WO2020221088A2 - 终端设备的ta确定方法及装置 - Google Patents

终端设备的ta确定方法及装置 Download PDF

Info

Publication number
WO2020221088A2
WO2020221088A2 PCT/CN2020/086323 CN2020086323W WO2020221088A2 WO 2020221088 A2 WO2020221088 A2 WO 2020221088A2 CN 2020086323 W CN2020086323 W CN 2020086323W WO 2020221088 A2 WO2020221088 A2 WO 2020221088A2
Authority
WO
WIPO (PCT)
Prior art keywords
terminal device
access network
network device
scaling factor
parameter
Prior art date
Application number
PCT/CN2020/086323
Other languages
English (en)
French (fr)
Other versions
WO2020221088A3 (zh
Inventor
陈莹
罗禾佳
李榕
王俊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20799167.0A priority Critical patent/EP3952491A4/en
Priority to AU2020266926A priority patent/AU2020266926B2/en
Priority to BR112021021709A priority patent/BR112021021709A2/pt
Priority to CA3135510A priority patent/CA3135510A1/en
Publication of WO2020221088A2 publication Critical patent/WO2020221088A2/zh
Publication of WO2020221088A3 publication Critical patent/WO2020221088A3/zh
Priority to US17/513,546 priority patent/US11985697B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking

