 Actuator control unit 240 Travel mode control unit 250 Selection unit 310 Connection unit 311 Anterior joint 313 Rear joint

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Robotics (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

キャスター付の複数の支持脚を設けた移動体において、車輪走行時の安定性を向上させる。 移動体は、それぞれの付け根が胴体部に取付けられ、先端にキャスターが取付けられた複数の支持脚と、安定化器と、キャスター角制御部とを具備する。安定化器は、複数の支持脚のそれぞれのキャスターの接地位置を胴体部の姿勢の目標値に基づいて制御する。キャスター角制御部は、目標値に基づいてキャスターのそれぞれのキャスター角を制御する。

Description

移動体、および、移動体の制御方法
 本技術は、移動体に関する。詳しくは、複数の支持脚により移動することができる移動体、および、移動体の制御方法に関する。
 従来より、複数の支持脚を可動させて歩行することにより、障害物や段差などを越えることができる移動体が、荷物の運搬や警備、娯楽の提供などの様々な目的で用いられている。このような移動体は、ロボットとも呼ばれる。一般に、支持脚を可動させる移動体の歩行による移動は、車輪走行よりも移動速度が遅くなる。そこで、支持脚の先端にキャスターを取り付け、歩行に加えて車輪走行も行うことができるようにした移動体が提案されている(例えば、特許文献1参照。)。
特開2009-154256号公報
 上述の移動体は、車輪走行が容易な平地などの移動時には車輪走行を行う走行モードに移行し、車輪走行が困難な不整地などの移動時には歩行を行う歩行モードに移行することにより、移動速度向上と不整地踏破性の向上との両立を図っている。しかしながら、この移動体では、走行モードにおいて路面上の障害物や段差を避けるために、支持脚の接地位置を変えた結果、姿勢を崩すことがある。この場合であっても移動体は、例えば、別の支持脚を地面から一旦離して姿勢が安定するように踏み直せば、姿勢を立て直すことができるが、走行中の支持脚の踏み直しは、転倒のリスクが伴う。走行速度を一時的に低下させれば、支持脚を踏み直す際の転倒のリスクを軽減することができるが、平均速度が低下してしまうため、好ましくない。このように、上述の移動体では、車輪走行する際に、安定性を向上させることが困難である。
 本技術はこのような状況に鑑みて生み出されたものであり、キャスター付の複数の支持脚を設けた移動体において、車輪走行時の安定性を向上させることを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、それぞれの付け根が胴体部に取付けられ、先端にキャスターが取付けられた複数の支持脚と、上記複数の支持脚のそれぞれの上記キャスターの接地位置を上記胴体部の姿勢の目標値に基づいて制御する安定化器と、上記目標値に基づいて上記キャスターのそれぞれのキャスター角を制御するキャスター角制御部とを具備する移動体、および、その制御方法である。これにより、姿勢の目標値に基づいてキャスター角が制御されるという作用をもたらす。
 また、この第1の側面において、上記キャスター角制御部は、上記移動体が車輪走行を行う走行モードに移行した場合には機械インピーダンスと上記複数の支持脚のそれぞれのねじり剛性とに基づいて上記キャスターのキャスタートレイルに対する路面から上記付け根までの高さの比率と新たな目標値とを求めてもよい。これにより、走行モードにおいて、キャスタートレイルに対する高さの比率と新たな目標値とが求められるという作用をもたらす。
 また、この第1の側面において、上記キャスター角制御部は、上記移動体が歩行を行う歩行モードに移行した場合には上記複数の支持脚のそれぞれのねじり剛性と上記目標値と路面から上記付け根までの高さと上記キャスターのキャスタートレイルとに基づいて機械インピーダンスを求めてもよい。これにより、歩行モードにおいて機械インピーダンスが求められるという作用をもたらす。
 また、この第1の側面において、荷台を支持する複数のリフトと、上記目標値に基づいて複数のリフトを制御するリフト制御部とをさらに具備することもできる。これにより、目標値に基づいてリフトが制御されるという作用をもたらす。
 また、この第1の側面において、上記胴体部は、前方胴体部と後方胴体部と上記前方胴体部を上記後方胴体部に接続する接続部とを備えてもよい。これにより、前方胴体部と後方胴体部とのそれぞれの姿勢が独立に制御されるという作用をもたらす。
 また、この第1の側面において、上記キャスターは、車輪部と上記路面に垂直な方向に沿って伸縮するダンパーとを備えてもよい。これにより、加重がかかった際にキャスター角度が大きくなるという作用をもたらす。
 また、この第1の側面において、上記複数の支持脚のそれぞれは、上記付け根に設けられた第1関節と第2関節と上記先端に設けられた第3関節とを備え、上記第1関節は、2軸性の関節であってもよい。これにより、支持脚の可動範囲が広くなるという作用をもたらす。
 また、この第1の側面において、上記複数の支持脚は、一対の前方支持脚と一対の後方支持脚とからなるものであってもよい。これにより、4脚のそれぞれのキャスター角が制御されるという作用をもたらす。
 また、この第1の側面において、上記一対の前方支持脚のそれぞれの上記付け根の取付け角は、上記一対の後方支持脚と異なってもよい。これにより、初期状態のキャスター角を前方と後方とで異なる値になるという作用をもたらす。
 また、この第1の側面において、上記複数の支持脚の個数は、2つであってもよい。これにより、2脚のそれぞれのキャスター角が制御されるという作用をもたらす。
本技術の第1の実施の形態における移動体の外観図の一例である。 本技術の第1の実施の形態における移動体の一構成例を示すブロック図である。 本技術の第1の実施の形態におけるキャスター角制御部の一構成例を示すブロック図である。 本技術の第1の実施の形態における支持脚の一構成例を示す側面図である。 本技術の第1の実施の形態における第1関節および第3関節の回転軸を説明するための図である。 本技術の第1の実施の形態における歩行モード制御部の一構成例を示すブロック図である。 本技術の第1の実施の形態における走行モード制御部の一構成例を示すブロック図である。 本技術の第1の実施の形態における取付け角の一例を示す側面図である。 本技術の第1の実施の形態における斜面を走行する際の処理を説明するための図である。 本技術の第1の実施の形態におけるキャスター角を付けた際の効果を説明するための図である。 本技術の第1の実施の形態における制御部の制御を説明するための図である。 本技術の第1の実施の形態におけるスタビライザおよびキャスター角制御部の制御を説明するための図である。 本技術の第1の実施の形態における制御部の動作の一例を示すフローチャートである。 本技術の第2の実施の形態における移動体の一構成例を示す側面図である。 本技術の第2の実施の形態における移動体の一構成例を示すブロック図である。 本技術の第2の実施の形態におけるリフトの制御方法を説明するための図である。 本技術の第3の実施の形態における移動体の一構成例を示す側面図である。 本技術の第4の実施の形態における移動体の一構成例を示す側面図である。 本技術の第5の実施の形態における移動体の一構成例を示す側面図である。 本技術の第6の実施の形態におけるキャスターの一構成例を示す断面図である。 本技術の第7の実施の形態における移動体の一構成例を示す側面図である。 本技術の第8の実施の形態における移動体の一構成例を示す側面図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(キャスター角を制御する例)
 2.第2の実施の形態(リフトおよびキャスター角を制御する例)
 3.第3の実施の形態(胴体部を2つに分離し、キャスター角を制御する例)
 4.第4の実施の形態(胴体部を2つに分離し、リフトおよびキャスター角を制御する例)
 5.第5の実施の形態(前方の取付け角を後方と異なる値にし、キャスター角を制御する例)
 6.第6の実施の形態(ダンパーを設け、キャスター角を制御する例)
 7.第7の実施の形態(2軸性関節を設け、キャスター角を制御する例)
 8.第8の実施の形態(2脚のそれぞれのキャスター角を制御する例)
 9.移動体への応用例
 <1.第1の実施の形態>
 [移動体の構成例]
 図1は、本技術の第1の実施の形態における移動体100の外観図の一例である。この移動体100は、荷物の運搬や警備、娯楽の提供などの様々な用途に用いられる無人のロボットであり、胴体部110と、複数の支持脚とを備える。例えば、支持脚120、130、140および150の4本が移動体100に設けられる。
 胴体部110は、細長い形状のパーツであり、その内部には、4本の支持脚(支持脚120等)を制御する制御部180が設けられる。
