WO2020228581A1 - 一种像素电路及其驱动方法、显示装置 - Google Patents

一种像素电路及其驱动方法、显示装置 Download PDF

Info

Publication number
WO2020228581A1
WO2020228581A1 PCT/CN2020/088958 CN2020088958W WO2020228581A1 WO 2020228581 A1 WO2020228581 A1 WO 2020228581A1 CN 2020088958 W CN2020088958 W CN 2020088958W WO 2020228581 A1 WO2020228581 A1 WO 2020228581A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
transistor
repair
electrically connected
emitting
Prior art date
Application number
PCT/CN2020/088958
Other languages
English (en)
French (fr)
Inventor
刘冬妮
玄明花
岳晗
肖丽
陈亮
陈昊
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/255,529 priority Critical patent/US11335224B2/en
Publication of WO2020228581A1 publication Critical patent/WO2020228581A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/006Electronic inspection or testing of displays and display drivers, e.g. of LED or LCD displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0267Details of drivers for scan electrodes, other than drivers for liquid crystal, plasma or OLED displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0275Details of drivers for data electrodes, other than drivers for liquid crystal, plasma or OLED displays, not related to handling digital grey scale data or to communication of data to the pixels by means of a current
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/08Fault-tolerant or redundant circuits, or circuits in which repair of defects is prepared
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/10Dealing with defective pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/12Test circuits or failure detection circuits included in a display system, as permanent part thereof