Definitions

  • This application relates to the field of communications, and in particular to a method, device and system for determining the timing advance (TA) of terminal equipment.
  • TA timing advance
  • a terminal device When a terminal device communicates with an access network device (for example, a base station), if the terminal device is far away from the access network device, the uplink communication data sent by the terminal device to the access network device will have a large transmission delay. Therefore, the access network device will set a timing advance (TA) for the terminal device, so that the terminal device can obtain the first time to receive the downlink communication data of the access network device through the TA, and communicate with the terminal device to the access network device. Negative offset (negative offset) between the second time when the network device sends the uplink communication data. In turn, the terminal device can send uplink communication data to the access network device in advance according to the TA, so as to reduce the transmission delay of the uplink communication data.
  • TA timing advance
  • the access network device determines the TA of the terminal device according to the random access preamble sent by the terminal device, and sends the initial TA parameters to the terminal device through the TAC field, so that the terminal device can Determine TA according to TA initial parameters.
  • the access network device determines to adjust the TA of the terminal device by measuring the uplink communication data of the terminal device, and also sends the TA adjustment parameters to the terminal device through the TAC field , So that the terminal device can adjust the TA according to the TA adjustment parameter.
  • the access network equipment is adjusted each time the TA of the terminal equipment is adjusted.
  • the range, as well as the total range that can be adjusted within a period of time, are restricted.
  • the existing TA determination method only considers the mobility of the terminal equipment.
  • the access network equipment is a satellite base station
  • the satellite base station itself is also mobile, so that the existing TA determination method for terminal equipment cannot Directly applied to satellite base stations. Therefore, how to make the TA determination method of the terminal equipment applicable to the satellite base station is a technical problem to be solved urgently in this field.
  • the present application provides a method, device, and system for determining TA of terminal equipment to solve the problem that the method for determining TA of terminal equipment in the prior art cannot be applied to satellite base stations.
  • the first aspect of the present application provides a method for determining the TA of a terminal device, including:
  • TA adjustment parameter Acquiring a TA adjustment parameter from an access network device; wherein the TA adjustment parameter is used to indicate the TA adjustment amount of the terminal device;
  • the TA scaling factor is used to perform scaling processing on the TA adjustment amount of the terminal device
  • the terminal device when the terminal device receives the TA adjustment parameter sent by the access network device and determines that the TA needs to be adjusted, it determines the TA scaling factor, subcarrier spacing parameter, and the first One TA, the second TA is obtained by adjusting the first TA together.
  • the terminal device when the terminal device determines the second TA, due to the addition of the TA adjustment parameter k, the terminal device has a larger adjustable range when adjusting the TA, so it can be applied to, for example, a satellite communication system , Realize that the terminal equipment can adjust the TA when the terminal equipment itself and the satellite base station jointly cause the equipment to move.
  • the method for determining the TA of the terminal device described in this embodiment can also be applied to an existing terrestrial communication system, and the terminal device can adjust the TA based on only the mobility of the terminal device itself. Therefore, the method for determining the TA of the terminal equipment provided in this embodiment can also be applied to both the ground fixed base station and the satellite base station, which has portability.
  • the determining the second TA according to the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter, and the first TA includes:
  • TA 2 TA 1 + k ⁇ (T A -31) ⁇ 16 ⁇ 64/2 ⁇ calculating TA 2;
  • TA 1 is a first TA
  • T A is the adjustment parameter TA
  • k is a scaling factor TA
  • 2 ⁇ subcarrier interval parameter 2 ⁇ ⁇ 15 [ kHz]
  • ⁇ f is the sub-carrier of the terminal device interval.
  • the second TA is calculated by a formula, and the existing TA determination method is expanded on the basis of the existing TA determination method, so that the TA determination method in this embodiment is portable. Can be compatible with existing communication systems.
  • the determining the TA scaling factor includes:
  • the TA scaling factor is determined according to the maximum moving speed of the terminal device, the moving speed of the access network device, and the frequency at which the access network device instructs the terminal device to adjust the TA.
  • the determination is made according to the maximum moving speed of the terminal device, the moving speed of the access network device, and the frequency at which the access network device instructs the terminal device to adjust TA
  • the TA scaling factor includes:
  • v 1 is the maximum moving speed of the terminal device
  • v 2 is the moving speed of the access network device
  • f TA is the frequency at which the access network device instructs the terminal device to adjust TA
  • c is the speed of light
  • T c It is the basic time unit.
  • the method further includes: determining whether the TA adjustment amount of the terminal device after the TA scaling factor processing satisfies a preset condition;
  • the method includes: determining the height timing advance of the access network device according to the moving speed of the access network device, the height at which the access network device is located TA scaling factor.
  • the determining the time advance is based on the moving speed of the access network device, the height at which the access network device is located, and the height timing advance of the access network device TA scaling factor, including:
  • the first mapping relationship includes the corresponding relationship between the moving speed of at least one access network device, the height of the access network device, the height timing advance of the access network device, and the TA scaling factor.
  • the determining the time advance is based on the moving speed of the access network device, the height at which the access network device is located, and the height timing advance of the access network device TA scaling factor, including:
  • the second mapping relationship By searching for the second mapping relationship, determine the subcarrier interval with the terminal device, the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device The corresponding TA scaling factor; wherein the second mapping relationship includes the subcarrier interval of at least one terminal device, the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device Correspondence between and TA scaling factor.
  • the terminal device can use a smaller amount of calculation to obtain the TA that needs to be adjusted, thereby improving the speed of the terminal device when determining the TA And efficiency.
  • the determining the TA scaling factor includes: determining the format of the random access preamble used by the terminal device during random access to the access network device TA scaling factor.
  • the determining a second TA according to the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter, and the first TA includes:
  • the TA adjustment amount of the device is offset.
  • the determining the TA scaling factor includes:
  • the method before acquiring TA adjustment parameters from an access network device, the method further includes:
  • the indication information is used to indicate the common delay of the cell where the terminal device is located;
  • the common delay is determined according to the instruction information.
  • the method before acquiring TA adjustment parameters from an access network device, the method further includes:
  • the terminal device accesses the access network device for the first time, acquiring the TA initial parameters from the access network device;
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the terminal device can jointly determine the initial TA of the terminal device according to the common delay indicated by the access network device and the TA initial parameters. Since the terminal device can determine the initial TA according to the common delay indicated by the access network device, the TA determination method of the terminal device can be applied to the radar base station, and the radar base station can compensate the terminal device TA based on the radar height and the angle of the cell .
  • the TA change rate of the terminal device is determined; wherein, the TA change rate is used to represent the movement of the access network device , The TA adjustment amount in the cell where the terminal device is located;
