WO2020224082A1 - Oled 显示面板以及显示装置 - Google Patents

Oled 显示面板以及显示装置 Download PDF

Info

Publication number
WO2020224082A1
WO2020224082A1 PCT/CN2019/100776 CN2019100776W WO2020224082A1 WO 2020224082 A1 WO2020224082 A1 WO 2020224082A1 CN 2019100776 W CN2019100776 W CN 2019100776W WO 2020224082 A1 WO2020224082 A1 WO 2020224082A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
layer
oled display
region
display panel
Prior art date
Application number
PCT/CN2019/100776
Other languages
English (en)
French (fr)
Inventor
史婷
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020224082A1 publication Critical patent/WO2020224082A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]

Definitions

  • This application relates to the field of display technology, and in particular to an OLED display panel and a display device.
  • the top-emitting device in the OLED display panel uses the microcavity structure formed between the translucent cathode 105 and the reflective electrode 102, which can effectively enhance the luminous efficiency of the device and improve the light color of the device.
  • the top-emitting OLED device is used In the preparation of inkjet printing technology, RGB top-emitting devices need to be prepared separately in the pixels, and the cavity length structure is mainly adjusted by the hole layer; due to the different wavelengths of the RGB three colors, the length of the optical microcavity is different, and the RGB three colors correspond to the three colors during the production process.
  • the thickness of the hole layer (including the hole transport layer HIL and the hole injection layer HTL) will be different. Because the ink density, viscosity, volume, etc. of the inkjet printing ink will affect the printing film formation, the hole layer 104 with different thickness Perform printing and subsequent drying processes separately.
  • the existing OLED display panel has the technical problem that the hole layers of different thicknesses need to be printed and dried separately, which needs to be improved.
  • the present application provides an OLED display panel and a display device, which are used to solve the technical problem that hole layers of different thicknesses in the existing OLED display panel need to be printed and dried separately.
  • An embodiment of the application provides an OLED display panel, and the light-emitting function layer of the OLED display panel includes:
  • the reflective electrode is arranged on the substrate
  • the hole layer is arranged between the reflective electrode and the cathode
  • the buffer layer is arranged between the reflective electrode and the hole layer to adjust the length of the microcavity between the reflective electrode and the cathode;
  • the OLED display panel includes a first area, a second area, and a third area located between the pixel definition layers, and the hole layer has the same thickness in the first area, the second area, and the third area.
  • the first area is a red sub-pixel area
  • the second area is a green sub-pixel area
  • the third area is a blue sub-pixel area.
  • the first area, the second area, and the third area are all provided with a buffer layer.
  • the buffer layer has different thicknesses in the first region, the second region, and the third region.
  • a buffer layer is disposed in the first area and the second area.
  • the thickness of the buffer layer in the first region and the second region are different.
  • the buffer layer is disposed between the reflective electrode and the hole layer.
  • the buffer layer material is a transparent inorganic insulating material.
  • the hole layer is provided in an entire layer, and the thickness of the hole layer in the first region, the second region, and the third region are the same.
  • the hole layer is layered in the first area, the second area, and the third area, and the hole layer in the first area, the second area, and the third area
  • the thickness is the same.
  • An embodiment of the present application provides an OLED display device, which includes an OLED display panel, and a light-emitting function layer of the OLED display panel includes:
  • the reflective electrode is arranged on the substrate
  • the hole layer is arranged between the reflective electrode and the cathode
  • the buffer layer is arranged between the reflective electrode and the hole layer to adjust the length of the microcavity between the reflective electrode and the cathode;
  • the OLED display panel includes a first area, a second area, and a third area located between the pixel definition layers, and the hole layer has the same thickness in the first area, the second area, and the third area.
  • the first area is a red sub-pixel area
  • the second area is a green sub-pixel area
  • the third area is a blue sub-pixel area.
  • the first area, the second area, and the third area are all provided with a buffer layer.
  • the buffer layer has different thicknesses in the first region, the second region, and the third region.
  • the buffer layer is disposed in the first area and the second area.
  • the thickness of the buffer layer in the first region and the second region are different.
  • the buffer layer is disposed between the reflective electrode and the hole layer.
  • the buffer layer material is a transparent inorganic insulating material.
  • the hole layer is arranged in a whole layer, and the thickness of the hole layer in the first region, the second region, and the third region are the same.
  • the hole layer is layered in the first area, the second area, and the third area, and the hole layer in the first area, the second area, and the third area
  • the thickness is the same.
  • the present application provides an OLED display panel and a display device.
  • the light-emitting function layer of the OLED display panel includes a pixel definition layer, a reflective electrode, a cathode, a hole layer, and a buffer layer.
  • the reflective electrode is arranged on a substrate, and the hole The layer is arranged between the reflective electrode and the cathode, and the buffer layer is arranged between the reflective electrode and the hole layer for adjusting the length of the microcavity between the reflective electrode and the cathode.
  • the OLED display panel includes a pixel defining layer
  • the thickness of the hole layer in the first area, the second area, and the third area is the same in the first area, the second area, and the third area; in inkjet printing, because the thickness of the hole layer is the same, It can be printed and dried at the same time, which solves the technical problem that the hole layers of different thicknesses in the existing OLED display panel need to be printed and dried separately.
  • FIG. 1 is a schematic cross-sectional view of a conventional OLED display panel.
  • FIG. 2 is a first schematic cross-sectional view of an OLED display panel provided by an embodiment of the application.
  • FIG. 3 is a second cross-sectional schematic diagram of an OLED display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of an inkjet printing method provided by an embodiment of the application.
  • the hole layer includes a hole transport layer and a hole injection layer.
  • the light-emitting function layer of the OLED display panel provided in the present application includes a pixel definition layer 103, a reflective electrode 102, a cathode 105, and a hole layer 104.
  • the buffer layer 106, the reflective electrode 102 is arranged on the substrate 101, the hole layer 104 is arranged between the reflective electrode 102 and the cathode 105, and the buffer layer 106 is arranged between the reflective electrode 102 and the hole layer 104 , Used to adjust the length of the microcavity between the reflective electrode 102 and the cathode 105, where the OLED display panel includes a first area 201, a second area 202, and a third area 203 between the pixel definition layers 103, and the space
