WO2020222627A1 - 터치 스크린 패널 및 이의 제조방법 - Google Patents

터치 스크린 패널 및 이의 제조방법 Download PDF

Info

Publication number
WO2020222627A1
WO2020222627A1 PCT/KR2020/095078 KR2020095078W WO2020222627A1 WO 2020222627 A1 WO2020222627 A1 WO 2020222627A1 KR 2020095078 W KR2020095078 W KR 2020095078W WO 2020222627 A1 WO2020222627 A1 WO 2020222627A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
cover glass
metal
metal mesh
Prior art date
Application number
PCT/KR2020/095078
Other languages
English (en)
French (fr)
Inventor
단성백
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190049745A external-priority patent/KR102361287B1/ko
Priority claimed from KR1020190049746A external-priority patent/KR102274135B1/ko
Priority claimed from KR1020190049744A external-priority patent/KR20200126144A/ko
Priority claimed from KR1020190049743A external-priority patent/KR102335548B1/ko
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Publication of WO2020222627A1 publication Critical patent/WO2020222627A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a touch screen panel and a method for manufacturing the same, and more particularly, to a touch screen panel for improving the rainbow phenomenon and a method for manufacturing the same.
  • the touch screen can be classified into a resistive type, a capacitive type, an ultrasonic type, an infrared sensor type, an electromagnetic induction type, and the like according to an operation method.
  • a touch screen is manufactured by attaching a touch screen panel (TSP) to the display.
  • TSP touch screen panel
  • the touch screen panel is manufactured by attaching a thin film type touch sensor to the cover glass.
  • a signal is transmitted to the touch sensor through the cover glass.
  • the touch sensor receives the touch signal and sends it to the PC (software), and the PC converts the signal to digital and transmits it to the display, and the display receives the signal and displays the screen.
  • the touch screen has a problem in that a rainbow phenomenon occurs due to haze of sunlight incident under sunlight.
  • the rainbow phenomenon means that when light is illuminated, a rainbow shape like a strip of oil appears.
  • the rainbow phenomenon lowers visibility and gives users of electronic devices a feeling of fatigue.
  • An object of the present invention is to provide a touch screen panel in which a metal mesh is applied to an electrode of a touch sensor and a method of manufacturing the same so as to improve the rainbow phenomenon and secure excellent visibility.
  • an object of the present invention is to provide a touch screen panel and a manufacturing method thereof in which a metal mesh is applied to an electrode of a touch sensor and an antireflection layer is applied to a cover glass so as to improve the rainbow phenomenon and secure excellent visibility.
  • an object of the present invention is to provide a touch screen panel and a method of manufacturing the same, in which a color change glass is applied to a cover glass so as to improve the rainbow phenomenon and secure excellent visibility.
  • an object of the present invention is to provide a touch screen panel and a manufacturing method thereof in which a half mirror is applied to a cover glass so as to improve the rainbow phenomenon and secure excellent visibility.
  • the present invention includes a touch sensor including an electrode implemented in a metal mesh and a cover glass disposed on the touch sensor.
  • the metal mesh may have a plurality of polygonal shapes formed by meeting a plurality of irregular metal lines.
  • the plurality of atypical metal lines may have an irregular shape made of one of a straight shape, a curved shape, a wavy shape, or a combination thereof.
  • the plurality of atypical metal lines may have irregular spacing between the metal lines.
  • the metal mesh is applied to a non-electrode region other than an electrode
  • the boundary between the electrode and the non-electrode region is separated by disconnecting the metal mesh.
  • the electrode includes at least one selected from Cu, CuOx, and Cu-CuOx, and has two or more layers.
  • An anti-reflection layer is formed on a surface of the cover glass, and the anti-reflection layer may include at least one of an anti-glyce layer, a transmittance layer, and an uneven layer.
  • the antiglea layer may include a polymer and SiO 2 .
  • the cover glass may be a color-changing glass that changes color according to the amount of ultraviolet rays.
  • the color-changing glass may include at least one of a photosensitive material coating layer coated on the surface of the cover glass, a photosensitive material interposed in a powder form on the cover glass, and a photochromic film attached or interposed on the cover glass.
  • the cover glass may have a half mirror layer on one surface.
  • the half mirror layer may be a metal mirror layer in which a metal thin film is stacked on a cover glass in one or multiple layers.
  • the metal thin film may be at least one selected from Al and Ni.
  • a touch sensor including an electrode made of a metal mesh, preparing a cover glass, and attaching the cover glass to an upper portion of the touch sensor.
  • the steps of manufacturing the touch sensor include preparing a transparent substrate, forming a hard coating layer by applying or depositing acrylic polyurethane on the transparent substrate, and sputtering the hard coating layer with a Cu layer, a CuOx layer, and a Cu-CuOx layer.
  • the pattern holes may form a polygonal shape by connecting a plurality of line holes at one point.
  • the line hole may have an irregular shape made of one of a straight shape, a curved shape, a wavy shape, or a combination thereof.
  • Attaching the cover glass to the upper portion of the touch sensor further comprising forming an anti-reflection layer on the surface of the cover glass, attaching the cover glass with the anti-reflection layer formed on the upper portion of the touch sensor, and reflecting on the surface of the cover glass
  • the step of forming the prevention layer may include forming at least one of an anti-glare layer and a transmittance layer on the surface of the cover glass by one of screen printing, sputtering, and e-Beam coating, or etching the surface of the cover glass to form an uneven layer. And forming.
  • Attaching the cover glass to the upper part of the touch sensor further comprising forming the cover glass into a color-changing glass that changes color according to the amount of ultraviolet rays, attaching the color-changing glass to the upper part of the touch sensor, and attaching the cover glass to the ultraviolet ray.
  • a color-changing glass that changes color depending on the amount coating a photosensitive material on the surface of the cover glass with a wet or dry e-Beam coating, attaching or interposing a photochromic film on the cover glass, or a photosensitive material on the cover glass. It is formed including.
  • Attaching the cover glass to the top of the touch sensor further comprising forming a half mirror layer on one side of the cover glass, attaching a cover glass having a half mirror layer formed thereon to the top of the touch sensor,
  • the step of forming the half mirror layer on one surface is formed by applying a sputtering method and targeting at least one selected from Al and Ni to 100 to 200 angstroms ( ⁇ ) on one surface of the cover glass.
  • the electrode of the touch sensor is implemented by applying a metal mesh in the form of a random mesh, a rainbow phenomenon can be reduced by reducing metal reflection, and excellent visibility can be secured.
  • the electrode since the electrode is formed in a two-layer structure of Cu and CuOx, it has good conductivity and can lower the metal reflection intensity, and it is possible to form a fine pattern with a thin line width, thereby increasing transmittance and avoiding collision with the display device. There is an effect of avoiding the phenomenon.
  • a metal mesh is applied to a non-electrode region other than an electrode, a difference in transmittance between the electrode and the non-electrode region is eliminated, thereby improving visibility.
  • the present invention has an effect of reducing the rainbow phenomenon by scattering or extinguishing the reflected light by providing an antireflection layer on the cover glass.
  • the present invention reduces the reflectance of the cover glass by forming the cover glass attached to the upper part of the touch sensor as a color-changing glass that changes color according to the amount of ultraviolet rays, thereby reducing the rainbow phenomenon of sunlight and improving visibility accordingly. Has the effect of being.
  • FIG. 1 is a conceptual diagram showing a touch screen panel according to a first embodiment of the present invention.
  • FIG. 2 is a conceptual diagram showing a touch sensor according to a first embodiment of the present invention.
  • FIG. 3A is an enlarged view of part A of FIG. 2, and FIG. 3B is an enlarged view of part B of FIG. 2.
  • FIG. 4 is an enlarged view of the metal mesh of FIG. 2.
  • FIG. 5 is a conceptual diagram showing a touch sensor according to a modified example of the first embodiment of the present invention.
  • FIG. 6 is an enlarged view of the metal mesh of FIG. 5.
  • FIG. 7 is a block diagram showing the front side of the touch screen panel according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram showing an electrode formed on a transparent substrate according to a first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating a process of forming an electrode on a transparent material according to the first embodiment of the present invention.
  • FIG. 10 is an SEM photograph of the enlarged view of FIG. 4.
  • FIG. 11 is an SEM photograph of FIG. 6.
  • FIG. 12 is an SEM photograph of the enlarged view of FIG. 6.
  • FIG. 13 is an SEM photograph taken by further expanding the width of the metal line of FIG. 10.
  • 14 and 15 are diagrams for comparing whether a rainbow phenomenon occurs when the comparative example and the first embodiment of the present invention are placed under sunlight.
  • 16 is a conceptual diagram showing a touch screen panel according to a second embodiment of the present invention.
  • 17 and 18 are diagrams for comparing whether a rainbow phenomenon occurs when Comparative Examples 1 to 3 and the second embodiment of the present invention are placed under sunlight.
  • 19 to 21 are graphs measuring transmittance of the second embodiment of the present invention compared to the comparative examples.
  • FIG. 22 is an exploded perspective view showing a touch screen panel according to a third embodiment of the present invention.
  • FIG. 23 is a block diagram showing a touch screen panel according to a third embodiment of the present invention.
  • FIG. 24 is a block diagram showing a touch screen panel according to a modified example of the third embodiment of the present invention.
  • 25 is a block diagram showing a touch screen panel according to another modified example of the third embodiment of the present invention.
  • 26 is a diagram illustrating a process of forming an electrode of a touch sensor in a touch screen panel according to a third embodiment of the present invention.
  • 27 is an example of a method of forming a color-changing glass in a touch screen panel according to a third embodiment of the present invention.
  • FIG. 28 is an exploded perspective view showing a touch screen panel according to a fourth embodiment of the present invention.
  • 29 is a block diagram showing a touch screen panel according to a fourth embodiment of the present invention.
  • FIG. 30 is a block diagram showing a touch screen panel according to a modification example of the fourth embodiment of the present invention.
  • FIG. 31 is a view showing a process of forming an electrode of a touch sensor in a touch screen panel according to a fourth embodiment of the present invention.
  • the present invention is the first embodiment in which the electrode is implemented as a metal mesh in the form of a random mesh
  • the second embodiment is in which the electrode is implemented as a metal mesh in the form of a random mesh and a reflective ring layer is applied to the cover glass
  • a third embodiment and a fourth embodiment in which a half mirror layer is applied to the cover glass.
  • the touch screen panel 20 of the present invention is disposed above the display 10 to perform a touch screen function.
  • the display 10 includes a display panel (LCD) and AMOLED.
  • the touch screen panel 20 includes a touch sensor 100 and a cover glass 200 disposed on the touch sensor 100.
  • the touch sensor 100 can sense a touch by forming the metal mesh 120a on the transparent substrate 110 to implement the electrode 120.
  • Metal mesh is a method of configuring electrodes by arranging metal materials in a grid pattern or cross pattern.
  • the electrode 120 to which the metal mesh 120a is applied has good conductivity, good transmittance, and bendable because it uses metal, so it is useful for flexible displays, and has a lower price than ITO, so it has a price competitiveness and excellent touch sensitivity.
  • the metal mesh 120a implementing the electrode 120 is formed in a random mesh shape.
  • the random mesh is produced in a form in which the metal lines of the metal mesh 120a implementing the electrode 120 are irregularly formed, and a rainbow phenomenon that may occur when the metal lines forming the electrode 120 appear regularly (optical bands). ) To prevent.
  • the rainbow phenomenon may be caused by haze (light spreading) of incident sunlight or external light, and when the touch screen panel 20 is combined with the display 10, the electrodes of the regular shape and the device of the display 10 (color It may appear due to collisions while overlapping with the filter's RGB pixels).
  • the touch sensor 100 implements the electrode 120 by applying a metal mesh 120a in the form of a random mesh.
  • the metal mesh 120a is formed as thin as possible.
  • the metal mesh 120a implementing the electrode 120 is formed in a random mesh shape and the line width is made thin, it is possible to avoid overlapping the device of the display 10 with the line width of the electrode as much as possible, as well as the effect of reducing metal reflection. It can prevent the rainbow phenomenon from occurring.
  • the thinner the line width the greater the amount of light passes through, so the transmittance increases and the power consumption decreases accordingly.
  • the metal mesh 120a implementing the electrode 120 is formed in a grid shape by intersecting two metal lines. In addition, the metal mesh 120a has an irregular metal line.
  • the touch sensor 100 may be formed by overlapping two electrodes 121 and 122 intersecting.
  • the two electrodes that intersect include a plurality of first electrodes 121 and a plurality of second electrodes 122.
  • the first electrode 121 is arranged in one direction on the first transparent substrate 111.
  • the second electrodes 122 are arranged in two directions crossing one direction on the second transparent substrate 112.
  • the first and second directions may mean the x-axis and y-axis directions.
  • the first electrode 121 may function as an Rx electrode (reception electrode), and the second electrode 122 may function as a Tx electrode (transmission electrode).
  • the first electrode 121 and the second electrode 122 are implemented as a metal mesh 120a in the form of a random mesh.
  • the metal mesh 120a forming the first electrode 121 and the second electrode 122 is formed of a plurality of irregular metal lines, and the metal lines are It becomes a structure that meets and forms a polygon.
  • a bold square box is used to separate the electrode portions Tx and Rx from the non-electrode areas (dummy), and to describe the portion where the metal mesh 120a is disconnected.
  • the plurality of atypical metal lines may correspond to lines of various shapes formed of one of a straight shape, a curved shape, a wavy shape, or a combination thereof. Accordingly, each gap between the metal lines may form an irregular gap.
  • the direction in which the metal line is formed may be a direction having a predetermined angle with respect to one edge of the transparent material. The irregular metal line reduces reflection of the metal, thereby reducing reflection of sunlight, thereby preventing the occurrence of a rainbow phenomenon.
  • the atypical metal line is formed in a direction having a predetermined angle with respect to one edge of the transparent substrate 110, overlapping with the device of the display 10 can be avoided as much as possible.
  • the metal mesh 120a is also applied to the non-electrode area (dummy) other than the electrode between the electrode 120 and the electrode 120, and the metal mesh 120a is disconnected between the electrode 120 and the non-electrode area (dummy). It is distinguished.
  • the signal line is connected to the metal mesh forming the electrode 120, and the signal line is not connected to the metal mesh in the non-electrode region.
  • the shape of the metal mesh 120a is visible to the naked eye, and thus visibility becomes a problem. Therefore, in order to eliminate the difference in transmittance between the electrode 120 and the non-electrode area (dummy), a metal mesh is also applied to the non-electrode area (dummy) so that the electrode 120 and the non-electrode area (dummy) can be seen without distinction. In addition, the electrode 120 is separated from the non-electrode area (dummy) by utilizing the disconnection (breaking) of the metal mesh 120a.
  • the first electrode 121 is implemented by disconnecting the metal mesh 120a at a set interval in the x-axis direction.
  • the metal mesh is also applied to the non-electrode regions between the first electrodes 121. Since the metal mesh between the first electrode 121 and the non-electrode area (dummy) is broken, the signal is not activated even when the non-electrode area (dummy) is touched.
  • the non-electrode area (dummy) is disconnected every predetermined section even in the length direction to prevent connection with the first electrode 121.
  • the second electrode 122 is implemented by disconnecting the metal mesh 120a at a set interval in the y-axis direction.
  • the metal mesh 120a is also applied to a non-electrode dummy between the second electrodes 122. Since the metal mesh forming the second electrode 122 and the metal mesh of the non-electrode area (dummy) are broken, the signal is not activated even when the non-electrode area (dummy) is touched.
  • the non-electrode area (dummy) is disconnected for each predetermined section in the length direction to prevent connection with the second electrode 122.
  • the metal mesh 120a implementing the electrode 120 forms a polygon where four metal lines 120a-1, 120a-2, 120a-3, 120a-4 meet, and the polygon has a square shape. It may be (lattice shape). A plurality of squares may be included in one electrode, and since the squares meet at a point and are connected to each other, touch sensitivity is excellent.
  • the first electrode 121 and the second electrode 122 are implemented as a random mesh-shaped metal mesh 120a', and the metal mesh 120a' includes three Metal lines can meet to form a polygon.
  • metal mesh 120a' differs only in the shape of the metal mesh 120a' compared to the above-described embodiment.
  • four metal lines meet to form a square-shaped mesh pattern
  • three metal lines meet to form a pentagonal or hexagonal mesh pattern. .
  • the line width at the point where the metal lines meet can be implemented to be thinner than that of four metal lines to form a polygonal mesh pattern.
  • the metal line 120a'- at a portion where the three metal lines 120a'-1, 120a'-2, 120a'-2 meet.
  • the angle at which 1) meets the metal line 120a'-2 forms an obtuse angle.
  • the angle of the portion where the metal line 120a'-1 and the metal line 120a'-2 meet is an obtuse angle, the etching of the portion where the metal lines 120a'-1, 120a'-2, 120a'-2 meet is more It is easy to implement a thin and precise line width at the point where the metal lines 120a'-1, 120a'-2, 120a'-2 meet.
  • the angle of the portion where the metal line 120a-1 and the metal line 120a-2 meet is approximately a right angle, it is advantageous compared to other embodiments for pattern formation, but other embodiments Compared to that, precise etching may be difficult. Therefore, the line width at the point where the metal lines meet in the metal mesh can be more accurately implemented in other embodiments.
  • the metal lines forming the metal mesh 120a shown in FIGS. 4 and 6 have a line width of 3 ⁇ m or less.
  • the metal line has a line width of 2.6 mu m or less.
  • the metal mesh 120a has the advantage of a low resistance value in terms of metal properties, but has a disadvantage in that light is hardly transmitted. Therefore, when a metal line of a metal mesh is formed in a very fine thickness of several ⁇ m so as not to be visible on the transparent substrate 110 and manufactured in the form of an electrode film, visibility is improved. As for the metal mesh, the thinner the line width, the better the transmittance and the better the visibility.
  • the first transparent substrate 111 and the second transparent substrate 112 may be formed of any one of a PET film, a PEN film, and a PI film.
  • PET film has ultra-high transparency and can provide excellent visibility by efficiently transmitting visible light.
  • PEN film and PI film have ultra-high transparency and excellent visibility.
  • the touch sensor 100 attaches the first transparent substrate 111 on which the first electrode 121 is formed and the second transparent substrate 112 on which the second electrode 122 is formed with an adhesive film 130. ) To make it.
  • the first electrode 121 may function as an Rx electrode (reception electrode), and the second electrode 122 may function as a Tx electrode (transmission electrode).
  • the touch screen panel 20 is manufactured by laminating the touch sensor 100 with a cover glass 200 and an adhesive film 140 and is attached to the upper portion of the display 10.
  • the adhesive films 130 and 140 may use an optically transparent adhesive film (OCA).
  • the first electrode 121 and the second electrode 122 are overlapped to form a grid-shaped touch sensor 100, and the first electrode 121 and the second electrode 122 are formed of a metal mesh having a random mesh structure. do.
  • the non-electrode region between the first electrodes 121 and the non-electrode region between the second electrodes 122 are formed of a metal mesh having a random mesh structure, but each of the first and second electrodes 121 and 122 Is disconnected.
  • the electrode 120 in a metal mesh shape including the first electrode 121 and the second electrode 122 is formed of at least one selected from Cu, CuOx, and Cu-CuOx.
  • the metal mesh electrode 120 may be formed in a two-layer structure of a Cu layer (b) and a CuO layer (c). The two-layer structure is to increase the adhesion between the electrode 120 and the transparent substrate and to form a fine and uniform line width.
  • a hard coating layer (a) is formed between the transparent substrate 110 and the electrode 120.
  • the hard coating layer (a) may be formed by coating a hard coating solution on the transparent substrate 110.
  • the hard coating layer (a) prevents contamination of the transparent substrate 110 and makes the transparent substrate 110 with high hardness so that scratches are difficult to occur.
  • the hard coating layer (a) allows the electrode 120 to be well adhered to the surface of the transparent substrate 110, has less light interference pattern, and improves visibility.
  • the hard coating layer (a) may be formed of acrylic polyurethane.
  • the hard coating layer may be formed of a polyester-based resin, a polyurethane-based resin, or the like.
  • the hard coating layer (a) exhibits high adhesion even without roughening the surface of the transparent substrate 110.
  • the metal mesh 120a is in the form of an irregular random mesh, as shown in FIGS. 4 and 6, the spacing between the metal lines forms an irregular spacing.
  • the irregular spacing between the metal lines prevents interference with the device of the display and reduces the metal reflection (by lowering the reflection intensity) to prevent the rainbow phenomenon.
  • the cover glass 200 may be attached to the upper portion of the touch sensor 100 via an adhesive film 140.
  • the cover glass 200 may be formed of a tempered glass material. Tempered glass is resistant to impacts and scratches and has high light transmittance, so you can see a brighter and cleaner screen.
  • the touch screen panel implements electrodes by applying a metal mesh in the form of a random mesh to the touch sensor 100, reflection of sunlight is reduced and a rainbow phenomenon is prevented from occurring.
  • the metal mesh is applied to the non-electrode area as well as the non-electrode and the metal mesh is disconnected to separate the electrode and the non-electrode area, the electrode 120 and the non-electrode area (dummy) can be seen without distinction to improve visibility. .
  • the manufacturing method of the touch screen panel includes the steps of forming an electrode by applying a metal mesh and manufacturing the touch sensor 100 so that the metal mesh 120a is formed in a random mesh shape, and the display Attaching the touch sensor 100 to the upper part of (10) and attaching the cover glass 200 to the upper part of the touch sensor 100.
  • the manufacturing of the touch sensor includes forming a first electrode 121 implemented as a metal mesh on the first transparent substrate 110, and forming a first electrode 121 implemented as a metal mesh on the second transparent substrate 110, and the first electrode ( 121) and forming the second electrode 122 intersecting.
  • the first electrode 121 and the second electrode 122 are formed on each of the transparent substrates 111 and 112 in the same manner, and the transparent substrates 111 and 112 are formed according to the direction in which the metal meshes 120a and 120a' are disconnected (broken). ) Is formed in one direction and two directions.
  • the electrode 120 is formed on each transparent substrate 110, and a hard coating layer (a) is provided between the transparent substrate 110 and the electrode 120.
  • the electrode 120 includes at least one selected from Cu, CuOx, and Cu-CuOx and has two or more layers, and the hard coating layer (a) may be formed of acrylic polyurethane.
  • Forming the electrode 120 on each transparent substrate 110 includes forming a hard coating layer (a) on the transparent substrate 110 and forming an electrode layer on the hard coating layer (a), as shown in FIG. 9. (b,c) and depositing a photoresist layer (d) on the electrode layers (b,c).
  • it includes the step of forming a mask (e) in which a pattern hole (p) is formed on the photoresist layer (d), and the portion corresponding to the pattern hole (p) is left by exposure, development, and etching, and the remaining portion is removed. It includes the step of. Further, it includes the step of etching the photoresist layer (d) remaining on the electrode layers (b, c).
  • the transparent substrate 110 may be a PET film.
  • the hard coating layer (a) may be formed by applying or depositing acrylic polyurethane on the transparent substrate 110.
  • the hard coating layer (a) may be formed in a thickness range of 5 ⁇ m to 15 ⁇ m.
  • the electrode layers (b,c) include a Cu layer (b) and a CuO layer (c) stacked on top of the Cu layer (b).
  • a Cu layer (b) is formed on the hard coating layer (a) by a sputtering method, and a CuO layer (c) is formed on the Cu layer (b) by a sputtering method.
  • the Cu layer (b) becomes a seed layer.
  • the Cu layer (b) may be formed to a thickness of 200 to 400 ⁇ m, and the CuO layer may be formed to a thickness of 5 ⁇ m. Since the Cu layer has a reflectance of about 50% and the CuO layer has a reflectance of about 15%, forming a CuO layer on top of the Cu layer can ensure conductivity while lowering the reflectance.
  • the electrode layer is formed by the sputtering method, it is easier to form the electrode layers (b,c) into a thin film.
  • the sputtering method is performed in a roll to roll sputter (roll to roll), and by applying an ion beam treatment (Iin Beam treatment), it has a function to modify the surface and strengthen the adhesion of the electrode.
  • Iin Beam treatment an ion beam treatment
  • the photoresist layer (d) may use a photosensitive polymer.
  • the photosensitive polymer undergoes a curing reaction to ultraviolet rays.
  • the step of laminating the photoresist layer (d) on the electrode layers (b,c) may use a method of coating in a roll to roll system.
  • a photoresist layer (d) may be formed by electrospinning a liquid photoresist on the electrode layers (b,c) of the transparent substrate 110 in a continuous process in a roll-to-roll system. Electrospinning is for forming a uniform photoresist layer (d). In the continuous roll-to-roll process, 1 to 2 ⁇ m of photoresist can be continuously coated.
  • the photoresist layer (d) may be formed to a thickness of 3.5 ⁇ m.
  • the pattern hole p is for forming a metal mesh.
  • the pattern hole (p) is a hole previously designed to form a metal mesh and is formed of a plurality of irregularly formed lines.
  • the pattern hole p corresponds to the irregular metal line.
  • the width of the pattern holes p may be 3 ⁇ m or less, preferably 2.6 ⁇ m or less, and the spacing between the pattern holes may be 11 ⁇ m or less.
  • a plurality of line holes are connected at one point to form a polygonal shape.
  • the line hole may have an irregular shape made of one of a straight shape, a curved shape, a wavy shape, or a combination thereof.
  • an image of the electrode 120 formed of a metal mesh is realized.
  • a mask (e) in which pattern holes (p) for forming an electrode 120 are formed is disposed on the photoresist layer (d), and ultraviolet rays (UV) are irradiated using an exposure machine.
  • UV ultraviolet rays
  • the development is to dissolve and remove the uncured portion of the photoresist layer (d) with a developer and leave the elapsed portion of the photoresist layer (d) to form an image of the electrode 120 on the transparent substrate 110.
  • Copper chloride may be used as a developer.
  • a washing process is performed to remove the developer.
  • Etching is to remove the electrode layers (b, c) in the portion corresponding to the portion from which the photoresist layer (d) has been removed.
  • the etchant may be ferric chloride (FeCl 2 ), copper chloride (CuCl 2 ), or the like.
  • Ferric chloride (FeCl 2 ), copper chloride (CuCl 2 ), etc. are quickly etched and no residue remains after etching.
  • Cu and CuO have excellent etch properties, no seed residue remains, so it is easier to form fine patterns. After exposure, development, and etching, the part corresponding to the pattern hole p remains and the rest is removed.
  • the step of etching the photoresist layer (d) remaining on the electrode layer is to remove the photoresist layer (d) and leave the electrode 120 on the transparent substrate 110. Etching may use a photo etchant. When the photoresist layer (d) remaining on the electrode layers (b,c) is etched, an electrode having a two-layer structure made of a Cu layer and CuO is exposed.
  • SiOx and NbOx may be further stacked on top of the CuO layer in multiple layers to lower the reflectance of the metal.
  • SiOx and NbOx may be stacked on top of the CuO layer by vapor deposition or sputtering, so that the thickness is about 40 ⁇ m.
  • the electrode 120 may be formed of a polygonal metal mesh 120 and 120a formed by meeting four irregular metal lines at one point or three at one point (see FIGS. 3 and 6 ).
  • a metal mesh is also formed in a non-electrode region other than the electrode, and the electrode and the metal mesh in the non-electrode region are designed to be disconnected during the design process, so that the electrode and the metal mesh 120a in the non-electrode region are not connected to each other.
  • the first electrode 121 implemented as metal meshes 120a and 120a' and arranged in one direction on the first transparent substrate 111 is formed, and the metal mesh is formed on the second transparent substrate 112.
  • the second electrode 122 that is implemented as (120a, 120a') and arranged in two directions crossing the first direction, the first transparent substrate so that the first electrode 121 and the second electrode 122 cross each other.
  • the touch sensor 100 may be manufactured by overlapping the (111) and the second transparent material (112).
  • FIG. 10 shows the SEM image of the enlarged view of FIG. 4
  • FIG. 11 shows the SEM image of FIG. 6
  • FIG. 12 shows the SEM image of the enlarged view of FIG. 6,
  • FIG. 13 The SEM image taken by further magnifying the width of the metal line is shown.
  • FIG. 10 shows that four metal lines meet to form a polygonal metal mesh
  • FIG. 11 shows that three metal lines meet to form a plurality of polygonal (hexagonal random shapes) metal meshes.
  • the pattern width is 2.5 ⁇ m on average and does not exceed 3 ⁇ m on average.
  • the metal line forming the metal mesh can be manufactured to have a line width of 2.6 ⁇ m or less.
  • the thin line width of the metal line can be realized by using exposure, development, and etching, and the thin line width and the random pattern design of the metal mesh avoid moiré and reduce the rainbow phenomenon to improve visibility.
  • the metal line of the metal mesh is a straight line and the metal line is orthogonal to form a regular grid shape. It is a shape that intersects to form an irregular grid shape.
  • the touch screen panel of the comparative example exhibits a rainbow phenomenon
  • the touch screen panel of the embodiment exhibits a rainbow phenomenon compared to the comparative example.
  • the reflectance was 11%
  • the channel resistance was 1k ⁇ at 20inch
  • the transmittance was measured as 90%.
  • the embodiment is excellent in channel resistance as well.
  • a rainbow phenomenon is improved by applying a random mesh (amorphous metal mesh) to electrodes of a touch sensor. From the above experimental results, it is confirmed that the rainbow phenomenon can be improved without affecting the transmittance by forming the electrode by forming the metal mesh in the form of a random mesh.
  • the touch screen panel 20 of the present invention is disposed on the display 10 to perform a touch screen function.
  • the display 10 includes a display panel (LCD) and AMOLED.
  • the touch screen panel 20 includes a touch sensor 100 and a cover glass 200 disposed on the touch sensor 100.
  • the touch sensor 100 can sense a touch by forming the metal mesh 120a on the transparent substrate 110 to implement the electrode 120.
  • Metal mesh is a method of configuring electrodes by arranging metal materials in a grid pattern or cross pattern.
  • the electrode 120 to which the metal mesh 120a is applied has good conductivity, good transmittance, and bendable because it uses metal, so it is useful for flexible displays, and has a lower price than ITO, so it has a price competitiveness and excellent touch sensitivity.
  • the metal mesh 120a implementing the electrode 120 is formed in a random mesh shape.
  • the random mesh is produced in a form in which the metal lines of the metal mesh 120a implementing the electrode 120 are irregularly formed, and a rainbow phenomenon that may occur when the metal lines forming the electrode 120 appear regularly (optical bands). ) To prevent.
  • the rainbow phenomenon may be caused by haze (light spreading) of incident sunlight or external light, and when the touch screen panel 20 is combined with the display 10, the electrodes of the regular shape and the device of the display 10 (color It may appear due to collisions while overlapping with the filter's RGB pixels).
  • the touch sensor 100 implements the electrode 120 by applying a metal mesh 120a in the form of a random mesh.
  • the metal mesh 120a is formed as thin as possible.
  • the metal mesh 120a implementing the electrode 120 is formed in a random mesh shape and the line width is made thin, it is possible to avoid overlapping the device of the display 10 with the line width of the electrode as much as possible, as well as the effect of reducing metal reflection. It can prevent the rainbow phenomenon from occurring.
  • the thinner the line width the greater the amount of light passes through, so the transmittance increases and the power consumption decreases accordingly.
  • the metal mesh 120a implementing the electrode 120 is formed in a grid shape by intersecting two metal lines. In addition, the metal mesh 120a has an irregular metal line.
  • the touch sensor 100 may be formed by overlapping two electrodes 121 and 122 intersecting.
  • the two electrodes that intersect include a plurality of first electrodes 121 and a plurality of second electrodes 122.
  • the first electrode 121 is arranged in one direction on the first transparent substrate 111.
  • the second electrodes 122 are arranged in two directions crossing one direction on the second transparent substrate 112.
  • the first and second directions may mean the x-axis and y-axis directions.
  • the first electrode 121 may function as an Rx electrode (reception electrode), and the second electrode 122 may function as a Tx electrode (transmission electrode).
  • the first electrode 121 and the second electrode 122 are implemented as a metal mesh 120a in the form of a random mesh.
  • the metal mesh 120a forming the first electrode 121 and the second electrode 122 is formed of a plurality of atypical metal lines, and the metal lines meet to form a polygon. It becomes a structure to form.
  • a bold square box is used to separate the electrode portions Tx and Rx from the non-electrode areas (dummy), and to describe the portion where the metal mesh 120a is disconnected.
  • the plurality of atypical metal lines may correspond to lines of various shapes formed of one of a straight shape, a curved shape, a wavy shape, or a combination thereof. Accordingly, each gap between the metal lines may form an irregular gap.
  • the direction in which the metal line is formed may be a direction having a predetermined angle with respect to one edge of the transparent material. The irregular metal line reduces reflection of the metal, thereby reducing reflection of sunlight, thereby preventing the occurrence of a rainbow phenomenon.
  • the atypical metal line is formed in a direction having a predetermined angle with respect to one edge of the transparent substrate 110, overlapping with the device of the display 10 can be avoided as much as possible.
  • the metal mesh 120a is also applied to the non-electrode area (dummy) other than the electrode between the electrode 120 and the electrode 120, and the metal mesh 120a is disconnected between the electrode 120 and the non-electrode area (dummy). It is distinguished.
  • the signal line is connected to the metal mesh forming the electrode 120, and the signal line is not connected to the metal mesh in the non-electrode region.
  • the shape of the metal mesh 120a is visible to the naked eye, and thus visibility becomes a problem. Therefore, in order to eliminate the difference in transmittance between the electrode 120 and the non-electrode area (dummy), a metal mesh is also applied to the non-electrode area (dummy) so that the electrode 120 and the non-electrode area (dummy) can be seen without distinction. In addition, the electrode 120 is separated from the non-electrode area (dummy) by utilizing the disconnection (breaking) of the metal mesh 120a.
  • the first electrode 121 is implemented by disconnecting the metal mesh 120a at a set interval in the x-axis direction.
  • the metal mesh is also applied to the non-electrode regions between the first electrodes 121. Since the metal mesh between the first electrode 121 and the non-electrode area (dummy) is broken, the signal is not activated even when the non-electrode area (dummy) is touched.
  • the non-electrode area (dummy) is disconnected every predetermined section even in the length direction to prevent connection with the first electrode 121.
  • the second electrode 122 is implemented by disconnecting the metal mesh 120a at a set interval in the y-axis direction.
  • the metal mesh 120a is also applied to a non-electrode dummy between the second electrodes 122. Since the metal mesh forming the second electrode 122 and the metal mesh of the non-electrode area (dummy) are broken, the signal is not activated even when the non-electrode area (dummy) is touched.
  • the non-electrode area (dummy) is disconnected for each predetermined section in the length direction to prevent connection with the second electrode 122.
  • the metal mesh 120a implementing the electrode 120 forms a polygon where four metal lines 120a-1, 120a-2, 120a-3, 120a-4 meet, and the polygon has a square shape. It may be (lattice shape). A plurality of squares may be included in one electrode, and since the squares meet at a point and are connected to each other, touch sensitivity is excellent.
  • the first electrode 121 and the second electrode 122 are implemented as a random mesh-shaped metal mesh 120a', and the metal mesh 120a' includes three Metal lines can meet to form a polygon.
  • metal mesh 120a' differs only in the shape of the metal mesh 120a' compared to the above-described embodiment.
  • four metal lines meet to form a square-shaped mesh pattern
  • three metal lines meet to form a pentagonal or hexagonal mesh pattern. .
  • the line width at the point where the metal lines meet can be implemented to be thinner than that of four metal lines to form a polygonal mesh pattern.
  • the metal line 120a'- at a portion where the three metal lines 120a'-1, 120a'-2, 120a'-2 meet.
  • the angle at which 1) meets the metal line 120a'-2 forms an obtuse angle.
  • the angle of the portion where the metal line 120a'-1 and the metal line 120a'-2 meet is an obtuse angle, the etching of the portion where the metal lines 120a'-1, 120a'-2, 120a'-2 meet is more It is easy to implement a thin and precise line width at the point where the metal lines 120a'-1, 120a'-2, 120a'-2 meet.
  • the angle of the portion where the metal line 120a-1 and the metal line 120a-2 meet is approximately a right angle, it is advantageous compared to other embodiments for pattern formation, but other embodiments Compared to that, precise etching may be difficult. Therefore, the line width at the point where the metal lines meet in the metal mesh can be more accurately implemented in other embodiments.
  • the metal lines forming the metal mesh 120a shown in FIGS. 4 and 6 have a line width of 3 ⁇ m or less.
  • the metal line has a line width of 2.6 mu m or less.
  • the metal mesh 120a has the advantage of a low resistance value in terms of metal properties, but has a disadvantage in that light is hardly transmitted. Therefore, when a metal line of a metal mesh is formed in a very fine thickness of several ⁇ m so as not to be visible on the transparent substrate 110 and manufactured in the form of an electrode film, visibility is improved. As for the metal mesh, the thinner the line width, the better the transmittance and the better the visibility.
  • the first transparent substrate 111 and the second transparent substrate 112 may be formed of any one of a PET film, a PEN film, and a PI film.
  • PET film has ultra-high transparency and can provide excellent visibility by efficiently transmitting visible light.
  • PEN film and PI film have ultra-high transparency and excellent visibility.
  • the touch sensor 100 attaches the first transparent substrate 111 on which the first electrode 121 is formed and the second transparent substrate 112 on which the second electrode 122 is formed with an adhesive film 130. ) To make it.
  • the first electrode 121 may function as an Rx electrode (reception electrode), and the second electrode 122 may function as a Tx electrode (transmission electrode).
  • the touch screen panel 20 is manufactured by laminating the touch sensor 100 with a cover glass 200 and an adhesive film 140 and is attached to the upper portion of the display 10.
  • the adhesive films 130 and 140 may use an optically transparent adhesive film (OCA).
  • the first electrode 121 and the second electrode 122 are overlapped to form a grid-shaped touch sensor 100, and the first electrode 121 and the second electrode 122 are formed of a metal mesh having a random mesh structure. do.
  • the non-electrode region between the first electrodes 121 and the non-electrode region between the second electrodes 122 are formed of a metal mesh having a random mesh structure, but each of the first and second electrodes 121 and 122 Is disconnected.
  • the electrode 120 in a metal mesh shape including the first electrode 121 and the second electrode 122 is formed of at least one selected from Cu, CuOx, and Cu-CuOx.
  • the metal mesh electrode 120 may be formed in a two-layer structure of a Cu layer (b) and a CuO layer (c). The two-layer structure is to increase the adhesion between the electrode 120 and the transparent substrate and to form a fine and uniform line width.
  • a hard coating layer (a) is formed between the transparent substrate 110 and the electrode 120.
  • the hard coating layer (a) may be formed by coating a hard coating solution on the transparent substrate 110.
  • the hard coating layer (a) prevents contamination of the transparent substrate 110 and makes the transparent substrate 110 with high hardness so that scratches are difficult to occur.