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, in particular to a pixel circuit and a driving method thereof, and a display device.
  • Micro Light-Emitting Diode Micro LED
  • Mini Light-Emitting Diode Mini LED
  • Display technology For this reason, it is necessary to improve the light-emitting brightness of the Micro LED or Mini LED display device and improve the reliability of the Micro LED or Mini LED display device to emit light normally.
  • the present disclosure provides a pixel circuit, a driving method of the pixel circuit, and a display device.
  • a pixel circuit including: a light-emitting component including a plurality of light-emitting elements; a driving sub-circuit electrically connected to the light-emitting component and configured to generate a driving current for driving the light-emitting component to emit light And a repair sub-circuit, electrically connected to the light-emitting component, configured to receive a repair scan signal and a repair data signal, and under the control of the repair scan signal and the repair data signal, provide the driving current to the At least one light-emitting element capable of normally emitting light among the plurality of light-emitting elements is used to enable the light-emitting assembly to emit light when there is a malfunctioning light-emitting element among the plurality of light-emitting elements.
  • the plurality of light emitting elements are connected in series.
  • the light emitting element includes a micro light emitting diode or a sub-millimeter light emitting diode.
  • the driving sub-circuit includes a first transistor, a driving transistor, and a first capacitor, a control electrode of the first transistor is electrically connected to receive a driving scan signal, and a first electrode of the first transistor is electrically connected to receive To drive a data signal, the second electrode of the first transistor is electrically connected to the control electrode of the driving transistor; the control electrode of the driving transistor is electrically connected to the first end of the first capacitor, and the second electrode of the driving transistor is electrically connected One pole is electrically connected to the light-emitting component, the second pole of the driving transistor is electrically connected to a first power source; the second end of the first capacitor is electrically connected to the first power source.
  • the light-emitting assembly includes N light-emitting elements
  • the repair sub-circuit includes N repair modules corresponding to the N light-emitting elements one-to-one
  • the i-th repair module is configured to receive the i-th repair scan Signal and the i-th repair data signal, and under the control of the i-th repair scan signal and the i-th repair data signal, the driving current is provided to the i-th light-emitting element, where N is greater than 1 is a natural number, i is a natural number, and 1 ⁇ i ⁇ N.
  • the i-th repair module includes: a node control unit, electrically connected to the light-emitting control unit, configured to receive the i-th repair scan signal and the i-th repair data signal, based on the i-th repair The scanning signal and the i-th repair data signal generate a light-emitting control signal, and provide the light-emitting control signal to the light-emitting control unit; and the light-emitting control unit, which is connected in parallel to both ends of the i-th light-emitting element and is configured to Receiving the light-emitting control signal, and under the control of the light-emitting control signal, causing the driving current to flow through the i-th light-emitting element or short-circuit the i-th light-emitting element.
  • the node control unit of the i-th repair module includes a 2i-th transistor and an i+1-th capacitor, the control electrode of the 2i-th transistor is electrically connected to receive the i-th repair scan signal, and the 2i-th transistor The first electrode is electrically connected to receive the i-th repair data signal, the second electrode of the 2i-th transistor is electrically connected to the first end of the i+1th capacitor; the i+1th capacitor The two ends are electrically connected with the first power source.
  • the light emission control unit of the i-th repair module includes a 2i+1th transistor, the control electrode of the 2i+1th transistor is electrically connected to the second electrode of the 2ith transistor, and the 2i+1th transistor
  • the first electrode of is electrically connected to the anode of the i-th light-emitting element
  • the second electrode of the 2i+1th transistor is electrically connected to the cathode of the i-th light-emitting element.
  • control electrode of the 2i-th transistor of the plurality of repair modules is electrically connected to the control electrode of the first transistor of the driving sub-circuit.
  • the first poles of the 2i-th transistors of the plurality of repair modules are electrically connected together.
  • a driving method of a pixel circuit including: generating a driving current required for light emission of a light-emitting component using a driving sub-circuit; and using a repair sub-circuit to provide the driving current to a plurality of light-emitting elements At least one light-emitting element capable of normally emitting light in.
  • a display device including a plurality of sub-pixels, each sub-pixel including the pixel circuit of the above-mentioned embodiment.
  • the display device further includes: a read signal line; a detection module, electrically connected to the pixel circuit and the read signal line, configured to output a detection current to the read signal line, the detection module The current corresponds to the brightness of the sub-pixel corresponding to the pixel circuit; and a control module, electrically connected to the read signal line, configured to recognize the light emission of each light-emitting element in the sub-pixel based on the detection current State, and provide a repair scan signal and a repair data signal to a plurality of repair modules of the pixel circuit based on the light emitting state of each light emitting element.
  • the detection module includes a 2N+2 transistor and a photodiode, where N is a natural number greater than 1, and the control electrode of the 2N+2 transistor is electrically connected to receive a detection scan signal, and the 2N+2
  • the first pole of the transistor is electrically connected with the anode of the photodiode
  • the second pole of the 2N+2 transistor is electrically connected with the reading signal line
  • the cathode of the photodiode is electrically connected with the second power source.
  • FIG. 1 is a schematic structural diagram of a pixel circuit provided by an embodiment of the disclosure
  • FIG. 2 is a top view of the connection relationship of light-emitting components provided by an embodiment of the disclosure
  • FIG. 3 is an equivalent circuit diagram of a driving sub-circuit provided by an embodiment of the disclosure.
  • FIG. 4 is an equivalent circuit diagram of a light-emitting component provided by an embodiment of the disclosure.
  • FIG. 5 is a schematic structural diagram of a repair sub-circuit provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic structural diagram of a repair module provided by an embodiment of the disclosure.
  • FIG. 7 is an equivalent circuit diagram of a repair sub-circuit provided by an embodiment of the disclosure.
  • FIG. 8 is an equivalent circuit diagram of a pixel circuit provided by an embodiment of the disclosure.
  • FIG. 9 is an equivalent circuit diagram of a pixel circuit provided by an embodiment of the disclosure.
  • FIG. 10 is another equivalent circuit diagram of a pixel circuit provided by an embodiment of the disclosure.
  • FIG. 11A is a working timing diagram of normal light emission of two light-emitting elements in the pixel circuit provided in FIG. 9; FIG.
  • FIG. 11B is a working timing diagram in which only the second light-emitting element in the pixel circuit provided in FIG. 9 can emit light normally;
  • 11C is a working timing diagram of the pixel circuit provided in FIG. 9 when only the first light-emitting element can emit light normally;
  • FIG. 12A is a working timing diagram of two light-emitting elements in the pixel circuit provided in FIG. 10 for normal light emission;
  • 12B is a working timing diagram of the pixel circuit provided in FIG. 10 when only the second light-emitting element can emit light normally;
  • 12C is a working timing diagram of the pixel circuit provided in FIG. 10 when only the first light-emitting element can emit light normally;
  • FIG. 13 is a flowchart of a driving method of a pixel circuit provided by an embodiment of the disclosure.
  • FIG. 14 is a schematic structural diagram of a display device provided by an embodiment of the disclosure.
  • FIG. 15 is a schematic structural diagram of a detection module provided by an embodiment of the disclosure.
  • the specification may have presented the method and/or process as a specific sequence of steps. However, to the extent that the method or process does not depend on the specific order of the steps described herein, the method or process should not be limited to the steps in the specific order described. As those of ordinary skill in the art will understand, other sequence of steps are also possible. Therefore, the specific order of steps set forth in the specification should not be construed as a limitation on the claims. In addition, the claims for the method and/or process should not be limited to performing their steps in the written order, and those skilled in the art can easily understand that these orders can be changed and still remain within the spirit and scope of the embodiments of the present disclosure. Inside.
  • the source and drain of the transistors used in all the embodiments of the present disclosure are symmetrical, so the source and drain are interchangeable.
  • the source in order to distinguish the two poles of the transistor other than the gate, the source is called the first pole, the drain is called the second pole, and the gate is called the control pole.
  • the transistors used in the embodiments of the present disclosure include: P-type transistors and N-type transistors. Among them, the P-type transistor is turned on when the gate is low and turned off when the gate is high, and the N-type transistor is on the gate. It turns on when it is extremely high, and turns off when the gate is low.
  • FIG. 1 is a schematic structural diagram of the pixel circuit 10 provided by the embodiments of the present disclosure.
  • the pixel circuit 10 provided by the embodiment of the present disclosure includes a driving sub-circuit 11, a repairing sub-circuit 12 and a light-emitting component 13.
  • the light emitting assembly 13 includes a plurality of light emitting elements. As shown in FIG. 1, the light-emitting assembly 13 includes N light-emitting elements connected in series, where N is a natural number greater than 2, and the value of N can be determined according to actual needs. For ease of description, 13_i is used to represent the i-th light-emitting element connected in series, where i is a natural number, and 1 ⁇ i ⁇ N. According to the embodiment, the light emitting element may include a micro light emitting diode or a sub-millimeter light emitting diode, but the present disclosure is not limited thereto, and the light emitting element may also be of other types.
  • the driving sub-circuit 11 is electrically connected to the light-emitting assembly 13.
  • the driving sub-circuit 11 is configured to receive a driving scan signal Gate_L and a driving data signal Data_L, and generate a driving current for driving the light emitting component 13 to emit light based on the driving scan signal Gate_L and the driving data signal Data_L.
  • the repair sub-circuit 12 is electrically connected to the light-emitting assembly 13.
  • the repair sub-circuit 12 is configured to receive the repair scan signal Gate_R and the repair data signal Data_R, and under the control of the repair scan signal Gate_R and the repair data signal Data_R, provide the driving current generated by the driving sub-circuit 11 to the plurality of light emitting elements.
  • At least one light-emitting element that normally emits light to enable the light-emitting assembly 13 to emit light when there is a malfunctioning light-emitting element among the plurality of light-emitting elements.
  • the first power supply VDD continuously provides a high-level signal
  • the second power supply VSS continuously provides a low-level signal
  • the display product according to the embodiment of the present disclosure includes a plurality of pixels, and each pixel includes three sub-pixels.
  • the pixel circuit 10 provided by the embodiment of the present disclosure corresponds to the sub-pixels in a one-to-one manner.
  • FIG. 2 is a top view of the connection relationship of light-emitting components provided by an embodiment of the disclosure.
  • the pixels provided by the embodiment of the present disclosure include a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B.
  • Each sub-pixel includes a drain 9 of a thin film transistor electrically connected to one end of the light-emitting element 13, and a second power source VSS electrically connected to the other end of the light-emitting element 13.
  • the light-emitting assembly 13 includes two light-emitting elements 20, and each light-emitting element 20 includes an anode 21 and a cathode 22.
  • the anode 21 of the first light-emitting element is electrically connected to the drain 9 of a thin film transistor in the pixel circuit
  • the cathode 22 of the first light-emitting element is electrically connected to the anode 21 of the second light-emitting element through the connection line 10
  • the second The cathode 22 of each light-emitting element is electrically connected to the second power supply VSS, that is, the first light-emitting element is connected in series with the second light-emitting element.
  • the light-emitting assembly in the pixel circuit provided by the embodiment of the present disclosure includes a plurality of light-emitting elements connected in series.
  • each light-emitting element can normally emit light
  • multiple light-emitting elements in each sub-pixel emit light at the same time, which can increase the light emission of the sub-pixel.
  • Brightness
  • the drive current can be reduced by reducing the size of the thin film transistor or reducing the source-drain voltage difference of the thin film transistor, which not only reduces the heating of the wiring, but also reduces the The thermal effect of light-emitting elements and the power consumption of display products. Further, the resolution of display products can be improved.
  • the repairing sub-circuit of the pixel circuit provided by the embodiment of the present disclosure can provide a driving current to the normally-emitting light-emitting element in a state where the light-emitting element cannot normally emit light, so as to realize the sub-pixel corresponding to the pixel circuit to emit light.
  • the embodiments of the present disclosure provide a repair sub-circuit in the pixel circuit to realize that as long as there is a light-emitting element that normally emits light in the pixel circuit, the sub-pixel corresponding to the pixel circuit will emit light normally, so as to solve the problem that only one light-emitting element in the pixel circuit cannot normally emit light.