  • the hole layer 104 has the same thickness in the first region 201, the second region 202, and the third region 203.
  • the light-emitting function layer of the OLED display panel provided in this embodiment includes a pixel definition layer 103, a reflective electrode, a cathode, a hole layer, and a buffer layer.
  • the reflective electrode is arranged on a substrate, and the hole layer is arranged on the reflective electrode and the cathode.
  • the buffer layer is arranged between the reflective electrode and the hole layer to adjust the length of the microcavity between the reflective electrode and the cathode.
  • the OLED display panel includes a first area located between the pixel defining layers, In the second area and the third area, the thickness of the hole layer in the first area, the second area, and the third area is the same; in inkjet printing, since the thickness of the hole layer is the same, it can be printed and dried at the same time.
  • the existing OLED display panel has the technical problem that the hole layers of different thicknesses need to be printed and dried separately.
  • the first area 201 is a red sub-pixel area
  • the second area 202 is a green sub-pixel area
  • the third area 203 is a blue sub-pixel area.
  • the first area 201, the second area 202, and the third area 203 are all provided with a buffer layer 106.
  • the buffer layer 106 is disposed in the first area 201 and the second area 202.
  • the first area 201 and the second area 202 are a red sub-pixel area and a green sub-pixel area.
  • the wavelengths of the blue sub-pixel region, the green sub-pixel region, and the blue sub-pixel region are different. Since the wavelength of the blue sub-pixel region is the shortest and the device microcavity length is the shortest, the blue sub-pixel region may not be provided with the buffer layer 106.
  • the buffer layer 106 is disposed between the reflective electrode 102 and the hole layer 104.
  • the buffer layer 106 is disposed between the hole layer 104 and the cathode 105.
  • the buffer layer 106 has different thicknesses in the first region 201, the second region 202, and the third region 203, and the first region 201 is a red sub-pixel region and the second region 202 is a green sub-pixel area, the third area 203 is a blue sub-pixel area, the first area 201 has the largest thickness of the buffer layer 106, the third area 203 has the smallest thickness of the buffer layer 106, and the second The thickness of the buffer layer 106 in the region 202 is greater than the thickness of the buffer layer 106 in the third region 203, and the thickness of the buffer layer 106 in the second region 202 is smaller than the thickness of the buffer layer 106 in the first region 201.
  • the thickness of the buffer layer 106 in the first region 201 and the second region 202 are different, and the first region 201 is the red sub-pixel region, the second region The second area 202 is a green sub-pixel area, the third area 203 is a blue sub-pixel area, the buffer layer 106 is not arranged in the blue sub-pixel area, and the thickness of the buffer layer 106 of the first area 201 is greater than that of the second Area 202 buffer layer 106 thickness.
  • the buffer layer 106 can be prepared by inkjet printing, and the buffer layer 106 is fabricated on the reflective electrode 102 and printed directly in the corresponding pixel pits.
  • the material of the buffer layer 106 is a transparent or semi-transparent conductive material.
  • the material of the buffer layer 106 may be a polymer of 3,4-ethylenedioxythiophene monomer.
  • the material of the buffer layer 106 may be polystyrene sulfonate.
  • the material of the buffer layer 106 is a transparent inorganic insulating material.
  • the material of the buffer layer 106 is conductive oxide.
  • the reflective electrode 102 includes a reflective layer and an anode, the reflective layer is disposed on the side of the anode facing the cathode 105, and the buffer layer 106 is disposed between the reflective layer and the anode .
  • the buffer layer 106 of different thicknesses in different sub-pixels is obtained by mask etching, and the reflective electrode 102 and the pixel defining layer 103 are sequentially formed after the buffer layer 106 is fabricated.
  • the hole layer 104 corresponding to the first area 201, the second area 202, and the third area 203 is made of ink of the same concentration, and the ink characteristics are the same, and the volume printed in each pixel is the same.
  • the thickness of the buffer layer 106 is determined by the microcavity structure. During the inkjet printing preparation, the thickness of the hole layer 104 formed in each area of the same volume of ink is the same.
  • the hole layer 104 is provided as a whole layer, and the thickness of the hole layer in the first region 201, the second region 202, and the third region 203 are the same.
  • the hole layer 104 is arranged in layers in the first area 201, the second area 202, and the third area 203, and the voids of the first area 201, the second area 202, and the third area 203
  • the cross-sectional area of the corresponding position of the hole layer 104 is the same, and the thickness of the hole layer 104 is the same, but it is not arranged on the entire surface.
  • the buffer layer 106 is provided to ensure that the volume and thickness of the hole layer 104 in each region are the same.
  • the present application provides an OLED display device
  • the OLED display device includes an OLED display panel
  • the light-emitting function layer of the OLED display panel includes a pixel definition layer 103, a reflective electrode 102, a cathode 105, A hole layer 104, a buffer layer 106
  • the reflective electrode 102 is arranged on the substrate 101
  • the hole layer 104 is arranged between the reflective electrode 102 and the cathode 105
  • the buffer layer 106 is arranged on the reflective electrode 102 and the hole
  • it is used to adjust the length of the microcavity between the reflective electrode 102 and the cathode 105
  • the OLED display panel includes a first area 201, a second area 202, and a third area 203 located between the pixel defining layers 103
  • the thickness of the hole layer 104 in the first region 201, the second region 202, and the third region 203 is the same.
  • the OLED display device includes an OLED display panel.
  • the light-emitting function layer of the OLED display panel includes a pixel definition layer, a reflective electrode, a cathode, a hole layer, and a buffer layer.
  • the reflective electrode is disposed on a substrate.
  • the hole layer is arranged between the reflective electrode and the cathode, and the buffer layer is arranged between the reflective electrode and the hole layer for adjusting the length of the microcavity between the reflective electrode and the cathode.
  • the OLED display panel includes Define the first area, second area, and third area between the layers.
  • the hole layer has the same thickness in the first area, second area, and third area; in inkjet printing, due to the thickness of the hole layer In the same way, printing and drying can be performed at the same time, which solves the technical problem that holes layers with different thicknesses in existing OLED display panels need to be printed and dried separately.
  • the first area 201 is a red sub-pixel area
  • the second area 202 is a green sub-pixel area
  • the third area 203 is a blue sub-pixel area.
