WO2020227849A1 - 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法 - Google Patents

甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法 Download PDF

Info

Publication number
WO2020227849A1
WO2020227849A1 PCT/CN2019/086394 CN2019086394W WO2020227849A1 WO 2020227849 A1 WO2020227849 A1 WO 2020227849A1 CN 2019086394 W CN2019086394 W CN 2019086394W WO 2020227849 A1 WO2020227849 A1 WO 2020227849A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methanol
olefin
regenerated
reaction
Prior art date
Application number
PCT/CN2019/086394
Other languages
English (en)
French (fr)
Inventor
张今令
叶茂
刘中民
周吉彬
张涛
王贤高
唐海龙
王静
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to EP19928705.3A priority Critical patent/EP3967400A4/en
Priority to JP2021563631A priority patent/JP7285336B2/ja
Priority to PCT/CN2019/086394 priority patent/WO2020227849A1/zh
Priority to SG11202111746XA priority patent/SG11202111746XA/en
Priority to US17/609,764 priority patent/US11975315B2/en
Priority to KR1020217035138A priority patent/KR20220006511A/ko
Publication of WO2020227849A1 publication Critical patent/WO2020227849A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/06Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst using steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/14Treating with free oxygen-containing gas with control of oxygen content in oxidation gas
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • B01J38/30Treating with free oxygen-containing gas in gaseous suspension, e.g. fluidised bed
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/82Phosphates
    • C07C2529/84Aluminophosphates containing other elements, e.g. metals, boron
    • C07C2529/85Silicoaluminophosphates (SAPO compounds)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Definitions

