WO2020224377A1 - 阻燃半芳香聚酰胺及其制备方法 - Google Patents

阻燃半芳香聚酰胺及其制备方法 Download PDF

Info

Publication number
WO2020224377A1
WO2020224377A1 PCT/CN2020/084264 CN2020084264W WO2020224377A1 WO 2020224377 A1 WO2020224377 A1 WO 2020224377A1 CN 2020084264 W CN2020084264 W CN 2020084264W WO 2020224377 A1 WO2020224377 A1 WO 2020224377A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
dimethyl
retardant
acid
diacid
Prior art date
Application number
PCT/CN2020/084264
Other languages
English (en)
French (fr)
Inventor
曹民
黄险波
叶南飚
常欢
张传辉
阎昆
彭忠泉
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2020224377A1 publication Critical patent/WO2020224377A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/42Polyamides containing atoms other than carbon, hydrogen, oxygen, and nitrogen

Definitions

  • the invention relates to the technical field of new polymer materials, in particular to a flame-retardant semi-aromatic polyamide and a preparation method thereof.
  • Polyamide is the most widely used engineering plastic. It has important applications in the fields of electronic appliances and home appliances. However, the flammability of polyamide itself greatly limits the application and promotion of polyamide. Therefore, the flame retardant modification of polyamide is very important. significance.
  • the flame retardant modification methods of polyamide mainly include copolymer flame retardant modification, blending flame retardant modification and post-treatment flame retardant modification.
  • the most widely used method is the method of blending flame retardant modification.
  • flame retardants are usually small molecules, microphase separation is likely to occur in the blending system with polyamide, which damages the mechanical properties and flame retardant properties of the material, and limits
  • the flame-retardant polyamide is especially used in the field of precision components such as electronic appliances.
  • the method of post-treatment flame retardant modification is only limited to polyamide fiber, and the application field is very limited.
  • the method of in-situ copolymerization flame retardant modification refers to the reaction type flame retardant is connected to the polyamide chain through chemical bonds to achieve molecular level modification. There is no migration, agglomeration and precipitation of the flame retardant, and it has intrinsic flame retardant characteristic.
  • Chinese patent 2013102079850 discloses a halogen-free flame-retardant nylon 66 polymer, in which the method firstly copolymerizes a reactive flame retardant DOPO derivative with a dibasic acid or a diamine to form a salt, and then the salt is formed with The nylon 66 salt undergoes a copolymerization reaction to obtain a halogen-free flame-retardant nylon 66 polymer.
  • Chinese patent 2015106245312 discloses a dual-phosphorus flame-retardant copolymer nylon: the intermediate dual-phosphorus organic phosphonium ammonium salt synthesized by phosphine oxide-based diamine and phosphine oxide-based glycol is copolymerized with nylon 66 salt to prepare dual-phosphorus flame-retardant Copolymer nylon.
  • the above-mentioned patented technology is limited to the synthesis of in-situ copolymerized flame-retardant materials of nylon 66, and no in-situ copolymerized flame-retardant materials suitable for semi-aromatic polyamide systems and corresponding high-temperature polymerization methods have been developed.
  • the above-mentioned in-situ copolymerized flame-retardant nylon 66 has a much lower mechanical properties than ordinary nylon 66, and cannot meet the demand for high-strength products.
  • Chinese patent 2015106604531 discloses a flame-retardant and high-temperature resistant nylon copolymer, which uses a reactive flame retardant bis(p-carboxyphenyl)phenyl phosphine oxide to obtain nylon salt and common nylon salt for copolymerization to obtain flame retardant Polyamide products.
  • Chinese patent 2017112299959 discloses a permanent halogen-free flame-retardant PA10T polyamide resin, which uses salt formation, prepolymerization, and solid phase polymerization to embed 1,1,3,5-tetraphenylaminocyclotriphosphazene in polyamide .