  • the resulting technical problem that the sub-pixels corresponding to the pixel circuit cannot normally emit light improves the display quality of the display product, and further improves the yield of the display product.
  • FIG. 3 is an equivalent circuit diagram of a driving sub-circuit provided by an embodiment of the disclosure.
  • the driving sub-circuit 31 in the pixel circuit 30 provided by the embodiment of the present disclosure includes a first transistor M 1 , a driving transistor DTFT and a first capacitor C 1 .
  • the first transistor M 1 is electrically connected to receive a scan side drive Gate_L, a first electrode of the first transistor M 1 is electrically connected to receive driving data DATA_L terminal, a second electrode of the first transistor M 1 It is electrically connected to the control electrode of the driving transistor DTFT.
  • DTFT control electrode of the driving transistor is connected to the first end of the first capacitor C 1, the first electrode and the light-emitting unit electrically connected to the driving transistor DTFT, DTFT a second drive transistor connected to the first power supply VDD.
  • a second terminal of the first capacitor C is connected to a first power supply VDD 1.
  • the driving transistor DTFT in this embodiment may be an enhancement transistor or a depletion transistor, which is not specifically limited here.
  • driving sub-circuit 31 is specifically shown in FIG. 3. It is easily understood by those skilled in the art that the implementation of the driving sub-circuit 31 is not limited to this, and may also be other circuits commonly used by those skilled in the art, as long as the function can be realized.
  • FIG. 4 is an equivalent circuit diagram of a light-emitting assembly provided by an embodiment of the disclosure. As shown in FIG. 4, the light-emitting assembly in the pixel circuit provided by the embodiment of the present disclosure includes N light-emitting elements LED 1 ⁇ LED N connected in series.
  • a first light-emitting element LED and a first electrode of the driving transistor electrically DTFT anode 1 is connected to the N-th light-emitting element LED and the cathode of N electrically connected to a second power source VSS.
  • a cathode and an i th light emitting elements of the LED i (i + 1) th light emitting elements LED i + 1 is electrically connected to the anode, wherein, 1 ⁇ i ⁇ N-1.
  • FIG. 5 is a schematic structural diagram of a repair sub-circuit provided by an embodiment of the disclosure.
  • the light-emitting assembly 53 includes N light-emitting elements
  • the repair sub-circuit 52 includes N repair modules
  • the N repair modules correspond to the N light-emitting elements one-to-one.
  • the i-th repair module is electrically connected to the i-th light-emitting element, and is respectively electrically connected to receive the i-th repair scan signal Gate_Ri and the i-th repair data signal Data_Ri for the i-th light-emitting element
  • the drive current is provided to the i-th light-emitting element LED i , which is also used for the i-th light-emitting element LED
  • the i-th light-emitting element LED i is short-circuited, 1 ⁇ i ⁇ N.
  • FIG. 6 is a schematic structural diagram of a repair module provided by an embodiment of the disclosure.
  • the i-th repair module includes a node control unit 621_i and a light emission control unit 622_i, and the node control unit 621_i is electrically connected to the light emission control unit 622_i. i-node N i .
  • the node control unit 621_i is configured to receive the i-th repair scan signal Gate_Ri and the i-th repair data signal Data_Ri, and generate a light emission control signal based on the i-th repair scan signal Gate_Ri and the i-th repair data signal Data_Ri, And the generated light emission control signal is provided to the light emission control unit 622_i.
  • the node control unit 621_i may be under the control of the i-th repair scanning signal Gate_Ri, there is provided the i-th repair data signals Data_Ri to the i-th node N i, may also maintain the potential signal of the i-node N i to The light emission control unit 622_i is controlled.
  • the LED light emission control unit 622_i are respectively connected to the node i i N i i-th light-emitting elements and configured to receive node control unit 621_i 6 generates a light emission control signal, and the light emission control signal, in When the i-th light-emitting element LED i emits normally, the drive current is supplied to the i-th light-emitting element LED i , and when the i-th light-emitting element LED i cannot emit light normally, the i-th light-emitting element LED i is short-circuited.
  • FIG. 7 is an equivalent circuit diagram of a repair sub-circuit provided by an embodiment of the disclosure.
  • the node control unit of the i-th repair module includes the 2i-th transistor M 2i and the (i+1) th capacitor C i+1
  • the light-emitting control unit of the i-th repair module includes the (2i+1)th Transistor M 2i+1 . It can be seen from FIG. 7 that the light-emitting control unit of the i-th repair module is connected in parallel to both ends of the i-th light-emitting element.
  • the control electrode of the 2i- th transistor M 2i is electrically connected to receive the i-th repair scan signal Gate_Ri
  • the first electrode of the 2i-th transistor M 2i is electrically connected to receive the i-th repair data signal Data_Ri
  • the 2i-th transistor The second pole of M 2i and the first end of the (i+1) th capacitor C i+1 are electrically connected to the i-th node Ni, and the second end of the (i+1) th capacitor C i+1 is connected to the first power supply VDD Electric connection.
  • the control electrode of the (2i+1) th transistor M 2i+1 and the second electrode of the 2ith transistor M 2i are electrically connected to the i-th node Ni, and the first electrode of the (2i+1) th transistor M 2i+1 is electrically connected to the The anode of the i light emitting element LED i is electrically connected, and the second electrode of the (2i+1)th transistor M 2i+1 is electrically connected to the cathode of the i light emitting element LED i .
  • FIG. 7 specifically shows an exemplary structure of the repair sub-circuit. It is easily understood by those skilled in the art that the implementation of the repair sub-circuit is not limited to this, as long as its function can be realized.
  • FIG. 8 is a schematic structural diagram of a pixel circuit provided by an embodiment of the disclosure.
  • the driving sub-circuit 81 includes a first transistor M 1 , a driving transistor DTFT and a first capacitor C 1
  • the repairing sub-circuit 82 includes second transistors M 2 to The (2N+1) transistor M 2N+1 and the second capacitor C 2 to the (N+1)th capacitor C N+1
  • the light emitting assembly 83 includes N light emitting elements, LED 1 to LED N , respectively.
  • the first control transistor M 1 is electrically connected to receive the scan driving signal Gate_L, M 1 a first electrode of the first transistor is connected to receive driving data signal DATA_L, a second electrode of the first transistor M 1 It is electrically connected to the control electrode of the driving transistor DTFT.
  • DTFT control electrode of the driving transistor is connected to the first end of the first capacitor C 1
  • a first electrode of the first driving transistor DTFT of a light emitting element is electrically connected to the anode of LED 1
  • the second drive transistor and the first power DTFT VDD is electrically connected.
  • a second terminal of the first capacitor C is connected to a first power supply VDD 1.
  • the control electrode of the 2i- th transistor M 2i is electrically connected to receive the i-th repair scan signal Gate_Ri, the first electrode of the 2i-th transistor M 2i is electrically connected to receive the i-th repair data signal Data_Ri, and the second electrode of the 2i-th transistor M 2i connected to the node N i i-th power.
  • the control electrode of the (2i+1) th transistor M 2i+1 is electrically connected to the i-th node Ni, and the first electrode of the (2i+1) th transistor M 2i+1 is electrically connected to the anode of the i-th light-emitting element LED i , The second pole of the (2i+1)th transistor M 2i+1 is electrically connected to the cathode of the i-th light-emitting element LED i .
  • capacitors C i + 1 of the first end node is connected electrically i N i
  • the (i + 1) capacitors C i + 1 a second terminal connected to the first power supply VDD
  • the N-th The cathode of the light emitting element LED N is electrically connected to the second power source VSS, and 1 ⁇ i ⁇ N .
  • the transistors M 1 ⁇ M 2N+1 can all be N-type thin film transistors or P-type thin film transistors, which can unify the process flow, reduce the number of processes, and help improve product yield.
  • the embodiments of the present disclosure preferably all transistors are low-temperature polysilicon thin film transistors.
  • thin film transistors can be selected from bottom-gate structure thin film transistors or top-gate thin film transistors, as long as they can Just realize the switch function.
  • FIG. 11A is a working timing diagram of two light-emitting elements in the pixel circuit provided in FIG. 11B is a working timing diagram in which only the second light-emitting element in the pixel circuit provided in FIG. 9 can normally emit light
  • FIG. 11C is a working timing diagram in which only the first light-emitting element in the pixel circuit provided in FIG. 9 can normally emit light.
  • the pixel circuit involved in the embodiment of the present disclosure includes 5 switch transistors (M 1 ⁇ M 5 ), 1 drive transistor (DTFT) and 3 capacitor units (C 1 ⁇ C 3 ).
  • the first power supply VDD continuously provides a high-level signal
  • the second power supply VSS continuously provides a low-level signal
  • the working sequence of the pixel circuit includes the first stage S1 and the second stage S2.
  • the first stage S1 is also called input Stage
  • the second stage S2 is also called the light-emitting stage.
  • the input signal Gate is at low level, the first transistor M 1 , the second transistor M 2 and the fourth transistor M 4 are continuously turned on, which is applied to the control electrode of the driving transistor DTFT
  • the driving data signal Data_L is at a low level, so that the driving transistor DTFT is turned on, and the driving transistor DTFT outputs a driving current.
  • the first repair data signal Data_R1 and the second repair data signal Data_R2 continue to be at a high level, and the high level is applied to the first node N 1 and the second node N 2 , namely the third transistor M 3 and the fifth transistor, respectively
  • the control electrode of M 5 so the third transistor M 3 and the fifth transistor M 5 are turned off, and the driving current flows through the first light-emitting element LED 1 and the second light-emitting element LED 2 , and the first light-emitting element LED 1 and the second light-emitting element LED 1 Both light-emitting elements LED 2 emit light.
  • the input signal Gate and the driving data signal Data_L are both low-level signals
  • the first repaired data signal Data_R1 and the second repaired data signal Data_R2 are both high-level signals. That is to say, when each light-emitting element in the light-emitting assembly in the pixel circuit can normally emit light, the first repair data signal Data_R1 and the second repair data signal Data_R2 both output an invalid level (high level), that is, Repair the sub-circuit does not work.
  • N 2 as an example.
  • N 2
  • the N light-emitting elements in the pixel circuit all emit light normally, the N repair data terminals Data_R1 to Data_RN continue to provide invalid Level.
  • the working sequence of the pixel circuit includes:
  • the input stage, the input signal Gate is low, the first transistor M 1 , the second transistor M 2 and the fourth transistor M 4 are turned on, and the driving data signal Data_L is applied to the control electrode of the driving transistor DTFT
  • the driving transistor DTFT is turned on, and the driving transistor DTFT outputs a driving current.
  • the first repair data signal Data_R1 is low, and the low level is applied to the first node N 1 , the third transistor M 3 is turned on, and the driving current flows through the turned-on third transistor M 3 , shorting the first A light-emitting element LED 1 .
  • the second repair data signal Data_R2 is at a high level, and a high level is applied to the second node N 2 , the fifth transistor M 5 is turned off, and the driving current flows through the second light-emitting element LED 2 , and the second light-emitting element LED 2 glows.
  • the second stage S2, the light-emitting stage, the first repaired data signal Data_R1 and the second repaired data signal Data_R2 are both high, the input signal Gate is high, the first transistor M 1 , the second transistor M 2 and the fourth transistor M 4 is turned off, the driving transistor is turned on DTFT still under the effect of the first capacitor C 1, the output drive current, the third transistor M 3 is still turned on under the action of a second capacitor C 2, the fifth transistor M 5 the third transistor remains turned off under the action of the third capacitor C 3, the driving current is still flowing through the conducting M 3 and the second light emitting element LED 2, the second light emitting element LED 2 emit light.
  • the working sequence of the pixel circuit includes:
  • the input stage, the input signal Gate is low, the first transistor M 1 , the second transistor M 2 and the fourth transistor M 4 are turned on, and the driving data signal Data_L is applied to the control electrode of the driving transistor DTFT Is a low level to turn on the driving transistor DTFT to output a driving current.
  • the first repair data signal Data_R1 is at a high level, and the high level is applied to the first node N 1 , and the third transistor M 3 is turned off.
  • the driving current flows through the first light-emitting element LED 1 , and the first light-emitting element LED 1 emits light.
  • the second repair data signal Data_R2 is at a low level, and a low level is applied to the second node N 2 , the fifth transistor M 5 is turned on, the driving current flows through the turned-on fifth transistor M 5 , and the second A light-emitting element LED 2 .
  • the second stage S2, the light-emitting stage, the first repaired data signal Data_R1 and the second repaired data signal Data_R2 are both high, the input signal Gate is high, the first transistor M 1 , the second transistor M 2 and the fourth transistor M 4 is turned off, the driving transistor is turned on DTFT still under the effect of the first capacitor C 1, the output drive current, the third transistor M 3 is still turned off under the action of a second capacitor C 2, the fifth transistor M 5 is still turned on under the action of the third capacitance C 3, a driving current is still flowing through the first LED 1 and the light emitting element is turned on after the fifth transistor M 5, a first light-emitting element LED 1 emits light.
  • the repair data signal corresponding to the light-emitting element that cannot normally emit light and the driving scan signal are both valid level signals, and the repair data signal corresponding to the light-emitting element that normally emits light is continuously enabled.
  • N 2 as an example.
  • the i-th light-emitting element LED i in the pixel circuit cannot normally emit light
  • the i-th light-emitting element LED i corresponds to
  • the repair data signal is the same as the input signal Gate.
