WO2020225896A1 - Rectifier circuit, dc power supply synthesizing circuit, and full-wave rectifier circuit - Google Patents

Rectifier circuit, dc power supply synthesizing circuit, and full-wave rectifier circuit Download PDF

Info

Publication number
WO2020225896A1
WO2020225896A1 PCT/JP2019/018513 JP2019018513W WO2020225896A1 WO 2020225896 A1 WO2020225896 A1 WO 2020225896A1 JP 2019018513 W JP2019018513 W JP 2019018513W WO 2020225896 A1 WO2020225896 A1 WO 2020225896A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
transistor element
rectifier circuit
resistor
channel mosfet
Prior art date
Application number
PCT/JP2019/018513
Other languages
French (fr)
Japanese (ja)
Inventor
中田 和宏
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021513493A priority Critical patent/JP6896203B2/en
Priority to DE112019007166.1T priority patent/DE112019007166T5/en
Priority to PCT/JP2019/018513 priority patent/WO2020225896A1/en
Publication of WO2020225896A1 publication Critical patent/WO2020225896A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to a rectifier circuit, a DC power supply synthesis circuit, and a full-wave rectifier circuit.
  • each DC power supply should prevent current from flowing back from one of the multiple DC power supplies to another.
  • a reverse current blocking circuit using a MOSFET Metal-Oxide-Semiconductor Field-Effective Transistor is connected between the DC power supply and the load (see, for example, Patent Document 1).
  • the reverse current blocking circuit described in Patent Document 1 has a bipolar transistor for turning off the MOSFET when a reverse current is generated.
  • This reverse current blocking circuit has a problem that the reverse current cannot be blocked unless the potential difference between the input and output is constantly equal to or higher than the voltage between the base and emitter of the bipolar transistor (usually about 0.7 V).
  • the present invention has been made to solve the above-mentioned problems, and prevents reverse current even when the potential difference between input and output is extremely low (for example, 200 mV) as compared with the conventional case (for example, 0.7 V).
  • the purpose is.
  • the rectifying circuit according to the present invention includes a P-channel MOSFET element, a first PNP bipolar transistor element, a second PNP bipolar transistor element, a third transistor element and a fourth transistor element having opposite polarities, a first resistor, and the like. It includes a second resistor, a third resistor, a fourth resistor, an input terminal, and an output terminal, and the connection point between the drain terminal of the P-channel MOSFET element and one terminal of the first resistor is the input terminal.
  • the first PNP bipolar transistor element constitutes an equivalent diode element, the anode terminal of the equivalent diode element and the other terminal of the first resistor are connected, and the cathode terminal of the equivalent diode element and the base of the second PNP bipolar transistor element.
  • the terminal and one terminal of the second resistor are connected, the connection point between the other terminal of the second resistor, one terminal of the third resistor and the first terminal of the third transistor element is connected to the ground, and the third terminal is connected.
  • the other terminal of the resistor, the collector terminal of the second PNP bipolar transistor element, the third terminal of the third transistor element, the third terminal of the fourth transistor element, and one terminal of the fourth resistor are connected to form the third transistor element.
  • the second terminal, the second terminal of the fourth transistor element, the other terminal of the fourth resistor, and the gate terminal of the P channel MOSFET element are connected, and the emitter terminal of the second PNP bipolar transistor element and the source terminal of the P channel MOSFET element
  • the connection point of the fourth transistor element with the first terminal is connected to the output terminal.
  • reverse current can be blocked even when the potential difference between input and output is extremely low as compared with the conventional case.
  • FIG. 2A and 2B are diagrams showing an example of a PNP transistor Q1 configured as an equivalent diode element. It is a figure explaining the operation of the rectifier circuit IDP when the output potential rises by an external factor in Embodiment 1.
  • FIG. It is a figure explaining the gate capacitance of P channel MOSFET QMp. It is a figure which shows the modification of the current boost circuit in Embodiment 1.
  • FIG. It is a circuit diagram which shows the structural example of the rectifier circuit IDN which concerns on Embodiment 2.
  • FIG. 7A and 7B are diagrams showing an example of an NPN transistor Q11 configured as an equivalent diode element.
  • FIG. 2 is a diagram illustrating the operation of the rectifier circuit IDN when the output potential rises due to an external factor in the second embodiment. It is a figure explaining the gate capacitance of the N channel MOSFET QMn. It is a figure which shows the modification of the current boost circuit in Embodiment 2.
  • FIG. It is a figure which shows the circuit example of the power source Vcc in Embodiment 2.
  • FIG. It is a circuit diagram which shows the structural example of the rectifier circuit IDN which concerns on Embodiment 4.
  • FIG. 5 is a diagram illustrating the operation of the rectifier circuit IDN when the Zener diode DZ is present in the fourth embodiment. It is a circuit diagram which shows the structural example of the DC power source synthesis circuit 1 which concerns on Embodiment 5. It is a circuit diagram which shows the structural example of the full-wave rectifier circuit 2 which concerns on Embodiment 6. It is a circuit diagram which shows the structural example of the full-wave rectifier circuit 3 which concerns on Embodiment 7.
  • FIG. 1 is a circuit diagram showing a configuration example of a rectifier circuit IDP according to the first embodiment.
  • the rectifying circuit IDP includes a P-channel MOSFET QMp, a PNP transistor Q1, a PNP transistor Q2, a PNP transistor Q3, an NPN transistor Q4, a resistor R1, a resistor R2, a resistor R3, and a resistor R4.
  • the rectifier circuit IDP uses the P-channel MOSFET QMp to prevent the backflow of current from the output terminal Vout to the input terminal Vi.
  • This P-channel MOSFET QMp is an enhancement type P-channel MOSFET element.
  • the ground GND is a potential lower than the potential of the input terminal Vi by at least the gate-source potential Vth at which the P-channel MOSFET QMp can be turned on. That is, the magnitude relationship of the potential is GND ⁇ Vi + Vth.
  • the PNP transistor Q1 corresponds to the first PNP bipolar transistor element
  • the PNP transistor Q2 corresponds to the second PNP bipolar transistor element.
  • the PNP transistor Q1 and the PNP transistor Q2 detect the potential difference between the input terminal Vi and the output terminal Vout of the rectifier circuit IDP.
  • the PNP transistor Q3 is a PNP bipolar transistor element corresponding to the third transistor element.
  • the NPN transistor Q4 is an NPN bipolar transistor element corresponding to a fourth transistor element having a polarity opposite to that of the third transistor. Further, in the PNP transistor Q3 and the NPN transistor Q4, the collector terminal corresponds to the first terminal, the emitter terminal corresponds to the second terminal, and the base terminal corresponds to the third terminal.
  • the PNP transistor Q3 and the NPN transistor Q4 are current boost circuits for charging and discharging the gate of the P-channel MOSFET QMp. In the steady state, no current flows between the collector-emitter of the PNP transistor Q3 and between the collector-emitter of the NPN transistor Q4.
  • connection point between the drain terminal of the P channel MOSFET QMp and one terminal of the resistor R1 is connected to the input terminal Vi.
  • the base terminal and the collector terminal of the PNP transistor Q1 are short-circuited, and the PNP transistor Q1 is configured as an equivalent diode element.
  • 2A and 2B are diagrams showing an example of a PNP transistor Q1 configured as an equivalent diode element.
  • the emitter terminal corresponds to the anode terminal (A) of the equivalent diode element
  • the connection point between the base terminal and the collector terminal is the cathode terminal of the equivalent diode element.
  • the emitter terminal of the PNP transistor Q1 is connected to the other terminal of the resistor R1.
  • the connection point between the base terminal and the collector terminal of the PNP transistor Q1 is connected to the base terminal of the PNP transistor Q2 and one terminal of the resistor R2.
  • the collector terminal of the PNP transistor Q1 corresponds to the anode terminal (A) of the equivalent diode element, and the other terminal of the resistor R1 is connected to this collector terminal.
  • the base terminal of the PNP transistor Q2 corresponds to the cathode terminal (K) of the equivalent diode element, and the base terminal of the PNP transistor Q2 and one terminal of the resistor R2 are connected to this base terminal.
  • the emitter terminal of the PNP transistor Q1 is opened.
  • connection point between the other terminal of the resistor R2, the one terminal of the resistor R3, and the collector terminal of the PNP transistor Q3 is connected to the ground GND.
  • the other terminal of the resistor R3, the collector terminal of the PNP transistor Q2, the base terminal of the PNP transistor Q3, the base terminal of the NPN transistor Q4, and one terminal of the resistor R4 are connected.
  • the emitter terminal of the PNP transistor Q3, the emitter terminal of the NPN transistor Q4, the other terminal of the resistor R4, and the gate terminal of the P channel MOSFET QMp are connected.
  • the connection points between the emitter terminal of the PNP transistor Q2, the source terminal of the P channel MOSFET QMp, and the collector terminal of the NPN transistor Q4 are connected to the output terminal Vout.
  • the steady state of the rectifier circuit IDP will be described.
  • the difference [delta]> 0 the base-emitter voltage of the base-emitter voltage and the PNP transistor Q2 of the PNP transistor Q1, the emitter and the base of the PNP transistor Q1 Let the inter-voltage be V BE + ⁇ . Further, the DC leakage current at the gate of the P-channel MOSFET QMp, the base current of the PNP transistor Q1 and the base current of the PNP transistor Q2 are ignored. Further, the resistance value of the resistor R2 is set to a positive value.
  • the forward voltage Vf is virtually negative.
  • the current constantly flows back from the output terminal Vout to the input terminal Vi until the voltage of the output terminal Vout is higher than that of the input terminal Vi by
  • the difference ⁇ ⁇ 0 may occur due to individual variation and the ambient temperature difference between the PNP transistor Q1 and the PNP transistor Q2.
  • the resistance value of the resistor R1 is made larger than "0" to make the equation (3) a positive value, or the method of FIG. 2B is used instead of FIG. 2A as the connection method of the PNP transistor Q1 to make the difference ⁇ . Secure> 0 to prevent backflow.
  • the voltage between the anode terminal (A) and the cathode terminal (K) has a base current of 1 / HFE of the collector current, so that the PNP transistor Q2 has a voltage of 1 / HFE. It is the same as the base-emitter voltage V BE . HFE is the current amplification factor.
  • the PNP transistor Q1 is connected as shown in FIG. 2B, the total current flows between the collector bases and the voltage drop becomes large. Therefore, the voltage between the anode terminal (A) and the cathode terminal (K) is larger than that in the case of FIG. 2A. That is, ⁇ > 0.
  • the withstand voltage between the collector bases is higher than the withstand voltage between the emitter bases, so that the connection method of FIG. 2B has high resistance to a power surge or the like that may be superimposed on the input terminal Vi.
  • FIG. 3 is a diagram illustrating the operation of the rectifier circuit IDP when the output potential rises due to an external factor in the first embodiment.
  • the output terminal Vout is forced from the outside (Vi).
  • the load current when a voltage E1 higher than ⁇ Vf) is applied and the time change of the gate potential of the P-channel MOSFET QMp will be described.
  • the external factor will be an external power supply connected to the output terminal Vout.
  • FIG. 4 is a diagram for explaining the gate capacitance of the P-channel MOSFET QMp.
  • Capacitances Cgd, Cgs, and Cds exist between the drain, gate, and source terminals of the P-channel MOSFET QMp.
  • the gate capacitance Ciss of the P-channel MOSFET QMp is (Cgd + Cgs).
  • the gate potential of the P-channel MOSFET QMp cannot be raised immediately.
  • the PNP transistor Q2 is turned on, the point P side potential becomes higher than the base-emitter voltage V BE fraction of the NPN transistor Q4 from the gate potential of the P-channel MOSFETQMp, i.e., potential difference between both ends of the resistor R4 is of the NPN transistor Q4 base
  • the NPN transistor Q4 is turned on.
  • the NPN transistor Q4 constituting the current boost circuit can be turned on at time t0 to rapidly discharge the charge at the gate of the P-channel MOSFET QMp. As the charge on the gate of the P-channel MOSFET QMp is discharged, the potential of the gate rises.
  • the period from time t0 to time t1 in FIG. 3 is a discharge boost period by the current boost circuit.
  • the gate potential when the P-channel MOSFET QMp is turned off is V1.
  • the period from time t1 to time t2 in FIG. 3 is a non-boost period.
  • PNP transistor Q2 is turned off, P point side potential, becomes the base-emitter voltage V BE fraction lower of the PNP transistor Q3 than the gate potential of the P-channel MOSFETQMp, that is, between the base and the emitter of the potential difference across the resistor R4 is PNP transistor Q3
  • V BE base-emitter voltage
  • the PNP transistor Q3 constituting the current boost circuit can be turned on at time t4 to rapidly charge the gate capacitance of the P-channel MOSFET QMp. As the charge on the gate of the P-channel MOSFET QMp is charged, the potential of the gate decreases.
  • the period from time t4 to time t5 in FIG. 3 is a charging boost period by the current boost circuit.
  • the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the PNP transistor Q3, the PNP transistor Q3 is turned off.
  • the resistor R3 and the resistor R4 slowly charge the gate capacitance of the P-channel MOSFET QMp, and when the gate potential of the P-channel MOSFET QMp reaches V0 at time t6, the P-channel MOSFET QMp is completely turned on.
  • the period from time t5 to time t6 in FIG. 3 is a non-boost period.
  • the time required for the recovery of the load current is the period Tc from time t4 to time t6 when the current boost circuit is present, whereas it is longer than the time t4 to time t7 when the current boost circuit is not present. It becomes Td for a long period of time, and it takes a longer time for the P-channel MOSFET QMp to be completely turned on, so that the loss in the rectifier circuit IDP increases.
  • the rectifier circuit IDP is used for a load having an extremely small current consumption and the current consumption of the rectifier circuit IDP itself needs to be reduced, it is not possible to use a resistor R2 having a very low resistance value.
  • the current boost circuit is effective.
  • a load with very low current consumption is, for example, a microcontroller during sleep or suspend.
  • the resistance value of the resistor R2 is high, the base current of the PNP transistor Q2 is limited, and the collector current obtained by multiplying the current amplification factor of the PNP transistor Q2 is also limited.
  • the voltage E1 when the voltage E1 is applied to the output terminal Vout, it takes time if the gate terminal of the P channel MOSFET QMp is short-circuited to the source terminal by the PNP transistor Q2 and the charge of the gate is discharged only by the PNP transistor Q2.
  • the collector current of the PNP transistor Q2 is supplied as the base current of the NPN transistor Q4, so that the current of the current amplification factor of the NPN transistor Q4 is doubled between the collector and emitter of the NPN transistor Q4. Can be shed. Therefore, the charge at the gate of the P-channel MOSFET QMp can be quickly discharged to turn off the P-channel MOSFET QMp, and the current backflow period can be shortened.
  • the resistor R3 when the rectifier circuit IDP is used for a load having an extremely small current consumption and the current consumption of the rectifier circuit IDP itself needs to be reduced, the resistor R3 also has a resistance value that is too low. Cannot be used. Therefore, after the voltage E1 is removed from the output terminal Vout, it takes time to charge the gate of the P-channel MOSFET QMp with only the resistor R3.
  • the current boost circuit when the current boost circuit exists, the current flowing through the resistor R3 is supplied as the base current of the PNP transistor Q3, so that the current of the current amplification factor of the PNP transistor Q3 is doubled between the collector and the emitter of the PNP transistor Q3. Can be shed. Therefore, the gate capacitance of the P-channel MOSFET QMp can be quickly charged to turn on the P-channel MOSFET QMp, and the time for recovering the load current output from the output terminal Vout can be shortened.
  • the rectifying circuit IDP includes a P-channel MOSFET QMp, a PNP transistor Q1, a PNP transistor Q2, a PNP transistor Q3 and an NPN transistor Q4 having opposite polarities, and a resistor R1. It includes a resistor R2, a resistor R3, a resistor R4, an input terminal Vi, and an output terminal Vout.
  • the rectifier circuit IDP sets the potential difference between the input terminal Vi and the output terminal Vout to a value (for example, 200 mV) extremely lower than the forward voltage (about 0.4 V to 0.7 V) of the diode element. it can.
  • the rectifier circuit IPD does not have a boost circuit by the PNP transistor Q3 and the NPN transistor Q4 when some electromotive force is connected to the output terminal Vout side and the potential of the output terminal Vout becomes higher than the potential of the input terminal Vi. Compared with the case, the reverse current can be blocked more quickly. Further, the rectifier circuit IPD can quickly start supplying power to the load after the electromotive force is removed.
  • FIG. 5 is a diagram showing a modified example of the current boost circuit according to the first embodiment.
  • a P-channel MOSFET Q3p is used as the third transistor element instead of the PNP transistor Q3.
  • an N-channel MOSFET Q4n is used instead of the NPN transistor Q4.
  • the drain terminal corresponds to the first terminal
  • the source terminal corresponds to the second terminal
  • the gate terminal corresponds to the third terminal.
  • the N-channel MOSFET Q4n is turned on.
  • the gate terminal and the source terminal of the P-channel MOSFET QMp are short-circuited.
  • the P channel MOSFET Q3p is turned on.
  • the P-channel MOSFET Q3p is turned on, the gate terminal of the P-channel MOSFET QMp and the ground GND are short-circuited.
  • the current boost circuit is composed of the P-channel MOSFET Q3p and the N-channel MOSFET Q4n, it operates in the same manner as when it is composed of the PNP transistor Q3 and the NPN transistor Q4. Further, when the current boost circuit is composed of the P-channel MOSFET Q3p and the N-channel MOSFET Q4n having a low on-resistance, the transient response time of the P-channel MOSFET QMp may be further shortened.
  • FIG. 6 is a circuit diagram showing a configuration example of the rectifier circuit IDN according to the second embodiment.
  • the rectifying circuit IDN includes an N-channel MOSFET QMn, an NPN transistor Q11, an NPN transistor Q12, an NPN transistor Q13, a PNP transistor Q14, a resistor R1, a resistor R2, a resistor R3, and a resistor R4.
  • the rectifier circuit IDN uses an N-channel MOSFET QMn to prevent backflow of current from the output terminal Vout to the input terminal Vi.
  • This N-channel MOSFET QMn is an enhancement type N-channel MOSFET element.
  • the power supply Vcc has a potential higher than the potential of the input terminal Vi by at least the gate-source potential Vth at which the N-channel MOSFET QMn can be turned on. That is, the magnitude relationship of the potential is Vcc> Vi + Vth.
  • the NPN transistor Q11 corresponds to the first NPN bipolar transistor element
  • the NPN transistor Q12 corresponds to the second NPN bipolar transistor element.
  • the NPN transistor Q11 and the NPN transistor Q12 detect the potential difference between the input terminal Vi and the output terminal Vout of the rectifier circuit IDN.
  • the NPN transistor Q13 is an NPN bipolar transistor element corresponding to the third transistor element.
  • the PNP transistor Q14 is a PNP bipolar transistor element corresponding to a fourth transistor element having a polarity opposite to that of the third transistor element. Further, in the NPN transistor Q13 and the PNP transistor Q14, the collector terminal corresponds to the first terminal, the emitter terminal corresponds to the second terminal, and the base terminal corresponds to the third terminal.
  • the NPN transistor Q13 and the PNP transistor Q14 are current boost circuits for charging and discharging the gate of the N-channel MOSFET QMn. In the steady state, no current flows between the collector-emitter of the NPN transistor Q13 and between the collector-emitter of the PNP transistor Q14.
  • connection point between the source terminal of the N-channel MOSFET QMn and the emitter terminal of the NPN transistor Q12 is connected to the input terminal Vi.
  • FIGS. 6 and 7A are diagrams showing an example of an NPN transistor Q11 configured as an equivalent diode element.
  • the emitter terminal corresponds to the cathode terminal (K) of the equivalent diode element
  • the connection point between the base terminal and the collector terminal is the anode terminal of the equivalent diode element.
  • the emitter terminal of the NPN transistor Q11 is connected to one terminal of the resistor R1.
  • the connection point between the base terminal and the collector terminal of the NPN transistor Q11 is connected to the base terminal of the NPN transistor Q12 and one terminal of the resistor R2.
  • the collector terminal of the NPN transistor Q11 corresponds to the cathode terminal (K) of the equivalent diode element, and one terminal of the resistor R1 is connected to this collector terminal.
  • the base terminal of the NPN transistor Q11 corresponds to the anode terminal (A) of the equivalent diode element, and the base terminal of the NPN transistor Q12 and one terminal of the resistor R2 are connected to this base terminal.
  • the emitter terminal of the NPN transistor Q11 is opened.
  • connection point between the other terminal of the resistor R2, the one terminal of the resistor R3, and the collector terminal of the NPN transistor Q13 is connected to the power supply Vcc having a potential higher than the input voltage of the input terminal Vi. ..
  • the other terminal of the resistor R3, the collector terminal of the NPN transistor Q12, the base terminal of the NPN transistor Q13, the base terminal of the PNP transistor Q14, and one terminal of the resistor R4 are connected.
  • the emitter terminal of the NPN transistor Q13, the emitter terminal of the PNP transistor Q14, the other terminal of the resistor R4, and the gate terminal of the N-channel MOSFET QMn are connected.
  • the connection point between the drain terminal of the N-channel MOSFET QMn and the other terminal of the resistor R1 is connected to the output terminal Vout.
  • the steady state of the rectifier circuit IDN will be described.
  • the base-emitter voltage of the base-emitter voltage V BE, the base-emitter voltage and the NPN transistor Q12 of NPN transistor Q11 of NPN transistor Q12, the emitter and the base of the NPN transistor Q11 Let the inter-voltage be V BE + ⁇ . Further, the DC leakage current at the gate of the N-channel MOSFET QMn, the base current of the NPN transistor Q11, and the base current of the NPN transistor Q12 are ignored.
  • the potential of the power supply Vcc is higher than the potential of the input terminal Vi.
  • the resistance value of the resistor R2 is set to a positive value.
  • the potential of the output terminal Vout and the potential difference (that is, forward voltage) Vf between the input terminal Vi and the output terminal Vout are set. The following equations (4) and (5) are established.
  • the resistance value of the resistor R1 is made larger than "0" to make the equation (6) a positive value, or the method of FIG. 7B is used instead of FIG. 7A as the connection method of the NPN transistor Q11, and the difference ⁇ Secure> 0 to prevent backflow.
  • the voltage between the anode terminal (A) and the cathode terminal (K) has a base current of 1 / HFE of the collector current, so that the NPN transistor Q12 has a voltage of 1 / HFE. It is the same as the base-emitter voltage V BE .
  • the NPN transistor Q11 is connected as shown in FIG. 7B, the total current flows between the collector bases and the voltage drop becomes large. Therefore, the voltage between the anode terminal (A) and the cathode terminal (K) is larger than that in the case of FIG. 7A. That is, ⁇ > 0.
  • FIG. 8 is a diagram illustrating the operation of the rectifier circuit IDN when the output potential rises due to an external factor in the second embodiment.
  • the output terminal Vout is forcibly (Vi).
  • the load current when a voltage E1 higher than ⁇ Vf) is applied and the time change of the gate potential of the N-channel MOSFET QMn will be described.
  • the external factor will be an external power supply connected to the output terminal Vout.
  • FIG. 9 is a diagram illustrating the gate capacitance of the N-channel MOSFET QMn. Capacitances Cgd, Cgs, and Cds exist between the drain, gate, and source terminals of the N-channel MOSFET QMn. The gate capacitance Ciss of the N-channel MOSFET QMn is (Cgd + Cgs).
  • the collector terminal and the base terminal of the NPN transistor Q11 are short-circuited, so that the voltage between the connection points of the collector terminal and the base terminal and the emitter terminal is constant.
  • the voltage E1 is applied to the output terminal Vout, the base potential of the NPN transistor Q12 rises, so that the NPN transistor Q12 becomes more conductive and the collector terminal of the NPN transistor Q12 and the other terminal of the resistor R3 are connected. Attempts are made to lower the potential at point P (see FIG. 6), which is the point. However, as shown in FIG.
  • the gate potential of the N-channel MOSFET QMn cannot be lowered immediately.
  • N-channel MOSFETQMn N-channel MOSFETQMn is turned, P point side potential becomes lower than the base-emitter voltage V BE amount of PNP transistor Q14 than the gate potential of the N-channel MOSFETQMn, i.e., the base potential difference between both ends of the resistor R4 is of the PNP transistor Q14
  • the PNP transistor Q14 is turned on.
  • the PNP transistor Q14 constituting the current boost circuit can be turned on at time t0 to rapidly discharge the charge at the gate of the N-channel MOSFET QMn. As the charge on the gate of the N-channel MOSFET QMn is discharged, the potential of the gate decreases.
  • the period from time t0 to time t1 in FIG. 8 is a discharge boost period by the current boost circuit.
  • the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the PNP transistor Q14, PNP transistor Q14 is turned off.
  • the charge at the gate of the N-channel MOSFET QMn is slowly discharged via the resistor R4, and the N-channel MOSFET QMn is turned off at time t2.
  • the gate potential when the N-channel MOSFET QMn is turned off is V1.
  • the period from time t1 to time t2 in FIG. 8 is a non-boost period.
  • NPN transistor Q12 is turned off, P point side potential and the gate potential of the N-channel MOSFETQMn higher base-emitter voltage V BE fraction of the NPN transistor Q13, that is, between the base and the emitter of the potential difference across the resistor R4 is NPN transistor Q13
  • V BE base-emitter voltage
  • the NPN transistor Q13 constituting the current boost circuit can rapidly charge the gate capacitance of the N-channel MOSFET QMn by turning on at time t4. As the charge on the gate of the N-channel MOSFET QMn is charged, the potential of the gate rises.
  • the period from time t4 to time t5 in FIG. 8 is a charging boost period by the current boost circuit.
  • the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the NPN transistor Q13, NPN transistor Q13 is turned off.
  • the resistor R3 and the resistor R4 slowly charge the gate charge of the N-channel MOSFET QMn, and when the gate potential of the N-channel MOSFET QMn reaches V0 at time t6, the N-channel MOSFET QMn is completely turned on. ..
  • the period from time t5 to time t6 in FIG. 8 is a non-boost period.
  • the time required for the recovery of the load current is the period Tc from time t4 to time t6 when the current boost circuit is present, whereas it is longer than the time t4 to time t7 when the current boost circuit is not present. It becomes Td for a long period of time, and it takes a longer time for the N-channel MOSFET QMn to be completely turned on, so that the loss in the rectifier circuit IDN increases.
  • the current boost circuit is effective as described in the first embodiment. is there.
  • the rectifying circuit IDN includes an N-channel MOSFET QMn, an NPN transistor Q11, an NPN transistor Q12, an NPN transistor Q13 and a PNP transistor Q14 having opposite polarities, and a resistor R1. It includes a resistor R2, a resistor R3, a resistor R4, an input terminal Vi, and an output terminal Vout.
  • the rectifier circuit IDN can set the potential difference between the input terminal Vi and the output terminal Vout to a value (for example, 200 mV) extremely lower than the forward voltage (0.4 V to 0.7 V) of the diode element. ..
  • the rectifier circuit IDN does not have a boost circuit by the NPN transistor Q13 and the PNP transistor Q14 when some electromotive force is connected to the output terminal Vout side and the potential of the output terminal Vout becomes higher than the potential of the input terminal Vi. Compared with the case, the reverse current can be blocked more quickly. Further, the rectifier circuit IDN can quickly start supplying power to the load after the electromotive force is removed.
  • FIG. 10 is a diagram showing a modified example of the current boost circuit according to the second embodiment.
  • an N-channel MOSFET Q13n is used as the third transistor element instead of the NPN transistor Q13.
  • a P-channel MOSFET Q14p is used instead of the PNP transistor Q14.
  • the drain terminal corresponds to the first terminal
  • the source terminal corresponds to the second terminal
  • the gate terminal corresponds to the third terminal.
  • the N-channel MOSFET Q13n is turned on.
  • the gate terminal of the N-channel MOSFET QMn and the power supply Vcc are short-circuited.
  • the P point potential is lower than the source potential of the P channel MOSFET Q14p by the threshold potential between the gate and source, the P channel MOSFET Q14p is turned on.
  • the P-channel MOSFET Q14p is turned on, the gate terminal and the source terminal of the N-channel MOSFET QMn are short-circuited.
  • the current boost circuit is composed of the N-channel MOSFET Q13n and the P-channel MOSFET Q14p, it operates in the same manner as when it is composed of the NPN transistor Q13 and the PNP transistor Q14. Further, when the current boost circuit is composed of the N-channel MOSFET Q13n having a low on-resistance and the P-channel MOSFET Q14p, there is a possibility that the transient response time of the N-channel MOSFET QMn can be further shortened.
  • FIG. 11 is a diagram showing a circuit example of the power supply Vcc according to the second embodiment.
  • the booster circuit is composed of a switch unit SW that performs a switching operation, a capacitor C11, a capacitor C12, a diode D11, and a diode D12.
  • the capacitor C11 corresponds to the first capacitor
  • the capacitor C12 corresponds to the second capacitor.
  • the diode D11 corresponds to the first diode element
  • the diode D12 corresponds to the second diode element.
  • the forward voltage of the diode D11 and the diode D12 is both Vf.
  • the output terminal Vout of the rectifier circuit IDN is connected to the input side of the switch unit SW, the anode terminal of the diode D11, and one terminal of the capacitor C12.
  • the output side of the switch unit SW and one terminal of the capacitor C11 are connected.
  • the other terminal of the capacitor C11, the cathode terminal of the diode D11, and the anode terminal of the diode D12 are connected.
  • the connection point between the other terminal of the capacitor C11, the cathode terminal of the diode D11, and the anode terminal of the diode D12 is defined as the Q point.
  • the connection point between the cathode terminal of the diode D12 and the other terminal of the capacitor C12 is connected to the connection point between the other terminal of the resistor R2, one terminal of the resistor R3, and the collector terminal of the NPN transistor Q13.
  • the switch unit SW is a circuit such as a DC-DC converter that generates a square wave whose duty fluctuates at a value other than 0% and 100%.
  • the switch unit SW is connected to the output terminal Vout and performs a switching operation between the potential of the output terminal Vout and the potential of the ground GND.
  • the capacitor C11 is charged with the potential of (Vout-Vf) via the diode D11 and smoothed to the DC potential of (Vout-Vf).
  • the booster circuit shown in FIG. 11 is an example of the power supply Vcc, and the power supply Vcc is not limited to this booster circuit.
  • FIG. 12 is a circuit diagram showing a configuration example of the rectifier circuit IDP according to the third embodiment.
  • the rectifier circuit IDP according to the third embodiment has a configuration in which a Zener diode DZ is added to the rectifier circuit IDP of the first embodiment shown in FIG.
  • the same or corresponding parts as those in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.
  • the anode terminal of the Zener diode DZ is connected to the base terminal of the NPN transistor Q4, and the cathode terminal of the Zener diode DZ is connected to the output terminal Vout.
  • the zener diode DZ limits the gate-source voltage V GS of the P-channel MOSFETQMp.
  • the Zener voltage of the Zener diode DZ is directed to an output current load of the output terminal Vout side requires that P-channel MOSFETQMp is only the on-resistance of the gate-source voltage V GS than can be secured can flow sufficiently.
  • the gate potential of the P-channel MOSFET QMp drops only to the potential obtained by subtracting the Zener voltage from the potential of the output terminal Vout (that is, the potential on the source side), so that the P-channel MOSFET QMp approaches the saturated state more than necessary. Can be prevented. Further, since the amount of charge to be changed in the gate capacitance, that is, the fluctuation range of the gate potential can be suppressed in the transient state of the P channel MOSFET QMp, the P channel with respect to the potential increase of the output terminal Vout exceeding the potential of the input terminal Vi. The transient response of the MOSFET QMp is improved. This situation is shown in FIG.
  • FIG. 13 is a diagram illustrating the operation of the rectifier circuit IDP when the Zener diode DZ is present in the third embodiment.
  • the output terminal is output from the outside.
  • the load current when a voltage E1 higher than (Vi-Vf) is forcibly applied to Vout, and the time change of the gate potential of the P-channel MOSFET QMp will be described.
  • the gate potential and load current of the P-channel MOSFET QMp in the presence of the Zener diode DZ are shown by solid lines.
  • the gate potential and load current of the P-channel MOSFET QMp in the absence of the Zener diode DZ are indicated by alternate long and short dash lines.
  • the gate potential of the P-channel MOSFET QMp is V0.
  • the Zener diode DZ raises the gate potential from V0 to V0 DZ (> V0) and a sufficient load current can be secured even if the saturation degree of the P channel MOSFET QMp is relaxed, the gate potential is raised from V0 to V0 DZ .
  • the current backflow period from the output terminal Vout to the input terminal Vi can be shortened. That is, the current backflow period in the absence of the Zener diode DZ is from time t0 to time t2, but the current backflow period in the presence of the Zener diode DZ is from time t0 to time t8 ( ⁇ t2). ..
  • the time for recovering the load current that is, the time from time t4 to time t6 does not change depending on the presence or absence of the Zener diode DZ.
  • the rectifier circuit IDP includes a Zener diode DZ in which the cathode terminal is connected to the output terminal Vout and the anode terminal is connected to the base terminal of the NPN transistor Q4.
  • FIG. 14 is a circuit diagram showing a configuration example of the rectifier circuit IDN according to the fourth embodiment.
  • the rectifier circuit IDN according to the fourth embodiment has a configuration in which a Zener diode DZ is added to the rectifier circuit IDN of the second embodiment shown in FIG.
  • the same or corresponding parts as those in FIGS. 6 to 11 are designated by the same reference numerals, and the description thereof will be omitted.
  • the anode terminal of the Zener diode DZ is connected to the input terminal Vi, and the cathode terminal of the Zener diode DZ is connected to the base terminal of the PNP transistor Q14.
  • the zener diode DZ limits the gate-source voltage V GS of the N-channel MOSFETQMn.
  • the Zener voltage of the Zener diode DZ is directed to an output current load of the output terminal Vout side requires that the N channel MOSFETQMn is only the on-resistance of the gate-source voltage V GS than can be secured can flow sufficiently.
  • the gate potential of the N-channel MOSFET QMn rises only from the potential of the input terminal Vi (that is, the potential on the source side) to the potential to which the Zener voltage is applied, so that the N-channel MOSFET QMn becomes saturated more than necessary. Can be prevented. Further, since the amount of charge to be changed in the gate capacitance, that is, the fluctuation range of the gate potential can be suppressed in the transient state of the N channel MOSFET QMn, the N channel with respect to the potential increase of the output terminal Vout exceeding the potential of the input terminal Vi. The transient response of the MOSFET QMn is improved. This situation is shown in FIG.
  • FIG. 15 is a diagram illustrating the operation of the rectifier circuit IDN when the Zener diode DZ is present in the fourth embodiment.
  • the output terminal is output from the outside.
  • the load current when a voltage E1 higher than (Vi-Vf) is forcibly applied to Vout, and the time change of the gate potential of the N-channel MOSFET QMn will be described.
  • the gate potential and load current of the N-channel MOSFET QMn in the presence of the Zener diode DZ are shown by solid lines.
  • the gate potential and load current of the N-channel MOSFET QMn in the absence of the Zener diode DZ are indicated by alternate long and short dash lines.
  • the gate potential of the N-channel MOSFET QMn is V0.
  • the Zener diode DZ lowers the gate potential from V0 to V0 DZ ( ⁇ V0) and a sufficient load current can be secured even if the saturation degree of the N-channel MOSFET QMn is relaxed, the gate potential is lowered from V0 to V0 DZ .
  • the current backflow period from the output terminal Vout to the input terminal Vi can be shortened. That is, the current backflow period in the absence of the Zener diode DZ is from time t0 to time t2, but the current backflow period in the presence of the Zener diode DZ is from time t0 to time t8 ( ⁇ t2). ..
  • the time for recovering the load current that is, the time from time t4 to time t6 does not change depending on the presence or absence of the Zener diode DZ.
  • the rectifier circuit IDN includes a Zener diode DZ in which the anode terminal is connected to the input terminal Vi and the cathode terminal is connected to the base terminal of the PNP transistor Q14.
  • FIG. 16 is a circuit diagram showing a configuration example of the DC power supply synthesis circuit 1 according to the fifth embodiment.
  • the same or corresponding parts as those in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
  • the DC power supply synthesis circuit 1 has a configuration in which n rectifier circuits ID1 to IDn (n is an arbitrary integer) and m ordinary diodes D1 to Dm (m is an arbitrary integer) are combined.
  • the rectifier circuits ID1 to IDn are the rectifier circuit IDP according to the first embodiment, the rectifier circuit IDN according to the second embodiment, the rectifier circuit IDP according to the third embodiment, or the rectifier circuit IDN according to the fourth embodiment, respectively. It is either.
  • the rectifier circuits ID1 to IDn are ideal diode circuits having a smaller forward voltage than the ordinary diodes D1 to Dm.
  • the rectifier circuits ID1 to IDn will be referred to as "low voltage drop rectifier circuits ID1 to IDn".
  • the low voltage drop rectifier circuits ID1 to IDn may include a rectifier circuit IDP and a rectifier circuit IDN.
  • the rectifier circuit IDP corresponds to the first rectifier circuit
  • the rectifier circuit IDN corresponds to the second rectifier circuit.
  • the reference potential Vref is for supplying the drive current of the low voltage drop rectifier circuits ID1 to IDn.
  • the reference potential Vref of the rectifier circuit IDP is a ground GND having a potential lower than the potential of the input terminal Vi by at least the potential between the gate and source at which the P channel MOSFET QMp can be turned on.
  • the reference potential Vref of the rectifier circuit IDN is a power supply Vcc having a potential higher than the potential of the input terminal Vi by at least the potential between the gate and source at which the N-channel MOSFET QMn can be turned on.
  • DC power supplies Ei1 to Eim are connected to the anode terminals of the diodes D1 to Dm. All the cathode terminals of the diodes D1 to Dm and all the output terminals Vout of the low voltage drop rectifier circuits ID1 to IDn are connected. V0 is the output voltage of the DC power supply synthesis circuit 1.
  • the DC power supply synthesis circuit 1 includes DC power supplies Ei1 to Eim, Vi1 to Vin, low voltage drop rectifier circuits ID1 to IDn, and diodes D1 to Dm.
  • Ei1 to Eim are connected to the anode terminals of the diodes D1 to Dm, respectively.
  • the DC power supplies Vi1 to Vin are connected to the input terminals Vi of the low voltage drop rectifier circuits ID1 to IDn, respectively.
  • the cathode terminals of the diodes D1 to Dm and the output terminals Vout of the low voltage drop rectifier circuits ID1 to IDn are connected to each other.
  • the normal diodes D1 to Dm are connected to the DC power supplies Ei1 to Eim having a high power supply voltage and a small current consumption, and the ideal diode circuit is used for the DC power supplies Vi1 to Vin having a low power supply voltage and a large current consumption.
  • the DC power supply synthesis circuit 1 is configured to use at least one diode D1 in addition to at least one of the rectifier circuit IDP and the rectifier circuit IDN, but the rectifier circuit IDP or the rectifier circuit IDN It may be configured to use at least one of them.
  • FIG. 17 is a circuit diagram showing a configuration example of the full-wave rectifier circuit 2 according to the sixth embodiment.
  • the same or corresponding parts as those in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
  • the full-wave rectifier circuit 2 is a bridge-type full-wave rectifier circuit that full-wave rectifies the AC voltage output by the transformer Tr.
  • the transformer Tr includes a primary winding, a secondary winding, and a center tap provided on the secondary winding.
  • the full-wave rectifier circuit 2 uses the center tap as a reference potential, and performs full-wave rectification using the rectifier circuits IDP1 and IDP2 on the positive potential side and the rectifier circuits IDN1 and IDN2 on the negative potential side.
  • the rectifier circuits IDP1 and IDP2 are the rectifier circuit IDP according to the first embodiment or the rectifier circuit IDP according to the third embodiment, respectively.
  • the rectifier circuits IDN1 and IDN2 are the rectifier circuit IDN according to the second embodiment or the rectifier circuit IDN according to the fourth embodiment, respectively.
  • the rectifier circuits IDP1, IDP2, IDN1 and IDN2 are ideal diode circuits having a small forward voltage. Loads Za, Zb, and Zc are connected to the output side of the full-wave rectifier circuit 2 via capacitors C1 and C2 for AC ripple smoothing.
  • the input terminal Vi of the rectifier circuit IDP1 and the output terminal Vout of the rectifier circuit IDN2 are connected to one output side of the secondary winding.
  • the input terminal Vi of the rectifier circuit IDP2 and the output terminal Vout of the rectifier circuit IDN1 are connected to the other output side of the secondary winding.
  • the connection point between the output terminal Vout of the rectifier circuit IDP1, the output terminal Vout of the rectifier circuit IDP2, and one terminal of the capacitor C1 is an output terminal of a positive power supply.
  • + V1 is the output potential of the positive power supply with respect to the reference potential of the center tap.
  • connection point between the input terminal Vi of the rectifier circuit IDN1, the input terminal Vi of the rectifier circuit IDN2, and one terminal of the capacitor C2 is an output terminal of a negative power supply.
  • -V1 is the output potential of the negative power supply with respect to the reference potential of the center tap.
  • the ground GND of the rectifier circuit IDP1, the ground GND of the rectifier circuit IDP2, the power supply Vcc of the rectifier circuit IDN1, the power supply Vcc of the rectifier circuit IDN2, the other terminal of the capacitor C1, and the other terminal of the capacitor C2 are center tapped. It is connected.
  • the full-wave rectifier circuit 2 is a bridge-type full-wave rectifier circuit composed of four rectifier circuits IDP1, IDP2, IDN1, and IDN2, and is a transformer having a center tap. Full-wave rectification of the AC voltage output by the device Tr. Since this full-wave rectifier circuit 2 is composed of rectifier circuits IDP1, IDP2, IDN1 and IDN2, which are ideal diode circuits having a small forward voltage, it is compared with a bridge-type full-wave rectifier circuit using a normal diode element. It is possible to suppress the power loss.
  • FIG. 18 is a circuit diagram showing a configuration example of the full-wave rectifier circuit 3 according to the seventh embodiment.
  • the same or corresponding parts as those in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
  • the full-wave rectifier circuit 3 is a bridge-type full-wave rectifier circuit that full-wave rectifies the three-phase AC voltage output by the three-phase AC power generation circuit 4.
  • the three-phase AC power generation circuit 4 includes a three-phase sinusoidal AC power supply Eu, Ev, Ew and a neutral point Vn to which the sinusoidal AC power supply Eu, Ev, Ew is connected.
  • the sinusoidal AC power supply Ev has a phase angle 2 ⁇ / 3 behind that of the sinusoidal AC power supply Eu.
  • the sinusoidal AC power supply Ew has a phase angle 2 ⁇ / 3 behind the sinusoidal AC power supply Ev.
  • the full-wave rectifier circuit 3 uses the neutral point Vn as a reference potential, and uses the rectifier circuits IDP3, IDP4, IDP5 on the positive potential side and the rectifier circuits IDN3, IDN4, IDN5 on the negative potential side for each phase. Perform full-wave rectification.
  • the rectifier circuits IDP3, IDP4, and IDP5 are the rectifier circuit IDP according to the first embodiment or the rectifier circuit IDP according to the third embodiment, respectively.
  • the rectifier circuits IDN3, IDN4, and IDN5 are the rectifier circuit IDN according to the second embodiment or the rectifier circuit IDN according to the fourth embodiment, respectively.
  • the rectifier circuits IDP3, IDP4, IDP5, IDN3, IDN4, IDN5 are ideal diode circuits having a small forward voltage.
  • a load Zd is connected to the output side of the full-wave rectifier circuit 3 via a capacitor C3 for smoothing AC ripple.
  • the input terminal Vi of the rectifier circuit IDP3 and the output terminal Vout of the rectifier circuit IDN3 are connected to the output side of the sinusoidal AC power supply Eu of the three-phase AC power generation circuit 4.
  • the input terminal Vi of the rectifier circuit IDP4 and the output terminal Vout of the rectifier circuit IDN4 are connected to the output side of the sinusoidal AC power supply Ew.
  • the input terminal Vi of the rectifier circuit IDP5 and the output terminal Vout of the rectifier circuit IDN5 are connected to the output side of the sinusoidal AC power supply Ev.
  • Each ground GND of the rectifier circuits IDP3, IDP4 and IDP5 and each power supply Vcc of the rectifier circuits IDN3, IDN4 and IDN5 are connected to the neutral point Vn.
  • connection point between each output terminal Vout of the rectifier circuits IDP3, IDP4, and IDP5 on the positive potential side and one terminal of the capacitor C3 becomes an output terminal of the positive power supply.
  • connection point between each input terminal Vi of the rectifier circuits IDN3, IDN4, and IDN5 on the negative potential side and the other terminal of the capacitor C3 becomes an output terminal of a negative power supply.
  • V2 is the output potential applied to the load Zd.
  • the full-wave rectifier circuit 3 is a bridge-type full-wave rectifier circuit composed of six rectifier circuits IDP3, IDP4, IDP5, IDN3, IDN4, IDN5.
  • the three-phase AC voltage output by the three-phase AC power generation circuit 4 having the sex point Vn is full-wave rectified. Since this full-wave rectifier circuit 3 is composed of rectifier circuits IDP3, IDP4, IDP5, IDN3, IDN4, IDN5, which are ideal diode circuits having a small forward voltage, a bridge-type full-wave rectifier circuit using a normal diode element is used. Power loss can be suppressed as compared with a rectifier circuit.
  • the full-wave rectifier circuit 3 is configured to perform full-wave rectification of the three-phase AC voltage, but the n-phase (n ⁇ 4) AC voltage is full-wave rectified. It may be configured.
  • the present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
  • the rectifier circuit according to the present invention has an extremely small potential difference between input and output and has high responsiveness, and is therefore suitable for a power supply synthesis circuit and a rectifier circuit that require low loss and high-speed response.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)
  • Dc-Dc Converters (AREA)