  • the above process requires that the reactive flame-retardant monomer DDP is first synthesized into a flame-retardant precursor to improve the stability of the reactive flame-retardant monomer during the polymerization process.
  • the increased pretreatment steps will lead to an increase in process costs and reduce the market competitiveness of products.
  • the purpose of the present invention is to provide a flame-retardant semi-aromatic polyamide, which has the advantages of good flame-retardant and mechanical properties, high whiteness, and resistance to yellowing under high temperature conditions.
  • Another object of the present invention is to provide a method for preparing the above flame-retardant semi-aromatic polyamide, which has simple process steps and low production cost.
  • Diamine monomer B one or more of the diamine monomers containing 4-36 carbon atoms;
  • Phosphorus-based flame-retardant monomers with diacid functional groups and aromatic ring structures have at least one of the following structural formulas:
  • Structural formula 1 Structural formula 2:
  • Phosphorus-based flame-retardant monomers with diacid functional groups and aromatic ring structures are easily decomposed at high temperatures to cause yellowing of the material.
  • the flame-retardant semi-aromatic polyamide of the present invention adjusts the content of each monomer to obtain a white product.
  • the temperature is high, and it is not easy to yellow under high temperature conditions.
  • the content of A2 is 1.5-8.5 mol% of all the diacid monomers.
  • the mechanical properties, whiteness and high temperature yellowing resistance can be further improved.
  • the other diacid monomers are selected from at least one of aliphatic diacids or aromatic diacids.
  • the aliphatic diacid is selected from oxalic acid, malonic acid, 1,4-succinic acid, 1,5-glutaric acid, 1,6-adipic acid, 1,7-pimelic acid, 1 ,8-Suberic acid, 2-Methyl suberic acid, 1,9-Azelaic acid, 1,10-Sebacic acid, 1,11-Undecanedioic acid, 1,12-Dodecanedioic acid One or more of 1,13-tridecanedioic acid, 1,14-tetradecanedioic acid, and cyclohexanedicarboxylic acid;
  • the aromatic diacid is selected from at least one of isophthalic acid and naphthalene diacid.
  • the other diacid is selected from at least one of isophthalic acid and 1,6-adipic acid.
  • the diamine monomer B is selected from 1,4-butanediamine, 1,5-pentanediamine, 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonane diamine, 1,11-undecane diamine, 1,12-dodecane diamine, 1,14-tetradecane diamine, 1,16-hexadecane diamine, 1, 18-octadecane diamine, 1-butyl-1,2-ethylenediamine, 1,1-dimethyl-1,4-butanediamine, 1-ethyl-1,4-butanediamine, 1,2-Dimethyl-1,4-butanediamine, 1,3-dimethyl-1,4-butanediamine, 1,4-dimethyl-1,4-butanediamine, 2, 3-dimethyl-1,4-butanediamine, 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,5-dimethyl-1, 6-hex
  • the diamine monomer B is selected from at least one of 1,10-decane diamine and 1,6-hexamethylene diamine.
  • the above-mentioned preparation method of flame-retardant semi-aromatic polyamide includes the following steps: weighing diacid monomer A, diamine monomer B, catalyst (may be sodium hypophosphite), and deionized water into a high temperature and high pressure reactor, After filling and ventilating to make the atmosphere in the kettle nitrogen, the temperature is increased to 160-180°C, the reaction is held at a constant temperature for 0.5 hours, the temperature is continued to rise to 200-210°C, and the reaction is held at a constant temperature for 0.5 hours, and the temperature is increased to 240-250°C, and the reaction is held at a constant temperature for 1 hour.
  • the present invention has the following beneficial effects:
  • the flame-retardant semi-aromatic polyamide of the present invention has good flame-retardant properties by in-situ copolymerization of specific phosphorus-based flame-retardant monomers with diacid functional groups and aromatic ring structures in the semi-aromatic polyamide segment. It has the advantages of good mechanical properties, high whiteness and high temperature yellowing resistance. By adjusting the molar ratio of the phosphorus-based flame-retardant monomer having a diacid functional group and containing an aromatic ring structure to the diacid monomer A, the whiteness and high-temperature yellowing resistance are further improved.
