WO2020225900A1 - 磁性摩耗粉量測定装置及び機械装置 - Google Patents

磁性摩耗粉量測定装置及び機械装置 Download PDF

Info

Publication number
WO2020225900A1
WO2020225900A1 PCT/JP2019/018530 JP2019018530W WO2020225900A1 WO 2020225900 A1 WO2020225900 A1 WO 2020225900A1 JP 2019018530 W JP2019018530 W JP 2019018530W WO 2020225900 A1 WO2020225900 A1 WO 2020225900A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
unit
magnet
wear powder
measuring device
Prior art date
Application number
PCT/JP2019/018530
Other languages
English (en)
French (fr)
Inventor
義文 山口
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021518272A priority Critical patent/JP7051004B2/ja
Priority to PCT/JP2019/018530 priority patent/WO2020225900A1/ja
Publication of WO2020225900A1 publication Critical patent/WO2020225900A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Definitions

  • the present invention relates to a magnetic wear debris amount measuring device and a mechanical device for measuring the amount of magnetic wear debris mixed in an oil sump.
  • Patent Document 1 discloses an iron content measuring device using a magnetic field formed by a magnet.
  • the amount of iron is measured based on the magnitude of the force with which the magnet attracts the iron mixed in the sorble oil and the magnet attracts the iron in the container filled with the sorble oil flowing in the pipe.
  • the magnet and the solve oil are separated by the wall of the pipe and are not in direct contact with each other.
  • Patent Document 1 when the iron content measuring device disclosed in Patent Document 1 is provided inside the oil sump, the magnet comes into direct contact with the lubricating oil in the oil sump. Therefore, the magnetic wear powder adheres to the magnet, and the mass of the magnetic wear powder cannot be measured accurately.
  • the present invention has been made to solve the above problems, and is a magnetic wear debris amount measuring device and a machine capable of accurately measuring the mass of magnetic wear debris even if it is provided inside an oil sump. It provides a device.
  • the magnetic wear powder amount measuring device includes a base provided inside an oil sump in which magnetic wear powder is mixed, and a load measuring unit provided on the base that measures the magnetic force received by the magnetic wear powder from a magnetic field. Between the magnet that generates a magnetic field and attracts the magnetic wear debris, the capture unit that covers the magnet above the load measurement unit and captures the magnetic wear debris attracted by the magnet, and the load measurement unit and the capture unit. It is provided with a magnetic force transmission unit that transmits to the load measurement unit the force that is interposed and presses the capture unit by the magnetic force that the magnetic wear powder receives from the magnetic field.
  • the capturing portion covers the magnet. Therefore, even if the magnetic abrasion powder amount measuring device is provided inside the oil sump, the magnet is not exposed to the lubricating oil staying in the oil sump. Therefore, the magnetic wear debris measuring device can reduce the amount of magnetic wear debris adhering to the magnet. In this way, the magnetic wear debris amount measuring device can accurately measure the mass of the magnetic wear debris even if it is provided inside the oil sump.
  • FIG. 1 It is a perspective view which shows the magnetic wear powder amount measuring apparatus which concerns on Embodiment 1.
  • FIG. It is a top view which shows the magnetic wear powder amount measuring apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the magnetic abrasion powder amount measuring apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the mechanical apparatus which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the operation of the magnetic abrasion powder amount measuring apparatus which concerns on Embodiment 1.
  • It is a graph which shows the measurement result of the magnetic wear powder amount measuring apparatus which concerns on Embodiment 1.
  • FIG. 1 is a perspective view showing the magnetic wear powder amount measuring device 1 according to the first embodiment
  • FIG. 2 is a top view showing the magnetic wear powder amount measuring device 1 according to the first embodiment
  • FIG. 3 is a cross-sectional view showing the magnetic wear debris amount measuring device 1 according to the first embodiment, and is a cross-sectional view taken along the line AA of FIG.
  • the magnetic abrasion powder amount measuring device 1 is provided inside an oil sump of a mechanical device 15 (see FIG. 4) such as a compressor.
  • the sliding portion (not shown) provided in the mechanical device 15 is generally lubricated with the lubricating oil 16 for the purpose of smooth sliding.
  • the magnetic wear debris amount measuring device 1 is provided inside the oil sump and measures the mass of the magnetic wear debris 8b mixed in the inside of the oil sump.
  • the magnetic abrasion powder amount measuring device 1 includes a base 7, a load measuring unit 4, a magnet fixing unit 5, a magnet 2, a capturing unit 3, and a magnetic force transmitting unit 6.
  • the base 7 is, for example, a rectangular plate-shaped member, and is provided inside the oil sump of the mechanical device 15.
  • the load measuring unit 4 has, for example, a columnar shape, is provided on the upper surface of the base 7, and measures the magnetic force received by the magnetic wear powder 8b from the magnetic field.
  • the load measuring unit 4 may be a load cell or a strain sensor that detects strain.
  • the magnet fixing portion 5 is provided on the base 7 and fixes the magnet 2.
  • the magnet fixing portion 5 has two pillar portions 5a that stand up from the base 7, and a horizontal portion 5b that connects the upper ends of the two pillar portions 5a. A magnet 2 is adhered and fixed to the upper surface of the horizontal portion 5b. As a result, the magnet 2 becomes immobile.
  • the magnet 2 is above the load measuring unit 4, is fixed to the horizontal portion 5b of the magnet fixing portion 5, generates a magnetic field, and attracts the magnetic wear powder 8b inside the oil sump. Since the magnet 2 is fixed by the magnet fixing portion 5, it does not move.
  • the magnet 2 is, for example, a permanent magnet, and is arranged so that the load measuring unit 4 side has an S pole and the upper side has an N pole.
  • the magnet 2 generates a magnetic field line m in the magnetic abrasion powder amount measuring device 1.
  • the capturing unit 3 covers the magnet 2 above the load measuring unit 4 and captures the magnetic abrasion powder 8b inside the oil sump attracted by the magnet 2.
  • the catching portion 3 is, for example, a disk-shaped member. Since the capturing unit 3 covers the magnet 2, the magnet 2 is prevented from being exposed to the contaminated lubricating oil 16 stored in the oil pool of the mechanical device 15. In this way, the capturing unit 3 shields the magnet 2 from the contaminated lubricating oil 16.
  • the capturing portion 3 is provided so that the surface thereof is parallel to the magnetic pole surface of the magnet 2. As a result, the capturing unit 3 can capture the magnetic wear powder 8b at a position where the magnetic flux density in the magnetic field formed by the magnet 2 is large.
  • the catching portion 3 is arranged so that the catching surface 3a for catching the magnetic wear powder 8b faces upward.
  • the magnetic wear powder 8b is attracted from above to below by the magnet 2 and is captured by the capture surface 3a of the capture unit 3.
  • the magnetic wear powder 8b pushes the catching portion 3 downward, that is, toward the load measuring portion 4.
  • the magnetic force transmission unit 6 is interposed between the load measurement unit 4 and the capture unit 3, and transmits the force that the capture unit 3 is pressed by the magnetic force received by the magnetic wear powder 8a from the magnetic field to the load measurement unit 4.
  • the magnetic force transmitting portion 6 has a mounting portion 6a and a storage portion 6b.
  • the mounting unit 6a is a disk-shaped member mounted on the load measuring unit 4.
  • the storage portion 6b is a cylindrical member provided on the outer peripheral side of the capture portion 3 so as to extend upward from the mounting portion 6a.
  • the storage unit 6b stores the magnet 2 inside.
  • An insertion port 6c is formed in the storage portion 6b in the horizontal direction, and the horizontal portion 5b of the magnet fixing portion 5 is inserted into the insertion port 6c.
  • the size of the insertion port 6c is larger than the size of the horizontal portion 5b of the magnet fixing portion 5. As a result, the storage portion 6b of the magnetic force transmitting portion 6 and the horizontal portion 5b of the magnet fixing portion 5 do not come into contact with each other.
  • the magnetic force transmitting portion 6 is integrally formed with the capturing portion 3.