 また、支持脚120、130、140および150のそれぞれの付け根は、胴体部110に取付けられ、先端にはキャスター161乃至164が取り付けられる。このようにロボットの腕や脚の先端に取り付けられる部材は、エンドエフェクタとも呼ばれる。
 また、細長い胴体部110の両端の一方から他方への方向を前方として、支持脚120および140は、前側に取付けられ、支持脚130および150は、後ろ側に取付けられる。なお、支持脚120および140は、特許請求の範囲に記載の前方支持脚の一例であり、支持脚130および150は、特許請求の範囲に記載の後方支持脚の一例である。
 支持脚120等のそれぞれには、複数の関節と、それらの関節を駆動させるアクチュエータとが設けられる。関節の個数や関節軸については後述する。
 また、移動体100には、アクチュエータの角度を検出するセンサー、路面を撮像するイメージセンサー、加速度センサーやジャイロセンサーなどの各種のセンサー(不図示)が設けられる。加速度センサーやジャイロセンサーは、例えば、慣性計測装置(IMU:Inertial Measurement Unit)内に設けられる。
 図2は、本技術の第1の実施の形態における移動体100の一構成例を示すブロック図である。この移動体100は、センサー群171、制御部180と、4本の支持脚(支持脚120等)とを備える。支持脚のそれぞれにはアクチュエータ群172が設けられる。また、制御部180は、スタビライザ181、路面状況解析部182およびキャスター角制御部200を備える。
 センサー群171は、移動体100の内部や外部の状況を検出するセンサー群である。例えば、アクチュエータの角度を検出するセンサー、路面を撮像するイメージセンサー、加速度センサーやジャイロセンサーなどがセンサー群171として設けられる。センサー群171は、検出したデータを制御部180に供給する。
 アクチュエータ群172は、支持脚120等のそれぞれの関節を稼動させるアクチュエータ群である。
 スタビライザ181は、転倒回避のための安定化制御(例えば、ZMP制御)を行うものである。ZMP制御を行う場合、スタビライザ181は、支持脚120等のそれぞれの脚先(キャスター161乃至164)の接地位置を、ゼロモーメントポイント(ZMP:Zero Moment Point)と胴体部110の姿勢の目標値とに基づいて制御する。ここで、ZMPは、垂直床反力の作用重心点を意味し、ZMPを用いて行う姿勢制御は、ZMP制御と呼ばれる。また、胴体部110の姿勢は、例えば、胴体部110のピッチ角により表される。
 スタビライザ181は、現在の胴体部110の姿勢(ピッチ角など)の現在値をIMUなどから取得する。そして、スタビライザ181は、その現在値と、ZMPが支持多角形内に位置するような姿勢の目標値との差から、現在の遊脚が次に接地すべき位置と現在接地している支持脚の鉛直方向に発生すべき力とを算出する。ここで、遊脚は、路面から脚先が離れた支持脚であり、支持多角形は、脚先の描く多角形である。スタビライザ181は、算出値を、脚先の現在の接地位置と、脚先の機械インピーダンスとともに、逆動力学ソルバに入力する。ここで、逆動力学ソルバは、関節の角度、角速度や角加速度が入力された際に、関節に与えるトルクを算出するためのプログラムである。
 そして、スタビライザ181は、姿勢の目標値から算出したトルクの値をトルクの目標値として、アクチュエータ群172内の対応するアクチュエータに出力する。また、スタビライザ181は、姿勢の目標値を示す姿勢情報をキャスター角制御部200に供給する。なお、スタビライザ181は、特許請求の範囲に記載の安定化器の一例である。
 路面状況解析部182は、イメージセンサーなどからのデータを用いて、路面の状況を解析するものである。この路面状況解析部182は、解析結果に基づいて、歩行モードおよび走行モードのいずれかを示すモード信号を生成し、キャスター角制御部200に出力する。ここで、歩行モードは、移動体100が歩行により移動するモードであり、走行モードは、移動体100が車輪走行により移動するモードである。例えば、路面が平らで障害物がほとんどない場合には、走行モードが優先的に設定され、路面が凸凹であったり、障害物が存在する場合には歩行モードが優先的に設定される。
 キャスター角制御部200は、姿勢情報に基づいてキャスター161乃至164のキャスター角を制御するものである。このキャスター角制御部200は、制御内容に基づいてトルクの目標値を算出し、アクチュエータ群172内の対応するアクチュエータに出力する。
 なお、移動体100は、路面状況の解析結果に基づいて、歩行モードおよび走行モードのいずれかにモードを切り替えているが、この構成に限定されない。移動体100の外部と通信する通信インターフェースをさらに具備し、外部からのコマンドに従ってモードを切り替えることもできる。
 [キャスター角制御部の構成例]
 図3は、本技術の第1の実施の形態におけるキャスター角制御部200の一構成例を示すブロック図である。このキャスター角制御部200は、姿勢毎ねじり剛性マップ210、ねじり剛性取得部220、歩行モード制御部230および走行モード制御部240および選択部250を備える。
 姿勢毎ねじり剛性マップ210は、胴体部110の代表的な姿勢ごとに、そのときの支持脚120等のそれぞれのねじり剛性を記憶するものである。
 ねじり剛性取得部220は、スタビライザ181からの姿勢情報に基づいて支持脚ごとにねじり剛性を求めるものである。このねじり剛性取得部220は、姿勢情報の示す姿勢に対応するねじり剛性を、姿勢毎ねじり剛性マップ210から読み出す。姿勢に対応するねじり剛性が記憶されていない場合にねじり剛性取得部220は、線形補間により、ねじり剛性を求める。ねじり剛性取得部220は、求めたねじり剛性Kを歩行モード制御部230および走行モード制御部240に供給する。
 歩行モード制御部230は、路面状況解析部182からのモード信号が歩行モードを示す場合に、一定の条件を満たす関節の機械インピーダンスKを算出するものである。この歩行モード制御部230は、算出結果に基づいてアクチュエータの角度やトルクを支持するアクチュエータ制御情報を生成し、選択部250に供給する。また、歩行モード制御部230は、算出した機械インピーダンスKを走行モード制御部240に供給する。
 走行モード制御部240は、モード信号が走行モードを示す場合に、キャスター角に関連するパラメータを算出するものである。算出するパラメータの内容については後述する。この走行モード制御部240は、算出結果に基づいてアクチュエータ制御情報を生成し、選択部250に供給する。
 選択部250は、モード信号に従って、歩行モード制御部230および走行モード制御部240のいずれかのアクチュエータ制御情報を選択し、アクチュエータ群172に供給するものである。歩行モードの場合には、歩行モード制御部230の出力が選択され、走行モードの場合には、走行モード制御部240の出力が選択される。
 [支持脚の構成例]
 図4は、本技術の第1の実施の形態における支持脚120の一構成例を示す側面図である。この支持脚120は、第1関節121、リンク122、第2関節123、リンク124および第3関節125を備える。
 以下、移動体100の進行方向に平行な軸を「X軸」とし、路面に垂直な方向を「Z軸」とする。また、X軸およびZ軸に垂直な軸を「Z軸」とする。関節がこれらの軸周りに回転する場合、X軸は、ロール軸に該当し、Y軸は、ピッチ軸に該当し、Z軸は、ヨー軸に該当する。
 第1関節121は、支持脚120の付け根に設けられる関節であり、支持脚120を人間の腕に例えると、肩関節に該当する。リンク122の軸に垂直な直線と、胴体部110の長手方向に平行な直線とのなすピッチ角を取付け角として、第1関節121は、その取付け角が固定値φとなるように取り付けられる。また、第1関節121は、アクチュエータにより、ロール軸に対する角度がφとなる所定の軸周りに回転する。この第1関節121の回転軸は、φが「0」度でない場合、厳密にはロール軸に該当しないが、説明の便宜上、その場合であっても、以下、ロール軸として扱う。
 また、第2関節123は、アクチュエータにより、ピッチ軸周りに回転するものであり、支持脚120を人間の腕に例えると、肘関節に該当する。第3関節125は、アクチュエータにより、ピッチ軸およびヨー軸周りに回転するものであり、支持脚120を人間の腕に例えると、手首関節に該当する。
 リンク122は、第1関節121と第2関節123とを接続する部材である。リンク124は、第2関節123および第3関節125を接続する部材である。
 また、支持脚130、140および150のそれぞれの構成は、支持脚120と同様である。
 図5は、本技術の第1の実施の形態における第1関節121および第3関節125の回転軸を説明するための図である。同図におけるaは、第1関節121の回転軸(すなわち、ロール軸)から、その第1関節121を見た図である。同図におけるbは、第3関節125の回転軸のうちヨー軸から、キャスター161を見た上面図である。