  • the preparation method of the present invention does not require pretreatment of the phosphorus-based flame-retardant monomers with diacid functional groups and aromatic ring structures to ensure the smooth progress of the polymerization reaction.
  • the gradient heating process can improve the flame-retardant monomers.
  • the stability of the body during the polymerization process, the in-situ copolymerization flame-retardant semi-aromatic polyamide with intrinsic flame-retardant properties, excellent mechanical properties, high whiteness and good high-temperature yellowing resistance is obtained.
  • the sources of raw materials used in the present invention are as follows:
  • BCPPO bis(4-carboxyphenyl)phenyl phosphine oxide
  • CEPPA 3-hydroxyphenylphosphonopropionic acid
  • CEMPO Bis (2-carboxyethyl) methyl phosphine oxide
  • MCA Cyanuric acid
  • the preparation method of the polyamide of the embodiment and the comparative example Weigh the diacid monomer A, the diamine monomer B, sodium hypophosphite, and deionized water into the high temperature and high pressure reactor according to the distribution ratio of each component in Table 1-4. After filling and ventilating to make the atmosphere in the kettle nitrogen, the temperature is increased to 160-180°C, the reaction is held at a constant temperature for 0.5 hours, the temperature is continued to rise to 200-210°C, and the reaction is held at a constant temperature for 0.5 hours, and the temperature is increased to 240-250°C, and the reaction is held at a constant temperature for 1 hour. Drain for about 0.5 hours, discharge and granulate.
  • End groups use a potentiometric titrator to determine the polymer end amino group and end carboxyl group content. Weigh 0.45g of polyamide, add 50mL of preheated and melted o-cresol and heat to reflux until the sample is dissolved. After cooling to 50°C in a water tank at 50°C, add 0.5mL formaldehyde solution, put the magnetic stirring solution into the The electrode test part of the automatic potentiometric titrator is immersed in the solution, and the carboxyl group data of the test terminal is titrated with the calibrated KOH-ethanol solution.
  • Relative viscosity With reference to the standard GB/T 12006.1-1989, the Ubbelohde viscometer is used to measure the relative viscosity of the product at a concentration of 0.25g/dL in 98% concentrated sulfuric acid at (25 ⁇ 0.01)°C.
  • the present invention judges the molecular weight of the polyamide according to the content of the end group and the relative viscosity of the polyamide. Under the premise of the same monomer, if the relative viscosity and the content of the end group are similar, the molecular weight of the polyamide is similar.
  • Notched impact strength/unnotched impact strength Refer to the standard ISO 180 to test the impact strength of resin materials.
  • Limiting oxygen index Measured with reference to the standard GB/T5454-1997, the sample size is 12cm ⁇ 1cm ⁇ 0.4cm.
  • Gantz whiteness take 3kg of polymer injection molding to obtain a smooth color plate, the specification is 50*30*2mm, and place it in the Color-Eye7000A computer color measuring instrument to obtain the Gantz whiteness W value, which reflects the color of the polymer , The higher the value, the whiter the product, the better.
  • Examples 1-5 that the present invention selects specific phosphorus-based flame-retardant monomers with diacid functional groups and aromatic ring structures.
  • the flame-retardant effect, flame-retardant effect and mechanical properties are good, and Ganzbai The whiteness is high, and the effect of high temperature yellowing resistance is good.
  • the flame-retardant monomer is BCPPO.
  • the Gantz whiteness is slightly increased, but the mechanical properties and high-temperature yellowing resistance are greatly reduced. .
  • Example 11 and Comparative Example 9 that the content of terephthalic acid in the diacid monomer A is too low, which not only reduces the flame retardant performance and mechanical properties, but also decreases the Gantz whiteness and high temperature yellowing resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