Abstract

According to the present invention, an input terminal (Vi) and an output terminal (Vout) are connected to the drain terminal of a P-channel MOSFET (QMp) and the source terminal thereof, respectively, and reverse current from the output terminal (Vout) to the input terminal (Vi) is prevented by turning off the P-channel MOSFET (QMp). A PNP transistor (Q1) and a PNP transistor (Q2) detect the reverse current and turn off the P-channel MOSFET (QMp). A PNP transistor (Q3) and an NPN transistor (Q4) constitute a current boost circuit for charging and discharging the gate of the P-channel MOSFET (QMp) and improves the transient responsiveness of the P-channel MOSFET (QMp).

Description

整流回路、直流電源合成回路、及び全波整流回路Rectifier circuit, DC power supply synthesis circuit, and full-wave rectifier circuit
 この発明は、整流回路、直流電源合成回路、及び全波整流回路に関するものである。 The present invention relates to a rectifier circuit, a DC power supply synthesis circuit, and a full-wave rectifier circuit.
 バックアップ電源等を使用する目的で、複数の直流電源の出力を合成して負荷に接続する場合、当該複数の直流電源のうちのある直流電源から他の直流電源に電流が逆流しないように、各直流電源と負荷との間に、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)を用いた逆電流阻止回路が接続される(例えば、特許文献1参照)。 When combining the outputs of multiple DC power supplies and connecting them to a load for the purpose of using a backup power supply, etc., each DC power supply should prevent current from flowing back from one of the multiple DC power supplies to another. A reverse current blocking circuit using a MOSFET (Metal-Oxide-Semiconductor Field-Effective Transistor) is connected between the DC power supply and the load (see, for example, Patent Document 1).
特開昭62-12332号公報Japanese Unexamined Patent Publication No. 62-12332
 特許文献1に記載された逆電流阻止回路は、逆電流発生時にMOSFETをオフさせるためのバイポーラトランジスタを有する。この逆電流阻止回路には、入出力間の電位差が定常的にバイポーラトランジスタのベースエミッタ間電圧(通常、0.7V程度)以上ないと逆電流を阻止できないという課題があった。 The reverse current blocking circuit described in Patent Document 1 has a bipolar transistor for turning off the MOSFET when a reverse current is generated. This reverse current blocking circuit has a problem that the reverse current cannot be blocked unless the potential difference between the input and output is constantly equal to or higher than the voltage between the base and emitter of the bipolar transistor (usually about 0.7 V).
 この発明は、上記のような課題を解決するためになされたもので、入出力間の電位差が従来(例えば、0.7V)に比べて極めて低い場合(例えば、200mV)でも逆電流を阻止することを目的とする。 The present invention has been made to solve the above-mentioned problems, and prevents reverse current even when the potential difference between input and output is extremely low (for example, 200 mV) as compared with the conventional case (for example, 0.7 V). The purpose is.
 この発明に係る整流回路は、PチャンネルMOSFET素子と、第1PNPバイポーラトランジスタ素子と、第2PNPバイポーラトランジスタ素子と、互いに逆極性を持つ第3トランジスタ素子及び第4トランジスタ素子と、第1抵抗器と、第2抵抗器と、第3抵抗器と、第4抵抗器と、入力端子と、出力端子とを備え、PチャンネルMOSFET素子のドレイン端子と第1抵抗器の一方端子との接続点が入力端子に接続され、第1PNPバイポーラトランジスタ素子は等価ダイオード素子を構成し、等価ダイオード素子のアノード端子と第1抵抗器の他方端子とが接続され、等価ダイオード素子のカソード端子と第2PNPバイポーラトランジスタ素子のベース端子と第2抵抗器の一方端子とが接続され、第2抵抗器の他方端子と第3抵抗器の一方端子と第3トランジスタ素子の第1端子との接続点がグラウンドに接続され、第3抵抗器の他方端子と第2PNPバイポーラトランジスタ素子のコレクタ端子と第3トランジスタ素子の第3端子と第4トランジスタ素子の第3端子と第4抵抗器の一方端子とが接続され、第3トランジスタ素子の第2端子と第4トランジスタ素子の第2端子と第4抵抗器の他方端子とPチャンネルMOSFET素子のゲート端子とが接続され、第2PNPバイポーラトランジスタ素子のエミッタ端子とPチャンネルMOSFET素子のソース端子と第4トランジスタ素子の第1端子との接続点が出力端子に接続されているものである。 The rectifying circuit according to the present invention includes a P-channel MOSFET element, a first PNP bipolar transistor element, a second PNP bipolar transistor element, a third transistor element and a fourth transistor element having opposite polarities, a first resistor, and the like. It includes a second resistor, a third resistor, a fourth resistor, an input terminal, and an output terminal, and the connection point between the drain terminal of the P-channel MOSFET element and one terminal of the first resistor is the input terminal. The first PNP bipolar transistor element constitutes an equivalent diode element, the anode terminal of the equivalent diode element and the other terminal of the first resistor are connected, and the cathode terminal of the equivalent diode element and the base of the second PNP bipolar transistor element. The terminal and one terminal of the second resistor are connected, the connection point between the other terminal of the second resistor, one terminal of the third resistor and the first terminal of the third transistor element is connected to the ground, and the third terminal is connected. The other terminal of the resistor, the collector terminal of the second PNP bipolar transistor element, the third terminal of the third transistor element, the third terminal of the fourth transistor element, and one terminal of the fourth resistor are connected to form the third transistor element. The second terminal, the second terminal of the fourth transistor element, the other terminal of the fourth resistor, and the gate terminal of the P channel MOSFET element are connected, and the emitter terminal of the second PNP bipolar transistor element and the source terminal of the P channel MOSFET element The connection point of the fourth transistor element with the first terminal is connected to the output terminal.
 この発明によれば、入出力間の電位差が従来に比べて極めて低い場合でも逆電流を阻止することができる。 According to the present invention, reverse current can be blocked even when the potential difference between input and output is extremely low as compared with the conventional case.
実施の形態1に係る整流回路IDPの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the rectifier circuit IDP which concerns on Embodiment 1. FIG. 図2A及び図2Bは、等価ダイオード素子として構成されたPNPトランジスタQ1の例を示す図である。2A and 2B are diagrams showing an example of a PNP transistor Q1 configured as an equivalent diode element. 実施の形態1において、外部要因による出力電位上昇時の整流回路IDPの動作を説明する図である。It is a figure explaining the operation of the rectifier circuit IDP when the output potential rises by an external factor in Embodiment 1. FIG. PチャンネルMOSFETQMpのゲート容量を説明する図である。It is a figure explaining the gate capacitance of P channel MOSFET QMp. 実施の形態1における電流ブースト回路の変形例を示す図である。It is a figure which shows the modification of the current boost circuit in Embodiment 1. FIG. 実施の形態2に係る整流回路IDNの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the rectifier circuit IDN which concerns on Embodiment 2. FIG. 図7A及び図7Bは、等価ダイオード素子として構成されたNPNトランジスタQ11の例を示す図である。7A and 7B are diagrams showing an example of an NPN transistor Q11 configured as an equivalent diode element. 実施の形態2において、外部要因による出力電位上昇時の整流回路IDNの動作を説明する図である。FIG. 2 is a diagram illustrating the operation of the rectifier circuit IDN when the output potential rises due to an external factor in the second embodiment. NチャンネルMOSFETQMnのゲート容量を説明する図である。It is a figure explaining the gate capacitance of the N channel MOSFET QMn. 実施の形態2における電流ブースト回路の変形例を示す図である。It is a figure which shows the modification of the current boost circuit in Embodiment 2. FIG. 実施の形態2における電源Vccの回路例を示す図である。It is a figure which shows the circuit example of the power source Vcc in Embodiment 2. 実施の形態3に係る整流回路IDPの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the rectifier circuit IDP which concerns on Embodiment 3. 実施の形態3において、ツェナーダイオードDZが存在する場合の整流回路IDPの動作を説明する図である。It is a figure explaining the operation of the rectifier circuit IDP when the Zener diode DZ is present in Embodiment 3. FIG. 実施の形態4に係る整流回路IDNの構成例を示す回路図である。It is a circuit diagram which shows the structural example of the rectifier circuit IDN which concerns on Embodiment 4. FIG. 実施の形態4において、ツェナーダイオードDZが存在する場合の整流回路IDNの動作を説明する図である。FIG. 5 is a diagram illustrating the operation of the rectifier circuit IDN when the Zener diode DZ is present in the fourth embodiment. 実施の形態5に係る直流電源合成回路1の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the DC power source synthesis circuit 1 which concerns on Embodiment 5. 実施の形態6に係る全波整流回路2の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the full-wave rectifier circuit 2 which concerns on Embodiment 6. 実施の形態7に係る全波整流回路3の構成例を示す回路図である。It is a circuit diagram which shows the structural example of the full-wave rectifier circuit 3 which concerns on Embodiment 7.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係る整流回路IDPの構成例を示す回路図である。整流回路IDPは、PチャンネルMOSFETQMp、PNPトランジスタQ1、PNPトランジスタQ2、PNPトランジスタQ3、NPNトランジスタQ4、抵抗器R1、抵抗器R2、抵抗器R3、及び抵抗器R4を備える。
Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1.
FIG. 1 is a circuit diagram showing a configuration example of a rectifier circuit IDP according to the first embodiment. The rectifying circuit IDP includes a P-channel MOSFET QMp, a PNP transistor Q1, a PNP transistor Q2, a PNP transistor Q3, an NPN transistor Q4, a resistor R1, a resistor R2, a resistor R3, and a resistor R4.
 整流回路IDPは、PチャンネルMOSFETQMpを用いて、出力端子Voutから入力端子Viへの電流の逆流を阻止するものである。このPチャンネルMOSFETQMpは、エンハンスメント型のPチャンネルMOSFET素子である。グラウンドGNDは、入力端子Viの電位よりも、少なくともPチャンネルMOSFETQMpがオンできるゲートソース間電位Vth分低い電位である。つまり、電位の大小関係は、GND<Vi+Vthである。 The rectifier circuit IDP uses the P-channel MOSFET QMp to prevent the backflow of current from the output terminal Vout to the input terminal Vi. This P-channel MOSFET QMp is an enhancement type P-channel MOSFET element. The ground GND is a potential lower than the potential of the input terminal Vi by at least the gate-source potential Vth at which the P-channel MOSFET QMp can be turned on. That is, the magnitude relationship of the potential is GND <Vi + Vth.
 PNPトランジスタQ1は、第1PNPバイポーラトランジスタ素子に相当し、PNPトランジスタQ2は、第2PNPバイポーラトランジスタ素子に相当する。PNPトランジスタQ1とPNPトランジスタQ2は、整流回路IDPの入力端子Viと出力端子Voutとの電位差を検出するものである。 The PNP transistor Q1 corresponds to the first PNP bipolar transistor element, and the PNP transistor Q2 corresponds to the second PNP bipolar transistor element. The PNP transistor Q1 and the PNP transistor Q2 detect the potential difference between the input terminal Vi and the output terminal Vout of the rectifier circuit IDP.
 PNPトランジスタQ3は、第3トランジスタ素子に相当する、PNPバイポーラトランジスタ素子である。NPNトランジスタQ4は、第3トランジスタとは逆極性を持つ第4トランジスタ素子に相当する、NPNバイポーラトランジスタ素子である。また、PNPトランジスタQ3及びNPNトランジスタQ4において、コレクタ端子は第1端子に、エミッタ端子は第2端子に、ベース端子は第3端子に相当する。PNPトランジスタQ3とNPNトランジスタQ4は、PチャンネルMOSFETQMpのゲートを充放電するための電流ブースト回路である。定常状態では、PNPトランジスタQ3のコレクタエミッタ間、及びNPNトランジスタQ4のコレクタエミッタ間に電流は流れない。入力端子Vi又は出力端子Voutに電圧変動があり、PチャンネルMOSFETQMpのゲート電位が変化する過渡状態では、PNPトランジスタQ3のコレクタエミッタ間、又はNPNトランジスタQ4のコレクタエミッタ間に電流が流れ、PチャンネルMOSFETQMpのゲート容量が急速に充放電される。 The PNP transistor Q3 is a PNP bipolar transistor element corresponding to the third transistor element. The NPN transistor Q4 is an NPN bipolar transistor element corresponding to a fourth transistor element having a polarity opposite to that of the third transistor. Further, in the PNP transistor Q3 and the NPN transistor Q4, the collector terminal corresponds to the first terminal, the emitter terminal corresponds to the second terminal, and the base terminal corresponds to the third terminal. The PNP transistor Q3 and the NPN transistor Q4 are current boost circuits for charging and discharging the gate of the P-channel MOSFET QMp. In the steady state, no current flows between the collector-emitter of the PNP transistor Q3 and between the collector-emitter of the NPN transistor Q4. In a transient state where there is a voltage fluctuation at the input terminal Vi or the output terminal Vout and the gate potential of the P-channel MOSFET QMp changes, a current flows between the collector-emitter of the PNP transistor Q3 or between the collector-emitter of the NPN transistor Q4, and the P-channel MOSFET QMp The gate capacity of the is rapidly charged and discharged.
 図1に示されるように、PチャンネルMOSFETQMpのドレイン端子と抵抗器R1の一方端子との接続点が、入力端子Viに接続されている。 As shown in FIG. 1, the connection point between the drain terminal of the P channel MOSFET QMp and one terminal of the resistor R1 is connected to the input terminal Vi.
 なお、図1において、PNPトランジスタQ1のベース端子とコレクタ端子とは短絡されており、このPNPトランジスタQ1は、等価ダイオード素子として構成されている。図2A及び図2Bは、等価ダイオード素子として構成されたPNPトランジスタQ1の例を示す図である。図1及び図2Aに示されるように、PNPトランジスタQ1において、エミッタ端子は、等価ダイオード素子のアノード端子(A)に相当し、ベース端子とコレクタ端子との接続点は、等価ダイオード素子のカソード端子(K)に相当する。この例において、PNPトランジスタQ1のエミッタ端子は、抵抗器R1の他方端子と接続されている。PNPトランジスタQ1のベース端子とコレクタ端子の接続点は、PNPトランジスタQ2のベース端子と抵抗器R2の一方端子とに接続されている。 In FIG. 1, the base terminal and the collector terminal of the PNP transistor Q1 are short-circuited, and the PNP transistor Q1 is configured as an equivalent diode element. 2A and 2B are diagrams showing an example of a PNP transistor Q1 configured as an equivalent diode element. As shown in FIGS. 1 and 2A, in the PNP transistor Q1, the emitter terminal corresponds to the anode terminal (A) of the equivalent diode element, and the connection point between the base terminal and the collector terminal is the cathode terminal of the equivalent diode element. Corresponds to (K). In this example, the emitter terminal of the PNP transistor Q1 is connected to the other terminal of the resistor R1. The connection point between the base terminal and the collector terminal of the PNP transistor Q1 is connected to the base terminal of the PNP transistor Q2 and one terminal of the resistor R2.
 図2Bの例では、PNPトランジスタQ1のコレクタ端子は、等価ダイオード素子のアノード端子(A)に相当し、このコレクタ端子に抵抗器R1の他方端子が接続される。PNPトランジスタQ2のベース端子は、等価ダイオード素子のカソード端子(K)に相当し、このベース端子にPNPトランジスタQ2のベース端子と抵抗器R2の一方端子が接続される。PNPトランジスタQ1のエミッタ端子は、開放される。 In the example of FIG. 2B, the collector terminal of the PNP transistor Q1 corresponds to the anode terminal (A) of the equivalent diode element, and the other terminal of the resistor R1 is connected to this collector terminal. The base terminal of the PNP transistor Q2 corresponds to the cathode terminal (K) of the equivalent diode element, and the base terminal of the PNP transistor Q2 and one terminal of the resistor R2 are connected to this base terminal. The emitter terminal of the PNP transistor Q1 is opened.
 図1において、抵抗器R2の他方端子と、抵抗器R3の一方端子と、PNPトランジスタQ3のコレクタ端子との接続点は、グラウンドGNDに接続されている。抵抗器R3の他方端子と、PNPトランジスタQ2のコレクタ端子と、PNPトランジスタQ3のベース端子と、NPNトランジスタQ4のベース端子と、抵抗器R4の一方端子とが接続されている。PNPトランジスタQ3のエミッタ端子と、NPNトランジスタQ4のエミッタ端子と、抵抗器R4の他方端子と、PチャンネルMOSFETQMpのゲート端子とが接続されている。PNPトランジスタQ2のエミッタ端子とPチャンネルMOSFETQMpのソース端子とNPNトランジスタQ4のコレクタ端子との接続点は、出力端子Voutに接続されている。 In FIG. 1, the connection point between the other terminal of the resistor R2, the one terminal of the resistor R3, and the collector terminal of the PNP transistor Q3 is connected to the ground GND. The other terminal of the resistor R3, the collector terminal of the PNP transistor Q2, the base terminal of the PNP transistor Q3, the base terminal of the NPN transistor Q4, and one terminal of the resistor R4 are connected. The emitter terminal of the PNP transistor Q3, the emitter terminal of the NPN transistor Q4, the other terminal of the resistor R4, and the gate terminal of the P channel MOSFET QMp are connected. The connection points between the emitter terminal of the PNP transistor Q2, the source terminal of the P channel MOSFET QMp, and the collector terminal of the NPN transistor Q4 are connected to the output terminal Vout.
 次に、整流回路IDPの定常状態を説明する。
 整流回路IDPの定常状態において、PNPトランジスタQ2のベースエミッタ間電圧VBE、PNPトランジスタQ1のベースエミッタ間電圧とPNPトランジスタQ2のベースエミッタ間電圧との差異δ>0とし、PNPトランジスタQ1のベースエミッタ間電圧をVBE+δとする。また、PチャンネルMOSFETQMpのゲートの直流リーク電流と、PNPトランジスタQ1のベース電流と、PNPトランジスタQ2のベース電流とを無視する。さらに、抵抗器R2の抵抗値を正の値とする。この場合、PNPトランジスタQ1のエミッタ側の電流とコレクタ側の電流とが等しいことから、出力端子Voutの電位、及び入力端子Viと出力端子Voutとの間の電位差(つまり、順方向電圧)Vfには、以下の式(1)及び式(2)の関係が成り立つ。
Next, the steady state of the rectifier circuit IDP will be described.
In the steady state of the rectifying circuit IDP, and the base-emitter voltage V BE of the PNP transistor Q2, the difference [delta]> 0 the base-emitter voltage of the base-emitter voltage and the PNP transistor Q2 of the PNP transistor Q1, the emitter and the base of the PNP transistor Q1 Let the inter-voltage be V BE + δ. Further, the DC leakage current at the gate of the P-channel MOSFET QMp, the base current of the PNP transistor Q1 and the base current of the PNP transistor Q2 are ignored. Further, the resistance value of the resistor R2 is set to a positive value. In this case, since the current on the emitter side and the current on the collector side of the PNP transistor Q1 are equal, the potential of the output terminal Vout and the potential difference (that is, forward voltage) Vf between the input terminal Vi and the output terminal Vout are set. The following equations (1) and (2) are established.
Figure JPOXMLDOC01-appb-I000001
Figure JPOXMLDOC01-appb-I000001
 整流回路IDPの電力消費を下げるためにPチャンネルMOSFETQMpでの飽和電圧(PチャンネルMOSFETQMpのオン抵抗とドレインソース間を流れる電流の積)をできるだけ小さく制御したい場合、すなわち式(2)で順方向電圧Vfを表現したい場合は、式(2)における順方向電圧Vfを前記PチャンネルMOSFETQMpの最小飽和電圧よりも大きくする必要がある。以下、本条件で説明する。例えば、式(2)において抵抗器R1の抵抗値が抵抗器R2の抵抗値に比べて非常に小さい場合、かつ、上記差異δが十分小さい場合、一般的なダイオード素子の順方向電圧(約0.7V)よりも小さい順方向電圧Vfを実現することができる。 When you want to control the saturation voltage in the P-channel MOSFET QMp (the product of the on-resistance of the P-channel MOSFET QMp and the current flowing between the drain sources) as small as possible in order to reduce the power consumption of the rectifier circuit IDP, that is, the forward voltage in Eq. (2). When it is desired to express Vf, it is necessary to make the forward voltage Vf in the equation (2) larger than the minimum saturation voltage of the P channel MOSFET QMp. Hereinafter, this condition will be described. For example, in the equation (2), when the resistance value of the resistor R1 is very small compared to the resistance value of the resistor R2 and the above difference δ is sufficiently small, the forward voltage of a general diode element (about 0). A forward voltage Vf smaller than .7V) can be realized.
 なお、式(2)において、抵抗器R1の抵抗値を「0」、かつ、差異δを「0」とすると、入力端子Viの電位と出力端子Voutの電位が等しくなる。そのため、順方向電圧Vf、及びPチャンネルMOSFETQMpの飽和電圧は、理論上0Vとなる。 In the equation (2), when the resistance value of the resistor R1 is "0" and the difference δ is "0", the potential of the input terminal Vi and the potential of the output terminal Vout become equal. Therefore, the forward voltage Vf and the saturation voltage of the P-channel MOSFET QMp are theoretically 0V.
 一方、式(2)の分子である式(3)が負となる差異δ(<0)の場合、仮想的に順方向電圧Vfが負となる。その場合、出力端子Voutが入力端子Viより|Vf|だけ電圧が高くなるまで、定常的に、出力端子Voutから入力端子Viへ電流が逆流してしまい、整流回路IDPとしての機能を損なってしまう。PNPトランジスタQ1とPNPトランジスタQ2とに同一品種のPNPバイポーラトランジスタ素子が使用されたとしても、個体ばらつき、及びPNPトランジスタQ1とPNPトランジスタQ2それぞれの周囲温度差等により、差異δ<0になり得る。そのため、抵抗器R1の抵抗値を「0」より大きくして式(3)を正の値にするか、PNPトランジスタQ1の接続方法として図2Aの代わりに図2Bの方法を用いて、差異δ>0を確保して逆流を防止する。 On the other hand, in the case of the difference δ (<0) in which the numerator of the formula (2), the formula (3), is negative, the forward voltage Vf is virtually negative. In that case, the current constantly flows back from the output terminal Vout to the input terminal Vi until the voltage of the output terminal Vout is higher than that of the input terminal Vi by | Vf |, and the function as the rectifier circuit IDP is impaired. .. Even if the same type of PNP bipolar transistor element is used for the PNP transistor Q1 and the PNP transistor Q2, the difference δ <0 may occur due to individual variation and the ambient temperature difference between the PNP transistor Q1 and the PNP transistor Q2. Therefore, the resistance value of the resistor R1 is made larger than "0" to make the equation (3) a positive value, or the method of FIG. 2B is used instead of FIG. 2A as the connection method of the PNP transistor Q1 to make the difference δ. Secure> 0 to prevent backflow.
 PNPトランジスタQ1が図2Aのように接続された場合、アノード端子(A)とカソード端子(K)との間の電圧は、ベース電流がコレクタ電流の1/HFEになるので、PNPトランジスタQ2のベースエミッタ間電圧VBEと同じである。HFEは、電流増幅率である。
 これに対し、PNPトランジスタQ1が図2Bのように接続された場合、コレクタベース間に全電流が流れ、電圧ドロップが大きくなる。そのため、アノード端子(A)とカソード端子(K)との間の電圧は、図2Aの場合に比べて大きくなる。すなわち、δ>0となる。また、一般に、コレクタベース間の耐圧は、エミッタベース間の耐圧より高いので、図2Bの接続方法は、入力端子Viに重畳され得る電源サージ等に対して耐性が高い。
When the PNP transistor Q1 is connected as shown in FIG. 2A, the voltage between the anode terminal (A) and the cathode terminal (K) has a base current of 1 / HFE of the collector current, so that the PNP transistor Q2 has a voltage of 1 / HFE. It is the same as the base-emitter voltage V BE . HFE is the current amplification factor.