  • the application relates to a partial regeneration method of a methanol and/or dimethyl ether to olefin catalyst and a methanol and/or dimethyl ether to olefin method, belonging to the field of chemical catalysts.
  • Ethylene and propylene are important basic raw materials for the national economy and occupy an important strategic position in the development of petrochemical and chemical industries.
  • the raw material for ethylene production in my country is mainly naphtha, which has a relatively high cost.
  • methanol-to-olefins technology starts from coal, uses SAPO-type catalysts, and adopts fluidized bed technology to successfully prepare highly selective low-carbon olefins.
  • carbon deposits lead to deactivation, and carbon burning regeneration is required to restore the activity and selectivity of the catalyst.
  • the regeneration process of the methanol-to-olefin catalyst uses air-based mixed gas as the regeneration gas, and the amount of auxiliary gas in the regeneration feed gas is adjusted to prevent "flying temperature” or "tail combustion” in the regeneration process. phenomenon.
  • this method produces a large amount of greenhouse gas CO 2 , which is not conducive to environmental protection, and reduces the utilization rate of methanol carbon atoms.
  • air-burning carbon is used to partially regenerate the catalyst, the carbon burning rate is relatively fast, which is not conducive to the control of the residual carbon amount of the catalyst and increases the difficulty in the operation process.
  • a partial regeneration method of methanol and/or dimethyl ether to olefin catalyst utilizes the coupling of water vapor and air mixture to activate the deactivated catalyst, and selectively eliminate the catalyst to be regenerated. Partial coke deposits to obtain a methanol-to-olefin catalyst with better olefin selectivity and partial regeneration.
  • the partial regeneration method of the methanol and/or dimethyl ether to olefin catalyst is characterized in that the method includes: passing the mixed gas into the regeneration zone containing the catalyst to be regenerated, and performing partial regeneration reaction to obtain the regenerated catalyst;
  • the mixed gas contains water vapor and air
  • At least a part of the regenerated catalyst has a coke content greater than 1%.
  • the method uses the fluidity of air to increase the selectivity of water vapor to carbon deposits near the active site and increase the reaction activity.
  • the obtained partially regenerated catalyst has better selectivity for low-carbon olefins. Maintain a good methanol conversion rate.
  • the catalyst treated by this method can span or shorten the induction period that a fresh catalyst or a fully regenerated catalyst must go through, so that the catalyst is always in the best performance state.
  • low carbon due to the control of the catalyst residue carbon properties, low carbon can be adjusted
  • the ratio of olefins improves the economy of methanol to olefins.
  • the volume ratio of water vapor to air in the mixed gas ranges from 1:0.001 to 1:0.8;
  • the volume ratio of water vapor to air in the mixed gas ranges from 1:0.01 to 1:0.5;
  • the volume ratio of water vapor to air in the mixed gas ranges from 1:0.01 to 1:0.14.
  • the contact time between the mixed gas and the catalyst to be regenerated is 10 min to 200 min.
  • the coke content of at least a part of the regenerated catalyst is 1.1-8%;
  • the coke content of the regenerated catalyst obtained after the partial regeneration reaction in the regenerator is 2.8%-7.5%.
  • the coke content of the regenerated catalyst mentioned here refers to the coke content of the entire regenerated catalyst.
  • the lower limit of the coke content range of the regenerated catalyst obtained after the partial regeneration reaction in the regenerator is selected from 1.2%, 1.5%, 1.6%, 1.7%, 1.8%, 2%, 2.94%, 3%, 3.89%, 4% ,
  • the upper limit is selected from 2%, 2.94%, 3%, 3.89%, 4%, 4.7%, 5.1%, 5.9%, 6%, 7%, 8%.
  • the coke content of the regenerated catalyst obtained after the partial regeneration reaction in the regenerator is 1.6% to 7%.
  • is the coke content of the catalyst in mass percentage
  • m250°C is the mass of the catalyst when the temperature is raised to 250°C in an air atmosphere
  • m900°C is the mass of the catalyst when the temperature is raised to 900°C.
  • the space velocity of water vapor in the mixed gas introduced into the regenerator is 0.1 h-1-10 h-1, and the space velocity of air is 0.01 h-1-6 h-1.
  • the partial regeneration reaction is carried out under the conditions of 500°C to 700°C;
  • the partial regeneration reaction is carried out at 600-680°C.
  • the coke content of the catalyst to be regenerated is 6%-14%.
  • the methanol-to-olefin catalyst is used for methanol-to-olefin reaction in a fluidized bed reactor, and the deactivated methanol-to-olefin catalyst is transported to the regenerator for partial regeneration reaction, and the regenerated catalyst is obtained as a partially regenerated catalyst. Part of the regenerated catalyst is recycled back to the fluidized bed reactor;
  • the methanol-to-olefin catalyst is a molecular sieve containing silicon aluminum phosphate
  • the methanol to olefin catalyst is a fluidized bed catalyst.
  • olefin refers to ethylene and propylene.
  • a method for producing olefins from methanol and/or dimethyl ether which adopts a fluidized bed reaction process and partially regenerates the catalyst to be regenerated according to the above-mentioned partial regeneration method of methanol to olefin catalyst.
  • the feed gas containing methanol and/or dimethyl ether is passed into a fluidized bed reactor carrying a methanol-to-olefin catalyst for methanol-to-olefin reaction;
  • the catalyst to be regenerated is transported to the regeneration zone, and the mixed gas is introduced into the regeneration zone to perform partial regeneration reaction to obtain a regenerated catalyst;
  • the methanol to olefin catalyst contains silicoaluminophosphate molecular sieve.
  • Figure 1 is a schematic diagram of a method for partially regenerating a catalyst provided by the present invention with water vapor and air;
  • Figure 2 is a graph showing the catalytic performance of the fresh catalyst in Example 1 of the application.
  • Figure 3 is a graph of the catalytic performance test results of sample D1 # in Comparative Example 1 of the application;
  • Figure 4 is a graph of the catalytic performance test results of sample 1 # in Example 2 of the application.
  • Figure 5 is a graph of the catalytic performance test results of sample 2 # in Example 3 of the application.
  • Figure 6 is a graph of the catalytic performance test results of sample 3 # in Example 4 of the application.
  • Figure 7 is a graph of the catalytic performance test results of sample 4 # in Example 5 of the application.
  • Figure 8 is a graph of the catalytic performance test results of sample 5 # in Example 6 of the application.
  • Fig. 9 is a graph showing the catalytic performance test results of sample 6 # agent in Example 7 of the application.
  • Figure 10 is a graph of the catalytic performance test results of sample 7 # in Example 8 of the application.
  • Figure 11 is a graph of the catalytic performance test results of sample 5 # -10 in Example 9 of this application.
  • Figure 12 is a graph of the catalytic performance test results of sample D2 # in Comparative Example 2 of the application.
  • Figure 13 is the XRD spectrum of the samples obtained in Example 1 and Example 9 of this application, where a) is the XRD spectrum of the deactivated catalyst A obtained in Example 1; b) is the sample 5 # -10 obtained in Example 9 XRD spectrum.
  • the catalyst used in this application is a commercially available methanol-to-olefin catalyst.
  • the method for determining the coke content of the catalyst is as follows:
  • the catalyst is heated to 250°C in the air, and the recorded mass is m 250°C ; then the catalyst is heated to 900°C in the air, and the recorded mass is m 900°C ; the carbon deposit of the catalyst is determined by the following formula I:
  • the methanol conversion rate, ethylene selectivity and propylene selectivity in the examples are all calculated based on the number of carbon moles.
  • the XRD characterization of the sample adopts a Philips X'Pert PROX X-ray diffractometer, a copper target, and a K ⁇ radiation source.