  • FIG. 12A is a working timing diagram of two light-emitting elements in the pixel circuit provided in FIG. 12B is a working timing diagram in which only the second light-emitting element in the pixel circuit provided in FIG. 10 can normally emit light
  • FIG. 12C is a working timing diagram in which only the first light-emitting element in the pixel circuit provided in FIG. 10 can normally emit light.
  • the working sequence of the pixel circuit includes:
  • the first stage S1 the input stage, includes a first sub-stage t1 and a second sub-stage t2.
  • the first sub-phase t1 the scanning signal driving Gate_L low level, is turned on, the data signal is driven low
  • Data_L first transistor M 1 is applied to the control electrode of the driving transistor DTFT, such DTFT conduction, the output drive current of the driving transistor .
  • Data input is high
  • the first scan signal Gate_R1 fix a low level
  • the second transistor M 2 is turned on, a high-level to the first node N 1, whereby the third transistor M 3 is turned off.
  • Second scanning and repair Gate_R2 high level
  • the fourth transistor and the fifth transistor M 4 M 5 is turned off.
  • the driving current flows through the first light-emitting element LED 1 and the second light-emitting element LED 2 , and both the first light-emitting element LED 1 and the second light-emitting element LED 2 emit light.
  • the second sub-phase T2 the scanning signal driving Gate_L a low level, the first transistor M 1 is turned on, the data signal driving Data_L is low, to the control electrode of the driving transistor DTFT a low level, so that the driving transistor is turned on DTFT , Output drive current.
  • Data input is high, the first scan signal Gate_R1 repair a high level, the second transistor M 2 is turned off, the third transistor M 3 under the action of a second capacitor C 2 remains turned off.
  • the second scan signal Gate_R2 repair is low, the fourth transistor M 4 is turned on, the second node N 2 to a high-level, the fifth transistor M 5 is turned off.
  • the driving current flows through the first light-emitting element LED 1 and the second light-emitting element LED 2 , and both the first light-emitting element LED 1 and the second light-emitting element LED 2 emit light.
  • the second stage S2 i.e. the emission phase, and driving the data signal driving scanning signal Gate_L Data_L a high level, the action of the driving transistor DTFT first capacitance C 1 is turned on, the output drive current, the input signal Data, the first repair The scan signal Gate_R1 and the second repair scan signal Gate_R2 are at a high level, the second transistor M 2 and the fourth transistor M 4 are turned off, the third transistor M 3 is turned off under the action of the second capacitor C 2 , and the fifth transistor M 5 is turned off under the action of the third capacitor C 3 , and the driving current flows through the first light-emitting element LED 1 and the second light-emitting element LED 2 , both of the first light-emitting element LED 1 and the second light-emitting element LED 2 Glow.
  • the input signal Data continues to be at a high level
  • the driving scan signal Gate_L is a pulse signal
  • the effective level duration of the pulse signal is T
  • the first repair scan signal Gate_R1 And the second repair scan signal Gate_R2 is a pulse signal
  • the effective level duration of the pulse signal is T/2.
  • the working sequence of the pixel circuit includes:
  • the first stage S1 the input stage, includes a first sub-stage t1 and a second sub-stage t2.
  • the first sub-phase t1 the scanning signal driving Gate_L input signal is a low level signal, is turned on, the data signal is driven low Data_L first transistor M 1 is applied to the control electrode of the driving transistor DTFT, so that the driving transistor is turned on DTFT , output drive current, the input signal Data is low, the first scan signal Gate_R1 fix a low level, the second transistor M 2 is turned on, a low level to the first node N 1, the third transistor M 3 guide When turned on, the driving current flows through the turned-on third transistor M 3 , short-circuiting the first light-emitting element LED 1 .
  • the second scanning signal Gate_R2 repair is high, the fourth transistor and the fifth transistor M 4 M 5 is turned off, the driving current flowing through the second light emitting element LED 2, the second light emitting element LED 2 emit light.
  • the second sub-phase T2 the scanning signal driving Gate_L a low level, the first transistor M 1 is turned on, the data signal driving Data_L is low, to the control electrode of the driving transistor DTFT a low level, so that the driving transistor is turned on DTFT , Output drive current.
  • Data input is high, the first scan signal Gate_R1 repair a high level, the second transistor M 2 is turned off, the third transistor M 3 is still turned on under the action of a second capacitor C 2, the driving current flows through The turned-on third transistor M 3 short-circuits the first light-emitting element LED 1 .
  • the second scan signal Gate_R2 repair is low, the fourth transistor M 4 is turned on, a high-level to the second node N 2, the fifth transistor M 5 is turned off, the driving current flowing through the second light emitting element LED 2 , The second light-emitting element LED 2 emits light.
  • the second stage S2 i.e. the emission phase, and driving the data signal driving scanning signal Gate_L Data_L are high, the driving transistor DTFT turned on, the output drive current, the input signal Data under the action of the first capacitor C 1, the first The repair scan signal Gate_R1 and the second repair scan signal Gate_R2 are at high level, the second transistor M 2 and the fourth transistor M 4 are turned off, and the third transistor M 3 is turned on under the action of the second capacitor C 2 , and the fifth under the action of the transistors M 5 third capacitance C 3 is turned off, the third transistor driving current flows through the conducting M 3 and a second light emitting element LED 2, the second light emitting element LED 2 emit light.
  • the working sequence of the pixel circuit includes:
  • the first stage S1 the input stage, includes a first sub-stage t1 and a second sub-stage t2.
  • the first sub-phase t1 the scanning signal driving Gate_L input signal is a low level signal, is turned on, the data signal is driven low Data_L first transistor M 1 is applied to the control electrode of the driving transistor DTFT, so that the driving transistor is turned on DTFT , output drive current signal Data input is high, the first scan signal Gate_R1 fix a low level, the second transistor M 2 is turned on, a high-level to the first node N 1, the third transistor M 3 off Off.
  • the second scanning signal Gate_R2 repair is high, the fourth transistor and the fifth transistor M 4 M 5 is turned off.
  • the second sub-phase T2 the scanning signal driving Gate_L a low level, the first transistor M 1 is turned on, the data signal driving Data_L is low, to the control electrode of the driving transistor DTFT a low level, so that the driving transistor is turned on DTFT , Output drive current.
  • Data input signal is low, the first scan signal Gate_R1 repair a high level, the second transistor M 2 is turned off, the third transistor M 3 is still turned off under the action of a second capacitor C 2, the driving current flows through The first light-emitting element LED 1 , and the first light-emitting element LED 2 emits light.
  • a fifth transistor repair second scan signal Gate_R2 low level the fourth transistor M 4 is turned on, a low level to the second node N 2, the fifth transistor M 5 is turned on, driving current flows through the conducting M 5 , short-circuit the second light-emitting element LED 2 .
  • the second stage S2 i.e. the emission phase, and driving the data signal driving scanning signal Gate_L Data_L are high, the driving transistor DTFT turned on, the output drive current, the input signal Data under the action of the first capacitor C 1, the first The repair scan signal Gate_R1 and the second repair scan signal Gate_R2 are at high level, the second transistor M 2 and the fourth transistor M 4 are turned off, and the third transistor M 3 is turned off under the action of the second capacitor C 2 .
  • under the action of the transistors M 5 third capacitance C 3 is turned on, a driving current flowing through the first light-emitting element 1 and the LED is turned on after the fifth transistor M 5, a first LED light emitting element 1 emits light.
  • the repair scan signal corresponding to each light-emitting element is the same as the input signal when all the light-emitting elements in the pixel circuit emit light normally.
  • the difference is that the input signal Data is no longer continuous It is a high level, but a pulse signal, and the effective level duration of the pulse signal of the input signal Data is the repair scan signal corresponding to the light-emitting element that cannot emit light normally is a set of effective input signals.
  • FIG. 13 is a flowchart of the method for driving a pixel circuit provided by the embodiments of the present disclosure. As shown in FIG. 13, the present disclosure The driving method 130 of the pixel circuit provided by the embodiment includes the following steps:
  • Step S1310 using the driver sub-circuit to generate a driving current required for the light-emitting component to emit light.
  • Step S1320 using the repair sub-circuit to provide a driving current to at least one light-emitting element that can normally emit light among the plurality of light-emitting elements.
  • step S1310 includes: for each light-emitting element, in a state where the light-emitting element normally emits light, under the control of a repair data signal and a repair scan signal, providing a driving current to the light-emitting element, and in a state where the light-emitting element cannot normally emit light Next, under the control of the repair data signal and the repair scan signal, the light-emitting element is short-circuited.
  • the driving method of the pixel circuit provided in the embodiment of the present disclosure is applied to the pixel circuit provided in the foregoing embodiment, and its implementation principles and effects are similar, and will not be repeated here.
  • some embodiments of the present disclosure provide a display device.
  • the display device provided by the embodiments of the present disclosure includes a plurality of sub-pixels, and each sub-pixel includes a pixel circuit.
  • the display device may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, or a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, or a navigator.
  • the pixel circuit is the pixel circuit provided in the foregoing embodiment, and its implementation principle and effect are similar, and will not be repeated here.
  • FIG. 14 is a schematic structural diagram of a display device provided by an embodiment of the disclosure
  • FIG. 15 is a schematic structural diagram of a detection module provided by an embodiment of the disclosure.
  • the display device 140 provided by an embodiment of the disclosure includes a detection module.
  • the detection module 141 is electrically connected to the pixel circuit 144 and the read signal line 143, respectively.
  • the detection module 141 is configured to receive the detection scan signal Gate_T, and under the control of the detection scan signal Gate_T, output the detection current corresponding to the brightness of the pixel circuit 144 to the reading signal line 143.
  • the control module 142 is electrically connected to the read signal line 143 for determining whether the sub-pixel corresponding to the pixel circuit 144 normally emits light according to the detection current, and is also used for identifying that the sub-pixel cannot normally emit light when the sub-pixel cannot normally emit light.
  • the light-emitting element is also used to control the generation of N repair scan signals and N repair data signals, so that when the i-th light-emitting element normally emits light, the i-th light-emitting element is provided with a driving current, or, in the When the i light-emitting element cannot emit light normally, the i-th light-emitting element is short-circuited.
  • the detection module 141 may be provided in the sub-pixel.
  • the control module judges whether the sub-pixel corresponding to the pixel circuit normally emits light according to the value of the detection current of the detection module. Specifically, the detection current of the detection module is compared with a pre-stored reference current, and the detection current of the detection module is less than In the state of the pre-stored reference current, the sub-pixel corresponding to the pixel circuit cannot normally emit light.
  • the control module provides an invalid repair scan signal and repair data to the i-th light-emitting element
  • the signal that is, the driving current flows through the i-th light-emitting element to provide effective repair scan signals and repair data signals to other light-emitting elements, that is, short-circuit other light-emitting elements. If the i-th light-emitting element can emit light normally, only the light-emitting element is The i light-emitting element emits light. If the i-th light-emitting element cannot emit light normally, the light-emitting component does not emit light.
  • the control module can identify the light-emitting element that can normally emit light and the light-emitting element that cannot emit light in the sub-pixel according to the value of the detection current of the detection circuit. Light-emitting element.
  • the detection module 141 provided by the embodiment of the present disclosure includes a (2N+2)th transistor M 2N+2 and a photodiode PN.
  • the control electrode of the (2N+2)th transistor M 2N+2 is electrically connected to receive the detection scanning signal Gate_T, the first electrode of the (2N+2)th transistor M 2N+2 and the anode of the photodiode PN Electrically connected, the second pole of the (2N+2)th transistor M 2N+2 is electrically connected to the read signal line 143.
  • the cathode of the photodiode PN is electrically connected to the second power source VSS in the pixel circuit 144.
  • the photodiode PN is used to convert light into current, and different light intensity corresponds to different current intensity.
  • the detection module may also be an external device, for example, may be an automatic optical inspection device (Automated Optical Inspection, AOI for short).
  • the automatic optical inspection equipment detects the light-emitting elements that cannot normally emit light by taking photos or optical recognition methods, and records their position information.
  • the control module controls N repair scan signals and N repair data signals according to the position information of the detection module, so that the When the i-th light-emitting element normally emits light, the drive current is supplied to the i-th light-emitting element, or, in the state where the i-th light-emitting element cannot normally emit light, the i-th light-emitting element is short-circuited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素电路(10,30,40,50,60,70,80,144)及其驱动方法、显示装置(140),其中,像素电路(10,30,40,50,60,70,80,144)包括:发光组件(13,53,83),包括多个发光元件(20, LEDi);驱动子电路(11,31,81),电连接到发光组件(13,53,83),配置为生成驱动发光组件(13)发光的驱动电流;修复子电路(12,52,82),电连接到发光组件(13,53,83),配置为接收修复扫描信号(Gate_R, Gate_Ri)和修复数据信号(Data_R, Data_Ri),并在修复扫描信号(Gate_R, Gate_Ri)和修复数据信号(Data_R, Data_Ri)的控制下,将驱动电流提供给多个发光元件(20, LEDi)中能够正常发光的至少一个发光元件(20, LEDi),以在多个发光元件(20, LEDi)中存在发生故障的发光元件(20, LEDi)时使发光组件(13,53,83)能够发光。

