WO2020228024A1 - 通电加热夹层玻璃及其制造方法 - Google Patents

通电加热夹层玻璃及其制造方法 Download PDF

Info

Publication number
WO2020228024A1
WO2020228024A1 PCT/CN2019/087282 CN2019087282W WO2020228024A1 WO 2020228024 A1 WO2020228024 A1 WO 2020228024A1 CN 2019087282 W CN2019087282 W CN 2019087282W WO 2020228024 A1 WO2020228024 A1 WO 2020228024A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrically heated
manufacturing
laminated glass
glass plate
electric heating
Prior art date
Application number
PCT/CN2019/087282
Other languages
English (en)
French (fr)
Inventor
李圣根
Original Assignee
信义汽车玻璃(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信义汽车玻璃(深圳)有限公司 filed Critical 信义汽车玻璃(深圳)有限公司
Priority to PCT/CN2019/087282 priority Critical patent/WO2020228024A1/zh
Publication of WO2020228024A1 publication Critical patent/WO2020228024A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields

Definitions

  • the application belongs to the technical field of laminated glass, and in particular relates to an electrically heated laminated glass and a manufacturing method thereof.
  • the rear glass of a car is mostly made of laminated glass. Since the rear glass of the automobile needs to be heated to eliminate frost and fog, the laminated glass used for the rear glass of the automobile usually needs to be attached with a heating element.
  • First aspect provide a method for manufacturing energized and heated laminated glass to solve the technical problem that heating wires are arranged in the middle of laminated glass in the prior art, which leads to complicated manufacturing processes and potential safety hazards .
  • an energized heating laminated glass is provided to solve the technical problem of the complicated manufacturing process of energized heating laminated glass in the prior art.
  • S1 Provide PVB resin powder, transparent conductive material, plasticizer and functional auxiliary agent, heat and mix the PVB resin powder, the transparent conductive material, the plasticizer and the functional auxiliary agent uniformly to form Electric heating mixture;
  • S3 providing a first glass plate and a second glass plate, and stacking the first glass plate, the electric heating film and the second glass plate in sequence to form a laminate;
  • step S3 is specifically:
  • the preheating temperature of the preheating treatment is 30°C-50°C.
  • the preheating temperature of the preheating treatment is 32°C to 41°C.
  • the heating temperature of the first heat treatment is 100°C to 110°C.
  • the heating temperature of the first heating treatment is 106°C.
  • the vacuum degree of the vacuum treatment is -0.15Mpa ⁇ -0.10MPa.
  • the pressure value of the first pressurization treatment is 0.3 MPa to 0.45 MPa.
  • step S35 the heating temperature of the second heat treatment is 140°C to 150°C.
  • the pressure value of the second pressure treatment is 0.65MPa ⁇ 0.75Mpa.
  • the first glass plate, the electric heating film, and the second glass plate are superimposed in a clean air environment to form the laminate.
  • the functional auxiliary agent is a mixture of an antioxidant and an ultraviolet absorber.
  • the antioxidant accounts for 0.2% to 0.4% of the electric heating mixture.
  • the ultraviolet absorber accounts for 0.2% to 0.3% of the electric heating mixture.
  • an electrically heated laminated glass which is prepared by the following steps:
  • S1 Provide PVB resin powder, transparent conductive material, plasticizer and functional auxiliary agent, heat and mix the PVB resin powder, the transparent conductive material, the plasticizer and the functional auxiliary agent uniformly to form Electric heating mixture;
  • S3 providing a first glass plate and a second glass plate, and stacking the first glass plate, the electric heating film and the second glass plate in sequence to form a laminate;
  • the method for manufacturing energized heated laminated glass provided by the embodiments of the application has the beneficial effects that: the method for manufacturing energized heated laminated glass provided by the embodiments of the application includes transparent conductive materials, plasticizers, and functional
  • the additives are mixed to form an electric heating film, so that when the electric heating film passes current, the transparent conductive materials in it can communicate with each other and release heat, thereby realizing the overall heating of the electric heating film.
  • the laminated body formed by the plate, the electric heating film and the second glass plate can be heated and pressurized to form an electric heating laminated glass.
  • the electric heating film in the laminated glass can be heated, thereby realizing the overall heating of the energized heating laminated glass. Because the manufacturing process of the electric heating film is simple and there is no risk of short circuit and fire, this significantly improves the safety of the energized heating laminated glass, and also significantly simplifies the manufacturing process of the energized heating laminated glass.
  • the beneficial effects of the energized heating laminated glass provided in the embodiments of this application are: the energized heating laminated glass provided in the embodiments of this application is prepared by the above process steps, and the above process steps can form a layer of electric heating between the two glass plates membrane.
  • the energized heating laminated glass has the function of energizing heating, and since the manufacturing process of the electric heating film is simple and there is no risk of short circuit and fire, this improves the safety of the energized heating laminated glass, and also significantly simplifies the energized heating of the laminated glass Manufacturing process.