阻燃半芳香聚酰胺,衍生自以下单体:二酸单体A:A1为对苯二甲酸或者对苯二甲酸与其他二酸,对苯二甲酸占A1的50-100mol%,A2为具有双酸官能团且含有芳香环结构的磷系阻燃单体,A1+A2=100mol%,A1=90-99mol%,A2=1-10mol%;二胺单体B:含有4-36个碳原子的二胺单体中的一种或多种。通过原位聚合方式在半芳香聚酰胺链段中共聚特定结构的具有双酸官能团且含有芳香环结构的磷系阻燃单体,能够具有优良的阻燃性能和力学性能,并且白度高,高温条件下不容易黄变。同时,制备方法使用了梯度升温法,原位共聚的方式合成具有本征阻燃性能的半芳香聚酰胺,无需单独合成阻燃前驱体,操作步骤简洁,降低了生产成本。

Description

[根据细则37.2由ISA制定的发明名称] 阻燃半芳香聚酰胺及其制备方法 技术领域
本发明涉及新型高分子材料技术领域,特别是涉及一种阻燃半芳香聚酰胺及其制备方法。
背景技术
聚酰胺是应用最为广泛的工程塑料,在电子电器、家电等领域有重要应用,但聚酰胺本身易燃性能极大限制了聚酰胺的应用推广,因此聚酰胺的阻燃改性具有非常重要的意义。
聚酰胺的阻燃改性方法主要有共聚阻燃改性、共混阻燃改性和后处理阻燃改性。目前应用较广的是共混阻燃改性的方法,但是由于阻燃剂通常为小分子,在与聚酰胺共混体系中容易发生微相分离,破坏材料的力学性能和阻燃性能,限制了阻燃聚酰胺尤其在电子电器等精密元器件领域的应用。后处理阻燃改性的方法仅局限在聚酰胺纤维方面,应用领域十分有限。原位共聚阻燃改性的方法是指将反应型阻燃剂通过化学键连接到聚酰胺链中,实现分子级别的改性,不存在阻燃剂的迁移、团聚和析出,具有本征阻燃特性。
以下4件中国专利公开了通过将反应型阻燃剂原位共聚阻燃改性聚酰胺的方法:
中国专利2013102079850公开了一种无卤阻燃尼龙66聚合物,其中,该方法首先将反应型阻燃剂DOPO衍生物与二元酸或二元胺发生共聚反应生成盐,然后生成的盐再与尼龙66盐发生共聚反应,得到无卤阻燃尼龙66聚合物。中国专利2015106245312公开了一种双磷阻燃共聚尼龙:采用氧化膦类二元胺和氧化膦类二元醇合成的中间体双磷有机膦铵盐,与尼龙66盐共聚合制备双磷阻燃共聚尼龙。上述专利技术局限在尼龙66的原位共聚阻燃材料合成中,并没有开发适用于半芳香聚酰胺体系的原位共聚阻燃材料和相应的耐高温聚合方法。并且,上述的原位共聚阻燃尼龙66其力学性能相比于普通尼龙66力学性能下降较多,不能满足高强度产品需求。
中国专利2015106604531公开了一种阻燃耐高温尼龙共聚物,其使用反应型阻燃剂双(对-羧苯基)苯基氧化膦反应得到的尼龙盐与普通尼龙盐进行共聚反应,得到阻燃聚酰胺产品。中国专利2017112299959公开了一种永久性无卤阻燃 PA10T聚酰胺树脂,采用成盐、预聚、固相聚合的方式将1,1,3,5-四苯胺基环三磷腈嵌入聚酰胺中。尽管这两件专利开发了阻燃耐高温聚酰胺材料,但是所开发的阻燃材料的力学性能和耐高温黄变性能与共聚前相比有明显下降,限制了这一类材料在电子电器行业的应用前景。
从制备方法的角度看,上述的工艺需要将反应型阻燃单体DDP先合成阻燃前驱体,以提高反应型阻燃单体在聚合过程中的稳定性。但是,增加的预处理步骤会导致工艺成本的上升,降低产品的市场竞争力。
发明内容
本发明的目的在于,提供一种阻燃半芳香聚酰胺,具有阻燃性能和力学性能好、白度高、高温条件下不易黄变的优点。
本发明的另一目的在于,提供上述阻燃半芳香聚酰胺的制备方法,工艺步骤简洁,生产成本低。
本发明是通过以下技术方案实现的:
一种阻燃半芳香聚酰胺,衍生自以下单体:
二酸单体A:A1为对苯二甲酸或者对苯二甲酸与其他二酸,对苯二甲酸占A1的50-100mol%,A2为具有双酸官能团且含有芳香环结构的磷系阻燃单体,A1+A2=100mol%,A1=90-99mol%,A2=1-10mol%;
二胺单体B:含有4-36个碳原子的二胺单体中的一种或多种;
具有双酸官能团且含有芳香环结构的磷系阻燃单体具有以下结构式中的至少一种:
结构式1:
Figure PCTCN2020084264-appb-000001
结构式2:
Figure PCTCN2020084264-appb-000002
具体的,具有双酸官能团且含有芳香环结构的磷系阻燃单体可以是3-羟基苯膦酰丙酸、或者结构式2的n=0-4任一数且m=0-4任一数中的至少一种。