 前述したようにスタビライザ181は、転倒回避のための安定化制御(ZMP制御など)を行うが、その制御の結果、支持脚の脚先が初期状態よりも開いてしまう(あるいは、閉じてしまう)ことがある。また、走行中に、キャスター161等に対して外乱が作用し、位置が微小にずれる場合がある。移動体100が直進走行する場合を想定すると、これらの時には、キャスター161等に対して、その側面に垂直な方向(言い換えれば、横方向)に力が働く。この力を以下、「横力」と称する。ここで、直進走行中に横力が生じる状態となった際に、キャスター161の向きや姿勢が発散ないし振動せずに復元し、特定の向きや、姿勢に収束する条件について考える。
 まず、同図におけるaに例示するように第1関節121のロール軸周りに働くモーメント(すなわち、トルク)と、同図におけるbに例示するようにキャスター161のヨー軸周りのモーメントとを考える。前者のトルクTと、キャスター161の側面方向(すなわち、Y方向)に働く横力Fのロール軸周りの成分とが釣り合うことから、次の式が成立する。
  T=pcos(φ)F=KΔθ        ・・・式1
上式において、トルクTの単位は、例えば、ニュートンメートル(Nm)である。pは、路面から支持脚120の付け根までの高さであり、単位は、例えば、メートル(m)である。cos()は、正弦関数を示す。φは、胴体部110の長手方向と路面とがなす角度(言い換えれば、ピッチ角)である。Δθは、キャスター161のヨー角の微小な変化である。φおよびΔθの単位は、例えば、ラジアン(rad)である。横力Fsの単位は、例えば、ニュートン(N)である。
 また、支持脚120のねじり剛性をKとし、横力Fによる姿勢変化によって、キャスター161のヨー角がβだけ変化したとすると、次の式が成立する。
  Kβ=F                 ・・・式2
上式において、ねじり剛性Kの単位は、例えば、ニュートン毎メートル(N/m)である。角度βの単位は、例えば、ラジアン(rad)である。
 また、幾何的な拘束から、第1関節121のロール角がθだけ変化したときのキャスター161のヨー軸周りの変化量をβθとすると、次の式が成立する。
  tanβθ=sinθtanφ           ・・・式3
上式において、tanは、正接関数であり、sinは、余弦関数である。角度βθおよびθの単位は、例えば、ラジアン(rad)である。
 ここで、キャスター161に生じたヨー軸周りの横滑りの角度をβとすると、次の式が成立する。
  β=βθ-β                  ・・・式4
 式4に式2および式3を代入すると、次の式が得られる。
  β=atan(sinθtanφ)-F/K ・・・式5
上式において、atan()は、逆正接関数である。pは、リンク124に沿った直線が路面と交わる点から、付け根までのX軸上の距離であり、単位は、例えば、メートル(m)である。このpは、一般にキャスタートレイルと呼ばれる。
 角度θは、Δθであるものとすると、式5は、次の式に置き換えられる。
  β=atan(sinΔθtanφ)-F/K・・・式6
 式6に式1を代入すると、次の式が得られる。
  β=atan{tanφsin(Fcosφ/K)}
    -(F/K)             ・・・式7
 角度φが十分に小さい値であるものとすると、式7は、次の式に近似することができる。
  β=(Fφ/K)-(F/K
   ={(pφ/K)-p/K}F      ・・・式8
 横力Fは、胴体部110の外側から内側への方向を正方向とし、角度βは、胴体部110の内側から外側への変化量の極性を正とする。この場合、横力Fの性質から、式8の右辺に関する次の条件式が成立する際に、復元モーメントが発生し、キャスター161が横滑りせずに安定を維持する。
  (pφ/K)-p/K≧0          ・・・式9
 式9を変形すると、次の式が得られる。
  K≦{(pφ)/p}K            ・・・式10
 また、前方の支持脚120および140の高さpおよびキャスタートレイルpを同一の値に制御する場合を考える。前方の支持脚の制御中は、後方の支持脚130および150の高さpおよびキャスタートレイルpは固定値であるものとする。この場合には、支持脚120および140の可動範囲や伸縮範囲から、次の式が成立する。
  φ=f(p/p)                ・・・式11
上式において、f()は、p/pの比率が小さくなるほど、ピッチ角φが大きくなる関係を示す所定の関数である。
 なお、後方の支持脚130および150の高さpおよびキャスタートレイルpを制御する際は、その制御中において前方の支持脚の高さ等を固定すればよい。
 歩行モードにおいて、歩行モード制御部230は、ねじり剛性Kと、現在の高さpおよびキャスタートレイルpの比率とを式10に代入し、式10を満たす最大の機械インピーダンスKを算出する。そして、歩行モード制御部230は、算出値に基づいてそれぞれの関節のトルクや角度を制御する。
 一方、走行モードにおいて、走行モード制御部240は、現在の機械インピーダンスKと、ねじり剛性Kと式11とを式10に代入し、式10を満たす最小のp/pを算出し、その値になるようにそれぞれの関節のトルク等を制御する。算出したp/pが大きいほど、キャスター161のキャスター角αが大きくなる。ここで、キャスター角αは、リンク124に平行な直線と、路面に垂直な垂線とのなす角度である。キャスター角αを「0」度より大きくすることは、一般に「キャスター角を付ける」と表現される。
 なお、キャスターの姿勢(ヨー角など)は、移動体100が直進することを前提としているが、旋回時などを想定して、特定の姿勢(ヨー角)において安定となるように制御してもよい。
 また、キャスターが固定される支持脚の姿勢(関節のピッチ角など)に関しても直進することを前提としているが、旋回時などの任意の姿勢を念頭に設計してもよい。この場合、切り替えや旋回時などの姿勢に応じて逐次、算出すればよい。
 また、上述の演算では、車輪走行時の安定な機械インピーダンスを、単軸のインピーダンス制御で求めている。しかし、閉リンクやスチュアートプラットフォームのような構造を利用し、2つ以上の軸の結果として表現される仮想軸に対するインピーダンス制御で実現してもよい。また、支持脚のねじり剛性を可変として、そのねじり剛性を変化させることで、走行モードの制御を実現してもよい。
 [歩行モード制御部の構成例]
 図6は、本技術の第1の実施の形態における歩行モード制御部230の一構成例を示すブロック図である。この歩行モード制御部230は、パラメータ算出部231、機械インピーダンス算出部232およびアクチュエータ制御部233を備える。
 パラメータ算出部231は、姿勢(ピッチ角φ)に応じた比率p/pを算出するものである。このパラメータ算出部231は、スタビライザ181からの姿勢が入力されると、式11を用いて比率p/pを算出し、機械インピーダンス算出部232に供給する。
 機械インピーダンス算出部232は、関節の機械インピーダンスKを算出するものである。この機械インピーダンス算出部232は、スタビライザ181からの姿勢が入力されると、その姿勢と、ねじり剛性取得部220からのねじり剛性Kと、パラメータ算出部231からの比率p/pとを式11に入力する。そして、機械インピーダンス算出部232は、式11を満たす最大の機械インピーダンスKを算出する。機械インピーダンス算出部232は、走行モードにおいて一定の周期で機械インピーダンスKを算出し、その算出値をアクチュエータ制御部233および走行モード制御部240に供給する。
 アクチュエータ制御部233は、機械インピーダンスKに基づいて関節のトルクや角度を制御するものである。このアクチュエータ制御部233は、予め歩行動作を前提とした機械インピーダンスKを現在値として保持しておく。そして、新たに機械インピーダンスKが算出されると、アクチュエータ制御部233は、想定した速度域においてインピーダンスゲインK/Kが一定の値を保持できるように、アクチュエータにより関節のトルク等を制御する。
 [走行モード制御部の構成例]
 図7は、本技術の第1の実施の形態における走行モード制御部240の一構成例を示すブロック図である。この走行モード制御部240は、パラメータ算出部241、機械インピーダンス算出部242およびアクチュエータ制御部243を備える。
 パラメータ算出部241は、比率p/pを算出するものである。このパラメータ算出部241は、走行モードに移行した場合に、歩行モード制御部230からの機械インピーダンスKと、ねじり剛性取得部220からのねじり剛性Kと、式11とを式10に代入し、式10を満たす最小の比率p/pを算出する。また、パラメータ算出部241は、式11を用いて、算出した比率p/pに対応する新たな姿勢(ピッチ角φ)を算出する。そして、パラメータ算出部241は、算出値を機械インピーダンス算出部242およびアクチュエータ制御部243に供給する。
 機械インピーダンス算出部242は、走行モードにおいて、一定の周期で機械インピーダンスKを算出するものである。この機械インピーダンス算出部242は、パラメータ算出部241からのピッチ角φに対応する新たなねじり剛性Kを取得する。例えば、姿勢毎ねじり剛性マップ210からの読出し、または、線形補間により、ねじり剛性Ktが取得される。