On the other hand, when the PNP transistor Q1 is connected as shown in FIG. 2B, the total current flows between the collector bases and the voltage drop becomes large. Therefore, the voltage between the anode terminal (A) and the cathode terminal (K) is larger than that in the case of FIG. 2A. That is, δ> 0. Further, in general, the withstand voltage between the collector bases is higher than the withstand voltage between the emitter bases, so that the connection method of FIG. 2B has high resistance to a power surge or the like that may be superimposed on the input terminal Vi.
 次に、図3及び図4を用いて、入力端子Viに直流電源、出力端子Voutに負荷が接続されている場合の整流回路IDPの動作を説明する。図3は、実施の形態1において、外部要因による出力電位上昇時の整流回路IDPの動作を説明する図である。ここでは、出力端子Voutの出力電圧がE0であって、負荷電流I0が流れており、PチャンネルMOSFETQMpのゲート電位がV0である定常状態において、外部から出力端子Voutに対して強制的に(Vi-Vf)より高い電圧E1が印加された場合の負荷電流、及びPチャンネルMOSFETQMpのゲート電位の時間変化について説明する。以下では、外部要因を、出力端子Voutに接続された外部電源とする。 Next, the operation of the rectifier circuit IDP when a DC power supply is connected to the input terminal Vi and a load is connected to the output terminal Vout will be described with reference to FIGS. 3 and 4. FIG. 3 is a diagram illustrating the operation of the rectifier circuit IDP when the output potential rises due to an external factor in the first embodiment. Here, in a steady state where the output voltage of the output terminal Vout is E0, the load current I0 is flowing, and the gate potential of the P channel MOSFET QMp is V0, the output terminal Vout is forced from the outside (Vi). The load current when a voltage E1 higher than −Vf) is applied and the time change of the gate potential of the P-channel MOSFET QMp will be described. In the following, the external factor will be an external power supply connected to the output terminal Vout.
 図4は、PチャンネルMOSFETQMpのゲート容量を説明する図である。PチャンネルMOSFETQMpのドレイン、ゲート、ソースの各端子間には、静電容量Cgd,Cgs,Cdsが存在する。PチャンネルMOSFETQMpのゲート容量Cissは、(Cgd+Cgs)である。 FIG. 4 is a diagram for explaining the gate capacitance of the P-channel MOSFET QMp. Capacitances Cgd, Cgs, and Cds exist between the drain, gate, and source terminals of the P-channel MOSFET QMp. The gate capacitance Ciss of the P-channel MOSFET QMp is (Cgd + Cgs).
 図3において、時刻t0以前は、外部電源から出力端子Voutに対して電圧E1が印加されておらず、整流回路IDPは上述のような定常状態にある。 In FIG. 3, before time t0, the voltage E1 is not applied to the output terminal Vout from the external power supply, and the rectifier circuit IDP is in the steady state as described above.
 時刻t0において、入力端子Viの電圧及びグラウンドGNDの電位が一定のとき、PNPトランジスタQ1のベース端子とコレクタ端子とが短絡された接続点の電位は、PNPトランジスタQ2のベース電流を無視すれば、一定である。出力端子Voutに電圧E1が印加された場合、PNPトランジスタQ2のベースエミッタ間電圧が高くなることから、PNPトランジスタQ2がより強く導通状態になり、PNPトランジスタQ2のコレクタ端子と抵抗器R3の他方端子との接続点であるP点(図1参照)の電位を引き上げようとする。ところが、PチャンネルMOSFETQMpには、図4に示されるようにゲート容量Ciss(=Cgd+Cgs)が、P点とドレインとの間の電位差又はP点とソースとの間の電位差により充電されているため、すぐにPチャンネルMOSFETQMpのゲート電位を引き上げることができない。 At time t0, when the voltage of the input terminal Vi and the potential of the ground GND are constant, the potential of the connection point where the base terminal and the collector terminal of the PNP transistor Q1 are short-circuited can be determined by ignoring the base current of the PNP transistor Q2. It is constant. When the voltage E1 is applied to the output terminal Vout, the voltage between the base and the emitter of the PNP transistor Q2 becomes high, so that the PNP transistor Q2 becomes stronger and conductive, and the collector terminal of the PNP transistor Q2 and the other terminal of the resistor R3 Attempts to raise the potential at point P (see FIG. 1), which is the connection point with. However, as shown in FIG. 4, the P-channel MOSFET QMp is charged with the gate capacitance Ciss (= Cgd + Cgs) due to the potential difference between the P point and the drain or the potential difference between the P point and the source. The gate potential of the P-channel MOSFET QMp cannot be raised immediately.
 PNPトランジスタQ2がオンし、P点側電位が、PチャンネルMOSFETQMpのゲート電位よりNPNトランジスタQ4のベースエミッタ間電圧VBE分以上に高くなると、つまり、抵抗器R4の両端電位差がNPNトランジスタQ4のベースエミッタ間電圧VBE分以上に高くなると、NPNトランジスタQ4がオンする。電流ブースト回路を構成しているNPNトランジスタQ4は、時刻t0でオンすることで、PチャンネルMOSFETQMpのゲートの電荷を急速に放電させることができる。PチャンネルMOSFETQMpのゲートの電荷が放電されるにつれて、ゲートの電位は上昇していく。図3の時刻t0から時刻t1までの期間は、電流ブースト回路による放電のブースト期間である。 PNP transistor Q2 is turned on, the point P side potential becomes higher than the base-emitter voltage V BE fraction of the NPN transistor Q4 from the gate potential of the P-channel MOSFETQMp, i.e., potential difference between both ends of the resistor R4 is of the NPN transistor Q4 base When the inter-emitter voltage becomes higher than V BE , the NPN transistor Q4 is turned on. The NPN transistor Q4 constituting the current boost circuit can be turned on at time t0 to rapidly discharge the charge at the gate of the P-channel MOSFET QMp. As the charge on the gate of the P-channel MOSFET QMp is discharged, the potential of the gate rises. The period from time t0 to time t1 in FIG. 3 is a discharge boost period by the current boost circuit.
 時刻t1において、PチャンネルMOSFETQMpのゲートの電荷が放電されたことにより、抵抗器R4の両端電位差がNPNトランジスタQ4のベースエミッタ間電圧VBE未満になると、NPNトランジスタQ4はオフする。時刻t1以降、抵抗器R4経由でPチャンネルMOSFETQMpのゲートの電荷をゆっくり放電させ、時刻t2においてPチャンネルMOSFETQMpがオフする。図3において、PチャンネルMOSFETQMpがオフになったときのゲート電位をV1とする。なお、図3の時刻t1から時刻t2までの期間は、非ブースト期間である。 At time t1, by the charge of the gate of the P-channel MOSFETQMp is discharged, the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the NPN transistor Q4, the NPN transistor Q4 is turned off. After time t1, the charge at the gate of the P-channel MOSFET QMp is slowly discharged via the resistor R4, and the P-channel MOSFET QMp is turned off at time t2. In FIG. 3, the gate potential when the P-channel MOSFET QMp is turned off is V1. The period from time t1 to time t2 in FIG. 3 is a non-boost period.
 上述の時刻t0から時刻t2までの期間、つまりPチャンネルMOSFETQMpがオンからオフに至るまでの過渡応答時、PチャンネルMOSFETQMpのゲート電位に応じて、出力端子Voutから入力端子Viに電流が逆流する。 During the above-mentioned period from time t0 to time t2, that is, during the transient response from turning on to off of the P-channel MOSFET QMp, a current flows back from the output terminal Vout to the input terminal Vi according to the gate potential of the P-channel MOSFET QMp.
 時刻t4において、出力端子Voutに印加されていた外部電源の電圧E1が除去されると、PNPトランジスタQ2のベースエミッタ間電圧が低下するので、PNPトランジスタQ2の導通状態が弱くなる。時刻t4以降、P点の電位は、抵抗器R3により下降する。ところが、時刻t4においてPチャンネルMOSFETQMpのゲート容量は放電されているため、すぐにPチャンネルMOSFETQMpのゲート電位を下げること、つまりゲート容量の充電を完了することはできない。 At time t4, when the voltage E1 of the external power supply applied to the output terminal Vout is removed, the voltage between the base and emitter of the PNP transistor Q2 drops, so that the conduction state of the PNP transistor Q2 becomes weak. After time t4, the potential at point P drops due to the resistor R3. However, since the gate capacitance of the P-channel MOSFET QMp is discharged at time t4, it is not possible to immediately lower the gate potential of the P-channel MOSFET QMp, that is, to complete charging of the gate capacitance.
 PNPトランジスタQ2がオフし、P点側電位が、PチャンネルMOSFETQMpのゲート電位よりPNPトランジスタQ3のベースエミッタ間電圧VBE分低くなると、つまり、抵抗器R4の両端電位差がPNPトランジスタQ3のベースエミッタ間電圧VBE分以上に高くなると、PNPトランジスタQ3がオンする。電流ブースト回路を構成しているPNPトランジスタQ3は、時刻t4でオンすることで、PチャンネルMOSFETQMpのゲート容量を急速に充電することができる。PチャンネルMOSFETQMpのゲートの電荷が充電されるにつれて、ゲートの電位は低下していく。図3の時刻t4から時刻t5までの期間は、電流ブースト回路による充電のブースト期間である。 PNP transistor Q2 is turned off, P point side potential, becomes the base-emitter voltage V BE fraction lower of the PNP transistor Q3 than the gate potential of the P-channel MOSFETQMp, that is, between the base and the emitter of the potential difference across the resistor R4 is PNP transistor Q3 When the voltage becomes higher than V BE , the PNP transistor Q3 is turned on. The PNP transistor Q3 constituting the current boost circuit can be turned on at time t4 to rapidly charge the gate capacitance of the P-channel MOSFET QMp. As the charge on the gate of the P-channel MOSFET QMp is charged, the potential of the gate decreases. The period from time t4 to time t5 in FIG. 3 is a charging boost period by the current boost circuit.
 時刻t5において、PチャンネルMOSFETQMpのゲートの電荷が充電されたことにより、抵抗器R4の両端電位差がPNPトランジスタQ3のベースエミッタ間電圧VBE未満になると、PNPトランジスタQ3はオフする。時刻t5以降、抵抗器R3と抵抗器R4とが、PチャンネルMOSFETQMpのゲート容量をゆっくり充電させ、時刻t6においてPチャンネルMOSFETQMpのゲート電位がV0に達すると、PチャンネルMOSFETQMpが完全にオンする。なお、図3の時刻t5から時刻t6までの期間は、非ブースト期間である。 At time t5, by the charge of the gate of the P-channel MOSFETQMp is charged, the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the PNP transistor Q3, the PNP transistor Q3 is turned off. After time t5, the resistor R3 and the resistor R4 slowly charge the gate capacitance of the P-channel MOSFET QMp, and when the gate potential of the P-channel MOSFET QMp reaches V0 at time t6, the P-channel MOSFET QMp is completely turned on. The period from time t5 to time t6 in FIG. 3 is a non-boost period.
 次に、整流回路IDPにおいて、PNPトランジスタQ3とNPNトランジスタQ4の電流ブースト回路が存在しない場合を説明する。図3において、電流ブースト回路が存在しない場合のPチャンネルMOSFETQMpのゲート電位と、負荷電流は、一点鎖線で示される。 Next, in the rectifier circuit IDP, a case where the current boost circuits of the PNP transistor Q3 and the NPN transistor Q4 do not exist will be described. In FIG. 3, the gate potential of the P-channel MOSFET QMp and the load current in the absence of the current boost circuit are shown by alternate long and short dash lines.
 出力端子Voutに外部電源の電圧E1が印加された場合、PチャンネルMOSFETQMpのゲートの電位上昇は、電流ブースト回路が存在する場合に比べて、電流ブースト回路が存在しない場合のほうが緩やかになる。そのため、電流ブースト回路が存在する場合、時刻t0から時刻t2までの期間Taにおいて逆流電流が流れるのに対し、電流ブースト回路が存在しない場合、時刻t0から時刻t3までのより長い期間Tb、逆流電流が流れることになる。このように、整流回路IDPに電流ブースト回路が存在しない場合、逆流電流が流れる期間が長くなるため、入力端子Viに接続された電源が損傷する可能性がある。 When the voltage E1 of the external power supply is applied to the output terminal Vout, the potential rise of the gate of the P channel MOSFET QMp becomes slower when the current boost circuit does not exist than when the current boost circuit exists. Therefore, when the current boost circuit exists, the backflow current flows in the period Ta from time t0 to time t2, whereas when the current boost circuit does not exist, the backflow current Tb for a longer period from time t0 to time t3, backflow current. Will flow. As described above, when the current boost circuit does not exist in the rectifier circuit IDP, the period during which the backflow current flows becomes long, so that the power supply connected to the input terminal Vi may be damaged.
 出力端子Voutに印加された電圧E1が除去された場合、PチャンネルMOSFETQMpのゲートの電位下降は、電流ブースト回路が存在する場合に比べて、電流ブースト回路が存在しない場合のほうが緩やかになる。そのため、負荷電流の回復にかかる時間は、電流ブースト回路が存在する場合、時刻t4から時刻t6までの期間Tcであるのに対し、電流ブースト回路が存在しない場合、時刻t4から時刻t7までのより長い期間Tdになり、PチャンネルMOSFETQMpが完全にオンするまでより長い時間がかかるため、整流回路IDPでの損失が増加する。 When the voltage E1 applied to the output terminal Vout is removed, the potential drop of the gate of the P channel MOSFET QMp becomes slower when the current boost circuit is not present than when the current boost circuit is present. Therefore, the time required for the recovery of the load current is the period Tc from time t4 to time t6 when the current boost circuit is present, whereas it is longer than the time t4 to time t7 when the current boost circuit is not present. It becomes Td for a long period of time, and it takes a longer time for the P-channel MOSFET QMp to be completely turned on, so that the loss in the rectifier circuit IDP increases.
 なお、整流回路IDPを消費電流の極めて小さい負荷に使用し、本整流回路IDP自体の消費電流も小さくする必要がある場合には、抵抗器R2にあまり低い抵抗値のものを用いることができないため、電流ブースト回路は有効である。消費電流の極めて小さい負荷とは、例えば、スリープ中又はサスペンド中のマイクロコントローラである。抵抗器R2の抵抗値が高い場合、PNPトランジスタQ2のベース電流が制限され、PNPトランジスタQ2の電流増幅率倍されたコレクタ電流も制限される。そのため、出力端子Voutに電圧E1が印加された場合、PNPトランジスタQ2によりPチャンネルMOSFETQMpのゲート端子をソース端子に短絡させ、このPNPトランジスタQ2のみでゲートの電荷を放電させると時間がかかる。これに対し、電流ブースト回路が存在する場合、PNPトランジスタQ2のコレクタ電流をNPNトランジスタQ4のベース電流として供給することにより、NPNトランジスタQ4の電流増幅率倍の電流をNPNトランジスタQ4のコレクタエミッタ間に流すことができる。そのため、PチャンネルMOSFETQMpのゲートの電荷を素早く放電させてPチャンネルMOSFETQMpをオフさせることができ、電流逆流期間を短くすることができる。 If the rectifier circuit IDP is used for a load having an extremely small current consumption and the current consumption of the rectifier circuit IDP itself needs to be reduced, it is not possible to use a resistor R2 having a very low resistance value. , The current boost circuit is effective. A load with very low current consumption is, for example, a microcontroller during sleep or suspend. When the resistance value of the resistor R2 is high, the base current of the PNP transistor Q2 is limited, and the collector current obtained by multiplying the current amplification factor of the PNP transistor Q2 is also limited. Therefore, when the voltage E1 is applied to the output terminal Vout, it takes time if the gate terminal of the P channel MOSFET QMp is short-circuited to the source terminal by the PNP transistor Q2 and the charge of the gate is discharged only by the PNP transistor Q2. On the other hand, when the current boost circuit exists, the collector current of the PNP transistor Q2 is supplied as the base current of the NPN transistor Q4, so that the current of the current amplification factor of the NPN transistor Q4 is doubled between the collector and emitter of the NPN transistor Q4. Can be shed. Therefore, the charge at the gate of the P-channel MOSFET QMp can be quickly discharged to turn off the P-channel MOSFET QMp, and the current backflow period can be shortened.
 また、上述のように、整流回路IDPを消費電流の極めて小さい負荷に使用し、本整流回路IDP自体の消費電流も小さくする必要がある場合、抵抗器R3にも、あまり低い抵抗値のものを用いることができない。そのため、出力端子Voutから電圧E1が除去された後、抵抗器R3のみでPチャンネルMOSFETQMpのゲートに電荷を充電するには時間がかかる。これに対し、電流ブースト回路が存在する場合、抵抗器R3に流れる電流をPNPトランジスタQ3のベース電流として供給することにより、PNPトランジスタQ3の電流増幅率倍の電流をPNPトランジスタQ3のコレクタエミッタ間に流すことができる。そのため、PチャンネルMOSFETQMpのゲート容量を素早く充電させてPチャンネルMOSFETQMpをオンさせることができ、出力端子Voutから出力される負荷電流を回復させるための時間を短くすることができる。 Further, as described above, when the rectifier circuit IDP is used for a load having an extremely small current consumption and the current consumption of the rectifier circuit IDP itself needs to be reduced, the resistor R3 also has a resistance value that is too low. Cannot be used. Therefore, after the voltage E1 is removed from the output terminal Vout, it takes time to charge the gate of the P-channel MOSFET QMp with only the resistor R3. On the other hand, when the current boost circuit exists, the current flowing through the resistor R3 is supplied as the base current of the PNP transistor Q3, so that the current of the current amplification factor of the PNP transistor Q3 is doubled between the collector and the emitter of the PNP transistor Q3. Can be shed. Therefore, the gate capacitance of the P-channel MOSFET QMp can be quickly charged to turn on the P-channel MOSFET QMp, and the time for recovering the load current output from the output terminal Vout can be shortened.
 以上のように、実施の形態1に係る整流回路IDPは、PチャンネルMOSFETQMpと、PNPトランジスタQ1と、PNPトランジスタQ2と、互いに逆極性を持つPNPトランジスタQ3及びNPNトランジスタQ4と、抵抗器R1と、抵抗器R2と、抵抗器R3と、抵抗器R4と、入力端子Viと、出力端子Voutとを備える。この構成により、整流回路IDPは、入力端子Viと出力端子Voutとの電位差を、ダイオード素子の順方向電圧(0.4Vから0.7V程度)に比べて極めて低い値(例えば、200mV)に設定できる。また、整流回路IPDは、何らかの起電力が出力端子Vout側に接続され、出力端子Voutの電位が入力端子Viの電位よりも高くなった場合に、PNPトランジスタQ3とNPNトランジスタQ4によるブースト回路がない場合と比較して、素早く逆電流を阻止することができる。また、整流回路IPDは、前記起電力除去後に負荷への電源供給を素早く開始できる。 As described above, the rectifying circuit IDP according to the first embodiment includes a P-channel MOSFET QMp, a PNP transistor Q1, a PNP transistor Q2, a PNP transistor Q3 and an NPN transistor Q4 having opposite polarities, and a resistor R1. It includes a resistor R2, a resistor R3, a resistor R4, an input terminal Vi, and an output terminal Vout. With this configuration, the rectifier circuit IDP sets the potential difference between the input terminal Vi and the output terminal Vout to a value (for example, 200 mV) extremely lower than the forward voltage (about 0.4 V to 0.7 V) of the diode element. it can. Further, the rectifier circuit IPD does not have a boost circuit by the PNP transistor Q3 and the NPN transistor Q4 when some electromotive force is connected to the output terminal Vout side and the potential of the output terminal Vout becomes higher than the potential of the input terminal Vi. Compared with the case, the reverse current can be blocked more quickly. Further, the rectifier circuit IPD can quickly start supplying power to the load after the electromotive force is removed.
 なお、実施の形態1の図1に示される電流ブースト回路は、バイポーラトランジスタ素子で構成されているが、MOSFET素子で構成されてもよい。
 図5は、実施の形態1における電流ブースト回路の変形例を示す図である。図5に示される電流ブースト回路では、第3トランジスタ素子として、PNPトランジスタQ3の代わりに、PチャンネルMOSFETQ3pが使用される。また、第4トランジスタ素子として、NPNトランジスタQ4の代わりに、NチャンネルMOSFETQ4nが使用される。PチャンネルMOSFETQ3p及びNチャンネルMOSFETQ4nにおいて、ドレイン端子は第1端子に、ソース端子は第2端子に、ゲート端子は第3端子に相当する。
Although the current boost circuit shown in FIG. 1 of the first embodiment is composed of a bipolar transistor element, it may be composed of a MOSFET element.
FIG. 5 is a diagram showing a modified example of the current boost circuit according to the first embodiment. In the current boost circuit shown in FIG. 5, a P-channel MOSFET Q3p is used as the third transistor element instead of the PNP transistor Q3. Further, as the fourth transistor element, an N-channel MOSFET Q4n is used instead of the NPN transistor Q4. In the P-channel MOSFET Q3p and the N-channel MOSFET Q4n, the drain terminal corresponds to the first terminal, the source terminal corresponds to the second terminal, and the gate terminal corresponds to the third terminal.
 図5において、P点電位が、NチャンネルMOSFETQ4nのソース電位よりもゲートソース間閾値電位分高ければ、NチャンネルMOSFETQ4nがオンする。NチャンネルMOSFETQ4nがオンすると、PチャンネルMOSFETQMpのゲート端子とソース端子とが短絡する。P点電位が、PチャンネルMOSFETQ3pのソース電位よりもゲートソース間閾値電位分低ければ、PチャンネルMOSFETQ3pがオンする。PチャンネルMOSFETQ3pがオンすると、PチャンネルMOSFETQMpのゲート端子とグラウンドGNDとが短絡する。 In FIG. 5, if the P point potential is higher than the source potential of the N-channel MOSFET Q4n by the threshold potential between the gate and source, the N-channel MOSFET Q4n is turned on. When the N-channel MOSFET Q4n is turned on, the gate terminal and the source terminal of the P-channel MOSFET QMp are short-circuited. If the P point potential is lower than the source potential of the P channel MOSFET Q3p by the threshold potential between the gate and source, the P channel MOSFET Q3p is turned on. When the P-channel MOSFET Q3p is turned on, the gate terminal of the P-channel MOSFET QMp and the ground GND are short-circuited.
 このように、電流ブースト回路が、PチャンネルMOSFETQ3pとNチャンネルMOSFETQ4nとで構成されている場合でも、PNPトランジスタQ3とNPNトランジスタQ4とで構成されている場合と同様の働きをする。また、電流ブースト回路が、低いオン抵抗を持つPチャンネルMOSFETQ3pとNチャンネルMOSFETQ4nとで構成されている場合、PチャンネルMOSFETQMpの過渡応答時間をさらに短縮できる可能性がある。 In this way, even when the current boost circuit is composed of the P-channel MOSFET Q3p and the N-channel MOSFET Q4n, it operates in the same manner as when it is composed of the PNP transistor Q3 and the NPN transistor Q4. Further, when the current boost circuit is composed of the P-channel MOSFET Q3p and the N-channel MOSFET Q4n having a low on-resistance, the transient response time of the P-channel MOSFET QMp may be further shortened.
実施の形態2.
 図6は、実施の形態2に係る整流回路IDNの構成例を示す回路図である。整流回路IDNは、NチャンネルMOSFETQMn、NPNトランジスタQ11、NPNトランジスタQ12、NPNトランジスタQ13、PNPトランジスタQ14、抵抗器R1、抵抗器R2、抵抗器R3、及び抵抗器R4を備える。
Embodiment 2.
FIG. 6 is a circuit diagram showing a configuration example of the rectifier circuit IDN according to the second embodiment. The rectifying circuit IDN includes an N-channel MOSFET QMn, an NPN transistor Q11, an NPN transistor Q12, an NPN transistor Q13, a PNP transistor Q14, a resistor R1, a resistor R2, a resistor R3, and a resistor R4.
 整流回路IDNは、NチャンネルMOSFETQMnを用いて、出力端子Voutから入力端子Viへの電流の逆流を阻止するものである。このNチャンネルMOSFETQMnは、エンハンスメント型のNチャンネルMOSFET素子である。電源Vccは、入力端子Viの電位よりも、少なくともNチャンネルMOSFETQMnがオンできるゲートソース間電位Vth分高い電位である。つまり、電位の大小関係は、Vcc>Vi+Vthである。 The rectifier circuit IDN uses an N-channel MOSFET QMn to prevent backflow of current from the output terminal Vout to the input terminal Vi. This N-channel MOSFET QMn is an enhancement type N-channel MOSFET element. The power supply Vcc has a potential higher than the potential of the input terminal Vi by at least the gate-source potential Vth at which the N-channel MOSFET QMn can be turned on. That is, the magnitude relationship of the potential is Vcc> Vi + Vth.