  • the hard coating layer (a) allows the electrode 120 to be well adhered to the surface of the transparent substrate 110, has less light interference pattern, and improves visibility.
  • the hard coating layer (a) may be formed of acrylic polyurethane.
  • the hard coating layer may be formed of a polyester-based resin, a polyurethane-based resin, or the like.
  • the hard coating layer (a) exhibits high adhesion even without roughening the surface of the transparent substrate 110.
  • the metal mesh 120a is in the form of an irregular random mesh, as shown in FIGS. 4 and 6, the spacing between the metal lines forms an irregular spacing.
  • the irregular spacing between the metal lines prevents interference with the device of the display and reduces the metal reflection (by lowering the reflection intensity) to prevent the rainbow phenomenon.
  • the cover glass 200 may be attached to the upper portion of the touch sensor 100 via an adhesive film 140.
  • the cover glass 200 may be formed of a tempered glass material. Tempered glass is resistant to impacts and scratches and has high light transmittance, so you can see a brighter and cleaner screen.
  • the cover glass 200 has an antireflection layer 210 formed on its surface.
  • the antireflection layer 210 is formed to a thickness of 3 to 5 ⁇ m.
  • the antireflection layer 210 may include at least one of an anti-glare layer, a transmittance layer, and an uneven layer.
  • the anti-glare layer improves the rainbow phenomenon by scattering the reflected light.
  • the anti-glare layer contains a polymer and SiO 2 .
  • SiO 2 contains 3 to 4% by weight based on the total weight of the polymer.
  • acrylic (PMMA) is used as the polymer.
  • SiO 2 is contained in an amount of less than 3% by weight of the total weight of the polymer, the reflected light scattering effect is insufficient, and when it exceeds 4% by weight, the haze increases and the sharpness decreases.
  • the transmittance layer improves the rainbow phenomenon by alternately stacking a low transmittance layer (eg, a refractive index around 1.45) and a high transmittance layer (eg, a refractive index around 1.95) on the cover glass 200 to eliminate reflection.
  • the transmittance layer may include SiOx and NbOx.
  • the transmittance layer may be formed in a two-layer structure of SiOx and NbOx.
  • the uneven layer improves the rainbow phenomenon by scattering light to reduce the specular reflectance.
  • the anti-glare layer and the transmittance layer may be formed on the surface of the cover glass by any one of screen printing, sputtering, and e-Beam coating.
  • the uneven layer may be formed by etching the surface of the cover glass.
  • Screen printing can form a uniform anti-glare layer or transmittance layer because it is possible to apply a polymer and a paste on a large area.
  • the anti-glare layer and the transmittance layer can be cured with UV after application.
  • the antireflection layer 210 may be applied to the electrode of the touch sensor 100, but when applied to the electrode of the touch sensor 100, the decrease in transmittance is greater than when applied to the cover glass, and there is no effect of improving the rainbow phenomenon. Therefore, the anti-reflection layer 210 is not applied to the touch sensor 100 but is applied to the cover glass 200.
  • the touch screen panel implements electrodes by applying a metal mesh in the form of a random mesh to the touch sensor 100, reflection of sunlight is reduced and a rainbow phenomenon is prevented from occurring.
  • the metal mesh is applied to the non-electrode area as well as the non-electrode and the metal mesh is disconnected to separate the electrode and the non-electrode area, the electrode 120 and the non-electrode area (dummy) can be seen without distinction to improve visibility. .
  • the touch screen panel prevents the occurrence of a rainbow phenomenon by forming an antireflection layer 210 on the cover glass 200 to scatter or extinguish the reflected light.
  • the touch screen panel manufacturing method includes the steps of forming an electrode by applying a metal mesh and manufacturing the touch sensor 100 such that the metal mesh 120a is formed in a random mesh shape, and a cover glass Forming the anti-reflection layer 210 on the surface of 200, and attaching the touch sensor 100 to the upper portion of the display 10, and a cover glass having an anti-reflection layer 210 formed on the upper portion of the touch sensor 100 ( 200).
  • the manufacturing of the touch sensor includes forming a first electrode 121 implemented as a metal mesh on the first transparent substrate 110, and forming a first electrode 121 implemented as a metal mesh on the second transparent substrate 110, and the first electrode ( 121) and forming the second electrode 122 intersecting.
  • the first electrode 121 and the second electrode 122 are formed on each of the transparent substrates 111 and 112 in the same manner, and the transparent substrates 111 and 112 are formed according to the direction in which the metal meshes 120a and 120a' are disconnected (broken). ) Is formed in one direction and two directions.
  • the electrode 120 is formed on each transparent substrate 110, and a hard coating layer (a) is provided between the transparent substrate 110 and the electrode 120.
  • the electrode 120 includes at least one selected from Cu, CuOx, and Cu-CuOx and has two or more layers, and the hard coating layer (a) may be formed of acrylic polyurethane.
  • Forming the electrode 120 on each transparent substrate 110 the step of forming a hard coating layer (a) on the transparent substrate 110 and the electrode layer on the hard coating layer (a) ( It includes forming b,c) and depositing a photoresist layer (d) on the electrode layers (b,c).
  • the transparent substrate 110 may be a PET film.
  • the hard coating layer (a) may be formed by applying or depositing acrylic polyurethane on the transparent substrate 110.
  • the hard coating layer (a) may be formed in a thickness range of 5 ⁇ m to 15 ⁇ m.
  • the electrode layers (b,c) include a Cu layer (b) and a CuO layer (c) stacked on top of the Cu layer (b).
  • a Cu layer (b) is formed on the hard coating layer (a) by a sputtering method, and a CuO layer (c) is formed on the Cu layer (b) by a sputtering method.
  • the Cu layer (b) becomes a seed layer.
  • the Cu layer (b) may be formed to a thickness of 200 to 400 ⁇ m, and the CuO layer may be formed to a thickness of 5 ⁇ m. Since the Cu layer has a reflectance of about 50% and the CuO layer has a reflectance of about 15%, forming a CuO layer on top of the Cu layer can ensure conductivity while lowering the reflectance.
  • the electrode layer is formed by the sputtering method, it is easier to form the electrode layers (b,c) into a thin film.
  • the sputtering method is performed in a roll to roll sputter (roll to roll), and by applying an ion beam treatment (Iin Beam treatment), it has a function to modify the surface and strengthen the adhesion of the electrode.
  • Iin Beam treatment an ion beam treatment
  • the photoresist layer (d) may use a photosensitive polymer.
  • the photosensitive polymer undergoes a curing reaction to ultraviolet rays.
  • the step of laminating the photoresist layer (d) on the electrode layers (b,c) may use a method of coating in a roll to roll system.
  • a photoresist layer (d) may be formed by electrospinning a liquid photoresist on the electrode layers (b,c) of the transparent substrate 110 in a continuous process in a roll-to-roll system. Electrospinning is for forming a uniform photoresist layer (d). In the continuous roll-to-roll process, 1 to 2 ⁇ m of photoresist can be continuously coated.
  • the photoresist layer (d) may be formed to a thickness of 3.5 ⁇ m.
  • the pattern hole p is for forming a metal mesh.
  • the pattern hole (p) is a hole previously designed to form a metal mesh and is formed of a plurality of irregularly formed lines.
  • the pattern hole p corresponds to the irregular metal line.
  • the width of the pattern holes p may be 3 ⁇ m or less, preferably 2.6 ⁇ m or less, and the spacing between the pattern holes may be 11 ⁇ m or less.
  • a plurality of line holes are connected at one point to form a polygonal shape.
  • the line hole may have an irregular shape made of one of a straight shape, a curved shape, a wavy shape, or a combination thereof.
  • an image of the electrode 120 formed of a metal mesh is realized.
  • a mask (e) in which pattern holes (p) for forming an electrode 120 are formed is disposed on the photoresist layer (d), and ultraviolet rays (UV) are irradiated using an exposure machine.
  • UV ultraviolet rays
  • the development is to dissolve and remove the uncured portion of the photoresist layer (d) with a developer and leave the elapsed portion of the photoresist layer (d) to form an image of the electrode 120 on the transparent substrate 110.
  • Copper chloride may be used as a developer.
  • a washing process is performed to remove the developer.
  • Etching is to remove the electrode layers (b, c) in the portion corresponding to the portion from which the photoresist layer (d) has been removed.
  • the etchant may be ferric chloride (FeCl 2 ), copper chloride (CuCl 2 ), or the like.
  • Ferric chloride (FeCl 2 ), copper chloride (CuCl 2 ), etc. are quickly etched and no residue remains after etching.
  • Cu and CuO have excellent etch properties, no seed residue remains, so it is easier to form fine patterns. After exposure, development, and etching, the part corresponding to the pattern hole p remains and the rest is removed.
  • the step of etching the photoresist layer (d) remaining on the electrode layer is to remove the photoresist layer (d) and leave the electrode 120 on the transparent substrate 110. Etching may use a photo etchant. When the photoresist layer (d) remaining on the electrode layers (b,c) is etched, an electrode having a two-layer structure made of a Cu layer and CuO is exposed.
  • the electrode 120 may be formed of a polygonal metal mesh 120 and 120a formed by meeting four irregular metal lines at one point or three at one point (see FIGS. 3 and 6 ).
  • a metal mesh is also formed in a non-electrode region other than the electrode, and the electrode and the metal mesh in the non-electrode region are designed to be disconnected during the design process, so that the electrode and the metal mesh 120a in the non-electrode region are not connected to each other.
  • the first electrode 121 implemented as metal meshes 120a and 120a' and arranged in one direction on the first transparent substrate 111 is formed, and the metal mesh is formed on the second transparent substrate 112.
  • the second electrode 122 that is implemented as (120a, 120a') and arranged in two directions crossing the first direction, the first transparent substrate so that the first electrode 121 and the second electrode 122 cross each other.
  • the touch sensor 100 may be manufactured by overlapping the (111) and the second transparent material (112).
  • Forming the anti-reflection layer 210 on the surface of the cover glass 200 is at least one of an anti-glare layer and a transmittance layer by one of screen printing, sputtering and e-Beam coating on the surface of the cover glass 200 Can be formed.
  • the surface of the cover glass 200 may be etched to form an uneven layer.
  • the reflectance is 0.5% or less and the haze is in the range of about 2 to 3.5.
  • the metal line forming the metal mesh can be manufactured to have a line width of 2.6 ⁇ m or less.
  • the thin line width of the metal line can be realized by using exposure, development, and etching, and the thin line width and the random pattern design of the metal mesh reduce moiré and rainbow phenomena to improve visibility.
  • Comparative Example 1 is a general touch screen panel in which a random mesh is not applied to a touch sensor and an antireflection layer is not applied to a cover glass.
  • Comparative Example 2 is a touch screen panel in which an antireflection layer is applied to a cover glass without applying a random mesh to the touch sensor.
  • Comparative Example 3 is a touch screen panel in which an antireflection layer was applied to the touch sensor without applying a random mesh, and an antireflection layer was not applied to the cover glass.
  • the embodiment is a touch screen panel in which a random mesh is applied to a touch sensor and an antireflection layer is applied to a cover glass.
  • the meaning of'without applying a random mesh' means that a metal mesh is applied, but the metal line of the metal mesh is a straight line and the metal lines are orthogonal to each other to form a regular grid shape.
  • the meaning of'applying a random mesh' means that the metal lines of the metal mesh that implement the electrodes are irregular lines, and these metal lines intersect to form an irregular grid, or three metal lines meet at one point to form a polygonal shape. Means.
  • the reflectance was 11%
  • the channel resistance was 1k ⁇ at 20inch
  • the transmittance was measured as 90%.
  • the embodiment is excellent in channel resistance as well.
  • the electrode of the touch sensor is implemented as a random mesh (amorphous metal mesh) and an antireflection layer is applied to the cover glass to improve the rainbow phenomenon.
  • the touch screen panel Since the touch screen panel is mounted on a display, it is essential to solve optical problems. From the above experimental results, it can be seen that the rainbow phenomenon is improved by forming the metal mesh implementing the electrode in a random mesh form and applying an antireflection layer to the cover glass.
  • the transmittance was 80.4%, and when the antireflection layer was formed on the cover glass, the transmittance was measured to be 86.6%.
  • the transmittance of the general cover glass without the anti-reflection layer is 91.6%
  • the transmittance of the cover glass with the anti-reflection layer is 90.6%
  • the transmittance of the touch sensor without the reflective coating layer is 90.5. %
  • the transmittance of the touch sensor in which the reflective coating layer was formed was measured to be 89.0%.
  • the transmittance of a touch screen panel formed by mounting a general cover glass without an antireflection layer on a touch sensor without an antireflection layer is 82.5%, and a touch with an antireflection layer formed only on the touch sensor.
  • the transmittance of the screen panel was 79.5%, and the transmittance of the touch screen panel in which the antireflection layer was formed only on the cover glass was measured to be 81.9%.
  • the touch screen panel of the present invention includes a touch sensor 100 disposed on the upper portion of the display and including a touch sensing electrode and a cover glass 200 disposed on the touch sensor 100. It includes, and the cover glass 200 is formed of a color-changing glass 200 ′ that changes color according to the amount of ultraviolet rays.
  • the electrode for touch sensing 120 is implemented with a metal mesh 120a.
  • the metal mesh may be a metal material arranged in a grid pattern or a cross pattern.
  • the electrode 120 to which the metal mesh 120a is applied is useful for flexible displays because it has good conductivity, good transmittance, and bendable because it uses metal.
  • the electrode 120 to which the metal mesh 120a is applied is lower in price than ITO, so it is competitive in price and has excellent touch sensitivity. Since the metal mesh 120a implementing the electrode 120 has a thin line width, a large amount of light passes through it, so that the transmittance is increased and power consumption is reduced accordingly.
  • the touch sensor 100 may be implemented with an ITO electrode on the transparent substrate 110. However, in the touch sensor 100, it is more excellent in terms of touch sensitivity and transmittance to implement the electrode 120 by forming the metal mesh 120a on the transparent substrate 110.
  • the touch sensor 100 may be formed by overlapping two electrodes 121 and 122 intersecting.
  • the two electrodes that intersect include a plurality of first electrodes 121 and a plurality of second electrodes 122.
  • the first electrodes 121 are arranged on the first transparent substrate 110 in one direction.
  • the second electrodes 122 are arranged in two directions crossing one direction on the second transparent substrate 112.
  • the first and second directions may mean the x-axis and y-axis directions.
  • the first electrode 121 may function as an Rx electrode (reception electrode), and the second electrode 122 may function as a Tx electrode (transmission electrode).
  • the first electrode 121 and the second electrode 122 may be implemented as a metal mesh.
  • the metal mesh may have a line width of 3 ⁇ m or less.
  • the touch screen panel 20 is manufactured by laminating the touch sensor 100 with a cover glass 200 and an adhesive film 140 and is attached to the upper portion of the display 10.
  • the adhesive films 130 and 140 may use an optically transparent adhesive film (OCA) 140.
  • the cover glass 200 may be attached to the upper portion of the touch sensor 100 via an adhesive film 140.
  • the cover glass 200 may be formed of a tempered glass material. Tempered glass is resistant to impacts and scratches and has high light transmittance, so you can see a brighter and cleaner screen.
  • the cover glass 200 is formed of a color-changing glass that changes color according to the amount of ultraviolet rays.
  • the rainbow phenomenon occurs due to reflection by metal forming electrodes, scattering of light due to refraction of the surface of the cover glass, and reflectance of the cover glass.
  • the cover glass 200 is formed of a color-changing glass to reduce the reflectivity of the cover glass 200 to reduce the rainbow phenomenon of sunlight.
  • the color-changing glass 200 ′ may include a photosensitive material coating layer 210 coated on the surface of the cover glass 200.
  • the photosensitive material coating layer 210 is discolored by ultraviolet rays to reduce the rainbow phenomenon.
  • the color-changing glass 200 ′ is discolored when ultraviolet rays are irradiated to reduce the rainbow phenomenon, and when ultraviolet rays are not irradiated, the color changing glass 200 ′ performs the same function as a general cover glass.
  • the photosensitive material coating layer 210 is discolored to adjust the reflectance of the cover glass 200 to reduce the rainbow phenomenon.
  • the color of the photosensitive material coating layer 210 may be sequentially changed depending on the amount of UV rays introduced.
  • the photosensitive material coating layer 210 may be formed to a thickness of 3 to 5 ⁇ m.
  • the thickness of the photosensitive material coating layer 210 is less than 3 ⁇ m, the effect of reducing the rainbow phenomenon is insufficient, and when the thickness of the photosensitive material coating layer 210 is greater than 5 ⁇ m, the haze increases, so that sharpness may decrease.
  • the photosensitive material coating layer 210 may be formed by coating a photosensitive material on the surface of the cover glass 200 in a wet manner or by coating a dry e-beam.
  • the dry e-Beam coating uniformly forms the photosensitive material coating layer 210 on the surface of the cover glass 200 and is uniformly discolored by ultraviolet rays, so that the effect of reducing the rainbow phenomenon is excellent.
  • the photosensitive material coating layer can be applied by using methods such as bar coating, dip coating, flow coating, spray coating, inkjet coating, and roll to roll. Can be formed.
  • the photosensitive material coating layer 210 is shown to be coated on the upper surface of the cover glass 200, but may be coated on the lower surface of the cover glass 200.
  • the color-changing glass 200 ′ may include a photosensitive material 220 interposed in the cover glass 200 in a powder form.
  • the photosensitive material 220 may be included in the cover glass 200 in a powder form when the cover glass 200 is manufactured, and may be uniformly distributed on the cover glass 200.
  • the color-changing glass 200 ′ may include a photochromic film 230 attached or interposed on the cover glass 200.
  • the photochromic film 230 may be a conventional ultraviolet photochromic film.
  • a film made of PVB (Polyvinylbutyral) or EVA (Ethylene Vinyl Acetate) may include a photosensitive material.
  • the photochromic film 230 Since the photochromic film 230 is discolored and darkened when ultraviolet rays are incident, the reflectance of the cover glass 200 is reduced and the rainbow phenomenon is reduced through this ultraviolet light-sensitive function.
  • the photochromic film 230 may be attached to the cover glass 200 in multiple layers or interposed in multiple layers.
  • the photochromic film 230 may be attached to the upper and lower surfaces of the cover glass 200, respectively, or may be attached to the upper surface of the cover glass 200 in two or three layers.
  • the color-changing glass 200 ′ is manufactured so that the haze is in the range of 3 to 4% when ultraviolet rays are incident. If the haze increases, the sharpness decreases, but when ultraviolet rays are incident, the rainbow phenomenon can be reduced without causing a problem in visibility in the range of 3 to 4% haze.
  • the photochromic film 230 may be laminated on the surface of the cover glass and then bonded to the cover glass 200 by pressing at a pressure of 14 to 16 bar under a high temperature heating condition of approximately 140°C. Alternatively, the photochromic film 230 may be bonded to the cover glass 200 in a vacuum in order to use an optically transparent adhesive film (OCA) and prevent bubble generation.
  • OCA optically transparent adhesive film
  • organic compounds such as inorganic compounds such as silver halide, spiropyran RP, spiroxazine-based, chromane-based, Graide-based, azo-based, fulzamide-based diaryl phethene-based, etc. are known, and all known photosensitive materials can be used. Do.
  • the photosensitive material can be used by selecting an appropriate one in consideration of the color and the like.
  • the method of manufacturing a touch screen panel of the present invention includes the steps of manufacturing the touch sensor 100 having the electrode 120 for touch sensing, preparing the cover glass 200 and setting the cover glass 200 according to the amount of ultraviolet rays. It includes forming a color-changing glass 200 ′ and attaching the color change glass 200 ′ to the upper portion of the touch sensor 100.
  • a first electrode 121 implemented as a metal mesh is formed on the first transparent material 110, and a first electrode 121 is implemented as a metal mesh on the second transparent material 110.
  • a second electrode 122 crossing with is formed.
  • the first electrode 121 and the second electrode 122 are each formed of at least one selected from Cu, CuOx, and Cu-CuOx.
  • the electrode 120 may be formed in a two-layer structure of a Cu layer (b) and a CuO layer (c).
  • the two-layer structure is to increase the adhesion between the electrode 120 and the transparent substrate 110 and to form a fine and uniform line width. Since the Cu layer has a reflectance of about 50% and the CuO layer has a reflectance of about 15%, forming a CuO layer on top of the Cu layer can ensure conductivity while lowering the reflectance. Lowering the metal reflectance can reduce the rainbow phenomenon.
  • a hard coating layer (a) is formed between the transparent substrate 110 and the electrode 120.
  • the hard coating layer (a) may be formed by coating a hard coating solution on the transparent substrate 110.
  • the hard coating layer (a) prevents contamination of the transparent substrate 110 and makes the transparent substrate 110 with high hardness so that scratches are difficult to occur.
  • the hard coating layer (a) allows the electrode 120 to be well adhered to the surface of the transparent substrate 110, has less light interference pattern, and improves visibility.
  • the hard coating layer (a) may be formed of acrylic polyurethane.
  • the hard coating layer may be formed of a polyester-based resin, a polyurethane-based resin, or the like.
  • the hard coating layer (a) exhibits high adhesion even without roughening the surface of the transparent substrate 110.
  • a hard coating layer (a) is formed on the transparent material 110, and an electrode layer (b) is formed on the hard coating layer (a).
  • a photoresist layer (d) is stacked on the electrode layers (b,c).
  • a mask e in which a pattern hole p is formed on the photoresist layer d is formed, and exposed, developed, and etched to leave a portion corresponding to the pattern hole p, and the remaining portions are removed.
  • the photoresist layer (d) remaining on the electrode layers (b,c) is etched.
  • the transparent substrate 110 may use a PET film.
  • the hard coating layer (a) may be formed by applying or depositing acrylic polyurethane on the transparent substrate 110.
  • the hard coating layer (a) may be formed in a thickness range of 5 ⁇ m to 15 ⁇ m.
  • the electrode layers (b,c) include a Cu layer (b) and a CuO layer (c) stacked on top of the Cu layer (b).
  • a Cu layer (b) may be formed on the hard coating layer (a) by a sputtering method, and a CuO layer (c) may be formed on the Cu layer (b) by a sputtering method.
  • the Cu layer (b) becomes a seed layer.
  • the Cu layer (b) may be formed to a thickness of 200 to 400 ⁇ m, and the CuO layer may be formed to a thickness of 5 ⁇ m.
  • the Cu layer has a reflectance of about 50% and the CuO layer has a reflectance of about 15%, forming a CuO layer on top of the Cu layer can ensure conductivity while lowering the reflectance.
  • the electrode layer is formed by the sputtering method, it is easier to form the electrode layers (b,c) into a thin film.
  • the sputtering method is performed in a roll to roll sputter (roll to roll), and by applying an ion beam treatment (Iin Beam treatment), it has a function to modify the surface and strengthen the adhesion of the electrode.
  • Iin Beam treatment an ion beam treatment
  • the photoresist layer (d) may use a photosensitive polymer.
  • the photosensitive polymer undergoes a curing reaction to ultraviolet rays.
  • the step of laminating the photoresist layer (d) on the electrode layers (b,c) may use a method of coating in a roll to roll system.
  • a photoresist layer (d) may be formed by electrospinning a liquid photoresist on the electrode layers (b,c) of the transparent substrate 110 in a continuous process in a roll-to-roll system. Electrospinning forms a uniform photoresist layer (d). In the roll-to-roll continuous process, photoresist can be continuously coated with a thickness of 1 to 2 ⁇ m. The photoresist layer (d) may be formed to a thickness of 3.5 ⁇ m.
  • the pattern hole p is for forming a metal mesh.
  • the pattern hole (p) is a hole previously designed to form a metal mesh.
  • the pattern hole p corresponds to the metal mesh.
  • the width of the pattern holes p may be 3 ⁇ m or less, preferably 2.6 ⁇ m or less, and the spacing between the pattern holes may be 11 ⁇ m or less.
  • an image of the electrode 120 formed of a metal mesh is realized.
  • a mask (e) in which pattern holes (p) for forming an electrode 120 are formed is disposed on the photoresist layer (d), and ultraviolet rays (UV) are irradiated using an exposure machine.
  • UV ultraviolet rays
  • the development is to dissolve and remove the uncured portion of the photoresist layer (d) with a developer and leave the elapsed portion of the photoresist layer (d) to form an image of the electrode 120 on the transparent substrate 110.
  • Etching is to remove the electrode layers (b, c) in the portion corresponding to the portion from which the photoresist layer (d) has been removed.
  • the etchant may be ferric chloride (FeCl 2 ), copper chloride (CuCl 2 ), or the like. After exposure, development, and etching, the part corresponding to the pattern hole p remains and the rest is removed.
  • the photoresist layer (d) remaining on the electrode layer is etched to expose a two-layer electrode made of a Cu layer and CuO to the transparent substrate 110.
  • the first electrode 121 implemented as a metal mesh 120a and arranged in one direction is formed on the first transparent substrate 111, and the metal mesh 120a is formed on the second transparent substrate 112.
  • the second electrode 122 After forming the second electrode 122 that is implemented in and is arranged in two directions crossing one direction, the first transparent material 111 and the second electrode 122 cross each other so that the first electrode 121 and the second electrode 122 cross each other.
  • the touch sensor 100 may be manufactured by overlapping the transparent substrate 112.
  • a photosensitive material coating layer 210 is formed by coating a photosensitive material on the surface of the cover glass 200 in a wet manner or by coating a dry e-Beam. I can.
  • a photosensitive material is coated on the surface of the cover glass 200 by a spray method and dried at about 80°C.
  • plasma treatment may be performed to increase the adhesion of the photosensitive material to the cover glass 200.
  • SiO 2 may be sputtered on the cover glass 200 to coat the cover glass 200 to a thickness of 20 nm, and then the photosensitive material may be coated. SiO 2 reduces the rainbow phenomenon through the effect of scattering the reflected light.
  • the dry e-Beam coating deposits the photosensitive material on the cover glass by supplying electric current to the filament to induce an electron beam magnetic field, and heating and evaporating the photosensitive material by intensive electron collision.
  • the dry e-Beam coating has strong adhesion to the cover glass, and the thickness of the coating layer can be uniformly formed over the entire surface of the cover glass.
  • the photosensitive material coating layer is formed to a thickness of 3 to 5 ⁇ m.
  • the photochromic film 230 may be formed by attaching or interposing the photochromic film 230 to the cover glass.
  • the photochromic film 230 may be laminated on the surface of the cover glass 200 and then bonded to the cover glass 200 by pressing at a pressure of 14 to 16 bar under a high temperature heating condition of approximately 140°C.
  • the photochromic film 230 may be bonded to the cover glass 200 in a vacuum in order to use an optically transparent adhesive film (OCA) and prevent bubble generation.
  • OCA optically transparent adhesive film
  • the cover glass 200 may be formed by including a photosensitive material in the cover glass.
  • the photosensitive material 220 is included in the cover glass 200 in the form of fine powder when the cover glass 200 is manufactured.
  • the photosensitive material 220 may be included in an amount of 1 to 5% by weight based on the total weight of the cover glass 200.
  • the fine powder is irradiated with ultraviolet rays, it discolors and discolors the cover glass to reduce the rainbow phenomenon, and when ultraviolet rays are not irradiated, the fine powder is transparent, so that the cover glass 200 performs the same function as a general cover glass.
  • the color-changing glass (200') shows a clear and transparent screen indoors and in the evening hours, blocks ultraviolet rays from sunlight to improve visibility, and protects eyes by blocking wave-type blue light near 430nm. Have.
  • the present invention can reduce the rainbow phenomenon caused by sunlight by forming the cover glass of the touch screen panel as a color-changing glass that changes color according to the amount of ultraviolet rays.
  • the electrode of the touch sensor since the electrode of the touch sensor has a two-layer structure of Cu and CuOx, CuOx, which has a low reflectivity, is disposed on the top of Cu, thereby reducing the intensity of metal reflection by sunlight, thereby reducing the rainbow phenomenon.
  • the touch screen panel is disposed above the display 10 and disposed above the touch sensor 100 and the touch sensor 100 having electrodes for touch sensing, and a half mirror layer ( 210) includes a cover glass 200 is provided.
  • the electrode for touch sensing 120 may be implemented with a metal mesh 120a.
  • the metal mesh 120a may be a metal material arranged in a grid pattern or a cross pattern.
  • the electrode 120 to which the metal mesh 120a is applied is useful for flexible displays because it has good conductivity, good transmittance, and bendable because it uses metal.
  • the electrode 120 to which the metal mesh 120a is applied is lower in price than ITO, so it is competitive in price and has excellent touch sensitivity. Since the metal mesh 120a implementing the electrode 120 has a thin line width, a large amount of light passes through it, so that the transmittance is increased and power consumption is reduced accordingly.
  • the touch sensor 100 may be implemented with an ITO electrode on the transparent substrate 110. However, in the touch sensor 100, it is more excellent in terms of touch sensitivity and transmittance to implement the electrode 120 by forming the metal mesh 120a on the transparent substrate 110.
  • the touch sensor 100 is formed by overlapping two electrodes 121 and 122 intersecting.
  • the two electrodes that intersect include a plurality of first electrodes 121 and a plurality of second electrodes 122.
  • the touch sensor 100 senses the touch position using x,y coordinates of a portion where the first electrode 121 and the second electrode 122 intersect.
  • the first electrodes 121 are arranged on the first transparent substrate 110 in one direction.
  • the second electrodes 122 are arranged in two directions crossing one direction on the second transparent substrate 112.
  • the first transparent substrate 111 on which the first electrode 121 is formed is overlapped with the second transparent substrate 112 on which the second electrode 122 is formed, the first electrode 121 and the second electrode 122 cross each other. It becomes a touch sensor 100 having a lattice structure.
  • the first and second directions may mean the x-axis and y-axis directions.
  • the first electrode 121 may function as an Rx electrode (reception electrode), and the second electrode 122 may function as a Tx electrode (transmission electrode).
  • the first electrode 121 and the second electrode 122 may be implemented as a metal mesh.
  • the metal mesh may have a line width of 3 ⁇ m or less, and preferably a line width of 2.6 ⁇ m or less.
  • the touch screen panel 20 is manufactured by laminating the touch sensor 100 with a cover glass 200 and an adhesive film 140 and is attached to the upper portion of the display 10.
  • the adhesive films 130 and 140 may use an optically transparent adhesive film (OCA) 140.
  • the cover glass 200 may be attached to the upper portion of the touch sensor 100 via an adhesive film 140.
  • the cover glass 200 may be formed of a tempered glass material. Tempered glass is resistant to impacts and scratches and has high light transmittance, so you can see a brighter and cleaner screen.
  • the cover glass 200 forms a half mirror layer 210 on one surface.
  • the rainbow phenomenon occurs due to reflection by metal forming electrodes, scattering of light due to refraction of the surface of the cover glass, and reflectance of the cover glass.
  • a half mirror layer 210 is formed on one surface of the cover glass 200 to reduce a rainbow phenomenon due to sunlight.
  • the transmittance and reflectance range reduce the reflectance of the cover glass in sunlight to prevent a rainbow phenomenon. Visibility can be secured when the transmittance is 60% or more in the visible light region, and the rainbow phenomenon is prevented by lowering the reflectance.
  • the half mirror layer 210 can freely design reflectance and transmittance by appropriately selecting a material and thickness.
  • the half mirror layer 210 may be a metal mirror layer in which one or multiple metal thin films are stacked.
  • the metal thin film may be made of at least one selected from among Al and Ni.
  • the metal thin film may be made of at least one selected from Au, Ag, Cu, Pt, Pd, Se, Te, Rh, Ir, Ge, Os, Ru, Cr, and W.
  • the metal thin film is made of at least one selected from Al and Ni.
  • a semi-transparent half mirror layer 210 can be formed without exhibiting the inherent properties of the metal.
  • the translucent half mirror layer 210 lowers the reflectance of the cover glass 200 in sunlight.
  • the half mirror layer 210 is formed to have a thickness of 100 to 200 angstroms ( ⁇ ), since the metal does not exhibit its natural properties and must be translucent.
  • the half mirror layer 210 may be formed by coating a metal thin film such as Al or Ni.
  • the hard coating layer may be formed by applying or depositing acrylic polyurethane on one surface of the cover glass.
  • the hard coating layer increases the adhesion of the half mirror layer 210 to the cover glass 200.
  • the half mirror layer 210 may be formed by alternately stacking an Ai metal thin film and an Ni metal thin film.
  • a refractive index layer 220 may be further formed on the half mirror layer 210.
  • the refractive index layer 220 can be destroyed by reflecting a part of sunlight before the visible light enters the half mirror layer by stacking a high refractive index layer and a low refractive index layer in order in multiple layers and designing the refractive index or thickness of each layer.
  • the refractive index layer 220 may be formed by alternately stacking a low refractive index layer containing SiO 2 as a main component and a low refractive index layer containing TiO 2 as a main component.
  • the manufacturing method of the touch screen panel includes manufacturing a touch sensor having an electrode for touch sensing, preparing a cover glass, forming a half mirror layer on one surface of the cover glass, and a cover glass having a half mirror layer formed thereon. And attaching to the upper portion of the touch sensor.
  • the electrode for touch sensing may be implemented as a metal mesh.
  • the step of manufacturing the touch sensor includes forming a first electrode 121 implemented as a metal mesh on the first transparent substrate 110, and forming a metal mesh on the second transparent substrate 110.
  • the second electrode 122 is implemented as and intersecting the first electrode 121 is formed.
  • the first electrode 121 and the second electrode 122 are formed of at least one selected from among Cu, CuOx, and Cu-CuOx, respectively.
  • the electrode 120 may be formed in a two-layer structure of a Cu layer (b) and a CuO layer (c).
  • the two-layer structure is to increase the adhesion between the electrode 120 and the transparent substrate 110 and to form a fine and uniform line width. Since the Cu layer has a reflectance of about 50% and the CuO layer has a reflectance of about 15%, forming a CuO layer on top of the Cu layer can ensure conductivity while lowering the reflectance. Lowering the metal reflectance can reduce the rainbow phenomenon.
  • a hard coating layer (a) may be formed between the transparent substrate 110 and the electrode 120.
  • the hard coating layer (a) may be formed by coating a hard coating solution on the transparent substrate 110.
  • the hard coating layer (a) prevents contamination of the transparent substrate 110 and makes the transparent substrate 110 with high hardness so that scratches are difficult to occur.
  • the hard coating layer (a) allows the electrode 120 to be well adhered to the surface of the transparent substrate 110, has less light interference pattern, and improves visibility.
  • the hard coating layer (a) may be formed of acrylic polyurethane.
  • the hard coating layer may be formed of a polyester-based resin, a polyurethane-based resin, or the like.
  • the hard coating layer (a) exhibits high adhesion even without roughening the surface of the transparent substrate 110.
  • a hard coating layer (a) is formed on the transparent substrate 110, and an electrode layer (b) is formed on the hard coating layer (a).
  • a photoresist layer (d) is stacked on the electrode layers (b,c).
  • a mask e in which a pattern hole p is formed on the photoresist layer d is formed, and exposed, developed, and etched to leave a portion corresponding to the pattern hole p, and the remaining portions are removed.
  • the photoresist layer (d) remaining on the electrode layers (b,c) is etched.
  • the transparent substrate 110 may use a PET film.
  • the hard coating layer (a) may be formed by applying or depositing acrylic polyurethane on the transparent substrate 110.
  • the hard coating layer (a) may be formed in a thickness range of 5 ⁇ m to 15 ⁇ m.
  • the electrode layers (b,c) include a Cu layer (b) and a CuO layer (c) stacked on top of the Cu layer (b).
  • a Cu layer (b) may be formed on the hard coating layer (a) by a sputtering method, and a CuO layer (c) may be formed on the Cu layer (b) by a sputtering method.
  • the Cu layer (b) becomes a seed layer.
  • the Cu layer (b) may be formed to a thickness of 200 to 400 ⁇ m, and the CuO layer may be formed to a thickness of 5 ⁇ m.
  • the Cu layer has a reflectance of about 50% and the CuO layer has a reflectance of about 15%, forming a CuO layer on top of the Cu layer can ensure conductivity while lowering the reflectance.
  • the electrode layer is formed by the sputtering method, it is easier to form the electrode layers (b,c) into a thin film.
  • the sputtering method is performed in a roll to roll sputter (roll to roll), and by applying an ion beam treatment (Iin Beam treatment), it has a function to modify the surface and strengthen the adhesion of the electrode.
  • Iin Beam treatment an ion beam treatment
  • the photoresist layer (d) may use a photosensitive polymer.
  • the photosensitive polymer undergoes a curing reaction to ultraviolet rays.
  • the step of laminating the photoresist layer (d) on the electrode layers (b,c) may use a method of coating in a roll to roll system.
  • a photoresist layer (d) may be formed by electrospinning a liquid photoresist on the electrode layers (b,c) of the transparent substrate 110 in a continuous process in a roll-to-roll system. Electrospinning forms a uniform photoresist layer (d). In the roll-to-roll continuous process, photoresist can be continuously coated with a thickness of 1 to 2 ⁇ m. The photoresist layer (d) may be formed to a thickness of 3.5 ⁇ m.
  • the pattern hole p is for forming a metal mesh.
  • the pattern hole (p) is a hole previously designed to form a metal mesh.
  • the pattern hole p corresponds to the metal mesh.
  • the width of the pattern holes p may be 3 ⁇ m or less, preferably 2.6 ⁇ m or less, and the spacing between the pattern holes may be 11 ⁇ m or less.
  • an image of the electrode 120 formed of a metal mesh is realized.
  • a mask (e) in which pattern holes (p) for forming an electrode 120 are formed is disposed on the photoresist layer (d), and ultraviolet rays (UV) are irradiated using an exposure machine.
  • UV ultraviolet rays
  • the development is to dissolve and remove the uncured portion of the photoresist layer (d) with a developer and leave the elapsed portion of the photoresist layer (d) to form an image of the electrode 120 on the transparent substrate 110.
  • Etching is to remove the electrode layers (b, c) in the portion corresponding to the portion from which the photoresist layer (d) has been removed.
  • the etchant may be ferric chloride (FeCl 2 ), copper chloride (CuCl 2 ), or the like. After exposure, development, and etching, the part corresponding to the pattern hole p remains and the rest is removed.
  • the photoresist layer (d) remaining on the electrode layer is etched to expose a two-layer electrode made of a Cu layer and CuO to the transparent substrate 110.
  • the first electrode 121 implemented as a metal mesh 120a and arranged in one direction is formed on the first transparent substrate 111, and the metal mesh 120a is formed on the second transparent substrate 112.
  • the second electrode 122 After forming the second electrode 122 that is implemented in and is arranged in two directions crossing one direction, the first transparent material 111 and the second electrode 122 cross each other so that the first electrode 121 and the second electrode 122 cross each other.
  • the touch sensor 100 may be manufactured by overlapping the transparent substrate 112.
  • the step of forming the half mirror layer on one surface of the cover glass is formed by applying a sputtering method and targeting a metal material on one surface of the cover glass 200 at 100 to 200 angstroms.
  • a metal material is targeted at 100 to 200 angstroms, the metal's natural properties do not come out and a semi-transparent half mirror layer 210 is formed.
  • a metal material and a cover glass to be coated with a metal material are fixed in a vacuum chamber, argon gas is injected into the vacuum chamber, and then the metal material is targeted at 100 to 200 angstroms, the metal material is formed in a thin film on the cover glass.
  • the semi-transparent half-mirror layer is formed uniformly and deposited.
  • the metal material at least one selected from Al and Ni is used.
  • a dense and uniform thin film can be formed, the optical performance is good, and the half mirror layer 210 having high adhesion to the cover glass can be formed.
  • the half mirror layer 210 may be formed by depositing on the cover glass 200, but may be formed by patterning if necessary.
  • the half mirror layer 210 having a desired transmittance and reflectance on one surface of the cover glass 200, it is possible to reduce the rainbow phenomenon.
  • the transmittance may be increased and the reflectance may be reduced to improve visibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Human Computer Interaction (AREA)
  • Position Input By Displaying (AREA)