  • the working voltage of the instrument is 40kv, and the working current is 40mA.
  • Fig. 1 is a process route diagram of methanol to olefins, which adopts the partial regeneration method of the methanol to olefins catalyst described in this application. Specifically: the raw material containing methanol and/or dimethyl ether is passed into the reactor, and the product gas (ethylene and propylene) after the reaction leaves from the top of the reactor; the deactivated catalyst enters the catalyst regenerator through the stripper; to the catalyst regenerator A mixture of air and water vapor in a specific proportion is introduced into the gas to perform partial regeneration reaction of the deactivated catalyst. The generated CO, H 2 and C 2 O leave the catalyst regenerator, and the regenerated catalyst is returned to the reactor through the riser.
  • the product gas ethylene and propylene
  • the methanol-to-olefin reaction feedstock is methanol with a concentration of 80wt% In aqueous solution, the reaction temperature is 490°C, the pressure is 0.1 MPa, and the methanol space velocity is 2.1 h -1 .
  • the reaction time was 107 minutes, and the methanol conversion rate and olefin selectivity were obtained. The results are shown in Figure 2.
  • deactivated catalyst A The catalyst obtained after the completion of the reaction is referred to as "deactivated catalyst A". It was determined that the coke content of the deactivated catalyst A was 10.2%.
  • the deactivated catalyst A was calcined in a muffle furnace at 600°C for 6 hours to obtain a fully regenerated catalyst, which was recorded as sample D1 # .
  • the coke content of sample D1 # was 0.05%.
  • Example 3 According to the methanol-to-olefin reaction conditions in Example 1, the regenerated catalyst sample D1 # was subjected to the methanol-to-olefin evaluation reaction. The reaction time was 89 minutes. The obtained methanol conversion rate and olefin selectivity results are shown in Figure 3.
  • the reactor Place the deactivated catalyst A in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 650° C. for 10 minutes and the nitrogen is turned off. Then pass in water vapor and air, the volume ratio of water vapor to air is 1:0.4, the mass space velocity of water vapor is 8h -1 , and the mass air velocity is 4.8h -1 , and keep it for 20 minutes.
  • the catalyst coke content was determined to be 1.2%.
  • Example 2 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample # 1. The reaction time was 72 minutes. The methanol conversion rate and olefin selectivity results are shown in Figure 4.
  • Example 2 Place the deactivated catalyst A obtained according to the method of Example 1 in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 680°C for 10 minutes.
  • the volume ratio of water vapor and air is 1:0.02
  • the mass space velocity of water vapor is 2h -1
  • the mass air velocity is 0.06h -1
  • the catalyst coke content was determined to be 1.6%.
  • the reactor temperature was reduced to 490°C and kept constant for 20 minutes to obtain a part of the regenerated catalyst, which was recorded as sample 2 # .
  • Example 2 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample # 2. The reaction time was 72 minutes. The methanol conversion rate and olefin selectivity results are shown in Figure 5.
  • Example 2 Place the deactivated catalyst A obtained according to the method of Example 1 in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 620°C for 10 minutes, and the nitrogen gas is turned off.
  • the coke content of the catalyst coke deposited was 2.8%.
  • Example 2 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample # 3. The reaction time was 72 minutes. The methanol conversion rate and olefin selectivity results are shown in Fig. 6.
  • Example 2 Place the deactivated catalyst A obtained in Example 1 in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 650°C for 10 minutes, and the nitrogen gas is turned off.
  • the volume ratio of water vapor and air is 1:0.1
  • the mass space velocity of water vapor is 6h -1
  • the mass air velocity is 0.9h -1
  • the catalyst coke content was determined to be 4.7%.
  • Example 7 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample # 4. The reaction time was 56 minutes. The methanol conversion rate and olefin selectivity results are shown in Figure 7.
  • Example 2 Place the deactivated catalyst A obtained according to Example 1 in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 600°C for 10 min.
  • the nitrogen is turned off and then passed Into the water vapor and air, the volume ratio of water vapor and air is 1:0.1, the mass space velocity of water vapor is 6h -1 , and the mass air velocity is 0.9h -1 , and it is maintained for 30 minutes.
  • the catalyst coke content was determined to be 5.1%.
  • Example 1 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample # 5. The reaction time was 39 minutes. The methanol conversion rate and olefin selectivity results are shown in Figure 8.
  • Example 1 Place the deactivated catalyst A obtained in Example 1 in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 650°C for 10 minutes, and the nitrogen gas is turned off.
  • the volume ratio of water vapor and air is 1:0.06, the mass space velocity of water vapor is 6h -1 , the mass air velocity is 0.54h -1 , and it is maintained for 50 minutes.
  • the catalyst coke content was determined to be 5.9%.
  • Example 1 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample 6 # . The reaction time was 39 minutes. The methanol conversion rate and olefin selectivity results are shown in Figure 9.
  • Example 2 Place the deactivated catalyst A obtained according to Example 1 in the reactor, and purge the reactor with nitrogen gas at a flow rate of 100 mL/min.
  • the reactor is heated to 550°C for 10 min.
  • the nitrogen is turned off and then passed Enter water vapor and air, the volume ratio of water vapor and air is 1:0.06, the mass space velocity of water vapor is 0.8h -1 , the mass air velocity is 0.072h -1 , and it is maintained for 90 minutes.
  • the catalyst coke content was determined to be 7.5%.
  • Example 1 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample # 7. The reaction time was 39 minutes. The methanol conversion rate and olefin selectivity results are shown in FIG. 10.
  • Example 6 According to the steps and conditions in Example 6, the step of "catalyst regeneration-methanol to olefin reaction" was repeated 10 times, and the partially regenerated catalyst obtained after 10 catalyst regeneration was recorded as sample 5 # -10.
  • Example 1 According to the methanol-to-olefin reaction conditions in Example 1, the methanol-to-olefin evaluation reaction was performed on part of the regenerated catalyst sample 5 # -10. The reaction time was 39 minutes. The methanol conversion rate and olefin selectivity results are shown in Fig. 11.
  • the initial activity was set at 3 minutes of reaction, and the catalyst activity decreased when the methanol (including dimethyl ether) conversion rate was less than 97%.
  • the activity retention time and the reduction of the highest selectivity of the front olefin are important parameters of the methanol-to-olefin reaction result.
  • sample D2 # is obtained after the regeneration atmosphere is a mixture of nitrogen and air.
  • the methanol-to-olefin reaction has initial activity, methanol conversion rate is 99.50%, and olefin selectivity is 70.70%.
  • the activity was maintained for about 37 minutes, the methanol conversion rate of part of the regenerated catalyst in sample D2 # in the comparative example decreased, and the methanol conversion rate was 85.00% when the reaction proceeded for 54 minutes.
  • the olefin selectivity of the partially regenerated catalyst gradually decreased, the highest olefin selectivity was 83.50%, the reaction proceeded for about 54 minutes, and the olefin selectivity was 79.40%.
  • the gas generated after regeneration is mainly H 2 , CO and CH 4 , which reduces the unit consumption of methanol and improves the utilization of C atoms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请公开了一种甲醇和/或二甲醚制烯烃催化剂的部分再生方法,所述方法包括:向含有待再生催化剂的再生区通入混合气,进行部分再生反应得到再生催化剂;所述混合气中含有水蒸气与空气;所述再生催化剂中,至少一部分再生催化剂的焦炭含量大于1%。该方法利用水蒸气和空气混合气耦合活化失活催化剂,选择性地消除待再生催化剂中的部分积炭,得到部分再生的甲醇制烯烃催化剂。本申请的另一方面还提供了一种该方法再生得到的部分再生甲醇制烯烃催化剂的甲醇和/或二甲醚制烯烃方法。