 NPNトランジスタQ11は、第1NPNバイポーラトランジスタ素子に相当し、NPNトランジスタQ12は、第2NPNバイポーラトランジスタ素子に相当する。NPNトランジスタQ11とNPNトランジスタQ12は、整流回路IDNの入力端子Viと出力端子Voutとの電位差を検出するものである。 The NPN transistor Q11 corresponds to the first NPN bipolar transistor element, and the NPN transistor Q12 corresponds to the second NPN bipolar transistor element. The NPN transistor Q11 and the NPN transistor Q12 detect the potential difference between the input terminal Vi and the output terminal Vout of the rectifier circuit IDN.
 NPNトランジスタQ13は、第3トランジスタ素子に相当する、NPNバイポーラトランジスタ素子である。PNPトランジスタQ14は、第3トランジスタ素子とは逆極性を持つ第4トランジスタ素子に相当する、PNPバイポーラトランジスタ素子である。また、NPNトランジスタQ13及びPNPトランジスタQ14において、コレクタ端子は第1端子に、エミッタ端子は第2端子に、ベース端子は第3端子に相当する。NPNトランジスタQ13とPNPトランジスタQ14は、NチャンネルMOSFETQMnのゲートを充放電するための電流ブースト回路である。定常状態では、NPNトランジスタQ13のコレクタエミッタ間、及びPNPトランジスタQ14のコレクタエミッタ間に電流は流れない。入力端子Vi又は出力端子Voutに電圧変動があり、NチャンネルMOSFETQMnのゲート電位が変化する過渡状態では、NPNトランジスタQ13のコレクタエミッタ間、又はPNPトランジスタQ14のコレクタエミッタ間に電流が流れ、NチャンネルMOSFETQMnのゲート容量が急速に充放電される。 The NPN transistor Q13 is an NPN bipolar transistor element corresponding to the third transistor element. The PNP transistor Q14 is a PNP bipolar transistor element corresponding to a fourth transistor element having a polarity opposite to that of the third transistor element. Further, in the NPN transistor Q13 and the PNP transistor Q14, the collector terminal corresponds to the first terminal, the emitter terminal corresponds to the second terminal, and the base terminal corresponds to the third terminal. The NPN transistor Q13 and the PNP transistor Q14 are current boost circuits for charging and discharging the gate of the N-channel MOSFET QMn. In the steady state, no current flows between the collector-emitter of the NPN transistor Q13 and between the collector-emitter of the PNP transistor Q14. In a transient state where there is a voltage fluctuation at the input terminal Vi or the output terminal Vout and the gate potential of the N-channel MOSFET QMn changes, a current flows between the collector-emitter of the NPN transistor Q13 or between the collector-emitter of the PNP transistor Q14, and the N-channel MOSFET QMn The gate capacity of the is rapidly charged and discharged.
 図6に示されるように、NチャンネルMOSFETQMnのソース端子とNPNトランジスタQ12のエミッタ端子との接続点が、入力端子Viに接続されている。 As shown in FIG. 6, the connection point between the source terminal of the N-channel MOSFET QMn and the emitter terminal of the NPN transistor Q12 is connected to the input terminal Vi.
 なお、図6において、NPNトランジスタQ11のベース端子とコレクタ端子とは短絡されており、このNPNトランジスタQ11は、等価ダイオード素子として構成されている。図7A及び図7Bは、等価ダイオード素子として構成されたNPNトランジスタQ11の例を示す図である。図6及び図7Aに示されるように、NPNトランジスタQ11において、エミッタ端子は、等価ダイオード素子のカソード端子(K)に相当し、ベース端子とコレクタ端子との接続点は、等価ダイオード素子のアノード端子(A)に相当する。この例において、NPNトランジスタQ11のエミッタ端子は、抵抗器R1の一方端子と接続されている。NPNトランジスタQ11のベース端子とコレクタ端子の接続点は、NPNトランジスタQ12のベース端子と抵抗器R2の一方端子とに接続されている。 Note that, in FIG. 6, the base terminal and the collector terminal of the NPN transistor Q11 are short-circuited, and this NPN transistor Q11 is configured as an equivalent diode element. 7A and 7B are diagrams showing an example of an NPN transistor Q11 configured as an equivalent diode element. As shown in FIGS. 6 and 7A, in the NPN transistor Q11, the emitter terminal corresponds to the cathode terminal (K) of the equivalent diode element, and the connection point between the base terminal and the collector terminal is the anode terminal of the equivalent diode element. Corresponds to (A). In this example, the emitter terminal of the NPN transistor Q11 is connected to one terminal of the resistor R1. The connection point between the base terminal and the collector terminal of the NPN transistor Q11 is connected to the base terminal of the NPN transistor Q12 and one terminal of the resistor R2.
 図7Bの例では、NPNトランジスタQ11のコレクタ端子は、等価ダイオード素子のカソード端子(K)に相当し、このコレクタ端子に抵抗器R1の一方端子が接続される。NPNトランジスタQ11のベース端子は、等価ダイオード素子のアノード端子(A)に相当し、このベース端子にNPNトランジスタQ12のベース端子と抵抗器R2の一方端子が接続される。NPNトランジスタQ11のエミッタ端子は、開放される。 In the example of FIG. 7B, the collector terminal of the NPN transistor Q11 corresponds to the cathode terminal (K) of the equivalent diode element, and one terminal of the resistor R1 is connected to this collector terminal. The base terminal of the NPN transistor Q11 corresponds to the anode terminal (A) of the equivalent diode element, and the base terminal of the NPN transistor Q12 and one terminal of the resistor R2 are connected to this base terminal. The emitter terminal of the NPN transistor Q11 is opened.
 図6において、抵抗器R2の他方端子と、抵抗器R3の一方端子と、NPNトランジスタQ13のコレクタ端子との接続点は、入力端子Viの入力電圧よりも高電位な電源Vccに接続されている。抵抗器R3の他方端子と、NPNトランジスタQ12のコレクタ端子と、NPNトランジスタQ13のベース端子と、PNPトランジスタQ14のベース端子と、抵抗器R4の一方端子とが接続されている。NPNトランジスタQ13のエミッタ端子と、PNPトランジスタQ14のエミッタ端子と、抵抗器R4の他方端子と、NチャンネルMOSFETQMnのゲート端子とが接続されている。NチャンネルMOSFETQMnのドレイン端子と抵抗器R1の他方端子との接続点は、出力端子Voutに接続されている。 In FIG. 6, the connection point between the other terminal of the resistor R2, the one terminal of the resistor R3, and the collector terminal of the NPN transistor Q13 is connected to the power supply Vcc having a potential higher than the input voltage of the input terminal Vi. .. The other terminal of the resistor R3, the collector terminal of the NPN transistor Q12, the base terminal of the NPN transistor Q13, the base terminal of the PNP transistor Q14, and one terminal of the resistor R4 are connected. The emitter terminal of the NPN transistor Q13, the emitter terminal of the PNP transistor Q14, the other terminal of the resistor R4, and the gate terminal of the N-channel MOSFET QMn are connected. The connection point between the drain terminal of the N-channel MOSFET QMn and the other terminal of the resistor R1 is connected to the output terminal Vout.
 次に、整流回路IDNの定常状態を説明する。
 整流回路IDNの定常状態において、NPNトランジスタQ12のベースエミッタ間電圧VBE、NPNトランジスタQ11のベースエミッタ間電圧とNPNトランジスタQ12のベースエミッタ間電圧との差異δ>0とし、NPNトランジスタQ11のベースエミッタ間電圧をVBE+δとする。また、NチャンネルMOSFETQMnのゲートの直流リーク電流と、NPNトランジスタQ11のベース電流と、NPNトランジスタQ12のベース電流とを無視する。電源Vccの電位は入力端子Viの電位より高いものとする。さらに、抵抗器R2の抵抗値を正の値とする。この場合、NPNトランジスタQ11のエミッタ側の電流とコレクタ側の電流とが等しいことから、出力端子Voutの電位、及び入力端子Viと出力端子Voutとの間の電位差(つまり、順方向電圧)Vfには、以下の式(4)及び式(5)の関係が成り立つ。
Next, the steady state of the rectifier circuit IDN will be described.
In the steady state of the rectifying circuit IDN, and difference [delta]> 0 the base-emitter voltage of the base-emitter voltage V BE, the base-emitter voltage and the NPN transistor Q12 of NPN transistor Q11 of NPN transistor Q12, the emitter and the base of the NPN transistor Q11 Let the inter-voltage be V BE + δ. Further, the DC leakage current at the gate of the N-channel MOSFET QMn, the base current of the NPN transistor Q11, and the base current of the NPN transistor Q12 are ignored. The potential of the power supply Vcc is higher than the potential of the input terminal Vi. Further, the resistance value of the resistor R2 is set to a positive value. In this case, since the current on the emitter side and the current on the collector side of the NPN transistor Q11 are equal, the potential of the output terminal Vout and the potential difference (that is, forward voltage) Vf between the input terminal Vi and the output terminal Vout are set. The following equations (4) and (5) are established.
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000002
 整流回路IDNの電力消費を下げるためにNチャンネルMOSFETQMnでの飽和電圧(NチャンネルMOSFETQMnのオン抵抗とドレインソース間を流れる電流の積)をできるだけ小さく制御したい場合、すなわち式(5)で順方向電圧Vfを表現したい場合は、式(5)における順方向電圧Vfを前記NチャンネルMOSFETQMnの最小飽和電圧よりも大きくする必要がある。以下、本条件で説明する。例えば、式(5)において抵抗器R1の抵抗値が抵抗器R2の抵抗値に比べて非常に小さい場合、かつ、上記差異δが十分小さい場合、一般的なダイオード素子の順方向電圧(約0.7V)よりも小さい順方向電圧Vfを実現することができる。 When it is desired to control the saturation voltage in the N-channel MOSFET QMn (the product of the on-resistance of the N-channel MOSFET QMn and the current flowing between the drain sources) as small as possible in order to reduce the power consumption of the rectifier circuit IDN, that is, the forward voltage in the equation (5). When it is desired to express Vf, it is necessary to make the forward voltage Vf in the equation (5) larger than the minimum saturation voltage of the N-channel MOSFET QMn. Hereinafter, this condition will be described. For example, in the equation (5), when the resistance value of the resistor R1 is very small compared to the resistance value of the resistor R2 and the above difference δ is sufficiently small, the forward voltage of a general diode element (about 0). A forward voltage Vf smaller than .7V) can be realized.
 なお、式(5)において、抵抗器R1の抵抗値を「0」、かつ、差異δを「0」とすると、入力端子Viの電位と出力端子Voutの電位が等しくなる。そのため、順方向電圧Vf、及びNチャンネルMOSFETQMnの飽和電圧は、理論上0Vとなる。 If the resistance value of the resistor R1 is "0" and the difference δ is "0" in the equation (5), the potential of the input terminal Vi and the potential of the output terminal Vout become equal. Therefore, the forward voltage Vf and the saturation voltage of the N-channel MOSFET QMn are theoretically 0V.
 一方、式(5)の右辺である式(6)が負となる差異δ(<0)の場合、仮想的に順方向電圧Vfが負となる。その場合、出力端子Voutが入力端子Viより|Vf|だけ電圧が高くなるまで、定常的に、出力端子Voutから入力端子Viへ電流が逆流してしまい、整流回路IDNとしての機能を損なってしまう。NPNトランジスタQ11とNPNトランジスタQ12とに同一品種のNPNバイポーラトランジスタ素子が使用されたとしても、個体ばらつき、及びNPNトランジスタQ11とNPNトランジスタQ12それぞれの周囲温度差等により、差異δ<0になり得る。そのため、抵抗器R1の抵抗値を「0」より大きくして式(6)を正の値にするか、NPNトランジスタQ11の接続方法として図7Aの代わりに図7Bの方法を用いて、差異δ>0を確保して逆流を防止する。 On the other hand, in the case of the difference δ (<0) in which the equation (6) on the right side of the equation (5) is negative, the forward voltage Vf is virtually negative. In that case, the current constantly flows back from the output terminal Vout to the input terminal Vi until the voltage of the output terminal Vout is higher than that of the input terminal Vi by | Vf |, and the function as the rectifier circuit IDN is impaired. .. Even if NPN bipolar transistor elements of the same type are used for the NPN transistor Q11 and the NPN transistor Q12, the difference δ <0 may occur due to individual variations and the ambient temperature difference between the NPN transistor Q11 and the NPN transistor Q12. Therefore, the resistance value of the resistor R1 is made larger than "0" to make the equation (6) a positive value, or the method of FIG. 7B is used instead of FIG. 7A as the connection method of the NPN transistor Q11, and the difference δ Secure> 0 to prevent backflow.
 NPNトランジスタQ11が図7Aのように接続された場合、アノード端子(A)とカソード端子(K)との間の電圧は、ベース電流がコレクタ電流の1/HFEになるので、NPNトランジスタQ12のベースエミッタ間電圧VBEと同じである。
 これに対し、NPNトランジスタQ11が図7Bのように接続された場合、コレクタベース間に全電流が流れ、電圧ドロップが大きくなる。そのため、アノード端子(A)とカソード端子(K)との間の電圧は、図7Aの場合に比べて大きくなる。すなわち、δ>0となる。
When the NPN transistor Q11 is connected as shown in FIG. 7A, the voltage between the anode terminal (A) and the cathode terminal (K) has a base current of 1 / HFE of the collector current, so that the NPN transistor Q12 has a voltage of 1 / HFE. It is the same as the base-emitter voltage V BE .
On the other hand, when the NPN transistor Q11 is connected as shown in FIG. 7B, the total current flows between the collector bases and the voltage drop becomes large. Therefore, the voltage between the anode terminal (A) and the cathode terminal (K) is larger than that in the case of FIG. 7A. That is, δ> 0.
 次に、図8及び図9を用いて、入力端子Viに直流電源、出力端子Voutに負荷が接続されている場合の整流回路IDNの動作を説明する。図8は、実施の形態2において、外部要因による出力電位上昇時の整流回路IDNの動作を説明する図である。ここでは、出力端子Voutの出力電圧がE0であって、負荷電流I0が流れており、NチャンネルMOSFETQMnのゲート電位がV0である定常状態において、外部から出力端子Voutに対して強制的に(Vi-Vf)より高い電圧E1が印加された場合の負荷電流、及びNチャンネルMOSFETQMnのゲート電位の時間変化について説明する。以下では、外部要因を、出力端子Voutに接続された外部電源とする。 Next, the operation of the rectifier circuit IDN when a DC power supply is connected to the input terminal Vi and a load is connected to the output terminal Vout will be described with reference to FIGS. 8 and 9. FIG. 8 is a diagram illustrating the operation of the rectifier circuit IDN when the output potential rises due to an external factor in the second embodiment. Here, in a steady state where the output voltage of the output terminal Vout is E0, the load current I0 is flowing, and the gate potential of the N-channel MOSFET QMn is V0, the output terminal Vout is forcibly (Vi). The load current when a voltage E1 higher than −Vf) is applied and the time change of the gate potential of the N-channel MOSFET QMn will be described. In the following, the external factor will be an external power supply connected to the output terminal Vout.
 図9は、NチャンネルMOSFETQMnのゲート容量を説明する図である。NチャンネルMOSFETQMnのドレイン、ゲート、ソースの各端子間には、静電容量Cgd,Cgs,Cdsが存在する。NチャンネルMOSFETQMnのゲート容量Cissは、(Cgd+Cgs)である。 FIG. 9 is a diagram illustrating the gate capacitance of the N-channel MOSFET QMn. Capacitances Cgd, Cgs, and Cds exist between the drain, gate, and source terminals of the N-channel MOSFET QMn. The gate capacitance Ciss of the N-channel MOSFET QMn is (Cgd + Cgs).
 図8において、時刻t0以前は、外部電源から出力端子Voutに対して電圧E1が印加されておらず、整流回路IDNは上述のような定常状態にある。 In FIG. 8, before the time t0, the voltage E1 is not applied from the external power supply to the output terminal Vout, and the rectifier circuit IDN is in the steady state as described above.
 時刻t0において、NPNトランジスタQ11のコレクタ端子とベース端子とが短絡されているので、コレクタ端子及びベース端子の接続点と、エミッタ端子との間の電圧が一定である。出力端子Voutに電圧E1が印加された場合、NPNトランジスタQ12のベース電位が上昇するので、NPNトランジスタQ12がより強く導通状態になり、NPNトランジスタQ12のコレクタ端子と抵抗器R3の他方端子との接続点であるP点(図6参照)の電位を引き下げようとする。ところが、NチャンネルMOSFETQMnには、図9に示されるようにゲート容量Ciss(=Cgd+Cgs)が、P点とドレインとの間の電位差又はP点とソースとの間の電位差により充電されているため、すぐにNチャンネルMOSFETQMnのゲート電位を引き下げることができない。 At time t0, the collector terminal and the base terminal of the NPN transistor Q11 are short-circuited, so that the voltage between the connection points of the collector terminal and the base terminal and the emitter terminal is constant. When the voltage E1 is applied to the output terminal Vout, the base potential of the NPN transistor Q12 rises, so that the NPN transistor Q12 becomes more conductive and the collector terminal of the NPN transistor Q12 and the other terminal of the resistor R3 are connected. Attempts are made to lower the potential at point P (see FIG. 6), which is the point. However, as shown in FIG. 9, the gate capacitance Ciss (= Cgd + Cgs) of the N-channel MOSFET QMn is charged by the potential difference between the P point and the drain or the potential difference between the P point and the source. The gate potential of the N-channel MOSFET QMn cannot be lowered immediately.
 NチャンネルMOSFETQMnがオンし、P点側電位が、NチャンネルMOSFETQMnのゲート電位よりPNPトランジスタQ14のベースエミッタ間電圧VBE分以上に低くなると、つまり、抵抗器R4の両端電位差がPNPトランジスタQ14のベースエミッタ間電圧VBE以上に高くなると、PNPトランジスタQ14がオンする。電流ブースト回路を構成しているPNPトランジスタQ14は、時刻t0でオンすることで、NチャンネルMOSFETQMnのゲートの電荷を急速に放電させることができる。NチャンネルMOSFETQMnのゲートの電荷が放電されるにつれて、ゲートの電位は下降していく。図8の時刻t0から時刻t1までの期間は、電流ブースト回路による放電のブースト期間である。 N-channel MOSFETQMn is turned, P point side potential becomes lower than the base-emitter voltage V BE amount of PNP transistor Q14 than the gate potential of the N-channel MOSFETQMn, i.e., the base potential difference between both ends of the resistor R4 is of the PNP transistor Q14 When the voltage between emitters becomes higher than V BE , the PNP transistor Q14 is turned on. The PNP transistor Q14 constituting the current boost circuit can be turned on at time t0 to rapidly discharge the charge at the gate of the N-channel MOSFET QMn. As the charge on the gate of the N-channel MOSFET QMn is discharged, the potential of the gate decreases. The period from time t0 to time t1 in FIG. 8 is a discharge boost period by the current boost circuit.
 時刻t1において、NチャンネルMOSFETQMnのゲートの電荷が放電されたことにより、抵抗器R4の両端電位差がPNPトランジスタQ14のベースエミッタ間電圧VBE未満になると、PNPトランジスタQ14はオフする。時刻t1以降、抵抗器R4経由でNチャンネルMOSFETQMnのゲートの電荷をゆっくり放電させ、時刻t2においてNチャンネルMOSFETQMnがオフする。図8において、NチャンネルMOSFETQMnがオフになったときのゲート電位をV1とする。なお、図8の時刻t1から時刻t2までの期間は、非ブースト期間である。 At time t1, by the charge of the gate of the N channel MOSFETQMn is discharged, the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the PNP transistor Q14, PNP transistor Q14 is turned off. After time t1, the charge at the gate of the N-channel MOSFET QMn is slowly discharged via the resistor R4, and the N-channel MOSFET QMn is turned off at time t2. In FIG. 8, the gate potential when the N-channel MOSFET QMn is turned off is V1. The period from time t1 to time t2 in FIG. 8 is a non-boost period.
 上述の時刻t0から時刻t2までの期間、つまりNチャンネルMOSFETQMnがオンからオフに至るまでの過渡応答時、NチャンネルMOSFETQMnのゲート電位に応じて、出力端子Voutから入力端子Viに電流が逆流する。 During the above-mentioned period from time t0 to time t2, that is, during the transient response from turning on to off of the N-channel MOSFET QMn, a current flows back from the output terminal Vout to the input terminal Vi according to the gate potential of the N-channel MOSFET QMn.
 時刻t4において、出力端子Voutに印加されていた外部電源の電圧E1が除去されると、NPNトランジスタQ11のベース電位低下により、NPNトランジスタQ12のベースエミッタ間電圧が低下するので、NPNトランジスタQ12の導通状態が弱くなる。時刻t4以降、P点の電位は、抵抗器R3により上昇する。ところが、時刻t4においてNチャンネルMOSFETQMnのゲート容量は放電されているため、すぐにNチャンネルMOSFETQMnのゲート電位を上げること、つまりゲート容量の充電を完了することはできない。 At time t4, when the voltage E1 of the external power supply applied to the output terminal Vout is removed, the voltage between the base and emitter of the NPN transistor Q12 drops due to the drop in the base potential of the NPN transistor Q11, so that the NPN transistor Q12 conducts. The condition becomes weak. After time t4, the potential at point P rises due to the resistor R3. However, since the gate capacitance of the N-channel MOSFET QMn is discharged at time t4, it is not possible to immediately raise the gate potential of the N-channel MOSFET QMn, that is, to complete charging of the gate capacitance.
 NPNトランジスタQ12がオフし、P点側電位が、NチャンネルMOSFETQMnのゲート電位よりNPNトランジスタQ13のベースエミッタ間電圧VBE分高くなると、つまり、抵抗器R4の両端電位差がNPNトランジスタQ13のベースエミッタ間電圧VBE分以上に高くなると、NPNトランジスタQ13がオンする。電流ブースト回路を構成しているNPNトランジスタQ13は、時刻t4でオンすることで、NチャンネルMOSFETQMnのゲート容量を急速に充電することができる。NチャンネルMOSFETQMnのゲートの電荷が充電されるにつれて、ゲートの電位は上昇していく。図8の時刻t4から時刻t5までの期間は、電流ブースト回路による充電のブースト期間である。 NPN transistor Q12 is turned off, P point side potential and the gate potential of the N-channel MOSFETQMn higher base-emitter voltage V BE fraction of the NPN transistor Q13, that is, between the base and the emitter of the potential difference across the resistor R4 is NPN transistor Q13 When the voltage becomes higher than V BE , the NPN transistor Q13 is turned on. The NPN transistor Q13 constituting the current boost circuit can rapidly charge the gate capacitance of the N-channel MOSFET QMn by turning on at time t4. As the charge on the gate of the N-channel MOSFET QMn is charged, the potential of the gate rises. The period from time t4 to time t5 in FIG. 8 is a charging boost period by the current boost circuit.
 時刻t5において、NチャンネルMOSFETQMnのゲートの電荷が充電されたことにより、抵抗器R4の両端電位差がNPNトランジスタQ13のベースエミッタ間電圧VBE未満になると、NPNトランジスタQ13はオフする。時刻t5以降、抵抗器R3と抵抗器R4とが、NチャンネルMOSFETQMnのゲートの電荷をゆっくりと充電させ、時刻t6においてNチャンネルMOSFETQMnのゲート電位がV0に達すると、NチャンネルMOSFETQMnが完全にオンする。なお、図8の時刻t5から時刻t6までの期間は、非ブースト期間である。 At time t5, by the charge of the gate of the N channel MOSFETQMn is charged, the potential difference between both ends of the resistor R4 is the base-emitter than the voltage V BE of the NPN transistor Q13, NPN transistor Q13 is turned off. After time t5, the resistor R3 and the resistor R4 slowly charge the gate charge of the N-channel MOSFET QMn, and when the gate potential of the N-channel MOSFET QMn reaches V0 at time t6, the N-channel MOSFET QMn is completely turned on. .. The period from time t5 to time t6 in FIG. 8 is a non-boost period.
 次に、整流回路IDNにおいて、NPNトランジスタQ13とPNPトランジスタQ14の電流ブースト回路が存在しない場合を説明する。図8において、電流ブースト回路が存在しない場合のNチャンネルMOSFETQMnのゲート電位と、負荷電流は、一点鎖線で示される。 Next, in the rectifier circuit IDN, a case where the current boost circuits of the NPN transistor Q13 and the PNP transistor Q14 do not exist will be described. In FIG. 8, the gate potential of the N-channel MOSFET QMn and the load current in the absence of the current boost circuit are shown by alternate long and short dash lines.