  • FIG. 1 is a process flow diagram of a method for manufacturing an electrically heated laminated glass according to an embodiment of the application
  • FIG. 2 is a flowchart of a method for implementing step S1 in FIG. 1;
  • FIG. 3 is a flowchart of a method for implementing step S3 in FIG. 1;
  • FIG. 4 is a schematic diagram of the structure of energized and heated laminated glass provided by an embodiment of the application.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Thus, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present invention, “plurality” means two or more than two, unless specifically defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication of two components or the interaction relationship between two components.
  • the embodiments of the present application provide a method for manufacturing an electrically heated laminated glass, which includes the following steps:
  • step S1 Provide PVB resin powder, transparent conductive materials, plasticizers and functional additives.
  • PVB resin powder, transparent conductive materials, plasticizers and functional additives are extruded and cast into an electric heating film 12.
  • the surface of the heating film 12 has a certain roughness.
  • the transparent conductive material may be a nano-scale transparent conductive material, and specifically may be zinc oxide-graphene powder.
  • the light transmittance of the transparent conductive material formed by zinc oxide-graphene powder can reach 40%-50%. Therefore, the electric heating film 12 can be made to have sufficient light transmittance, and the laminated glass containing the electric heating film 12 is translucent, so that it can be used on the rear glass of an automobile.
  • the plasticizer can be 3GO plasticizer (triethylene glycol diisocaprylate) containing a conductive factor.
  • the functional aid may be a mixture of antioxidants and ultraviolet absorbers.
  • S2 Provide a first glass plate 11 and a second glass plate 13, stack the first glass plate 11, the electric heating film 12 and the second glass plate 13 in sequence to form a laminate 10; wherein the electric heating film 12 is located on the first glass Between the plate 11 and the second glass plate 13, the first glass plate 11 and the second glass plate 13 are bonded and heated.
  • S3 The laminated body 10 is heated and pressurized to form an electrically heated laminated glass.
  • step S1 the specific manufacturing process of the electric heating film 12 is:
  • S11 Provide PVB resin powder and transparent conductive material, and pre-mix PVB resin powder and transparent conductive material to form the first mixture;
  • S12 Provide an extruder, and put the first mixture into the extruder for extrusion processing
  • S14 Provide a functional auxiliary agent, add the functional auxiliary agent to the second mixture, and form an electric heating film 12 after rolling.
  • the manufacturing method of the energized heating laminated glass provided by the embodiment of the application is further described below: the method of manufacturing the energized heating laminated glass provided in the embodiment of the application is formed by mixing transparent conductive materials, plasticizers and functional additives to form an electric heating The film 12, so that when the electric heating film 12 passes current, the transparent conductive materials in it can communicate with each other and release heat, thereby realizing the overall heating of the electric heating film 12.
  • the first glass plate 11, the electric The laminated body 10 formed by the heating film 12 and the second glass plate 13 is heated and pressurized to form an electrically heated laminated glass.
  • the electric heating film 12 therein can be heated, thereby realizing the overall heating of the energized heating laminated glass. Since the manufacturing process of the electric heating film 12 is simple, there is no metal wire in the film, there is no secondary pollution caused by manual bonding during production, the quality of the finished product is high, and there is no risk of short circuit and fire, which significantly improves the efficiency of the electric heating of laminated glass It is safe to use and significantly simplifies the manufacturing process of energized and heated laminated glass.
  • step S3 is specifically:
  • the laminated body 10 that has completed the heat treatment can then be subjected to a vacuum treatment to discharge the excess gas inside the laminated body 10.
  • the laminated body 10 can be subjected to the first pressure treatment, so that the bonding between the first glass plate 11, the electric heating film 12 and the second glass plate 13 is closer.
  • the laminated body 10 is heated again, that is, the second heating treatment, so that the contact area between the electric heating film 12 and the first glass plate 11 and the second glass plate 13 is sufficiently large. There is no gap between.
  • a second pressure treatment is performed to make the adhesion between the electric heating film 12 and the first glass plate 11 and the second glass plate 13 closer, and finally an electric heating laminated glass is formed.
  • the preheating temperature of the preheating treatment is 30°C-50°C.
  • the preheating temperature of the preheating may be 30°C, 31°C, 32°C, 33°C, 34°C, 35°C, 36°C, 37°C, 38°C, 39°C, 40°C, 41°C, 42°C , 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C or 50°C.