  • FIG. 4 is a cross-sectional view showing the mechanical device 15 according to the first embodiment.
  • the magnetic abrasion powder amount measuring device 1 is arranged inside an oil sump formed in the lower part of a mechanical device 15 such as a compressor.
  • a new lubricating oil 16 is pre-sealed inside the storage portion 6b.
  • the lubricating oil 16 contaminated with the abrasion powder is prevented from entering the inside of the storage portion 6b through the insertion port 6c.
  • the wear debris when wear debris is present in the magnetic field formed by the magnet 2, the wear debris is magnetized to become magnetic wear debris 8b.
  • the magnetic wear powder 8b is attracted to the magnet 2 side along the magnetic field line m and is captured by the capturing surface 3a of the capturing portion 3.
  • the magnetic field lines m as the magnetic field lines m, the outer magnetic force lines m1 and m4, the central magnetic force lines m2 and m5, and the inner magnetic force lines m3 and m6 are exemplified.
  • the magnetic wear powder 8a captured on the capturing surface 3a of the capturing portion 3 presses the capturing portion 3 toward the magnet 2 due to the influence of the magnetic field.
  • FIG. 5 is a cross-sectional view showing the operation of the magnetic abrasion powder amount measuring device 1 according to the first embodiment, and is a cross-sectional view taken along the line BB of FIG.
  • the entire magnetic force transmission unit 6 integrally formed with the capture unit 3 also becomes the load measurement unit 4. Push down to the side (force F1 and force F2). Since the magnet 2 is fixed to the magnet fixing portion 5, it does not move. At this time, the magnetic force transmission unit 6 transmits the force Fsum to the load measurement unit 4.
  • the attractive force F per unit area on the upper surface of the capturing unit 3 is calculated by the following equation (1). (References: Naohei Yamada and Makoto Katsura, "Electromagnetism, 3rd Edition Revised", Ohmsha, p.259).
  • the capture surface 3a of the capture portion 3 is covered with the magnetic wear powder 8a.
  • the surface area of the deposited magnetic wear powder 8a is proportional to the mass of the magnetic wear powder 8a.
  • the mass of the magnetic wear powder 8a is uniquely determined from the above-mentioned attractive force F.
  • FIG. 6 is a table showing the measurement results of the magnetic abrasion powder amount measuring device 1 according to the first embodiment.
  • the mass of the magnetic wear powder 8a increases from M1 to M2
  • the surface area of the surface of the magnetic wear powder 8a captured and deposited by the trapping portion 3 through which the magnetic flux passes increases from S1 to S2. ..
  • the detected suction force increases from L1 to L2 ((1) to (2) in FIG. 6).
  • the magnetic wear powder 8b is preferentially attracted from the position where the magnetic flux density is high.
  • the mass of the magnetic abrasion powder 8a increases, the magnetic flux density on the surface through which the magnetic flux passes decreases. Therefore, as shown in FIG. 6 (3), the mass of the captured magnetic abrasion powder 8a is saturated.
  • FIG. 7 is a graph showing the measurement result of the magnetic wear debris amount measuring device 1 according to the first embodiment.
  • the horizontal axis is the mass M [g] of the magnetic wear powder 8a
  • the vertical axis is the detected attractive force F [N].
  • the attractive force detected increases as the mass of the magnetic abrasion powder 8a increases, but the attractive force reaches Lsat and saturates.
  • the capturing unit 3 covers the magnet 2. Therefore, even if the magnetic abrasion powder amount measuring device 1 is provided inside the oil sump, the magnet 2 is not exposed to the lubricating oil 16 staying in the oil sump. Therefore, the amount of magnetic wear powder 8b adhering to the magnet 2 can be reduced. As described above, the magnetic wear debris amount measuring device 1 can accurately measure the mass of the magnetic wear debris 8a even if it is provided inside the oil sump. Therefore, the mass of the magnetic wear powder 8a can be quantified.
  • the magnetic force transmitting unit 6 is provided on the outer peripheral side of the mounting unit 6a mounted on the load measuring unit 4 and the capturing unit 3 so as to extend upward from the mounting unit 6a, and houses the magnet 2 inside. It has a storage unit 6b and. The magnet 2 is reliably protected by the capturing portion 3 and the accommodating portion 6b of the magnetic force transmitting portion 6. Therefore, even if the magnetic abrasion powder amount measuring device 1 is provided inside the oil sump, the magnet 2 is not exposed to the lubricating oil 16 in the oil sump.
  • the capturing unit 3 and the magnetic force transmitting unit 6 are integrally formed. As a result, the manufacturability of the capturing unit 3 and the magnetic force transmitting unit 6 is improved.
  • the catching portion 3 is made of a material and a shape having high rigidity so as not to be deformed by the magnetic force received from the magnetic wear powder 8a.
  • the capturing unit 3 may be a non-magnetic material or a magnetic material, but is preferably a non-magnetic material.
  • the magnetic field lines m of the magnetic field formed by the magnet 2 form a magnetic circuit with the capturing unit 3.
  • the capturing unit 3 is a non-magnetic material, the magnetic flux density near the outer surface of the capturing unit 3 is higher than when the capturing unit 3 is a magnetic material. Therefore, the force for capturing the magnetic wear powder 8b by the capturing portion 3 increases.
  • FIG. 8 is a perspective view showing the magnetic wear powder amount measuring device 100 according to the second embodiment
  • FIG. 9 is a top view showing the magnetic wear powder amount measuring device 100 according to the second embodiment
  • FIG. 10 is a cross-sectional view showing the magnetic wear powder amount measuring device 100 according to the second embodiment, and is a cross-sectional view taken along the line CC of FIG.
  • the second embodiment is different from the first embodiment in that the magnetic force transmitting portion 106 has the connecting portion 106a.
  • the same parts as those in the first embodiment are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the base 107 is a bottomed square tubular storage case.
  • the base 107 has a rectangular bottom portion 107a and a side portion 107b extending upward from the edge portion of the bottom portion 107a to form an opening 107c inward.
  • the bottom 107a may be circular.
  • the load measuring unit 4 has, for example, a columnar shape, and is provided on the bottom portion 107a of the base 107.
  • the magnet fixing portion 105 has an annular shape, and is placed on the bottom portion 107a of the base 107 on the outer circumference of the load measuring portion 4.
  • the magnet 102 has an annular shape and is placed on the upper surface of the magnet fixing portion 105.
  • the catching portion 3 is a rectangular plate-shaped member, and is arranged so as to close the opening 107c of the base 107.
  • the magnetic force transmitting unit 106 has a connecting unit 106a that connects the center of the load measuring unit 4 and the capturing unit 3.
  • the capturing unit 3 and the magnetic force transmitting unit 106 are separate bodies.
  • the connecting portion 106a is inserted inside the annular magnet 102, and may have a circular cross section or a polygonal cross section. That is, the magnet 102 is provided around the connecting portion 106a.
  • the gap between the connecting portion 106a of the magnetic force transmitting portion 106 and the magnet 102 is set to be as small as possible. As a result, it is possible to prevent the connecting portion 106a of the magnetic force transmitting portion 106 from being significantly inclined inside the annular magnet 102.
  • the capturing unit 3 covers the magnet 102 as in the first embodiment. Therefore, even if the magnetic abrasion powder amount measuring device 100 is provided inside the oil sump, the magnet 102 is not exposed to the lubricating oil 16 in the oil sump. Therefore, the magnetic wear powder amount measuring device 100 can reduce the mass of the magnetic wear powder 8b adhering to the magnet 102. In this way, the magnetic wear debris amount measuring device 100 can measure the mass of the magnetic wear debris 8a even if it is provided inside the oil sump.
  • the magnetic force transmitting unit 106 has a connecting unit 106a that connects the load measuring unit 4 and the center of the capturing unit 3, and the magnet 102 is provided around the connecting unit 106a. As described above, also in the second embodiment, the magnet 102 is protected by the capturing unit 3.
  • FIG. 11 is a top view showing the magnetic abrasion powder amount measuring device 200 according to the third embodiment.