 出力端子Voutに外部電源の電圧E1が印加された場合、NチャンネルMOSFETQMnのゲートの電位下降は、電流ブースト回路が存在する場合に比べて、電流ブースト回路が存在しない場合のほうが緩やかになる。そのため、電流ブースト回路が存在する場合、時刻t0から時刻t2までの期間Taにおいて逆流電流が流れるのに対し、電流ブースト回路が存在しない場合、時刻t0から時刻t3までのより長い期間Tb、逆流電流が流れることになる。このように、整流回路IDNに電流ブースト回路が存在しない場合、逆流電流が流れる期間が長くなるため、入力端子Viに接続された電源が損傷する可能性がある。 When the voltage E1 of the external power supply is applied to the output terminal Vout, the potential drop of the gate of the N-channel MOSFET QMn becomes slower when the current boost circuit does not exist than when the current boost circuit exists. Therefore, when the current boost circuit exists, the backflow current flows in the period Ta from time t0 to time t2, whereas when the current boost circuit does not exist, the backflow current Tb for a longer period from time t0 to time t3, backflow current. Will flow. As described above, when the current boost circuit does not exist in the rectifier circuit IDN, the period during which the backflow current flows becomes long, so that the power supply connected to the input terminal Vi may be damaged.
 出力端子Voutに印加された電圧E1が除去された場合、PNチャンネルMOSFETQMnのゲートの電位上昇は、電流ブースト回路が存在する場合に比べて、電流ブースト回路が存在しない場合のほうが緩やかになる。そのため、負荷電流の回復にかかる時間は、電流ブースト回路が存在する場合、時刻t4から時刻t6までの期間Tcであるのに対し、電流ブースト回路が存在しない場合、時刻t4から時刻t7までのより長い期間Tdになり、NチャンネルMOSFETQMnが完全にオンするまでより長い時間がかかるため、整流回路IDNでの損失が増加する。 When the voltage E1 applied to the output terminal Vout is removed, the potential rise of the gate of the PN channel MOSFET QMn becomes slower when the current boost circuit does not exist than when the current boost circuit exists. Therefore, the time required for the recovery of the load current is the period Tc from time t4 to time t6 when the current boost circuit is present, whereas it is longer than the time t4 to time t7 when the current boost circuit is not present. It becomes Td for a long period of time, and it takes a longer time for the N-channel MOSFET QMn to be completely turned on, so that the loss in the rectifier circuit IDN increases.
 なお、整流回路IDNを消費電流の極めて小さい負荷に使用し、本整流回路IDN自体の消費電流も小さくする必要がある場合には、実施の形態1で述べたように、電流ブースト回路が有効である。 When the rectifier circuit IDN is used for a load having an extremely small current consumption and the current consumption of the rectifier circuit IDN itself needs to be reduced, the current boost circuit is effective as described in the first embodiment. is there.
 以上のように、実施の形態2に係る整流回路IDNは、NチャンネルMOSFETQMnと、NPNトランジスタQ11と、NPNトランジスタQ12と、互いに逆極性を持つNPNトランジスタQ13及びPNPトランジスタQ14と、抵抗器R1と、抵抗器R2と、抵抗器R3と、抵抗器R4と、入力端子Viと、出力端子Voutとを備える。この構成により、整流回路IDNは、入力端子Viと出力端子Voutとの電位差を、ダイオード素子の順方向電圧(0.4Vから0.7V)に比べて極めて低い値(例えば、200mV)に設定できる。また、整流回路IDNは、何らかの起電力が出力端子Vout側に接続され、出力端子Voutの電位が入力端子Viの電位よりも高くなった場合に、NPNトランジスタQ13とPNPトランジスタQ14によるブースト回路がない場合と比較して、素早く逆電流を阻止することができる。また、整流回路IDNは、前記起電力除去後に負荷への電源供給を素早く開始できる。 As described above, the rectifying circuit IDN according to the second embodiment includes an N-channel MOSFET QMn, an NPN transistor Q11, an NPN transistor Q12, an NPN transistor Q13 and a PNP transistor Q14 having opposite polarities, and a resistor R1. It includes a resistor R2, a resistor R3, a resistor R4, an input terminal Vi, and an output terminal Vout. With this configuration, the rectifier circuit IDN can set the potential difference between the input terminal Vi and the output terminal Vout to a value (for example, 200 mV) extremely lower than the forward voltage (0.4 V to 0.7 V) of the diode element. .. Further, the rectifier circuit IDN does not have a boost circuit by the NPN transistor Q13 and the PNP transistor Q14 when some electromotive force is connected to the output terminal Vout side and the potential of the output terminal Vout becomes higher than the potential of the input terminal Vi. Compared with the case, the reverse current can be blocked more quickly. Further, the rectifier circuit IDN can quickly start supplying power to the load after the electromotive force is removed.
 なお、実施の形態2の図6に示される電流ブースト回路は、バイポーラトランジスタ素子で構成されているが、MOSFET素子で構成されてもよい。
 図10は、実施の形態2における電流ブースト回路の変形例を示す図である。図10に示される電流ブースト回路では、第3トランジスタ素子として、NPNトランジスタQ13の代わりに、NチャンネルMOSFETQ13nが使用される。また、第4トランジスタ素子として、PNPトランジスタQ14の代わりに、PチャンネルMOSFETQ14pが使用される。NチャンネルMOSFETQ13n及び、PチャンネルMOSFETQ14pにおいて、ドレイン端子は第1端子に、ソース端子は第2端子に、ゲート端子は第3端子に相当する。
Although the current boost circuit shown in FIG. 6 of the second embodiment is composed of a bipolar transistor element, it may be composed of a MOSFET element.
FIG. 10 is a diagram showing a modified example of the current boost circuit according to the second embodiment. In the current boost circuit shown in FIG. 10, an N-channel MOSFET Q13n is used as the third transistor element instead of the NPN transistor Q13. Further, as the fourth transistor element, a P-channel MOSFET Q14p is used instead of the PNP transistor Q14. In the N-channel MOSFET Q13n and the P-channel MOSFET Q14p, the drain terminal corresponds to the first terminal, the source terminal corresponds to the second terminal, and the gate terminal corresponds to the third terminal.
 図10において、P点電位が、NチャンネルMOSFETQ13nのソース電位よりもゲートソース間閾値電位分高ければ、NチャンネルMOSFETQ13nがオンする。NチャンネルMOSFETQ13nがオンすると、NチャンネルMOSFETQMnのゲート端子と電源Vccとが短絡する。P点電位が、PチャンネルMOSFETQ14pのソース電位よりもゲートソース間閾値電位分低ければ、PチャンネルMOSFETQ14pがオンする。PチャンネルMOSFETQ14pがオンすると、NチャンネルMOSFETQMnのゲート端子とソース端子とが短絡する。 In FIG. 10, if the P point potential is higher than the source potential of the N-channel MOSFET Q13n by the threshold potential between the gate and source, the N-channel MOSFET Q13n is turned on. When the N-channel MOSFET Q13n is turned on, the gate terminal of the N-channel MOSFET QMn and the power supply Vcc are short-circuited. If the P point potential is lower than the source potential of the P channel MOSFET Q14p by the threshold potential between the gate and source, the P channel MOSFET Q14p is turned on. When the P-channel MOSFET Q14p is turned on, the gate terminal and the source terminal of the N-channel MOSFET QMn are short-circuited.
 このように、電流ブースト回路が、NチャンネルMOSFETQ13nとPチャンネルMOSFETQ14pとで構成されている場合でも、NPNトランジスタQ13とPNPトランジスタQ14とで構成されている場合と同様の働きをする。また、電流ブースト回路が、低いオン抵抗を持つNチャンネルMOSFETQ13nとPチャンネルMOSFETQ14pとで構成されている場合、NチャンネルMOSFETQMnの過渡応答時間をさらに短縮できる可能性がある。 In this way, even when the current boost circuit is composed of the N-channel MOSFET Q13n and the P-channel MOSFET Q14p, it operates in the same manner as when it is composed of the NPN transistor Q13 and the PNP transistor Q14. Further, when the current boost circuit is composed of the N-channel MOSFET Q13n having a low on-resistance and the P-channel MOSFET Q14p, there is a possibility that the transient response time of the N-channel MOSFET QMn can be further shortened.
 次に、実施の形態2において電源Vccの電圧を生成する昇圧回路例を説明する。
 図11は、実施の形態2における電源Vccの回路例を示す図である。昇圧回路は、スイッチング動作を行うスイッチ部SWと、キャパシタC11と、キャパシタC12と、ダイオードD11と、ダイオードD12とで構成されている。キャパシタC11は第1キャパシタに相当し、キャパシタC12は第2キャパシタに相当する。ダイオードD11は第1ダイオード素子に相当し、ダイオードD12は第2ダイオード素子に相当する。ダイオードD11とダイオードD12の順方向電圧は共にVfである。
Next, an example of a booster circuit that generates a voltage of the power supply Vcc in the second embodiment will be described.
FIG. 11 is a diagram showing a circuit example of the power supply Vcc according to the second embodiment. The booster circuit is composed of a switch unit SW that performs a switching operation, a capacitor C11, a capacitor C12, a diode D11, and a diode D12. The capacitor C11 corresponds to the first capacitor, and the capacitor C12 corresponds to the second capacitor. The diode D11 corresponds to the first diode element, and the diode D12 corresponds to the second diode element. The forward voltage of the diode D11 and the diode D12 is both Vf.
 整流回路IDNの出力端子Voutには、スイッチ部SWの入力側と、ダイオードD11のアノード端子と、キャパシタC12の一方端子とが接続されている。スイッチ部SWの出力側とキャパシタC11の一方端子とが接続されている。キャパシタC11の他方端子と、ダイオードD11のカソード端子と、ダイオードD12のアノード端子とが接続されている。これら、キャパシタC11の他方端子とダイオードD11のカソード端子とダイオードD12のアノード端子との接続点を、Q点とする。ダイオードD12のカソード端子とキャパシタC12の他方端子との接続点は、抵抗器R2の他方端子と抵抗器R3の一方端子とNPNトランジスタQ13のコレクタ端子との接続点に接続されている。 The output terminal Vout of the rectifier circuit IDN is connected to the input side of the switch unit SW, the anode terminal of the diode D11, and one terminal of the capacitor C12. The output side of the switch unit SW and one terminal of the capacitor C11 are connected. The other terminal of the capacitor C11, the cathode terminal of the diode D11, and the anode terminal of the diode D12 are connected. The connection point between the other terminal of the capacitor C11, the cathode terminal of the diode D11, and the anode terminal of the diode D12 is defined as the Q point. The connection point between the cathode terminal of the diode D12 and the other terminal of the capacitor C12 is connected to the connection point between the other terminal of the resistor R2, one terminal of the resistor R3, and the collector terminal of the NPN transistor Q13.
 スイッチ部SWは、DC-DCコンバータ等の、デューティが0%及び100%以外の値で変動する矩形波を生成する回路である。スイッチ部SWは、出力端子Voutに接続されており、出力端子Voutの電位とグラウンドGNDの電位との間でスイッチング動作をしている。スイッチ部SWがグラウンドGNDの電位であるとき、ダイオードD11を経由して、キャパシタC11に(Vout-Vf)の電位が充電されて(Vout-Vf)の直流電位に平滑される。スイッチ部SWが出力端子Voutの電位であるとき、キャパシタC11に充電された(Vout-Vf)の直流電位が、出力端子Voutの電位に加わることにより、Q点の電位は(2×Vout-Vf)となる。この電位がダイオードD12を経由して、キャパシタC12に充電され平滑されることで、電源Vccとして(2×(Vout-Vf))の直流電位が得られる。 The switch unit SW is a circuit such as a DC-DC converter that generates a square wave whose duty fluctuates at a value other than 0% and 100%. The switch unit SW is connected to the output terminal Vout and performs a switching operation between the potential of the output terminal Vout and the potential of the ground GND. When the switch unit SW is at the potential of the ground GND, the capacitor C11 is charged with the potential of (Vout-Vf) via the diode D11 and smoothed to the DC potential of (Vout-Vf). When the switch unit SW is at the potential of the output terminal Vout, the DC potential of (Vout-Vf) charged in the capacitor C11 is added to the potential of the output terminal Vout, so that the potential at point Q is (2 × Vout-Vf). ). This potential is charged to the capacitor C12 via the diode D12 and smoothed, so that a DC potential of (2 × (Vout-Vf)) can be obtained as the power supply Vcc.
 なお、図11に示される昇圧回路は、電源Vccの一例であり、電源Vccはこの昇圧回路に限定されない。 The booster circuit shown in FIG. 11 is an example of the power supply Vcc, and the power supply Vcc is not limited to this booster circuit.
実施の形態3.
 図12は、実施の形態3に係る整流回路IDPの構成例を示す回路図である。実施の形態3に係る整流回路IDPは、図1に示された実施の形態1の整流回路IDPに対して、ツェナーダイオードDZが追加された構成である。実施の形態3において図1~図5と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 3.
FIG. 12 is a circuit diagram showing a configuration example of the rectifier circuit IDP according to the third embodiment. The rectifier circuit IDP according to the third embodiment has a configuration in which a Zener diode DZ is added to the rectifier circuit IDP of the first embodiment shown in FIG. In the third embodiment, the same or corresponding parts as those in FIGS. 1 to 5 are designated by the same reference numerals, and the description thereof will be omitted.
 ツェナーダイオードDZのアノード端子がNPNトランジスタQ4のベース端子に接続され、ツェナーダイオードDZのカソード端子が出力端子Voutに接続されている。このツェナーダイオードDZは、PチャンネルMOSFETQMpのゲートソース間電圧VGSを制限する。ただし、ツェナーダイオードDZのツェナー電圧は、出力端子Vout側の負荷が必要とする出力電流をPチャンネルMOSFETQMpが十分流せるだけのオン抵抗を確保できるゲートソース間電圧VGS以上であるものとする。これにより、PチャンネルMOSFETQMpのゲート電位が、出力端子Voutの電位(つまり、ソース側の電位)からツェナー電圧を引いた電位までしか低下しないので、PチャンネルMOSFETQMpが必要以上に飽和状態に近づくことを防止できる。また、PチャンネルMOSFETQMpの過渡状態においてゲート容量のうちの変化させるべき電荷量、すなわちゲート電位の変動幅を抑制することができるので、入力端子Viの電位を超える出力端子Voutの電位上昇に対するPチャンネルMOSFETQMpの過渡応答性が向上する。この様子を、図13に示す。 The anode terminal of the Zener diode DZ is connected to the base terminal of the NPN transistor Q4, and the cathode terminal of the Zener diode DZ is connected to the output terminal Vout. The zener diode DZ limits the gate-source voltage V GS of the P-channel MOSFETQMp. However, the Zener voltage of the Zener diode DZ is directed to an output current load of the output terminal Vout side requires that P-channel MOSFETQMp is only the on-resistance of the gate-source voltage V GS than can be secured can flow sufficiently. As a result, the gate potential of the P-channel MOSFET QMp drops only to the potential obtained by subtracting the Zener voltage from the potential of the output terminal Vout (that is, the potential on the source side), so that the P-channel MOSFET QMp approaches the saturated state more than necessary. Can be prevented. Further, since the amount of charge to be changed in the gate capacitance, that is, the fluctuation range of the gate potential can be suppressed in the transient state of the P channel MOSFET QMp, the P channel with respect to the potential increase of the output terminal Vout exceeding the potential of the input terminal Vi. The transient response of the MOSFET QMp is improved. This situation is shown in FIG.
 図13は、実施の形態3において、ツェナーダイオードDZが存在する場合の整流回路IDPの動作を説明する図である。なお、図13では、図3と同様に、出力端子Voutの出力電圧がE0であって、負荷電流I0が流れており、PチャンネルMOSFETQMpのゲート電位がV0である定常状態において、外部から出力端子Voutに対して強制的に(Vi-Vf)より高い電圧E1が印加された場合の負荷電流、及びPチャンネルMOSFETQMpのゲート電位の時間変化について説明する。ツェナーダイオードDZが存在する場合のPチャンネルMOSFETQMpのゲート電位と、負荷電流は、実線で示される。ツェナーダイオードDZが存在しない場合のPチャンネルMOSFETQMpのゲート電位と、負荷電流は、一点鎖線で示される。 FIG. 13 is a diagram illustrating the operation of the rectifier circuit IDP when the Zener diode DZ is present in the third embodiment. In FIG. 13, similarly to FIG. 3, in a steady state where the output voltage of the output terminal Vout is E0, the load current I0 is flowing, and the gate potential of the P channel MOSFET QMp is V0, the output terminal is output from the outside. The load current when a voltage E1 higher than (Vi-Vf) is forcibly applied to Vout, and the time change of the gate potential of the P-channel MOSFET QMp will be described. The gate potential and load current of the P-channel MOSFET QMp in the presence of the Zener diode DZ are shown by solid lines. The gate potential and load current of the P-channel MOSFET QMp in the absence of the Zener diode DZ are indicated by alternate long and short dash lines.
 ツェナーダイオードDZが存在しない場合、PチャンネルMOSFETQMpのゲート電位はV0である。ツェナーダイオードDZがゲート電位をV0からV0DZ(>V0)に上昇させることによってPチャンネルMOSFETQMpの飽和度合いを緩和しても十分な負荷電流が確保できる場合、ゲート電位をV0からV0DZに上昇させることにより、出力端子Voutから入力端子Viへの電流逆流期間を短縮することができる。つまり、ツェナーダイオードDZが存在しない場合の電流逆流期間は、時刻t0から時刻t2までであるが、ツェナーダイオードDZが存在する場合の電流逆流期間は、時刻t0から時刻t8(<t2)までとなる。なお、この例では、負荷電流を回復させるための時間、つまり時刻t4から時刻t6までの時間は、ツェナーダイオードDZの有無によって変化しない。 In the absence of the Zener diode DZ, the gate potential of the P-channel MOSFET QMp is V0. When the Zener diode DZ raises the gate potential from V0 to V0 DZ (> V0) and a sufficient load current can be secured even if the saturation degree of the P channel MOSFET QMp is relaxed, the gate potential is raised from V0 to V0 DZ . As a result, the current backflow period from the output terminal Vout to the input terminal Vi can be shortened. That is, the current backflow period in the absence of the Zener diode DZ is from time t0 to time t2, but the current backflow period in the presence of the Zener diode DZ is from time t0 to time t8 (<t2). .. In this example, the time for recovering the load current, that is, the time from time t4 to time t6 does not change depending on the presence or absence of the Zener diode DZ.
 以上のように、実施の形態3に係る整流回路IDPは、カソード端子が出力端子Voutに接続され、アノード端子がNPNトランジスタQ4のベース端子に接続されているツェナーダイオードDZを備える。この構成により、PチャンネルMOSFETQMpのゲート電位の変動幅を抑制することができるので、出力端子Voutから入力端子Viへ電流が逆流する時間をさらに短縮することができる。 As described above, the rectifier circuit IDP according to the third embodiment includes a Zener diode DZ in which the cathode terminal is connected to the output terminal Vout and the anode terminal is connected to the base terminal of the NPN transistor Q4. With this configuration, the fluctuation range of the gate potential of the P-channel MOSFET QMp can be suppressed, so that the time for the current to flow back from the output terminal Vout to the input terminal Vi can be further shortened.
実施の形態4.
 図14は、実施の形態4に係る整流回路IDNの構成例を示す回路図である。実施の形態4に係る整流回路IDNは、図6に示された実施の形態2の整流回路IDNに対して、ツェナーダイオードDZが追加された構成である。実施の形態4において図6~図11と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 4.
FIG. 14 is a circuit diagram showing a configuration example of the rectifier circuit IDN according to the fourth embodiment. The rectifier circuit IDN according to the fourth embodiment has a configuration in which a Zener diode DZ is added to the rectifier circuit IDN of the second embodiment shown in FIG. In the fourth embodiment, the same or corresponding parts as those in FIGS. 6 to 11 are designated by the same reference numerals, and the description thereof will be omitted.
 ツェナーダイオードDZのアノード端子が入力端子Viに接続され、ツェナーダイオードDZのカソード端子がPNPトランジスタQ14のベース端子に接続されている。このツェナーダイオードDZは、NチャンネルMOSFETQMnのゲートソース間電圧VGSを制限する。ただし、ツェナーダイオードDZのツェナー電圧は、出力端子Vout側の負荷が必要とする出力電流をNチャンネルMOSFETQMnが十分流せるだけのオン抵抗を確保できるゲートソース間電圧VGS以上であるものとする。これにより、NチャンネルMOSFETQMnのゲート電位が、入力端子Viの電位(つまり、ソース側の電位)からツェナー電圧を加えた電位までしか上昇しないので、NチャンネルMOSFETQMnが必要以上に飽和状態になることを防止できる。また、NチャンネルMOSFETQMnの過渡状態においてゲート容量のうちの変化させるべき電荷量、すなわちゲート電位の変動幅を抑制することができるので、入力端子Viの電位を超える出力端子Voutの電位上昇に対するNチャンネルMOSFETQMnの過渡応答性が向上する。この様子を、図15に示す。 The anode terminal of the Zener diode DZ is connected to the input terminal Vi, and the cathode terminal of the Zener diode DZ is connected to the base terminal of the PNP transistor Q14. The zener diode DZ limits the gate-source voltage V GS of the N-channel MOSFETQMn. However, the Zener voltage of the Zener diode DZ is directed to an output current load of the output terminal Vout side requires that the N channel MOSFETQMn is only the on-resistance of the gate-source voltage V GS than can be secured can flow sufficiently. As a result, the gate potential of the N-channel MOSFET QMn rises only from the potential of the input terminal Vi (that is, the potential on the source side) to the potential to which the Zener voltage is applied, so that the N-channel MOSFET QMn becomes saturated more than necessary. Can be prevented. Further, since the amount of charge to be changed in the gate capacitance, that is, the fluctuation range of the gate potential can be suppressed in the transient state of the N channel MOSFET QMn, the N channel with respect to the potential increase of the output terminal Vout exceeding the potential of the input terminal Vi. The transient response of the MOSFET QMn is improved. This situation is shown in FIG.
 図15は、実施の形態4において、ツェナーダイオードDZが存在する場合の整流回路IDNの動作を説明する図である。なお、図15では、図8と同様に、出力端子Voutの出力電圧がE0であって、負荷電流I0が流れており、NチャンネルMOSFETQMnのゲート電位がV0である定常状態において、外部から出力端子Voutに対して強制的に(Vi-Vf)より高い電圧E1が印加された場合の負荷電流、及びNチャンネルMOSFETQMnのゲート電位の時間変化について説明する。ツェナーダイオードDZが存在する場合のNチャンネルMOSFETQMnのゲート電位と、負荷電流は、実線で示される。ツェナーダイオードDZが存在しない場合のNチャンネルMOSFETQMnのゲート電位と、負荷電流は、一点鎖線で示される。 FIG. 15 is a diagram illustrating the operation of the rectifier circuit IDN when the Zener diode DZ is present in the fourth embodiment. In FIG. 15, as in FIG. 8, in a steady state where the output voltage of the output terminal Vout is E0, the load current I0 is flowing, and the gate potential of the N-channel MOSFET QMn is V0, the output terminal is output from the outside. The load current when a voltage E1 higher than (Vi-Vf) is forcibly applied to Vout, and the time change of the gate potential of the N-channel MOSFET QMn will be described. The gate potential and load current of the N-channel MOSFET QMn in the presence of the Zener diode DZ are shown by solid lines. The gate potential and load current of the N-channel MOSFET QMn in the absence of the Zener diode DZ are indicated by alternate long and short dash lines.
 ツェナーダイオードDZが存在しない場合、NチャンネルMOSFETQMnのゲート電位はV0である。ツェナーダイオードDZがゲート電位をV0からV0DZ(<V0)まで下降させることによってNチャンネルMOSFETQMnの飽和度合いを緩和しても十分な負荷電流が確保できる場合、ゲート電位をV0からV0DZに下降させることにより、出力端子Voutから入力端子Viへの電流逆流期間を短縮することができる。つまり、ツェナーダイオードDZが存在しない場合の電流逆流期間は、時刻t0から時刻t2までであるが、ツェナーダイオードDZが存在する場合の電流逆流期間は、時刻t0から時刻t8(<t2)までとなる。なお、この例では、負荷電流を回復させるための時間、つまり時刻t4から時刻t6までの時間は、ツェナーダイオードDZの有無によって変化しない。 In the absence of the Zener diode DZ, the gate potential of the N-channel MOSFET QMn is V0. When the Zener diode DZ lowers the gate potential from V0 to V0 DZ (<V0) and a sufficient load current can be secured even if the saturation degree of the N-channel MOSFET QMn is relaxed, the gate potential is lowered from V0 to V0 DZ . Thereby, the current backflow period from the output terminal Vout to the input terminal Vi can be shortened. That is, the current backflow period in the absence of the Zener diode DZ is from time t0 to time t2, but the current backflow period in the presence of the Zener diode DZ is from time t0 to time t8 (<t2). .. In this example, the time for recovering the load current, that is, the time from time t4 to time t6 does not change depending on the presence or absence of the Zener diode DZ.