  • the preheating temperature of the preheating is 32°C to 41°C. Specifically, by limiting the preheating temperature to 32°C to 41°C, on the one hand, it is ensured that the laminated body 10 can have a relatively reasonable temperature gradient during heating, and on the other hand, the preheating temperature is also restricted from being too high or too low. This allows the laminated body 10 to have a reasonable temperature gradient, while avoiding the phenomenon of stress accumulation in the glass plate of the laminated body 10 caused by the excessively high preheating temperature.
  • the heating temperature of the first heat treatment is 100°C to 110°C.
  • the heating temperature may be 100°C, 101°C, 102°C, 103°C, 104°C, 105°C, 106°C, 107°C, 108°C, 109°C or 110°C.
  • the heating temperature of the first heating treatment is 106°C. Specifically, by setting the heating temperature to 106°C, it is possible to ensure that the first glass plate 11 and the second glass plate 13 and the electric heating film 12 are fully bonded while avoiding the damage of the electric heating film 12 due to overheating. Its organizational structure.
  • the vacuum degree of the vacuum treatment is -0.15Mpa ⁇ -0.10MPa.
  • the degree of vacuum may be -0.15Mpa, -0.14Mpa, -0.13Mpa, -0.12Mpa, -0.11Mpa, or -0.10Mpa.
  • the pressure value of the first pressurization treatment is 0.3 MPa to 0.45 MPa.
  • the pressure value of the first pressure treatment can be 0.3MPa, 0.31MPa, 0.32MPa, 0.33MPa, 0.34MPa, 0.35MPa, 0.36MPa, 0.37MPa, 0.38MPa, 0.39MPa, 0.40MPa, 0.41MPa, 0.42MPa, 0.43MPa, 0.44MPa or 10.45MPa.
  • the pressure value of the first pressurization treatment is 0.3MPa ⁇ 0.45MPa. In this way, the tightness of the bonding between the first glass plate 11 and the second glass plate 13 and the electric heating film 12 can be significantly improved, and the first glass plate 11 and the second glass plate 13 and the electric heating film 12 are initially firmly combined.
  • the heating temperature of the second heating treatment is 140°C to 150°C.
  • the heating temperature of the second heating treatment may be 140°C, 141°C, 142°C, 143°C, 144°C, 145°C, 146°C, 147°C, 148°C, 149°C, or 150°C.
  • the pressure value of the second pressurization treatment is 0.65MPa ⁇ 0.75Mpa.
  • the pressure value of the second pressure treatment may be 0.65MPa, 0.66MPa, 0.67MPa, 0.68MPa, 0.69MPa, 0.70MPa, 0.71MPa, 0.72MPa, 0.73MP6a, 0.74MPa or 0.75MPa.
  • the pressure value of the second pressurization treatment is 0.65MPa ⁇ 0.75Mpa. In this way, the laminated body 10 after the first pressure treatment is subjected to greater pressure, which can make the bonding between the first glass plate 11 and the second glass plate 13 and the electric heating film 12 closer.
  • the settings of the first pressure treatment and the second pressure treatment also provide a reasonable pressure gradient for the laminated body 10, so that the laminated body 10 can gradually lift its first glass under the overlapping action of heating and pressure.
  • step S2 the first glass plate 11, the electric heating film 12, and the second glass plate 13 are superimposed in a clean air environment to form the laminated body 10. Specifically, by making the first glass plate 11, the electric heating film 12, and the second glass plate 13 form the laminated body 10 in a clean air environment, the first glass plate 11, the electric heating film 12, and the second glass plate 13 can be avoided. Impurities are introduced in the process of mutual bonding, which affects the bonding quality of the first glass plate 11, the electric heating film 12 and the second glass plate 13.
  • the functional auxiliary agent is a mixture of an antioxidant and an ultraviolet absorber.
  • the electric heating film 12 added with the functional auxiliary agent can not only have electric heating properties, but also have oxidation resistance and UV protection Performance, which delays the aging of the electric heating film 12 when exposed to sunlight.
  • the laminated glass with the electric heating film 12 has a certain anti-ultraviolet performance.
  • the antioxidant accounts for 0.2% to 0.4% of the electric heating film 12.
  • the proportion of antioxidants can be 0.2%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, 0.30%, 0.31%, 0.32%, 0.33 %, 0.34%, 0.35%, 0.36%, 0.37%, 0.38%, 0.39%, 0.4%.
  • the ultraviolet absorber accounts for 0.2% to 0.3% of the electric heating film 12.
  • the ultraviolet absorber can account for 0.2%, 0.21%, 0.22%, 0.23%, 0.24%, 0.25%, 0.26%, 0.27%, 0.28%, 0.29%, or 0.30%.
  • the embodiment of the present application also provides an electrically heated laminated glass, which is prepared by the following steps:
  • S1 Provide PVB resin powder, transparent conductive materials, plasticizers and functional additives, heat and mix PVB resin powder, transparent conductive materials, plasticizers and functional additives to form an electric heating mixture;
  • S3 Provide a first glass plate 11 and a second glass plate 13, and stack the first glass plate 11, the electric heating film 12, and the second glass plate 13 in order to form a laminated body 10;
  • the energized heating laminated glass of the present application is prepared by adopting the above process steps, and the above process steps can form an electric heating film 12 between two glass plates.
  • the energized heating laminated glass has the energized heating function, which can remove the fog, ice, frost, rain, snow and other substances on the glass that affect the glass transmittance, and because the manufacturing process of the electric heating film 12 is simple and there is no short circuit to catch fire Risk, this improves the safety of the energized heating laminated glass, and at the same time significantly simplifies the manufacturing process of the energized laminated glass.