  • the third embodiment is different from the second embodiment in that a plurality of magnets 202 are provided.
  • the same parts as those of the first and second embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first and second embodiments will be mainly described.
  • the four magnets 202 are provided.
  • the four magnets 202 are arranged on the circumference around the connecting portion 106a of the magnetic force transmitting portion 106. Further, of the four magnets 202, the two magnets 202 facing each other are arranged point-symmetrically with respect to the connecting portion 106a of the magnetic force transmitting portion 106.
  • the magnet 202 is arranged at a position close to the center of the capturing unit 3. As a result, it is possible to prevent the magnetic wear powder 8b from adhering to the outside of the trapping portion 3.
  • a plurality of magnets 202 are provided, and the plurality of magnets 202 are arranged at point-symmetrical positions about the center of the capturing portion 3. Therefore, the magnetic field lines m generated by the plurality of magnets 202 are not biased. Therefore, the capturing unit 3 can efficiently capture the magnetic wear powder 8b.
  • FIG. 12 is a cross-sectional view showing the magnetic abrasion powder amount measuring device 300 according to the fourth embodiment.
  • the fourth embodiment is different from the second embodiment in that the load measuring unit 4 has the beam 11 and the pin 11a.
  • the same parts as those of the first to third embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first to third embodiments will be mainly described.
  • the load measuring unit 4 has a beam 11 and a pin 11a.
  • the beam 11 is a spring plate-like member provided on the base 107 and in contact with the magnetic force transmitting portion 106.
  • the beam 11 is a flexible member that bends when an external force is applied.
  • the pin 11a is provided on the base 107 below the beam 11, and comes into contact with the beam 11 when the beam 11 is pressed.
  • a lead wire 12b and a lead wire 12c are connected to the beam 11 and the pin 11a, respectively.
  • the gap between the beam 11 and the base 107 is narrower than the gap between the magnet 102 and the capturing portion 3.
  • the force by which the magnetic wear powder 8a presses the capturing unit 3 is supported by the load measuring unit 4 and the contact portion between the capturing unit 3 and the magnetic pole surface of the magnet 102.
  • the load measuring unit 4 can accurately measure the force with which the magnetic wear powder 8b presses the capturing unit 3.
  • FIG. 13 is a circuit diagram showing the alarm device 14 according to the fourth embodiment.
  • the magnetic wear debris measuring device 300 is connected in series to the DC power supply 13 and the alarm device 14 via the lead wire 12b and the lead wire 12c.
  • the DC power supply 13 supplies power to the alarm device 14.
  • the alarm device 14 generates an alarm.
  • the DC power supply 13 is electrically connected to the alarm device 14. As a result, the alarm device 14 generates an alarm.
  • FIG. 14 is a cross-sectional view showing the operation of the magnetic abrasion powder amount measuring device 300 according to the fourth embodiment.
  • the load measuring unit 4 will be described.
  • the mass of the magnetic abrasion powder 8a captured on the trapping portion 3 increases to a predetermined mass
  • the beam 11 bends and the beam 11 comes into contact with the pin 11a.
  • the beam 11 and the base 107 are grounded.
  • the DC power supply 13 is electrically connected to the alarm device 14.
  • the alarm device 14 generates an alarm.
  • the load measuring unit 4 includes a beam 11 that contacts the magnetic force transmitting unit 106 and a pin 11a that is provided below the beam 11 and comes into contact with the beam 11 when the beam 11 is pressed. Have. As a result, it is possible to detect that the mass of the magnetic wear powder 8a captured by the capturing unit 3 has increased to a predetermined mass.
  • FIG. 15 is a cross-sectional view showing the magnetic abrasion powder amount measuring device 400 according to the fifth embodiment.
  • the fifth embodiment is different from the second embodiment in that the coil 10 is provided.
  • the same parts as those of the first to fourth embodiments are designated by the same reference numerals, the description thereof will be omitted, and the differences from the first to fourth embodiments will be mainly described.
  • the coil 10 is provided on the outer peripheral side of the magnet 102, and the magnetic flux density on the capturing unit 3 is increased by applying a voltage.
  • the lead wire 12a is wound around the outer peripheral side of the magnet 102 to form the coil 10.
  • the magnetic field generated by the magnet 102 which is a permanent magnet, is concentrated on the capturing unit 3.
  • FIG. 16 is a circuit diagram showing the coil 10 according to the fifth embodiment. As shown in FIG. 16, the coil 10 is connected in series with the DC power supply 13. According to Lenz's law, the DC power supply 13 applies a DC voltage so that a current flows through the coil 10 in a direction of strengthening the magnetic field of the magnet 102. As a result, the magnetic flux density on the capturing unit 3 increases.
  • the magnetic wear debris measuring device 400 is further provided with a coil 10 provided on the outer peripheral side of the magnet 102 and increasing the magnetic flux density on the capturing portion 3 by applying a voltage. Therefore, the magnet 102 can also attract the magnetic wear powder 8b that stays at a position away from the capturing unit 3 to the capturing unit 3. In addition, the force with which the magnetic wear powder 8a captured by the capturing unit 3 presses against the capturing unit 3 also increases. Therefore, the suction force detected by the load measuring unit 4 increases. As described above, the fifth embodiment can improve the detection sensitivity in the load measuring unit 4.
  • FIG. 17 is a schematic view showing the mechanical device 15 according to the sixth embodiment.
  • the sixth embodiment exemplifies the case where the magnetic abrasion powder amount measuring device 1 of the first embodiment is provided in the oil sump of the mechanical device 15 which is a compressor.
  • the magnetic abrasion powder amount measuring device 1 is installed in an oil sump at the lower part of the mechanical device 15 which is a compressor.
  • a compression mechanism portion 18 for compressing the refrigerant is provided in the upper part of the mechanical device 15, and an oil pool in which the lubricating oil 16 stays is formed in the lower part.
  • the suction port 19b of the oil suction portion 19 is inserted into the oil sump, and when the oil supply pump 19a operates, the lubricating oil 16 staying in the oil sump is sucked from the suction port 19b and is sucked into the oil suction portion. It flows into the compression mechanism unit 18 through 19.
  • the amplifier 21 and the data collection unit 22 are connected to the load cell, which is the load measurement unit 4 of the magnetic abrasion powder amount measuring device 1, via the cable 20.
  • the amplifier 21 converts the strain value of the load cell transmitted by the cable 20 into a voltage.
  • the data collection unit 22 collects the voltage output from the amplifier 21 transmitted by the cable 20.
  • the data collecting unit 22 detects the amount of increase in the attractive force due to the increase in the mass of the magnetic abrasion powder 8b contained inside the oil sump.
  • the magnetic abrasion powder amount measuring device 1 is provided inside the oil sump.
  • the magnetic wear powder amount measuring device 1 can measure the mass of the magnetic wear powder 8a.
  • the mechanical device 15 is not limited to the compressor, and may be a device such as an engine or the like in which an oil pool is formed.
  • Magnetic wear powder amount measuring device 2 Magnet, 3 Capturing part, 3a Capturing surface, 4 Load measuring part, 5 Magnet fixing part, 5a Pillar part, 5b Horizontal part, 6 Magnetic force transmission part, 6a Mounting part, 6b Storage part , 6c insertion port, 7 base, 8a, 8b magnetic wear powder, 10 coil, 11 beam, 11a pin, 12 lead wire, 13 DC power supply, 14 alarm device, 15 mechanical device, 16 lubricating oil, 18 compression mechanism, 19 Oil suction part, 19a refueling pump, 19b suction port, 20 cable, 21 amplifier, 22 data collection part, 100 magnetic abrasion powder amount measuring device, 102 magnet, 105 magnet fixing part, 106 magnetic force transmission part, 106a connection part, 107 Base, 107a bottom, 107b side, 107c opening, 200 magnetic wear powder amount measuring device, 202 magnet, 300 magnetic wear powder amount measuring device, 400 magnetic wear powder amount measuring device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