Description

一种像素电路及其驱动方法、显示装置
本申请要求于2019年5月14日提交的、申请号为201910398881.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开实施例涉及显示技术领域,具体涉及一种像素电路及其驱动方法、显示装置。
背景技术
微型发光二极管(Micro Light-Emitting Diode,简称Micro LED)或次毫米发光二极管(Mini Light-Emitting Diode,简称Mini LED)因其体积小、耗电量小、产品寿命长等优点有望成为下一代主流显示技术。为此,需要提高Micro LED或Mini LED显示装置的发光亮度以及提高Micro LED或Mini LED显示装置能够正常发光的可靠性。
发明内容
本公开提供了一种像素电路、像素电路的驱动方法以及显示装置。
根据本公开的第一方面,提供了一种像素电路,包括:发光组件,包括多个发光元件;驱动子电路,电连接到所述发光组件,配置为生成驱动所述发光组件发光的驱动电流;以及修复子电路,电连接到所述发光组件,配置为接收修复扫描信号和修复数据信号,并在所述修复扫描信号和所述修复数据信号的控制下,将所述驱动电流提供给所述多个发光元件中能够正常发光的至少一个发光元件,以在所述多个发光元件中存在发生故障的发光元件时使所述发光组件能够发光。
根据实施例,所述多个发光元件串联连接。
根据实施例,所述发光元件包括微型发光二极管或者次毫米发光二极管。
根据实施例,所述驱动子电路包括第一晶体管、驱动晶体管和第一电容,所述第一晶体管的控制极电连接为接收驱动扫描信号,所述第一晶体管的第一极电连接为接收驱动数据信号,所述第一晶体管的第二极与所述驱动晶体管的控制极电连接;所述驱动晶体管的控制极与所述第一电容的第一端电连接,所述驱动晶体管的第一极与所述发光组 件电连接,所述驱动晶体管的第二极与第一电源电连接;所述第一电容的第二端与第一电源电连接。
根据实施例,所述发光组件包括N个发光元件,所述修复子电路包括与所述N个发光元件一一对应的N个修复模块,第i个修复模块被配置为接收第i个修复扫描信号和第i个修复数据信号,并在所述第i个修复扫描信号和所述第i个修复数据信号的控制下,将所述驱动电流提供给第i个发光元件,其中,N为大于1的自然数,i为自然数,且1≤i≤N。
根据实施例,第i个修复模块包括:节点控制单元,电连接到发光控制单元,配置为接收所述第i个修复扫描信号和所述第i个修复数据信号,基于所述第i个修复扫描信号和所述第i个修复数据信号生成发光控制信号,并将所述发光控制信号提供给所述发光控制单元;以及发光控制单元,并联连接在第i个发光元件的两端,配置为接收所述发光控制信号,并在所述发光控制信号的控制下,使所述驱动电流流过所述第i个发光元件或将所述第i个发光元件短路。
根据实施例,第i个修复模块的节点控制单元包括第2i晶体管和第i+1电容,所述第2i晶体管的控制极电连接为接收所述第i个修复扫描信号,所述第2i晶体管的第一极电连接为接收所述第i个修复数据信号,所述第2i晶体管的第二极与所述第i+1电容的第一端电连接;所述第i+1电容的第二端与第一电源电连接。
根据实施例,第i个修复模块的发光控制单元包括第2i+1晶体管,所述第2i+1晶体管的控制极与所述第2i晶体管的第二极电连接,所述第2i+1晶体管的第一极与第i个发光元件的阳极电连接,所述第2i+1晶体管的第二极与第i个发光元件的阴极电连接。
根据实施例,所述多个修复模块的所述第2i晶体管的控制极与所述驱动子电路的第一晶体管的控制极电连接。
根据实施例,所述多个修复模块的所述第2i晶体管的第一极电连接在一起。
根据本公开的第二方面,提供了一种像素电路的驱动方法,包括:利用驱动子电路生成发光组件发光所需的驱动电流;以及利用修复子电路将所述驱动电流提供给多个发光元件中能够正常发光的至少一个发光元件。
根据本公开的第三方面,提供了一种显示装置,包括多个子像素,每个子像素包括上述实施例的像素电路。
根据实施例,所述显示装置还包括:读取信号线;检测模块,电连接到所述像素电 路和所述读取信号线,配置为向所述读取信号线输出检测电流,所述检测电流对应于与所述像素电路相对应的子像素的亮度;以及控制模块,电连接到所述读取信号线,配置为基于所述检测电流来识别所述子像素中每个发光元件的发光状态,以及基于每个发光元件的发光状态来向所述像素电路的多个修复模块提供修复扫描信号和修复数据信号。
根据实施例,所述检测模块包括第2N+2晶体管和光电二极管,其中N为大于1的自然数,所述第2N+2晶体管的控制极电连接为接收检测扫描信号,所述第2N+2晶体管的第一极与光电二极管的阳极电连接,所述第2N+2晶体管的第二极与读取信号线电连接;所述光电二极管的阴极与第二电源电连接。
附图说明
附图用来提供对本公开的技术方案的理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开实施例提供的像素电路的结构示意图;
图2为本公开实施例提供的发光组件的连接关系的俯视图;
图3为本公开实施例提供的驱动子电路的等效电路图;
图4为本公开实施例提供的发光组件的等效电路图;
图5为本公开实施例提供的修复子电路的结构示意图;
图6为本公开实施例提供的修复模块的结构示意图;
图7为本公开实施例提供的修复子电路的等效电路图;
图8为本公开实施例提供的像素电路的等效电路图;
图9为本公开实施例提供的像素电路的一个等效电路图;
图10为本公开实施例提供的像素电路的另一个等效电路图;
图11A为图9提供的像素电路中两个发光元件正常发光的工作时序图;
图11B为图9提供的像素电路中仅有第二个发光元件能够正常发光的工作时序图;
图11C为图9提供的像素电路中仅有第一个发光元件能够正常发光的工作时序图;
图12A为图10提供的像素电路中两个发光元件正常发光的工作时序图;
图12B为图10提供的像素电路中仅有第二个发光元件能够正常发光的工作时序图;
图12C为图10提供的像素电路中仅有第一个发光元件能够正常发光的工作时序图;
图13为本公开实施例提供的像素电路的驱动方法的流程图;
图14为本公开实施例提供的显示装置的结构示意图;
图15为本公开实施例提供的检测模块的结构示意图。
具体实施方式
本公开描述了多个实施例,但是该描述是示例性的,而不是限制性的,并且对于本领域的普通技术人员来说显而易见的是,在本公开所描述的实施例包含的范围内可以有更多的实施例和实现方案。尽管在附图中示出了许多可能的特征组合,并在具体实施方式中进行了讨论,但是所公开的特征的许多其它组合方式也是可能的。除非特意加以限制的情况以外,任何实施例的任何特征或元件可以与任何其它实施例中的任何其他特征或元件结合使用,或可以替代任何其它实施例中的任何其他特征或元件。
本公开包括并设想了与本领域普通技术人员已知的特征和元件的组合。本公开已经公开的实施例、特征和元件也可以与任何常规特征或元件组合,以形成由权利要求限定的独特的发明方案。任何实施例的任何特征或元件也可以与来自其它发明方案的特征或元件组合,以形成另一个由权利要求限定的独特的发明方案。因此,应当理解,在本公开中示出和/或讨论的任何特征可以单独地或以任何适当的组合来实现。因此,除了根据所附权利要求及其等同替换所做的限制以外,实施例不受其它限制。此外,可以在所附权利要求的保护范围内进行各种修改和改变。
此外,在描述具有代表性的实施例时,说明书可能已经将方法和/或过程呈现为特定的步骤序列。然而,在该方法或过程不依赖于本文所述步骤的特定顺序的程度上,该方法或过程不应限于所述的特定顺序的步骤。如本领域普通技术人员将理解的,其它的步骤顺序也是可能的。因此,说明书中阐述的步骤的特定顺序不应被解释为对权利要求的限制。此外,针对该方法和/或过程的权利要求不应限于按照所写顺序执行它们的步骤,本领域技术人员可以容易地理解,这些顺序可以变化,并且仍然保持在本公开实施例的精神和范围内。
除非另外定义,本公开实施例公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开实施例中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连” 等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
本公开所有实施例中采用的晶体管的源极、漏极是对称的,所以其源极、漏极是可以互换的。在本公开实施例中,为区分晶体管除栅极之外的两极,将其中源极称为第一极,漏极称为第二极,并将栅极称为控制极。此外,本公开实施例所采用的晶体管包括:P型晶体管或N型晶体管两种,其中,P型晶体管在栅极为低电平导通,在栅极为高电平时关断,N型晶体管在栅极为高电平时导通,在栅极为低电平时关断。
本公开的一些实施例提供了一种像素电路,图1为本公开实施例提供的像素电路10的结构示意图。如图1所示,本公开实施例提供的像素电路10包括驱动子电路11、修复子电路12和发光组件13。
发光组件13包括多个发光元件。如图1所示,发光组件13包括N个串联连接的发光元件,其中,N为大于2的自然数,N的值可以根据实际需要进行确定。为便于说明,以13_i表示串联连接的第i个发光元件,其中,i为自然数,且1≤i≤N。根据实施例,发光元件可以包括微型发光二极管或者次毫米发光二极管,但本公开不限于此,发光元件也可以是其他类型。
如图1所示,驱动子电路11电连接到发光组件13。驱动子电路11被配置为接收驱动扫描信号Gate_L和驱动数据信号Data_L,并基于驱动扫描信号Gate_L和驱动数据信号Data_L生成驱动发光组件13发光的驱动电流。
如图1所示,修复子电路12电连接到发光组件13。修复子电路12被配置为接收修复扫描信号Gate_R和修复数据信号Data_R,并在修复扫描信号Gate_R和修复数据信号Data_R的控制下,将驱动子电路11生成的驱动电流提供给多个发光元件中能够正常发光的至少一个发光元件,以在多个发光元件中存在发生故障的发光元件时使发光组件13能够发光。
此外,如图1所示,第一电源VDD持续提供高电平信号,第二电源VSS持续提供低电平信号,但本公开不限于此。
需要说明的是,根据本公开实施例的显示产品包括多个像素,每个像素包括三个子像素。本公开实施例提供的像素电路10与子像素一一对应。
图2为本公开实施例提供的发光组件的连接关系的俯视图。如图2所示,本公开实施例提供的像素包括红色子像素R、绿色子像素G和蓝色子像素B。每个子像素包括与 发光组件13的一端电连接的薄膜晶体管的漏极9,与发光组件13的另一端电连接的第二电源VSS。发光组件13包括2个发光元件20,每个发光元件20均包括阳极21和阴极22。其中,第一个发光元件的阳极21与像素电路中一个薄膜晶体管的漏极9电连接,第一个发光元件的阴极22与第二个发光元件的阳极21通过连接线10电连接,第二个发光元件的阴极22与第二电源VSS电连接,即第一个发光元件与第二个发光元件串联。需要说明的是,本公开实施例是以每个子像素电连接两个发光元件为例进行说明的,但本公开不限于此。
本公开实施例提供的像素电路中发光组件包括多个串联的发光元件,在每个发光元件均能够正常发光的状态下,每个子像素中的多个发光元件同时发光,可以增加子像素的发光亮度;相应地,在子像素的发光亮度不变的状态下,可以通过降低薄膜晶体管的尺寸或者降低薄膜晶体管的源漏压差来降低驱动电流,不仅可以降低走线发热,而且还能够降低对发光元件的热影响以及显示产品的功耗。进一步地,可以提高显示产品的分辨率。本公开实施例提供的像素电路的修复子电路,在存在发光元件无法正常发光的状态下,可以向正常发光的发光元件提供驱动电流,以实现像素电路对应的子像素发光。
本公开实施例通过在像素电路中设置修复子电路,实现了只要像素电路中存在正常发光的发光元件,像素电路对应的子像素就会正常发光,以解决像素电路中只要一个发光元件无法正常发光导致的像素电路对应的子像素无法正常发光的技术问题,提升了显示产品的显示品质,进而提高了显示产品的良品率。
图3为本公开实施例提供的驱动子电路的等效电路图。如图3所示,本公开实施例提供的像素电路30中的驱动子电路31包括第一晶体管M 1、驱动晶体管DTFT和第一电容C 1
如图3所示,第一晶体管M 1的控制极电连接为接收驱动扫描端Gate_L,第一晶体管M 1的第一极电连接为接收驱动数据端Data_L,第一晶体管M 1的第二极与驱动晶体管DTFT的控制极电连接。驱动晶体管DTFT的控制极与第一电容C 1的第一端电连接,驱动晶体管DTFT的第一极与发光组件电连接,驱动晶体管DTFT的第二极与第一电源VDD电连接。第一电容C 1的第二端与第一电源VDD电连接。
本实施例中的驱动晶体管DTFT可以是增强型晶体管或者耗尽型晶体管,这里对此不作具体限定。
需要说明的是,图3中具体示出了驱动子电路31的示例性结构。本领域技术人员 容易理解的是,驱动子电路31的实现方式不限于此,还可以为本领域技术人员常用的其他电路,只要能够实现其功能即可。
图4为本公开实施例提供的发光组件的等效电路图。如图4所示,本公开实施例提供的像素电路中的发光组件包括N个串联连接的发光元件LED 1~LED N
如图3和图4所示,第一个发光元件LED 1的阳极与驱动晶体管DTFT的第一极电连接,第N个发光元件LED N的阴极与第二电源VSS电连接。以此类推,第i个发光元件LED i的阴极与第(i+1)个发光元件LED i+1的阳极电连接,其中,1≤i≤N-1。
图5为本公开实施例提供的修复子电路的结构示意图。如图5所示,在本公开实施例提供的像素电路50中,发光组件53包括N个发光元件,修复子电路52包括N个修复模块,N个修复模块与N个发光元件一一对应。
