WO2020228197A1 - 薄膜晶体管液晶显示器及其制造方法 - Google Patents

薄膜晶体管液晶显示器及其制造方法 Download PDF

Info

Publication number
WO2020228197A1
WO2020228197A1 PCT/CN2019/104867 CN2019104867W WO2020228197A1 WO 2020228197 A1 WO2020228197 A1 WO 2020228197A1 CN 2019104867 W CN2019104867 W CN 2019104867W WO 2020228197 A1 WO2020228197 A1 WO 2020228197A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
wave plate
thin film
film transistor
crystal display
Prior art date
Application number
PCT/CN2019/104867
Other languages
English (en)
French (fr)
Inventor
罗成志
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Publication of WO2020228197A1 publication Critical patent/WO2020228197A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line

Definitions

  • the present disclosure relates to the field of display technology, in particular to a thin film transistor liquid crystal display and a manufacturing method thereof.
  • the thin film transistor liquid crystal display has the advantages of low power consumption, high contrast, and space saving, and has become the most mainstream display device on the market.
  • Low-temperature polysilicon is widely used in the production of small and medium-sized high-resolution thin film transistor liquid crystal displays and active matrix organic light emitting diodes or active matrix organic light emitting diode panels.
  • the top gate and the light-shielding layer structure are usually adopted, and the preparation of the light-shielding layer requires a new light-shielding layer mask to form an opaque pattern under the thin film transistor channel.
  • How to effectively reduce the photo-generated leakage current through the improvement of the device structure on the basis of eliminating the light-shielding layer mask, reducing the production cycle and reducing the production cost is an important content of the development of low-temperature polysilicon thin film transistor liquid crystal display array technology.
  • the present disclosure proposes a thin film transistor display device and a manufacturing method thereof.
  • the thin film transistor display device can reduce the light-generated leakage current and reduce the reflection of natural light at the metal traces on the thin film transistor side.
  • the present disclosure provides a thin film transistor liquid crystal display, which includes: a backlight plate; a liquid crystal module arranged above the backlight plate; a wave plate alignment film arranged above the liquid crystal module; a first phase difference A wave plate is arranged above the wave plate alignment film; a thin film transistor layer is arranged above the first phase difference wave plate; a second phase difference wave plate is arranged above the thin film transistor layer; and a filter polarizer , Arranged above the second phase difference wave plate.
  • the liquid crystal module includes: a liquid crystal layer; a color film alignment film disposed under the liquid crystal layer; a color film disposed below the color film alignment film; and a color film The polarizer is arranged under the color film.
  • the color film further includes a shading sheet.
  • the first phase difference wave plate is a 3 ⁇ /4 wave plate.
  • the second phase difference wave plate is a ⁇ /4 wave plate.
  • the material of the first retardation wave plate includes polycarbonate and polyvinyl chloride.
  • the material of the second retardation wave plate includes polycarbonate and polyvinyl chloride.
  • the present disclosure also provides a method for manufacturing a thin film transistor liquid crystal display.
  • the method for manufacturing the thin film transistor liquid crystal display includes providing a thin film transistor layer, and attaching a first phase difference wave plate under the thin film transistor layer Attach a color film alignment film below the first retardation wave plate; attach a second retardation wave plate above the thin film transistor layer; attach a filter above the second retardation wave plate Light polarizer; a liquid crystal display module is arranged under the color film alignment film; a backlight plate is arranged under the liquid crystal display module.
  • the liquid crystal display module includes: a liquid crystal layer; a color film alignment film disposed below the liquid crystal layer; a color film disposed below the color film alignment film; and The film polarizer is arranged under the color film.