磁性摩耗粉量測定装置は、磁性摩耗粉が混入する油溜まりの内部に設けられる基台と、基台に設けられ、磁性摩耗粉が磁場から受ける磁力を計測する荷重計測部と、磁場を発生させて磁性摩耗粉を吸引する磁石と、荷重計測部の上方において磁石を覆い、磁石によって吸引される磁性摩耗粉を捕捉する捕捉部と、荷重計測部と捕捉部との間に介在し、磁性摩耗粉が磁場から受ける磁力によって捕捉部が押し付けられる力を、荷重計測部に伝達する磁力伝達部と、を備える。

Description

磁性摩耗粉量測定装置及び機械装置
 本発明は、油溜まりに混入する磁性摩耗粉の量を測定する磁性摩耗粉量測定装置及び機械装置に関する。
 従来、圧縮機等の機械装置の油溜まりに混入する磁性摩耗粉の質量を測定する磁性摩耗粉量測定装置が知られている。機械装置に設けられる摺動部は、円滑な摺動が行われることを目的として、概して、潤滑油で潤滑される。摺動部において鉄等の摩耗粉が発生すると、摩耗粉は潤滑油と共に摺動部から排出され、油溜まり等に滞留する。潤滑油中の磁性摩耗粉を定量的に測定する技術として、特許文献1には、磁石が形成する磁場を利用した鉄分測定装置が開示されている。特許文献1は、配管内に流れるソルブル油が充填された容器内において、ソルブル油に混入する鉄分を磁石が吸引し、磁石が鉄分を吸引する力の大きさに基づいて鉄分量を測定する。なお、特許文献1において、磁石とソルブル油とは、配管の壁で離隔されており、直接接触していない。
特開平6-174620号公報
 しかしながら、特許文献1に開示された鉄分測定装置が、油溜まりの内部に設けられる場合、磁石が油溜まりの潤滑油に直接接触する。このため、磁石に磁性摩耗粉が付着して、磁性摩耗粉の質量を正確に測定することができない。
 本発明は、上記のような課題を解決するためになされたもので、油溜まりの内部に設けられても、磁性摩耗粉の質量を正確に測定することができる磁性摩耗粉量測定装置及び機械装置を提供するものである。
 本発明に係る磁性摩耗粉量測定装置は、磁性摩耗粉が混入する油溜まりの内部に設けられる基台と、基台に設けられ、磁性摩耗粉が磁場から受ける磁力を計測する荷重計測部と、磁場を発生させて磁性摩耗粉を吸引する磁石と、荷重計測部の上方において磁石を覆い、磁石によって吸引される磁性摩耗粉を捕捉する捕捉部と、荷重計測部と捕捉部との間に介在し、磁性摩耗粉が磁場から受ける磁力によって捕捉部が押し付けられる力を、荷重計測部に伝達する磁力伝達部と、を備える。
 本発明によれば、捕捉部が磁石を覆っている。このため、磁性摩耗粉量測定装置が油溜まりの内部に設けられても、磁石は油溜まりに滞留する潤滑油に露出しない。従って、磁性摩耗粉量測定装置は、磁石に付着する磁性摩耗粉の量を低減することができる。このように、磁性摩耗粉量測定装置は、油溜まりの内部に設けられても、磁性摩耗粉の質量を正確に測定することができる。
実施の形態1に係る磁性摩耗粉量測定装置を示す斜視図である。 実施の形態1に係る磁性摩耗粉量測定装置を示す上面図である。 実施の形態1に係る磁性摩耗粉量測定装置を示す断面図である。 実施の形態1に係る機械装置を示す断面図である。 実施の形態1に係る磁性摩耗粉量測定装置の動作を示す断面図である。 実施の形態1に係る磁性摩耗粉量測定装置の測定結果を示す表である。 実施の形態1に係る磁性摩耗粉量測定装置の測定結果を示すグラフである。 実施の形態2に係る磁性摩耗粉量測定装置を示す斜視図である。 実施の形態2に係る磁性摩耗粉量測定装置を示す上面図である。 実施の形態2に係る磁性摩耗粉量測定装置を示す断面図である。 実施の形態3に係る磁性摩耗粉量測定装置を示す上面図である。 実施の形態4に係る磁性摩耗粉量測定装置を示す断面図である。 実施の形態4に係る警報装置を示す回路図である。 実施の形態4に係る磁性摩耗粉量測定装置の動作を示す断面図である。 実施の形態5に係る磁性摩耗粉量測定装置を示す断面図である。 実施の形態5に係るコイルを示す回路図である。 実施の形態6に係る機械装置を示す模式図である。
 以下、実施の形態に係る磁性摩耗粉量測定装置及び機械装置の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態に限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の説明において、理解を容易にするために方向を表す用語を適宜用いるが、これは説明のためのものであって、これらの用語に限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。
実施の形態1.
 図1は、実施の形態1に係る磁性摩耗粉量測定装置1を示す斜視図であり、図2は、実施の形態1に係る磁性摩耗粉量測定装置1を示す上面図である。図3は、実施の形態1に係る磁性摩耗粉量測定装置1を示す断面図であり、図2のA-A断面図である。図1~図3に示すように、磁性摩耗粉量測定装置1は、圧縮機等の機械装置15(図4参照)の油溜まりの内部に設けられるものである。機械装置15に設けられる摺動部(図示せず)は、円滑な摺動が行われることを目的として、概して、潤滑油16で潤滑される。摺動部において鉄等の摩耗粉が発生すると、摩耗粉は潤滑油16と共に摺動部から排出され、油溜まり等に滞留する。磁性摩耗粉量測定装置1は、油溜まりの内部に設けられ、油溜まりの内部に混入する磁性摩耗粉8bの質量を測定する。磁性摩耗粉量測定装置1は、基台7と、荷重計測部4と、磁石固定部5と、磁石2と、捕捉部3と、磁力伝達部6とを備えている。
 (基台7)
 基台7は、例えば矩形状の板状の部材であり、機械装置15の油溜まりの内部に設けられる。
 (荷重計測部4)
 荷重計測部4は、例えば円柱状をなしており、基台7の上面に設けられ、磁性摩耗粉8bが磁場から受ける磁力を計測するものである。荷重計測部4は、ロードセルであってもよいし、ひずみ検知するひずみセンサであってもよい。