如图5所示,第i个修复模块与第i个发光元件电连接,且分别电连接为接收第i个修复扫描信号Gate_Ri和第i个修复数据信号Data_Ri,用于在第i个发光元件LED i正常发光的状态下,在第i个修复扫描信号Gate_Ri和第i个修复数据信号Data_Ri的控制下,向第i个发光元件LED i提供驱动电流,还用于在第i个发光元件LED i无法正常发光的状态下,在第i个修复扫描信号Gate_Ri和第i个修复数据信号Data_Ri的控制下,将第i个发光元件LED i短路,1≤i≤N。
图6为本公开实施例提供的修复模块的结构示意图。如图6所示,在本公开实施例提供的像素电路60中,第i个修复模块包括节点控制单元621_i和发光控制单元622_i,并且节点控制单元621_i电连接与发光控制单元622_i电连接于第i节点N i
如图6所示,节点控制单元621_i配置为接收第i个修复扫描信号Gate_Ri和第i个修复数据信号Data_Ri,基于第i个修复扫描信号Gate_Ri和第i个修复数据信号Data_Ri生成发光控制信号,并将生成的发光控制信号提供给发光控制单元622_i。根据实施例,节点控制单元621_i可以在第i个修复扫描信号Gate_Ri的控制下,向第i节点N i提供第i个修复数据信号Data_Ri,还可以维持第i节点N i的信号的电位,以对发光控制单元622_i进行控制。
如图6所示,发光控制单元622_i分别与第i节点N i和第i个发光元件LED i连接,配置为接收节点控制单元621_i生成的发光控制信号,并在发光控制信号的控制下,在第i个发光元件LED i正常发光的状态下,向第i个发光元件LED i提供驱动电流,在第i个发光元件LED i无法正常发光的状态下,将第i个发光元件LED i短路。
图7为本公开实施例提供的修复子电路的等效电路图。如图7所示,第i个修复模块的节点控制单元包括第2i晶体管M 2i和第(i+1)电容C i+1,第i个修复模块的发光控制单元包括第(2i+1)晶体管M 2i+1。从图7中可以看出,第i个修复模块的发光控制单元并联连接在第i个发光元件的两端。
如图7所示,第2i晶体管M 2i的控制极电连接为接收第i个修复扫描信号Gate_Ri,第2i晶体管M 2i的第一极电连接为接收第i个修复数据信号Data_Ri,第2i晶体管M 2i的第二极与第(i+1)电容C i+1的第一端电连接于第i节点Ni,第(i+1)电容C i+1的第二端与第一电源VDD电连接。第(2i+1)晶体管M 2i+1的控制极与第2i晶体管M 2i的第二极电连接于第i节点N i,第(2i+1)晶体管M 2i+1的第一极与第i个发光元件LED i的阳极电连接,第(2i+1)晶体管M 2i+1的第二极与第i个发光元件LED i的阴极电连接。
需要说明的是,图7中具体示出了修复子电路的示例性结构。本领域技术人员容易理解的是,修复子电路的实现方式不限于此,只要能够实现其功能即可。
图8为本公开实施例提供的像素电路的结构示意图。如图8所示,本公开实施例提供的像素电路80中,驱动子电路81包括第一晶体管M 1、驱动晶体管DTFT和第一电容C 1,修复子电路82包括第二晶体管M 2~第(2N+1)晶体管M 2N+1以及第二电容C 2~第(N+1)电容C N+1,发光组件83包括N个发光元件,分别为LED 1至LED N
如图8所示,第一晶体管M 1的控制极电连接为接收驱动扫描信号Gate_L,第一晶体管M 1的第一极电连接为接收驱动数据信号Data_L,第一晶体管M 1的第二极与驱动晶体管DTFT的控制极电连接。驱动晶体管DTFT的控制极与第一电容C 1的第一端电连接,驱动晶体管DTFT的第一极与第一个发光元件LED 1的阳极电连接,驱动晶体管DTFT的第二极与第一电源VDD电连接。第一电容C 1的第二端与第一电源VDD电连接。第2i晶体管M 2i的控制极电连接为接收第i个修复扫描信号Gate_Ri,第2i晶体管M 2i的第一极电连接为接收第i个修复数据信号Data_Ri,第2i晶体管M 2i的第二极与第i节点N i电连接。第(2i+1)晶体管M 2i+1的控制极与第i节点N i电连接,第(2i+1)晶体管M 2i+1的第一极与第i个发光元件LED i的阳极电连接,第(2i+1)晶体管M 2i+1的第二极与第i个发光元件LED i的阴极电连接。第(i+1)电容C i+1的第一端与第i节点N i电连接,第(i+1)电容C i+1的第二端与第一电源VDD电连接,第N个发光元件LED N的阴极与第二电源VSS电连接,1≤i≤N。
图9为本公开实施例提供的像素电路的一个等效电路图。如图9所示,多个修复模 块的第2i晶体管的控制极与驱动子电路的第一晶体管的控制极电连接。需要说明的是,图9是以N=2为例进行说明的,本公开实施例对此不作任何限定。
图10为本公开实施例提供的像素电路的另一个等效电路图。如图10所示,多个修复模块的第2i晶体管的第一极电连接在一起。需要说明的是,图10是以N=2为例进行说明的,本公开实施例对此不作任何限定。根据图10所示的实施例,可以减少像素电路中的布线。
在本实施例中,晶体管M 1~M 2N+1均可以为N型薄膜晶体管或P型薄膜晶体管,可以统一工艺流程,能够减少工艺制程,有助于提高产品的良率。此外,考虑到低温多晶硅薄膜晶体管的漏电流较小,因此,本公开实施例优选所有晶体管为低温多晶硅薄膜晶体管,薄膜晶体管具体可以选择底栅结构的薄膜晶体管或者顶栅结构的薄膜晶体管,只要能够实现开关功能即可。
以图9提供的像素电路,且N=2,晶体管M 1~M 5均为P型薄膜晶体管为例,图11A为图9提供的像素电路中两个发光元件正常发光的工作时序图,图11B为图9提供的像素电路中仅有第二个发光元件能够正常发光的工作时序图,图11C为图9提供的像素电路中仅有第一个发光元件能够正常发光的工作时序图。如图9所示,本公开实施例所涉及的像素电路包括5个开关晶体管(M 1~M 5),1个驱动晶体管(DTFT)和3个电容单元(C 1~C 3)。
此外,第一电源VDD持续提供高电平信号,第二电源VSS持续提供低电平信号。
当像素电路中的两个发光元件LED 1和LED 2均正常发光时,结合图9和图11A,像素电路的工作时序包括第一阶段S1和第二阶段S2,第一阶段S1也称为输入阶段,第二阶段S2也称为发光阶段。
在第一阶段S1和第二阶段S2中,输入信号Gate为低电平,第一晶体管M 1、第二晶体管M 2和第四晶体管M 4持续导通,施加在驱动晶体管DTFT的控制极的驱动数据信号Data_L为低电平,使得驱动晶体管DTFT导通,驱动晶体管DTFT输出驱动电流。第一个修复数据信号Data_R1和第二个修复数据信号Data_R2持续为高电平,分别将高电平施加于第一节点N 1和第二节点N 2,即第三晶体管M 3和第五晶体管M 5的控制极,因此第三晶体管M 3和第五晶体管M 5关断,驱动电流流经第一个发光元件LED 1和第二个发光元件LED 2,第一个发光元件LED 1和第二个发光元件LED 2均发光。
在这种情况下,输入信号Gate和驱动数据信号Data_L均为低电平信号,第一个修 复数据信号Data_R1和第二个修复数据信号Data_R2均为高电平信号。也就是说,当像素电路中的发光组件中的每个发光元件均能够正常发光时,第一个修复数据信号Data_R1和第二个修复数据信号Data_R2均输出无效电平(高电平),即修复子电路不工作。
需要说明的是,本实施例是以N=2为例进行说明的,当N大于2时,且像素电路中的N个发光元件均正常发光时,N个修复数据端Data_R1~Data_RN持续提供无效电平。
当像素电路中的第一个发光元件LED 1无法正常发光,第二个发光元件LED 2正常发光时,结合图9和图11B,像素电路的工作时序包括:
第一阶段S1,即输入阶段,输入信号Gate为低电平,第一晶体管M 1、第二晶体管M 2和第四晶体管M 4导通,施加在驱动晶体管DTFT的控制极的驱动数据信号Data_L为低电平,使得驱动晶体管DTFT导通,驱动晶体管DTFT输出驱动电流。第一个修复数据信号Data_R1为低电平,并将低电平施加于第一节点N 1,第三晶体管M 3导通,驱动电流流经导通后的第三晶体管M 3,短路第一个发光元件LED 1。第二个修复数据信号Data_R2为高电平,并将高电平施加于第二节点N 2,第五晶体管M 5关断,驱动电流流经第二个发光元件LED 2,第二个发光元件LED 2发光。
第二阶段S2,即发光阶段,第一个修复数据信号Data_R1和第二个修复数据信号Data_R2均为高电平,输入信号Gate为高电平,第一晶体管M 1、第二晶体管M 2和第四晶体管M 4关断,驱动晶体管DTFT在第一电容C 1的作用下仍导通,输出驱动电流,第三晶体管M 3在第二电容C 2的作用下仍导通,第五晶体管M 5在第三电容C 3的作用下仍关断,驱动电流仍流经导通后的第三晶体管M 3和第二个发光元件LED 2,第二个发光元件LED 2发光。
当像素电路中的第一个发光元件LED 1正常发光,第二个发光元件LED 2无法正常发光时,结合图9和图11C,像素电路的工作时序包括:
第一阶段S1,即输入阶段,输入信号Gate为低电平,第一晶体管M 1、第二晶体管M 2和第四晶体管M 4导通,施加在驱动晶体管DTFT的控制极的驱动数据信号Data_L为低电平,使得驱动晶体管DTFT导通,以输出驱动电流,第一个修复数据信号Data_R1为高电平,并将高电平施加于第一节点N 1,第三晶体管M 3关断,驱动电流流经第一个发光元件LED 1,第一个发光元件LED 1发光。第二个修复数据信号Data_R2为低电平, 并将低电平施加于第二节点N 2,第五晶体管M 5导通,驱动电流流经导通后的第五晶体管M 5,短路第二个发光元件LED 2
第二阶段S2,即发光阶段,第一个修复数据信号Data_R1和第二个修复数据信号Data_R2均为高电平,输入信号Gate为高电平,第一晶体管M 1、第二晶体管M 2和第四晶体管M 4关断,驱动晶体管DTFT在第一电容C 1的作用下仍导通,输出驱动电流,第三晶体管M 3在第二电容C 2的作用下仍关断,第五晶体管M 5在第三电容C 3的作用下仍导通,驱动电流仍流经第一个发光元件LED 1和导通后的第五晶体管M 5,第一个发光元件LED 1发光。
当像素电路中的部分发光元件无法正常发光时,无法正常发光的发光元件对应的修复数据信号与驱动扫描信号同时为有效电平信号,正常发光的发光元件对应的修复数据信号持续使能。需要说明的是,本实施例是以N=2为例进行说明的,当N大于2时,当像素电路中的第i个发光元件LED i无法正常发光时,第i个发光元件LED i对应的修复数据信号与输入信号Gate相同。
以图10提供的像素电路,且N=2,晶体管M 1~M 5均为P型薄膜晶体管为例,图12A为图10提供的像素电路中两个发光元件正常发光的工作时序图,图12B为图10提供的像素电路中仅有第二个发光元件能够正常发光的工作时序图,图12C为图10提供的像素电路中仅有第一个发光元件能够正常发光的工作时序图。
当像素电路中的两个发光元件LED 1和LED 2均正常发光时,结合图10和图12A,像素电路的工作时序包括:
第一阶段S1,即输入阶段,包括第一子阶段t1和第二子阶段t2。
第一子阶段t1,驱动扫描信号Gate_L为低电平,第一晶体管M 1导通,驱动数据信号Data_L的低电平施加在驱动晶体管DTFT的控制极,使得驱动晶体管DTFT导通,输出驱动电流。输入信号Data为高电平,第一个修复扫描信号Gate_R1为低电平,第二晶体管M 2导通,向第一节点N 1提供高电平,由此第三晶体管M 3关断。第二个修复扫描和Gate_R2为高电平,第四晶体管M 4和第五晶体管M 5关断。驱动电流流经第一个发光元件LED 1和第二个发光元件LED 2,第一个发光元件LED 1和第二个发光元件LED 2均发光。
第二子阶段t2,驱动扫描信号Gate_L为低电平,第一晶体管M 1导通,驱动数据信号Data_L为低电平,向驱动晶体管DTFT的控制极提供低电平,使得驱动晶体管DTFT 导通,输出驱动电流。输入信号Data为高电平,第一个修复扫描信号Gate_R1为高电平,第二晶体管M 2关断,第三晶体管M 3在第二电容C 2的作用下仍关断。第二个修复扫描信号Gate_R2为低电平,第四晶体管M 4导通,向第二节点N 2提供高电平,第五晶体管M 5关断。驱动电流流经第一个发光元件LED 1和第二个发光元件LED 2,第一个发光元件LED 1和第二个发光元件LED 2均发光。
第二阶段S2,即发光阶段,驱动数据信号Data_L和驱动扫描信号Gate_L为高电平,驱动晶体管DTFT在第一电容C 1的作用下导通,输出驱动电流,输入信号Data、第一个修复扫描信号Gate_R1和第二个修复扫描信号Gate_R2为高电平,第二晶体管M 2和第四晶体管M 4关断,第三晶体管M 3在第二电容C 2的作用下关断,第五晶体管M 5在第三电容C 3的作用下关断,驱动电流流经第一个发光元件LED 1和第二个发光元件LED 2,第一个发光元件LED 1和第二个发光元件LED 2均发光。
当像素电路中的两个发光元件均正常发光时,输入信号Data持续为高电平,驱动扫描信号Gate_L为脉冲信号,且脉冲信号的有效电平持续时间为T,第一个修复扫描信号Gate_R1和第二个修复扫描信号Gate_R2为脉冲信号,其脉冲信号的有效电平持续时间为T/2。需要说明的是,本实施例是以N=2为例进行说明的,当N大于2时,且像素电路中的N个发光元件均正常发光时,输入信号Data持续为高电平,每个修复扫描脉冲信号的有效电平持续时间为T/N。
当像素电路中的第一个发光元件LED 1无法正常发光,第二个发光元件LED 2正常发光时,结合图10和图12B,像素电路的工作时序包括:
第一阶段S1,即输入阶段,包括第一子阶段t1和第二子阶段t2。