  • the first area 201, the second area 202, and the third area 203 are all provided with a buffer layer 106.
  • the buffer layer 106 is disposed in the first area 201 and the second area 202.
  • the buffer layer 106 is disposed between the reflective electrode 102 and the hole layer 104.
  • the buffer layer 106 has different thicknesses in the first region 201, the second region 202, and the third region 203.
  • the thickness of the buffer layer 106 in the first region 201 and the second region 202 are different.
  • the buffer layer 106 can be prepared by inkjet printing, and the buffer layer 106 is fabricated on the reflective electrode 102 and printed directly in the corresponding pixel pits.
  • the material of the buffer layer 106 is a transparent or semi-transparent conductive material.
  • the material of the buffer layer 106 may be a polymer of 3,4-ethylenedioxythiophene monomer.
  • the material of the buffer layer 106 may be polystyrene sulfonate.
  • the material of the buffer layer 106 is a transparent inorganic insulating material.
  • the material of the buffer layer 106 is conductive oxide.
  • the reflective electrode 102 includes a reflective layer and an anode, the reflective layer is disposed on the side of the anode facing the cathode 105, and the buffer layer 106 is disposed between the reflective layer and the anode .
  • the buffer layer 106 of different thicknesses in different sub-pixels is obtained by mask etching, and the reflective electrode 102 and the pixel defining layer 103 are sequentially formed after the buffer layer 106 is fabricated.
  • the hole layer 104 corresponding to the first area 201, the second area 202, and the third area 203 is made of ink of the same concentration, and the ink characteristics are the same, and the volume printed in each pixel is the same.
  • the thickness of the buffer layer 106 is determined by the microcavity structure. During the inkjet printing preparation, the thickness of the hole layer 104 formed in each area of the same volume of ink is the same.
  • the hole layer 104 is provided as a whole layer, and the thickness of the hole layer in the first region 201, the second region 202, and the third region 203 are the same.
  • the hole layer 104 is arranged in layers in the first area 201, the second area 202, and the third area 203, and the voids of the first area 201, the second area 202, and the third area 203
  • the thickness of the cavity layer 104 is the same.
  • Inkjet printing is a film forming method in which the functional material ink is sprayed to the corresponding position drop by drop under computer control to form a pattern. It has the advantages of simple operation, non-contact, maskless, low equipment cost, and high material utilization , Is considered to be an effective way to realize flexible large-area OLED/QLED displays. Inkjet printing to prepare display screens has received extensive attention and development, but the uniformity of the printed film is still a key issue.
  • the inkjet print head In the inkjet printing process, especially when printing large-size substrates, the inkjet print head needs to move back and forth along the printing direction for several times to fill the pixels on the entire substrate with ink, so that the time for the ink to be printed successively dry There is a big difference between the atmosphere and the dry atmosphere, resulting in uneven ink drying on the substrate. Furthermore, the printed ink often accompanies the coffee ring phenomenon during the drying process, forming an uneven film with thick sides and thin in the middle. The uneven printing film and coffee ring phenomenon during the printing process and the drying process will seriously reduce the performance of the display.
  • the existing printing process mainly improves the uniformity of the printed film by optimizing the ink solvent composition, bank properties and shape, drying equipment and conditions, etc., but cannot achieve uniform film formation and slow down the coffee ring effect at the same time.
  • the present application provides an inkjet printing method, which can reduce the uneven filming caused by different drying rates before and after printing in different areas during the printing process. Furthermore, it can also slow down the ink drying after printing.
  • the appearance of the coffee ring phenomenon can simultaneously print and dry the hole layers in all sub-pixel areas.
  • the hole layer includes a hole injection layer and a hole transport layer.
  • An inkjet printing method includes the following steps:
  • s2 Perform inkjet printing of functional ink on the hole layer of all sub-pixel areas on the cooled substrate at the same time to form an ink liquid film;
  • the substrate is placed at a temperature of T2, while the ink liquid film is vacuum dried, and the ink liquid film becomes a solid film;
  • the melting point of the ink is ⁇ T1 ⁇ T2 ⁇ room temperature.
  • all sub-pixel areas are simultaneously inkjet printed with functional ink on the substrate after the temperature has dropped.
  • the solvent of the functional ink is a blend solvent or a single solvent, and the boiling point of the single solvent is higher than 200°C.
  • the functional ink is an OLED ink
  • the solvent of the OLED ink is a blend solvent
  • the blend solvent includes a high boiling point solvent and a low boiling point solvent
  • the high boiling point solvent is selected from 3, One of 4-dimethylanisole, 1,3-dimethylanisole, 1,2,4-trimethoxybenzene, n-dodecane, isophorone and phenylcyclohexane or
  • the low boiling point solvent is selected from one or more of toluene, p-xylene, chlorobenzene, anisole, nitrobenzene, mesitylene and butyl acetate.
  • the functional ink is a QLED ink
  • the solvent of the QLED ink is a blending solvent
  • the blending solvent includes a non-polar organic solvent with a high boiling point and a polar solvent with a low boiling point.
  • the high boiling point non-polar organic solvent is selected from one or more of halogenated aromatic hydrocarbons and their derivatives; the low boiling point polar solvent is selected from one or more of alcohols, esters and ethers.
  • the high-boiling non-polar organic solvent is selected from one or more of o-dichlorobenzene, m-dichlorobenzene and o-bromotoluene;
  • the low-boiling polar solvent is selected from methanol , Isopropanol, 2-methoxyethanol, ethyl acetate, butyl acetate, ethylene glycol monobutyl ether and dipropylene glycol monomethyl ether one or more.
  • the present application provides an OLED display panel and an OLED display device.
  • the light-emitting function layer of the OLED display panel includes a pixel definition layer, a reflective electrode, a cathode, a hole layer, and a buffer layer.
  • the reflective electrode is disposed on a substrate, and the cavity
  • the hole layer is arranged between the reflective electrode and the cathode
  • the buffer layer is arranged between the reflective electrode and the hole layer to adjust the length of the microcavity between the reflective electrode and the cathode.
  • the OLED display panel includes a pixel definition In the first area, second area, and third area between layers, the thickness of the hole layer in the first area, second area, and third area is the same; in inkjet printing, the thickness of the hole layer is the same , It can print and dry at the same time, which solves the technical problem that the hole layers of different thicknesses in the existing OLED display panel need to be printed and dried separately.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种OLED显示面板以及显示装置,该OLED显示面板的发光功能层包括像素定义层、反射电极、阴极、空穴层、缓冲层,缓冲层设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长,所述空穴层在第一区域、第二区域、第三区域的厚度相同;在喷墨打印时,由于空穴层的厚度相同,可以同时打印及干燥。