 (磁石固定部5)
 磁石固定部5は、基台7に設けられ、磁石2を固定する。磁石固定部5は、基台7から起立する2本の柱部5aと、2本の柱部5aの上端を接続する水平部5bとを有している。水平部5bの上面には、磁石2が接着されて固定されている。これにより、磁石2は不動となる。
 (磁石2)
 磁石2は、荷重計測部4の上方であり、磁石固定部5の水平部5bに固定され、磁場を発生させて油溜まりの内部の磁性摩耗粉8bを吸引する。磁石2は、磁石固定部5によって固定されているため、動かない。磁石2は、例えば永久磁石であり、荷重計測部4側がS極であり、上方がN極であるように配置される。磁石2によって、磁性摩耗粉量測定装置1には、磁力線mが発生する。
 (捕捉部3)
 捕捉部3は、荷重計測部4の上方において磁石2を覆い、磁石2によって吸引される油溜まりの内部の磁性摩耗粉8bを捕捉する。捕捉部3は、例えば円板状の部材である。捕捉部3は、磁石2を覆っているため、磁石2が機械装置15の油溜まりに貯留する汚染された潤滑油16に露出することが抑制される。このように、捕捉部3は、汚染された潤滑油16から磁石2を遮蔽する。捕捉部3は、表面が磁石2の磁極面と平行となるように、設けられている。これにより、捕捉部3は、磁石2が形成する磁場における磁束密度が大きい位置に、磁性摩耗粉8bを捕捉することができる。また、捕捉部3は、磁性摩耗粉8bを捕捉する捕捉面3aが上方を向くように配置されている。これにより、磁石2によって磁性摩耗粉8bが上方から下方に吸引され、捕捉部3の捕捉面3aに捕捉される。このとき、磁性摩耗粉8bは、捕捉部3を下方、即ち、荷重計測部4側に押し下げる。
 (磁力伝達部6)
 磁力伝達部6は、荷重計測部4と捕捉部3との間に介在し、磁性摩耗粉8aが磁場から受ける磁力によって捕捉部3が押し付けられる力を、荷重計測部4に伝達する。磁力伝達部6は、載置部6aと、収納部6bとを有する。載置部6aは、荷重計測部4に載置される円板状の部材である。収納部6bは、載置部6aから上方に延びるように捕捉部3の外周側に設けられる円筒状の部材である。収納部6bは、内部に磁石2を収納する。収納部6bには、水平方向に挿入口6cが形成されており、挿入口6cには、磁石固定部5の水平部5bが挿入される。挿入口6cの大きさは、磁石固定部5の水平部5bの大きさよりも大きい。これにより、磁力伝達部6の収納部6bと磁石固定部5の水平部5bとは接触しない。なお、磁力伝達部6は、捕捉部3と一体的に形成されている。
 図4は、実施の形態1に係る機械装置15を示す断面図である。次に、磁性摩耗粉量測定装置1の測定について説明する。図4に示すように、磁性摩耗粉量測定装置1は、圧縮機といった機械装置15の下部に形成される油溜まりの内部に配置される。なお、磁性摩耗粉量測定装置1が使用される際、新しい潤滑油16が、予め収納部6bの内部に封入される。これにより、摩耗粉によって汚染された潤滑油16が、挿入口6cをとおって収納部6bの内部に侵入することを抑制する。
 図4に示すように、磁石2が形成する磁場において、摩耗粉が存在すると、摩耗粉が磁化されて磁性摩耗粉8bとなる。磁性摩耗粉8bは、磁力線mに沿って磁石2側に引き寄せられ、捕捉部3の捕捉面3aに捕捉される。図4において、磁力線mとして、外側の磁力線m1及びm4と、中央の磁力線m2及びm5と、内側の磁力線m3及びm6とが例示されている。捕捉部3の捕捉面3aに捕捉された磁性摩耗粉8aは、磁場の影響で捕捉部3を磁石2側に押し付ける。
 図5は、実施の形態1に係る磁性摩耗粉量測定装置1の動作を示す断面図であり、図4のB-B断面図である。磁性摩耗粉8aが、磁場の影響で捕捉部3を磁石2側に押し付けると、図5に示すように、捕捉部3と一体的に形成された磁力伝達部6の全体も、荷重計測部4側に押し下がる(力F1及び力F2)。なお、磁石2は、磁石固定部5に固定されているため、動かない。このとき、磁力伝達部6は、荷重計測部4に力Fsumを伝達する。ここで、捕捉部3の捕捉面3aの磁束密度をB、真空の透磁率をμ0とすると、捕捉部3の上部表面における単位面積当たりの吸引力Fは、以下の式(1)で求められる(参考文献 山田直平及び桂井誠著、「電気磁気学 3版改訂」、オーム社、p.259)。
 [数1]
 F=B/2μ・・・(1)
 磁性摩耗粉8bが捕捉部3に堆積すると、捕捉部3の捕捉面3aは、磁性摩耗粉8aに覆われる。ここで、堆積した磁性摩耗粉8aの表面積は、磁性摩耗粉8aの質量に比例する。そして、磁性摩耗粉8aの質量は、上記の吸引力Fから一意に決まる。
 図6は、実施の形態1に係る磁性摩耗粉量測定装置1の測定結果を示す表である。図6に示すように、磁性摩耗粉8aの質量がM1からM2に増加すると、捕捉部3に捕捉されて堆積した磁性摩耗粉8aにおける磁束が通過する面の表面積は、S1からS2に増加する。その際、検出される吸引力は、L1からL2に増加する(図6の(1)から(2))。なお、磁束密度が大きい位置から優先的に磁性摩耗粉8bは吸引される。磁性摩耗粉8aの質量が増加するにつれて、磁束が通過する面の磁束密度が減少する。このため、図6の(3)のように、捕捉される磁性摩耗粉8aの質量は飽和する。
 図7は、実施の形態1に係る磁性摩耗粉量測定装置1の測定結果を示すグラフである。図7において、横軸は磁性摩耗粉8aの質量M[g]であり、縦軸は検出される吸引力F[N]である。図7に示すように、磁性摩耗粉8aの質量が増加するに従って検出される吸引力は増加するものの、吸引力がLsatに達して飽和する。
 本実施の形態1によれば、捕捉部3が磁石2を覆っている。このため、磁性摩耗粉量測定装置1が油溜まりの内部に設けられても、磁石2は油溜まりに滞留する潤滑油16に露出しない。従って、磁石2に付着する磁性摩耗粉8bの量を低減することができる。このように、磁性摩耗粉量測定装置1は、油溜まりの内部に設けられても、磁性摩耗粉8aの質量を正確に測定することができる。従って、磁性摩耗粉8aの質量を定量化することができる。