第一子阶段t1,驱动扫描信号Gate_L的输入信号为低电平信号,第一晶体管M 1导通,驱动数据信号Data_L的低电平施加在驱动晶体管DTFT的控制极,使得驱动晶体管DTFT导通,输出驱动电流,输入信号Data为低电平,第一个修复扫描信号Gate_R1为低电平,第二晶体管M 2导通,向第一节点N 1提供低电平,第三晶体管M 3导通,驱动电流流经导通后的第三晶体管M 3,短路第一个发光元件LED 1。第二个修复扫描信号Gate_R2为高电平,第四晶体管M 4和第五晶体管M 5关断,驱动电流流经第二个发光元件LED 2,第二个发光元件LED 2发光。
第二子阶段t2,驱动扫描信号Gate_L为低电平,第一晶体管M 1导通,驱动数据信号Data_L为低电平,向驱动晶体管DTFT的控制极提供低电平,使得驱动晶体管DTFT 导通,输出驱动电流。输入信号Data为高电平,第一个修复扫描信号Gate_R1为高电平,第二晶体管M 2关断,第三晶体管M 3在第二电容C 2的作用下仍导通,驱动电流流经导通后的第三晶体管M 3,短路第一个发光元件LED 1。第二个修复扫描信号Gate_R2为低电平,第四晶体管M 4导通,向第二节点N 2提供高电平,第五晶体管M 5关断,驱动电流流经第二个发光元件LED 2,第二个发光元件LED 2发光。
第二阶段S2,即发光阶段,驱动数据信号Data_L和驱动扫描信号Gate_L均为高电平,驱动晶体管DTFT在第一电容C 1的作用下导通,输出驱动电流,输入信号Data、第一个修复扫描信号Gate_R1和第二个修复扫描信号Gate_R2为高电平,第二晶体管M 2和第四晶体管M 4关断,第三晶体管M 3在第二电容C 2的作用下导通,第五晶体管M 5在第三电容C 3的作用下关断,驱动电流流经导通后的第三晶体管M 3和第二个发光元件LED 2,第二个发光元件LED 2发光。
当像素电路中的第一个发光元件LED 1正常发光,第二个发光元件LED 2无法正常发光时,结合图10和图12C,像素电路的工作时序包括:
第一阶段S1,即输入阶段,包括第一子阶段t1和第二子阶段t2。
第一子阶段t1,驱动扫描信号Gate_L的输入信号为低电平信号,第一晶体管M 1导通,驱动数据信号Data_L的低电平施加在驱动晶体管DTFT的控制极,使得驱动晶体管DTFT导通,输出驱动电流,输入信号Data为高电平,第一个修复扫描信号Gate_R1为低电平,第二晶体管M 2导通,向第一节点N 1提供高电平,第三晶体管M 3关断。第二个修复扫描信号Gate_R2为高电平,第四晶体管M 4和第五晶体管M 5关断。
第二子阶段t2,驱动扫描信号Gate_L为低电平,第一晶体管M 1导通,驱动数据信号Data_L为低电平,向驱动晶体管DTFT的控制极提供低电平,使得驱动晶体管DTFT导通,输出驱动电流。输入信号Data为低电平,第一个修复扫描信号Gate_R1为高电平,第二晶体管M 2关断,第三晶体管M 3在第二电容C 2的作用下仍关断,驱动电流流经第一个发光元件LED 1,第一个发光元件LED 2发光。第二个修复扫描信号Gate_R2为低电平,第四晶体管M 4导通,向第二节点N 2提供低电平,第五晶体管M 5导通,驱动电流流经导通后的第五晶体管M 5,短路第二个发光元件LED 2
第二阶段S2,即发光阶段,驱动数据信号Data_L和驱动扫描信号Gate_L均为高电平,驱动晶体管DTFT在第一电容C 1的作用下导通,输出驱动电流,输入信号Data、第一个修复扫描信号Gate_R1和第二个修复扫描信号Gate_R2为高电平,第二晶体管 M 2和第四晶体管M 4关断,第三晶体管M 3在第二电容C 2的作用下关断,第五晶体管M 5在第三电容C 3的作用下导通,驱动电流流经第一个发光元件LED 1和导通后的第五晶体管M 5,第一个发光元件LED 1发光。
当像素电路中部分发光元件无法正常发光时,每个发光元件对应的修复扫描信号与当像素电路中的所有发光元件均正常发光时的输入信号相同,不同之处在于,输入信号Data不再持续为高电平,而是为脉冲信号,输入信号Data的脉冲信号的有效电平持续时间为无法正常发光的发光元件对应的修复扫描信号为有效输入信号的集合。
基于上述实施例的发明构思,本公开的一些实施例还提供一种像素电路的驱动方法,图13为本公开实施例提供的像素电路的驱动方法的流程图,如图13所示,本公开实施例提供的像素电路的驱动方法130包括以下步骤:
步骤S1310、利用驱动子电路生成发光组件发光所需的驱动电流。
步骤S1320、利用修复子电路将驱动电流提供给多个发光元件中能够正常发光的至少一个发光元件。
根据实施例,步骤S1310包括:对于每个发光元件,在发光元件正常发光的状态下,在修复数据信号和修复扫描信号的控制下,向发光元件提供驱动电流,在发光元件无法正常发光的状态下,在修复数据信号和修复扫描信号的控制下,短路发光元件。
其中,本公开实施例提供的像素电路的驱动方法应用于前述实施例提供的像素电路中,其实现原理和效果类似,在此不再赘述。
基于上述实施例的发明构思,本公开的一些实施例提供一种显示装置,本公开实施例提供的显示装置包括多个子像素,每个子像素包括像素电路。
根据实施例,该显示装置可以为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
根据实施例,像素电路为前述实施例提供的像素电路,其实现原理和实现效果类似,在此不再赘述。
图14为本公开实施例提供的显示装置的结构示意图,图15为本公开实施例提供的检测模块的结构示意图,如图14和图15所示,本公开实施例提供的显示装置140包括检测模块141、控制模块142、读取信号线143以及像素电路144。
如图14所示,检测模块141分别与像素电路144和读取信号线143电连接。检测模块141配置为接收检测扫描信号Gate_T,并在检测扫描信号Gate_T的控制下,向读取 信号线143输出像素电路144的亮度对应的检测电流。控制模块142电连接到读取信号线143,用于根据检测电流,判断像素电路144对应的子像素是否正常发光,还用于在子像素无法正常发光的状态下,识别子像素中无法正常发光的发光元件,还用于控制N个修复扫描信号和N个修复数据信号的生成,以使得在第i个发光元件正常发光的状态下,向第i个发光元件提供驱动电流,或者,在第i个发光元件无法正常发光的状态下,短路第i个发光元件。
根据实施例,检测模块141可以设置在子像素中。
本实施例中,控制模块通过检测模块的检测电流的数值大小判断像素电路对应的子像素是否正常发光,具体的,比较检测模块的检测电流与预先存储的参考电流,在检测模块的检测电流小于预先存储的参考电流的状态下,像素电路对应的子像素无法正常发光,在像素电流对应的子像素无法正常发光的状态下,控制模块向第i个发光元件提供无效的修复扫描信号和修复数据信号,即驱动电流流经第i个发光元件,向其他发光元件提供有效的修复扫描信号和修复数据信号,即短路其他发光元件,若第i个发光元件能够正常发光,则发光组件中只有第i个发光元件发光,若第i个发光元件无法正常发光,则发光组件不发光,控制模块根据检测电路的检测电流的数值,即可识别子像素中能够正常发光的发光元件和无法正常发光的发光元件。
如图15所示,本公开实施例提供的检测模块141包括第(2N+2)晶体管M 2N+2和光电二极管PN。
如图15所示,第(2N+2)晶体管M 2N+2的控制极电连接为接收检测扫描信号Gate_T,第(2N+2)晶体管M 2N+2的第一极与光电二极管PN的阳极电连接,第(2N+2)晶体管M 2N+2的第二极与读取信号线143电连接。光电二极管PN的阴极与像素电路144中的第二电源VSS电连接。光电二极管PN用于将光照转换为电流,不同的光照强度对应的电流强度不同。
根据实施例,检测模块还可以为外部设备,例如,可以为自动光学检测设备(Automated Optical Inspection,简称AOI)。自动光学检测设备通过拍照或光学识别的方法检测无法正常发光的发光元件,并记录其位置信息,控制模块根据检测模块的位置信息控制N个修复扫描信号和N个修复数据信号,以使得在第i个发光元件正常发光的状态下,向第i个发光元件提供驱动电流,或者,在第i个发光元件无法正常发光的状态下,短路第i个发光元件。
本公开实施例附图只涉及本公开实施例涉及到的结构,其他结构可参考通常设计。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种像素电路,包括:
    发光组件,包括多个发光元件;
    驱动子电路,电连接到所述发光组件,配置为生成驱动所述发光组件发光的驱动电流;以及
    修复子电路,电连接到所述发光组件,配置为接收修复扫描信号和修复数据信号,并在所述修复扫描信号和所述修复数据信号的控制下,将所述驱动电流提供给所述多个发光元件中能够正常发光的至少一个发光元件,以在所述多个发光元件中存在发生故障的发光元件时使所述发光组件能够发光。
  2. 根据权利要求1所述的像素电路,其中,所述多个发光元件串联连接。
  3. 根据权利要求2所述的像素电路,其中,所述发光元件包括微型发光二极管或者次毫米发光二极管。
  4. 根据权利要求1至3中任一项所述的像素电路,其中,所述驱动子电路包括第一晶体管、驱动晶体管和第一电容,
    所述第一晶体管的控制极电连接为接收驱动扫描信号,所述第一晶体管的第一极电连接为接收驱动数据信号,所述第一晶体管的第二极与所述驱动晶体管的控制极电连接;
    所述驱动晶体管的控制极与所述第一电容的第一端电连接,所述驱动晶体管的第一极与所述发光组件电连接,所述驱动晶体管的第二极与第一电源电连接;
    所述第一电容的第二端与所述第一电源电连接。
  5. 根据权利要求1至4中任一项所述的像素电路,其中,所述发光组件包括N个发光元件,所述修复子电路包括与所述N个发光元件一一对应的N个修复模块,第i个修复模块被配置为接收第i个修复扫描信号和第i个修复数据信号,并在所述第i个修复扫描信号和所述第i个修复数据信号的控制下,将所述驱动电流提供给第i个发光元件,其中,N为大于1的自然数,i为自然数,且1≤i≤N。
  6. 根据权利要求5所述的像素电路,其中,第i个修复模块包括:
    节点控制单元,电连接到发光控制单元,配置为接收所述第i个修复扫描信号和所述第i个修复数据信号,基于所述第i个修复扫描信号和所述第i个修复数据信号生成 发光控制信号,并将所述发光控制信号提供给所述发光控制单元;以及
    发光控制单元,并联连接在第i个发光元件的两端,配置为接收所述发光控制信号,并在所述发光控制信号的控制下,使所述驱动电流流过所述第i个发光元件或将所述第i个发光元件短路。
  7. 根据权利要求6所述的像素电路,其中,第i个修复模块的节点控制单元包括第2i晶体管和第i+1电容,
    所述第2i晶体管的控制极电连接为接收所述第i个修复扫描信号,所述第2i晶体管的第一极电连接为接收所述第i个修复数据信号,所述第2i晶体管的第二极与所述第i+1电容的第一端电连接;
    所述第i+1电容的第二端与第一电源电连接。
  8. 根据权利要求7所述的像素电路,其中,所述发光控制单元包括第2i+1晶体管,
    所述第2i+1晶体管的控制极与所述第2i晶体管的第二极电连接,所述第2i+1晶体管的第一极与所述第i个发光元件的阳极电连接,所述第2i+1晶体管的第二极与所述第i个发光元件的阴极电连接。
  9. 根据权利要求7所述的像素电路,其中,所述多个修复模块的所述第2i晶体管的控制极与所述驱动子电路的第一晶体管的控制极电连接。
  10. 根据权利要求7所述的像素电路,其中,所述多个修复模块的所述第2i晶体管的第一极电连接在一起。
  11. 一种如权利要求1所述的像素电路的驱动方法,包括:
    利用驱动子电路生成发光组件发光所需的驱动电流;以及
    利用修复子电路将所述驱动电流提供给多个发光元件中能够正常发光的至少一个发光元件。
  12. 一种显示装置,包括多个子像素,每个子像素包括如权利要求1~10中任一项所述的像素电路。
  13. 根据权利要求12所述的显示装置,还包括:
    读取信号线;
    检测模块,电连接到所述像素电路和所述读取信号线,配置为向所述读取信号线输出检测电流,所述检测电流对应于与所述像素电路相对应的子像素的亮度;以及
    控制模块,电连接到所述读取信号线,配置为基于所述检测电流来识别所述子像 素中每个发光元件的发光状态,以及基于每个发光元件的发光状态来向所述像素电路的多个修复模块提供修复扫描信号和修复数据信号。
  14. 根据权利要求13所述的显示装置,其中,所述检测模块包括第2N+2晶体管和光电二极管,其中N为大于1的自然数,
    所述第2N+2晶体管的控制极电连接为接收检测扫描信号,所述第2N+2晶体管的第一极与所述光电二极管的阳极电连接,所述第2N+2晶体管的第二极与所述读取信号线电连接;
    所述光电二极管的阴极与第二电源电连接。
PCT/CN2020/088958 2019-05-14 2020-05-07 一种像素电路及其驱动方法、显示装置 WO2020228581A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/255,529 US11335224B2 (en) 2019-05-14 2020-05-07 Pixel circuit, driving method thereof, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910398881.X 2019-05-14
CN201910398881.XA CN110136637B (zh) 2019-05-14 2019-05-14 一种像素电路及其驱动方法、显示装置