Description

甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法 技术领域
本申请涉及一种甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法,属于化工催化剂领域。
背景技术
乙烯、丙烯是国民经济重要的基础原料,在石化和化学工业发展中占有重要的战略地位。我国乙烯生产原料主要以石脑油为主,其成本较高。工业上甲醇制烯烃技术从煤出发,利用SAPO类催化剂,采用流化床工艺,成功制备高选择性的低碳烯烃。但SAPO类催化剂在反应一段时间后,积碳导致失活,需要进行烧炭再生,以恢复催化剂的活性和选择性。
在现有技术中,甲醇制烯烃催化剂的再生过程采用以空气为主的混合气作为再生气体,通过调节再生进料气中辅助气体的量,防止再生过程出现“飞温”或者“尾燃”现象。
但是,这种方法产生大量的温室气体CO 2,不利于环境保护,而且降低了甲醇碳原子的利用率。此外,若利用空气烧炭对催化剂进行部分再生,其烧炭速率较快,不利于催化剂残炭量的控制,增加操作过程中的难度。
发明内容
根据本申请的一个方面,提供了一种甲醇和/或二甲醚制烯烃催化剂的部分再生方法,该方法利用水蒸气和空气混合气耦合活化失活催化剂,选择性地消除待再生催化剂中的部分积炭,得到具有较好烯烃选择性地部分再生的甲醇制烯烃催化剂。
所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,所述方法包括:向含有待再生催化剂的再生区通入混合气,进行部分再生反应得到再生催化剂;
所述混合气中含有水蒸气与空气;
所述再生催化剂中,至少一部分再生催化剂的焦炭含量大于1%。
该方法通过将空气与水蒸气混合,利用空气的流动性,提高水蒸气对活性位点附近积碳的选择性,提高反应活性,所得部分再生催化剂具有更好的低碳烯烃选择性的同时,保持了较好的甲醇转换率。
只用空气再生时(或空气含量较高时),再生速率快,通过空气烧炭对催化剂进行部分再生,会使催化剂残炭性质发生较大变化,含焦炭的再生催化剂在反应过程中催化作用减弱,低碳烯烃选择性 不能达到最大值。而只用水蒸气再生时,催化剂残炭的性质及含量可以通过温度、空速和时间等条件进行控制,从而保证和提高产物中低碳烯烃的选择性。但水蒸气氧化性太弱,需要再生温度高,再生时间长,并容易引起碳的累积,再生寿命不理想。
具体而言,在空气含量较低的水蒸气和空气混合气的作用下,同时发挥两种气氛的优势,互补劣势。避免了传统空气无选择性深度烧炭过程中产生的大量温室气体CO 2,同时部分再生后的催化剂可以提高MTO反应产物中的烯烃选择性,提高MTO的经济性。
该方法处理后的催化剂可跨过或缩短新鲜催化剂或完全再生的催化剂所必须经过的诱导期,使催化剂一直处于最佳的性能状态,同时,由于对催化剂残炭性质的控制,可调控低碳烯烃比例,提高了甲醇制烯烃的经济性。
可选地,所述混合气中水蒸气和空气的体积比范围为1:0.001~1:0.8;
优选地,所述混合气中水蒸气和空气的体积比范围为1:0.01~1:0.5;
进一步优选地,所述混合气中水蒸气和空气的体积比范围为1:0.01~1:0.14。
可选地,所述部分再生反应中,所述混合气与待再生催化剂的接触时间为10min~200min。
可选地,至少一部分所述再生催化剂的焦炭含量为1.1~8%;
优选地,所述再生器中进行部分再生反应后得到的所述再生催化剂的焦炭含量为2.8%~7.5%。此处所述再生催化剂的焦炭含量,是指再生催化剂整体的焦炭含量。
再生器中进行部分再生反应后得到的所述再生催化剂的焦炭含量范围下限选自1.2%、1.5%、1.6%、1.7%、1.8%、2%、2.94%、3%、3.89%、4%,上限选自2%、2.94%、3%、3.89%、4%、4.7%、5.1%、5.9%、6%、7%、8%。
进一步优选地,再生器中进行部分再生反应后得到的所述再生催化剂的焦炭含量为1.6%~7%。
本申请中,催化剂的焦炭含量ω的计算公式为如下式I所示:
焦炭含量ω=(m250℃-m900℃)/m250℃×100%  式I
式I中,ω为以质量百分比计的催化剂的焦炭含量,m250℃为催化剂在空气气氛下室温升温到250℃时催化剂的质量,m900℃为升温到900℃时催化剂的质量。
可选地,向再生器中通入的所述混合气中水蒸气空速为0.1h-1~10h-1,空气的空速为0.01h-1~6h-1。
可选地,所述部分再生反应在500℃~700℃的条件下进行;
优选地,所述部分再生反应在600~680℃条件下进行。
可选地,所述待再生催化剂的焦炭含量为6%~14%。
可选地,甲醇制烯烃催化剂在流化床反应器中进行甲醇制烯烃反应,将失活的甲醇制烯烃催化剂输送至再生器中进行部分再生反应,得到再生催化剂为部分再生催化剂,将所述部分再生催化剂循环回所述流化床反应器;
所述甲醇制烯烃催化剂为含磷酸硅铝的分子筛;
所述甲醇制烯烃催化剂为流化床催化剂。
本申请中,“烯烃”,是指:乙烯和丙烯。
根据本申请的又一个方面,提供了一种甲醇和/或二甲醚制烯烃方法,采用流化床反应工艺,根据上述的甲醇制烯烃催化剂的部分再生方法,对待再生催化剂进行部分再生。
可选地,将含有甲醇和/或二甲醚的原料气通入载有甲醇制烯烃催化剂的流化床反应器进行甲醇制烯烃反应;
将待再生催化剂输送至再生区,并向再生区通入所述混合气,进行部分再生反应得到再生催化剂;
将所述再生催化剂返回至所述流化床反应器
可选地,所述甲醇制烯烃催化剂中含有磷酸硅铝分子筛。
本申请能产生的有益效果包括:
1)采用水蒸气和空气混合物作为再生气对催化剂中的积炭进行气化部分再生,其气化产物以CO、H 2为主,少量的CO 2,可以循环再次利用,提高了甲醇碳原子的利用率;
2)通过调节水蒸气和空气的比例,分别发挥两者优势,有利于催化剂残炭性质和含量的控制,水蒸气汽化积碳反应需在催化剂活性位附近,少量的空气可加快活性位炭的转变,从而有选择性地消除积炭;
3)用水蒸气和空气混合部分再生的催化剂进行MTO反应,能够使初始低碳烯烃的选择性为完全再生的催化剂的62%左右提高到65%-83%范围之内,并保证其最高选择性;
4)用水蒸气和空气混合部分再生的催化剂进行MTO反应,反应物甲醇接近完全转化,转化率与新鲜剂相同,都接近100%。
附图说明
图1为本发明提供的水蒸气和空气耦合部分再生催化剂方法示意图;
图2为本申请实施例1中新鲜催化剂的催化性能结果图;
图3为本申请对比例1中样品D1 #的催化性能测试结果图;
图4为本申请实施例2中样品1 #的催化性能测试结果图;
图5为本申请实施例3中样品2 #的催化性能测试结果图;
图6为本申请实施例4中样品3 #的催化性能测试结果图;
图7为本申请实施例5中样品4 #的催化性能测试结果图;
图8为本申请实施例6中样品5 #的催化性能测试结果图;
图9为本申请实施例7中样品6 #剂的催化性能测试结果图;
图10为本申请实施例8中样品7 #的催化性能测试结果图;
图11为本申请实施例9中样品5 #-10的催化性能测试结果图;
图12为本申请对比例2中样品D2 #的催化性能测试结果图;
图13为本申请实施例1和实施例9所得样品的XRD谱图,其中a)为实施例1中所得失活催化剂A的XRD谱图;b)为实施例9中所得样品5 #-10的XRD谱图。
具体实施方式
下面结合实施例详述本发明,但本发明并不局限于这些实施例。
本申请中所用催化剂为市售甲醇制烯烃催化剂。
催化剂的焦炭含量测定方法如下:
将催化剂在空气中升温至250℃,记录质量为m 250℃;再将催化剂在空气中升温至900℃,记录质量为m 900℃;则催化剂的积碳量有下式I确定:
焦炭含量ω=(m 250℃-m 900℃)/m 250℃×100%  式I
实施例中的甲醇转化率、乙烯选择性和丙烯选择性,均基于碳摩尔数计算。