 また、磁力伝達部6は、荷重計測部4に載置される載置部6aと、載置部6aから上方に延びるように捕捉部3の外周側に設けられ、内部に磁石2を収納する収納部6bと、を有する。磁石2は、捕捉部3と磁力伝達部6の収納部6bとによって、確実に保護される。従って、磁性摩耗粉量測定装置1が油溜まりの内部に設けられても、磁石2は、油溜まりの潤滑油16に露出しない。
 更に、捕捉部3と磁力伝達部6とは、一体的に形成されている。これにより、捕捉部3及び磁力伝達部6の製造性が向上する。
 なお、捕捉部3は、磁性摩耗粉8aから受ける磁力によって変形しないほどの剛性が高い材料及び形状である。また、捕捉部3は、非磁性体でもよいし、磁性体でもよいが、非磁性体であることが好ましい。ここで、磁石2が形成する磁場の磁力線mは、捕捉部3との間に磁気回路を形成する。捕捉部3が非磁性体である場合、捕捉部3が磁性体である場合と比較して、捕捉部3の外側の表面近傍の磁束密度が大きくなる。従って、磁性摩耗粉8bを捕捉部3に捕捉する力が大きくなる。
実施の形態2.
 図8は、実施の形態2に係る磁性摩耗粉量測定装置100を示す斜視図であり、図9は、実施の形態2に係る磁性摩耗粉量測定装置100を示す上面図である。図10は、実施の形態2に係る磁性摩耗粉量測定装置100を示す断面図であり、図9のC-C断面図である。本実施の形態2は、磁力伝達部106が接続部106aを有している点で、実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符号を付して説明を省略し、実施の形態1との相違点を中心に説明する。
 図8~図10に示すように、基台107は、有底角筒状の収納ケースである。基台107は、矩形状の底部107aと、底部107aの縁部から上方に延び、内側に開口107cを形成する側部107bとを有している。底部107aは円形状であってもよい。荷重計測部4は、例えば円柱状をなしており、基台107の底部107aに設けられる。磁石固定部105は、環状をなしており、荷重計測部4の外周において、基台107の底部107aに載置される。磁石102は、環状をなしており、磁石固定部105の上面に載置されている。捕捉部3は、矩形板状の部材であり、基台107の開口107cを閉じるように配置される。
 磁力伝達部106は、荷重計測部4と捕捉部3との中央とを接続する接続部106aを有する。なお、捕捉部3と磁力伝達部106とは、別体である。接続部106aは、環状の磁石102の内部に挿入されるものであり、断面円状でもよいし、断面多角形状でもよい。即ち、磁石102は、接続部106aの周囲に設けられている。ここで、磁力伝達部106の接続部106aと、磁石102との間の隙間は、可及的に小さくなるように設定される。これにより、磁力伝達部106の接続部106aが、環状の磁石102の内部で大きく傾斜することを抑制することができる。
 本実施の形態2によれば、実施の形態1と同様に、捕捉部3が磁石102を覆っている。このため、磁性摩耗粉量測定装置100が油溜まりの内部に設けられても、磁石102は油溜まりの潤滑油16に露出しない。従って、磁性摩耗粉量測定装置100は、磁石102に付着する磁性摩耗粉8bの質量を低減することができる。このように、磁性摩耗粉量測定装置100は、油溜まりの内部に設けられても、磁性摩耗粉8aの質量を測定することができる。
 また、磁力伝達部106は、荷重計測部4と捕捉部3の中央とを接続する接続部106aを有し、磁石102は、接続部106aの周囲に設けられている。このように、本実施の形態2においても、磁石102は、捕捉部3によって保護される。
実施の形態3.
 図11は、実施の形態3に係る磁性摩耗粉量測定装置200を示す上面図である。本実施の形態3は、磁石202が複数設けられている点で、実施の形態2と相違する。本実施の形態3では、実施の形態1及び2と同一の部分は同一の符号を付して説明を省略し、実施の形態1及び2との相違点を中心に説明する。
 図11に示すように、磁石202は、例えば4個設けられている。4個の磁石202は、磁力伝達部106の接続部106aを中心として、円周上に配置されている。また、4個の磁石202のうち、対向する2個の磁石202同士は、磁力伝達部106の接続部106aを中心として点対称に配置されている。なお、磁石202は、捕捉部3の中央に近い位置に配置される。これにより、捕捉部3の外側に磁性摩耗粉8bが付着することを抑制することができる。
 本実施の形態3によれば、磁石202は、複数設けられており、複数の磁石202は、捕捉部3の中央を中心として点対称の位置に配置されている。このため、複数の磁石202が発生させる磁力線mに偏りがない。従って、捕捉部3は、磁性摩耗粉8bを効率的に捕捉することができる。
実施の形態4.
 図12は、実施の形態4に係る磁性摩耗粉量測定装置300を示す断面図である。本実施の形態4は、荷重計測部4が梁11及びピン11aを有している点で、実施の形態2と相違する。本実施の形態4では、実施の形態1~3と同一の部分は同一の符号を付して説明を省略し、実施の形態1~3との相違点を中心に説明する。
 図12に示すように、荷重計測部4は、梁11と、ピン11aとを有している。梁11は、基台107に設けられ磁力伝達部106に接触するバネ板状の部材である。梁11は、外力が加わると撓む可撓性の部材である。ピン11aは、梁11の下方において基台107に設けられ、梁11が押圧されることによって梁11と接触する。梁11及びピン11aには、それぞれ導線12b及び導線12cが接続されている。