Landscapes

  • Joining Of Glass To Other Materials (AREA)

Abstract

一种通电加热夹层玻璃的制造方法,包括以下步骤:S1:提供PVB树脂粉,透明导电材料,增塑剂和功能助剂,经挤出流延制成电加热膜(12);S2:提供第一玻璃板(11)和第二玻璃板(13),将第一玻璃板(11),电加热膜(12)和第二玻璃板(13)依序叠加形成层叠体(10);S3:将层叠体(10)进行加热加压,以形成通电加热夹层玻璃。如此,通电加热夹层玻璃内的电加热膜(12)即可实现通电加热夹层玻璃的整体加热。还提供一种以该方法制备的通电加热夹层玻璃。

Description

通电加热夹层玻璃及其制造方法 技术领域
本申请属于夹层玻璃技术领域,尤其涉及一种通电加热夹层玻璃及其制造方法。
背景技术
近年来,随着技术的进步,夹层玻璃的应用已逐渐深入到各行各业中。比如汽车后档玻璃,多用夹层玻璃制成。而由于汽车后档玻璃需要加热消除霜雾,因此用于汽车后档玻璃的夹层玻璃通常都需要贴设加热元件。
现有技术中,通常是在夹层玻璃的夹层区域排布极细的发热丝。如此虽可实现对夹层玻璃的有效加热,但这种加热方式的实现工艺较为复杂,且一旦发热丝短路,易起火,存在有安全隐患。
技术问题
本申请实施例的目的在于:第一方面:提供一种通电加热夹层玻璃的制造方法,用以解决现有技术中的夹层玻璃中间设置发热丝,导致制造工艺复杂化且存在安全隐患的技术问题。
第二方面,提供一种通电加热夹层玻璃,用以解决现有技术中通电加热夹层玻璃的制造工艺较为复杂的技术问题。
技术解决方案
为解决上述技术问题,本发明实施例采用的技术方案是:
第一方面,提供了一种通电加热夹层玻璃的制造方法,包括以下步骤:
S1:提供PVB树脂粉、透明导电材料、增塑剂和功能助剂,将所述PVB树脂粉、所述透明导电材料、所述增塑剂和所述功能助剂加热并混合均匀,以形成电加热混合料;
S2:将所述电加热混合料经挤出流延制成电加热膜;
S3:提供第一玻璃板和第二玻璃板,将所述第一玻璃板、所述电加热膜和所述第二玻璃板依序叠加形成层叠体;
S4:将所述层叠体在压力环境下进行加热,以形成通电加热夹层玻璃。
进一步地,所述步骤S3具体为:
S31:将所述层叠体进行预热处理;
S32:将预热处理后的所述层叠体进行第一次加热处理;
S43:将第一次加热处理后的所述层叠体进行抽真空处理;
S34:将抽真空处理后的所述层叠体进行第一次加压处理;
S35:将第一次加压处理后的所述层叠体进行第二次加热处理;
S36:将第二次加热处理后的所述层叠体进行第二次加压处理。
进一步地,在所述步骤S31中,预热处理的预热温度为30℃~50℃。
进一步地,在所述步骤S31中,预热处理的预热温度为32℃~41℃。
进一步地,在所述步骤S32中,第一次加热处理的加热温度为100℃~110℃。
进一步地,在所述步骤S32中,第一次加热处理的加热温度为106℃。
进一步地,在所述步骤S43中,抽真空处理的真空度为-0.15Mpa~-0.10MPa。
进一步地,在所述步骤S34中,第一次加压处理的压力值为0.3MPa~0.45MPa。
进一步地,在步骤S35中,第二次加热处理的加热温度为140℃~150℃。
进一步地,在所述步骤S36中,第二次加压处理的压力值为0.65MPa~0.75Mpa。
进一步地,在所述步骤S2中,所述第一玻璃板、所述电加热膜和所述第二玻璃板在洁净空气环境中叠加形成所述层叠体。
进一步地,所述功能助剂为抗氧剂和紫外线吸收剂的混合物。
进一步地,所述抗氧剂在所述电加热混合料中占比0.2%~0.4%。
进一步地,紫外线吸收剂在所述电加热混合料中占比0.2%~0.3%。
第二方面,提供了一种通电加热夹层玻璃,由以下步骤制得:
S1:提供PVB树脂粉、透明导电材料、增塑剂和功能助剂,将所述PVB树脂粉、所述透明导电材料、所述增塑剂和所述功能助剂加热并混合均匀,以形成电加热混合料;
S2:将所述电加热混合料经挤出流涎制成电加热膜;
S3:提供第一玻璃板和第二玻璃板,将所述第一玻璃板、所述电加热膜和所述第二玻璃板依序叠加形成层叠体;
S4:将所述层叠体在压力环境下进行加热,以形成所述通电加热夹层玻璃。
有益效果
与现有技术相比,本申请实施例提供的通电加热夹层玻璃的制造方法的有益效果在于:本申请实施例提供的通电加热夹层玻璃的制造方法,通过将透明导电材料、增塑剂和功能助剂混合并形成电加热膜,这样当电加热膜通过有电流时,其内的透明导电材料即可相互导通并释放出热量,进而实现了对电加热膜的整体加热,由第一玻璃板、电加热膜和第二玻璃板形成的层叠体经加热加压后,即可形成通电加热夹层玻璃。如此,当通电加热夹层玻璃通电后,其内的电加热膜即可实现加热,进而实现通电加热夹层玻璃的整体加热。由于电加热膜的制造工艺简单,且无短路起火风险,这样便显著提升了通电加热夹层玻璃的使用安全性,同时也显著简化了通电加热夹层玻璃的制造工艺。
本申请实施例提供的通电加热夹层玻璃的有益效果在于:本申请实施例提供的通电加热夹层玻璃,由于采用上述工艺步骤制得,而上述工艺步骤能够在两玻璃板之间形成有一层电加热膜。这样便使得通电加热夹层玻璃具备了通电加热功能,又由于电加热膜的制造工艺简单且无短路起火风险,这样提升了通电加热夹层玻璃的使用安全性,同时也显著简化了通电加热夹层玻璃的制造工艺。
附图说明