 そして、機械インピーダンス算出部242は、取得したねじり剛性Kと、パラメータ算出部241からの比率p/pおよびピッチ角φとを式10に代入し、式10を満たす最大の機械インピーダンスKを新たに算出する。機械インピーダンス算出部242は、算出値をパラメータ算出部241およびアクチュエータ制御部243に供給する。
 また、パラメータ算出部241は、機械インピーダンス算出部242からの機械インピーダンスKを監視する。そして、設計段階で定められたレンジを逸脱しそうなときにパラメータ算出部241は、再度、比率p/pなどを算出して機械インピーダンス算出部242およびアクチュエータ制御部243に供給する。
 アクチュエータ制御部243は、パラメータ算出部241または機械インピーダンス算出部242の算出値に基づいて関節のトルクや角度を制御するものである。
 図1乃至図7を参照して説明したように、支持脚120、130、140および150のそれぞれの付け根は、胴体部110に取付けられ、先端にはキャスター161乃至164が取り付けられている。スタビライザ181は、キャスター161乃至164のそれぞれの接地位置をZMPと胴体部110の姿勢の目標値とに基づいて制御する。また、キャスター角制御部200は、その目標値に基づいてキャスター161乃至164のそれぞれのキャスター角を制御する。
 また、キャスター角制御部200内の歩行モード制御部230は、歩行モードに移行した際にねじり剛性Kと、姿勢(ピッチ角φなど)の目標値と、比率p/pとに基づいて、関節の機械インピーダンスKを求める。
 また、キャスター角制御部200内の走行モード制御部240は、走行モードに移行した際に、機械インピーダンスKとねじり剛性Kとに基づいて比率p/pと新たな姿勢の目標値とを求める。
 図8は、本技術の第1の実施の形態における取付け角の一例を示す側面図である。同図におけるaは、90度未満の取付け角φで支持脚を取り付けた移動体100の側面図である。同図におけるbは、90度の取付け角φで支持脚を取り付けた移動体100の側面図である。
 同図におけるaに例示するように取付け角φが、90度未満である場合には、初期状態において、キャスター角αは、「0」度より大きい。すなわち、キャスター角を付けた状態である。
 一方、同図におけるbに例示するように取付け角φが90度である場合には、初期状態において、キャスター角αは「0」度である。ただし、この場合であっても制御部180の制御により、キャスター角を付けることができる。
 一般に、キャスター角αが大きいほど、移動体が直進する際の走行安定性が向上する一方で、最小旋回半径が大きくなる。この特性を考慮して、適切な取付け角φが決定される。
 図9は、本技術の第1の実施の形態における斜面を走行する際の処理を説明するための図である。同図において、Y軸(すなわち、ピッチ軸)周りにおいて、重力に垂直な平面と斜面とのなす角度を斜度φとする。このような斜面を走行する場合、制御部180は、IMUなどにより斜度φを求め、胴体部110の姿勢(ピッチ角φ)に加算する。そして、制御部180は、加算値を式11のφとして、比率p/pや機械インピーダンスKを算出する。なお、制御部180は、磁気センサーやGPS(Global Positioning System)センサーなどを用いて斜度φを求めることもできる。
 なお、Y軸周りに斜度を持つ斜面を想定しているが、X軸周りに斜度を持つ斜面を移動体100が走行することもある。この場合、二輪車同様に、左右方向のキャスターの幅が十分に狭い場合、接地面の変化は考える必要は無く、制御部180が左右の支持脚について独立して制御することで、移動体100は、安定に動作することができる。
 図10は、本技術の第1の実施の形態におけるキャスター角を付けた際の効果を説明するための図である。同図におけるaは、キャスター角αを付けた際に働く路面抵抗力を説明するための側面図である。同図におけるbは、路面抵抗力による復元モーメントを説明するためのキャスター161の上面図である。同図におけるcは、復元モーメントにより、安定した状態のキャスター161の上面図である。
 同図におけるaに例示するように、制御部180は、走行モードにおいてアクチュエータの制御によりキャスター161にキャスター角αを付けたものとする。この場合に、キャスター161が路面と擦れることにより、その接地面には、進行方向と逆方向に路面抵抗力が発生する。この路面抵抗力は、キャスター角αが大きいほど、大きくなる。同図における白抜きの矢印は、路面抵抗力を示す。
 安定化制御(ZMP制御など)の結果、同図におけるbに例示するように、キャスター161に横力が作用し、キャスター161が進行方向と異なる向きに向いたものとする。ここで、キャスター161の向きは、キャスター161の車軸に垂直で、路面に平行な直線(すなわち、同図における一点鎖線)の向きを意味する。路面抵抗力が生じると、キャスター161が向いた方向と逆の方向に前述の復元モーメントが作用する。この復元モーメントは、路面抵抗力が大きいほど、大きくなる。同図における太い点線は、復元モーメントを示す。
 そして、復元モーメントが十分に大きいと、同図におけるcに例示するように、復元モーメントにより、キャスター161の向きが進行方向と同じになり、キャスター161の横滑りが防止される。
 このように、移動体100は、横力が作用した場合であっても、キャスター角αを大きくして、路面抵抗力を発生させることにより、その路面抵抗力に応じた復元モーメントを作用させることができる。この復元モーメントにより、キャスター161の向きが進行方向に戻り、横滑りが抑制される。
 図11は、本技術の第1の実施の形態における制御部180の制御を説明するための図である。同図におけるaは、走行モードの移動体100の状態の一例を示す外観図である。同図におけるbは、同図におけるaの状態の移動体100を前方から見た際の正面図である。同図におけるcは、支持脚120を開いた状態の一例を示す外観図である。同図におけるdは、同図におけるcの状態の移動体100を前方から見た際の正面図である。
 走行モードにおいて、同図におけるaおよびbに例示するように胴体部110のピッチ角が「0」度で、キャスター角がαであったものとする。そして、移動体100が走行中に、移動体100は、例えば、イメージセンサーの撮像した画像データの解析などにより、前方において障害物500の存在を検知したものとする。
 この場合に移動体が転倒を避けるには、例えば、同図におけるcおよびdに例示するように、制御部180が支持脚120を制御し、脚先を開けばよい。また、障害物500の他、段差を避けるために移動体100が支持脚を開くこともある。あるいは、走行中に障害物や段差に支持脚が衝突し、支持脚が開いてしまうこともある。
 図12は、本技術の第1の実施の形態におけるスタビライザ181およびキャスター角制御部200の制御を説明するための図である。同図におけるaは、スタビライザ181の制御を説明するための外観図である。同図におけるbは、同図におけるaの状態の移動体100を前方から見た際の正面図である。同図におけるcは、キャスター角制御部200の制御を説明するための外観図である。
 制御部180が支持脚120の脚先を開いた場合、移動体100を安定させるために、スタビライザ181は、同図におけるaおよびbに例示するように支持脚140の脚先を支持脚120と同程度に開く。支持脚120および140の脚先を開いたことにより、胴体部110のピッチ角φが大きくなる。この状態では、支持脚120および140の脚先(キャスター)に対して、外側に向けて横力が作用する。同図における実線の矢印は、横力を示す。この横力が大きいと、キャスターが進行方向と異なる方向に傾き、脚先が徐々に開くおそれがある。
 このときに、キャスター角制御部200は、同図におけるcに例示するように、アクチュエータの制御により、ピッチ角φが大きいほどキャスター角を大きくする。例えば、キャスター角は、脚先を開く前の値であるαより大きなαに制御される。
 キャスター角を大きくするほど、キャスターに作用する路面抵抗力が大きくなる。その路面抵抗力に応じた復元モーメントによりキャスターの向きが進行方向に戻り、脚先がそれ以上開くことが抑制される。
 ここで、移動体100に、キャスター角制御部200を設けない比較例を想定する。この比較例では、同図におけるaに例示するように脚先が開いた場合であっても、スタビライザが支持脚を地面から一旦離して安定化制御(ZMP制御)により姿勢が安定するように踏み直せば、胴体部110の姿勢を立て直すことができる。しかし、走行中の脚の踏み直しは、転倒のリスクが伴う。走行速度を一時的に低下させれば、脚を踏み直す際の転倒のリスクを軽減することができるが、平均速度が低下してしまうため、好ましくない。
 これに対して、キャスター角制御部200を設けた移動体100では、車輪走行中に外乱が加わっても、キャスター角の制御により、トルクを加えることなくキャスターの向きを修正することができる。このために、脚先に加わる外乱や制作誤差の影響を補償し、安定な走行を実現できる。また、外乱によって走行中に脚先がずれても、キャスター角の制御により補償されるため踏み直しなどを特別に考慮する必要がなくなる。上記の効果は、アクチュエータの追加や特殊な機構、センサを増設することなく、通常の制御系の枠内で実現することができる。