结构式2中,n=1,m=1时本发明将其简称为HDDP,并且在具体实施方式中用HDDP对本发明技术方案进行详细说明本发明。
具有双酸官能团且含有芳香环结构的磷系阻燃单体都是在高温下容易分解导致材料黄变,本发明的阻燃半芳香聚酰胺通过调整了各单体的含量,得到的产品白度高、并且高温条件下不容易黄变。
优选的,二酸单体A中,A2的含量为所有二酸单体的1.5-8.5mol%。
在优选的A2含量下,能够进一步提高力学性能、白度以及耐高温黄变性能。
所述的其他二酸单体选自脂肪族二酸或者芳香族二酸中的至少一种。
所述的脂肪族二酸选自乙二酸、丙二酸、1,4-丁二酸、1,5-戊二酸、1,6-己二酸、1,7-庚二酸、1,8-辛二酸、2-甲基辛二酸、1,9-壬二酸、1,10-癸二酸、1,11-十一烷二酸、1,12-十二烷二酸、1,13-十三烷二酸、1,14-十四烷二酸、环己烷二甲酸中的一种或几种;
所述的芳香族二酸选自间苯二甲酸、萘二酸中的至少一种。
优选的,所述的其他二酸选自间苯二甲酸、1,6-己二酸中的至少一种。
所述的二胺单体B选自1,4-丁二胺、1,5-戊二胺、1,6-己二胺、1,7-庚二胺、1,8-辛二胺、1,9-壬二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,14-十四烷二胺、1,16-十六烷二胺、1,18-十八烷二胺、1-丁基-1,2-乙二胺、1,1-二甲基-1,4-丁二胺、1-乙基-1,4-丁二胺、1,2-二甲基-1,4-丁二胺、1,3-二甲基-1,4-丁二胺、1,4-二甲基-1,4-丁二胺、2,3-二甲基-1,4-丁二胺、2-甲基-1,5-戊二胺、3-甲基-1,5-戊二胺、2,5-二甲基-1,6-己二胺、2,4-二甲基-1,6-己二胺、3,3-二甲基-1,6-己二胺、2,2-二甲基-1,6-己二胺、2,2,4-三甲基-1,6-己二胺、2,4,4-三甲基-1,6-己二胺、2,4-二乙基-1,6-己二胺、2,2-二甲基-1,7-庚二胺、2,3-二甲基-1,7-庚二胺、2,4-二甲基-1,7-庚二胺、2,5-二甲基-1,7-庚二胺、2-甲基-1,8-辛二胺、3-甲基-1,8-辛二胺、4-甲基-1,8-辛二胺、1,3-二甲基-1,8-辛二胺、1,4-二甲基-1,8-辛二胺、2,4-二甲基-1,8-辛二胺、3,4-二甲基-1,8-辛二胺、4,5-二甲基-1,8-辛二胺、2,2-二甲基-1, 8-辛二胺、3,3-二甲基-1,8-辛二胺、4,4-二甲基-1,8-辛二胺、5-甲基-1,9-壬二胺中的一种或几种。
优选的,所述的二胺单体B选自1,10-癸二胺、1,6-己二胺中的至少一种。
上述的阻燃半芳香聚酰胺的制备方法,包括以下步骤:称量二酸单体A、二胺单体B、催化剂(可以是次亚磷酸钠)、去离子水加入高温高压反应釜中,充换气使釜内气氛为氮气后,升温到160-180℃,恒温反应0.5小时,继续升温到200-210℃,并恒温反应0.5小时,继续升温至240-250℃,恒温反应1小时,排水约0.5小时,出料,造粒;将造粒物料投入转鼓中,抽真空,使压力低于3000Pa,升温至230-260℃,反应3小时,停止加热,待温度回到室温后,出料,得到阻燃半芳香聚酰胺。
本发明与现有技术相比,具有如下有益效果:
本发明的阻燃半芳香聚酰胺,通过在半芳香聚酰胺链段中原位共聚特定的具有双酸官能团且含有芳香环结构的磷系阻燃单体,使半芳香聚酰胺具有良好的阻燃性能的同时具有良好的力学性能以及白度高、耐高温黄变好的优点。通过调整具有双酸官能团且含有芳香环结构的磷系阻燃单体占二酸单体A的摩尔比,进一步提高了白度以及耐高温黄变性能。
与现有技术不同,本发明的制备方法无需对具有双酸官能团且含有芳香环结构的磷系阻燃单体进行预处理,即可保证聚合反应的顺利进行,梯度升温工艺可提高阻燃单体在聚合过程中的稳定性,获得具有本征阻燃性能和优异力学性能及白度高、耐高温黄变性能好的原位共聚阻燃半芳香聚酰胺。
具体实施方式
本发明通过以下实施例进一步对本发明进行说明,但是不应理解为对本发明的保护范围进行限制。
本发明所用原料来源如下:
BCPPO:双(4-羧基苯基)苯基氧化膦;
CEPPA:3-羟基苯膦酰丙酸;
CEMPO:双(2-羧乙基)甲基氧化膦;
MCA:三聚氰酸。
HDDP:结构式2中,n=1,m=1。