实施例中,样品的XRD表征采用仪器为Philips X’Pert PROX型X射线衍射仪,铜靶,K α辐射源
Figure PCTCN2019086394-appb-000001
仪器工作电压为40kv,工作电流为40mA。
图1是一种甲醇制烯烃的工艺路线图,其采用了本申请所述甲醇制烯烃催化剂的部分再生方法。 具体为:含有甲醇和/或二甲醚的原料通入反应器中,反应后产品气(乙烯和丙烯)从反应器顶部离开;失活催化剂经汽提器进入催化剂再生器;向催化剂再生器中通入特定比例的空气和水蒸气的混合气,进行失活催化剂的部分再生反应,生成的CO、H 2、C 2O从催化剂再生器离开,再生催化剂经提升管返回反应器。
实施例1
将4g商业所用甲醇制烯烃催化剂,活性组分为SAPO-34,编号DMTO-1,装填到固定流化床反应器中,进行甲醇制烯烃的反应,甲醇制烯烃反应原料为浓度80wt%的甲醇水溶液,反应温度为490℃,压力为0.1MPa,甲醇空速为2.1h -1。反应时间为107分钟,得到甲醇转化率和烯烃选择性,结果见图2。
反应结束后所得催化剂记为“失活催化剂A”。经测定,失活催化剂A的焦炭含量为10.2%。
对比例1
在马弗炉内600℃下焙烧失活催化剂A6小时,得到完全再生催化剂,记为样品D1 #。测定样品D1 #的焦炭含量为0.05%。
按照实施例1中甲醇制烯烃的反应条件,对再生催化剂样品D1 #进行甲醇制烯烃评价反应,反应时间为89分钟,所得甲醇转化率和烯烃选择性结果见图3。
实施例2
将失活催化剂A置于反应器中,向反应器中通入流量为100mL/min的氮气气体吹扫,反应器升温至650℃,恒定10min,关闭氮气。然后通入水蒸气和空气,水蒸气和空气体积比为1:0.4,水蒸气质量空速为8h -1,空气质量空速为4.8h -1,保持20min。测定催化剂焦炭含量为1.2%。
切换成氮气气氛,反应器温度降至490℃,恒定20min,得到部分再生催化剂,记为样品1 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品1 #进行甲醇制烯烃评价反应,反应时间为72分钟,甲醇转化率和烯烃选择性结果见图4。
实施例3
将按实施例1方法得到的失活催化剂A置于反应器中,向反应器中通入流量为100mL/min的氮气气体吹扫,反应器升温至680℃,恒定10min,关闭氮气,然后通入水蒸气和空气,水蒸气和空气体积比为1:0.02,水蒸气质量空速为2h -1,空气质量空速为0.06h -1,保持180min。测定催化剂焦炭含量为1.6%。
切换成氮气气氛,反应器温度降至490℃,恒定20min,得到部分再生催化剂,记为样品2 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品2 #进行甲醇制烯烃评价反应,反应时间为72分钟,甲醇转化率和烯烃选择性结果见图5。
实施例4
将按实施例1方法得到的失活催化剂A置于反应器中,向反应器中,通入流量为100mL/min的氮气气体吹扫,反应器升温至620℃,恒定10min,关闭氮气,然后通入水蒸气和空气,水蒸气和空气体积比为1:0.14,水蒸气质量空速为3h -1,空气质量空速为0.63h -1,保持60min。测定催化剂积炭焦炭含量为2.8%。
切换成氮气气氛,反应器温度降至490℃,恒定20min后,得到部分再生催化剂,记为样品3 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品3 #进行甲醇制烯烃评价反应,反应时间为72分钟,甲醇转化率和烯烃选择性结果见图6。
实施例5
将按实施例1得到的失活催化剂A置于反应器中,向反应器中,通入流量为100mL/min的氮气气体吹扫,反应器升温至650℃,恒定10min,关闭氮气,然后通入水蒸气和空气,水蒸气和空气体积比为1:0.1,水蒸气质量空速为6h -1,空气质量空速为0.9h -1,保持40min。测定催化剂焦炭含量为4.7%。
切换成氮气气氛,反应器温度降至490℃,恒定20min后,得到部分再生催化剂,记为样品4 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品4 #进行甲醇制烯烃评价反应,反应时间为56分钟,甲醇转化率和烯烃选择性结果见图7。
实施例6
将按实施例1得到的失活催化剂A置于反应器中,向反应器中,通入流量为100mL/min的氮气气体吹扫,反应器升温至600℃,恒定10min,关闭氮气,然后通入水蒸气和空气,水蒸气和空气体积比为1:0.1,水蒸气质量空速为6h -1,空气质量空速为0.9h -1,保持30min。测定催化剂焦炭含量为5.1%。
切换成氮气气氛,反应器温度降至490℃,恒定20min后,得到部分再生催化剂,记为样品5 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品5 #进行甲醇制烯烃评价反应,反应时间为39分钟,甲醇转化率和烯烃选择性结果见图8。
实施例7
将按实施例1得到的失活催化剂A置于反应器中,向反应器中,通入流量为100mL/min的氮气气体吹扫,反应器升温至650℃,恒定10min,关闭氮气,然后通入水蒸气和空气,水蒸气和空气体积比为1:0.06,水蒸气质量空速为6h -1,空气质量空速为0.54h -1,保持50min。测定催化剂焦炭含量为5.9%。
切换成氮气气氛,反应器温度降至490℃,恒定20min后,得到部分再生催化剂,记为样品6 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品6 #进行甲醇制烯烃评价反应,反应时间为39分钟,甲醇转化率和烯烃选择性结果见图9。
实施例8
将按实施例1得到的失活催化剂A置于反应器中,向反应器中,通入流量为100mL/min的氮气气体吹扫,反应器升温至550℃,恒定10min,关闭氮气,然后通入水蒸气和空气,水蒸气和空气体积比为1:0.06,水蒸气质量空速为0.8h -1,空气质量空速为0.072h -1,保持90min。测定催化剂焦炭含量为7.5%。
切换成氮气气氛,反应器温度降至490℃,恒定20min后,得到部分再生催化剂,记为样品7 #
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品7 #进行甲醇制烯烃评价反应,反应时 间为39分钟,甲醇转化率和烯烃选择性结果见图10。
实施例9
按照实施例6中的步骤和条件,重复“催化剂再生—甲醇制烯烃反应”步骤10次,经过10次催化剂再生得到的部分再生催化剂,记为样品5 #-10。
按实施例1中甲醇制烯烃反应条件,对部分再生催化剂样品5 #-10进行甲醇制烯烃评价反应,反应时间为39分钟,甲醇转化率和烯烃的选择性结果见图11。
对比例2
将失活催化剂A置于反应器中,向反应器中通入流量为100mL/min的氮气气体吹扫,反应器升温至650℃,恒定10min,关闭氮气。然后通入氮气和空气,氮气和空气体积比为1:0.1,氮气质量空速为6h -1,空气质量空速为0.9h -1,保持40min,得到再生催化剂,记为样品D2 #。样品D2 #焦炭含为3.5%。
切换成氮气气氛,反应器温度降至490℃,恒定20min后,按实施例1中甲醇制烯烃的反应条件,对再生催化剂样品D2 #进行甲醇制烯烃评价反应,反应时间为72分钟,甲醇转化率和烯烃选择性结果见图12。
实施例10
采用XRD分别对失活催化剂A和样品5 #-10进行表征,结果参见图13,在失活催化剂A(参见图13a))和样品5 #-10(参见图13b))的XRD谱图中,样品5 #-10最高衍射峰的峰强度为失活催化剂A最高衍射峰的峰强度的95%。