图1为本申请实施例提供的通电加热夹层玻璃的制造方法的工艺流程图;
图2为图1中步骤S1的一种实现方法的流程图;
图3为图1中步骤S3的一种实现方法的流程图;
图4为本申请实施例提供的通电加热夹层玻璃的结构示意图。
其中,图中各附图标记:
10—层叠体              11—第一玻璃板           12—电加热膜
13—第二玻璃板。
本发明的实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图1~4描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
如图1~3所示,本申请实施例提供了一种通电加热夹层玻璃的制造方法,包括以下步骤:
S1:提供PVB树脂粉、透明导电材料、增塑剂和功能助剂,PVB树脂粉、透明导电材料、增塑剂和功能助剂经挤出流延制成电加热膜12,制成的电加热膜12的表面具有一定的粗糙度。具体地,在步骤S1中,透明导电材料可采用纳米级的透明导电材料,具体可为氧化锌-石墨烯粉末。而氧化锌-石墨烯粉末所形成的透明导电材料的透光率可达40%~50%。因此可使得电加热膜12具有足够的透光性,进而也使得含有电加热膜12的夹层玻璃呈半透明状态,使其能够被用于汽车的后档玻璃上。而增塑剂可以是含有导电因子的3GO增塑剂(三甘醇二异辛酸酯)。功能助剂可以是抗氧剂和紫外线吸收剂的混合物。
S2:提供第一玻璃板11和第二玻璃板13,将第一玻璃板11、电加热膜12和第二玻璃板13依序叠加形成层叠体10;其中,电加热膜12位于第一玻璃板11和第二玻璃板13之间,以起到对第一玻璃板11和第二玻璃板13粘接和加热的作用。
S3:将层叠体10进行加热加压,以形成通电加热夹层玻璃。
进一步地,在步骤S1中,电加热膜12的具体制造工艺为:
S11:提供PVB树脂粉和透明导电材料,将PVB树脂粉和透明导电材料进行预混合以形成第一混合料;
S12:提供挤压机,将第一混合料放入挤压机内进行挤压处理;
S13:提供增塑剂,将增塑剂添加入挤压处理后的第一混合料中以形成第二混合料;
S14:提供功能助剂,将功能助剂添加入第二混合料中并经辊压处理形成电加热膜12。
以下对本申请实施例提供的通电加热夹层玻璃的制造方法作进一步说明:本申请实施例提供的通电加热夹层玻璃的制造方法,通过将透明导电材料、增塑剂和功能助剂混合并形成电加热膜12,这样当电加热膜12通过有电流时,其内的透明导电材料即可相互导通并释放出热量,进而实现了对电加热膜12的整体加热,由第一玻璃板11、电加热膜12和第二玻璃板13形成的层叠体10经加热加压后,即可形成通电加热夹层玻璃。如此,当通电加热夹层玻璃通电后,其内的电加热膜12即可实现加热,进而实现通电加热夹层玻璃的整体加热。由于电加热膜12的制造工艺简单,膜片内无金属丝,制作时无人工操作粘合产生的二次污染,成品质量高,且无短路起火风险,这样便显著提升了通电加热夹层玻璃的使用安全性,同时也显著简化了通电加热夹层玻璃的制造工艺。
在本申请的另一实施例中,如图3所示,步骤S3具体为:
S31:将层叠体10进行预热处理;
S32:将预热处理后的层叠体10进行第一次加热处理;
S43:将第一次加热处理后的层叠体10进行抽真空处理;
S34:将抽真空处理后的层叠体10进行第一次加压处理;
S35:将第一次加压处理后的层叠体10进行第二次加热处理;
S36:将第二次加热处理后的层叠体10进行第二次加压处理。
具体地,通过对层叠体10在加热前进行预热处理,这样便避免了突然对层叠体10进行高温加热而导致其内部应力激增的现象发生。完成加热处理的层叠体10随即可进行抽真空处理,以排出层叠体10内部的多余气体。完成抽真空处理后,便可对层叠体10进行第一次加压处理,使得第一玻璃板11、电加热膜12和第二玻璃板13之间的结合更为紧密。在完成第一加压处理后,再次对层叠体10进行加热处理,也就是第二次加热处理,使得电加热膜12与第一玻璃板11和第二玻璃板13的接触面积足够大,彼此之间无缝隙。随后进行第二加压处理,以使得电加热膜12与第一玻璃板11和第二玻璃板13之间的粘接更为紧密,最终形成通电加热夹层玻璃。
在本申请的另一实施例中,在步骤S31中,预热处理的预热温度为30℃~50℃。具体地,预热处理的预热温度可为30℃、31℃、32℃、33℃、34℃、35℃、36℃、37℃、38℃、39℃、40℃、41℃、42℃、43℃、44℃、45℃、46℃、47℃、48℃、49℃或50℃。通过将预热温度限定为30℃~50℃,如此可保证层叠体10在加热处理时,呈比较合理的温度梯度进行升温。
在本申请的另一实施例中,在步骤S31中,预热处理的预热温度为32℃~41℃。具体地,通过将预热温度限定为32℃~41℃,一方面保证了层叠体10在加热时能够具有比较合理的温度梯度,另一面也限制了预热温度不会过高或过低,使得层叠体10在具有合理的温度梯度的同时,也避免预热温度过高而造成层叠体10的玻璃板出现应力积聚的现象。
在本申请的另一实施例中,在步骤S32中,第一次加热处理的加热温度为100℃~110℃。具体地,加热温度可为100℃、101℃、102℃、103℃、104℃、105℃、106℃、107℃、108℃、109℃或110℃。通过将层叠体10在100℃~110℃的温度区间内进行加热,这样层叠体10内的第一玻璃板11和第二玻璃板13与电加热膜12之间即可充分结合,使得电加热膜12的外表面软化并附着在第一玻璃板11和第二玻璃板13上,进而消除彼此所存在的缝隙。