Description

OLED显示面板以及显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种OLED显示面板以及显示装置。
背景技术
如图1所示,OLED显示面板中的顶发射器件利用半透明阴极105与反射电极102之间形成的微腔结构,可有效增强器件发光效率,并改善器件光色,若顶发射OLED器件采用喷墨打印技术制备,需要在像素中分别制备RGB顶发射器件,腔长结构主要由空穴层调整;因RGB三颜色的波长不同,其光学微腔长度不同,在制作过程中RGB三颜色对应的空穴层(包括空穴传输层 HIL和空穴注入层HTL)厚度会有所不同,由于喷墨打印墨水浓度,粘度,体积等均会影响打印成膜性,不同厚度空穴层104需分别进行打印及后续的干燥工艺。
所以,现有OLED显示面板存在不同厚度的空穴层需分别打印及干燥的技术问题,需要改进。
技术问题
本申请提供一种OLED显示面板以及显示装置,用于解决现有OLED显示面板存在不同厚度的空穴层需分别打印及干燥的技术问题。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请实施例提供一种OLED显示面板,所述OLED显示面板的发光功能层包括:
像素定义层;
反射电极,设置在基板上;
阴极;
空穴层,设置于反射电极和阴极之间;
缓冲层,设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长;
其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同。
在本申请实施例提供的OLED显示面板中,所述第一区域为红色子像素区、所述第二区域为绿色子像素区、所述第三区域为蓝色子像素区。
在本申请实施例提供的OLED显示面板中,所述第一区域、第二区域、第三区域均设置有缓冲层。
在本申请实施例提供的OLED显示面板中,所述缓冲层在第一区域、第二区域、第三区域的厚度各不相同。
在本申请实施例提供的OLED显示面板中,缓冲层设置于所述第一区域和所述第二区域。
在本申请实施例提供的OLED显示面板中,所述缓冲层在第一区域和所述第二区域的厚度不相同。
在本申请实施例提供的OLED显示面板中,所述缓冲层设置于反射电极和空穴层之间。
在本申请实施例提供的OLED显示面板中,所述缓冲层材料为透明无机绝缘材料。
在本申请实施例提供的OLED显示面板中,所述空穴层整层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
在本申请实施例提供的OLED显示面板中,所述空穴层在第一区域、第二区域、第三区域分层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
本申请实施例提供一种OLED显示装置,其包括OLED显示面板,所述OLED显示面板的发光功能层包括:
像素定义层;
反射电极,设置在基板上;
阴极;
空穴层,设置于反射电极和阴极之间;
缓冲层,设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长;
其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同。
在本申请实施例提供的OLED显示装置中,所述第一区域为红色子像素区、所述第二区域为绿色子像素区、所述第三区域为蓝色子像素区。
在本申请实施例提供的OLED显示装置中,所述第一区域、第二区域、第三区域均设置有缓冲层。
在本申请实施例提供的OLED显示装置中,所述缓冲层在第一区域、第二区域、第三区域的厚度各不相同。
在本申请实施例提供的OLED显示装置中,缓冲层设置于所述第一区域和所述第二区域。
在本申请实施例提供的OLED显示装置中,所述缓冲层在第一区域和所述第二区域的厚度不相同。
在本申请实施例提供的OLED显示装置中,所述缓冲层设置于反射电极和空穴层之间。
在本申请实施例提供的OLED显示装置中,所述缓冲层材料为透明无机绝缘材料。
在本申请实施例提供的OLED显示装置中,所述空穴层整层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
在本申请实施例提供的OLED显示装置中,所述空穴层在第一区域、第二区域、第三区域分层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
有益效果
本申请提供一种OLED显示面板以及显示装置,该OLED显示面板的发光功能层包括像素定义层、反射电极、阴极、空穴层、缓冲层,所述反射电极设置在基板上,所述空穴层设置于反射电极和阴极之间,所述缓冲层设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长,其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同;在喷墨打印时,由于空穴层的厚度相同,可以同时打印及干燥,解决了现有OLED显示面板存在不同厚度的空穴层需分别打印及干燥的技术问题。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有OLED显示面板的截面示意图。
图2为本申请实施例提供的OLED显示面板的第一种截面示意图。