  • the color film further includes a shading sheet.
  • the first phase difference wave plate is a 3 ⁇ /4 wave plate.
  • the second phase difference wave plate is a ⁇ /4 wave plate.
  • the material of the first retardation wave plate includes polycarbonate and polyvinyl chloride.
  • the material of the second retardation wave plate includes polycarbonate and polyvinyl chloride.
  • the present disclosure further provides a thin film transistor liquid crystal display, which includes: a backlight plate; a liquid crystal module arranged above the backlight plate; a wave plate alignment film arranged above the liquid crystal module; a first phase The difference wave plate is arranged above the wave plate alignment film, the first phase difference wave plate is a 3 ⁇ /4 wave plate; the thin film transistor layer is arranged above the first phase difference wave plate; the second phase difference wave plate The plate is arranged above the thin film transistor layer, the second phase difference wave plate is a ⁇ /4 wave plate; and the filter polarizer is arranged above the second phase difference wave plate.
  • the liquid crystal module includes: a liquid crystal layer; a color film alignment film disposed under the liquid crystal layer; a color film disposed below the color film alignment film; and a color film The polarizer is arranged under the color film.
  • the color film further includes a shading sheet.
  • the material of the first retardation wave plate includes polycarbonate and polyvinyl chloride.
  • the material of the second retardation wave plate includes polycarbonate and polyvinyl chloride.
  • the liquid crystal display module includes a light-shielding film.
  • the thin film transistor liquid crystal display in the embodiment of the present disclosure includes a backlight plate, a liquid crystal module disposed above the backlight plate, and a wave plate alignment film disposed above the liquid crystal module is disposed on the wave plate
  • the filter polarizer above the phase difference wave plate reduces the light-generated leakage current and reduces the reflection of natural light caused by the reflection of the metal trace on the side of the thin film transistor.
  • the thin film transistor liquid crystal display in the embodiment of the present disclosure includes a backlight plate, a liquid crystal module disposed above the backlight plate, and a wave plate alignment film disposed above the liquid crystal module , A first phase difference wave plate disposed above the wave plate alignment film, a thin film transistor layer disposed above the first phase difference wave plate, and a second phase difference wave plate disposed above the thin film transistor layer, And the filter polarizer arranged above the second phase difference wave plate, thereby reducing the light-generated leakage current and reducing the reflection of natural light caused by the reflection of the metal traces on the side of the thin film transistor.
  • FIG. 1 shows a schematic structural diagram of a thin film transistor liquid crystal display according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic diagram of the structure of a thin film transistor liquid crystal display according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic flow chart of a method for manufacturing a thin film transistor liquid crystal display according to an embodiment of the present disclosure.
  • the thin film transistor liquid crystal display includes: a backlight board B1; a liquid crystal module 200 arranged above the backlight board B1; a wave plate alignment film 300 arranged above the liquid crystal module 200; a first phase The difference wave plate 400 is arranged above the wave plate alignment film 300; the thin film transistor layer 500 is arranged above the first phase difference wave plate 400; the second phase difference wave plate 600 is arranged on the thin film transistor layer 500 Above; and a filter polarizer 700, which is disposed above the second phase difference wave plate 600.
  • the liquid crystal module 200 since the liquid crystal module 200 includes a light-shielding film, it will block the light emitted by the backlight plate B1, and the metal wires located on the polysilicon channel of the thin film transistor layer 500 can also Play a shading effect. Therefore, it is avoided that the light emitted by the backlight plate B1 directly irradiates the polysilicon channel on the thin film transistor layer 500 to generate a light-generated leakage current.