在本申请的另一实施例中,在步骤S32中,第一次加热处理的加热温度为106℃。具体地,通过将加热温度设定为106℃,如此可在保证第一玻璃板11和第二玻璃板13与电加热膜12之间充分结合的同时,也避免了电加热膜12过热而破坏其组织结构。
在本申请的另一实施例中,在步骤S43中,抽真空处理的真空度为-0.15Mpa~-0.10MPa。具体地,真空度可为-0.15Mpa、-0.14Mpa、-0.13Mpa、-0.12Mpa、-0.11Mpa或-0.10Mpa。通过将真空度设定为-0.15Mpa~-0.10MPa。如此便保证了第一玻璃板11和第二玻璃板13均紧贴于电加热膜12,进而使得第一玻璃板11和第二玻璃板13与电加热膜12之间的多余气体有效排出,提升了第一玻璃板11和第二玻璃板13与电加热膜12之间的结合紧密性。
在本申请的另一实施例中,如图所示,在步骤S34中,第一次加压处理的压力值为0.3MPa~0.45MPa。具体地,第一次加压处理的压力值可为0.3MPa、0.31MPa、0.32MPa、0.33MPa、0.34MPa、0.35MPa、0.36MPa、0.37MPa、0.38MPa、0.39MPa、0.40MPa、0.41MPa、0.42MPa、0.43MPa、0.44MPa或10.45MPa。通过将第一次加压处理的压力值为0.3MPa~0.45MPa。这样可显著提升第一玻璃板11和第二玻璃板13与电加热膜12之间的结合紧密性,形成第一玻璃板11和第二玻璃板13与电加热膜12的初步稳固结合。
在本申请的另一实施例中,在步骤S35中,第二次加热处理的加热温度为140℃~150℃。具体地,第二次加热处理的加热温度可为140℃、141℃、142℃、143℃、144℃、145℃、146℃、147℃、148℃、149℃或150℃。通过将第二次加热处理的加热温度设定为140℃~150℃,这样层叠体10在经过第一加热和加压后,再经过第二次加热,其第一玻璃板11和第二玻璃板13与电加热膜12之间便能够更为充分的接触和结合。如此,完成第二加热后进行第二次加压处理,便进一步地提升了第一玻璃板11和第二玻璃板13与电加热膜12之间的结合紧密性。使得最终形成的夹层玻璃整体较佳。
在本申请的另一实施例中,在步骤S36中,第二次加压处理的压力值为0.65MPa~0.75Mpa。具体地,第二次加压处理的压力值可为0.65MPa、0.66MPa、0.67MPa、0.68MPa、0.69MPa、0.70MPa、0.71MPa、0.72MPa、0.73MP6a、0.74MPa或0.75MPa。通过将第二次加压处理的压力值为0.65MPa~0.75Mpa。如此,完成第一加压处理的层叠体10受到更大的压力作用,便可使得其第一玻璃板11和第二玻璃板13与电加热膜12之间的结合更为紧密。而第一次加压处理和第二加压处理的设定也为层叠体10提供了合理的加压压力梯度,使得层叠体10能够在加热和加压交叠作用下逐步提升其第一玻璃板11和第二玻璃板13与电加热膜12之间的结合紧密度。进一步地,层叠体10可在压辊的作用下实现第一加压处理和第二次加压处理。
在本申请的另一实施例中,在步骤S2中,第一玻璃板11、电加热膜12和第二玻璃板13在洁净空气环境中叠加形成层叠体10。具体地,通过使得第一玻璃板11、电加热膜12和第二玻璃板13在洁净空气环境中形成层叠体10,这样可避免第一玻璃板11、电加热膜12和第二玻璃板13在相互贴合的过程中进入杂质,影响第一玻璃板11、电加热膜12和第二玻璃板13的贴合品质。
在本申请的另一实施例中,功能助剂为抗氧剂和紫外线吸收剂的混合物。具体地,通过将功能助剂设定为抗氧剂和紫外线吸收剂的混合物,那么加入功能助剂的电加热膜12便能够在具有电加热特性的同时,也具备了抗氧化性和防紫外线性能,这样便延缓了电加热膜12受到阳光照射时的老化现象。同时也使得具有电加热膜12的夹层玻璃具有一定的防紫外线性能。
在本申请的另一实施例中,抗氧剂在电加热膜12中占比0.2%~0.4%。具体地,抗氧剂占比可为0.2%、0.21%、0.22%、0.23%、0.24%、0.25%、0.26%、0.27%、0.28%、0.29%、0.30%、0.31%、0.32%、0.33%、0.34%、0.35%、0.36%、0.37%、0.38%、0.39%、0.4%。通过将抗氧剂的占比设定为0.2%~0.4%,这样便合理控制了抗氧化剂在电加热膜12中的用量,避免了抗氧化剂过多而造成资料浪费,也避免了抗氧化剂过少而导致电加热膜12的抗氧化性能不足。
在本申请的另一实施例中,紫外线吸收剂在电加热膜12中占比0.2%~0.3%。具体地,紫外线吸收剂占比可为0.2%、0.21%、0.22%、0.23%、0.24%、0.25%、0.26%、0.27%、0.28%、0.29%或0.30%。通过将紫外线吸收剂的占比设定为0.2%~0.3%,这样便合理控制了紫外线吸收剂在电加热膜12中的用量,避免了紫外线吸收剂过多而影响电加热膜12的导电性能。
如图4所示,本申请实施例还提供了一种通电加热夹层玻璃,由以下步骤制得:
S1:提供PVB树脂粉、透明导电材料、增塑剂和功能助剂,将PVB树脂粉、透明导电材料、增塑剂和功能助剂加热并混合均匀,以形成电加热混合料;