图3为本申请实施例提供的OLED显示面板的第二种截面示意图。
图4为本申请实施例提供的喷墨打印方法的流程示意图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
如图2所示,所述空穴层包括空穴传输层和空穴注入层,本申请提供的OLED显示面板的发光功能层包括像素定义层103、反射电极102、阴极105、空穴层104、缓冲层106,所述反射电极102设置在基板101上,所述空穴层104设置于反射电极102和阴极105之间,所述缓冲层106设置于反射电极102和空穴层104之间,用于调整反射电极102和阴极105之间的微腔腔长,其中,OLED显示面板包括位于像素定义层103之间的第一区域201、第二区域202、第三区域203,所述空穴层104在第一区域201、第二区域202、第三区域203的厚度相同。
本实施例提供的OLED显示面板的发光功能层包括像素定义层103、反射电极、阴极、空穴层、缓冲层,所述反射电极设置在基板上,所述空穴层设置于反射电极和阴极之间,所述缓冲层设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长,其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同;在喷墨打印时,由于空穴层的厚度相同,可以同时打印及干燥,解决了现有OLED显示面板存在不同厚度的空穴层需分别打印及干燥的技术问题。
在一种实施例中,所述第一区域201为红色子像素区、所述第二区域202为绿色子像素区、所述第三区域203为蓝色子像素区。
在一种实施例中,所述第一区域201、第二区域202、第三区域203均设置有缓冲层106。
在一种实施例中,缓冲层106设置于所述第一区域201和所述第二区域202,第一区域201和第二区域202为红色子像素区和绿色子像素区,因红色子像素区、绿色子像素区、蓝色子像素区的波长不同,由于蓝色子像素区的波长最短,其器件微腔腔长最短,所述蓝色子像素区可以不设置缓冲层106。
在一种实施例中,所述缓冲层106设置于反射电极102和空穴层104之间。
在一种实施例中,所述缓冲层106设置于空穴层104和阴极105之间。
在一种实施例中,所述缓冲层106在第一区域201、第二区域202、第三区域203的厚度各不相同,所述第一区域201为红色子像素区、所述第二区域202为绿色子像素区、所述第三区域203为蓝色子像素区,所述第一区域201缓冲层106的厚度最大,所述第三区域203缓冲层106的厚度最小,所述第二区域202缓冲层106的厚度大于第三区域203缓冲层106的厚度,所述第二区域202缓冲层106的厚度小于第一区域201缓冲层106的厚度。
在一种实施例中,如图3所示,所述缓冲层106在第一区域201和所述第二区域202的厚度不相同,所述第一区域201为红色子像素区、所述第二区域202为绿色子像素区、所述第三区域203为蓝色子像素区,缓冲层106不设置在蓝色子像素区,所述第一区域201缓冲层106的厚度大于所述第二区域202缓冲层106的厚度。
在一种实施例中,所述缓冲层106可以利用喷墨打印制备,缓冲层106制作于反射电极102上,直接打印于对应像素坑内。
在一种实施例中,所述缓冲层106材料选择透明或半透明的导电材料。
在一种实施例中,所述缓冲层106材料可以是3,4-乙撑二氧噻吩单体的聚合物。
在一种实施例中,所述缓冲层106材料可以是聚苯乙烯磺酸盐。
在一种实施例中,所述缓冲层106材料为透明无机绝缘材料。
在一种实施例中,所述缓冲层106材料为导电氧化物。
在一种实施例中,所述反射电极102包括反射层和阳极,所述反射层设置在阳极朝向阴极105的一侧上,所述缓冲层106设置于所述反射层和所述阳极之间。
在一种实施例中,利用掩膜刻蚀获得不同子像素内不同厚度的缓冲层106,制作缓冲层106后再依次制作反射电极102及像素定义层103。
在一种实施例中,所述第一区域201、第二区域202、第三区域203对应的空穴层104由同一浓度的墨水制备,且墨水特性相同,各像素内打印的体积相同。
在一种实施例中,所述缓冲层106厚度由微腔结构决定,在喷墨打印制备时,同体积的墨水在各个区域形成的空穴层104厚度相同。
在一种实施例中,所述空穴层104整层设置,所述第一区域201、第二区域202、第三区域203的空穴层的厚度相同。
在一种实施例中,所述空穴层104在第一区域201、第二区域202、第三区域203分层设置,所述第一区域201、第二区域202、第三区域203的空穴层104对应位置的横截面积相同,所述空穴层104厚度相同,但不是整面设置,通过设置缓冲层106,保证各区域的空穴层104体积和厚度均相同。
同时,在一种实施例中,本申请提供了一种OLED显示装置,该OLED显示装置包括OLED显示面板,所述OLED显示面板的发光功能层包括像素定义层103、反射电极102、阴极105、空穴层104、缓冲层106,所述反射电极102设置在基板101上,所述空穴层104设置于反射电极102和阴极105之间,所述缓冲层106设置于反射电极102和空穴层104之间,用于调整反射电极102和阴极105之间的微腔腔长,其中,OLED显示面板包括位于像素定义层103之间的第一区域201、第二区域202、第三区域203,所述空穴层104在第一区域201、第二区域202、第三区域203的厚度相同。