  • the light emitted by the backlight plate B1 is shielded by the liquid crystal module 200 and the metal wire located on the polysilicon channel of the thin film transistor layer 500, so as to reduce the light shielding layer provided on the thin film transistor layer 500. Effect.
  • the first phase difference wave plate 400 is a 3 ⁇ /4 wave plate.
  • the first retardation wave plate 400 is made of polycarbonate (Polycarbonate, PC) or polyvinylchloride (Polyvinylchloride, PVC) film materials are stretched along a uniaxial direction.
  • the second phase difference wave plate 600 is a ⁇ /4 wave plate.
  • the second retardation wave plate 600 is made of polycarbonate (Polycarbonate, PC) or polyvinylchloride (Polyvinylchloride, PVC) film materials are stretched along a uniaxial direction.
  • the angle between the polarization direction of the filter polarizer 700 and the o-axis and e-axis of the second retardation wave plate 600 is 45°, so that the incident light passing through the second retardation wave plate 600 passes through
  • the metal wires of the thin film transistor layer 500 cannot exit the filter polarizer 700 after being reflected, so as to reduce the reflection of natural light on the metal wires on the thin film transistor side. It is further described that the incident ray polarized light is converted into left-handed circularly polarized light.
  • the incident ray polarized light When the incident ray polarized light is converted into left-handed circularly polarized light through the second retardation wave plate 600, it is converted into a right-handed circle after being reflected by the metal wire of the thin film transistor layer 500 The polarized light is transformed into linear polarized light perpendicular to the filter polarizer 700 after passing through the second phase difference wave plate 600, so that the filter polarizer 700 cannot be emitted.
  • FIG. 2 shows a schematic structural diagram of a thin film transistor liquid crystal display according to an embodiment of the present disclosure.
  • the liquid crystal module includes: a liquid crystal layer 210; a color film alignment film 220 arranged under the liquid crystal layer 210; a color film 230 arranged under the color film alignment film 220; and a color film polarizer 240, Set under the color film 230.
  • the color film 230 further includes a shading sheet.
  • FIG. 3 shows a schematic flow chart of a method for manufacturing a thin film transistor liquid crystal display according to an embodiment of the present disclosure.
  • the manufacturing method of the thin film transistor liquid crystal display includes:
  • Process S1 providing a thin film transistor layer, and attaching a first phase difference wave plate under the thin film transistor layer.
  • Process S2 attach a color film alignment film under the first retardation wave plate.
  • Process S3 attach a second phase difference wave plate above the thin film transistor layer.
  • Process S4 attach a filter polarizer on the second phase difference wave plate.
  • Process S5 a liquid crystal display module is arranged under the color film alignment film.
  • Process S6 setting a backlight board under the liquid crystal display module.
  • the liquid crystal display module includes: a liquid crystal layer; a color film alignment film disposed under the liquid crystal layer; a color film disposed under the color film alignment film; and a color film The polarizer is arranged under the color film.
  • the first phase difference wave plate is a 3 ⁇ /4 wave plate.
  • the second phase difference wave plate is a ⁇ /4 wave plate.
  • the materials of the first retardation wave plate and the second retardation wave plate include polycarbonate and polyvinyl chloride.
  • the thin film transistor liquid crystal display in the embodiment of the present disclosure includes a backlight plate, a liquid crystal module arranged above the backlight plate, and a wave plate alignment film arranged above the liquid crystal module
  • the filter polarizer above the second phase difference wave plate reduces the light-generated leakage current and reduces the reflection of natural light caused by the reflection of the metal traces on the side of the thin film transistor.