 また、キャスター角制御部200を設ければ、胴体に対する脚先の位置の維持のために、比較例のように脚先の機械インピーダンス制御を強める必要がなくなる。このため,胴体部まで外乱が伝達されにくくなり、路面によって発生する外乱が移動体100自体の運動に与える影響が小さくなる。これらの効果に加えて、胴体から脚先までを結ぶリンクや関節に加わる負荷を小さくし、強度や剛性を低下させることができるため、リンクを軽量化させることができる。
 [制御部の動作例]
 図13は、本技術の第1の実施の形態における制御部180の動作の一例を示すフローチャートである。この動作は、例えば、移動体100を移動させるための所定のアプリケーションが実行されたときに開始される。
 制御部180は、スタビライザ181によるZMP制御を行い(ステップS901)、ねじり剛性Kを算出する(ステップS902)。そして、制御部180は、現在のモードが走行モードであるか否かを判断する(ステップS903)。
 走行モードである場合(ステップS903:Yes)、制御部180は、キャスター角に関連するパラメータ(p/pやφなど)を算出する(ステップS904)。一方、歩行モードである場合(ステップS903:No)、制御部180は、機械インピーダンスKを算出する(ステップS905)。ステップS904またはS905の後に制御部180は、算出値に基づいてアクチュエータを制御する(ステップS906)。ステップS906の後に、制御部180は、動作を終了する。
 なお、制御部180は、脚先の相対位置や姿勢の安定化特性だけでなく、マジックフォーミュラータイヤモデルなどで表現されるタイヤの動特性を考慮し、特定の周波数帯の外乱にのみ安定性を担保するように制御を行ってもよい。例えば、ループ整形法によって制御系を構築することで所望の周波数帯域を抑制するように設計できる。具体的には、制御部180は、同図におけるステップS906の直前において、特定の周波数帯の外乱が発生すれば、S904やS905の算出値を調整すればよい。
 このように、本技術の第1の実施の形態によれば、制御部180が、姿勢の目標値とZMPとに基づいて支持脚を制御し、その目標値に基づいてキャスター角を制御するため、キャスター角に応じた路面抵抗力を発生させることができる。この路面抵抗力により、復元モーメントがキャスターに作用するため、車輪走行時の安定性を向上させることができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、移動体100は、荷物を運搬することを想定せずに、姿勢を変更していたが、移動体100が荷物を運搬しながら姿勢を変更すると、荷物が落下するおそれがある。この第2の実施の形態の移動体100は、荷台と、荷台を水平に保つリフトとをさらに備える点において第1の実施の形態と異なる。
 図14は、本技術の第2の実施の形態における移動体100の一構成例を示す側面図である。この第2の実施の形態の移動体100は、リフト191および192と、荷台193とをさらに備える点において第1の実施の形態と異なる。
 荷台193は、荷物を載置するための板状の部材である。リフト191および192は、荷台193を支持する部材である。リフト191は、胴体部110の前部に配置され、リフト192は、後部に配置される。リフト191および192のそれぞれは、例えば、2つのリンクと、それらのリンクを接続する関節とから構成される。この関節は、アクチュエータにより、ピッチ軸周りに回転することができる。これらのリフト191および192の関節のピッチ角を制御することにより伸縮して、荷台193の前部と後部とを独立に上下することができる。
 なお、リフト191および192は、リンクおよび関節から構成されているが、荷台を上下することができるものであれば、この構成に限定されない。例えば、アクチュエータにより、Z軸に沿って伸縮する1本のリンクをリフト191および192として用いることもできる。
 図15は、本技術の第2の実施の形態における移動体100の一構成例を示すブロック図である。この第2の実施の形態の移動体100は、制御部180内に、リフト制御部183がさらに設けられる点において第1の実施の形態と異なる。
 また、第2の実施の形態のスタビライザ181は、姿勢情報をリフト制御部183にも供給する。また、第2の実施の形態のセンサー群171は、リフト191および192のそれぞれの角度を検出するセンサーをさらに含み、それらのセンサーデータは、リフト制御部183に供給される。また、第2の実施の形態のアクチュエータ群172は、リフト191および192のそれぞれの関節を駆動するアクチュエータをさらに含む。
 リフト制御部183は、姿勢情報の示す姿勢に基づいて、荷台193が水平になるようにリフト191および192を制御するものである。このリフト制御部183は、胴体部110のピッチ角が「0」度より大きい場合には、その角度に応じて、アクチュエータの制御により、リフト191および192の一方の高さを他方より高くする。
 図16は、本技術の第2の実施の形態におけるリフト191および192の制御方法を説明するための図である。同図に例示するように、胴体部110の前部の高さが後部よりも低くなった場合に、リフト制御部183は、前側のリフト191を伸ばし、後ろ側のリフト192を縮める。これにより、荷台193を水平に保ち、荷物の落下を防止することができる。
 なお、胴体部110の前部の高さが後部よりも高くなった場合は、リフト制御部183が前側のリフト191を縮め、後ろ側のリフト192を伸ばせばよい。
 このように、本技術の第2の実施の形態によれば、姿勢に基づいてリフト制御部183がリフト191および192を制御するため、姿勢が変更された場合であっても荷台193を水平に保ち、荷台の落下を防止することができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態では、胴体部110が1つの部材により構成されていたが、胴体部110を2つに分離することもできる。この第3の実施の形態の移動体100は、胴体部が2つに分離されている点において第1の実施の形態と異なる。
 図17は、本技術の第3の実施の形態における移動体100の一構成例を示す側面図である。この第3の実施の形態の移動体100は、胴体部110が前方胴体部111、後方胴体部112および接続部310を備える点において第1の実施の形態と異なる。
 前方胴体部111は、支持脚120および140が取り付けられる部材であり、移動体100の前側に設けられる。後方胴体部112は、支持脚130および150が取り付けられる部材であり、移動体100の後ろ側に設けられる。
 接続部310は、前方胴体部111を後方胴体部112に接続するものである。この接続部310は、前方関節311、リンク312および後方関節313を備える。
 前方関節311は、前方胴体部111とリンク312とを接続する関節であり、アクチュエータによりピッチ軸周りに回転することができる。後方関節313は、後方胴体部112とリンク312とを接続する関節であり、アクチュエータによりピッチ軸周りに回転することができる。リンク312は、前方関節311と後方胴体部112とを接続する部材である。
 上述の構成により、制御部180は、前方胴体部111の姿勢と、後方胴体部112の姿勢とを独立して制御することができる。これにより、前方胴体部111、後方胴体部112の一方が多少姿勢を崩しても、他方の姿勢に大きな影響はないため、移動体100全体の安定性をさらに向上させることができる。
 このように、本技術の第3の実施の形態によれば、制御部180が、前方胴体部111と後方胴体部112とのそれぞれの姿勢を独立して制御するため、移動体100全体の安定性を向上させることができる。
 <4.第4の実施の形態>
 上述の第3の実施の形態では、移動体100は、荷物を運搬することを想定せずに、姿勢を変更していたが、移動体100が荷物を運搬しながら姿勢を変更すると、荷物が落下するおそれがある。この第4の実施の形態の移動体100は、荷台と、荷台を水平に保つリフトとをさらに備える点において第3の実施の形態と異なる。
 図18は、本技術の第4の実施の形態における移動体100の一構成例を示す側面図である。この第4の実施の形態の移動体100は、リフト194および195と、荷台193とをさらに備える点において第3の実施の形態と異なる。リフト194および195は、荷台193を支持し、Z方向に沿って伸縮する1本のリンクからなる。
 また、第4の実施の形態の制御部180の構成は、第2の実施の形態と同様である。
 このように、本技術の第4の実施の形態によれば、姿勢に基づいてリフト制御部183がリフト191および192を制御するため、姿勢が変更された場合であっても荷台193を水平に保ち、荷台の落下を防止することができる。
 <5.第5の実施の形態>
 上述の第1の実施の形態では、移動体100は、前方の支持脚120および140の取付け角と、後方の支持脚130および150の取付け角とを同一にし、初期状態のキャスター角を前方と後方とで同一にしていた。しかし、キャスター角が大きいほど最小旋回半径が大きくなるため、曲がりやすくするためには、特に前方の支持脚のキャスター角を後方よりも小さくすることが望ましい。この第5の実施の形態は、前方の支持脚120および140の取付け角と、後方の支持脚130および150の取付け角とが異なる点において第1の実施の形態と異なる。