S2:将电加热混合料经挤出流涎制成电加热膜12;
S3:提供第一玻璃板11和第二玻璃板13,将第一玻璃板11、电加热膜12和第二玻璃板13依序叠加形成层叠体10;
S4:将层叠体10在压力环境下进行加热,以形成通电加热夹层玻璃。
本申请的通电加热夹层玻璃,由于采用上述工艺步骤制得,而上述工艺步骤能够在两玻璃板之间形成有一层电加热膜12。这样便使得通电加热夹层玻璃具备了通电加热功能,能够去除玻璃上的雾气、冰、霜、雨、雪等影响玻璃透光率的物质,又由于电加热膜12的制造工艺简单且无短路起火风险,这样提升了通电加热夹层玻璃的使用安全性,同时也显著简化了通电加热夹层玻璃的制造工艺。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种通电加热夹层玻璃的制造方法,其特征在于:包括以下步骤:
    S1:提供PVB树脂粉、透明导电材料、增塑剂和功能助剂,所述PVB树脂粉、所述透明导电材料、所述增塑剂和所述功能助剂经挤出流涎制成电加热膜;
    S2:提供第一玻璃板和第二玻璃板,将所述第一玻璃板、所述电加热膜和所述第二玻璃板依序叠加形成层叠体;
    S3:将所述层叠体进行加热加压,以形成通电加热夹层玻璃。
  2. 根据权利要求1所述的通电加热夹层玻璃的制造方法,其特征在于:所述步骤S3具体为:
    S31:将所述层叠体进行预热处理;
    S32:将预热处理后的所述层叠体进行第一次加热处理;
    S33:将第一次加热处理后的所述层叠体进行抽真空处理;
    S34:将抽真空处理后的所述层叠体进行第一次加压处理;
    S35:将第一次加压处理后的所述层叠体进行第二次加热处理;
    S36:将第二次加热处理后的所述层叠体进行第二次加压处理。
  3. 根据权利要求2所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S31中,预热处理的预热温度为30℃~50℃。
  4. 根据权利要求3所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S31中,所述预热处理的预热温度为32℃~41℃。
  5. 根据权利要求2所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S32中,第一次加热处理的加热温度为100℃~110℃。
  6. 根据权利要求5所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S32中,所述第一次加热处理的加热温度为106℃。
  7. 根据权利要求2所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S43中,抽真空处理的真空度为-0.15Mpa~-0.10MPa。
  8. 根据权利要求2所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S34中,第一次加压处理的压力值为0.3MPa~0.45MPa。
  9. 根据权利要求2所述的通电加热夹层玻璃的制造方法,其特征在于:在步骤S35中,第二次加热处理的加热温度为140℃~150℃。
  10. 根据权利要求2所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S36中,第二次加压处理的压力值为0.65MPa~0.75Mpa。
  11. 根据权利要求1所述的通电加热夹层玻璃的制造方法,其特征在于:在所述步骤S2中,所述第一玻璃板、所述电加热膜和所述第二玻璃板在洁净空气环境中叠加形成所述层叠体。
  12. 根据权利要求1所述的通电加热夹层玻璃的制造方法,其特征在于:所述功能助剂为抗氧剂和紫外线吸收剂的混合物。
  13. 根据权利要求12所述的通电加热夹层玻璃的制造方法,其特征在于:所述抗氧剂在所述电加热膜中占比0.2%~0.4%。
  14. 根据权利要求12所述的通电加热夹层玻璃的制造方法,其特征在于:紫外线吸收剂在所述电加热膜中占比0.2%~0.3%。
  15. 一种通电加热夹层玻璃,其特征在于:由以下步骤制得:
    S1:提供PVB树脂粉、透明导电材料、增塑剂和功能助剂,所述PVB树脂粉、所述透明导电材料、所述增塑剂和所述功能助剂经挤出流涎制成电加热膜;
    S2:提供第一玻璃板和第二玻璃板,将所述第一玻璃板、所述电加热膜和所述第二玻璃板依序叠加形成层叠体;
    S3:将所述层叠体进行加热加压,以形成所述通电加热夹层玻璃。
PCT/CN2019/087282 2019-05-16 2019-05-16 通电加热夹层玻璃及其制造方法 WO2020228024A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087282 WO2020228024A1 (zh) 2019-05-16 2019-05-16 通电加热夹层玻璃及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/087282 WO2020228024A1 (zh) 2019-05-16 2019-05-16 通电加热夹层玻璃及其制造方法