Abstract

提供一种薄膜晶体管液晶显示器,包括背光板(B1)、液晶模组(200)、波片配向膜(300)、第一相位差波片(400)、薄膜晶体管层(500)、第二相位差波片(600)以及滤光偏振片(700),从而降低光生漏电流,并减少自然光在薄膜晶体管侧金属走线反射造成的反光。还提供薄膜晶体管液晶显示器的制造方法。

Description

薄膜晶体管液晶显示器及其制造方法 技术领域
本揭示涉及显示技术领域,具体涉及薄膜晶体管液晶显示器及其制造方法。
背景技术
薄膜晶体管液晶显示器具有耗电量小、对比度高、节省空间等优点,已成为市场上最主流的显示装置。低温多晶硅被广泛用于中小尺寸高分辨率的薄膜晶体管液晶显示器和主动矩阵有机发光二极体或主动矩阵有机发光二极体面板的制作。
在传统的低温多晶硅阵列技术中,通常采用顶栅外加遮光层结构,其中遮光层的制备需要新增一道遮光层遮罩,在薄膜晶体管沟道下方形成一块不透光的图形。如何在省去遮光层遮罩,减少产品制作周期及降低生产成本的基础上,通过器件结构改善来有效降低光生漏电流是低温多晶硅薄膜晶体管液晶显示器阵列技术开发的重要内容。
故,有需要提供一种薄膜晶体管显示器件及其制造方法,以解决现有技术存在的问题。
技术问题
如何在省去遮光层遮罩,减少产品制作周期及降低生产成本的基础上,通过器件结构改善来有效降低光生漏电流是本揭示需要解决的技术问题。
技术解决方案
为解决上述问题,本揭示提出一种薄膜晶体管显示器件及其制造方法,所述薄膜晶体管显示器件可降低光生漏电流,并减小自然光在薄膜晶体管侧金属走线处的反射。
为达成上述目的,本揭示提供一种薄膜晶体管液晶显示器,包括:背光板;液晶模组,设置于所述背光板上方;波片配向膜,设置于所述液晶模组上方;第一相位差波片,设置于所述波片配向膜上方;薄膜晶体管层,设置于所述第一相位差波片上方;第二相位差波片,设置于所述薄膜晶体管层上方;以及滤光偏振片,设置于所述第二相位差波片上方。
于本揭示其中的一实施例中,其中所述液晶模组包括:液晶层;彩膜配向膜,设置于所述液晶层下方;彩膜,设置于所述彩膜配向膜下方;以及彩膜偏振片,设置于所述彩膜下方。
于本揭示其中的一实施例中,其中所述彩膜还包括有遮光片。
于本揭示其中的一实施例中,其中所述第一相位差波片为3λ/4波片。
于本揭示其中的一实施例中,其中所述第二相位差波片为λ/4波片。
于本揭示其中的一实施例中,其中所述第一相位差波片的材料包含聚碳酸酯及聚氯乙烯。
于本揭示其中的一实施例中,其中所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
为达成上述目的,本揭示还提供一种薄膜晶体管液晶显示器的制造方法,所述薄膜晶体管液晶显示器的制造方法包括提供薄膜晶体管层,在所述薄膜晶体管层的下方贴附第一相位差波片;在所述第一相位差波片的下方贴附彩膜配向膜;在所述薄膜晶体管层的上方贴附第二相位差波片;在所述第二相位差波片的上方贴附滤光偏振片;在所述彩膜配向膜下方设置液晶显示模组;在所述液晶显示模组下方设置背光板。
于本揭示其中的一实施例中,其中所述液晶显示模组包括:液晶层;彩膜配向膜,设置于所述液晶层下方;彩膜,设置于所述彩膜配向膜下方;以及彩膜偏振片,设置于所述彩膜下方。
于本揭示其中的一实施例中,其中所述彩膜还包括有遮光片。
于本揭示其中的一实施例中,其中所述第一相位差波片为3λ/4波片。
于本揭示其中的一实施例中,其中所述第二相位差波片为λ/4波片。