 以上のように、実施の形態4に係る整流回路IDNは、アノード端子が入力端子Viに接続され、カソード端子がPNPトランジスタQ14のベース端子に接続されているツェナーダイオードDZを備える。この構成により、NチャンネルMOSFETQMnのゲート電位の変動幅を抑制することができるので、出力端子Voutから入力端子Viへ電流が逆流する時間をさらに短縮することができる。 As described above, the rectifier circuit IDN according to the fourth embodiment includes a Zener diode DZ in which the anode terminal is connected to the input terminal Vi and the cathode terminal is connected to the base terminal of the PNP transistor Q14. With this configuration, the fluctuation range of the gate potential of the N-channel MOSFET QMn can be suppressed, so that the time for the current to flow back from the output terminal Vout to the input terminal Vi can be further shortened.
実施の形態5.
 図16は、実施の形態5に係る直流電源合成回路1の構成例を示す回路図である。実施の形態5において図1~図15と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 5.
FIG. 16 is a circuit diagram showing a configuration example of the DC power supply synthesis circuit 1 according to the fifth embodiment. In the fifth embodiment, the same or corresponding parts as those in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
 直流電源合成回路1は、n個の整流回路ID1~IDn(nは任意の整数)と、m個の通常のダイオードD1~Dm(mは任意の整数)とを組み合わせた構成である。整流回路ID1~IDnは、それぞれ、実施の形態1に係る整流回路IDP、実施の形態2に係る整流回路IDN、実施の形態3に係る整流回路IDP、又は実施の形態4に係る整流回路IDNのいずれかである。整流回路ID1~IDnは、通常のダイオードD1~Dmに比べて順方向電圧が小さい理想ダイオード回路である。以下では、整流回路ID1~IDnを「低電圧ドロップ整流回路ID1~IDn」と称する。なお、低電圧ドロップ整流回路ID1~IDnには、整流回路IDPと整流回路IDNとが混在していてもよい。その場合、整流回路IDPは第1整流回路に相当し、整流回路IDNは第2整流回路に相当する。 The DC power supply synthesis circuit 1 has a configuration in which n rectifier circuits ID1 to IDn (n is an arbitrary integer) and m ordinary diodes D1 to Dm (m is an arbitrary integer) are combined. The rectifier circuits ID1 to IDn are the rectifier circuit IDP according to the first embodiment, the rectifier circuit IDN according to the second embodiment, the rectifier circuit IDP according to the third embodiment, or the rectifier circuit IDN according to the fourth embodiment, respectively. It is either. The rectifier circuits ID1 to IDn are ideal diode circuits having a smaller forward voltage than the ordinary diodes D1 to Dm. Hereinafter, the rectifier circuits ID1 to IDn will be referred to as "low voltage drop rectifier circuits ID1 to IDn". The low voltage drop rectifier circuits ID1 to IDn may include a rectifier circuit IDP and a rectifier circuit IDN. In that case, the rectifier circuit IDP corresponds to the first rectifier circuit, and the rectifier circuit IDN corresponds to the second rectifier circuit.
 低電圧ドロップ整流回路ID1~IDnの各入力端子Viには、直流電源Vi1~Vinが接続されている。基準電位Vrefは、低電圧ドロップ整流回路ID1~IDnの駆動電流を供給するためのものである。整流回路IDPの基準電位Vrefは、入力端子Viの電位よりも、少なくともPチャンネルMOSFETQMpがオンできるゲートソース間電位分低い電位のグラウンドGNDである。整流回路IDNの基準電位Vrefは、入力端子Viの電位よりも、少なくともNチャンネルMOSFETQMnがオンできるゲートソース間電位分高い電位の電源Vccである。ダイオードD1~Dmの各アノード端子には、直流電源Ei1~Eimが接続されている。ダイオードD1~Dmの全カソード端子と、低電圧ドロップ整流回路ID1~IDnの全出力端子Voutとは、接続されている。V0は、直流電源合成回路1の出力電圧である。 DC power supplies Vi1 to Vin are connected to each input terminal Vi of the low voltage drop rectifier circuits ID1 to IDn. The reference potential Vref is for supplying the drive current of the low voltage drop rectifier circuits ID1 to IDn. The reference potential Vref of the rectifier circuit IDP is a ground GND having a potential lower than the potential of the input terminal Vi by at least the potential between the gate and source at which the P channel MOSFET QMp can be turned on. The reference potential Vref of the rectifier circuit IDN is a power supply Vcc having a potential higher than the potential of the input terminal Vi by at least the potential between the gate and source at which the N-channel MOSFET QMn can be turned on. DC power supplies Ei1 to Eim are connected to the anode terminals of the diodes D1 to Dm. All the cathode terminals of the diodes D1 to Dm and all the output terminals Vout of the low voltage drop rectifier circuits ID1 to IDn are connected. V0 is the output voltage of the DC power supply synthesis circuit 1.
 ここで、直流電源合成回路1の具体例を説明する。n=1、及びm=1であり、直流電源Ei1は12Vであるものとする。また、低電圧ドロップ整流回路ID1は整流回路IDPであり、直流電源Vi1は5Vであるものとする。基準電位Vrefは、グラウンドGNDの電位である。この構成において、出力電力が一定である場合、消費電流が少ない12V側は、電源電圧が高いために、ダイオードD1の電圧ドロップが電源電圧に対して無視でき、ダイオードD1での電力ロスも無視できる。そのため、直流電源Ei1に対しては、電圧ドロップは大きいが低コストの通常のダイオードD1が使用される。これに対し、消費電流が大きい5V側は、電源電圧が低いために、ダイオードの電圧ドロップが電源電圧に対して無視できない割合を占め、ダイオードでの電力ロスを無視できない。そのため、直流電源Vi1に対しては、通常のダイオードと比較してコストは大きいが電圧ドロップは小さい理想ダイオード回路である整流回路IDPが使用される。これにより、直流電源合成回路1は、電力損失抑制とコスト抑制の両立が可能となる。 Here, a specific example of the DC power supply synthesis circuit 1 will be described. It is assumed that n = 1 and m = 1, and the DC power supply Ei1 is 12V. Further, it is assumed that the low voltage drop rectifier circuit ID1 is the rectifier circuit IDP and the DC power supply Vi1 is 5V. The reference potential Vref is the potential of the ground GND. In this configuration, when the output power is constant, the voltage drop of the diode D1 can be ignored with respect to the power supply voltage and the power loss at the diode D1 can be ignored because the power supply voltage is high on the 12V side where the current consumption is small. .. Therefore, for the DC power supply Ei1, a low-cost ordinary diode D1 having a large voltage drop is used. On the other hand, on the 5V side where the current consumption is large, since the power supply voltage is low, the voltage drop of the diode occupies a non-negligible ratio with respect to the power supply voltage, and the power loss in the diode cannot be ignored. Therefore, for the DC power supply Vi1, a rectifier circuit IDP, which is an ideal diode circuit having a large cost but a small voltage drop as compared with a normal diode, is used. As a result, the DC power supply synthesis circuit 1 can suppress both power loss and cost.
 以上のように、実施の形態5に係る直流電源合成回路1は、直流電源Ei1~Eim,Vi1~Vinと、低電圧ドロップ整流回路ID1~IDnと、ダイオードD1~Dmとを備える。Ei1~Eimは、それぞれ、ダイオードD1~Dmのアノード端子に接続されている。直流電源Vi1~Vinは、それぞれ、低電圧ドロップ整流回路ID1~IDnの入力端子Viに接続されている。また、ダイオードD1~Dmの各カソード端子と、低電圧ドロップ整流回路ID1~IDnの各出力端子Voutとが接続されている。このように、電源電圧が高く消費電流が小さい直流電源Ei1~Eimに対して通常のダイオードD1~Dmが接続され、電源電圧が低く消費電流が大きい直流電源Vi1~Vinに対して理想ダイオード回路である低電圧ドロップ整流回路ID1~IDnが接続されることにより、電力損失抑制とコスト抑制の両立が可能となる。 As described above, the DC power supply synthesis circuit 1 according to the fifth embodiment includes DC power supplies Ei1 to Eim, Vi1 to Vin, low voltage drop rectifier circuits ID1 to IDn, and diodes D1 to Dm. Ei1 to Eim are connected to the anode terminals of the diodes D1 to Dm, respectively. The DC power supplies Vi1 to Vin are connected to the input terminals Vi of the low voltage drop rectifier circuits ID1 to IDn, respectively. Further, the cathode terminals of the diodes D1 to Dm and the output terminals Vout of the low voltage drop rectifier circuits ID1 to IDn are connected to each other. In this way, the normal diodes D1 to Dm are connected to the DC power supplies Ei1 to Eim having a high power supply voltage and a small current consumption, and the ideal diode circuit is used for the DC power supplies Vi1 to Vin having a low power supply voltage and a large current consumption. By connecting certain low voltage drop rectifier circuits ID1 to IDn, it is possible to suppress both power loss and cost.
 なお、実施の形態5では、直流電源合成回路1が、整流回路IDP又は整流回路IDNの少なくとも一方に加えて、少なくとも1つのダイオードD1を用いる構成であったが、整流回路IDP又は整流回路IDNの少なくとも一方のみを用いる構成であってもよい。 In the fifth embodiment, the DC power supply synthesis circuit 1 is configured to use at least one diode D1 in addition to at least one of the rectifier circuit IDP and the rectifier circuit IDN, but the rectifier circuit IDP or the rectifier circuit IDN It may be configured to use at least one of them.
実施の形態6.
 図17は、実施の形態6に係る全波整流回路2の構成例を示す回路図である。実施の形態6において図1~図15と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 6.
FIG. 17 is a circuit diagram showing a configuration example of the full-wave rectifier circuit 2 according to the sixth embodiment. In the sixth embodiment, the same or corresponding parts as those in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
 全波整流回路2は、変圧器Trが出力する交流電圧を全波整流するブリッジ型の全波整流回路である。変圧器Trは、1次巻線と、2次巻線と、2次巻線に設けられたセンタタップとを備える。全波整流回路2は、センタタップを基準電位とし、正電位側の整流回路IDP1,IDP2と、負電位側の整流回路IDN1,IDN2とを用いて全波整流を行う。整流回路IDP1,IDP2は、それぞれ、実施の形態1に係る整流回路IDP又は実施の形態3に係る整流回路IDPである。整流回路IDN1,IDN2は、それぞれ、実施の形態2に係る整流回路IDN又は実施の形態4に係る整流回路IDNである。整流回路IDP1,IDP2,IDN1,IDN2は、順方向電圧が小さい理想ダイオード回路である。全波整流回路2の出力側には、交流リップル平滑用のキャパシタC1,C2を介して、負荷Za,Zb,Zcが接続されている。 The full-wave rectifier circuit 2 is a bridge-type full-wave rectifier circuit that full-wave rectifies the AC voltage output by the transformer Tr. The transformer Tr includes a primary winding, a secondary winding, and a center tap provided on the secondary winding. The full-wave rectifier circuit 2 uses the center tap as a reference potential, and performs full-wave rectification using the rectifier circuits IDP1 and IDP2 on the positive potential side and the rectifier circuits IDN1 and IDN2 on the negative potential side. The rectifier circuits IDP1 and IDP2 are the rectifier circuit IDP according to the first embodiment or the rectifier circuit IDP according to the third embodiment, respectively. The rectifier circuits IDN1 and IDN2 are the rectifier circuit IDN according to the second embodiment or the rectifier circuit IDN according to the fourth embodiment, respectively. The rectifier circuits IDP1, IDP2, IDN1 and IDN2 are ideal diode circuits having a small forward voltage. Loads Za, Zb, and Zc are connected to the output side of the full-wave rectifier circuit 2 via capacitors C1 and C2 for AC ripple smoothing.
 図17に示されるように、2次巻線の一方の出力側に、整流回路IDP1の入力端子Viと、整流回路IDN2の出力端子Voutとが接続されている。2次巻線の他方の出力側に、整流回路IDP2の入力端子Viと、整流回路IDN1の出力端子Voutとが接続されている。整流回路IDP1の出力端子Voutと、整流回路IDP2の出力端子Voutと、キャパシタC1の一方端子との接続点は、正電源の出力端子となる。+V1は、センタタップの基準電位に対する上記正電源の出力電位である。整流回路IDN1の入力端子Viと、整流回路IDN2の入力端子Viと、キャパシタC2の一方端子との接続点は、負電源の出力端子となる。-V1は、センタタップの基準電位に対する上記負電源の出力電位である。整流回路IDP1のグラウンドGNDと、整流回路IDP2のグラウンドGNDと、整流回路IDN1の電源Vccと、整流回路IDN2の電源Vccと、キャパシタC1の他方端子と、キャパシタC2の他方端子とは、センタタップに接続されている。 As shown in FIG. 17, the input terminal Vi of the rectifier circuit IDP1 and the output terminal Vout of the rectifier circuit IDN2 are connected to one output side of the secondary winding. The input terminal Vi of the rectifier circuit IDP2 and the output terminal Vout of the rectifier circuit IDN1 are connected to the other output side of the secondary winding. The connection point between the output terminal Vout of the rectifier circuit IDP1, the output terminal Vout of the rectifier circuit IDP2, and one terminal of the capacitor C1 is an output terminal of a positive power supply. + V1 is the output potential of the positive power supply with respect to the reference potential of the center tap. The connection point between the input terminal Vi of the rectifier circuit IDN1, the input terminal Vi of the rectifier circuit IDN2, and one terminal of the capacitor C2 is an output terminal of a negative power supply. -V1 is the output potential of the negative power supply with respect to the reference potential of the center tap. The ground GND of the rectifier circuit IDP1, the ground GND of the rectifier circuit IDP2, the power supply Vcc of the rectifier circuit IDN1, the power supply Vcc of the rectifier circuit IDN2, the other terminal of the capacitor C1, and the other terminal of the capacitor C2 are center tapped. It is connected.
 以上のように、実施の形態6に係る全波整流回路2は、4個の整流回路IDP1,IDP2,IDN1,IDN2とから構成されるブリッジ型の全波整流回路であり、センタタップを有する変圧器Trが出力する交流電圧を全波整流する。この全波整流回路2は、順方向電圧が小さい理想ダイオード回路である整流回路IDP1,IDP2,IDN1,IDN2で構成されているので、通常のダイオード素子を用いたブリッジ型の全波整流回路と比較して電力損失を抑制することができる。 As described above, the full-wave rectifier circuit 2 according to the sixth embodiment is a bridge-type full-wave rectifier circuit composed of four rectifier circuits IDP1, IDP2, IDN1, and IDN2, and is a transformer having a center tap. Full-wave rectification of the AC voltage output by the device Tr. Since this full-wave rectifier circuit 2 is composed of rectifier circuits IDP1, IDP2, IDN1 and IDN2, which are ideal diode circuits having a small forward voltage, it is compared with a bridge-type full-wave rectifier circuit using a normal diode element. It is possible to suppress the power loss.
実施の形態7.
 図18は、実施の形態7に係る全波整流回路3の構成例を示す回路図である。実施の形態7において図1~図15と同一又は相当する部分は、同一の符号を付し説明を省略する。
Embodiment 7.
FIG. 18 is a circuit diagram showing a configuration example of the full-wave rectifier circuit 3 according to the seventh embodiment. In the seventh embodiment, the same or corresponding parts as those in FIGS. 1 to 15 are designated by the same reference numerals, and the description thereof will be omitted.
 全波整流回路3は、3相交流発電回路4が出力する3相交流電圧を全波整流するブリッジ型の全波整流回路である。3相交流発電回路4は、3相の正弦波交流電源Eu,Ev,Ewと、正弦波交流電源Eu,Ev,Ewが接続された中性点Vnとを備える。正弦波交流電源Evは、正弦波交流電源Euより2π/3遅れた位相角を持つ。正弦波交流電源Ewは、正弦波交流電源Evより2π/3遅れた位相角を持つ。全波整流回路3は、中性点Vnを基準電位とし、各相に対して、正電位側の整流回路IDP3,IDP4,IDP5と、負電位側の整流回路IDN3,IDN4,IDN5とを用いて全波整流を行う。整流回路IDP3,IDP4,IDP5は、それぞれ、実施の形態1に係る整流回路IDP又は実施の形態3に係る整流回路IDPである。整流回路IDN3,IDN4,IDN5は、それぞれ、実施の形態2に係る整流回路IDN又は実施の形態4に係る整流回路IDNである。整流回路IDP3,IDP4,IDP5,IDN3,IDN4,IDN5は、順方向電圧が小さい理想ダイオード回路である。全波整流回路3の出力側には、交流リップル平滑用のキャパシタC3を介して、負荷Zdが接続されている。 The full-wave rectifier circuit 3 is a bridge-type full-wave rectifier circuit that full-wave rectifies the three-phase AC voltage output by the three-phase AC power generation circuit 4. The three-phase AC power generation circuit 4 includes a three-phase sinusoidal AC power supply Eu, Ev, Ew and a neutral point Vn to which the sinusoidal AC power supply Eu, Ev, Ew is connected. The sinusoidal AC power supply Ev has a phase angle 2π / 3 behind that of the sinusoidal AC power supply Eu. The sinusoidal AC power supply Ew has a phase angle 2π / 3 behind the sinusoidal AC power supply Ev. The full-wave rectifier circuit 3 uses the neutral point Vn as a reference potential, and uses the rectifier circuits IDP3, IDP4, IDP5 on the positive potential side and the rectifier circuits IDN3, IDN4, IDN5 on the negative potential side for each phase. Perform full-wave rectification. The rectifier circuits IDP3, IDP4, and IDP5 are the rectifier circuit IDP according to the first embodiment or the rectifier circuit IDP according to the third embodiment, respectively. The rectifier circuits IDN3, IDN4, and IDN5 are the rectifier circuit IDN according to the second embodiment or the rectifier circuit IDN according to the fourth embodiment, respectively. The rectifier circuits IDP3, IDP4, IDP5, IDN3, IDN4, IDN5 are ideal diode circuits having a small forward voltage. A load Zd is connected to the output side of the full-wave rectifier circuit 3 via a capacitor C3 for smoothing AC ripple.
 図18に示されるように、3相交流発電回路4の正弦波交流電源Euの出力側に、整流回路IDP3の入力端子Viと、整流回路IDN3の出力端子Voutとが接続されている。正弦波交流電源Ewの出力側に、整流回路IDP4の入力端子Viと、整流回路IDN4の出力端子Voutとが接続されている。正弦波交流電源Evの出力側に、整流回路IDP5の入力端子Viと、整流回路IDN5の出力端子Voutとが接続されている。整流回路IDP3,IDP4,IDP5の各グラウンドGNDと、整流回路IDN3,IDN4,IDN5の各電源Vccとは、中性点Vnに接続されている。正電位側の整流回路IDP3,IDP4,IDP5の各出力端子Voutと、キャパシタC3の一方端子との接続点は、正電源の出力端子となる。負電位側の整流回路IDN3,IDN4,IDN5の各入力端子Viと、キャパシタC3の他方端子との接続点は、負電源の出力端子となる。V2は、負荷Zdにかかる出力電位である。 As shown in FIG. 18, the input terminal Vi of the rectifier circuit IDP3 and the output terminal Vout of the rectifier circuit IDN3 are connected to the output side of the sinusoidal AC power supply Eu of the three-phase AC power generation circuit 4. The input terminal Vi of the rectifier circuit IDP4 and the output terminal Vout of the rectifier circuit IDN4 are connected to the output side of the sinusoidal AC power supply Ew. The input terminal Vi of the rectifier circuit IDP5 and the output terminal Vout of the rectifier circuit IDN5 are connected to the output side of the sinusoidal AC power supply Ev. Each ground GND of the rectifier circuits IDP3, IDP4 and IDP5 and each power supply Vcc of the rectifier circuits IDN3, IDN4 and IDN5 are connected to the neutral point Vn. The connection point between each output terminal Vout of the rectifier circuits IDP3, IDP4, and IDP5 on the positive potential side and one terminal of the capacitor C3 becomes an output terminal of the positive power supply. The connection point between each input terminal Vi of the rectifier circuits IDN3, IDN4, and IDN5 on the negative potential side and the other terminal of the capacitor C3 becomes an output terminal of a negative power supply. V2 is the output potential applied to the load Zd.
 以上のように、実施の形態7に係る全波整流回路3は、6個の整流回路IDP3,IDP4,IDP5,IDN3,IDN4,IDN5とから構成されるブリッジ型の全波整流回路であり、中性点Vnを有する3相交流発電回路4が出力する3相交流電圧を全波整流する。この全波整流回路3は、順方向電圧が小さい理想ダイオード回路である整流回路IDP3,IDP4,IDP5,IDN3,IDN4,IDN5で構成されているので、通常のダイオード素子を用いたブリッジ型の全波整流回路と比較して電力損失を抑制することができる。 As described above, the full-wave rectifier circuit 3 according to the seventh embodiment is a bridge-type full-wave rectifier circuit composed of six rectifier circuits IDP3, IDP4, IDP5, IDN3, IDN4, IDN5. The three-phase AC voltage output by the three-phase AC power generation circuit 4 having the sex point Vn is full-wave rectified. Since this full-wave rectifier circuit 3 is composed of rectifier circuits IDP3, IDP4, IDP5, IDN3, IDN4, IDN5, which are ideal diode circuits having a small forward voltage, a bridge-type full-wave rectifier circuit using a normal diode element is used. Power loss can be suppressed as compared with a rectifier circuit.
 なお、実施の形態7では、全波整流回路3が、3相の交流電圧を全波整流するように構成されていたが、n相(n≧4)の交流電圧を全波整流するように構成されてもよい。 In the seventh embodiment, the full-wave rectifier circuit 3 is configured to perform full-wave rectification of the three-phase AC voltage, but the n-phase (n ≧ 4) AC voltage is full-wave rectified. It may be configured.
 本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、又は各実施の形態の任意の構成要素の省略が可能である。 The present invention allows any combination of embodiments, modifications of any component of each embodiment, or omission of any component of each embodiment within the scope of the invention.
 この発明に係る整流回路は、入出力間の電位差が極めて小さく、高い応答性を有しているので、低損失で高速応答を要する電源合成回路及び整流回路に適している。 The rectifier circuit according to the present invention has an extremely small potential difference between input and output and has high responsiveness, and is therefore suitable for a power supply synthesis circuit and a rectifier circuit that require low loss and high-speed response.
 1 直流電源合成回路、2,3 全波整流回路、4 3相交流発電回路、C1,C2,C3,C11,C12 キャパシタ、D1~Dm,D11,D12 ダイオード、DZ ツェナーダイオード、Ei1~Eim,Vi1~Vin 直流電源、Eu,Ev,Ew 正弦波交流電源、GND グラウンド、ID1~IDn,IDP,IDN,IDP1,IDP2,IDP3,IDP4,IDP5,IDN1,IDN2,IDN3,IDN4,IDN5 整流回路、Q1,Q2,Q3,Q14 PNPトランジスタ、Q4,Q11,Q12,Q13 NPNトランジスタ、Q3p,Q14p,QMp PチャンネルMOSFET、Q4n,Q13n,QMn NチャンネルMOSFET、R1,R2,R3,R4 抵抗器、SW スイッチ部、Tr 変圧器、Vi 入力端子、Vcc 電源、Vn 中性点、Vout 出力端子、Vref 基準電位、Za,Zb,Zc,Zd 負荷。 1 DC power supply synthesis circuit, 2, 3 full-wave rectifier circuit, 4 3-phase AC power generation circuit, C1, C2, C3, C11, C12 capacitors, D1 to Dm, D11, D12 diodes, DZ Zener diodes, Ei1 to Eim, Vi1 ~ Vin DC power supply, Eu, Ev, Ew Sine wave AC power supply, GND ground, ID1 ~ IDn, IDP, IDN, IDP1, IDP2, IDP3, IDP4, IDP5, IDN1, IDN2, IDN3, IDN4, IDN5 rectifier circuit, Q1, Q2, Q3, Q14 PNP transistor, Q4, Q11, Q12, Q13 NPN transistor, Q3p, Q14p, QMp P channel MOSFET, Q4n, Q13n, QMn N channel MOSFET, R1, R2, R3, R4 resistor, SW switch section, Tr transformer, Vi input terminal, Vcc power supply, Vn neutral point, Vout output terminal, Vref reference potential, Za, Zb, Zc, Zd load.