Abstract

본 발명은 터치 스크린 패널 및 이의 제조방법에 관한 것으로, 메탈 메쉬(120a,120a')를 적용하여 전극(120)을 형성하며 상기 메탈 메쉬(120a,120a')는 랜덤 메쉬 형태로 형성되는 터치 센서(100) 및 터치 센서(100)의 상부에 배치되는 커버 글라스(200)를 포함한다. 본 발명은 터치 센서의 전극을 랜덤 메쉬 구조의 메탈 메쉬로 구현하여 금속 반사를 감소시킴에 의해 레인보우 현상을 감소시킬 수 있는 이점이 있다.

Description

터치 스크린 패널 및 이의 제조방법
본 발명은 터치 스크린 패널 및 이의 제조방법에 관한 것으로, 더욱 상세하게는 레인보우 현상을 개선하는 터치 스크린 패널 및 이의 제조방법에 관한 것이다.
스마트폰, 패드, 네비게이션 등 전자기기의 종류가 다양해지면서 전자기기의 크기는 소형화하되 표시화면은 대면적화 할 수 있는 다양한 기술들이 제안되고 있다. 그리고 최근에는 별도의 입력 도구 없이도 손쉽게 입력할 수 있는 터치스크린을 장착한 멀티미디어 기기들이 각광받고 있다.
터치스크린은 동작방식에 따라 저항막 방식, 정전용량 방식, 초음파 방식, 적외선 센서 방식, 전자유도 방식 등으로 구별될 수 있다. 이러한 터치스크린은 디스플레이에 터치 스크린 패널(TSP, Touch screen panel)을 부착하여 제작한다. 그리고 터치 스크린 패널은 커버 글라스에 얇은 필름 형태의 터치 센서를 부착하여 제작한다.
터치스크린은 터치하면 커버 글라스를 통해 터치 센서에 신호가 전달된다. 터치 센서는 터치 신호를 받아 PC(소프트웨어)로 보내고 PC는 이 신호를 디지털로 전환하여 디스플레이에 전달하며, 디스플레이는 신호를 받아 해당 화면을 표시하게 된다.
그런데, 터치스크린은 태양광 아래에서 입사되는 태양광의 헤이즈로 인하여 레인보우 현상이 발생하는 문제점이 있다. 레인보우 현상은 빛을 비추면 기름 띠 같은 무지개 형상이 보이는 것을 의미한다. 레인보우 현상은 시인성을 저하시키고 전자기기의 사용자에게 피로감을 준다.
본 발명의 목적은 레인보우 현상을 개선하고 우수한 시인성을 확보할 수 있도록 터치 센서의 전극에 메탈 메쉬를 적용하는 터치 스크린 패널 및 이의 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 레인보우 현상을 개선하고 우수한 시인성을 확보할 수 있도록 터치 센서의 전극에 메탈 메쉬를 적용하고 커버 글라스에 반사 방지층을 적용하는 터치 스크린 패널 및 이의 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 레인보우 현상을 개선하고 우수한 시인성을 확보할 수 있도록 커버 글라스에 변색 글라스를 적용하는 터치 스크린 패널 및 이의 제조방법을 제공하는 것이다.
또한, 본 발명의 목적은 레인보우 현상을 개선하고 우수한 시인성을 확보할 수 있도록 커버 글라스에 하프 미러(half mirror)를 적용하는 터치 스크린 패널 및 이의 제조방법을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명은 메탈 메쉬로 구현된 전극을 구비한 터치 센서와 터치 센서의 상부에 배치된 커버 글라스를 포함한다.
메탈 메쉬는 비정형화된 복수의 금속 라인이 만나 형성하는 복수의 다각형 형상일 수 있다.
비정형화된 복수의 금속 라인은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 불규칙한 형상일 수 있다.
비정형화된 복수의 금속 라인은 금속 라인 간 간격이 불규칙할 수 있다.
전극이 아닌 비전극 영역에 상기 메탈 메쉬가 적용되고,
전극과 상기 비전극 영역의 경계는 상기 메탈 메쉬가 단선되어 구분된다.
전극은 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상을 포함하고 2층 이상이다.
커버 글라스의 표면에 반사 방지층이 형성되며, 반사 방지층은 안티글리어층, 투과율층, 요철층 중 적어도 하나를 포함할 수 있다.
안티글리어층은 폴리머와 SiO 2를 포함할 수 있다.
커버 글라스는 자외선 양에 따라 색이 변하는 변색 글라스일 수 있다.
변색 글라스는 커버 글라스의 표면에 코팅된 감광물질 코팅층, 커버 글라스에 분말 형태로 개재되는 감광물질, 커버 글라스에 부착되거나 개재되는 광변색 필름 중 적어도 하나를 포함할 수 있다.
커버 글라스는 일면에 하프미러층이 구비될 수 있다.
하프 미러층은 커버 글라스에 금속 박막을 1층 또는 다층으로 적층한 금속미러층일 수 있다.
금속 박막은 Al, Ni 중 선택된 1종 이상일 수 있다.
메탈 메쉬로 구현한 전극을 구비하는 터치 센서를 제조하는 단계와 커버 글라스를 준비하고, 터치 센서의 상부에 상기 커버 글라스를 부착하는 단계를 포함한다.
터치 센서를 제조하는 단계는 투명기재를 준비하는 단계와 투명기재 상에 아크릴 폴리 우레탄을 도포 또는 증착하여 하드코팅층을 형성하는 단계와 하드코팅층 상에 스퍼터링 방법으로 Cu층, CuOx층, Cu-CuOx층 중 선택된 1종 이상의 전극층을 형성하는 단계와 전극층 상에 포토레지스트층을 적층하는 단계와 포토레지스트층 상에 상기 메탈 메쉬에 대응하는 패턴구멍이 형성된 마스크를 배치하는 단계와 노광, 현상 및 식각하여 상기 패턴구멍에 해당하는 부분을 남기고 나머지 부분을 제거하는 단계와 전극층의 상부에 남은 포토레지스트층을 에칭하는 단계를 포함한다.
포토레지스트층 상에 메탈 메쉬에 대응하는 패턴구멍이 형성된 마스크를 배치하는 단계에서, 패턴구멍은 복수의 라인구멍들이 한점에서 연결되어 다각형 형상을 형성할 수 있다.
라인구멍은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 불규칙한 형상일 수 있다.
터치 센서의 상부에 커버 글라스를 부착하는 단계는, 커버 글라스의 표면에 반사 방지층을 형성하는 단계를 더 포함하여, 반사 방지층이 형성된 커버 글라스를 터치 센서의 상부에 부착하며, 커버 글라스의 표면에 반사 방지층을 형성하는 단계는, 커버 글라스의 표면에 스크린 프린팅, 스퍼터 및 e-Beam 코팅 중 하나의 방법으로 안티글래어층, 투과율층 중 적어도 하나를 형성하거나, 커버 글라스의 표면을 식각하여 요철층을 형성하는 단계를 포함한다.
터치 센서의 상부에 커버 글라스를 부착하는 단계는, 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하는 단계를 더 포함하여, 변색 글라스를 상기 터치 센서의 상부에 부착하며, 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하는 단계는, 커버 글라스의 표면에 습식 또는 건식 e-Beam 코팅으로 감광물질을 코팅하거나, 커버 글라스에 광변색 필름을 부착하거나 개재하거나, 커버 글라스에 감광물질을 포함하여 형성한다.
터치 센서의 상부에 커버 글라스를 부착하는 단계는, 커버 글라스의 일면에 하프미러층을 형성하는 단계를 더 포함하여, 하프미러층이 형성된 커버 글라스를 상기 터치 센서의 상부에 부착하며, 커버 글라스의 일면에 하프미러층을 형성하는 단계는 스퍼터링 방법을 적용하고, 커버 글라스의 일면에 Al, Ni 중 선택된 1종 이상을 100~200 옹스트롱(Å)으로 타게팅하여 형성한다.
본 발명은 랜덤 메쉬 형태의 메탈 메쉬를 적용하여 터치 센서의 전극을 구현하므로 금속 반사를 감소시켜 레인보우 현상을 감소시킬 수 있고 우수한 시인성을 확보할 수 있는 효과가 있다.
또한, 본 발명은 전극이 Cu와 CuOx의 2층 구조로 형성되므로 전도성이 좋으며 금속 반사 강도를 낮출 수 있으며, 선폭이 얇은 미세패턴 형성이 가능하고 그에 따라 투과율이 높아지고 디스플레이 디바이스와 충돌이 회피되므로 아모레 현상을 회피하는 효과가 있다.
또한, 본 발명은 전극이 아닌 비전극 영역에도 메탈 메쉬를 적용하여 전극과 비전극 영역의 투과율 차이를 없애므로 시인성을 개선할 수 있는 효과가 있다.
또한, 본 발명은 커버 글라스에 반사 방지층을 구비하여 반사광을 산란 또는 소멸시킴으로써 레인보우 현상을 감소시킬 수 있는 효과가 있다.
또한, 본 발명은 터치 센서의 상부에 부착되는 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하여 커버 글라스의 반사율을 줄임으로써 태양광에 대한 레인보우 현상을 저감할 수 있고 그에 따라 시인성이 개선되는 효과가 있다.
또한, 본 발명은 커버 글라스에 하프미러층을 형성하여 커버 글라스의 반사율을 줄임으로써 태양광에 대한 레인보우 현상을 저감할 수 있고 그에 따라 시인성이 개선되는 효과가 있다.
도 1은 본 발명의 제1 실시예에 의한 터치 스크린 패널을 보인 개념도이다.
도 2는 본 발명의 제1 실시예에 의한 터치 센서를 보인 개념도이다.
도 3a는 도 2의 A 부분의 확대도이고, 도 3b는 도 2의 B 부분의 확대도이다.
도 4는 도 2의 메탈 메쉬를 확대하여 보인 도면이다.
도 5는 본 발명의 제1 실시예의 변형예에 의한 터치 센서를 보인 개념도이다.
도 6은 도 5의 메탈 메쉬를 확대하여 보인 도면이다.
도 7은 본 발명의 제1 실시예에 의한 터치 스크린 패널의 정면을 보인 구성도이다.
도 8은 본 발명의 제1 실시예에 의한 투명기재에 형성한 전극을 보인 구성도이다.
도 9는 본 발명의 제1 실시예에 의한 투명기재에 전극을 형성하는 과정을 설명하기 위한 과정도이다.
도 10은 도 4의 확대도의 SEM 사진이다.
도 11은 도 6의 SEM 사진이다.
도 12는 도 6의 확대도의 SEM 사진이다.
도 13은 도 10의 금속 라인 폭을 더 확대하여 촬영한 SEM 사진이다.
도 14 및 도 15는 비교예와 본 발명의 제1 실시예를 태양광 아래에 두었을 때 레인보우 현상이 나타나는지를 비교하기 위한 도면이다.
도 16은 본 발명의 제2 실시예에 의한 터치 스크린 패널을 보인 개념도이다.
도 17 및 도 18은 비교예 1 내지 비교예 3과 본 발명의 제2 실시예를 태양광 아래에 두었을 때 레인보우 현상이 나타나는지를 비교하기 위한 도면이다.
도 19 내지 도 21은 본 발명의 제2 실시예를 비교예들과 대비하여 투과율을 측정한 그래프이다.
도 22는 본 발명의 제3 실시예에 의한 터치 스크린 패널을 보인 분해 사시도이다.
도 23은 본 발명의 제3 실시예에 의한 터치 스크린 패널을 보인 구성도이다.
도 24는 본 발명의 제3 실시예의 변형예에 의한 터치 스크린 패널을 보인 구성도이다.
도 25는 본 발명의 제3 실시예의 다른 변형예에 의한 터치 스크린 패널을 보인 구성도이다.
도 26은 본 발명의 제3 실시예에 의한 터치 스크린 패널에서 터치 센서의 전극을 형성하는 과정을 보인 도면이다.
도 27은 본 발명의 제3 실시예에 의한 터치 스크린 패널에서 변색 글라스를 형성하는 방법을 보인 예이다.
도 28은 본 발명의 제4 실시예에 의한 터치 스크린 패널을 보인 분해 사시도이다.
도 29는 본 발명의 제4 실시예에 의한 터치 스크린 패널을 보인 구성도이다.
도 30은 본 발명의 제4 실시예의 변형예에 의한 터치 스크린 패널을 보인 구성도이다.
도 31은 본 발명의 제4 실시예에 의한 터치 스크린 패널에서 터치 센서의 전극을 형성하는 과정을 보인 도면이다.
이하 본 발명의 실시예를 첨부된 도면을 참조하여 상세하게 설명하기로 한다.
본 발명은 전극을 랜덤 메쉬 형태의 메탈 메쉬로 구현한 제1 실시예, 전극을 랜덤 메쉬 형태의 메탈 메쉬로 구현하고 커버 글라스에 반사반지층을 적용한 제2 실시예, 커버 글라스에 변색글라스를 적용한 제3 실시예, 커버 글라스에 하프미러층을 적용한 제4 실시예로 나누어 설명하기로 한다.
[제1 실시예]
도 1에 도시된 바에 의하면, 본 발명의 터치 스크린 패널(20)은 디스플레이(10)의 상부에 배치되어 터치 스크린 기능을 수행한다. 디스플레이(10)는 디스플레이 패널(LCD), 아몰레드(AMOLED)를 포함한다. 터치 스크린 패널(20)은 터치 센서(100)와 터치 센서(100)의 상부에 배치되는 커버 글라스(Cover Glass)(200)를 포함한다.
터치 센서(100)는 투명기재(110)에 메탈 메쉬(120a)를 형성하여 전극(120)을 구현함으로써 터치 감지가 가능하다.
메탈 메쉬(Metal mesh)는 금속 소재를 격자무늬 또는 교차무늬로 배열하여 전극을 구성하는 방식이다. 메탈 메쉬(120a)를 적용한 전극(120)은 금속을 사용하기 때문에 전도성이 좋고, 투과율이 좋고, 구부릴 수 있기 때문에 플렉서블 디스플레이에 유용하며 ITO 보다 가격이 낮아 가격 경쟁력이 있고 터치 민감도가 뛰어나다.
전극(120)을 구현하는 메탈 메쉬(120a)는 랜덤 메쉬 형태로 형성한다.
랜덤 메쉬는 전극(120)을 구현하는 메탈 메쉬(120a)의 금속 라인을 비정형화한 형태로 제작한 것으로, 전극(120)을 형성하는 금속 라인이 규칙적으로 나타날 때 발생할 수 있는 레인보우 현상(광학적 띠)을 방지하기 위한 것이다.
레인보우 현상은 입사되는 태양광 또는 외부광의 헤이즈(빛번짐)에 의해 발생할 수 있고, 터치 스크린 패널(20)이 디스플레이(10)와 결합했을 때 규칙적인 형태의 전극과 디스플레이(10)의 디바이스(컬러필터의 RGB 픽셀)와 겹치면서 충돌이 발생하여 나타날 수 있다.
태양광 또는 외부광 아래에서 레인보우 현상이 발생하는 것을 방지하도록 터치 센서(100)는 랜덤 메쉬 형태의 메탈 메쉬(120a)를 적용하여 전극(120)을 구현한다. 또한, 메탈 메쉬(120a)는 최대한 선폭을 얇게 형성한다.
전극(120)을 구현하는 메탈 메쉬(120a)를 랜덤 메쉬 형태로 형성하고 선폭을 얇게 하면 금속 반사를 감소시키는 효과와 더불어 디스플레이(10)의 디바이스와 전극의 선폭이 겹치는 것을 최대한으로 회피할 수 있어 레인보우 현상이 발생하는 것을 방지할 수 있다. 또한, 선폭이 얇을수록 많은 양의 빛이 통과하므로 투과율이 높아지고 그 만큼 소비전력도 낮아진다.
전극(120)을 구현하는 메탈 메쉬(120a)는 두 금속 라인이 교차하여 격자 형태로 형성된다. 또한 메탈 메쉬(120a)는 금속 라인이 불규칙한 형태이다.
도 2에 도시된 바와 같이, 터치 센서(100)는 교차하는 두 전극(121,122)을 중첩하여 형성할 수 있다. 교차하는 두 전극은 복수의 제1 전극(121)과 복수의 제2 전극(122)을 포함한다.
제1 전극(121)은 제1 투명기재(111) 상에서 1방향으로 배열된다. 제2 전극(122)은 제2 투명기재(112) 상에서 1방향과 교차하는 2방향으로 배열된다. 제1 전극(121)이 형성된 제1 투명기재(111)를 제2 전극(122)이 형성된 제2 투명기재(112)와 중첩하면 제1 전극(121)과 제2 전극(122)이 교차하는 격자 구조를 갖는 터치 센서(100)가 된다. 1방향과 2방향은 x축과 y축 방향을 의미할 수 있다. 제1 전극(121)은 Rx 전극(수신 전극)으로 기능하고, 제2 전극(122)은 Tx 전극(송신 전극)으로 기능할 수 있다.
제1 전극(121)과 제2 전극(122)은 랜덤 메쉬 형태의 메탈 메쉬(120a)로 구현된다.
구체적으로, 도 3a 및 도 3b에 도시된 바에 의하면, 제1 전극(121)과 제2 전극(122)을 형성하는 메탈 메쉬(120a)는 비정형화된 복수의 금속 라인으로 형성되고, 금속 라인들이 만나 다각형을 형성하는 구조로 된다. 도 3에서 굵은색의 사각 박스는 전극 부분(Tx,Rx)과 비전극 영역(dummy)을 구분하고 메탈 메쉬(120a)가 단선된 부분을 설명하기 위한 용도로 표시한 것이다.
비정형화된 복수의 금속 라인은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 다양한 형상의 라인이 해당할 수 있다. 그에 따라 금속 라인들 간 각각의 간격은 불규칙한 간격을 형성할 수 있다. 금속 라인이 형성되는 방향은 투명기재의 일측 모서리에 대해 소정의 각도를 갖는 방향일 수 있다. 비정형화된 금속 라인은 금속 반사를 감소시켜 태양광 반사를 감소시키므로 레인보우 현상이 발생하는 것을 방지할 수 있다.
또한, 비정형화된 금속 라인은 투명기재(110)의 일측 모서리에 대해 소정의 각도를 갖는 방향으로 형성되므로 디스플레이(10)의 디바이스와 겹치는 것이 최대한 회피될 수 있다.
전극(120)과 전극(120) 사이의 전극이 아닌 비전극 영역(dummy)에도 메탈 메쉬(120a)가 적용되며, 전극(120)과 비전극 영역(dummy)은 메탈 메쉬(120a)가 단선되어 구분된다. 전극(120)을 형성하는 메탈 메쉬에는 신호선이 연결되고 비전극 영역의 메탈 메쉬에는 신호선이 연결되지 않는다.
전극(120)만 메탈 메쉬(120a)로 형성하면 메탈 메쉬(120a)의 형태가 육안으로 보이기 때문에 시인성이 문제가 된다. 따라서 전극(120)과 비전극 영역(dummy)의 투과율 차이를 없애기 위해 비전극 영역(dummy)에도 메탈 메쉬를 적용하여 전극(120)과 비전극 영역(dummy)이 구분없이 보이도록 구현한다. 그리고 메탈 메쉬(120a)의 단선(끊어짐)을 활용하여 전극(120)이 비전극 영역(dummy)과 구분되어 동작되도록 한다.
도 2의 A영역을 확대한 도 3을 보면, 제1 전극(121)은 x축 방향으로 설정 간격을 두고 메탈 메쉬(120a)가 단선되어 구현된다. 제1 전극(121)들 사이의 비전극 영역에도 메탈 메쉬가 적용된다. 제1 전극(121)과 비전극 영역(dummy)은 메탈 메쉬가 끊어져 있어 비전극 영역(dummy)을 터치하여도 신호가 활성화되지 않는다. 비전극 영역(dummy)은 제1 전극(121)과 연결되는 것을 방지하도록 길이 방향으로도 일정 구간마다 단선된다.
도 2의 B영역을 확대한 도 3을 보면, 제2 전극(122)은 y축 방향으로 설정 간격을 두고 메탈 메쉬(120a)가 단선되어 구현된다. 제2 전극(122)들 사이의 비전극 영역(dummy)에도 메탈 메쉬(120a)가 적용된다. 제2 전극(122)을 형성하는 메탈 메쉬와 비전극 영역(dummy)의 메탈 메쉬는 끊어져 있어 비전극 영역(dummy)을 터치하여도 신호가 활성화되지 않는다. 비전극 영역(dummy)은 제2 전극(122)과 연결되는 것을 방지하도록 길이 방향으로 일정 구간마다 단선된다.
도 4에 도시된 바와 같이, 전극(120)을 구현하는 메탈 메쉬(120a)는 4개의 금속 라인(120a-1,120a-2,120a-3,120a-4)이 만나 다각형을 형성하며, 다각형은 사각형 형상(격자 형상)일 수 있다. 하나의 전극에 복수 개의 사각형이 포함될 수 있으며, 사각형은 한 점에서 만나고 서로 연결되므로 터치 민감도가 우수하다.
다른 실시예로, 도 5에 도시된 바와 같이, 제1 전극(121)과 제2 전극(122)은 랜덤 메쉬 형태의 메탈 메쉬(120a')로 구현되고, 메탈 메쉬(120a')는 3개의 금속 라인이 만나 다각형을 형성할 수 있다.
다른 실시예는 전술한 일 실시예와 대비하여 메탈 메쉬(120a')의 형상에만 차이가 있다. 일 실시예의 메탈 메쉬(120a)는 4개의 금속 라인이 만나 사각형 형상의 메쉬 패턴을 형성하고, 다른 실시예의 메탈 메쉬(120a')는 3개의 금속 라인이 만나 오각형 또는 육각형 형상의 메쉬 패턴을 형성한다.
3개의 금속 라인이 만나 다각형의 메쉬 패턴을 형성하면 4개의 금속 라인이 만나 다각형의 메쉬 패턴을 형성하는 것 대비 금속 라인이 만나는 점에서의 선폭을 보다 얇게 구현할 수 있다.
도 6에 도시된 바와 같이, 3개의 금속 라인이 만나 다각형의 메탈 메쉬를 형성하면, 3개의 금속 라인(120a'-1,120a'-2,120a'-2)이 만나는 부분에서 금속 라인(120a'-1)과 금속 라인(120a'-2)이 만나는 부분의 각도가 둔각을 이룬다.
금속 라인(120a'-1)과 금속 라인(120a'-2)이 만나는 부분의 각도가 둔각을 이루면, 금속 라인(120a'-1,120a'-2,120a'-2)들이 만나는 부분의 식각이 보다 용이하여 금속 라인(120a'-1,120a'-2,120a'-2)들이 만나는 점에서의 선폭을 얇고 정밀하게 구현할 수 있다.
도 4에 도시된 일 실시예의 경우, 금속 라인(120a-1)과 금속 라인(120a-2)이 만나는 부분의 각도가 대략 직각을 형성하므로 패턴 형성에는 다른 실시예에 비해 유리하나, 다른 실시예에 비해 정밀한 식각이 어려울 수 있다. 따라서 메탈 메쉬에서 금속 라인들이 만나는 점에서의 선폭은 다른 실시예가 더 정밀하게 구현할 수 있다.
도 4 및 도 6에 도시된 메탈 메쉬(120a)를 형성하는 금속 라인은 3㎛ 이하의 선폭을 가진다. 바람직하게는, 금속 라인은 2.6㎛이하의 선폭을 가진다. 메탈 메쉬(120a)는 금속 특성상 낮은 저항값의 장점이 있는 반면 빛이 거의 투과되지 못하는 단점이 있다. 그렇기 때문에 투명기재(110)에 메탈 메쉬의 금속 라인을 눈에 보이지 않을 만큼 수 ㎛로 매우 미세하게 형성하여 전극 필름 형태로 제작하면 시인성이 개선된다. 메탈 메쉬는 선폭이 얇을수록 투과율이 개선되어 시인성이 개선되다.
제1 투명기재(111) 및 제2 투명기재(112)는 PET 필름, PEN 필름, PI 필름 중 어느 하나로 형성될 수 있다. PET 필름은 초고투명성을 가지며 가시광선을 효율적으로 투과시킴으로서 탁월한 시인성을 제공할 수 있다. PEN 필름과 PI필름은 PET 필름과 마찬가지로 초고투명성을 가지며 시인성이 우수하다.
도 7에 도시된 바와 같이, 터치 센서(100)는 제1 전극(121)이 형성된 제1 투명기재(111)와 제2 전극(122)이 형성된 제2 투명기재(112)를 접착 필름(130)으로 합지하여 제작한다. 제1 전극(121)은 Rx 전극(수신 전극)으로 기능하고, 제2 전극(122)은 Tx 전극(송신 전극)으로 기능할 수 있다.
터치 스크린 패널(20)은 터치 센서(100)를 커버 글라스(200)와 접착 필름(140)으로 합지하여 제작하며, 디스플레이(10)의 상부에 부착한다. 접착 필름(130,140)은 광학용투명접착 필름(OCA)을 사용할 수 있다.
제1 전극(121)과 제2 전극(122)이 중첩되어 격자 형태의 터치 센서(100)를 형성하며, 제1 전극(121)과 제2 전극(122)은 랜덤 메쉬 구조의 메탈 메쉬로 형성된다. 제1 전극(121)들 사이의 비전극 영역과 제2 전극(122)들 사이의 비전극 영역은 랜덤 메쉬 구조의 메탈 메쉬로 형성되나 제1 전극(121) 및 제2 전극(122) 각각과는 단선된다.
제1 전극(121)과 제2 전극(122)을 포함하는 메탈 메쉬 형태의 전극(120)은 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상으로 형성된다. 예를 들어, 도 8에 도시된 바와 같이, 메탈 메쉬 전극(120)은 Cu층(b), CuO층(c)의 2층 구조로 형성될 수 있다. 2층 구조는 전극(120)과 투명기재의 부착성을 높이고 선폭을 미세하고 균일하게 형성하기 위한 것이다.
투명기재(110)와 전극(120)의 사이에 하드코팅층(a)이 형성된다. 하드코팅층(a)은 투명기재(110) 상에 하드코팅액을 코팅하여 형성할 수 있다.
하드코팅층(a)은 투명기재(110)의 오염을 방지하고 스크래치 발생이 어렵도록 투명기재(110)를 고경도로 만든다. 또한 하드코팅층(a)은 투명기재(110)의 표면상에 전극(120)이 잘 부착되게 하고 빛 간섭무늬 발생이 적으며 시인성을 향상시킨다. 하드코팅층(a)은 아크릴 폴리 우레탄으로 형성될 수 있다. 이 외에도 하드코팅층은 폴리에스테르계 수지, 폴리우레탄계 수지 등으로 형성될 수도 있다.
하드코팅층(a)은 투명기재(110)의 표면을 거칠게 하지 않아도 높은 밀착성을 발현한다.
본 발명의 일 실시예 및 다른 실시예는 메탈 메쉬(120a)가 비정형화된 랜덤 메쉬 형태이므로, 도 4 및 도 6에 도시된 바와 같이, 금속 라인 사이의 간격이 불규칙한 간격을 형성한다.