 ここで、梁11と基台107との間の隙間は、磁石102と捕捉部3との間の隙間よりも狭い。捕捉部3と磁石102の磁極面とが接触すると、磁性摩耗粉8aが捕捉部3を押し付ける力を、荷重計測部4及び捕捉部3と磁石102の磁極面との接触部という2箇所で支持することとなる。本実施の形態3は、梁11と基台107との間の隙間は、磁石102と捕捉部3との間の隙間よりも狭いため、捕捉部3と磁石102の磁極面とが接触する前に、梁11と基台107のピン11aとが接触する。従って、荷重計測部4は、磁性摩耗粉8bが捕捉部3を押し付ける力を正確に計測することができる。
 図13は、実施の形態4に係る警報装置14を示す回路図である。図13に示すように、磁性摩耗粉量測定装置300は、導線12b及び導線12cを介して、直流電源13と警報装置14とに直列に接続されている。直流電源13は、警報装置14に電源を供給するものである。警報装置14は、アラームを発生するものである。磁性摩耗粉量測定装置300において、梁11とピン11aとが接触すると、直流電源13が警報装置14に電気的に接続される。これにより、警報装置14は、アラームを発生する。
 図14は、実施の形態4に係る磁性摩耗粉量測定装置300の動作を示す断面図である。次に、荷重計測部4の動作について説明する。図14に示すように、捕捉部3上に捕捉される磁性摩耗粉8aの質量が所定の質量まで増加すると、梁11が撓み、梁11がピン11aと接触する。これにより、梁11と基台107とが接地する。その際、直流電源13が警報装置14に電気的に接続される。これにより、警報装置14は、アラームを発生する。
 本実施の形態4によれば、荷重計測部4は、磁力伝達部106に接触する梁11と、梁11の下方に設けられ、梁11が押圧されることによって梁11と接触するピン11aと、を有する。これにより、捕捉部3によって捕捉された磁性摩耗粉8aの質量が所定の質量まで増加したことを検出することができる。
実施の形態5.
 図15は、実施の形態5に係る磁性摩耗粉量測定装置400を示す断面図である。本実施の形態5は、コイル10を備えている点で、実施の形態2と相違する。本実施の形態5では、実施の形態1~4と同一の部分は同一の符号を付して説明を省略し、実施の形態1~4との相違点を中心に説明する。
 図15に示すように、コイル10は、磁石102の外周側に設けられ、電圧が印加されることによって捕捉部3上の磁束密度を増加させる。具体的には、磁石102の外周側に、導線12aを巻き付けてコイル10とする。これにより、永久磁石である磁石102が発生させる磁場を、捕捉部3上に集中させる。
 図16は、実施の形態5に係るコイル10を示す回路図である。図16に示すように、コイル10は、直流電源13に直列に接続されている。レンツの法則に従って、直流電源13は、磁石102の磁場を強める方向にコイル10に電流が流れるように、直流電圧を印加する。これにより、捕捉部3上の磁束密度が増加する。
 本実施の形態5によれば、磁性摩耗粉量測定装置400は、磁石102の外周側に設けられ、電圧が印加されることによって捕捉部3上の磁束密度を増加させるコイル10を更に備える。従って、磁石102は、捕捉部3から離れた位置に滞留する磁性摩耗粉8bも、捕捉部3に引き付けることができる。また、捕捉部3によって捕捉された磁性摩耗粉8aが捕捉部3を押し付ける力も増加する。このため、荷重計測部4において検出される吸引力が増加する。このように、本実施の形態5は、荷重計測部4における検出感度を向上させることができる。
実施の形態6.
 図17は、実施の形態6に係る機械装置15を示す模式図である。本実施の形態6は、上記実施の形態1の磁性摩耗粉量測定装置1が、圧縮機である機械装置15の油溜まりに設けられる場合について例示する。
 図17に示すように、磁性摩耗粉量測定装置1が、圧縮機である機械装置15の下部の油溜まりに設置される。機械装置15の上部には、冷媒を圧縮する圧縮機構部18が設けられており、下部には潤滑油16が滞留する油溜まりが形成されている。油溜まりには、油吸上げ部19の吸込み口19bが挿入されており、給油ポンプ19aが動作することによって、油溜まりに滞留する潤滑油16は、吸込み口19bから吸い込まれ、油吸上げ部19をとおって圧縮機構部18に流入する。
 磁性摩耗粉量測定装置1の荷重計測部4であるロードセルには、ケーブル20を介して、アンプ21及びデータ収集部22が接続されている。アンプ21は、ケーブル20によって送信されたロードセルのひずみ値を電圧に変換する。データ収集部22は、ケーブル20によって送信されたアンプ21から出力された電圧を収集する。データ収集部22は、油溜まりの内部に含まれる磁性摩耗粉8bの質量の増加に伴う吸引力の増加量を検出する。
 本実施の形態6によれば、磁性摩耗粉量測定装置1が、油溜まりの内部に設けられる。これにより、磁性摩耗粉量測定装置1は、磁性摩耗粉8aの質量を測定することができる。なお、機械装置15は、圧縮機に限らず、エンジン等といった油溜まりが形成されている装置とすることができる。
 1 磁性摩耗粉量測定装置、2 磁石、3 捕捉部、3a 捕捉面、4 荷重計測部、5 磁石固定部、5a 柱部、5b 水平部、6 磁力伝達部、6a 載置部、6b 収納部、6c 挿入口、7 基台、8a、8b 磁性摩耗粉、10 コイル、11 梁、11a ピン、12 導線、13 直流電源、14 警報装置、15 機械装置、16 潤滑油、18 圧縮機構部、19 油吸上げ部、19a 給油ポンプ、19b 吸込み口、20 ケーブル、21 アンプ、22 データ収集部、100 磁性摩耗粉量測定装置、102 磁石、105 磁石固定部、106 磁力伝達部、106a 接続部、107 基台、107a 底部、107b 側部、107c 開口、200 磁性摩耗粉量測定装置、202 磁石、300 磁性摩耗粉量測定装置、400 磁性摩耗粉量測定装置。