实施例和对比例聚酰胺的制备方法:按照表格1-4的各组分配比称量二酸单体A、二胺单体B、次亚磷酸钠、去离子水加入高温高压反应釜中,充换气使釜内气氛为氮气后,升温到160-180℃,恒温反应0.5小时,继续升温到200-210℃,并恒温反应0.5小时,继续升温至240-250℃,恒温反应1小时,排水约0.5小时,出料,造粒。将造粒物料投入转鼓中,抽真空,使压力低于3000Pa,升温至230-260℃,反应3小时,停止加热,待温度回到室温后,出料,得到半芳香聚酰胺。
各项性能测试方法
(1)端基:采用电位滴定仪测定聚合物端氨基和端羧基含量。称样0.45g聚酰胺,加50mL已经预热溶化的邻甲酚并加热回流至样品溶解,放置50℃的水槽冷却至50℃后,加入0.5mL甲醛溶液,放入磁子搅拌溶液,将全自动电位滴定仪电极测试部分浸入溶液中,用已标定的KOH-乙醇溶液滴定测试端羧基数据。称样0.45g材料,加45mL苯酚及无水甲醇3mL,加热回流至样品溶解,放置50℃的水槽冷却至50℃后,放入磁子搅拌溶液,将全自动电位滴定仪电极测试部分浸入溶液中,用已标定的盐酸标准溶液滴定测试端氨基数据。
(2)相对粘度:参照标准GB/T 12006.1-1989,采用乌氏粘度计在(25±0.01)℃的98%浓硫酸中测量浓度为0.25g/dL产物的相对粘度。
本发明根据聚酰胺的端基含量、相对粘度来判断聚酰胺的分子量,相同单体的前提下,相对粘度、端基含量相近,则聚酰胺的分子量相近。
(3)拉伸强度:参考标准ISO 527,检测树脂材料的拉伸强度。
(4)弯曲强度:参考标准ISO 178,检测树脂材料的弯曲强度。
(5)缺口冲击强度/无缺口冲击强度:参考标准ISO 180,检测树脂材料的冲击强度。
(6)UL94阻燃等级:参照GB/T2408-1996进行测定,试样尺寸为13cm×1.3cm×0.3cm。
(7)极限氧指数(LOI):参照标准GB/T5454-1997进行测定,试样尺寸为12cm×1cm×0.4cm。
(8)甘茨白度:取3kg聚合物注塑得到光滑色板,规格为50*30*2mm,置于Color-Eye7000A电脑测色仪中,得到甘茨白度W值,反应聚合物的颜色,该值 越高,说明制品越白越好。
(9)耐黄变测试:将光滑色板放在150℃烘箱内高温处理12小时,之后取出测试甘茨白度。
表1:实施例1-4聚酰胺各组分配比及其测试结果
Figure PCTCN2020084264-appb-000003
表2:实施例5-8聚酰胺各组分配比及其测试结果
Figure PCTCN2020084264-appb-000004
表3:实施例9-11聚酰胺各组分配比及其测试结果
Figure PCTCN2020084264-appb-000005
表4:对比例聚酰胺各组分配比及其测试结果
Figure PCTCN2020084264-appb-000006
续表4:
Figure PCTCN2020084264-appb-000007
Figure PCTCN2020084264-appb-000008
续表4:
Figure PCTCN2020084264-appb-000009
从实施例1-5可以看出,本发明选取特定的具有双酸官能团且含有芳香环结构的磷系阻燃单体含量范围下,阻燃效果阻燃效果、力学性能好,并且甘茨白度白度高,耐高温黄变效果好。
从对比例5和表1可以看出,将本发明的具有双酸官能团且含有芳香环结构的磷系阻燃单体原位聚合入10T中,不仅具有优秀的阻燃性能,还能够保持、甚至提高了力学性能,提高了甘茨白度,特别是提高了耐高温黄变性能。
从对比例1/2可以看出,原位共聚阻燃单体为MCA或者CEMPO时,阻燃效果、力学性能都较差,并且甘茨白度相比10T下降,并且耐黄变性能很差。
从对比例3/5可以看出,阻燃单体为BCPPO,相对于原10T,虽然具有良好的阻燃性能,甘茨白度略为上升,但是力学性能下降、耐高温黄变性能则大幅下降。
从对比例7/8和表1可以看出,在脂肪族聚酰胺PA66体系中原位共聚HDDP后,虽然阻燃性能良好,但是力学性能明显下降,并且甘茨白度、耐高温黄变性能都有不同程度的下降。
从实施例11和对比例9可以看出,对苯二甲酸占二酸单体A含量太低,不仅降低阻燃性能和力学性能,而且甘茨白度与耐高温黄变性能有所下降。
从对比例6和实施例11可以看出,在本发明各单体的含量下,10T10I结构共聚入HDDP不仅提升了阻燃性,而且提升了力学性能以及甘茨白度和耐高温黄变性能。