于本揭示其中的一实施例中,其中所述第一相位差波片的材料包含聚碳酸酯及聚氯乙烯。
于本揭示其中的一实施例中,其中所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
为达成上述目的,本揭示再提供一种薄膜晶体管液晶显示器,包括:背光板;液晶模组,设置于所述背光板上方;波片配向膜,设置于所述液晶模组上方;第一相位差波片,设置于所述波片配向膜上方,所述第一相位差波片为3λ/4波片;薄膜晶体管层,设置于所述第一相位差波片上方;第二相位差波片,设置于所述薄膜晶体管层上方,所述第二相位差波片为λ/4波片;以及滤光偏振片,设置于所述第二相位差波片上方。
于本揭示其中的一实施例中,其中所述液晶模组包括:液晶层;彩膜配向膜,设置于所述液晶层下方;彩膜,设置于所述彩膜配向膜下方;以及彩膜偏振片,设置于所述彩膜下方。
于本揭示其中的一实施例中,其中所述彩膜还包括有遮光片。
于本揭示其中的一实施例中,其中所述第一相位差波片的材料包含聚碳酸酯及聚氯乙烯。
于本揭示其中的一实施例中,其中所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
于本揭示其中的一实施例中,其中所述液晶显示模组包含有遮光片。
由于本揭示的实施例中的薄膜晶体管液晶显示器,其包括背光板,设置于所述背光板上方的液晶模组,设置于所述液晶模组上方的波片配向膜,设置于所述波片配向膜上方的第一相位差波片,设置于所述第一相位差波片上方的薄膜晶体管层,设置于所述薄膜晶体管层上方的第二相位差波片,以及设置于所述第二相位差波片上方的滤光偏振片,从而降低光生漏电流,并减少自然光在薄膜晶体管侧金属走线反射造成的反光。
有益效果
相较于现有技术,由于本揭示的实施例中的薄膜晶体管液晶显示器,其包括背光板,设置于所述背光板上方的液晶模组,设置于所述液晶模组上方的波片配向膜,设置于所述波片配向膜上方的第一相位差波片,设置于所述第一相位差波片上方的薄膜晶体管层,设置于所述薄膜晶体管层上方的第二相位差波片,以及设置于所述第二相位差波片上方的滤光偏振片,从而降低光生漏电流,并减少自然光在薄膜晶体管侧金属走线反射造成的反光。
附图说明
图1显示根据本揭示的一实施例的薄膜晶体管液晶显示器的结构示意图;
图2显示根据本揭示的一实施例的薄膜晶体管液晶显示器的结构示意图;
图3显示根据本揭示的一实施例的薄膜晶体管液晶显示器制作方法的流程示意图。
本发明的最佳实施方式
以下实施例的说明是参考附加的图示,用以例示本揭示可用以实施的特定实施例。本揭示所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。
在图中,结构相似的单元是以相同标号表示。
请参照图1,图1显示根据本揭示的一实施例的薄膜晶体管液晶显示器的结构示意图。其中,本揭示提供的薄膜晶体管液晶显示器,包括:背光板B1;液晶模组200,设置于所述背光板B1上方;波片配向膜300,设置于所述液晶模组200上方;第一相位差波片400,设置于所述波片配向膜300上方;薄膜晶体管层500,设置于所述第一相位差波片400上方;第二相位差波片600,设置于所述薄膜晶体管层500上方;以及滤光偏振片700,设置于所述第二相位差波片600上方。
其中,根据本揭示的薄膜晶体管液晶显示器的结构设置,由于液晶模组200包含有遮光片,会对背光板B1所射出的光有遮挡作用,位于薄膜晶体管层500多晶硅沟道上的金属线也能起到遮光作用。从而避免了背光板B1所射出的光直接照射至薄膜晶体管层500上的多晶硅沟道产生光生漏电流。