说明采用本申请所述的催化剂部分再生方法,经过多次再生的催化剂的结晶度接近新鲜催化剂,说明在本申请所述温度范围内,使用一定比例的水蒸气和空气的混合气进行部分再生催化剂,不会使催化剂发生脱铝,从而实现了催化剂的长久循环利用。
实施例2~9中失活催化剂部分再生处理条件如表1所示。
表1
Figure PCTCN2019086394-appb-000002
甲醇制烯烃的实验结果,设定反应3分钟为初始活性,甲醇(包含二甲醚)转化率低于97%时催化剂活性降低。活性保持时间及降低前烯烃的最高选择性是甲醇制烯烃的反应结果重要参数。
由图2可见,新鲜催化剂的甲醇制烯烃反应初始活性,甲醇转化率为99.57%,烯烃选择性为65.34%。活性维持70分钟后,甲醇转化率发生明显降低,反应70分钟后,新鲜催化剂的烯烃选择性逐渐下降,烯烃最高选择性为86.62%。
由图3可见,以对比例样品D1 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.6%,烯烃选择性为65.9%。活性维持70分钟后,样品D-1 #的甲醇转化率发生明显降低,反应进行90分钟时,甲醇转化率为40%。甲醇制烯烃反应70分钟后,烯烃选择性逐渐下降,烯烃最高活性选择性为86.70%。
由图4可见,以样品1 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.5%,烯烃选择性为66.2%,活性保持54分钟左右后,甲醇转化率降低反应进行70分钟时,甲醇转化率为85%;反应54分钟后,催化剂的烯烃选择性逐渐下降,烯烃最高选择性为84.00%,反应进行70分钟左右,烯烃选择性为77.71%。
由图5可见,以样品2 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率99.30%,烯烃选择性为66.60%。活性保持54分钟左右后,实施例3中部分再生催化剂的甲醇转化率发生降低,反应进行70分钟时,甲醇转化率为85%。甲醇制烯烃反应54分钟后,部分再生催化剂的烯烃选择性逐渐下降, 烯烃最高选择性为85.20%,反应进行70分钟左右,烯烃选择性为78.71%。
由图6可见,以样品3 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.43%,烯烃选择性为69.95%。活性保持54分钟左右后,实施例4中部分再生催化剂的甲醇转化率发生降低,反应进行70分钟时,甲醇转化率为83%。甲醇制烯烃反应55分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为87.01%,反应进行70分钟左右,烯烃选择性为81.05%。
由图7可见,以样品4 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.67%,烯烃选择性为74.26%。活性保持37分钟左右后,实施例5中部分再生催化剂的甲醇转化率发生降低,反应进行54分钟时,甲醇转化率为50%。甲醇制烯烃反应37分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为86.38%,反应进行54分钟左右,烯烃选择性为73.05%。
由图8可见,以样品5 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.73%,烯烃选择性为80.01%。活性保持20分钟左右后,实施例6中部分再生催化剂的甲醇转化率发生降低,反应进行37分钟时,甲醇转化率为50%。甲醇制烯烃反应20分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为85.28%,反应进行37分钟左右,烯烃选择性为67.47%。
由图9可见,以样品6 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.72%,烯烃选择性为79.74%。活性保持3分钟左右后,实施例7中部分再生催化剂的甲醇转化率发生降低,反应进行37分钟时,甲醇转化率为20%。甲醇制烯烃反应3分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为79.74%,反应进行37分钟左右,烯烃选择性为45.2%。
由图10可见,以样品7 #为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.47%,烯烃选择性为82.97%。活性保持3分钟左右时,实施例8中部分再生催化剂的甲醇转化率发生降低,反应进行37分钟时,甲醇转化率为20%。甲醇制烯烃反应3分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为82.97%,反应进行37分钟左右,烯烃选择性为30.72%。
由图11可见,以样品5 #-10为催化剂,甲醇制烯烃反应初始活性,甲醇转化率为99.74%,烯烃选择性为80.48%。活性保持20分钟左右时,实施例9中部分再生催化剂的甲醇转化率发生降低,反应进行37分钟时,甲醇转化率为25%。甲醇制烯烃反应20分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为85.45%,反应进行37分钟左右,烯烃选择性为67.22%。
由图12可见,再生气氛为氮气和空气混合气再生后得到样品D2 #,以样品D2 #为催化剂,,甲醇制烯烃反应初始活性,甲醇转化率为99.50%,烯烃选择性为70.70%。活性保持37分钟左右后,对比例中样品D2 #中部分再生催化剂的甲醇转化率发生降低,反应进行54分钟时,甲醇转化率为85.00%。甲醇制烯烃反应37分钟后,部分再生催化剂的烯烃选择性逐渐下降,烯烃最高选择性为83.50%,反应进行54分钟左右,烯烃选择性为79.40%。
对比图2和图3可以看出,经过完全再生的样品,催化性能与新鲜催化剂差别不大。对比图3与图4~11可以看出,本申请通过使用具有一定配比关系的水蒸气和空气的混合气,对甲醇和/或二甲醚制烯烃催化剂进行部分再生,与完全再生的催化剂相比:初始活性,甲醇转化率均为99%左右且烯烃收率有所提高,尤其是乙烯选择性提高幅度更大,诱导期均有所缩短。在合适的条件下,烯烃最高选择性基本和完全再生的相差不大,甚至更高。这样有利于调节循环流化床进行的甲醇制烯烃反应工艺,并提高烯烃选择性,并且再生后生成气体以H 2、CO和CH 4为主,降低甲醇单耗,提高C原子利用率。
对比图12与图7可以看出,本申请通过使用具有一定配比关系的水蒸气和空气的混合气,对甲醇和/或二甲醚制烯烃结焦催化剂进行部分再生,与使用相同比例的空气与其他气体的混合气作为再生气体的技术方案相比:初始烯烃选择性更高,并且在活性保持的时间内,最高烯烃选择性也更高。再生结焦催化剂后生成气体以H 2、CO和CH 4为主相比较空气和其他气体混合再生结焦催化剂所生成的CO 2和CO,C原子利用率更高。
由上结果可知,利用水蒸气和空气的混合气对甲醇和/或二甲醚制烯烃结焦催化剂进行部分再生后,催化剂的烯烃选择性和寿命均能恢复,而且经过反复部分再生后,部分再生催化剂的烯烃选择性和寿命也不会降低、衰减。同时,对多次再生的催化剂进行XRD表征,发现其结晶度接近新鲜催化剂,说明在此温度范围内,用水蒸气和空气混合和空气混合部分再生催化剂,并不能使催化剂发生脱铝,从而实现了催化剂的长久利用。
以上所述,仅是本申请的几个实施例,并非对本申请做任何形式的限制,虽然本申请以较佳实施例揭示如上,然而并非用以限制本申请,任何熟悉本专业的技术人员,在不脱离本申请技术方案的范围内,利用上述揭示的技术内容做出些许的变动或修饰均等同于等效实施案例,均属于技术方案范围内。