Claims (10)

  1. 一种阻燃半芳香聚酰胺,其特征在于,衍生自以下单体:
    二酸单体A:A1为对苯二甲酸或者对苯二甲酸与其他二酸,对苯二甲酸占A1的50-100mol%,A2为具有双酸官能团且含有芳香环结构的磷系阻燃单体,A1+A2=100mol%,A1=90-99mol%,A2=1-10mol%;二胺单体B:含有4-36个碳原子的二胺单体中的一种或多种;具有双酸官能团且含有芳香环结构的磷系阻燃单体具有以下结构式中的至少一种:
    结构式1:
    Figure PCTCN2020084264-appb-100001
    结构式2:
    Figure PCTCN2020084264-appb-100002
  2. 根据权利要求1所述的阻燃半芳香聚酰胺,其特征在于,所述的具有双酸官能团且含有芳香环结构的磷系阻燃单体选自3-羟基苯膦酰丙酸或者结构式2的n=0-4任一数且m=0-4任一数中的至少一种。
  3. 根据权利要求1所述的阻燃半芳香聚酰胺,其特征在于,二酸单体A中,A2的含量为1.5-8.5mol%。
  4. 根据权利要求1所述的阻燃半芳香聚酰胺,其特征在于,所述的其他二酸单体选自脂肪族二酸或者芳香族二酸中的至少一种。
  5. 根据权利要求4所述的阻燃半芳香聚酰胺,其特征在于,所述的脂肪族二酸选自乙二酸、丙二酸、1,4-丁二酸、1,5-戊二酸、1,6-己二酸、1,7-庚二酸、1,8-辛二酸、2-甲基辛二酸、1,9-壬二酸、1,10-癸二酸、1,11-十一烷二酸、1,12-十二烷二酸、1,13-十三烷二酸、1,14-十四烷二酸、环己烷二甲酸中的一种或几种。
  6. 根据权利要求4所述的阻燃半芳香聚酰胺,其特征在于,所述的芳香族二酸选自间苯二甲酸、萘二酸中的至少一种。
  7. 根据权利要求4所述的阻燃半芳香聚酰胺,其特征在于,所述的其他二酸选自间苯二甲酸、1,6-己二酸中的至少一种。
  8. 根据权利要求1所述的阻燃半芳香聚酰胺,其特征在于,所述的二胺单体B选自1,4-丁二胺、1,5-戊二胺、1,6-己二胺、1,7-庚二胺、1,8-辛二胺、1,9-壬二胺、1,10-癸二胺、1,11-十一烷二胺、1,12-十二烷二胺、1,14-十四烷二胺、1,16-十六烷二胺、1,18-十八烷二胺、1-丁基-1,2-乙二胺、1,1-二甲基-1,4-丁二胺、1-乙基-1,4-丁二胺、1,2-二甲基-1,4-丁二胺、1,3-二甲基-1,4-丁二胺、1,4-二甲基-1,4-丁二胺、2,3-二甲基-1,4-丁二胺、2-甲基-1,5-戊二胺、3-甲基-1,5-戊二胺、2,5-二甲基-1,6-己二胺、2,4-二甲基-1,6-己二胺、3,3-二甲基-1,6-己二胺、2,2-二甲基-1,6-己二胺、2,2,4-三甲基-1,6-己二胺、2,4,4-三甲基-1,6-己二胺、2,4-二乙基-1,6-己二胺、2,2-二甲基-1,7-庚二胺、2,3-二甲基-1,7-庚二胺、2,4-二甲基-1,7-庚二胺、2,5-二甲基-1,7-庚二胺、2-甲基-1,8-辛二胺、3-甲基-1,8-辛二胺、4-甲基-1,8-辛二胺、1,3-二甲基-1,8-辛二胺、1,4-二甲基-1,8-辛二胺、2,4-二甲基-1,8-辛二胺、3,4-二甲基-1,8-辛二胺、4,5-二甲基-1,8-辛二胺、2,2-二甲基-1,8-辛二胺、3,3-二甲基-1,8-辛二胺、4,4-二甲基-1,8-辛二胺、5-甲基-1,9-壬二胺中的一种或几种。
  9. 根据权利要求8所述的阻燃半芳香聚酰胺,其特征在于,所述的二胺单体B选自1,10-癸二胺、1,6-己二胺中的至少一种。
  10. 权利要求1-9任一项所述的阻燃半芳香聚酰胺的制备方法,其特征在于,包括以下步骤:称量二酸单体A、二胺单体B、催化剂、去离子水加入高温高压反应釜中,充换气使釜内气氛为氮气后,升温到160-180℃,恒温反应0.5小时,继续升温到200-210℃,并恒温反应0.5小时,继续升温至240-250℃,恒温反应1小时,排水约0.5小时,出料,造粒;将造粒物料投入转鼓中,抽真空,使压力低于3000Pa,升温至230-260℃,反应3小时,停止加热,待温度回到室温后,出料,得到阻燃半芳香聚酰胺。
PCT/CN2020/084264 2019-05-09 2020-04-10 阻燃半芳香聚酰胺及其制备方法 WO2020224377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910384448.0 2019-05-09
CN201910384448.0A CN110156986A (zh) 2019-05-09 2019-05-09 一种阻燃半芳香聚酰胺及其制备方法

Publications (1)

Publication Number Publication Date
WO2020224377A1 true WO2020224377A1 (zh) 2020-11-12

Family

ID=67634056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/084264 WO2020224377A1 (zh) 2019-05-09 2020-04-10 阻燃半芳香聚酰胺及其制备方法

Country Status (2)