本实施例提供的OLED显示装置包括OLED显示面板,所述OLED显示面板的发光功能层包括像素定义层、反射电极、阴极、空穴层、缓冲层,所述反射电极设置在基板上,所述空穴层设置于反射电极和阴极之间,所述缓冲层设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长,其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同;在喷墨打印时,由于空穴层的厚度相同,可以同时打印及干燥,解决了现有OLED显示面板存在不同厚度的空穴层需分别打印及干燥的技术问题。
在一种实施例中,所述第一区域201为红色子像素区、所述第二区域202为绿色子像素区、所述第三区域203为蓝色子像素区。
在一种实施例中,所述第一区域201、第二区域202、第三区域203均设置有缓冲层106。
在一种实施例中,缓冲层106设置于所述第一区域201和所述第二区域202。
在一种实施例中,所述缓冲层106设置于反射电极102和空穴层104之间。
在一种实施例中,所述缓冲层106在第一区域201、第二区域202、第三区域203的厚度各不相同。
在一种实施例中,所述缓冲层106在第一区域201和所述第二区域202的厚度不相同。
在一种实施例中,所述缓冲层106可以利用喷墨打印制备,缓冲层106制作于反射电极102上,直接打印于对应像素坑内。
在一种实施例中,所述缓冲层106材料选择透明或半透明的导电材料。
在一种实施例中,所述缓冲层106材料可以是3,4-乙撑二氧噻吩单体的聚合物。
在一种实施例中,所述缓冲层106材料可以是聚苯乙烯磺酸盐。
在一种实施例中,所述缓冲层106材料为透明无机绝缘材料。
在一种实施例中,所述缓冲层106材料为导电氧化物。
在一种实施例中,所述反射电极102包括反射层和阳极,所述反射层设置在阳极朝向阴极105的一侧上,所述缓冲层106设置于所述反射层和所述阳极之间。
在一种实施例中,利用掩膜刻蚀获得不同子像素内不同厚度的缓冲层106,制作缓冲层106后再依次制作反射电极102及像素定义层103。
在一种实施例中,所述第一区域201、第二区域202、第三区域203对应的空穴层104由同一浓度的墨水制备,且墨水特性相同,各像素内打印的体积相同。
在一种实施例中,所述缓冲层106厚度由微腔结构决定,在喷墨打印制备时,同体积的墨水在各个区域形成的空穴层104厚度相同。
在一种实施例中,所述空穴层104整层设置,所述第一区域201、第二区域202、第三区域203的空穴层的厚度相同。
在一种实施例中,所述空穴层104在第一区域201、第二区域202、第三区域203分层设置,所述第一区域201、第二区域202、第三区域203的空穴层104的厚度相同。
喷墨打印是在计算机控制下将功能材料的墨水按需逐滴喷射到对应位置上并形成图案的成膜方式,具有操作简单、非接触、无掩模、设备成本低、材料利用率高等优点,被认为是实现柔性大面积OLED/QLED显示器的有效途径, 喷墨打印制备显示屏得到了广泛的关注和发展,但印刷薄膜的均匀性仍 是一个关键的问题。在喷墨打印过程中,特别是在打印大尺寸基板,喷墨打印头需要沿着打印方向多次往返移动喷墨才能将整个基板上的像素内铺满墨水,这样先后打印的墨水干燥的时间和干燥的氛围都存在较大的差异,造成基板上墨水干燥的不均匀。进一步的,打印完的墨水在干燥过程中常常会伴随咖啡环现象,形成两边厚、中间薄的不均匀薄膜,打印过程与干燥过程中的印刷薄膜不均匀和咖啡环现象会严重降低显示器的性能和显示效果, 现有的印刷工艺主要是通过优化墨水溶剂组份、bank性质和形状、干燥设备和条件等来提高印刷薄膜的均匀性,但是无法同时实现成膜均匀和减缓咖啡环效应现象。
如图4所示,本申请提供一种喷墨打印方法,可以减少打印过程中不同区域由于打印前后干燥速率不同导致的成膜不均匀问题,进一步的,还能减缓打印完成后墨水在干燥时出现的咖啡环现象,同时可以同时对所有的子像素区域的空穴层进行打印和干燥,空穴层包括空穴注入层和空穴传输层,一种喷墨打印方法,包括以下步骤:
s1:将基板降温至T1;
s2:在降温后的所述基板上同时对所有子像素区域的空穴层进行喷墨打印功能性墨水,形成墨水液膜;
s3:将形成有墨水液膜后基板置于T2温度下,同时对墨水液膜进行抽真空干燥,所述墨水液膜变为固体薄膜;
s4:对所述固体薄膜进行热处理,完成交联固化。
在一种实施例中,墨水熔点<T1<T2<室温。
在一种实施例中,在T1的恒温条件下,在降温后的所述基板上同时对所有子像素区域进行喷墨打印功能性墨水。
在一种实施例中,T1<15℃。
在一种实施例中,-10℃≤T1≤10℃。
在一种实施例中,所述功能性墨水的溶剂为共混溶剂或单一溶剂,所述单一溶剂的沸点高于200℃。
在一种实施例中,所述功能性墨水为OLED墨水,所述OLED墨水的溶剂为共混溶剂,所述共混溶剂包括高沸点溶剂和低沸点溶剂,所述高沸点溶剂选自3,4-二甲基苯甲 醚、1,3-二甲基苯甲醚、1,2,4-三甲氧基苯、正十二烷、异佛尔酮和苯基环己烷的一种或几种,所述低沸点溶剂选自甲苯、对二甲苯、氯苯、苯甲醚、氮苯、均三甲苯和乙酸丁酯的一种 或几种。