Claims (10)

  1. 一种甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,所述方法包括:向含有待再生催化剂的再生区通入混合气,进行部分再生反应得到再生催化剂;
    所述混合气中含有水蒸气与空气;
    所述再生催化剂中,至少一部分再生催化剂的焦炭含量大于1%。
  2. 根据权利要求1所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,所述混合气中水蒸气和空气的体积比范围为1:0.001~1:0.8;
    优选地,所述混合气中水蒸气和空气的体积比范围为1:0.01~1:0.5;
    进一步优选地,所述混合气中水蒸气和空气的体积比范围为1:0.01~1:0.14。
  3. 根据权利要求1所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,所述部分再生反应中,所述混合气与待再生催化剂的接触时间为10min~200min。
  4. 根据权利要求1所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,至少一部分所述再生催化剂的焦炭含量为1.1%~8%;
    优选地,所述再生催化剂的焦炭含量为2.8%~7.5%。
  5. 根据权利要求1所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,向再生器中通入的所述混合气中水蒸气空速为0.1h -1~10h -1,空气的空速为0.01h -1~6h -1
  6. 根据权利要求1所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,所述部分再生反应在500℃~700℃的条件下进行;
    优选地,所述部分再生反应在600~680℃条件下进行。
  7. 根据权利要求1所述甲醇和/或二甲醚制烯烃催化剂的部分再生方法,其特征在于,所述待再 生催化剂的焦炭含量为6%~14%。
  8. 一种甲醇和/或二甲醚制烯烃方法,采用流化床反应工艺,其特征在于,根据权利要求1至7中任一项所述的甲醇制烯烃催化剂的部分再生方法,对待再生催化剂进行部分再生。
  9. 根据权利要求8所述的甲醇和/或二甲醚制烯烃方法,其特征在于,包括以下步骤:
    将含有甲醇和/或二甲醚的原料气通入载有甲醇制烯烃催化剂的流化床反应器进行甲醇制烯烃反应;
    将待再生催化剂输送至再生区,并向再生区通入所述混合气,进行部分再生反应得到再生催化剂;
    将所述再生催化剂返回至所述流化床反应器。
  10. 根据权利要求9所述的甲醇和/或二甲醚制烯烃方法,其特征在于,所述甲醇制烯烃催化剂中含有磷酸硅铝分子筛。
PCT/CN2019/086394 2019-05-10 2019-05-10 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法 WO2020227849A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19928705.3A EP3967400A4 (en) 2019-05-10 2019-05-10 METHOD FOR THE PARTIAL REGENERATION OF CATALYST FOR THE CONVERSION OF METHANOL AND/OR DIMETHYL ETHER INTO OLEFIN AND METHOD FOR THE CONVERSION OF METHANOL AND/OR DIMETHYL ETHER INTO OLEFIN
JP2021563631A JP7285336B2 (ja) 2019-05-10 2019-05-10 メタノール及び/又はジメチルエーテルからオレフィンを製造するための触媒の部分再生方法及びメタノール及び/又はジメチルエーテルからオレフィンを製造する方法
PCT/CN2019/086394 WO2020227849A1 (zh) 2019-05-10 2019-05-10 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法
SG11202111746XA SG11202111746XA (en) 2019-05-10 2019-05-10 Method for partially regenerating catalyst for methanol and/or dimethyl ether-to-olefin and method for methanol and/or dimethyl ether-to-olefin
US17/609,764 US11975315B2 (en) 2019-05-10 2019-05-10 Method for partially regenerating catalyst for methanol and/or dimethyl ether-to-olefin and method for methanol and/or dimethyl ether-to-olefin
KR1020217035138A KR20220006511A (ko) 2019-05-10 2019-05-10 메탄올 및/또는 디메틸에테르로 올레핀을 제조하기 위한 촉매의 부분적 재생 방법 및 메탄올 및/또는 디메틸에테르로 올레핀을 제조하는 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086394 WO2020227849A1 (zh) 2019-05-10 2019-05-10 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法