Country Link
CN (1) CN110156986A (zh)
WO (1) WO2020224377A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110156986A (zh) * 2019-05-09 2019-08-23 金发科技股份有限公司 一种阻燃半芳香聚酰胺及其制备方法
CN111777912B (zh) * 2020-06-03 2022-01-11 咸阳新伟华绝缘材料有限公司 一种阻燃和柔韧兼备的环氧树脂组合物及其制备方法
CN114989421A (zh) * 2022-06-21 2022-09-02 浙江理工大学 一种改性聚酰胺材料及其制备方法、纤维
CN115160562B (zh) * 2022-07-22 2024-05-21 濮阳市盛通聚源新材料有限公司 含磷阻燃耐高温共聚型尼龙及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239795B2 (zh) * 1975-09-17 1977-10-07
JPH10131056A (ja) * 1996-10-17 1998-05-19 Sanyo Chem Ind Ltd 繊維用処理剤
CN104231262A (zh) * 2014-09-23 2014-12-24 江苏瑞美福实业有限公司 一种有机磷共聚阻燃聚酰胺材料的制备方法
CN105040154A (zh) * 2015-07-22 2015-11-11 东华大学 一种阻燃聚酰胺66复合纤维及其制备方法
CN106496548A (zh) * 2016-10-25 2017-03-15 成都拓利科技股份有限公司 一种有机磷系共聚阻燃聚酰胺及其制备方法
CN110156986A (zh) * 2019-05-09 2019-08-23 金发科技股份有限公司 一种阻燃半芳香聚酰胺及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL255068A (zh) * 1959-08-19
DE2542053A1 (de) * 1975-09-20 1977-03-24 Hoechst Ag Schwerentflammbare thermoplastische polyamide
US5420225A (en) * 1991-07-26 1995-05-30 Virginia Tech Intellectual Properties, Inc. Aramid compositions of improved solubility and flame retardancy
CN101857609B (zh) * 2009-04-10 2015-01-21 长春人造树脂厂股份有限公司 含磷化合物和其制造方法及用途

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5239795B2 (zh) * 1975-09-17 1977-10-07
JPH10131056A (ja) * 1996-10-17 1998-05-19 Sanyo Chem Ind Ltd 繊維用処理剤
CN104231262A (zh) * 2014-09-23 2014-12-24 江苏瑞美福实业有限公司 一种有机磷共聚阻燃聚酰胺材料的制备方法
CN105040154A (zh) * 2015-07-22 2015-11-11 东华大学 一种阻燃聚酰胺66复合纤维及其制备方法
CN106496548A (zh) * 2016-10-25 2017-03-15 成都拓利科技股份有限公司 一种有机磷系共聚阻燃聚酰胺及其制备方法
CN110156986A (zh) * 2019-05-09 2019-08-23 金发科技股份有限公司 一种阻燃半芳香聚酰胺及其制备方法

Also Published As

Publication number Publication date
CN110156986A (zh) 2019-08-23

Similar Documents

Publication Publication Date Title
WO2020224377A1 (zh) 阻燃半芳香聚酰胺及其制备方法
WO2020224378A1 (zh) 一种阻燃半芳香聚酰胺及其制备方法
JP5368111B2 (ja) 半結晶性半芳香族ポリアミド
CN100491443C (zh) 半芳香族聚酰胺
CN104387581B (zh) 半芳香共聚聚酰胺树脂的制备方法及树脂
KR101469264B1 (ko) 폴리아미드 수지, 이의 제조 방법 및 이를 포함하는 제품
JP7410978B2 (ja) インサイチュ重合難燃剤及びその製造方法並びにそれで構成される成形用組成物
CN103539936B (zh) 一种聚酰胺、及其合成方法和应用及聚酰胺制品
CN103360599A (zh) 一种半芳香族和脂肪族聚酰胺嵌段共聚物及其制备方法
WO2023045820A1 (zh) 一种呋喃二酸基聚酰胺及其制备方法和一种呋喃二酸基聚酰胺组合物
US20170044318A1 (en) Copolymerized Polyamide Resin, Method for Preparing Same, and Molded Product Comprising Same
KR101369149B1 (ko) 내열성 및 내화학성이 우수한 폴리아미드 수지
EP2940057B1 (en) Polyamide resin, preparation method therefor, and molded product including same
AU2021106204A4 (en) Flame retardant semi aromatic polyamide and preparation method thereof
JP5857391B2 (ja) Pa−410を製造するための方法およびこの方法により得られるpa−410
KR101811919B1 (ko) 폴리아미드 수지, 이를 포함하는 폴리아미드 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
CN103665372A (zh) 一种半芳香族聚酰胺、其制备方法、其组合物及其应用
KR101987540B1 (ko) 공중합 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 성형품
US20160032051A1 (en) Copolymerized Polyamide Resin, Method for Preparing the Same and Article Comprising the Same
KR101290564B1 (ko) 용융 가공성과 내열성이 우수한 폴리아미드 수지
JP2024530197A (ja) 耐高温性半芳香族ポリアミドおよびその調製方法、組成物並びに成形品
KR101593745B1 (ko) 폴리아미드에스테르 수지, 이의 제조방법 및 이를 포함하는 제품
JP2021130723A (ja) ポリアミド樹脂及びその製造方法
JP2012172056A (ja) 半芳香族ポリアミド
KR20140086854A (ko) 폴리아미드 수지, 이의 제조방법 및 이를 포함하는 제품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20801928

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20801928

Country of ref document: EP

Kind code of ref document: A1