금속 라인 사이의 불규칙한 간격은 디스플레이의 디바이스와 간섭을 방지하고 금속 반사를 감소시켜(반사 강도를 낮춰) 레인보우 현상을 방지한다.
도 7에 도시된 바와 같이, 커버 글라스(200)는 터치 센서(100)의 상부에 접착 필름(140)을 매개로 부착될 수 있다. 커버 글라스(200)는 강화 유리 재질로 형성될 수 있다. 강화 유리는 충격이나 긁힘에 강하고 빛 투과율이 높아 한층 밝고 깨끗한 화면을 볼 수 있다.
상술한 바와 같이, 터치 스크린 패널은 터치 센서(100)에 랜덤 메쉬 형태의 메탈 메쉬를 적용하여 전극을 구현하므로 태양광 반사를 감소시키고 레인보우 현상이 발생하는 것을 방지한다.
또한, 전극이 아닌 비전극 영역에도 메탈 메쉬를 적용하고 메탈 메쉬를 단선시켜 전극과 비전극 영역을 분리하므로, 전극(120)과 비전극 영역(dummy)이 구분없이 보이도록 구현하여 시인성을 향상시킨다.
한편, 도 7에 도시된 바와 같이, 터치 스크린 패널의 제조방법은 메탈 메쉬를 적용하여 전극을 형성하며 메탈 메쉬(120a)가 랜덤 메쉬 형태로 형성되게 터치 센서(100)를 제조하는 단계와, 디스플레이(10)의 상부에 터치 센서(100)를 부착하고 터치 센서(100)의 상부에 커버 글라스(200)를 부착하는 단계를 포함한다.
터치 센서를 제조하는 단계는, 제1 투명기재(110) 상에서 메탈 메쉬로 구현되는 제1 전극(121)을 형성하는 단계와, 제2 투명기재(110) 상에서 메탈 메쉬로 구현되며 제1 전극(121)과 교차하는 제2 전극(122)을 형성하는 단계를 포함한다.
제1 전극(121)과 제2 전극(122)은 각 투명기재(111,112) 상에 동일한 방법으로 형성되며, 메탈 메쉬(120a,120a')가 단선된(끊어진) 방향에 따라 각 투명기재(111,112) 상에 1방향과 2방향으로 형성된다.
도 8에 도시된 바와 같이, 전극(120)은 각 투명기재(110) 상에 형성되며, 투명기재(110)와 전극(120) 사이에는 하드코팅층(a)이 구비된다. 전극(120)은 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상을 포함하고 2층 이상이며, 하드코팅층(a)은 아크릴 폴리 우레탄으로 형성될 수 있다.
각 투명기재(110)에 전극(120)을 형성하는 단계는 도 9에 도시된 바와 같이, 투명기재(110) 상에 하드코팅층(a)을 형성하는 단계와, 하드코팅층(a) 상에 전극층(b,c)을 형성하는 단계와 전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계를 포함한다. 또한, 포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 형성하는 단계를 포함하고, 노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거하는 단계를 포함한다. 또한, 전극층(b,c)의 상부에 남은 포토레지스트층(d)을 에칭하는 단계를 포함한다.
투명기재(110) 상에 하드코팅층(a)을 형성하는 단계에서, 투명기재(110)는 PET 필름을 사용할 수 있다. 하드코팅층(a)은 투명기재(110) 상에 아크릴 폴리 우레탄을 도포 또는 증착하여 형성할 수 있다. 하드코팅층(a)은 5㎛~15㎛ 두께 범위로 형성할 수 있다.
하드코팅층(a) 상에 전극층(b,c)을 형성하는 단계에서, 전극층(b,c)은 Cu층(b)과 Cu층(b)의 상부에 적층되는 CuO층(c)을 포함한다. 하드코팅층(a) 상에 스퍼터링 방법에 의해 Cu층(b)을 형성하고, Cu층(b)의 상부에 스퍼터링 방법에 의해 CuO층(c)을 형성한다. Cu층(b)이 씨드(seed)층이 된다. Cu층(b)은 200~400㎛ 두께로 형성하고, CuO층은 5㎛ 두께로 형성할 수 있다. Cu층은 반사율이 약 50%이고 CuO층은 반사율이 약 15%이므로 Cu층의 상부에 CuO층을 형성하면 전도성을 확보하면서 반사율은 낮출 수 있다.
스퍼터링 방법에 의한 전극층을 형성하면 전극층(b,c)을 박막으로 형성하기 보다 용이하다.
스퍼터링 방법은 롤 두 롤 스퍼터(roll to roll)에서 수행하며, 이온 빔 처리(Iin Beam treatment)를 적용하여 표면 개질 및 전극의 접착 강화 기능을 갖도록 한다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계에서, 포토레지스트층(d)은 감광성 폴리머를 사용할 수 있다. 감광성 폴리머는 자외선에 경화반응이 일어난다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계는 롤 투 롤(roll to roll) 시스템에서 코팅하는 방식을 이용할 수 있다. 예를 들어, 투명기재(110)의 전극층(b,c)에 액상의 포토 레지스트를 롤 투 롤 시스템에서 연속 공정으로 전기 방사하여 포토레지스트층(d)을 형성할 수 있다. 전기 방사는 균일한 포토레지스트층(d) 형성을 위한 것이다. 롤 투 롤 연속 공정은 1~2㎛의 포토 레지스트를 연속 코팅 가능하다. 포토레지스트층(d)은 3.5㎛의 두께로 형성될 수 있다.
포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 배치하는 단계에서, 패턴구멍(p)은 메탈 메쉬 형성을 위한 것이다. 패턴구멍(p)은 메탈 메쉬 형성을 위해 기설계된 구멍이며 비정형화된 복수의 라인으로 형성된다. 패턴구멍(p)이 비정형화된 금속 라인에 대응된다. 패턴구멍(p)의 폭은 3㎛ 이하, 바람직하게는 2.6㎛ 이하이고 패턴구멍 간 간격은 11㎛ 이하일 수 있다.
구체적으로, 패턴구멍(p)은 복수의 라인구멍들이 한점에서 연결되어 다각형 형상을 형성한다. 라인구멍은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 불규칙한 형상일 수 있다.
노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거하는 단계에서, 메탈 메쉬로 형성되는 전극(120)의 이미지가 구현된다.
도 9에 도시된 바와 같이, 포토레지스트층(d)의 상부에 전극(120)을 형성하기 위한 패턴구멍(p)들이 형성된 마스크(e)를 배치하고, 노광기를 이용하여 자외선(UV)을 조사하면 포토레지스트층(d)은 자외선을 받은 부분에 경화반응이 일어난다.
현상은 포토레지스트층(d)에서 경화되지 않은 부분을 현상액으로 용해, 제거시키고 포토레지스트층(d)에서 경과된 부분을 남게 하여 투명기재(110)에 전극(120) 이미지를 형성하는 것이다. 현상액은 염화구리가 사용될 수 있다. 현상 후 현상액 제거를 위한 수세 과정이 수행된다.
식각은 포토레지스트층(d)이 제거된 부분과 대응되는 부분의 전극층(b,c)을 제거하는 것이다. 식각액은 염화제이철(FeCl 2), 염화구리(CuCl 2) 등이 사용될 수 있다. 염화제이철(FeCl 2), 염화구리(CuCl 2) 등은 식각이 빠르고 식각 후 잔사가 남지 않는다. 또한 Cu와 CuO는 식각성이 우수하여 씨드 잔유물이 남지 않으므로 미세 패턴 형성에 보다 용이하다. 노광, 현상, 식각하면 패턴구멍(p)에 해당하는 부분은 남고 나머지 부분은 제거된다.
전극층의 상부에 남은 포토레지스트층(d)을 에칭하는 단계는, 남은 포토레지스트층(d)을 제거하고 투명기재(110)에 전극(120)을 남기기 위한 것이다. 에칭은 포토 에칭액을 사용할 수 있다. 전극층(b,c)의 상부에 남은 포토레지스트층(d)을 에칭하면 Cu층, CuO로 이루어진 2층 구조의 전극이 노출된다.
메쉬 패턴 형성 후, 금속에 의한 반사율을 낮추기 위해 CuO층의 상부에 SiOx, NbOx를 다층으로 더 적층할 수 있다. 예를 들어, CuO층의 상부에 증착 또는 스퍼터링 방법으로 SiOx, NbOx를 4~6층 적층하여 그 두께가 약 40㎛가 되게 할 수 있다.
전극(120)은 비정형화된 금속 라인 4개가 한 점에서 만나거나 3개가 한 점에서 만나 형성되는 다각형 형상의 메탈 메쉬(120,120a)로 이루어질 수 있다(도 3 및 도 6 참조). 전극이 아닌 비전극 영역에도 메탈 메쉬가 형성되며 전극과 비전극 영역의 메탈 메쉬는 설계과정에서 단선되게 설계하여 전극과 비전극 영역의 메탈 메쉬(120a)는 서로 연결되지 않는다.
상술한 방법으로 제1 투명기재(111) 상에 메탈 메쉬(120a,120a')로 구현되고 1방향으로 배열되는 제1 전극(121)을 형성하고, 제2 투명기재(112) 상에 메탈 메쉬(120a,120a')로 구현되고 1방향과 교차하는 2방향으로 배열되는 제2 전극(122)을 형성한 후, 제1 전극(121)과 제2 전극(122)이 교차되게 제1 투명기재(111)와 제2 투명기재(112)를 중첩하여 터치 센서(100)를 제작할 수 있다.
도 10에는 도 4의 확대도의 SEM 사진이 도시되어 있고, 도 11에는 도 6의 SEM 사진이 도시되어 있고, 도 12에는 도 6의 확대도의 SEM 사진이 도시되어 있으며, 도 13에는 도 10의 금속 라인 폭을 더 확대하여 촬영한 SEM 사진이 도시되어 있다.
도 10은 4개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하고, 도 11은 3개의 금속 라인이 만나 복수의 다각형 형상(육각형 랜덤 형상)의 메탈 메쉬를 형성한다. 도 11을 확대한 도 12에 의하면, 패턴 폭은 평균 2.5㎛이며 평균 3㎛를 초과하지 않는다.
도 10 내지 도 12에 도시된 바에 의하면, 4개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하는 것 대비 3개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하면, 금속 라인들이 만나는 점에서의 식각이 보다 용이하고 패턴 정밀도가 향상된다. 즉, 3개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하는 경우, 터치 민감도를 확보하면서 금속 라인들이 만나는 점에서의 선폭을 최대한 얇게 형성하여 시인성을 개선할 수 있다.
도 13에 도시된 바와 같이, 메탈 메쉬를 형성하는 금속 라인은 2.6㎛ 이하의 선폭을 가지도록 제작 가능함이 확인된다. 금속 라인의 얇은 선폭은 노광, 현상 및 식각을 이용함에 의해 구현 가능하고, 얇은 선폭 및 메탈 메쉬의 랜덤 패턴 설계는 모아레 현상을 회피하고 레인보우 현상을 감소시켜 시인성을 향상시킨다.
상술한 본 발명이 레인보우 개선 효과가 있는지 비교예와 대비하여 실험하였다.
도 14에 도시된 바와 같이, 터치 센서에 랜덤 메쉬를 적용하지 않은 비교예(a)의 터치 스크린 패널과 터치 센서에 랜덤 메쉬를 적용한 실시예(b)의 터치 스크린 패널을 태양광 아래에 두고 레인보우 현상이 나타내는지 확인하였다.
비교예는 메탈 메쉬를 적용하되, 메탈 메쉬의 금속 라인이 직선이고 이 금속 라인이 직교하여 규칙적인 격자 형태를 형성하는 형상이고, 실시예는 메탈 메쉬의 금속 라인이 비정형화된 라인이며 이 금속 라인이 교차하여 불규칙한 격자 형태를 형성하는 형상이다.
도 15에 도시된 바와 같이, 비교예의 터치 스크린 패널은 레인보우 현상이 나타나고 실시예의 터치 스크린 패널은 비교예에 비해 레인보우 현상이 개선됨이 확인된다.
실시예의 반사율을 측정한 결과 반사율이 11%이고 채널저항은 1kΩ at 20inch였으며, 투과율은 90%로 측정되었다. 참고로 동일한 조건에서 ITO 전극은 채널저항이 15kΩ이므로 채널저항에서도 실시예가 우수하다.
실시예는 터치 센서의 전극에 랜덤 메쉬(비정형 메탈 메쉬)를 적용하여 레인보우 현상을 개선한 것이다. 위 실험 결과로부터, 랜덤 메쉬 형태로 메탈 메쉬를 형성하여 전극을 구현하면 투과율에 영향을 미치지 않고 레인보우 현상은 개선할 수 있음이 확인된다.
위 실험 결과를 통해, 터치 센서에 랜덤 메쉬 형태의 메탈 메쉬 전극을 적용하여 모아레 현상을 회피하고 레인보우 현상을 감소시킬 수 있음을 확인할 수 있다.
[제2 실시예]
도 16에 도시된 바에 의하면, 본 발명의 터치 스크린 패널(20)은 디스플레이(10)의 상부에 배치되어 터치 스크린 기능을 수행한다. 디스플레이(10)는 디스플레이 패널(LCD), 아몰레드(AMOLED)를 포함한다. 터치 스크린 패널(20)은 터치 센서(100)와 터치 센서(100)의 상부에 배치되는 커버 글라스(Cover Glass)(200)를 포함한다.
터치 센서(100)는 투명기재(110)에 메탈 메쉬(120a)를 형성하여 전극(120)을 구현함으로써 터치 감지가 가능하다.
메탈 메쉬(Metal mesh)는 금속 소재를 격자무늬 또는 교차무늬로 배열하여 전극을 구성하는 방식이다. 메탈 메쉬(120a)를 적용한 전극(120)은 금속을 사용하기 때문에 전도성이 좋고, 투과율이 좋고, 구부릴 수 있기 때문에 플렉서블 디스플레이에 유용하며 ITO 보다 가격이 낮아 가격 경쟁력이 있고 터치 민감도가 뛰어나다.
전극(120)을 구현하는 메탈 메쉬(120a)는 랜덤 메쉬 형태로 형성한다.
랜덤 메쉬는 전극(120)을 구현하는 메탈 메쉬(120a)의 금속 라인을 비정형화한 형태로 제작한 것으로, 전극(120)을 형성하는 금속 라인이 규칙적으로 나타날 때 발생할 수 있는 레인보우 현상(광학적 띠)을 방지하기 위한 것이다.
레인보우 현상은 입사되는 태양광 또는 외부광의 헤이즈(빛번짐)에 의해 발생할 수 있고, 터치 스크린 패널(20)이 디스플레이(10)와 결합했을 때 규칙적인 형태의 전극과 디스플레이(10)의 디바이스(컬러필터의 RGB 픽셀)와 겹치면서 충돌이 발생하여 나타날 수 있다.
태양광 또는 외부광 아래에서 레인보우 현상이 발생하는 것을 방지하도록 터치 센서(100)는 랜덤 메쉬 형태의 메탈 메쉬(120a)를 적용하여 전극(120)을 구현한다. 또한, 메탈 메쉬(120a)는 최대한 선폭을 얇게 형성한다.
전극(120)을 구현하는 메탈 메쉬(120a)를 랜덤 메쉬 형태로 형성하고 선폭을 얇게 하면 금속 반사를 감소시키는 효과와 더불어 디스플레이(10)의 디바이스와 전극의 선폭이 겹치는 것을 최대한으로 회피할 수 있어 레인보우 현상이 발생하는 것을 방지할 수 있다. 또한, 선폭이 얇을수록 많은 양의 빛이 통과하므로 투과율이 높아지고 그 만큼 소비전력도 낮아진다.
전극(120)을 구현하는 메탈 메쉬(120a)는 두 금속 라인이 교차하여 격자 형태로 형성된다. 또한 메탈 메쉬(120a)는 금속 라인이 불규칙한 형태이다.
제2 실시예의 터치 센서(100)의 구성은 제1 실시예와 동일하므로 도 2 내지 도 15를 참조하여 설명하기로 한다.
도 2에 도시된 바와 같이, 터치 센서(100)는 교차하는 두 전극(121,122)을 중첩하여 형성할 수 있다. 교차하는 두 전극은 복수의 제1 전극(121)과 복수의 제2 전극(122)을 포함한다.
제1 전극(121)은 제1 투명기재(111) 상에서 1방향으로 배열된다. 제2 전극(122)은 제2 투명기재(112) 상에서 1방향과 교차하는 2방향으로 배열된다. 제1 전극(121)이 형성된 제1 투명기재(111)를 제2 전극(122)이 형성된 제2 투명기재(112)와 중첩하면 제1 전극(121)과 제2 전극(122)이 교차하는 격자 구조를 갖는 터치 센서(100)가 된다. 1방향과 2방향은 x축과 y축 방향을 의미할 수 있다. 제1 전극(121)은 Rx 전극(수신 전극)으로 기능하고, 제2 전극(122)은 Tx 전극(송신 전극)으로 기능할 수 있다.
제1 전극(121)과 제2 전극(122)은 랜덤 메쉬 형태의 메탈 메쉬(120a)로 구현된다.
구체적으로, 도 3에 도시된 바와 같이, 제1 전극(121)과 제2 전극(122)을 형성하는 메탈 메쉬(120a)는 비정형화된 복수의 금속 라인으로 형성되고, 금속 라인들이 만나 다각형을 형성하는 구조로 된다. 도 3에서 굵은색의 사각 박스는 전극 부분(Tx,Rx)과 비전극 영역(dummy)을 구분하고 메탈 메쉬(120a)가 단선된 부분을 설명하기 위한 용도로 표시한 것이다.
비정형화된 복수의 금속 라인은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 다양한 형상의 라인이 해당할 수 있다. 그에 따라 금속 라인들 간 각각의 간격은 불규칙한 간격을 형성할 수 있다. 금속 라인이 형성되는 방향은 투명기재의 일측 모서리에 대해 소정의 각도를 갖는 방향일 수 있다. 비정형화된 금속 라인은 금속 반사를 감소시켜 태양광 반사를 감소시키므로 레인보우 현상이 발생하는 것을 방지할 수 있다.
또한, 비정형화된 금속 라인은 투명기재(110)의 일측 모서리에 대해 소정의 각도를 갖는 방향으로 형성되므로 디스플레이(10)의 디바이스와 겹치는 것이 최대한 회피될 수 있다.
전극(120)과 전극(120) 사이의 전극이 아닌 비전극 영역(dummy)에도 메탈 메쉬(120a)가 적용되며, 전극(120)과 비전극 영역(dummy)은 메탈 메쉬(120a)가 단선되어 구분된다. 전극(120)을 형성하는 메탈 메쉬에는 신호선이 연결되고 비전극 영역의 메탈 메쉬에는 신호선이 연결되지 않는다.
전극(120)만 메탈 메쉬(120a)로 형성하면 메탈 메쉬(120a)의 형태가 육안으로 보이기 때문에 시인성이 문제가 된다. 따라서 전극(120)과 비전극 영역(dummy)의 투과율 차이를 없애기 위해 비전극 영역(dummy)에도 메탈 메쉬를 적용하여 전극(120)과 비전극 영역(dummy)이 구분없이 보이도록 구현한다. 그리고 메탈 메쉬(120a)의 단선(끊어짐)을 활용하여 전극(120)이 비전극 영역(dummy)과 구분되어 동작되도록 한다.
도 2의 A영역을 확대한 도 3을 보면, 제1 전극(121)은 x축 방향으로 설정 간격을 두고 메탈 메쉬(120a)가 단선되어 구현된다. 제1 전극(121)들 사이의 비전극 영역에도 메탈 메쉬가 적용된다. 제1 전극(121)과 비전극 영역(dummy)은 메탈 메쉬가 끊어져 있어 비전극 영역(dummy)을 터치하여도 신호가 활성화되지 않는다. 비전극 영역(dummy)은 제1 전극(121)과 연결되는 것을 방지하도록 길이 방향으로도 일정 구간마다 단선된다.
도 2의 B영역을 확대한 도 3을 보면, 제2 전극(122)은 y축 방향으로 설정 간격을 두고 메탈 메쉬(120a)가 단선되어 구현된다. 제2 전극(122)들 사이의 비전극 영역(dummy)에도 메탈 메쉬(120a)가 적용된다. 제2 전극(122)을 형성하는 메탈 메쉬와 비전극 영역(dummy)의 메탈 메쉬는 끊어져 있어 비전극 영역(dummy)을 터치하여도 신호가 활성화되지 않는다. 비전극 영역(dummy)은 제2 전극(122)과 연결되는 것을 방지하도록 길이 방향으로 일정 구간마다 단선된다.
도 4에 도시된 바와 같이, 전극(120)을 구현하는 메탈 메쉬(120a)는 4개의 금속 라인(120a-1,120a-2,120a-3,120a-4)이 만나 다각형을 형성하며, 다각형은 사각형 형상(격자 형상)일 수 있다. 하나의 전극에 복수 개의 사각형이 포함될 수 있으며, 사각형은 한 점에서 만나고 서로 연결되므로 터치 민감도가 우수하다.
다른 실시예로, 도 5에 도시된 바와 같이, 제1 전극(121)과 제2 전극(122)은 랜덤 메쉬 형태의 메탈 메쉬(120a')로 구현되고, 메탈 메쉬(120a')는 3개의 금속 라인이 만나 다각형을 형성할 수 있다.
다른 실시예는 전술한 일 실시예와 대비하여 메탈 메쉬(120a')의 형상에만 차이가 있다. 일 실시예의 메탈 메쉬(120a)는 4개의 금속 라인이 만나 사각형 형상의 메쉬 패턴을 형성하고, 다른 실시예의 메탈 메쉬(120a')는 3개의 금속 라인이 만나 오각형 또는 육각형 형상의 메쉬 패턴을 형성한다.
3개의 금속 라인이 만나 다각형의 메쉬 패턴을 형성하면 4개의 금속 라인이 만나 다각형의 메쉬 패턴을 형성하는 것 대비 금속 라인이 만나는 점에서의 선폭을 보다 얇게 구현할 수 있다.
도 6에 도시된 바와 같이, 3개의 금속 라인이 만나 다각형의 메탈 메쉬를 형성하면, 3개의 금속 라인(120a'-1,120a'-2,120a'-2)이 만나는 부분에서 금속 라인(120a'-1)과 금속 라인(120a'-2)이 만나는 부분의 각도가 둔각을 이룬다.
금속 라인(120a'-1)과 금속 라인(120a'-2)이 만나는 부분의 각도가 둔각을 이루면, 금속 라인(120a'-1,120a'-2,120a'-2)들이 만나는 부분의 식각이 보다 용이하여 금속 라인(120a'-1,120a'-2,120a'-2)들이 만나는 점에서의 선폭을 얇고 정밀하게 구현할 수 있다.
도 4에 도시된 일 실시예의 경우, 금속 라인(120a-1)과 금속 라인(120a-2)이 만나는 부분의 각도가 대략 직각을 형성하므로 패턴 형성에는 다른 실시예에 비해 유리하나, 다른 실시예에 비해 정밀한 식각이 어려울 수 있다. 따라서 메탈 메쉬에서 금속 라인들이 만나는 점에서의 선폭은 다른 실시예가 더 정밀하게 구현할 수 있다.
도 4 및 도 6에 도시된 메탈 메쉬(120a)를 형성하는 금속 라인은 3㎛ 이하의 선폭을 가진다. 바람직하게는, 금속 라인은 2.6㎛이하의 선폭을 가진다. 메탈 메쉬(120a)는 금속 특성상 낮은 저항값의 장점이 있는 반면 빛이 거의 투과되지 못하는 단점이 있다. 그렇기 때문에 투명기재(110)에 메탈 메쉬의 금속 라인을 눈에 보이지 않을 만큼 수 ㎛로 매우 미세하게 형성하여 전극 필름 형태로 제작하면 시인성이 개선된다. 메탈 메쉬는 선폭이 얇을수록 투과율이 개선되어 시인성이 개선되다.
제1 투명기재(111) 및 제2 투명기재(112)는 PET 필름, PEN 필름, PI 필름 중 어느 하나로 형성될 수 있다. PET 필름은 초고투명성을 가지며 가시광선을 효율적으로 투과시킴으로서 탁월한 시인성을 제공할 수 있다. PEN 필름과 PI필름은 PET 필름과 마찬가지로 초고투명성을 가지며 시인성이 우수하다.
도 7에 도시된 바와 같이, 터치 센서(100)는 제1 전극(121)이 형성된 제1 투명기재(111)와 제2 전극(122)이 형성된 제2 투명기재(112)를 접착 필름(130)으로 합지하여 제작한다. 제1 전극(121)은 Rx 전극(수신 전극)으로 기능하고, 제2 전극(122)은 Tx 전극(송신 전극)으로 기능할 수 있다.
터치 스크린 패널(20)은 터치 센서(100)를 커버 글라스(200)와 접착 필름(140)으로 합지하여 제작하며, 디스플레이(10)의 상부에 부착한다. 접착 필름(130,140)은 광학용투명접착 필름(OCA)을 사용할 수 있다.
제1 전극(121)과 제2 전극(122)이 중첩되어 격자 형태의 터치 센서(100)를 형성하며, 제1 전극(121)과 제2 전극(122)은 랜덤 메쉬 구조의 메탈 메쉬로 형성된다. 제1 전극(121)들 사이의 비전극 영역과 제2 전극(122)들 사이의 비전극 영역은 랜덤 메쉬 구조의 메탈 메쉬로 형성되나 제1 전극(121) 및 제2 전극(122) 각각과는 단선된다.
제1 전극(121)과 제2 전극(122)을 포함하는 메탈 메쉬 형태의 전극(120)은 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상으로 형성된다. 예를 들어, 도 8에 도시된 바와 같이, 메탈 메쉬 전극(120)은 Cu층(b), CuO층(c)의 2층 구조로 형성될 수 있다. 2층 구조는 전극(120)과 투명기재의 부착성을 높이고 선폭을 미세하고 균일하게 형성하기 위한 것이다.
투명기재(110)와 전극(120)의 사이에 하드코팅층(a)이 형성된다. 하드코팅층(a)은 투명기재(110) 상에 하드코팅액을 코팅하여 형성할 수 있다.
하드코팅층(a)은 투명기재(110)의 오염을 방지하고 스크래치 발생이 어렵도록 투명기재(110)를 고경도로 만든다. 또한 하드코팅층(a)은 투명기재(110)의 표면상에 전극(120)이 잘 부착되게 하고 빛 간섭무늬 발생이 적으며 시인성을 향상시킨다. 하드코팅층(a)은 아크릴 폴리 우레탄으로 형성될 수 있다. 이 외에도 하드코팅층은 폴리에스테르계 수지, 폴리우레탄계 수지 등으로 형성될 수도 있다.