Publications (1)

Publication Number Publication Date
WO2020227849A1 true WO2020227849A1 (zh) 2020-11-19

Family

ID=73289061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086394 WO2020227849A1 (zh) 2019-05-10 2019-05-10 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法

Country Status (6)

Country Link
US (1) US11975315B2 (zh)
EP (1) EP3967400A4 (zh)
JP (1) JP7285336B2 (zh)
KR (1) KR20220006511A (zh)
SG (1) SG11202111746XA (zh)
WO (1) WO2020227849A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965057B2 (en) * 2004-03-24 2005-11-15 Exxonmobil Chemical Patents Inc. Oxygenate to olefin process
CN101844089A (zh) * 2010-05-25 2010-09-29 兆威兴业有限公司 对甲醇或二甲醚制备低碳烯烃用催化剂部分再生的方法
CN104801352A (zh) * 2014-01-23 2015-07-29 浙江大学 一种径向移动床再生单元中催化剂上积炭烧除的方法
CN107961743A (zh) * 2016-10-19 2018-04-27 中国科学院大连化学物理研究所 一种由含氧化合物制备丙烯、c4烃类的快速流化床反应器、装置及方法
CN107961745A (zh) * 2016-10-19 2018-04-27 中国科学院大连化学物理研究所 一种由含氧化合物制备丙烯和c4烃类的湍动流化床反应器、装置及方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3130065A1 (de) * 1981-07-30 1983-02-17 Bayer Ag, 5090 Leverkusen Verfahren zur regeneration von katalysatoren
RO114524B1 (ro) 1997-10-02 1999-05-28 Sc Zecasin Sa Procedeu de fabricare a oleofinelor cu greutate moleculara mica prin conversia catalitica in strat fluidizat a metanolului
US7241713B2 (en) 2003-10-02 2007-07-10 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its making and use in conversion processes
US7459595B2 (en) * 2004-12-22 2008-12-02 Exxonmobil Chemical Patents Inc. Processes for lifting spent catalyst into a regenerator in an oxygenate to olefins reaction system
JP2008080238A (ja) * 2006-09-27 2008-04-10 Jgc Corp Mfi構造ゼオライト触媒の再生方法
WO2013030233A1 (en) * 2011-08-30 2013-03-07 Shell Internationale Research Maatschappij B.V. Process for the preparation of olefins
SG11201400090UA (en) * 2011-08-30 2014-03-28 Shell Int Research Process for the preparation of olefins
CN105585396B (zh) * 2014-10-20 2018-03-20 中国石油化工股份有限公司 一种由含氧化合物制取低碳烯烃的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6965057B2 (en) * 2004-03-24 2005-11-15 Exxonmobil Chemical Patents Inc. Oxygenate to olefin process
CN101844089A (zh) * 2010-05-25 2010-09-29 兆威兴业有限公司 对甲醇或二甲醚制备低碳烯烃用催化剂部分再生的方法
CN104801352A (zh) * 2014-01-23 2015-07-29 浙江大学 一种径向移动床再生单元中催化剂上积炭烧除的方法
CN107961743A (zh) * 2016-10-19 2018-04-27 中国科学院大连化学物理研究所 一种由含氧化合物制备丙烯、c4烃类的快速流化床反应器、装置及方法
CN107961745A (zh) * 2016-10-19 2018-04-27 中国科学院大连化学物理研究所 一种由含氧化合物制备丙烯和c4烃类的湍动流化床反应器、装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3967400A4 *

Also Published As

Publication number Publication date
US20220274099A1 (en) 2022-09-01
SG11202111746XA (en) 2021-11-29
JP2022531848A (ja) 2022-07-12
KR20220006511A (ko) 2022-01-17
JP7285336B2 (ja) 2023-06-01
US11975315B2 (en) 2024-05-07
EP3967400A1 (en) 2022-03-16
EP3967400A4 (en) 2022-05-18

Similar Documents

Publication Publication Date Title
AU2006266207B2 (en) Methods for recovering activity of molecular sieve catalysts
US6137022A (en) Process for increasing the selectivity of a reaction to convert oxygenates to olefins
Sánchez-Contador et al. Behavior of SAPO-11 as acid function in the direct synthesis of dimethyl ether from syngas and CO2
WO2011054204A1 (zh) 一种采用甲醇或二甲醚制备低碳烯烃的工艺
KR20190007018A (ko) 탄화수소 분해를 위한 발열 촉매
WO2019109237A1 (zh) 部分再生甲醇制烯烃催化剂的方法和甲醇制烯烃方法
WO2011054203A1 (zh) 对甲醇或二甲醚制低碳烯烃用的催化剂进行预处理的方法
US6734330B1 (en) Catalyst pretreatment in an oxygenate to olefins reaction system
WO2020227849A1 (zh) 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法
EP1257359B1 (en) Catalyst pretreatment in an oxygenate to olefins reaction system
US20040034178A1 (en) Stripping hydrocarbon in an oxygenate conversion process
JP6446033B2 (ja) 不飽和炭化水素の製造方法
CN111905839B (zh) 甲醇和/或二甲醚制烯烃催化剂的部分再生方法及甲醇和/或二甲醚制烯烃方法
RU2787876C1 (ru) Способ частичной регенерации катализатора превращения метанола и/или диметилового эфира в олефины и способ превращения метанола и/или диметилового эфира в олефины
US8080700B2 (en) System and method for reducing decomposition byproducts in a methanol to olefin reactor system
WO2021180195A1 (zh) 在流化床反应器内转化甲醇的方法
CN114426443A (zh) 含氧化合物制备低碳烯烃的方法和系统
MXPA01008397A (en) Catalytic conversion of oxygenates to olefins

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021563631

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019928705

Country of ref document: EP

Effective date: 20211210