 図19は、本技術の第5の実施の形態における移動体100の一構成例を示す側面図である。この第5の実施の形態の移動体100は、前方の支持脚120および140の取付け角φ0fと、後方の支持脚130および150の取付け角φ0rとが異なる点において第1の実施の形態と異なる。例えば、前方の取付け角φ0fは、後方の取付け角φ0rより小さな値に設定される。これにより、初期状態の前方のキャスター角を後方よりも小さくすることができる。したがって、前方の取付け角と、後方の取付け角とが同一の場合よりも、移動体100が曲がりやすくなる。
 なお、前方の支持脚120および140の直進安定性を後方よりも優先して、前方の取付け角φ0fを、後方の取付け角φ0rより大きな値にすることもできる。このように、前後の取付け角を変えることにより、スピン特性や、外乱が生じた際の直進性をチューニングすることができる。
 また、第5の実施の形態に、第1乃至第4の実施の形態のそれぞれを適用することができる。
 このように、本技術の第5の実施の形態では、前方の支持脚120および140の取付け角と、後方の支持脚130および150の取付け角とが異なるため、初期状態のキャスター角を前方と後方とで異なる値にすることができる。
 <6.第6の実施の形態>
 上述の第1の実施の形態では、制御部180がキャスター角を制御して移動体100の安定性を向上させていたが、路面の凹凸や段差が想定以上に大きい場合には、姿勢を崩すおそれがある。第6の実施の形態における移動体100は、キャスター内にダンパーを設けて、安定性を向上させた点において第1の実施の形態と異なる。
 図20は、本技術の第6の実施の形態におけるキャスター161の一構成例を示す断面図である。この第6の実施の形態のキャスター161は、車輪部166とダンパー165とを備える。
 車輪部166は、車軸に取付けられた円形の部品である。ダンパー165は、路面に垂直なZ方向に沿って伸縮する部品である。このダンパー165は、車軸とリンク124の先端との間に設けられる。ダンパー165として、例えば、弾性体(バネやオイルダンパーなど)が用いられる。
 キャスター162乃至164のそれぞれの構成は、キャスター161と同様である。
 積載荷重や空力的加重などに応じてダンパー165が縮むことによって、キャスタートレイルが増大し、キャスター角が大きくなる。これにより、凸凹や段差を乗り越える際に、移動体100の直進安定性を向上させることができる。
 なお、第6の実施の形態に、第1乃至第4の実施の形態のそれぞれを適用することができる。
 このように、本技術の第6の実施の形態によれば、ダンパー165が伸縮するため、加重に応じてキャスター角を増大させて、移動体100の安定性を向上させることができる。
 <7.第7の実施の形態>
 上述の第1の実施の形態では、支持脚120等に、1つの軸(ロール軸)のみを中心として回転する第1関節121を設けていたが、この構成では、第1関節の可動範囲を十分に確保することができないおそれがある。この第7の実施の形態の移動体100は、2軸を中心として回転する第1関節を設けて、可動範囲を広くした点において第1の実施の形態と異なる。
 図21は、本技術の第7の実施の形態における移動体100の一構成例を示す側面図である。この第7の実施の形態の移動体100は、支持脚120に第1関節121の代わりに第1関節126を設けた点において第1の実施の形態と異なる。
 第1関節126は、2軸(ロール軸およびピッチ軸など)を中心として回転する2軸性の関節である。支持脚130、140および150のそれぞれにも、支持脚120と同様に2軸性の第1関節が設けられる。
 第1関節126を2軸性の関節とすることにより、第1関節121が1軸性の第1の実施の形態と比較して、支持脚120の可動範囲を広くすることができる。
 なお、第7の実施の形態に、第1乃至第6の実施の形態のそれぞれを適用することができる。
 このように、本技術の第7の実施の形態によれば、2軸性の第1関節126を設けたため、1軸性の第1関節を設ける場合と比較して、支持脚の可動範囲を広くすることができる。
 <8.第8の実施の形態>
 上述の第1の実施の形態では、4本の支持脚を胴体部110に取付けていたが、支持脚の本数が多いほど、部品点数が多くなり、移動体100の製造コストが増大するおそれがある。また、支持脚の本数が多いほど、支持多角形の面積が増大し、狭い場所への移動が困難になるおそれがある。この第8の実施の形態の移動体100は、支持脚の本数を2本に削減した点において第1の実施の形態と異なる。
 図22は、本技術の第8の実施の形態における移動体100の一構成例を示す側面図である。この第8の実施の形態の移動体100は、胴体部110に支持脚120および140のみが取り付けられている点において第1の実施の形態と異なる。
 同図に例示するように、支持脚を2脚とすることにより、4脚の場合と比較して、製造コストが低減し、狭い場所への移動が容易となる。
 なお、第8の実施の形態に第6または第7の実施の形態を適用することができる。
 このように、本技術の第8の実施の形態では、支持脚を2脚としたため、4脚の場合と比較して製造コストが低減し、狭い場所への移動が容易となる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、本明細書に記載された効果はあくまで例示であって、限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)それぞれの付け根が胴体部に取付けられ、先端にキャスターが取付けられた複数の支持脚と、
 前記複数の支持脚のそれぞれの前記キャスターの接地位置を前記胴体部の姿勢の目標値に基づいて制御する安定化器と、
 前記目標値に基づいて前記キャスターのそれぞれのキャスター角を制御するキャスター角制御部と
を具備する移動体。
(2)前記キャスター角制御部は、前記移動体が車輪走行を行う走行モードに移行した場合には機械インピーダンスと前記複数の支持脚のそれぞれのねじり剛性とに基づいて前記キャスターのキャスタートレイルに対する路面から前記付け根までの高さの比率と新たな目標値とを求める
前記(1)記載の移動体。
(3)前記キャスター角制御部は、前記移動体が歩行を行う歩行モードに移行した場合には前記複数の支持脚のそれぞれのねじり剛性と前記目標値と路面から前記付け根までの高さと前記キャスターのキャスタートレイルとに基づいて機械インピーダンスを求める
前記(1)または(2)に記載の移動体。
(4)荷台を支持する複数のリフトと、
 前記目標値に基づいて複数のリフトを制御するリフト制御部と
をさらに具備する前記(1)から(3)のいずれかに記載の移動体。
(5)前記胴体部は、前方胴体部と後方胴体部と前記前方胴体部を前記後方胴体部に接続する接続部とを備える
前記(1)から(4)のいずれかに記載の移動体。
(6)前記キャスターは、車輪部と前記路面に垂直な方向に沿って伸縮するダンパーとを備える
前記(1)から(5)のいずれかに記載の移動体。
(7)前記複数の支持脚のそれぞれは、前記付け根に設けられた第1関節と第2関節と前記先端に設けられた第3関節とを備え、
 前記第1関節は、2軸性の関節である
前記(1)から(6)記載の移動体。
(8)前記複数の支持脚は、一対の前方支持脚と一対の後方支持脚とからなる
前記(1)から(7)のいずれかに記載の移動体。
(9)前記一対の前方支持脚のそれぞれの前記付け根の取付け角は、前記一対の後方支持脚と異なる
前記(8)記載の移動体。
(10)前記複数の支持脚の個数は、2つである
前記(1)から(7)のいずれかに記載の移動体。
(11)それぞれの付け根が胴体部に取付けられ、先端にキャスターが取付けられた複数の支持脚のそれぞれの前記キャスターの接地位置を前記胴体部の姿勢の目標値に基づいて制御する安定化手順と、
 前記目標値に基づいて前記キャスターのそれぞれのキャスター角を制御するキャスター角制御手順と
を具備する移動体の制御方法。
 100 移動体
 110 胴体部
 111 前方胴体部
 112 後方胴体部
 120、130、140、150 支持脚
 121、126 第1関節
 122、124、312 リンク
 123 第2関節
 125 第3関節
 161~164 キャスター
 165 ダンパー
 166 車輪部
 171 センサー群
 172 アクチュエータ群
 180 制御部
 181 スタビライザ
 182 路面状況解析部
 183 リフト制御部
 191、192、194、195 リフト
 193 荷台
 200 キャスター角制御部
 210 姿勢毎ねじり剛性マップ
 220 ねじり剛性取得部
 230 歩行モード制御部
 231、241 パラメータ算出部
 232、242 機械インピーダンス算出部
 233、243 アクチュエータ制御部
 240 走行モード制御部
 250 選択部
 310 接続部
 311 前方関節
 313 後方関節