하드코팅층(a)은 투명기재(110)의 표면을 거칠게 하지 않아도 높은 밀착성을 발현한다.
본 발명의 일 실시예 및 다른 실시예는 메탈 메쉬(120a)가 비정형화된 랜덤 메쉬 형태이므로, 도 4 및 도 6에 도시된 바와 같이, 금속 라인 사이의 간격이 불규칙한 간격을 형성한다.
금속 라인 사이의 불규칙한 간격은 디스플레이의 디바이스와 간섭을 방지하고 금속 반사를 감소시켜(반사 강도를 낮춰) 레인보우 현상을 방지한다.
도 7에 도시된 바와 같이, 커버 글라스(200)는 터치 센서(100)의 상부에 접착 필름(140)을 매개로 부착될 수 있다. 커버 글라스(200)는 강화 유리 재질로 형성될 수 있다. 강화 유리는 충격이나 긁힘에 강하고 빛 투과율이 높아 한층 밝고 깨끗한 화면을 볼 수 있다.
커버 글라스(200)는 표면에 반사 방지층(210)이 형성된다. 반사 방지층(210)은 3~5㎛의 두께로 형성한다. 반사 방지층(210)은 안티글래어층, 투과율층 및 요철층 중 적어도 하나를 포함할 수 있다.
안티글래어층은 반사광을 산란시켜 레인보우 현상을 개선한다. 안티글래어층은 폴리머와 SiO 2를 포함한다. SiO 2는 폴리머 전체 중량 대비 3~4 중량%를 포함한다. 폴리머는 아크릴(PMMA)을 사용한다. SiO 2는 폴리머 전체 중량 대비 3 중량% 미만으로 포함되면 반사광 산란 효과가 미비하고 4 중량%를 초과하면 헤이즈(haze)가 높아져 선명함이 저하된다.
투과율층은 커버 글라스(200)에 낮은 투과율층(예: 굴절율 1.45 전후)과 높은 투과율층(예: 굴절율 1.95 전후)을 교대로 적층하여 반사를 소멸시킴으로써 레인보우 현상을 개선한다. 투과율층은 SiOx와 NbOx를 포함할 수 있다. 예로서, 투과율층은 SiOx와 NbOx의 2층 구조로 형성될 수 있다.
요철층은 빛을 산란시켜 정반사율을 감소시킴으로써 레인보우 현상을 개선한다.
안티글래어층과 투과율층은 커버 글라스의 표면에 스크린 프린팅(Screen Printing), 스퍼터 및 e-Beam 코팅 중 어느 하나의 방법으로 형성할 수 있다. 요철층은 커버 글라스의 표면을 식각하여 형성할 수 있다.
스크린 프린팅은 대면적에 폴리머 및 페이스트를 도포하는 것이 가능하므로 균일한 안티글래어층 또는 투과율층을 형성할 수 있다. 안티글래어층과 투과율층은 도포 후 UV로 경화할 수 있다.
반사 방지층(210)은 터치 센서(100)의 전극에 적용할 수도 있으나, 터치 센서(100)의 전극에 적용하는 경우 투과율 감소가 커버 글라스에 적용하는 경우 대비 크고 레인보우 현상 개선 효과는 없다. 따라서 반사 방지층(210)은 터치 센서(100)에 적용하지 않고 커버 글라스(200)에 적용한다.
상술한 바와 같이, 터치 스크린 패널은 터치 센서(100)에 랜덤 메쉬 형태의 메탈 메쉬를 적용하여 전극을 구현하므로 태양광 반사를 감소시키고 레인보우 현상이 발생하는 것을 방지한다.
또한, 전극이 아닌 비전극 영역에도 메탈 메쉬를 적용하고 메탈 메쉬를 단선시켜 전극과 비전극 영역을 분리하므로, 전극(120)과 비전극 영역(dummy)이 구분없이 보이도록 구현하여 시인성을 향상시킨다.
이와 더불어, 터치 스크린 패널은 커버 글라스(200)에 반사 방지층(210)을 형성하여 반사광을 산란시키거나 소멸시켜 레인보우 현상이 발생하는 것을 방지한다.
한편, 도 7에 도시된 바와 같이, 터치 스크린 패널 제조방법은 메탈 메쉬를 적용하여 전극을 형성하며 메탈 메쉬(120a)가 랜덤 메쉬 형태로 형성되게 터치 센서(100)를 제조하는 단계와, 커버 글라스(200)의 표면에 반사 방지층(210)을 형성하는 단계와, 디스플레이(10)의 상부에 터치 센서(100)를 부착하고 터치 센서(100)의 상부에 반사 방지층(210)이 형성된 커버 글라스(200)를 부착하는 단계를 포함한다.
터치 센서를 제조하는 단계는, 제1 투명기재(110) 상에서 메탈 메쉬로 구현되는 제1 전극(121)을 형성하는 단계와, 제2 투명기재(110) 상에서 메탈 메쉬로 구현되며 제1 전극(121)과 교차하는 제2 전극(122)을 형성하는 단계를 포함한다.
제1 전극(121)과 제2 전극(122)은 각 투명기재(111,112) 상에 동일한 방법으로 형성되며, 메탈 메쉬(120a,120a')가 단선된(끊어진) 방향에 따라 각 투명기재(111,112) 상에 1방향과 2방향으로 형성된다.
도 8에 도시된 바와 같이, 전극(120)은 각 투명기재(110) 상에 형성되며, 투명기재(110)와 전극(120) 사이에는 하드코팅층(a)이 구비된다. 전극(120)은 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상을 포함하고 2층 이상이며, 하드코팅층(a)은 아크릴 폴리 우레탄으로 형성될 수 있다.
각 투명기재(110)에 전극(120)을 형성하는 단계는 도 9에 도시된 바와 같이, 투명기재(110) 상에 하드코팅층(a)을 형성하는 단계와 하드코팅층(a) 상에 전극층(b,c)을 형성하는 단계와 전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계를 포함한다. 또한, 포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 형성하는 단계를 포함하고, 노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거하는 단계를 포함한다.
또한, 전극층(b,c)의 상부에 남은 포토레지스트층(d)을 에칭하는 단계를 포함한다.
투명기재(110) 상에 하드코팅층(a)을 형성하는 단계에서, 투명기재(110)는 PET 필름을 사용할 수 있다. 하드코팅층(a)은 투명기재(110) 상에 아크릴 폴리 우레탄을 도포 또는 증착하여 형성할 수 있다. 하드코팅층(a)은 5㎛~15㎛ 두께 범위로 형성할 수 있다.
하드코팅층(a) 상에 전극층(b,c)을 형성하는 단계에서, 전극층(b,c)은 Cu층(b)과 Cu층(b)의 상부에 적층되는 CuO층(c)을 포함한다. 하드코팅층(a) 상에 스퍼터링 방법에 의해 Cu층(b)을 형성하고, Cu층(b)의 상부에 스퍼터링 방법에 의해 CuO층(c)을 형성한다. Cu층(b)이 씨드(seed)층이 된다. Cu층(b)은 200~400㎛ 두께로 형성하고, CuO층은 5㎛ 두께로 형성할 수 있다. Cu층은 반사율이 약 50%이고 CuO층은 반사율이 약 15%이므로 Cu층의 상부에 CuO층을 형성하면 전도성을 확보하면서 반사율은 낮출 수 있다.
스퍼터링 방법에 의한 전극층을 형성하면 전극층(b,c)을 박막으로 형성하기 보다 용이하다.
스퍼터링 방법은 롤 두 롤 스퍼터(roll to roll)에서 수행하며, 이온 빔 처리(Iin Beam treatment)를 적용하여 표면 개질 및 전극의 접착 강화 기능을 갖도록 한다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계에서, 포토레지스트층(d)은 감광성 폴리머를 사용할 수 있다. 감광성 폴리머는 자외선에 경화반응이 일어난다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계는 롤 투 롤(roll to roll) 시스템에서 코팅하는 방식을 이용할 수 있다. 예를 들어, 투명기재(110)의 전극층(b,c)에 액상의 포토 레지스트를 롤 투 롤 시스템에서 연속 공정으로 전기 방사하여 포토레지스트층(d)을 형성할 수 있다. 전기 방사는 균일한 포토레지스트층(d) 형성을 위한 것이다. 롤 투 롤 연속 공정은 1~2㎛의 포토 레지스트를 연속 코팅 가능하다. 포토레지스트층(d)은 3.5㎛의 두께로 형성될 수 있다.
포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 배치하는 단계에서, 패턴구멍(p)은 메탈 메쉬 형성을 위한 것이다. 패턴구멍(p)은 메탈 메쉬 형성을 위해 기설계된 구멍이며 비정형화된 복수의 라인으로 형성된다. 패턴구멍(p)이 비정형화된 금속 라인에 대응된다. 패턴구멍(p)의 폭은 3㎛ 이하, 바람직하게는 2.6㎛ 이하이고 패턴구멍 간 간격은 11㎛ 이하일 수 있다.
구체적으로, 패턴구멍(p)은 복수의 라인구멍들이 한점에서 연결되어 다각형 형상을 형성한다. 라인구멍은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 불규칙한 형상일 수 있다.
노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거하는 단계에서, 메탈 메쉬로 형성되는 전극(120)의 이미지가 구현된다.
도 9에 도시된 바와 같이, 포토레지스트층(d)의 상부에 전극(120)을 형성하기 위한 패턴구멍(p)들이 형성된 마스크(e)를 배치하고, 노광기를 이용하여 자외선(UV)을 조사하면 포토레지스트층(d)은 자외선을 받은 부분에 경화반응이 일어난다.
현상은 포토레지스트층(d)에서 경화되지 않은 부분을 현상액으로 용해, 제거시키고 포토레지스트층(d)에서 경과된 부분을 남게 하여 투명기재(110)에 전극(120) 이미지를 형성하는 것이다. 현상액은 염화구리가 사용될 수 있다. 현상 후 현상액 제거를 위한 수세 과정이 수행된다.
식각은 포토레지스트층(d)이 제거된 부분과 대응되는 부분의 전극층(b,c)을 제거하는 것이다. 식각액은 염화제이철(FeCl 2), 염화구리(CuCl 2) 등이 사용될 수 있다. 염화제이철(FeCl 2), 염화구리(CuCl 2) 등은 식각이 빠르고 식각 후 잔사가 남지 않는다. 또한 Cu와 CuO는 식각성이 우수하여 씨드 잔유물이 남지 않으므로 미세 패턴 형성에 보다 용이하다. 노광, 현상, 식각하면 패턴구멍(p)에 해당하는 부분은 남고 나머지 부분은 제거된다.
전극층의 상부에 남은 포토레지스트층(d)을 에칭하는 단계는, 남은 포토레지스트층(d)을 제거하고 투명기재(110)에 전극(120)을 남기기 위한 것이다. 에칭은 포토 에칭액을 사용할 수 있다. 전극층(b,c)의 상부에 남은 포토레지스트층(d)을 에칭하면 Cu층, CuO로 이루어진 2층 구조의 전극이 노출된다.
전극(120)은 비정형화된 금속 라인 4개가 한 점에서 만나거나 3개가 한 점에서 만나 형성되는 다각형 형상의 메탈 메쉬(120,120a)로 이루어질 수 있다(도 3 및 도 6 참조). 전극이 아닌 비전극 영역에도 메탈 메쉬가 형성되며 전극과 비전극 영역의 메탈 메쉬는 설계과정에서 단선되게 설계하여 전극과 비전극 영역의 메탈 메쉬(120a)는 서로 연결되지 않는다.
상술한 방법으로 제1 투명기재(111) 상에 메탈 메쉬(120a,120a')로 구현되고 1방향으로 배열되는 제1 전극(121)을 형성하고, 제2 투명기재(112) 상에 메탈 메쉬(120a,120a')로 구현되고 1방향과 교차하는 2방향으로 배열되는 제2 전극(122)을 형성한 후, 제1 전극(121)과 제2 전극(122)이 교차되게 제1 투명기재(111)와 제2 투명기재(112)를 중첩하여 터치 센서(100)를 제작할 수 있다.
커버 글라스(200)의 표면에 반사 방지층(210)을 형성하는 단계는 커버 글라스(200)의 표면에 스크린 프린팅, 스퍼터 및 e-Beam 코팅 중 하나의 방법으로 안티글래어층, 투과율층 중 적어도 하나를 형성할 수 있다. 또는 커버 글라스(200)의 표면을 식각하여 요철층을 형성할 수 있다.
커버 글라스(200)에 반사 방지층(210)을 적용시 반사율은 0.5% 이하이고 헤이즈(Haze)는 약 2~3.5 범위이다.
도 10 내지 도 12에 도시된 바에 의하면, 4개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하는 것 대비 3개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하면, 금속 라인들이 만나는 점에서의 식각이 보다 용이하고 패턴 정밀도가 향상된다. 즉, 3개의 금속 라인이 만나 다각형 형상의 메탈 메쉬를 형성하는 경우, 터치 민감도를 확보하면서 금속 라인들이 만나는 점에서의 선폭을 최대한 얇게 형성하여 시인성을 개선할 수 있다.
도 13에 도시된 바와 같이, 메탈 메쉬를 형성하는 금속 라인은 2.6㎛이하의 선폭을 가지도록 제작 가능함이 확인된다. 금속 라인의 얇은 선폭은 노광, 현상 및 식각을 이용함에 의해 구현 가능하고, 얇은 선폭 및 메탈 메쉬의 랜덤 패턴 설계는 모아레 현상과 레인보우 현상을 감소시켜 시인성을 향상시킨다.
상술한 본 발명이 레인보우 개선 효과가 있는지 비교예와 대비하여 실험하였다.
도 17에 도시된 바와 같이, 비교예 1, 비교예 2, 비교예 3 및 실시예의 4가지를 태양광 아래에 두고 레인보우 현상이 나타나는지 확인하였다.
비교예 1은 터치 센서에 랜덤 메쉬를 적용하지 않고 커버 글라스에도 반사 방지층을 적용하지 않은 일반 터치 스크린 패널이다. 비교예 2는 터치 센서에 랜덤 메쉬를 적용하지 않고 커버 글라스에 반사 방지층을 적용한 터치 스크린 패널이다. 비교예 3은 터치 센서에 랜덤 메쉬를 적용하지 않고 반사 방지층을 적용하였으며 커버 글라스에는 반사 방지층을 적용하지 않은 터치 스크린 패널이다. 실시예는 터치 센서에 랜덤 메쉬를 적용하고 커버 글라스에 반사 방지층을 적용한 터치 스크린 패널이다.
'랜덤 메쉬를 적용하지 않고'의 의미는 메탈 메쉬를 적용하되 메탈 메쉬의 금속 라인이 직선이고 이 금속 라인이 서로 직교하여 규칙적인 격자 형태를 형성하는 형상임을 의미한다. '랜덤 메쉬를 적용하고'의 의미는 전극을 구현하는 메탈 메쉬의 금속 라인이 비정형화된 라인이며 이 금속 라인이 교차하여 불규칙한 격자 형태를 형성하거나 3개의 금속 라인이 한 점에서 만나 다각형 형상을 형성함을 의미한다.
도 18에 도시된 바와 같이, 비교예 1 내지 비교예 3의 터치 스크린 패널은 레인보우 현상이 나타나고, 실시예의 터치 스크린 패널은 비교예에 비해 레인보우 현상이 감소됨이 확인된다.
실시예의 반사율을 측정한 결과 반사율이 11%이고 채널저항은 1kΩ at 20inch였으며, 투과율은 90%로 측정되었다. 참고로 동일한 조건에서 ITO 전극은 채널저항이 15kΩ이므로 채널저항에서도 실시예가 우수하다.
실시예는 터치 센서의 전극을 랜덤 메쉬(비정형 메탈 메쉬)로 구현하고 커버 글라스에 반사 방지층을 적용하여 레인보우 현상을 개선한 것이다.
터치 스크린 패널은 디스플레이에 탑재되기 때문에 광학적 문제들에 대한 해결이 필수이다. 위 실험 결과로부터, 전극을 구현하는 메탈 메쉬를 랜덤 메쉬 형태로 형성하고 커버 글라스에 반사 방지층을 적용하여 레인보우 현상을 개선함을 확인할 수 있다.
도 19 내지 도 21은 본 발명의 실시예를 비교예들과 대비하여 투과율을 측정한 것이다.
도 19에 도시된 바에 의하면, 550nm에서 터치 센서에 반사 방지층을 형성한 경우 투과율이 80.4%이고, 커버 글라스에 반사 방지층을 형성한 경우 투과율이 86.6%로 측정되었다.
도 20에 도시된 바에 의하면, 반사 방지층을 형성하지 않은 일반 커버 글라스의 투과율은 91.6%이고, 반사 방지층을 형성한 커버 글라스의 투과율은 90.6%이고, 반사 코팅층을 형성하지 않은 터치 센서의 투과율은 90.5%이고, 반사 코팅층을 형성한 터치 센서의 투과율은 89.0%로 측정되었다.
도 21에 도시된 바에 의하면, 반사 방지층을 형성하지 않은 터치 센서에 반사 방지층을 형성하지 않은 일반 커버 글라스를 탑재하여 형성한 터치 스크린 패널의 투과율은 82.5%이고, 반사 방지층을 터치 센서에만 형성한 터치 스크린 패널의 투과율은 79.5%이며, 반사 방지층을 커버 글라스에만 형성한 터치 스크린 패널의 투과율은 81.9%로 측정되었다.
도 20 및 도 21에 도시된 그래프로부터, 반사 방지층을 커버 글라스에 적용하는 것이 반사 방지층을 터치 센서에 적용하는 것 대비 투과율 감소가 적음이 확인된다.
위 실험 결과를 통해, 터치 센서에 랜덤 메쉬 형태의 메탈 메쉬 전극을 적용하고 커버 글라스에 반사 방지층을 적용하여 모아레 현상을 회피하고 레인보우 현상을 감소시킬 수 있음을 확인할 수 있다.
[제3 실시예]
도 22에 도시된 바에 의하면, 본 발명의 터치 스크린 패널은 디스플레이의 상부에 배치되며 터치 감지용 전극을 구비하는 터치 센서(100)와 터치 센서(100)의 상부에 배치되는 커버 글라스(200)를 포함하며, 커버 글라스(200)는 자외선 양에 따라 색이 변하는 변색 글라스(200')로 형성한다.
터치 감지용 전극(120)은 메탈 메쉬(120a)로 구현한다. 메탈 메쉬는 금속 소재를 격자무늬 또는 교차무늬로 배열한 것일 수 있다. 메탈 메쉬(120a)를 적용한 전극(120)은 금속을 사용하기 때문에 전도성이 좋고, 투과율이 좋고, 구부릴 수 있기 때문에 플렉서블 디스플레이에 유용하다. 또한 메탈 메쉬(120a)를 적용한 전극(120)은 ITO 보다 가격이 낮아 가격 경쟁력이 있고 터치 민감도가 뛰어나다. 전극(120)을 구현하는 메탈 메쉬(120a)는 선폭이 얇아 많은 양의 빛이 통과하므로 투과율이 높아지고 그 만큼 소비전력도 낮아진다.
터치 센서(100)는 투명기재(110)에 ITO 전극을 구현한 것을 적용할 수도 있다. 그러나 터치 센서(100)는 투명기재(110)에 메탈 메쉬(120a)를 형성하여 전극(120)을 구현하는 것이 터치 민감도 및 투과율 측면에서 보다 우수하다.
터치 센서(100)는 교차하는 두 전극(121,122)을 중첩하여 형성할 수 있다. 교차하는 두 전극은 복수의 제1 전극(121)과 복수의 제2 전극(122)을 포함한다.
도 22 및 도 23를 참조하면, 제1 전극(121)은 제1 투명기재(110) 상에서 1방향으로 배열된다. 제2 전극(122)은 제2 투명기재(112) 상에서 1방향과 교차하는 2방향으로 배열된다. 제1 전극(121)이 형성된 제1 투명기재(111)를 제2 전극(122)이 형성된 제2 투명기재(112)와 중첩하면 제1 전극(121)과 제2 전극(122)이 교차하는 격자 구조를 갖는 터치 센서(100)가 된다. 1방향과 2방향은 x축과 y축 방향을 의미할 수 있다. 제1 전극(121)은 Rx 전극(수신 전극)으로 기능하고, 제2 전극(122)은 Tx 전극(송신 전극)으로 기능할 수 있다. 제1 전극(121)과 제2 전극(122)은 메탈 메쉬로 구현될 수 있다. 메탈 메쉬는 선폭이 3㎛ 이하로 형성될 수 있다.
터치 스크린 패널(20)은 터치 센서(100)를 커버 글라스(200)와 접착 필름(140)으로 합지하여 제작하며, 디스플레이(10)의 상부에 부착한다. 접착 필름(130,140)은 광학용투명접착 필름(OCA)(140)을 사용할 수 있다.
커버 글라스(200)는 터치 센서(100)의 상부에 접착 필름(140)을 매개로 부착될 수 있다. 커버 글라스(200)는 강화 유리 재질로 형성될 수 있다. 강화 유리는 충격이나 긁힘에 강하고 빛 투과율이 높아 한층 밝고 깨끗한 화면을 볼 수 있다.
레인보우 현상을 감소시키기 위해 커버 글라스(200)는 자외선 양에 따라 색이 변하는 변색 글라스로 형성한다. 레인보우 현상은 터치 스크린 패널을 태양광에 노출시 전극을 형성하는 금속에 의한 반사, 커버 글라스의 표면 굴절에 따른 빛의 산란, 커버 글라스의 반사율 등에 의해 발생한다.
상기한 이유로 커버 글라스(200)의 반사율을 줄여 태양광에 대한 레인보우 현상을 저감하도록 커버 글라스(200)는 변색 글라스로 형성한다.
도 23에 도시된 바와 같이, 변색 글라스(200')는 커버 글라스(200)의 표면에 코팅된 감광물질 코팅층(210)을 포함하는 것일 수 있다. 감광물질 코팅층(210)은 자외선에 의해 변색되어 레인보우 현상을 감소시킨다. 변색 글라스(200')는 자외선이 조사되는 경우 변색되어 레인보우 현상을 감소시키고, 자외선이 조사되지 않는 경우 일반 커버 글라스와 같은 기능을 수행한다. 변색 글라스(200')는 자외선이 조사되는 경우 감광물질 코팅층(210)이 변색을 통해 커버 글라스(200)의 반사율을 조절함으로써 레인보우 현상을 감소시킨다. 감광물질 코팅층(210)은 자외선 유입 양에 따라 색이 순차적으로 변색될 수 있다.
감광물질 코팅층(210)은 3~5㎛의 두께로 형성할 수 있다. 감광물질 코팅층(210)은 두께가 3㎛ 미만이면 레인보우 현상 감소 효과가 미비하고 5㎛를 초과하면 헤이즈가 높아져 선명함이 저하될 수 있다.
감광물질 코팅층(210)은 커버 글라스(200)의 표면에 습식으로 감광물질을 코팅하거나 건식 e-Beam 코팅하여 형성할 수 있다. 건식 e-Beam 코팅은 커버 글라스(200)의 표면에 감광물질 코팅층(210)을 균일하게 형성하여 자외선에 의해 균일하게 변색되므로 레인보우 현상을 감소시키는 효과가 우수하다. 이 외에도 감광물질 코팅층은 바(bar) 코팅, 딥(dip) 코팅, 플로우(flow) 코팅, 스프레이(spray) 코팅, 잉크젯(inkjet) 코팅, 롤 투 롤(roll to roll) 등의 방법을 사용하여 형성할 수 있다. 감광물질 코팅층(210)은 커버 글라스(200)의 상면에 코팅되는 것으로 도시하였으나 커버 글라스(200)의 하면에 코팅될 수도 있다.
또는, 도 24에 도시된 바와 같이, 변색 글라스(200')는 커버 글라스(200)에 분말 형태로 개재되는 감광물질(220)을 포함하는 것일 수 있다. 감광물질(220)은 커버 글라스(200)의 제조시 분말 형태로 커버 글라스(200)에 포함되어 커버 글라스(200)에 균일하게 분포할 수 있다.
또는, 도 25에 도시된 바와 같이, 변색 글라스(200')는 커버 글라스(200)에 부착 또는 개재되는 광변색 필름(230)을 포함하는 것일 수 있다.
광변색 필름(230)은 통상의 자외선 광변색 필름이 적용될 수 있다. 예를 들어, PVB(Polyvinylbutyral), EVA(Ethylene Vinyl Acetate) 재질의 필름에 감광물질을 포함하여 제작한 것일 수 있다.
광변색 필름(230)은 자외선이 입사될 때 변색되어 어두워지므로 커버 글라스(200)의 반사율을 저감시켜주고 이러한 자외선 감광 기능을 통해 레인보우 현상을 저감시켜 준다.
광변색 필름(230)은 커버 글라스(200)에 다층으로 부착되거나 다층으로 개재될 수 있다. 예를 들어, 광변색 필름(230)은 커버 글라스(200)의 상면과 하면에 각각 부착될 수도 있고, 커버 글라스(200)의 상면에 2층 또는 3층으로 부착될 수 있다.
변색 글라스(200')는 자외선이 입사될 때 헤이즈(haze)가 3~4% 범위가 되도록 제작된다. 헤이즈가 높아지면 선명함이 저하되나 자외선이 입사될 때 헤이즈 3~4% 범위에서는 시인성에 문제가 되지 않으면서 레인보우 현상을 감소시킬 수 있다.
광변색 필름(230)은 커버 글라스의 표면에 적층한 후 대략 140℃의 고온 가열 조건에서 14~16bar의 압력으로 가압하여 커버 글라스(200)에 접합할 수 있다. 또는 광변색 필름(230)은 광학용투명접착 필름(OCA)을 사용하고 기포 발생을 방지하기 위해 진공에서 커버 글라스(200)에 접합할 수 있다.
감광물질은 할로겐화은과 같은 무기화합물, 스피로피란RP, 스피록사진계, 크로멘계, 폴기드계, 아조계, 풀자마이드계 디아릴 페아텐계 등의 유기화합물이 알려져 있으며, 공지된 감광물질이 모두 사용 가능하다. 감광물질은 이 중 색상 등을 고려하여 적절한 것을 선택하여 사용할 수 있다.
한편, 본 발명의 터치 스크린 패널 제조방법은 터치 감지용 전극(120)을 구비하는 터치 센서(100)를 제조하는 단계와, 커버 글라스(200)를 준비하고 커버 글라스(200)를 자외선 양에 따라 색이 변하는 변색 글라스(200')로 형성하는 단계와 변색 글라스(200')를 터치 센서(100)의 상부에 부착하는 단계를 포함한다.
터치 센서를 제조하는 단계는, 제1 투명기재(110) 상에서 메탈 메쉬로 구현되는 제1 전극(121)을 형성하고, 제2 투명기재(110) 상에서 메탈 메쉬로 구현되며 제1 전극(121)과 교차하는 제2 전극(122)을 형성한다.