因此,在本揭示晶体管液晶显示器的结构中,通过液晶模组200与位于薄膜晶体管层500多晶硅沟道上的金属线遮挡背光板B1所射出的光,而达到减少在薄膜晶体管层500上设置遮光层的效果。
于本揭示其中的一实施例中,所述第一相位差波片400为3λ/4波片。
于本揭示其中的一实施例中,所述第一相位差波片400是由通过由包含聚碳酸酯(Polycarbonate, PC)或聚氯乙烯(Polyvinylchloride, PVC)的薄膜材料沿着单轴拉伸制成。
于本揭示其中的一实施例中,所述第二相位差波片600为λ/4波片。
于本揭示其中的一实施例中,所述第二相位差波片600是由通过由包含聚碳酸酯(Polycarbonate, PC)或聚氯乙烯(Polyvinylchloride, PVC)的薄膜材料沿着单轴拉伸制成。
其中,通过使滤光偏振片700的偏光方向与第二相位差波片600波片的o轴和e轴间的夹角为45°角,使通过第二相位差波片600的入射光经过薄膜晶体管层500的金属线反射后不能出射所述滤光偏振片700,达到减少自然光在薄膜晶体管侧金属走线的反射的效果。进一步以入射线偏振光转变为左旋圆偏振光进行说明,当入射线偏振光通过第二相位差波片600转变为左旋圆偏振光,经过薄膜晶体管层500的金属线反射后转变为右旋圆偏振光,再经第二相位差波片600后转变为与滤光偏振片700垂直的线偏振光,从而不能出射所述滤光偏振片700。
请参照图2,图2显示根据本揭示的一实施例的薄膜晶体管液晶显示器的结构示意图。其中,所述液晶模组包括:液晶层210;彩膜配向膜220,设置于所述液晶层210下方;彩膜230,设置于所述彩膜配向膜220下方;以及彩膜偏振片240,设置于所述彩膜230下方。
在本揭示的一实施例中,彩膜230还包括有遮光片。
请参照图3,图3显示根据本揭示的一实施例的薄膜晶体管液晶显示器制作方法的流程示意图。其中,所述薄膜晶体管液晶显示器的制造方法包括:
流程S1:提供薄膜晶体管层,在所述薄膜晶体管层的下方贴附第一相位差波片。
流程S2:在所述第一相位差波片的下方贴附彩膜配向膜。
流程S3:在所述薄膜晶体管层的上方贴附第二相位差波片。
流程S4:在所述第二相位差波片的上方贴附滤光偏振片。
流程S5:在所述彩膜配向膜下方设置液晶显示模组。
流程S6:在所述液晶显示模组下方设置背光板。
于本揭示其中的一实施例中,所述液晶显示模组包括:液晶层;彩膜配向膜,设置于所述液晶层下方;彩膜,设置于所述彩膜配向膜下方;以及彩膜偏振片,设置于所述彩膜下方。
于本揭示其中的一实施例中,所述第一相位差波片为3λ/4波片。
于本揭示其中的一实施例中,所述第二相位差波片为λ/4波片。
于本揭示其中的一实施例中,所述第一相位差波片与所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
综上所述,由于本揭示的实施例中的薄膜晶体管液晶显示器,其包括背光板,设置于所述背光板上方的液晶模组,设置于所述液晶模组上方的波片配向膜,设置于所述波片配向膜上方的第一相位差波片,设置于所述第一相位差波片上方的薄膜晶体管层,设置于所述薄膜晶体管层上方的第二相位差波片,以及设置于所述第二相位差波片上方的滤光偏振片,从而降低光生漏电流,并减少自然光在薄膜晶体管侧金属走线反射造成的反光。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (20)