Claims (18)

  1.  PチャンネルMOSFET素子と、第1PNPバイポーラトランジスタ素子と、第2PNPバイポーラトランジスタ素子と、互いに逆極性を持つ第3トランジスタ素子及び第4トランジスタ素子と、第1抵抗器と、第2抵抗器と、第3抵抗器と、第4抵抗器と、入力端子と、出力端子とを備え、
     前記PチャンネルMOSFET素子のドレイン端子と前記第1抵抗器の一方端子との接続点が前記入力端子に接続され、
     前記第1PNPバイポーラトランジスタ素子は等価ダイオード素子を構成し、前記等価ダイオード素子のアノード端子と前記第1抵抗器の他方端子とが接続され、前記等価ダイオード素子のカソード端子と前記第2PNPバイポーラトランジスタ素子のベース端子と前記第2抵抗器の一方端子とが接続され、
     前記第2抵抗器の他方端子と前記第3抵抗器の一方端子と前記第3トランジスタ素子の第1端子との接続点がグラウンドに接続され、
     前記第3抵抗器の他方端子と前記第2PNPバイポーラトランジスタ素子のコレクタ端子と前記第3トランジスタ素子の第3端子と前記第4トランジスタ素子の第3端子と前記第4抵抗器の一方端子とが接続され、
     前記第3トランジスタ素子の第2端子と前記第4トランジスタ素子の第2端子と前記第4抵抗器の他方端子と前記PチャンネルMOSFET素子のゲート端子とが接続され、
     前記第2PNPバイポーラトランジスタ素子のエミッタ端子と前記PチャンネルMOSFET素子のソース端子と前記第4トランジスタ素子の第1端子との接続点が前記出力端子に接続されていることを特徴とする整流回路。
    A P-channel MOSFET element, a first PNP bipolar transistor element, a second PNP bipolar transistor element, a third transistor element and a fourth transistor element having opposite polarities, a first resistor, a second resistor, and a third It is provided with a resistor, a fourth resistor, an input terminal, and an output terminal.
    A connection point between the drain terminal of the P-channel MOSFET element and one terminal of the first resistor is connected to the input terminal.
    The first PNP bipolar transistor element constitutes an equivalent diode element, the anode terminal of the equivalent diode element and the other terminal of the first resistor are connected, and the cathode terminal of the equivalent diode element and the second PNP bipolar transistor element The base terminal and one terminal of the second resistor are connected,
    The connection point between the other terminal of the second resistor, one terminal of the third resistor, and the first terminal of the third transistor element is connected to the ground.
    The other terminal of the third resistor, the collector terminal of the second PNP bipolar transistor element, the third terminal of the third transistor element, the third terminal of the fourth transistor element, and one terminal of the fourth resistor are connected. Being done
    The second terminal of the third transistor element, the second terminal of the fourth transistor element, the other terminal of the fourth resistor, and the gate terminal of the P channel MOSFET element are connected to each other.
    A rectifier circuit characterized in that a connection point between an emitter terminal of the second PNP bipolar transistor element, a source terminal of the P channel MOSFET element, and a first terminal of the fourth transistor element is connected to the output terminal.
  2.  前記第1PNPバイポーラトランジスタ素子のエミッタ端子は前記等価ダイオード素子の前記アノード端子であり、前記第1PNPバイポーラトランジスタ素子のベース端子とコレクタ端子との接続点は前記等価ダイオード素子の前記カソード端子であることを特徴とする請求項1記載の整流回路。 The emitter terminal of the first PNP bipolar transistor element is the anode terminal of the equivalent diode element, and the connection point between the base terminal and the collector terminal of the first PNP bipolar transistor element is the cathode terminal of the equivalent diode element. The rectifier circuit according to claim 1, characterized by this.
  3.  前記第1PNPバイポーラトランジスタ素子のコレクタ端子は前記等価ダイオード素子の前記アノード端子であり、前記第1PNPバイポーラトランジスタ素子のベース端子は前記等価ダイオード素子の前記カソード端子であり、前記第1PNPバイポーラトランジスタ素子のエミッタ端子は開放されていることを特徴とする請求項1記載の整流回路。 The collector terminal of the first PNP bipolar transistor element is the anode terminal of the equivalent diode element, the base terminal of the first PNP bipolar transistor element is the cathode terminal of the equivalent diode element, and the emitter of the first PNP bipolar transistor element. The rectifying circuit according to claim 1, wherein the terminals are open.
  4.  カソード端子が前記出力端子に接続され、アノード端子が前記第4トランジスタ素子の前記第3端子に接続されているツェナーダイオード素子を備えることを特徴とする請求項1記載の整流回路。 The rectifier circuit according to claim 1, further comprising a Zener diode element in which the cathode terminal is connected to the output terminal and the anode terminal is connected to the third terminal of the fourth transistor element.
  5.  前記第3トランジスタ素子はPNPバイポーラトランジスタ素子であり、前記第3トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記PNPバイポーラトランジスタ素子のコレクタ端子、エミッタ端子、及びベース端子であり、
     前記第4トランジスタ素子はNPNバイポーラトランジスタ素子であり、前記第4トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記NPNバイポーラトランジスタ素子のコレクタ端子、エミッタ端子、及びベース端子であることを特徴とする請求項1記載の整流回路。
    The third transistor element is a PNP bipolar transistor element, and the first terminal, the second terminal, and the third terminal of the third transistor element are the collector terminal, the emitter terminal, and the base of the PNP bipolar transistor element, respectively. It is a terminal
    The fourth transistor element is an NPN bipolar transistor element, and the first terminal, the second terminal, and the third terminal of the fourth transistor element are the collector terminal, the emitter terminal, and the base of the NPN bipolar transistor element, respectively. The rectifying circuit according to claim 1, wherein the rectifying circuit is a terminal.
  6.  前記第3トランジスタ素子はPチャンネルMOSFET素子であり、前記第3トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記PチャンネルMOSFET素子のドレイン端子、ソース端子、及びゲート端子であり、
     前記第4トランジスタ素子はNチャンネルMOSFET素子であり、前記第4トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記NチャンネルMOSFET素子のドレイン端子、ソース端子、及びゲート端子であることを特徴とする請求項1記載の整流回路。
    The third transistor element is a P-channel MOSFET element, and the first terminal, the second terminal, and the third terminal of the third transistor element are the drain terminal, the source terminal, and the gate of the P-channel MOSFET element, respectively. It is a terminal
    The fourth transistor element is an N-channel MOSFET element, and the first terminal, the second terminal, and the third terminal of the fourth transistor element are the drain terminal, the source terminal, and the gate of the N-channel MOSFET element, respectively. The rectifier circuit according to claim 1, wherein the rectifier circuit is a terminal.
  7.  NチャンネルMOSFET素子と、第1NPNバイポーラトランジスタ素子と、第2NPNバイポーラトランジスタ素子と、互いに逆極性を持つ第3トランジスタ素子及び第4トランジスタ素子と、第1抵抗器と、第2抵抗器と、第3抵抗器と、第4抵抗器と、入力端子と、出力端子とを備え、
     前記NチャンネルMOSFET素子のソース端子と前記第2NPNバイポーラトランジスタ素子のエミッタ端子との接続点が前記入力端子に接続され、
     前記第1NPNバイポーラトランジスタ素子は等価ダイオード素子を構成し、前記等価ダイオード素子のアノード端子と前記第2NPNバイポーラトランジスタ素子のベース端子と前記第2抵抗器の一方端子とが接続され、
     前記第2抵抗器の他方端子と前記第3抵抗器の一方端子と前記第3トランジスタ素子の第1端子との接続点が、前記入力端子の入力電圧よりも高電位な電源に接続され、
     前記第3抵抗器の他方端子と前記第2NPNバイポーラトランジスタ素子のコレクタ端子と前記第3トランジスタ素子の第3端子と前記第4トランジスタ素子の第3端子と前記第4抵抗器の一方端子とが接続され、
     前記第3トランジスタ素子の第2端子と前記第4トランジスタ素子の第2端子と前記第4抵抗器の他方端子と前記NチャンネルMOSFET素子のゲート端子とが接続され、
     前記等価ダイオード素子のカソード端子と前記第1抵抗器の一方端子とが接続され、
     前記NチャンネルMOSFET素子のドレイン端子と前記第1抵抗器の他方端子との接続点が前記出力端子に接続されていることを特徴とする整流回路。
    N-channel MOSFET element, 1st NPN bipolar transistor element, 2nd NPN bipolar transistor element, 3rd transistor element and 4th transistor element having opposite polarities, 1st resistor, 2nd resistor, 3rd A resistor, a fourth resistor, an input terminal, and an output terminal are provided.
    A connection point between the source terminal of the N-channel MOSFET element and the emitter terminal of the second NPN bipolar transistor element is connected to the input terminal.
    The first NPN bipolar transistor element constitutes an equivalent diode element, and the anode terminal of the equivalent diode element, the base terminal of the second NPN bipolar transistor element, and one terminal of the second resistor are connected.
    The connection point between the other terminal of the second resistor, one terminal of the third resistor, and the first terminal of the third transistor element is connected to a power source having a potential higher than the input voltage of the input terminal.
    The other terminal of the third resistor, the collector terminal of the second NPN bipolar transistor element, the third terminal of the third transistor element, the third terminal of the fourth transistor element, and one terminal of the fourth resistor are connected. Being done
    The second terminal of the third transistor element, the second terminal of the fourth transistor element, the other terminal of the fourth resistor, and the gate terminal of the N-channel MOSFET element are connected to each other.
    The cathode terminal of the equivalent diode element and one terminal of the first resistor are connected.
    A rectifier circuit characterized in that a connection point between the drain terminal of the N-channel MOSFET element and the other terminal of the first resistor is connected to the output terminal.
  8.  前記第1NPNバイポーラトランジスタ素子のエミッタ端子は前記等価ダイオード素子のカソード端子であり、前記第1NPNバイポーラトランジスタ素子のベース端子とコレクタ端子との接続点は前記等価ダイオード素子の前記アノード端子であることを特徴とする請求項7記載の整流回路。 The emitter terminal of the first NPN bipolar transistor element is the cathode terminal of the equivalent diode element, and the connection point between the base terminal and the collector terminal of the first NPN bipolar transistor element is the anode terminal of the equivalent diode element. 7. The rectifying circuit according to claim 7.
  9.  前記第1NPNバイポーラトランジスタ素子のコレクタ端子は前記等価ダイオード素子の前記カソード端子であり、前記第1NPNバイポーラトランジスタ素子のベース端子は前記等価ダイオード素子の前記アノード端子であり、前記第1NPNバイポーラトランジスタ素子のエミッタ端子は開放されていることを特徴とする請求項7記載の整流回路。 The collector terminal of the first NPN bipolar transistor element is the cathode terminal of the equivalent diode element, the base terminal of the first NPN bipolar transistor element is the anode terminal of the equivalent diode element, and the emitter of the first NPN bipolar transistor element. The rectifying circuit according to claim 7, wherein the terminals are open.
  10.  アノード端子が前記入力端子に接続され、カソード端子が第4トランジスタ素子の前記第3端子に接続されているツェナーダイオード素子を備えることを特徴とする請求項7記載の整流回路。 The rectifier circuit according to claim 7, wherein the anode terminal is connected to the input terminal, and the cathode terminal is provided with a Zener diode element connected to the third terminal of the fourth transistor element.
  11.  前記入力端子の入力電圧よりも高電位な前記電源は、スイッチング動作を行うスイッチ部と、第1キャパシタと、第2キャパシタと、第1ダイオード素子と、第2ダイオード素子とで構成された昇圧回路であり、
     前記スイッチ部の入力側と前記第1ダイオード素子のアノード端子と前記第2キャパシタの一方端子とが前記出力端子に接続され、
     前記スイッチ部の出力側と前記第1キャパシタの一方端子とが接続され、
     前記第1キャパシタの他方端子と前記第1ダイオード素子のカソード端子と前記第2ダイオード素子の前記アノード端子とが接続され、
     前記第2ダイオード素子のカソード端子と前記第2キャパシタの他方端子との接続点が、前記第2抵抗器の前記他方端子と前記第3抵抗器の前記一方端子と前記第3トランジスタ素子の前記第1端子との前記接続点に接続されていることを特徴とする請求項7記載の整流回路。
    The power supply having a potential higher than the input voltage of the input terminal is a booster circuit composed of a switch unit that performs switching operation, a first capacitor, a second capacitor, a first diode element, and a second diode element. And
    The input side of the switch unit, the anode terminal of the first diode element, and one terminal of the second capacitor are connected to the output terminal.
    The output side of the switch unit and one terminal of the first capacitor are connected.
    The other terminal of the first capacitor, the cathode terminal of the first diode element, and the anode terminal of the second diode element are connected to each other.
    The connection point between the cathode terminal of the second diode element and the other terminal of the second capacitor is the other terminal of the second resistor, the one terminal of the third resistor, and the first terminal of the third transistor element. The rectifier circuit according to claim 7, wherein the rectifier circuit is connected to the connection point with one terminal.
  12.  前記第3トランジスタ素子はNPNバイポーラトランジスタ素子であり、前記第3トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記NPNバイポーラトランジスタ素子のコレクタ端子、エミッタ端子、及びベース端子であり、
     前記第4トランジスタ素子はPNPバイポーラトランジスタ素子であり、前記第4トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記PNPバイポーラトランジスタ素子のコレクタ端子、エミッタ端子、及びベース端子であることを特徴とする請求項7記載の整流回路。
    The third transistor element is an NPN bipolar transistor element, and the first terminal, the second terminal, and the third terminal of the third transistor element are the collector terminal, the emitter terminal, and the base of the NPN bipolar transistor element, respectively. It is a terminal
    The fourth transistor element is a PNP bipolar transistor element, and the first terminal, the second terminal, and the third terminal of the fourth transistor element are the collector terminal, the emitter terminal, and the base of the PNP bipolar transistor element, respectively. The rectifying circuit according to claim 7, wherein the rectifying circuit is a terminal.
  13.  前記第3トランジスタ素子はNチャンネルMOSFET素子であり、第3トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記NチャンネルMOSFET素子のドレイン端子、ソース端子、及びゲート端子であり、
     前記第4トランジスタ素子はPチャンネルMOSFET素子であり、前記第4トランジスタ素子の前記第1端子、前記第2端子、及び前記第3端子はそれぞれ前記PチャンネルMOSFET素子のドレイン端子、ソース端子、及びゲート端子であることを特徴とする請求項7記載の整流回路。
    The third transistor element is an N-channel MOSFET element, and the first terminal, the second terminal, and the third terminal of the third transistor element are the drain terminal, the source terminal, and the gate terminal of the N-channel MOSFET element, respectively. And
    The fourth transistor element is a P-channel MOSFET element, and the first terminal, the second terminal, and the third terminal of the fourth transistor element are the drain terminal, the source terminal, and the gate of the P-channel MOSFET element, respectively. The rectifier circuit according to claim 7, wherein the rectifier circuit is a terminal.
  14.  複数の直流電源と、
     請求項1記載の整流回路と、
     ダイオード素子とを備え、
     前記複数の直流電源のそれぞれが、前記整流回路の入力端子又は前記ダイオード素子のアノード端子のいずれか一方に接続され、
     すべての前記整流回路の出力端子とすべての前記ダイオード素子のカソード端子とが接続されていることを特徴とする直流電源合成回路。
    With multiple DC power supplies
    The rectifier circuit according to claim 1 and
    Equipped with a diode element
    Each of the plurality of DC power supplies is connected to either the input terminal of the rectifier circuit or the anode terminal of the diode element.
    A DC power supply synthesis circuit characterized in that the output terminals of all the rectifier circuits and the cathode terminals of all the diode elements are connected.
  15.  複数の直流電源と、
     請求項7記載の整流回路と、
     ダイオード素子とを備え、
     前記複数の直流電源のそれぞれが、前記整流回路の入力端子又は前記ダイオード素子のアノード端子のいずれか一方に接続され、
     前記複数の直流電源に接続された前記整流回路の各出力端子と前記ダイオード素子の各カソード端子とが接続されていることを特徴とする直流電源合成回路。
    With multiple DC power supplies
    The rectifier circuit according to claim 7 and
    Equipped with a diode element
    Each of the plurality of DC power supplies is connected to either the input terminal of the rectifier circuit or the anode terminal of the diode element.
    A DC power supply synthesis circuit characterized in that each output terminal of the rectifier circuit connected to the plurality of DC power supplies and each cathode terminal of the diode element are connected.
  16.  複数の直流電源と、
     請求項1記載の整流回路である第1整流回路と、
     請求項7記載の整流回路である第2整流回路と、
     ダイオード素子とを備え、
     前記複数の直流電源のそれぞれが、前記第1整流回路の入力端子、前記第2整流回路の入力端子、又は前記ダイオード素子のアノード端子のうちのいずれか1つに接続され、
     すべての前記第1整流回路の出力端子とすべての前記第2整流回路の出力端子とすべての前記ダイオード素子のカソード端子とが接続されていることを特徴とする直流電源合成回路。
    With multiple DC power supplies
    The first rectifier circuit, which is the rectifier circuit according to claim 1,
    The second rectifier circuit, which is the rectifier circuit according to claim 7,
    Equipped with a diode element
    Each of the plurality of DC power supplies is connected to any one of the input terminal of the first rectifier circuit, the input terminal of the second rectifier circuit, or the anode terminal of the diode element.
    A DC power supply synthesis circuit characterized in that all the output terminals of the first rectifier circuit, all the output terminals of the second rectifier circuit, and the cathode terminals of all the diode elements are connected.
  17.  1次巻線、2次巻線、及び前記2次巻線に設けられたセンタタップを有する変圧器が出力する交流電圧を全波整流するブリッジ型の全波整流回路であって、
     2個の請求項1記載の整流回路と、2個の請求項7記載の整流回路とを備えることを特徴とする全波整流回路。
    A bridge-type full-wave rectifier circuit that full-wave rectifies the AC voltage output by a transformer having a center tap provided on the primary winding, the secondary winding, and the secondary winding.
    A full-wave rectifier circuit comprising two rectifier circuits according to claim 1 and two rectifier circuits according to claim 7.
  18.  n相(nは3以上の整数)の正弦波交流電源が接続された中性点を持つn相交流発電回路が出力するn相交流電圧を全波整流するブリッジ型の全波整流回路であって、
     n個の請求項1記載の整流回路と、n個の請求項7記載の整流回路とを備えることを特徴とする全波整流回路。
    A bridge-type full-wave rectifier circuit that full-wave rectifies the n-phase AC voltage output by an n-phase AC power generation circuit with a neutral point to which an n-phase (n is an integer of 3 or more) sinusoidal AC power supply is connected. hand,
    A full-wave rectifier circuit comprising n rectifier circuits according to claim 1 and n rectifier circuits according to claim 7.
PCT/JP2019/018513 2019-05-09 2019-05-09 Rectifier circuit, dc power supply synthesizing circuit, and full-wave rectifier circuit WO2020225896A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021513493A JP6896203B2 (en) 2019-05-09 2019-05-09 Rectifier circuit, DC power supply synthesis circuit, and full-wave rectifier circuit
DE112019007166.1T DE112019007166T5 (en) 2019-05-09 2019-05-09 Rectifier circuit, DC power supply combination circuit and full-wave rectifier circuit
PCT/JP2019/018513 WO2020225896A1 (en) 2019-05-09 2019-05-09 Rectifier circuit, dc power supply synthesizing circuit, and full-wave rectifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018513 WO2020225896A1 (en) 2019-05-09 2019-05-09 Rectifier circuit, dc power supply synthesizing circuit, and full-wave rectifier circuit