在一种实施例中,所述功能性墨水为QLED墨水,所述QLED墨水的溶剂为共混溶剂,所述共混溶剂包括高沸点的非极性有机溶剂和低沸点的极性溶剂,所述高沸点的非极性有机溶剂选自卤代芳香烃及其衍生物的一种或几种;低沸点的极性溶剂选自为醇、酯和醚的一种或几种。
在一种实施例中,所述高沸点的非极性有机溶剂选自邻二氯苯、间二氯苯和邻溴甲苯的一种或几种;所述低沸点的极性溶剂选自甲醇、异丙醇、2-甲氧基乙醇、醋酸乙酯、醋酸丁酯、乙二醇一丁基醚和二丙二醇一甲基醚的一种或几种。
根据上述实施例可知:
本申请提供一种OLED显示面板和OLED显示装置,该OLED显示面板的发光功能层包括像素定义层、反射电极、阴极、空穴层、缓冲层,所述反射电极设置在基板上,所述空穴层设置于反射电极和阴极之间,所述缓冲层设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长,其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同;在喷墨打印时,由于空穴层的厚度相同,可以同时打印及干燥,解决了现有OLED显示面板存在不同厚度的空穴层需分别打印及干燥的技术问题。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种OLED显示面板,其发光功能层包括:
    像素定义层;
    反射电极,设置在基板上;
    阴极;
    空穴层,设置于反射电极和阴极之间;
    缓冲层,设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长;
    其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同。
  2. 根据权利要求1所述的OLED显示面板,其中,所述第一区域为红色子像素区、所述第二区域为绿色子像素区、所述第三区域为蓝色子像素区。
  3. 根据权利要求2所述的OLED显示面板,其中,所述第一区域、第二区域、第三区域均设置有缓冲层。
  4. 根据权利要求3所述的OLED显示面板,其中,所述缓冲层在第一区域、第二区域、第三区域的厚度各不相同。
  5. 根据权利要求2所述的OLED显示面板,其中,缓冲层设置于所述第一区域和所述第二区域。
  6. 根据权利要求5所述的OLED显示面板,其中,所述缓冲层在第一区域和所述第二区域的厚度不相同。
  7. 根据权利要求1所述的OLED显示面板,其中,所述缓冲层设置于反射电极和空穴层之间。
  8. 根据权利要求1所述的OLED显示面板,其中,所述缓冲层材料为透明无机绝缘材料。
  9. 根据权利要求1所述的OLED显示面板,其中,所述空穴层整层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
  10. 根据权利要求1所述的OLED显示面板,其中,所述空穴层在第一区域、第二区域、第三区域分层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
  11. 一种OLED显示装置,其包括OLED显示面板,所述OLED显示面板的发光功能层包括:
    像素定义层;
    反射电极,设置在基板上;
    阴极;
    空穴层,设置于反射电极和阴极之间;
    缓冲层,设置于反射电极和空穴层之间,用于调整反射电极和阴极之间的微腔腔长;
    其中,OLED显示面板包括位于像素定义层之间的第一区域、第二区域、第三区域,所述空穴层在第一区域、第二区域、第三区域的厚度相同。
  12. 根据权利要求11所述的OLED显示装置,其中,所述第一区域为红色子像素区、所述第二区域为绿色子像素区、所述第三区域为蓝色子像素区。
  13. 根据权利要求12所述的OLED显示装置,其中,所述第一区域、第二区域、第三区域均设置有缓冲层。
  14. 根据权利要求13所述的OLED显示装置,其中,所述缓冲层在第一区域、第二区域、第三区域的厚度各不相同。
  15. 根据权利要求12所述的OLED显示装置,其中,缓冲层设置于所述第一区域和所述第二区域。
  16. 根据权利要求15所述的OLED显示装置,其中,所述缓冲层在第一区域和所述第二区域的厚度不相同。
  17. 根据权利要求11所述的OLED显示装置,其中,所述缓冲层设置于反射电极和空穴层之间。
  18. 根据权利要求11所述的OLED显示装置,其中,所述缓冲层材料为透明无机绝缘材料。
  19. 根据权利要求11所述的OLED显示装置,其中,所述空穴层整层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
  20. 根据权利要求11所述的OLED显示装置,其中,所述空穴层在第一区域、第二区域、第三区域分层设置,所述第一区域、第二区域、第三区域的空穴层的厚度相同。
PCT/CN2019/100776 2019-05-05 2019-08-15 Oled 显示面板以及显示装置 WO2020224082A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366961.7 2019-05-05
CN201910366961.7A CN110120409B (zh) 2019-05-05 2019-05-05 Oled显示面板