  1. 一种薄膜晶体管液晶显示器,包括:
    背光板;
    液晶模组,设置于所述背光板上方;
    波片配向膜,设置于所述液晶模组上方;
    第一相位差波片,设置于所述波片配向膜上方;
    薄膜晶体管层,设置于所述第一相位差波片上方;
    第二相位差波片,设置于所述薄膜晶体管层上方;以及
    滤光偏振片,设置于所述第二相位差波片上方。
  2. 如权利要求1所述的薄膜晶体管液晶显示器,其中所述液晶模组包括:
    液晶层;
    彩膜配向膜,设置于所述液晶层下方;
    彩膜,设置于所述彩膜配向膜下方;以及
    彩膜偏振片,设置于所述彩膜下方。
  3. 如权利要求2所述的薄膜晶体管液晶显示器,其中所述彩膜还包括有遮光片。
  4. 如权利要求1所述的薄膜晶体管液晶显示器,其中所述第一相位差波片为3λ/4波片。
  5. 如权利要求1所述的薄膜晶体管液晶显示器,其中所述第二相位差波片为λ/4波片。
  6. 如权利要求1所述的薄膜晶体管液晶显示器,其中所述第一相位差波片的材料包含聚碳酸酯及聚氯乙烯。
  7. 如权利要求1所述的薄膜晶体管液晶显示器,其中所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
  8. 一种薄膜晶体管液晶显示器的制造方法,包括:
    提供薄膜晶体管层,在所述薄膜晶体管层的下方贴附第一相位差波片;
    在所述第一相位差波片的下方贴附彩膜配向膜;
    在所述薄膜晶体管层的上方贴附第二相位差波片;
    在所述第二相位差波片的上方贴附滤光偏振片;
    在所述彩膜配向膜下方设置液晶显示模组;以及
    在所述液晶显示模组下方设置背光板。
  9. 如权利要求8所述的薄膜晶体管液晶显示器的制造方法,其中所述液晶显示模组包括:
    液晶层;
    彩膜配向膜,设置于所述液晶层下方;
    彩膜,设置于所述彩膜配向膜下方;以及
    彩膜偏振片,设置于所述彩膜下方。
  10. 如权利要求8所述的薄膜晶体管液晶显示器的制造方法,其中所述彩膜还包括有遮光片。
  11. 如权利要求8所述的薄膜晶体管液晶显示器的制造方法,其中所述第一相位差波片为3λ/4波片。
  12. 如权利要求8所述的薄膜晶体管液晶显示器的制造方法,其中所述第二相位差波片为λ/4波片。
  13. 如权利要求8所述的薄膜晶体管液晶显示器的制造方法,其中所述第一相位差波片的材料包含聚碳酸酯及聚氯乙烯。
  14. 如权利要求8所述的薄膜晶体管液晶显示器的制造方法,其中所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
  15. 一种薄膜晶体管液晶显示器,包括:
    背光板;
    液晶模组,设置于所述背光板上方;
    波片配向膜,设置于所述液晶模组上方;
    第一相位差波片,设置于所述波片配向膜上方,所述第一相位差波片为3λ/4波片;
    薄膜晶体管层,设置于所述第一相位差波片上方;
    第二相位差波片,设置于所述薄膜晶体管层上方,所述第二相位差波片为λ/4波片;以及
    滤光偏振片,设置于所述第二相位差波片上方。
  16. 如权利要求15所述的薄膜晶体管液晶显示器,其中所述液晶显示模组包括:
    液晶层;
    彩膜配向膜,设置于所述液晶层下方;
    彩膜,设置于所述彩膜配向膜下方;以及
    彩膜偏振片,设置于所述彩膜下方。
  17. 如权利要求16所述的薄膜晶体管液晶显示器,其中所述彩膜还包括有遮光片。
  18. 如权利要求15所述的薄膜晶体管液晶显示器,其中所述第一相位差波片的材料包含聚碳酸酯及聚氯乙烯。
  19. 如权利要求15所述的薄膜晶体管液晶显示器,其中所述第二相位差波片的材料包含聚碳酸酯及聚氯乙烯。
  20. 如权利要求15所述的薄膜晶体管液晶显示器,其中所述液晶显示模组包含有遮光片。
PCT/CN2019/104867 2019-05-16 2019-09-09 薄膜晶体管液晶显示器及其制造方法 WO2020228197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910407664.2 2019-05-16
CN201910407664.2A CN110231731B (zh) 2019-05-16 2019-05-16 薄膜晶体管液晶显示器及其制造方法