Claims (11)

  1.  それぞれの付け根が胴体部に取付けられ、先端にキャスターが取付けられた複数の支持脚と、
     前記複数の支持脚のそれぞれの前記キャスターの接地位置を前記胴体部の姿勢の目標値に基づいて制御する安定化器と、
     前記目標値に基づいて前記キャスターのそれぞれのキャスター角を制御するキャスター角制御部と
    を具備する移動体。
  2.  前記キャスター角制御部は、前記移動体が車輪走行を行う走行モードに移行した場合には機械インピーダンスと前記複数の支持脚のそれぞれのねじり剛性とに基づいて前記キャスターのキャスタートレイルに対する路面から前記付け根までの高さの比率と新たな目標値とを求める
    請求項1記載の移動体。
  3.  前記キャスター角制御部は、前記移動体が歩行を行う歩行モードに移行した場合には前記複数の支持脚のそれぞれのねじり剛性と前記目標値と路面から前記付け根までの高さと前記キャスターのキャスタートレイルとに基づいて機械インピーダンスを求める
    請求項1記載の移動体。
  4.  荷台を支持する複数のリフトと、
     前記目標値に基づいて複数のリフトを制御するリフト制御部と
    をさらに具備する請求項1記載の移動体。
  5.  前記胴体部は、前方胴体部と後方胴体部と前記前方胴体部を前記後方胴体部に接続する接続部とを備える
    請求項1記載の移動体。
  6.  前記キャスターは、車輪部と前記路面に垂直な方向に沿って伸縮するダンパーとを備える
    請求項1記載の移動体。
  7.  前記複数の支持脚のそれぞれは、前記付け根に設けられた第1関節と第2関節と前記先端に設けられた第3関節とを備え、
     前記第1関節は、2軸性の関節である
    請求項1記載の移動体。
  8.  前記複数の支持脚は、一対の前方支持脚と一対の後方支持脚とからなる
    請求項1記載の移動体。
  9.  前記一対の前方支持脚のそれぞれの前記付け根の取付け角は、前記一対の後方支持脚と異なる
    請求項8記載の移動体。
  10.  前記複数の支持脚の個数は、2つである
    請求項1記載の移動体。
  11.  それぞれの付け根が胴体部に取付けられ、先端にキャスターが取付けられた複数の支持脚のそれぞれの前記キャスターの接地位置を前記胴体部の姿勢の目標値に基づいて制御する安定化手順と、
     前記目標値に基づいて前記キャスターのそれぞれのキャスター角を制御するキャスター角制御手順と
    を具備する移動体の制御方法。
PCT/JP2020/005230 2019-05-13 2020-02-12 移動体、および、移動体の制御方法 WO2020230384A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/604,645 US20220185401A1 (en) 2019-05-13 2020-02-12 Moving object and method of controlling moving object
CN202080034111.8A CN113784824A (zh) 2019-05-13 2020-02-12 移动体以及移动体的控制方法
JP2021519263A JPWO2020230384A1 (ja) 2019-05-13 2020-02-12