도 26에 도시된 바에 의하면, 제1 전극(121)과 제2 전극(122)은 각각 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상으로 형성된다. 예를 들어, 전극(120)은 Cu층(b), CuO층(c)의 2층 구조로 형성될 수 있다. 2층 구조는 전극(120)과 투명기재(110)의 부착성을 높이고 선폭을 미세하고 균일하게 형성하기 위한 것이다. Cu층은 반사율이 약 50%이고 CuO층은 반사율이 약 15%이므로 Cu층의 상부에 CuO층을 형성하면 전도성을 확보하면서 반사율은 낮출 수 있다. 금속 반사율을 낮추면 레인보우 현상을 감소시킬 수 있다.
투명기재(110)와 전극(120)의 사이에 하드코팅층(a)이 형성된다. 하드코팅층(a)은 투명기재(110) 상에 하드코팅액을 코팅하여 형성할 수 있다.
하드코팅층(a)은 투명기재(110)의 오염을 방지하고 스크래치 발생이 어렵도록 투명기재(110)를 고경도로 만든다. 또한 하드코팅층(a)은 투명기재(110)의 표면상에 전극(120)이 잘 부착되게 하고 빛 간섭무늬 발생이 적으며 시인성을 향상시킨다. 하드코팅층(a)은 아크릴 폴리 우레탄으로 형성될 수 있다. 이 외에도 하드코팅층은 폴리에스테르계 수지, 폴리우레탄계 수지 등으로 형성될 수도 있다. 하드코팅층(a)은 투명기재(110)의 표면을 거칠게 하지 않아도 높은 밀착성을 발현한다.
도 26에 도시된 바와 같이, 각 투명기재(110)에 전극(120)을 형성하는 과정은 투명기재(110) 상에 하드코팅층(a)을 형성하고, 하드코팅층(a) 상에 전극층(b,c)을 형성하고, 전극층(b,c) 상에 포토레지스트층(d)을 적층한다.
다음으로, 포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 형성하고, 노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거한다. 다음으로 전극층(b,c)의 상부에 남은 포토레지스트층(d)을 에칭한다.
투명기재(110) 상에 하드코팅층(a)을 형성하는 과정에서, 투명기재(110)는 PET 필름을 사용할 수 있다. 하드코팅층(a)은 투명기재(110) 상에 아크릴 폴리 우레탄을 도포 또는 증착하여 형성할 수 있다. 하드코팅층(a)은 5㎛~15㎛ 두께 범위로 형성할 수 있다.
하드코팅층(a) 상에 전극층(b,c)을 형성하는 과정에서, 전극층(b,c)은 Cu층(b)과 Cu층(b)의 상부에 적층되는 CuO층(c)을 포함할 수 있다. 하드코팅층(a) 상에 스퍼터링 방법에 의해 Cu층(b)을 형성하고, Cu층(b)의 상부에 스퍼터링 방법에 의해 CuO층(c)을 형성할 수 있다. Cu층(b)이 씨드(seed)층이 된다. Cu층(b)은 200~400㎛ 두께로 형성하고, CuO층은 5㎛ 두께로 형성할 수 있다. Cu층은 반사율이 약 50%이고 CuO층은 반사율이 약 15%이므로 Cu층의 상부에 CuO층을 형성하면 전도성을 확보하면서 반사율은 낮출 수 있다. 스퍼터링 방법에 의한 전극층을 형성하면 전극층(b,c)을 박막으로 형성하기 보다 용이하다.
스퍼터링 방법은 롤 두 롤 스퍼터(roll to roll)에서 수행하며, 이온 빔 처리(Iin Beam treatment)를 적용하여 표면 개질 및 전극의 접착 강화 기능을 갖도록 한다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 과정에서 포토레지스트층(d)은 감광성 폴리머를 사용할 수 있다. 감광성 폴리머는 자외선에 경화반응이 일어난다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계는 롤 투 롤(roll to roll) 시스템에서 코팅하는 방식을 이용할 수 있다. 예를 들어, 투명기재(110)의 전극층(b,c)에 액상의 포토 레지스트를 롤 투 롤 시스템에서 연속 공정으로 전기 방사하여 포토레지스트층(d)을 형성할 수 있다. 전기 방사는 균일한 포토레지스트층(d)을 형성한다. 롤 투 롤 연속 공정은 1~2㎛의 두께로 포토 레지스트를 연속 코팅 가능하다. 포토레지스트층(d)은 3.5㎛의 두께로 형성될 수 있다.
포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 배치하는 단계에서, 패턴구멍(p)은 메탈 메쉬 형성을 위한 것이다. 패턴구멍(p)은 메탈 메쉬 형성을 위해 기설계된 구멍이다. 패턴구멍(p)이 메탈 메쉬에 대응된다. 패턴구멍(p)의 폭은 3㎛ 이하, 바람직하게는 2.6㎛ 이하이고 패턴구멍 간 간격은 11㎛ 이하일 수 있다.
노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거하는 단계에서, 메탈 메쉬로 형성되는 전극(120)의 이미지가 구현된다.
도 26에 도시된 바와 같이, 포토레지스트층(d)의 상부에 전극(120)을 형성하기 위한 패턴구멍(p)들이 형성된 마스크(e)를 배치하고, 노광기를 이용하여 자외선(UV)을 조사하면 포토레지스트층(d)은 자외선을 받은 부분에 경화반응이 일어난다.
현상은 포토레지스트층(d)에서 경화되지 않은 부분을 현상액으로 용해, 제거시키고 포토레지스트층(d)에서 경과된 부분을 남게 하여 투명기재(110)에 전극(120) 이미지를 형성하는 것이다.
식각은 포토레지스트층(d)이 제거된 부분과 대응되는 부분의 전극층(b,c)을 제거하는 것이다. 식각액은 염화제이철(FeCl 2), 염화구리(CuCl 2) 등이 사용될 수 있다. 노광, 현상, 식각하면 패턴구멍(p)에 해당하는 부분은 남고 나머지 부분은 제거된다.
다음으로, 전극층의 상부에 남은 포토레지스트층(d)을 에칭하여 투명기재(110)에 Cu층, CuO로 이루어진 2층 구조의 전극이 노출되게 한다.
상술한 방법으로 제1 투명기재(111) 상에 메탈 메쉬(120a)로 구현되고 1방향으로 배열되는 제1 전극(121)을 형성하고, 제2 투명기재(112) 상에 메탈 메쉬(120a)로 구현되고 1방향과 교차하는 2방향으로 배열되는 제2 전극(122)을 형성한 후, 제1 전극(121)과 제2 전극(122)이 교차되게 제1 투명기재(111)와 제2 투명기재(112)를 중첩하여 터치 센서(100)를 제작할 수 있다.
다음으로, 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하는 단계는 커버 글라스(200)의 표면에 습식으로 감광물질을 코팅하거나 건식 e-Beam 코팅하여 감광물질 코팅층(210)을 형성할 수 있다.
습식 코팅은 스프레이 방법으로 커버 글라스(200)의 표면에 감광물질을 코팅하고 약 80℃에서 건조할 수 있다. 습식 코팅시 커버 글라스(200)에 감광물질의 부착력을 높이기 위해 플라즈마 처리할 수 있다.
또는 감광물질을 커버 글라스(200)에 코팅하기 전, 커버 글라스(200)에 SiO 2를 스퍼터링하여 20nm의 두께로 코팅하고, 감광물질을 코팅할 수 있다. SiO 2는 반사광을 산란시키는 효과를 통해 레인보우 현상을 저감한다.
도 27에 도시된 바와 같이, 건식 e-Beam 코팅은 필라멘트에 전류를 공급하여 전자 빔 자기장을 유도하고 집중적인 전자 충돌로 감광물질을 가열하여 증발시킴으로써 감광물질을 커버 글라스에 증착한다.
건식 e-Beam 코팅은 커버 글라스에 대한 부착력이 강하고 코팅층의 두께를 커버 글라스 전표면에 걸쳐 균일하게 형성할 수 있다. 감광물질 코팅층은 3~5㎛의 두께로 형성한다.
또는 커버 글라스에 광변색 필름(230)을 부착하거나 개재하여 형성할 수 있다. 광변색 필름(230)은 커버 글라스(200)의 표면에 적층한 후 대략 140℃의 고온 가열 조건에서 14~16bar의 압력으로 가압하여 커버 글라스(200)에 접합할 수 있다. 또는 광변색 필름(230)은 광학용투명접착 필름(OCA)을 사용하고 기포 발생을 방지하기 위해 진공에서 커버 글라스(200)에 접합할 수 있다.
또는 커버 글라스에 감광물질을 포함하여 형성할 수 있다. 감광물질(220)은 커버 글라스(200)의 제조시 미세 분말 형태로 커버 글라스(200)에 포함한다. 감광물질(220)은 커버 글라스(200)의 전체 중량 대비 1~5 중량%로 포함할 수 있다. 미세 분말은 자외선이 조사되는 경우 변색되어 커버 글라를 변색시켜 레인보우 현상을 감소시키고, 자외선이 조사되지 않는 경우 투명하므로 커버 글라스(200)가 일반 커버 글라스와 같은 기능을 수행하도록 한다.
변색 글라스(200')는 실내와 저녁시간에 맑고 투명한 화면을 보여주고 태양광에서는 자외선을 차단하여 레인보우 현상을 방지하여 시인성을 향상시키며, 430nm 근처의 파량계열 블루라이트를 차단하여 눈을 보호하는 효과를 가진다.
상술한 바와 같이, 본 발명은 터치 스크린 패널의 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하여 태양광에 의한 레인보우 현상을 감소시킬 수 있다.
또한, 본 발명은 터치 센서의 전극이 Cu와 CuOx의 2층 구조로 되어 반사율이 낮은 CuOx가 Cu의 상부에 배치되므로 태양광에 의한 금속 반사 강도를 낮추어 레인보우 현상을 저감시킬 수 있다.
[제4 실시예]
도 28에 도시된 바에 의하면, 터치 스크린 패널은 디스플레이(10)의 상부에 배치되고 터치 감지용 전극을 구비하는 터치 센서(100)와 터치 센서(100)의 상부에 배치되며 일면에 하프미러층(210)이 구비된 커버 글라스(200)를 포함한다.
터치 감지용 전극(120)은 메탈 메쉬(120a)로 구현할 수 있다. 메탈 메쉬(120a)는 금속 소재를 격자무늬 또는 교차무늬로 배열한 것일 수 있다. 메탈 메쉬(120a)를 적용한 전극(120)은 금속을 사용하기 때문에 전도성이 좋고, 투과율이 좋고, 구부릴 수 있기 때문에 플렉서블 디스플레이에 유용하다. 또한 메탈 메쉬(120a)를 적용한 전극(120)은 ITO 보다 가격이 낮아 가격 경쟁력이 있고 터치 민감도가 뛰어나다. 전극(120)을 구현하는 메탈 메쉬(120a)는 선폭이 얇아 많은 양의 빛이 통과하므로 투과율이 높아지고 그 만큼 소비전력도 낮아진다.
터치 센서(100)는 투명기재(110)에 ITO 전극을 구현한 것을 적용할 수도 있다. 그러나 터치 센서(100)는 투명기재(110)에 메탈 메쉬(120a)를 형성하여 전극(120)을 구현하는 것이 터치 민감도 및 투과율 측면에서 보다 우수하다.
터치 센서(100)는 교차하는 두 전극(121,122)을 중첩하여 형성한다. 교차하는 두 전극은 복수의 제1 전극(121)과 복수의 제2 전극(122)을 포함한다. 터치 센서(100)는 제1 전극(121)과 제2 전극(122)이 교차하는 부분의 x,y좌표로 터치 위치를 감지한다.
도 28 및 도 29를 참조하면, 제1 전극(121)은 제1 투명기재(110) 상에서 1방향으로 배열된다. 제2 전극(122)은 제2 투명기재(112) 상에서 1방향과 교차하는 2방향으로 배열된다. 제1 전극(121)이 형성된 제1 투명기재(111)를 제2 전극(122)이 형성된 제2 투명기재(112)와 중첩하면 제1 전극(121)과 제2 전극(122)이 교차하는 격자 구조를 갖는 터치 센서(100)가 된다. 1방향과 2방향은 x축과 y축 방향을 의미할 수 있다.
제1 전극(121)은 Rx 전극(수신 전극)으로 기능하고, 제2 전극(122)은 Tx 전극(송신 전극)으로 기능할 수 있다. 제1 전극(121)과 제2 전극(122)은 메탈 메쉬로 구현될 수 있다. 메탈 메쉬는 선폭이 3㎛ 이하로 형성될 수 있으며, 바람직하게는 선폭이 2.6㎛ 이하로 형성될 수 있다.
터치 스크린 패널(20)은 터치 센서(100)를 커버 글라스(200)와 접착 필름(140)으로 합지하여 제작하며, 디스플레이(10)의 상부에 부착한다. 접착 필름(130,140)은 광학용투명접착 필름(OCA)(140)을 사용할 수 있다.
커버 글라스(200)는 터치 센서(100)의 상부에 접착 필름(140)을 매개로 부착될 수 있다. 커버 글라스(200)는 강화 유리 재질로 형성될 수 있다. 강화 유리는 충격이나 긁힘에 강하고 빛 투과율이 높아 한층 밝고 깨끗한 화면을 볼 수 있다.
레인보우 현상을 감소시키기 위해, 커버 글라스(200)는 일면에 하프미러층(210)을 형성한다. 레인보우 현상은 터치 스크린 패널을 태양광에 노출시 전극을 형성하는 금속에 의한 반사, 커버 글라스의 표면 굴절에 따른 빛의 산란, 커버 글라스의 반사율 등에 의해 발생한다.
상기한 이유로 태양광에 대한 레인보우 현상을 저감하도록 커버 글라스(200)의 일면에 하프미러층(210)을 형성한다.
하프미러층(210)의 반사율은 가시광선 영역에서 12~25% 범위이고, 투과율은 가시광선 영역에서 60~90% 범위로 설정하는 것이 효과적이다.
상기 투과율 및 반사율 범위는 태양광에서 커버 글라스의 반사율을 감소시켜 레인보우 현상을 방지한다. 가시광선 영역에서 투과율이 60% 이상이어야 시인성을 확보할 수 있으며, 반사율을 낮추면 레인보우 현상이 방지된다.
하프미러층(210)은 재료 및 두께를 적절하게 선택하여 반사율과 투과율을 자유롭게 설계할 수 있다.
하프미러층(210)은 금속 박막을 1층 또는 다층으로 적층한 금속미러층일 수 있다. 금속 박막은 Al, Ni 중 선택된 1종 이상으로 이루어질 수 있다. 금속 박막은 Al, Ni 외에도 Au, Ag, Cu, Pt, Pd, Se, Te, Rh, Ir, Ge, Os, Ru, Cr 및 W 중 선택된 1종 이상으로 이루어질 수 있다. 바람직하게는, 금속 박막은 Al, Ni 중 선택된 1종 이상으로 이루어진다. Al, Ni로 금속 박막을 형성시 금속 본연의 성질이 나오지 않으면서 반투명한 하프미러층(210)을 형성할 수 있다. 반투명한 하프미러층(210)은 태양광에서 커버 글라스(200)의 반사율을 낮춘다.
또한, 하프미러층(210)은 금속 본연의 성질이 나오지 않고 반투명해야 하므로 두께를 100~200 옹스트롱(Å)으로 형성한다.
도시하지는 않았지만, 커버 글라스(200)의 일면에 하드코팅층을 형성한 후, Al, Ni 등의 금속 박막을 코팅하여 하프미러층(210)을 형성할 수 있다. 하드코팅층은 커버 글라스의 일면에 아크릴 폴리 우레탄을 도포 또는 증착하여 형성할 수 있다. 하드코팅층()은 커버 글라스(200)에 하프미러층(210)의 부착력을 높인다.
하프미러층(210)은 Ai 금속 박막과 Ni 금속 박막이 교대로 적층된 것일 수 있다.
도 30에 도시된 바와 같이, 하프미러층(210)의 상부에 굴절율층(220)이 더 형성할 수 있다. 굴절율층(220)은 고굴절율층과 저굴절율층을 차례로 다층으로 적층하고 각 층의 굴절율이나 층의 두께를 설계함으로써 가시광선이 하프미러층에 유입되기 전 태양광의 일부를 반사시켜 소멸할 수 있다. 굴절율층(220)은 SiO 2를 주성분으로 하는 저굴절율층과 TiO 2를 주성분으로 하는 저굴절율층이 교대로 적층된 것일 수 있다.
한편, 터치 스크린 패널의 제조방법은 터치 감지용 전극을 구비하는 터치 센서를 제조하는 단계와 커버 글라스를 준비하고, 상기 커버 글라스의 일면에 하프미러층을 형성하는 단계와 하프미러층이 형성된 커버 글라스를 터치 센서의 상부에 부착하는 단계를 포함한다.
터치 감지용 전극을 구비하는 터치 센서를 제조하는 단계에서, 터치 감지용 전극은 메탈 메쉬로 구현할 수 있다.
도 28 내지 도 30을 참조하면, 터치 센서를 제조하는 단계는, 제1 투명기재(110) 상에서 메탈 메쉬로 구현되는 제1 전극(121)을 형성하고, 제2 투명기재(110) 상에서 메탈 메쉬로 구현되며 제1 전극(121)과 교차하는 제2 전극(122)을 형성한다.
도 31에 도시된 바에 의하면, 제1 전극(121)과 제2 전극(122)은 각각 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상으로 형성된다. 예를 들어, 전극(120)은 Cu층(b), CuO층(c)의 2층 구조로 형성될 수 있다. 2층 구조는 전극(120)과 투명기재(110)의 부착성을 높이고 선폭을 미세하고 균일하게 형성하기 위한 것이다. Cu층은 반사율이 약 50%이고 CuO층은 반사율이 약 15%이므로 Cu층의 상부에 CuO층을 형성하면 전도성을 확보하면서 반사율은 낮출 수 있다. 금속 반사율을 낮추면 레인보우 현상을 감소시킬 수 있다.
투명기재(110)와 전극(120)의 사이에 하드코팅층(a)이 형성될 수 있다. 하드코팅층(a)은 투명기재(110) 상에 하드코팅액을 코팅하여 형성할 수 있다.
하드코팅층(a)은 투명기재(110)의 오염을 방지하고 스크래치 발생이 어렵도록 투명기재(110)를 고경도로 만든다. 또한 하드코팅층(a)은 투명기재(110)의 표면상에 전극(120)이 잘 부착되게 하고 빛 간섭무늬 발생이 적으며 시인성을 향상시킨다. 하드코팅층(a)은 아크릴 폴리 우레탄으로 형성될 수 있다. 이 외에도 하드코팅층은 폴리에스테르계 수지, 폴리우레탄계 수지 등으로 형성될 수도 있다. 하드코팅층(a)은 투명기재(110)의 표면을 거칠게 하지 않아도 높은 밀착성을 발현한다.
도 31에 도시된 바와 같이, 각 투명기재(110)에 전극(120)을 형성하는 과정은 투명기재(110) 상에 하드코팅층(a)을 형성하고, 하드코팅층(a) 상에 전극층(b,c)을 형성하고, 전극층(b,c) 상에 포토레지스트층(d)을 적층한다.
다음으로, 포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 형성하고, 노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거한다. 다음으로 전극층(b,c)의 상부에 남은 포토레지스트층(d)을 에칭한다.
투명기재(110) 상에 하드코팅층(a)을 형성하는 과정에서, 투명기재(110)는 PET 필름을 사용할 수 있다. 하드코팅층(a)은 투명기재(110) 상에 아크릴 폴리 우레탄을 도포 또는 증착하여 형성할 수 있다. 하드코팅층(a)은 5㎛~15㎛ 두께 범위로 형성할 수 있다.
하드코팅층(a) 상에 전극층(b,c)을 형성하는 과정에서, 전극층(b,c)은 Cu층(b)과 Cu층(b)의 상부에 적층되는 CuO층(c)을 포함할 수 있다. 하드코팅층(a) 상에 스퍼터링 방법에 의해 Cu층(b)을 형성하고, Cu층(b)의 상부에 스퍼터링 방법에 의해 CuO층(c)을 형성할 수 있다. Cu층(b)이 씨드(seed)층이 된다. Cu층(b)은 200~400㎛ 두께로 형성하고, CuO층은 5㎛ 두께로 형성할 수 있다. Cu층은 반사율이 약 50%이고 CuO층은 반사율이 약 15%이므로 Cu층의 상부에 CuO층을 형성하면 전도성을 확보하면서 반사율은 낮출 수 있다. 스퍼터링 방법에 의한 전극층을 형성하면 전극층(b,c)을 박막으로 형성하기 보다 용이하다.
스퍼터링 방법은 롤 두 롤 스퍼터(roll to roll)에서 수행하며, 이온 빔 처리(Iin Beam treatment)를 적용하여 표면 개질 및 전극의 접착 강화 기능을 갖도록 한다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 과정에서 포토레지스트층(d)은 감광성 폴리머를 사용할 수 있다. 감광성 폴리머는 자외선에 경화반응이 일어난다.
전극층(b,c) 상에 포토레지스트층(d)을 적층하는 단계는 롤 투 롤(roll to roll) 시스템에서 코팅하는 방식을 이용할 수 있다. 예를 들어, 투명기재(110)의 전극층(b,c)에 액상의 포토 레지스트를 롤 투 롤 시스템에서 연속 공정으로 전기 방사하여 포토레지스트층(d)을 형성할 수 있다. 전기 방사는 균일한 포토레지스트층(d)을 형성한다. 롤 투 롤 연속 공정은 1~2㎛의 두께로 포토 레지스트를 연속 코팅 가능하다. 포토레지스트층(d)은 3.5㎛의 두께로 형성될 수 있다.
포토레지스트층(d) 상에 패턴구멍(p)이 형성된 마스크(e)를 배치하는 단계에서, 패턴구멍(p)은 메탈 메쉬 형성을 위한 것이다. 패턴구멍(p)은 메탈 메쉬 형성을 위해 기설계된 구멍이다. 패턴구멍(p)이 메탈 메쉬에 대응된다. 패턴구멍(p)의 폭은 3㎛ 이하, 바람직하게는 2.6㎛ 이하이고 패턴구멍 간 간격은 11㎛ 이하일 수 있다.
노광, 현상 및 식각하여 패턴구멍(p)에 해당하는 부분을 남기고 나머지 부분은 제거하는 단계에서, 메탈 메쉬로 형성되는 전극(120)의 이미지가 구현된다.
도 31에 도시된 바와 같이, 포토레지스트층(d)의 상부에 전극(120)을 형성하기 위한 패턴구멍(p)들이 형성된 마스크(e)를 배치하고, 노광기를 이용하여 자외선(UV)을 조사하면 포토레지스트층(d)은 자외선을 받은 부분에 경화반응이 일어난다.
현상은 포토레지스트층(d)에서 경화되지 않은 부분을 현상액으로 용해, 제거시키고 포토레지스트층(d)에서 경과된 부분을 남게 하여 투명기재(110)에 전극(120) 이미지를 형성하는 것이다.
식각은 포토레지스트층(d)이 제거된 부분과 대응되는 부분의 전극층(b,c)을 제거하는 것이다. 식각액은 염화제이철(FeCl 2), 염화구리(CuCl 2) 등이 사용될 수 있다. 노광, 현상, 식각하면 패턴구멍(p)에 해당하는 부분은 남고 나머지 부분은 제거된다.
다음으로, 전극층의 상부에 남은 포토레지스트층(d)을 에칭하여 투명기재(110)에 Cu층, CuO로 이루어진 2층 구조의 전극이 노출되게 한다.
상술한 방법으로 제1 투명기재(111) 상에 메탈 메쉬(120a)로 구현되고 1방향으로 배열되는 제1 전극(121)을 형성하고, 제2 투명기재(112) 상에 메탈 메쉬(120a)로 구현되고 1방향과 교차하는 2방향으로 배열되는 제2 전극(122)을 형성한 후, 제1 전극(121)과 제2 전극(122)이 교차되게 제1 투명기재(111)와 제2 투명기재(112)를 중첩하여 터치 센서(100)를 제작할 수 있다.
커버 글라스의 일면에 하프미러층을 형성하는 단계는 스퍼터링 방법을 적용하고 커버 글라스(200)의 일면에 금속 소재를 100~200 옹스트롱으로 타게팅하여 형성한다. 금속 소재를 100~200 옹스트롱으로 타게팅하면 금속 본연의 성질이 나오지 않고 반투명한 하프미러층(210)이 형성된다.
예를 들어, 진공챔버 내에 각각 금속 소재와 금속 소재가 코팅될 커버 글라스를 고정시키고, 아르곤 가스를 진공챔버 내에 주입한 다음 금속 소재를 100~200 옹스트롱으로 타게팅하면 금속 소재가 커버 글라스에 박막 형태로 균일하게 증착되고 반투명한 하프미러층이 형성된다. 금속 소재는 Al, Ni 중 선택된 1종 이상을 사용한다. 스퍼터링 방법을 적용하여 커버 글라스(200)와 밀착력이 높고 균일한 박막 형태의 하프미러층(210)을 형성할 수 있다.
스프터링 처리시 치밀하고 균일한 박막 형성이 가능하고 광학 성능이 좋으며 커버 글라스와 밀착성이 높은 하프미러층(210)을 형성할 수 있다.
하프미러층(210)은 커버 글라스(200)에 증착하여 형성하는 것도 가능하지만 필요에 따라 패터닝하여 형성하는 것도 가능하다.
상술한 바와 같이, 커버 글라스(200)의 일면에 원하는 투과율과 반사율을 갖는 하프미러층(210)을 형성하여 레인보우 현상을 감소시킬 수 있다. 또한 하프미러층(210)의 상부에 굴절율층(220)을 더 형성하여 투과율을 높이고 반사율을 저감하여 시인성을 개선할 수 있다.
본 발명은 도면과 명세서에 최적의 실시예들이 개시되었다. 여기서, 특정한 용어들이 사용되었으나, 이는 단지 본 발명을 설명하기 위한 목적에서 사용된 것이지 의미 한정이나 특허청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 발명은 기술분야의 통상의 지식을 가진 자라면, 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 권리범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (20)