Publications (1)

Publication Number Publication Date
WO2020224082A1 true WO2020224082A1 (zh) 2020-11-12

Family

ID=67521762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100776 WO2020224082A1 (zh) 2019-05-05 2019-08-15 Oled 显示面板以及显示装置

Country Status (2)

Country Link
CN (1) CN110120409B (zh)
WO (1) WO2020224082A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120409B (zh) * 2019-05-05 2021-08-24 深圳市华星光电半导体显示技术有限公司 Oled显示面板
CN111987135B (zh) * 2020-09-08 2022-07-29 武汉天马微电子有限公司 显示面板及其制备方法、显示装置
CN112993187A (zh) * 2021-02-08 2021-06-18 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288636A (zh) * 2018-01-19 2018-07-17 云谷(固安)科技有限公司 一种有机发光装置
CN109103236A (zh) * 2018-09-25 2018-12-28 京东方科技集团股份有限公司 一种有机发光显示基板、显示装置及其制作方法
CN110120409A (zh) * 2019-05-05 2019-08-13 深圳市华星光电半导体显示技术有限公司 Oled显示面板

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4742639B2 (ja) * 2005-03-25 2011-08-10 セイコーエプソン株式会社 発光装置
US8957412B2 (en) * 2010-11-29 2015-02-17 Panasonic Corporation Organic electroluminescence panel, method of manufacturing organic electroluminescence panel, organic light emitting apparatus using organic electroluminescence panel, and organic display apparatus using organic electroluminescence panel
CN106449714B (zh) * 2016-11-09 2019-12-17 上海天马有机发光显示技术有限公司 一种有机发光显示面板以及制作方法
CN106601775B (zh) * 2016-12-19 2019-07-02 武汉华星光电技术有限公司 Oled显示装置及其制作方法
CN107994125B (zh) * 2017-11-29 2019-10-22 京东方科技集团股份有限公司 显示背板及其制作方法、显示装置
CN108565350B (zh) * 2018-04-13 2019-06-28 京东方科技集团股份有限公司 Oled器件及其制造方法和显示面板

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108288636A (zh) * 2018-01-19 2018-07-17 云谷(固安)科技有限公司 一种有机发光装置
CN109103236A (zh) * 2018-09-25 2018-12-28 京东方科技集团股份有限公司 一种有机发光显示基板、显示装置及其制作方法
CN110120409A (zh) * 2019-05-05 2019-08-13 深圳市华星光电半导体显示技术有限公司 Oled显示面板

Also Published As

Publication number Publication date
CN110120409A (zh) 2019-08-13
CN110120409B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
US9640589B2 (en) Organic electroluminescent display panel and display device
CN107887423B (zh) 一种显示面板、其制备方法及显示装置
US10665641B2 (en) Color filter (CF) substrate, manufacturing method thereof, display panel and display device
US9722005B2 (en) Light-emitting device, array substrate, display device and manufacturing method of light-emitting device
CN103762224B (zh) 有机电致发光显示面板
WO2016101452A1 (zh) 显示基板及其制作方法、显示装置
WO2020224082A1 (zh) Oled 显示面板以及显示装置
CN109817832B (zh) 一种oled显示基板及其制备方法、显示装置
WO2019062580A1 (zh) 显示基板及其制备方法、喷墨打印方法、显示装置
US10651412B2 (en) OLED display panel to reduce light leakage and method for manufacturing the same, and display device
WO2020164528A1 (zh) 显示基板及其制备方法、显示装置
US11342393B2 (en) Method for manufacturing OLED light emitting device, OLED light emitting device and OLED display device
JP2010128306A (ja) カラーフィルタおよび有機エレクトロルミネッセンス表示装置
US20200066989A1 (en) Organic light-emitting display panel, method for fabricating the same, and display device
JP5239189B2 (ja) 有機エレクトロルミネッセンス表示装置の製造方法
WO2020164317A1 (zh) 阵列基板及其制备方法、显示面板和显示装置
WO2021227153A1 (zh) 显示面板
WO2019196798A1 (zh) 像素界定层、像素结构、显示面板及显示装置
US11011705B2 (en) Pixel defining layer, display panel, fabricating method thereof, and display device
WO2019192421A1 (zh) Oled基板及其制备方法、显示装置
US20080087882A1 (en) Process for making contained layers and devices made with same
Chen et al. 41‐3: 17.3 inch UHD Resolution AMOLED panel fabricated by ink jet printing process
CN216145621U (zh) 显示面板及显示装置
CN110828683B (zh) Oled器件及其制备方法
US11164909B1 (en) Display panel, manufacturing method thereof, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928114

Country of ref document: EP

Kind code of ref document: A1