Publications (1)

Publication Number Publication Date
WO2020228024A1 true WO2020228024A1 (zh) 2020-11-19

Family

ID=73289754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087282 WO2020228024A1 (zh) 2019-05-16 2019-05-16 通电加热夹层玻璃及其制造方法

Country Status (1)

Country Link
WO (1) WO2020228024A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410341A (zh) * 2006-03-23 2009-04-15 株式会社普利司通 夹层玻璃用中间膜、使用它的夹层玻璃及其制造方法
CN102510591A (zh) * 2011-10-18 2012-06-20 江苏铁锚玻璃股份有限公司 一种除雾除霜玻璃膜的制备方法
WO2017216583A1 (en) * 2016-06-17 2017-12-21 Swansea University Glass laminate structure
CN108473372A (zh) * 2016-02-05 2018-08-31 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410341A (zh) * 2006-03-23 2009-04-15 株式会社普利司通 夹层玻璃用中间膜、使用它的夹层玻璃及其制造方法
CN102510591A (zh) * 2011-10-18 2012-06-20 江苏铁锚玻璃股份有限公司 一种除雾除霜玻璃膜的制备方法
CN108473372A (zh) * 2016-02-05 2018-08-31 积水化学工业株式会社 夹层玻璃用中间膜及夹层玻璃
WO2017216583A1 (en) * 2016-06-17 2017-12-21 Swansea University Glass laminate structure

Similar Documents

Publication Publication Date Title
US11679580B2 (en) Ceramic shell, mobile terminal and method for manufacturing ceramic shell
DE112007002114B4 (de) Verfahren zur Herstellung von Solarzellenmodulen für Fahrzeugsonnendächer
EP2832704A1 (en) Ceramic color paste, ceramic color, glass having ceramic color, and manufacturing method thereof
CN104816520B (zh) 基于由非塑化聚乙烯醇缩醛形成的薄膜的具有热辐射隔离性能的复合玻璃层压件
CN102951814A (zh) 金属焊料焊接、条框和沟槽封边的凸面低空玻璃及其制作方法
CN100474983C (zh) 电热膜ptc发热器件的制造方法
CN102951813A (zh) 玻璃焊料焊接、条框和沟槽封边的凸面低空玻璃及其制作方法
WO2020228024A1 (zh) 通电加热夹层玻璃及其制造方法
JP4198845B2 (ja) セラミックヒータの製造方法
CN106810088A (zh) 胶合玻璃制造方法及胶合玻璃
CN105946329A (zh) 一种汽车顶棚的一次干法成型的生产工艺
CN201006634Y (zh) 一种过胶机结构
CN108081690A (zh) 热绝缘的扁平的具有小的构件厚度的构件
KR101651891B1 (ko) 균등 가압구조를 갖는 금속 메쉬필터의 성형장치와, 이를 이용한 금속 메쉬필터 성형방법
CN110588105B (zh) 增厚夹层玻璃及其制作方法
TW583151B (en) Dielectric sheet material for forming plasma display panel
KR101703894B1 (ko) 핫멜트 필름을 이용한 자동차 내장용 표피제 성형장치 및 이를 이용한 성형방법
CN101032860A (zh) 一种过胶方法及使用该方法的过胶机结构
CN102794895A (zh) 一种pvb玻璃夹层膜片生产线及其工作方法
CN110204224A (zh) 通电加热夹层玻璃及其制造方法
CN210940789U (zh) 增厚夹层玻璃
CN105643996B (zh) 一种热塑性蜂窝板材及其制备方法
CN205629963U (zh) 一种a2级防火芯卷连续化生产设备
CN113411917A (zh) 碳纳米管透明发热结构、其制备方法及其制备装置
WO2020228023A1 (zh) 电加热膜的制造方法、电加热膜和通电加热夹层玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/04/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 19928609

Country of ref document: EP

Kind code of ref document: A1