Claims (8)

  1.  磁性摩耗粉が混入する油溜まりの内部に設けられる基台と、
     前記基台に設けられ、前記磁性摩耗粉が磁場から受ける磁力を計測する荷重計測部と、
     磁場を発生させて前記磁性摩耗粉を吸引する磁石と、
     前記荷重計測部の上方において前記磁石を覆い、前記磁石によって吸引される前記磁性摩耗粉を捕捉する捕捉部と、
     前記荷重計測部と前記捕捉部との間に介在し、前記磁性摩耗粉が磁場から受ける磁力によって前記捕捉部が押し付けられる力を、前記荷重計測部に伝達する磁力伝達部と、
     を備える磁性摩耗粉量測定装置。
  2.  前記磁力伝達部は、
     前記荷重計測部に載置される載置部と、
     前記載置部から上方に延びるように前記捕捉部の外周側に設けられ、内部に前記磁石を収納する収納部と、を有する
     請求項1記載の磁性摩耗粉量測定装置。
  3.  前記磁力伝達部は、
     前記荷重計測部と前記捕捉部の中央とを接続する接続部を有し、
     前記磁石は、
     前記接続部の周囲に設けられている
     請求項1記載の磁性摩耗粉量測定装置。
  4.  前記捕捉部と前記磁力伝達部とは、一体的に形成されている
     請求項1~3のいずれか1項に記載の磁性摩耗粉量測定装置。
  5.  前記磁石の外周側に設けられ、電圧が印加されることによって前記捕捉部上の磁束密度を増加させるコイルを更に備える
     請求項1~4のいずれか1項に記載の磁性摩耗粉量測定装置。
  6.  前記磁石は、複数設けられており、
     複数の前記磁石は、前記捕捉部の中央を中心として点対称の位置に配置されている
     請求項1~5のいずれか1項に記載の磁性摩耗粉量測定装置。
  7.  前記荷重計測部は、
     前記磁力伝達部に接触する梁と、
     前記梁の下方に設けられ、前記梁が押圧されることによって前記梁と接触するピンと、を有する
     請求項1~6のいずれか1項に記載の磁性摩耗粉量測定装置。
  8.  請求項1~7のいずれか1項に記載の磁性摩耗粉量測定装置が、前記油溜まりの内部に設けられる
     機械装置。
PCT/JP2019/018530 2019-05-09 2019-05-09 磁性摩耗粉量測定装置及び機械装置 WO2020225900A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021518272A JP7051004B2 (ja) 2019-05-09 2019-05-09 磁性摩耗粉量測定装置及び機械装置
PCT/JP2019/018530 WO2020225900A1 (ja) 2019-05-09 2019-05-09 磁性摩耗粉量測定装置及び機械装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018530 WO2020225900A1 (ja) 2019-05-09 2019-05-09 磁性摩耗粉量測定装置及び機械装置

Publications (1)

Publication Number Publication Date
WO2020225900A1 true WO2020225900A1 (ja) 2020-11-12

Family

ID=73051520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018530 WO2020225900A1 (ja) 2019-05-09 2019-05-09 磁性摩耗粉量測定装置及び機械装置

Country Status (2)

Country Link
JP (1) JP7051004B2 (ja)
WO (1) WO2020225900A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158756A (ja) * 1989-11-17 1991-07-08 Nippon Steel Corp ソルブル油中の鉄分測定方法
WO1993019370A1 (en) * 1992-03-20 1993-09-30 Abbott Laboratories Magnetically assisted binding assays using magnetically-labeled binding members
JPH06174621A (ja) * 1992-12-09 1994-06-24 Nippon Steel Corp ソリブル油中の鉄分測定装置
JPH0783882A (ja) * 1993-09-14 1995-03-31 Hitachi Constr Mach Co Ltd 汚染度センサ
JP2000321249A (ja) * 1999-05-13 2000-11-24 Ntn Corp オイルチェックセンサ
JP2006177854A (ja) * 2004-12-24 2006-07-06 Kao Corp 鉄量測定方法
JP2009204617A (ja) * 1997-05-16 2009-09-10 Abbott Lab 磁気応答性試薬を使用する磁気補助結合アッセイ
JP2012242086A (ja) * 2011-05-14 2012-12-10 Marusei Co Ltd スクラップ分析方法及び関連する装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3158756B2 (ja) 1993-01-06 2001-04-23 ブラザー工業株式会社 テープ印字装置
JP6174621B2 (ja) 2015-04-15 2017-08-02 株式会社ユーエイキャスター 段差対応型のキャスター装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158756A (ja) * 1989-11-17 1991-07-08 Nippon Steel Corp ソルブル油中の鉄分測定方法
WO1993019370A1 (en) * 1992-03-20 1993-09-30 Abbott Laboratories Magnetically assisted binding assays using magnetically-labeled binding members
JPH06174621A (ja) * 1992-12-09 1994-06-24 Nippon Steel Corp ソリブル油中の鉄分測定装置
JPH0783882A (ja) * 1993-09-14 1995-03-31 Hitachi Constr Mach Co Ltd 汚染度センサ
JP2009204617A (ja) * 1997-05-16 2009-09-10 Abbott Lab 磁気応答性試薬を使用する磁気補助結合アッセイ
JP2000321249A (ja) * 1999-05-13 2000-11-24 Ntn Corp オイルチェックセンサ
JP2006177854A (ja) * 2004-12-24 2006-07-06 Kao Corp 鉄量測定方法
JP2012242086A (ja) * 2011-05-14 2012-12-10 Marusei Co Ltd スクラップ分析方法及び関連する装置

Also Published As

Publication number Publication date
JPWO2020225900A1 (ja) 2021-11-18
JP7051004B2 (ja) 2022-04-08

Similar Documents

Publication Publication Date Title
KR101419629B1 (ko) 와이어 로프 탐상 장치
CN104144293B (zh) 光学影像防震装置
US10983230B2 (en) Parallel dipole line trap seismometer and vibration sensor
CN110095178B (zh) 一种微声探测分析装置及基于该装置的阵列音频信号处理方法
US10739488B2 (en) Metal detection sensor and metal detection method using same
WO2012026273A1 (ja) 振動センサ
JP7051004B2 (ja) 磁性摩耗粉量測定装置及び機械装置
CN107831582A (zh) 透镜驱动装置以及使用上述透镜驱动装置的照相机模块
CA2769706C (en) High sensitivity geophone
EP1640725A1 (en) Magnetofluidic accelerometer with housing
CN102175304B (zh) 多维度振动传感器
JP2013501240A5 (ja)
EP0116468A1 (en) Magnetic particle collector
GB2114745A (en) Electromagnetically driven tuning fork for determining fluid properties
JP2014106156A (ja) 磁気センサ装置
JP6647476B1 (ja) 回転電機のウェッジ緩み検査装置、回転電機のウェッジ緩み検査システム、および、回転電機のウェッジ緩み検査方法
US20220285113A1 (en) Fall detection sensor
JP3567463B2 (ja) トナー帯電量測定装置
CN105277117A (zh) 位置检测装置
JP6325327B2 (ja) 磁性金属異物を検出するための装置
JP6009393B2 (ja) 振動測定用センサ装置
EP4375639A1 (en) System and method for inspecting a fluid
JP4337922B2 (ja) 転倒検知装置
JP2006071319A (ja) 振動検出装置
JP2010197237A (ja) フィルタカートリッジ、粉体電荷量測定器及び粉体電荷量測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927870

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021518272

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927870

Country of ref document: EP

Kind code of ref document: A1