Publications (1)

Publication Number Publication Date
WO2020228197A1 true WO2020228197A1 (zh) 2020-11-19

Family

ID=67861370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104867 WO2020228197A1 (zh) 2019-05-16 2019-09-09 薄膜晶体管液晶显示器及其制造方法

Country Status (2)

Country Link
CN (1) CN110231731B (zh)
WO (1) WO2020228197A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174012Y (zh) * 2008-04-07 2008-12-31 信利半导体有限公司 一种半透射半反射型tft液晶显示器
US9964799B2 (en) * 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN108027530A (zh) * 2015-07-29 2018-05-11 夏普株式会社 具有均匀的内嵌式延迟器的阳光下可读的lcd
CN108490675A (zh) * 2018-03-20 2018-09-04 惠州市华星光电技术有限公司 一种液晶显示器及其制备方法
WO2018221361A1 (ja) * 2017-05-31 2018-12-06 シャープ株式会社 液晶表示パネル及び液晶表示装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433659B1 (ko) * 2001-05-17 2004-05-31 비오이 하이디스 테크놀로지 주식회사 박막트랜지스터 액정표시장치
JP4551246B2 (ja) * 2005-03-04 2010-09-22 シャープ株式会社 液晶表示装置
JP4923921B2 (ja) * 2006-09-28 2012-04-25 ソニー株式会社 液晶装置及び電子機器
CN101377587A (zh) * 2007-08-30 2009-03-04 颖台科技股份有限公司 一种液晶显示器以及光学薄膜
WO2010087058A1 (ja) * 2009-01-27 2010-08-05 シャープ株式会社 液晶表示装置
WO2016111341A1 (ja) * 2015-01-09 2016-07-14 富士フイルム株式会社 光学フィルムおよび液晶表示装置、ならびに光学フィルムの製造方法
CN107735723A (zh) * 2015-06-23 2018-02-23 夏普株式会社 液晶显示面板
CN105974649A (zh) * 2016-07-19 2016-09-28 京东方科技集团股份有限公司 一种显示装置及显示方法
CN107884982B (zh) * 2017-12-27 2020-06-05 惠州市华星光电技术有限公司 液晶显示屏
CN108919538A (zh) * 2018-09-29 2018-11-30 信利光电股份有限公司 一种显示器和电子器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201174012Y (zh) * 2008-04-07 2008-12-31 信利半导体有限公司 一种半透射半反射型tft液晶显示器
US9964799B2 (en) * 2015-03-17 2018-05-08 Semiconductor Energy Laboratory Co., Ltd. Display device, display module, and electronic device
CN108027530A (zh) * 2015-07-29 2018-05-11 夏普株式会社 具有均匀的内嵌式延迟器的阳光下可读的lcd
WO2018221361A1 (ja) * 2017-05-31 2018-12-06 シャープ株式会社 液晶表示パネル及び液晶表示装置
CN108490675A (zh) * 2018-03-20 2018-09-04 惠州市华星光电技术有限公司 一种液晶显示器及其制备方法

Also Published As

Publication number Publication date
CN110231731A (zh) 2019-09-13
CN110231731B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
CN108919545A (zh) 一种显示面板及显示装置
US11029570B2 (en) Reflective LCD panel by disposing a white sub-pixel unit in the pixel unit and using the while sub-pixel unit in collaboration with the pixel electrode to increase brightness of the pixel unit
WO2018120504A1 (zh) 液晶显示面板及其应用的液晶显示装置
US20160363812A1 (en) Array Substrate, Liquid Crystal Display Panel and Display Device
WO2016045260A1 (zh) 发光二极管显示面板及其制造方法
CN208689323U (zh) 一种液晶显示模组及显示装置
WO2020187108A1 (zh) 显示面板及其制造方法、显示装置
CN103176307B (zh) 半透半反液晶显示面板以及液晶显示装置
WO2015109817A1 (zh) 半透半反液晶显示面板及其制作方法、显示装置
CN109324438B (zh) 一种显示面板及显示装置
WO2020191913A1 (zh) 显示面板及显示装置
WO2016090715A1 (zh) 透反式液晶面板以及液晶显示器
WO2018176601A1 (zh) 透反式液晶显示装置
CN100552508C (zh) 光源系统
WO2016090716A1 (zh) 透反式液晶面板以及液晶显示器
WO2020062489A1 (zh) 液晶显示模组、液晶显示器及显示设备
CN205229619U (zh) 显示面板与液晶显示装置
WO2020228197A1 (zh) 薄膜晶体管液晶显示器及其制造方法
KR20180063799A (ko) 반사형 액정 표시 장치
WO2021103351A1 (zh) 液晶显示模组
US9354469B2 (en) Transflective liquid crystal display panel and display device
US9995984B2 (en) Transflective liquid crystal display device and driving method thereof
KR101790489B1 (ko) 액정표시장치의 제조방법
US20180157114A1 (en) Reflective liquid crystal device
CN108091312A (zh) 一种低功耗的显示面板和显示模组

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928404

Country of ref document: EP

Kind code of ref document: A1