Publications (1)

Publication Number Publication Date
WO2020228581A1 true WO2020228581A1 (zh) 2020-11-19

Family

ID=67573970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088958 WO2020228581A1 (zh) 2019-05-14 2020-05-07 一种像素电路及其驱动方法、显示装置

Country Status (3)

Country Link
US (1) US11335224B2 (zh)
CN (1) CN110136637B (zh)
WO (1) WO2020228581A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110136637B (zh) 2019-05-14 2023-05-16 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN113454703B (zh) * 2020-01-21 2022-11-04 京东方科技集团股份有限公司 发光板、线路板以及显示装置
TWI726627B (zh) * 2020-02-21 2021-05-01 友達光電股份有限公司 顯示裝置
CN114283738A (zh) * 2020-09-17 2022-04-05 京东方科技集团股份有限公司 像素电路及其驱动方法和显示装置
CN112967680B (zh) * 2021-03-18 2022-12-16 合肥京东方卓印科技有限公司 像素结构及其驱动方法、显示基板
CN114613320B (zh) * 2022-03-29 2024-01-16 湖北长江新型显示产业创新中心有限公司 显示面板及显示装置
KR20230155635A (ko) * 2022-05-03 2023-11-13 삼성디스플레이 주식회사 표시 장치

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050134536A1 (en) * 2003-12-22 2005-06-23 Shin-Tai Lo Driving apparatus for an active matrix organic light emitting display
CN1691126A (zh) * 2004-04-20 2005-11-02 索尼株式会社 恒流驱动设备、背光光源设备和彩色液晶显示设备
US20060238466A1 (en) * 2005-04-26 2006-10-26 Pei-Ting Chen Control circuit for balancing current and method thereof
CN102446496A (zh) * 2010-09-03 2012-05-09 三美电机株式会社 背光灯装置、具备该背光灯装置的显示装置以及照明装置
CN206497716U (zh) * 2017-01-20 2017-09-15 昆山龙腾光电有限公司 背光源驱动电路、背光模组以及显示装置
CN109416900A (zh) * 2016-04-26 2019-03-01 脸谱科技有限责任公司 具有冗余发光器件的显示器
CN110136637A (zh) * 2019-05-14 2019-08-16 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101820275B1 (ko) * 2013-03-15 2018-01-19 애플 인크. 리던던시 스킴을 갖춘 발광 다이오드 디스플레이 및 통합 결함 검출 테스트를 갖는 발광 다이오드 디스플레이를 제작하는 방법
KR102096056B1 (ko) * 2013-10-23 2020-04-02 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102141204B1 (ko) * 2013-11-20 2020-08-05 삼성디스플레이 주식회사 유기 발광 표시 장치, 및 유기 발광 표시 장치의 리페어 방법
KR20150093909A (ko) * 2014-02-07 2015-08-19 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102150022B1 (ko) * 2014-05-27 2020-09-01 삼성디스플레이 주식회사 리페어 픽셀 회로 및 이를 포함하는 유기 발광 표시 장치
CN105161517B (zh) 2015-08-14 2018-10-12 京东方科技集团股份有限公司 阵列基板的修复方法、修复装置和制备方法
KR102605174B1 (ko) * 2016-12-19 2023-11-22 엘지디스플레이 주식회사 발광 다이오드 디스플레이 장치
CN106684098B (zh) 2017-01-06 2019-09-10 深圳市华星光电技术有限公司 微发光二极管显示面板及其修复方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050134536A1 (en) * 2003-12-22 2005-06-23 Shin-Tai Lo Driving apparatus for an active matrix organic light emitting display
CN1691126A (zh) * 2004-04-20 2005-11-02 索尼株式会社 恒流驱动设备、背光光源设备和彩色液晶显示设备
US20060238466A1 (en) * 2005-04-26 2006-10-26 Pei-Ting Chen Control circuit for balancing current and method thereof
CN102446496A (zh) * 2010-09-03 2012-05-09 三美电机株式会社 背光灯装置、具备该背光灯装置的显示装置以及照明装置
CN109416900A (zh) * 2016-04-26 2019-03-01 脸谱科技有限责任公司 具有冗余发光器件的显示器
CN206497716U (zh) * 2017-01-20 2017-09-15 昆山龙腾光电有限公司 背光源驱动电路、背光模组以及显示装置
CN110136637A (zh) * 2019-05-14 2019-08-16 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置

Also Published As

Publication number Publication date
US20210225224A1 (en) 2021-07-22
CN110136637A (zh) 2019-08-16
US11335224B2 (en) 2022-05-17
CN110136637B (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
WO2020228581A1 (zh) 一种像素电路及其驱动方法、显示装置
KR102010353B1 (ko) 리던던트 발광 장치를 가지는 디스플레이
US10204974B2 (en) Pixel circuit, display substrate, display device, and method for driving display substrate
WO2018218742A1 (zh) 像素驱动电路及其修复方法与显示装置
US10217412B2 (en) OLED display device drive system and OLED display drive method
CN106486041B (zh) 一种像素电路、其驱动方法及相关显示装置
TWI674568B (zh) 有機發光顯示器
US10181283B2 (en) Electronic circuit and driving method, display panel, and display apparatus
US20210082347A1 (en) Pixel driving circuit of active matrix organic light emitting display device and driving method of active matrix organic light emitting display device
CN105448234B (zh) 像素电路及其驱动方法和有源矩阵有机发光显示器
CN107516488A (zh) 一种像素电路、其驱动方法、显示面板及显示装置
CN103198793A (zh) 像素电路及其驱动方法、显示装置
WO2019196402A1 (zh) 像素补偿电路及像素驱动电路补偿方法、显示装置
WO2018113221A1 (zh) 一种oled像素电路及其驱动方法、显示装置
WO2018120679A1 (zh) 一种像素电路、像素驱动方法、显示装置
US11443694B2 (en) Pixel circuit, method for driving the same, display panel and display device
WO2019214397A1 (zh) 像素驱动电路及驱动方法、显示装置
CN110570820B (zh) Amoled显示装置及其驱动方法
US10354591B2 (en) Pixel driving circuit, repair method thereof and display device
US20220319379A1 (en) Pixel driving circuit, method, and display apparatus
US11238764B2 (en) Light emitting control circuit, driving method thereof, array substrate and display device
WO2021042338A1 (zh) 像素驱动电路、像素驱动方法、显示装置及其控制方法
WO2019227989A1 (zh) 像素驱动电路及方法、显示装置
US20190073953A1 (en) Oled pixel driving circuit and pixel driving method
WO2018153096A1 (zh) 像素驱动电路、像素驱动电路的驱动方法及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20806419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20806419

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20806419

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25.07.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20806419

Country of ref document: EP

Kind code of ref document: A1