  1. 메탈 메쉬로 구현된 전극을 구비한 터치 센서; 및
    상기 터치 센서의 상부에 배치된 커버 글라스;
    를 포함하는 터치 스크린 패널.
  2. 제1항에 있어서,
    상기 메탈 메쉬는 비정형화된 복수의 금속 라인이 만나 형성하는 복수의 다각형 형상인 터치 스크린 패널.
  3. 제2항에 있어서,
    상기 비정형화된 복수의 금속 라인은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 불규칙한 형상인 터치 스크린 패널.
  4. 제2항에 있어서,
    상기 비정형화된 복수의 금속 라인은 금속 라인 간 간격이 불규칙한 터치 스크린 패널.
  5. 제1항에 있어서,
    상기 전극이 아닌 비전극 영역에 상기 메탈 메쉬가 적용되고,
    상기 전극과 상기 비전극 영역의 경계는 상기 메탈 메쉬가 단선되어 구분되는 터치 스크린 패널.
  6. 제1항에 있어서,
    상기 전극은 Cu, CuOx, Cu-CuOx 중 선택된 1종 이상을 포함하고 2층 이상인 터치 스크린 패널.
  7. 제1항에 있어서,
    상기 커버 글라스의 표면에 반사 방지층이 형성되며,
    상기 반사 방지층은 안티글리어층, 투과율층, 요철층 중 적어도 하나를 포함하는 터치 스크린 패널.
  8. 제7항에 있어서,
    상기 안티글리어층은 폴리머와 SiO 2를 포함하는 터치 스크린 패널.
  9. 제1항에 있어서,
    상기 커버 글라스는 자외선 양에 따라 색이 변하는 변색 글라스인 터치 스크린 패널.
  10. 제9항에 있어서,
    상기 변색 글라스는
    상기 커버 글라스의 표면에 코팅된 감광물질 코팅층, 상기 커버 글라스에 분말 형태로 개재되는 감광물질, 상기 커버 글라스에 부착되거나 개재되는 광변색 필름 중 적어도 하나를 포함하는 터치 스크린 패널.
  11. 제1항에 있어서,
    상기 커버 글라스는 일면에 하프미러층이 구비된 터치 스크린 패널.
  12. 제11항에 있어서,
    상기 하프미러층은
    상기 커버 글라스에 금속 박막을 1층 또는 다층으로 적층한 금속미러층인 터치 스크린 패널.
  13. 제12항에 있어서,
    상기 금속 박막은 Al, Ni 중 선택된 1종 이상인 터치 스크린 패널.
  14. 메탈 메쉬로 구현한 전극을 구비하는 터치 센서를 제조하는 단계; 및
    커버 글라스를 준비하고, 상기 터치 센서의 상부에 상기 커버 글라스를 부착하는 단계;
    를 포함하는 터치 스크린 패널의 제조방법.
  15. 제14항에 있어서,
    상기 터치 센서를 제조하는 단계는
    투명기재를 준비하는 단계;
    상기 투명기재 상에 아크릴 폴리 우레탄을 도포 또는 증착하여 하드코팅층을 형성하는 단계;
    상기 하드코팅층 상에 스퍼터링 방법으로 Cu층, CuOx층, Cu-CuOx층 중 선택된 1종 이상의 전극층을 형성하는 단계;
    상기 전극층 상에 포토레지스트층을 적층하는 단계;
    상기 포토레지스트층 상에 상기 메탈 메쉬에 대응하는 패턴구멍이 형성된 마스크를 배치하는 단계;
    노광, 현상 및 식각하여 상기 패턴구멍에 해당하는 부분을 남기고 나머지 부분을 제거하는 단계; 및
    상기 전극층의 상부에 남은 포토레지스트층을 에칭하는 단계;
    를 포함하는 터치 스크린 패널의 제조방법.
  16. 제14항에 있어서,
    상기 포토레지스트층 상에 상기 메탈 메쉬에 대응하는 패턴구멍이 형성된 마스크를 배치하는 단계에서,
    상기 패턴구멍은 복수의 라인구멍들이 한점에서 연결되어 다각형 형상을 형성하는 것인 터치 스크린 패널의 제조방법.
  17. 제16항에 있어서,
    상기 라인구멍은 직선 형상, 굴곡진 형상, 물결진 형상 중 하나 또는 이들의 조합으로 이루어진 불규칙한 형상인 터치 스크린 패널의 제조방법.
  18. 제14항에 있어서,
    상기 터치 센서의 상부에 커버 글라스를 부착하는 단계는,
    상기 커버 글라스의 표면에 반사 방지층을 형성하는 단계를 더 포함하여, 상기 반사 방지층이 형성된 상기 커버 글라스를 상기 터치 센서의 상부에 부착하며,
    상기 커버 글라스의 표면에 반사 방지층을 형성하는 단계는,
    상기 커버 글라스의 표면에 스크린 프린팅, 스퍼터 및 e-Beam 코팅 중 하나의 방법으로 안티글래어층, 투과율층 중 적어도 하나를 형성하거나, 상기 커버 글라스의 표면을 식각하여 요철층을 형성하는 단계를 포함하는 터치 스크린 패널의 제조방법.
  19. 제14항에 있어서,
    상기 터치 센서의 상부에 커버 글라스를 부착하는 단계는,
    상기 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하는 단계를 더 포함하여, 상기 변색 글라스를 상기 터치 센서의 상부에 부착하며,
    상기 커버 글라스를 자외선 양에 따라 색이 변하는 변색 글라스로 형성하는 단계는,
    상기 커버 글라스의 표면에 습식 또는 건식 e-Beam 코팅으로 감광물질을 코팅하거나, 상기 커버 글라스에 광변색 필름을 부착하거나 개재하거나, 상기 커버 글라스에 감광물질을 포함하여 형성하는 터치 스크린 패널의 제조방법.
  20. 제14항에 있어서,
    상기 터치 센서의 상부에 커버 글라스를 부착하는 단계는,
    상기 커버 글라스의 일면에 하프미러층을 형성하는 단계를 더 포함하여, 상기 하프미러층이 형성된 커버 글라스를 상기 터치 센서의 상부에 부착하며,
    상기 커버 글라스의 일면에 하프미러층을 형성하는 단계는
    스퍼터링 방법을 적용하고,
    상기 커버 글라스의 일면에 Al, Ni 중 선택된 1종 이상을 100~200 옹스트롱(Å)으로 타게팅하여 형성하는 터치 스크린 패널의 제조방법.
PCT/KR2020/095078 2019-04-29 2020-04-28 터치 스크린 패널 및 이의 제조방법 WO2020222627A1 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2019-0049746 2019-04-29
KR10-2019-0049743 2019-04-29
KR1020190049745A KR102361287B1 (ko) 2019-04-29 2019-04-29 터치 스크린 패널 및 이의 제조방법
KR10-2019-0049745 2019-04-29
KR1020190049746A KR102274135B1 (ko) 2019-04-29 2019-04-29 터치 스크린 패널 및 이의 제조방법
KR10-2019-0049744 2019-04-29
KR1020190049744A KR20200126144A (ko) 2019-04-29 2019-04-29 터치 스크린 패널 및 이의 제조방법
KR1020190049743A KR102335548B1 (ko) 2019-04-29 2019-04-29 터치 스크린 패널 및 이의 제조방법