Publications (1)

Publication Number Publication Date
WO2020225896A1 true WO2020225896A1 (en) 2020-11-12

Family

ID=73050700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018513 WO2020225896A1 (en) 2019-05-09 2019-05-09 Rectifier circuit, dc power supply synthesizing circuit, and full-wave rectifier circuit

Country Status (3)

Country Link
JP (1) JP6896203B2 (en)
DE (1) DE112019007166T5 (en)
WO (1) WO2020225896A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728903A (en) * 1986-05-02 1988-03-01 Reiffin Martin G Class A high-fidelity amplifier
JP2001230260A (en) * 2000-02-14 2001-08-24 Nec Corp Semiconductor device and manufacturing method thereof
US20050253642A1 (en) * 2004-05-14 2005-11-17 Quanta Computer Inc. One way conductor
US20090285001A1 (en) * 2008-05-16 2009-11-19 Zong Bo Hu Control circuits and methods for controlling switching devices
WO2015170479A1 (en) * 2014-05-09 2015-11-12 パナソニックIpマネジメント株式会社 Rectifier circuit, and rectifier and wireless power supply device equipped with same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755025B2 (en) 1985-07-09 1995-06-07 沖電気工業株式会社 DC power supply synthesis circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4728903A (en) * 1986-05-02 1988-03-01 Reiffin Martin G Class A high-fidelity amplifier
JP2001230260A (en) * 2000-02-14 2001-08-24 Nec Corp Semiconductor device and manufacturing method thereof
US20050253642A1 (en) * 2004-05-14 2005-11-17 Quanta Computer Inc. One way conductor
US20090285001A1 (en) * 2008-05-16 2009-11-19 Zong Bo Hu Control circuits and methods for controlling switching devices
WO2015170479A1 (en) * 2014-05-09 2015-11-12 パナソニックIpマネジメント株式会社 Rectifier circuit, and rectifier and wireless power supply device equipped with same

Also Published As

Publication number Publication date
JP6896203B2 (en) 2021-06-30
JPWO2020225896A1 (en) 2021-09-13
DE112019007166T5 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
KR101062265B1 (en) Step-down switching regulator
JP3126565B2 (en) AC / DC converter
CN213367626U (en) Circuit arrangement
TWI454036B (en) Bridge rectifier for a pfc power converter
US10079542B2 (en) High voltage current source with short circuit protection
KR20160011604A (en) Step-down circuit
JP6956386B2 (en) Negative voltage generation circuit and power conversion device using this
CN109194126B (en) Power supply switching circuit
JP2007201595A (en) Drive device
US20230275526A1 (en) Rectifying element and voltage converter comprising such a rectifying element
JP2019134595A (en) Switching circuit, semiconductor device, dc/dc converter
JP7236293B2 (en) High side driver, switching circuit, motor driver
JP6896203B2 (en) Rectifier circuit, DC power supply synthesis circuit, and full-wave rectifier circuit
JP6155179B2 (en) Rectifier, alternator and power converter
WO2021057450A1 (en) Switching converter and low voltage startup circuit thereof
US10103629B2 (en) High side driver without dedicated supply in high voltage applications
WO2023032407A1 (en) Rectifier circuit, and semiconductor device and power supply device using same
EP1360559A2 (en) Switching power supply
CN111164870A (en) Voltage multiplier using switching regulator and voltage limiter
CN203368355U (en) Offline voltage regulator and corresponding circuit
JP5524717B2 (en) Rectifier circuit and control circuit for the rectifier circuit
CN115441736A (en) Inductor current multiplexing detection circuit for DC-DC converter, and DC-DC converter
JP2023077146A (en) Rectification circuit, and power supply using the same
WO2023172439A1 (en) Startup circuit for a flyback converter
CN117424436A (en) Boost converter with fast discharge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928205

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021513493

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19928205

Country of ref document: EP

Kind code of ref document: A1