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019090361 2019-05-13
JP2019-090361 2019-05-13

Publications (1)

Publication Number Publication Date
WO2020230384A1 true WO2020230384A1 (ja) 2020-11-19

Family

ID=73289169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/005230 WO2020230384A1 (ja) 2019-05-13 2020-02-12 移動体、および、移動体の制御方法

Country Status (4)

Country Link
US (1) US20220185401A1 (ja)
JP (1) JPWO2020230384A1 (ja)
CN (1) CN113784824A (ja)
WO (1) WO2020230384A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256490A1 (ja) * 2020-06-17 2021-12-23 ソニーグループ株式会社 移動体および移動体の制御方法
JP7514791B2 (ja) 2021-04-21 2024-07-11 本田技研工業株式会社 リンク機構

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133777U (ja) * 1984-07-31 1986-03-01 有限会社 河島農具製作所 運搬車の荷台水平維持装置
JPH10109653A (ja) * 1996-08-09 1998-04-28 Yoshizawa Kiko Kk 運搬車
JP2010005730A (ja) * 2008-06-26 2010-01-14 Nsk Ltd 原点位置判定装置および脚車輪型ロボット、並びに原点位置判定方法
JP2011045973A (ja) * 2009-08-28 2011-03-10 Hitachi Ltd ロボット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022110261A (ja) * 2021-01-18 2022-07-29 ソニーグループ株式会社 移動装置、および移動装置制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133777U (ja) * 1984-07-31 1986-03-01 有限会社 河島農具製作所 運搬車の荷台水平維持装置
JPH10109653A (ja) * 1996-08-09 1998-04-28 Yoshizawa Kiko Kk 運搬車
JP2010005730A (ja) * 2008-06-26 2010-01-14 Nsk Ltd 原点位置判定装置および脚車輪型ロボット、並びに原点位置判定方法
JP2011045973A (ja) * 2009-08-28 2011-03-10 Hitachi Ltd ロボット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021256490A1 (ja) * 2020-06-17 2021-12-23 ソニーグループ株式会社 移動体および移動体の制御方法
JP7514791B2 (ja) 2021-04-21 2024-07-11 本田技研工業株式会社 リンク機構

Also Published As

Publication number Publication date
US20220185401A1 (en) 2022-06-16
CN113784824A (zh) 2021-12-10
JPWO2020230384A1 (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
CA3112415C (en) Inertial regulation active suspension system based on vehicle posture deviation, and control method thereof
US11130382B2 (en) Vehicle and methods for improving stability and occupant comfort
CN113021299B (zh) 一种双腿轮复合机器人全方位运动控制方法
CN210911933U (zh) 一种主动悬架控制系统
WO2020230384A1 (ja) 移動体、および、移動体の制御方法
CN108107731B (zh) 一种基于轮胎非线性特性的汽车稳定性控制方法
Saripalli et al. A tale of two helicopters
US20050051976A1 (en) Suspension device of a motor vehicle wheel
JP5946844B2 (ja) 移動体
CN113348129B (zh) 陀螺稳定腿式机器人
CN110901325A (zh) 一种主动悬架控制方法及系统
US9321498B2 (en) Method of estimating mounting angle error of gyroscopes by using a turning device, and corresponding turning device
JPWO2003057424A1 (ja) 脚式移動ロボットの歩容生成装置
JPWO2003061917A1 (ja) 脚式移動ロボットの制御装置
CN113211438B (zh) 基于预瞄距离自适应的轮式机器人控制方法及控制系统
Krid et al. Design and control of an active anti-roll system for a fast rover
CN101068662B (zh) 腿式移动机器人及其控制方法
Hirose et al. Personal robot assisting transportation to support active human life—Posture stabilization based on feedback compensation of lateral acceleration
CN112859593B (zh) 一种轮腿式机器人机身姿态及足端受力协同控制方法
CN108931986B (zh) 一种两轮汽车自平衡控制方法、装置及存储介质
KR101063889B1 (ko) 외바퀴 로봇의 제어시스템 및 그 설계방법
CN117270386A (zh) 基于耦合自抗扰的分布式驱动六轮转向车辆同相位转向控制方法及控制器
Du et al. Meaningful centroidal frame orientation of multi-body floating locomotion systems
WO2021256490A1 (ja) 移動体および移動体の制御方法
Liu et al. Active disturbance rejection control of path following control for autonomous ground vehicles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805454

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805454

Country of ref document: EP

Kind code of ref document: A1