Publications (1)

Publication Number Publication Date
WO2020222627A1 true WO2020222627A1 (ko) 2020-11-05

Family

ID=73028615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/095078 WO2020222627A1 (ko) 2019-04-29 2020-04-28 터치 스크린 패널 및 이의 제조방법

Country Status (1)

Country Link
WO (1) WO2020222627A1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619767B2 (ko) * 1977-07-01 1986-03-26 Hitachi Ltd
KR101449493B1 (ko) * 2014-04-14 2014-10-14 미래나노텍(주) 더미 패턴이 구비된 터치스크린 패널
KR101472477B1 (ko) * 2012-11-21 2014-12-12 김영수 터치 스크린 패널 보호용 시트 및 그 제조 방법
KR20150099980A (ko) * 2014-02-24 2015-09-02 삼성전자주식회사 터치 패널 및 그 제조 방법
KR20160014873A (ko) * 2014-07-29 2016-02-12 삼성디스플레이 주식회사 디스플레이 장치
JP5876928B2 (ja) * 2012-05-09 2016-03-02 ナンチャン オー−フィルム テック カンパニー リミテッド 金属メッシュ導電層及びこれを有するタッチパネル
US20170177126A1 (en) * 2015-12-18 2017-06-22 Jtouch Corporation Metal mesh sensing module of touch panel and manufacturing method thereof
KR101867749B1 (ko) * 2014-05-16 2018-06-15 후지필름 가부시키가이샤 터치 패널용 도전 시트 및 정전 용량식 터치 패널

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619767B2 (ko) * 1977-07-01 1986-03-26 Hitachi Ltd
JP5876928B2 (ja) * 2012-05-09 2016-03-02 ナンチャン オー−フィルム テック カンパニー リミテッド 金属メッシュ導電層及びこれを有するタッチパネル
KR101472477B1 (ko) * 2012-11-21 2014-12-12 김영수 터치 스크린 패널 보호용 시트 및 그 제조 방법
KR20150099980A (ko) * 2014-02-24 2015-09-02 삼성전자주식회사 터치 패널 및 그 제조 방법
KR101449493B1 (ko) * 2014-04-14 2014-10-14 미래나노텍(주) 더미 패턴이 구비된 터치스크린 패널
KR101867749B1 (ko) * 2014-05-16 2018-06-15 후지필름 가부시키가이샤 터치 패널용 도전 시트 및 정전 용량식 터치 패널
KR20160014873A (ko) * 2014-07-29 2016-02-12 삼성디스플레이 주식회사 디스플레이 장치
US20170177126A1 (en) * 2015-12-18 2017-06-22 Jtouch Corporation Metal mesh sensing module of touch panel and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2016204525A1 (ko) 터치 패널 및 표시 장치
WO2016171421A1 (ko) 터치 윈도우
AU2015368103B2 (en) Window cover and display apparatus having the same and method of manufacturing display apparatus
WO2016122173A1 (ko) 터치 윈도우
WO2012118257A1 (ko) 휴대단말기용 액정보호 커버체 및 이를 이루는 투과보호층의 제조방법
WO2016036194A1 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
WO2017069528A1 (ko) 편광판 일체형 윈도우 기판 및 이의 제조 방법
WO2016043497A2 (ko) 광 제어 장치, 광 제어 장치의 제조 방법 및 광 제어 장치를 포함하는 표시 장치
WO2016024760A1 (ko) 터치윈도우
WO2017142231A1 (ko) 금속판, 증착용마스크 및 이의 제조방법
WO2011025213A2 (ko) 터치패널센서
WO2018034411A1 (ko) 필름 터치 센서 및 필름 터치 센서용 구조체
WO2016043572A1 (ko) 커버글라스 및 이의 제조방법
WO2016204488A1 (ko) 터치 센서 및 이의 제조방법
WO2015088295A1 (ko) 터치 센서 및 이의 제조방법
WO2020222445A1 (ko) 디스플레이용 기판
WO2021154057A1 (ko) 플렉서블 디스플레이 표면을 보호하는 초 박막 글라스
WO2018103599A1 (zh) 主动开关阵列基板及其制备方法
WO2014133347A1 (ko) 정전용량 방식 터치스크린을 위한 더미 패턴을 사용하는 터치 패드의 구조
WO2017126812A1 (en) Display device
WO2020222627A1 (ko) 터치 스크린 패널 및 이의 제조방법
WO2016204487A1 (ko) 터치 센서 및 이의 제조방법
WO2021085895A1 (ko) 복사 냉각 소자 및 이의 제조방법
WO2018004138A1 (ko) 지문센서 커버, 지문센싱 장치, 및 이를 포함하는 터치 디바이스
WO2017074039A1 (ko) 폴리머막, 이를 채용한 광학 부재, 편광 부재 및 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798182

Country of ref document: EP

Kind code of ref document: A1