  • the third TA is the terminal device before determining the fourth TA
  • the TA used when communicating with the access network device.
  • the determining a fourth TA according to the TA change rate, the third TA, the TA adjustment parameter, and the subcarrier spacing parameter includes:
  • ⁇ N' TA is the TA adjustment amount
  • ⁇ t t1-t0
  • t0 is the time when the terminal device receives the TA adjustment parameter
  • t1 is the terminal device The time when the uplink communication data will be sent to the access network device.
  • the determining the TA change rate of the terminal device includes:
  • the TA change rate of the terminal device is determined according to a third mapping relationship; wherein the third mapping relationship includes: the Doppler shift of at least one of the access network devices and the TA change rate of the terminal device The corresponding relationship.
  • the terminal device itself can precompensate the adjustment of TA according to Doppler and other parameters, thereby avoiding frequent instructions for TA adjustment by satellite base stations and reducing resources. s expenses.
  • using this embodiment to perform self-pre-compensation can reduce the TA error caused by the delay when the satellite base station instructs to adjust the TA.
  • the second aspect of the present application provides a method for determining TA of a terminal device, including:
  • the terminal device determines a second TA according to the TA adjustment parameter, TA scaling factor, subcarrier spacing parameter, and the first TA; wherein, the TA The scaling factor is used to scale the TA adjustment amount of the terminal device, and the first TA is used when the terminal device communicates with the access network device before the terminal device receives the TA adjustment parameter TA.
  • the method further includes: sending instruction information to the terminal device, where the instruction information is used to indicate the common delay of the cell where the terminal device is located.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • sending instruction information to the terminal device includes: broadcasting the common delay in the cell where the terminal device is located; or,
  • the third aspect of the present application provides a TA determining apparatus for terminal equipment, which is used to execute the TA determining method for terminal equipment as described in the first aspect of the present application, and the apparatus includes:
  • a transceiver module configured to obtain TA adjustment parameters from an access network device; wherein, the TA adjustment parameters are used to indicate the TA adjustment amount of the terminal device;
  • the parameter determination module is used to determine the TA scaling factor of the terminal device, the subcarrier spacing parameter of the terminal device, and the parameter used when the terminal device communicates with the access network device before receiving the TA adjustment parameter The first TA; wherein, the TA scaling factor is used to scale the TA adjustment amount of the terminal device;
  • the TA determination module is configured to determine a second TA according to the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter and the first TA.
  • TA 1 is a first TA
  • T A is the adjustment parameter TA
  • k is a scaling factor TA
  • 2 ⁇ subcarrier interval parameter 2 ⁇ ⁇ 15 [ kHz]
  • ⁇ f is the sub-carrier of the terminal device interval.
  • the parameter determination module is specifically configured to instruct the terminal according to the maximum moving speed of the terminal device, the moving speed of the access network device, and the access network device The device adjusts the TA frequency and determines the TA scaling factor.
  • v 1 is the maximum moving speed of the terminal device
  • v 2 is the moving speed of the access network device
  • f TA is the frequency at which the access network device instructs the terminal device to adjust TA
  • c is the speed of light
  • T c It is the basic time unit.
  • the parameter determination module is further configured to determine whether the TA adjustment amount of the terminal device after the TA scaling factor processing satisfies a preset condition
  • the parameter determination module is specifically configured to: according to the moving speed of the access network device, the height of the access network device, and the height of the access network device The time advance determines the TA scaling factor.
  • the parameter determination module is specifically configured to determine the moving speed with the access network device, the height at which the access network device is located by searching for a first mapping relationship, and The TA scaling factor corresponding to the height timing advance of the access network device; wherein, the first mapping relationship includes the moving speed of at least one access network device, the height of the access network device, and the Correspondence between height time advance and TA scaling factor.
  • the parameter determination module is specifically configured to determine the subcarrier interval with the terminal device, the moving speed of the access network device, and the The height of the access network device, and the TA scaling factor corresponding to the height timing advance of the access network device; wherein the second mapping relationship includes the subcarrier interval of at least one terminal device, and the access network device Correspondence between the moving speed, the height of the access network device, the height time advance of the access network device, and the TA scaling factor.
  • the parameter determination module is specifically configured to determine the format of the random access preamble used by the terminal device during random access to the access network device TA scaling factor.
  • the TA determination module is further configured to, according to the TA offset parameter, the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter, and the first TA , Determine a second TA; wherein the TA offset parameter is used to perform offset processing on the TA adjustment amount of the terminal device.
  • the TA determination module is specifically configured to determine the TA scaling factor according to the attribute information of the access network device.
  • the transceiver module is further configured to receive indication information sent by the access network device; the indication information is used to indicate the common delay of the cell where the terminal device is located;
  • the parameter determination module is further configured to determine the common delay according to the indication information.
  • the transceiver module is further configured to, when the terminal device accesses the access network device for the first time, obtain the initial TA parameters from the access network device;
  • the TA determination module is further configured to determine an initial TA according to the common delay, the TA initial parameter, and the subcarrier spacing parameter.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the parameter determination module is further configured to determine the TA change rate of the terminal device if the terminal device is in a static state; wherein, the TA change rate is used to indicate all The TA adjustment amount in the cell where the terminal device is located due to the movement of the access network device;
  • the TA determination module is further configured to determine a fourth TA according to the TA change rate, the third TA, the TA adjustment parameter, and the subcarrier spacing parameter; wherein, the third TA is the The terminal device determines the TA used when communicating with the access network device before the fourth TA.
  • the parameter determination module is further configured to determine the TA change rate of the terminal device according to a third mapping relationship; wherein the third mapping relationship includes: at least one of the connection Correspondence between the Doppler frequency shift of the networked device and the TA change rate of the terminal device.
  • a fourth aspect of the present application provides a TA determination apparatus for terminal equipment, which is used to execute the TA determination method for terminal equipment in the second aspect of the present application, and the apparatus includes:
  • the determining module is used to determine the TA adjustment parameter of the terminal device; wherein the TA adjustment parameter is used to indicate the TA adjustment amount of the terminal device;
  • a transceiver module configured to send the TA adjustment parameter to the terminal device, so that the terminal device determines a second TA according to the TA adjustment parameter, TA scaling factor, subcarrier spacing parameter, and the first TA;
  • the TA scaling factor is used to scale the TA adjustment amount of the terminal device, and the first TA is the terminal device and the access network before the terminal device receives the TA adjustment parameter.
  • the TA used for device communication.
  • the transceiver module is further configured to send indication information to the terminal device, where the indication information is used to indicate the common delay of the cell where the terminal device is located.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the transceiver module is specifically configured to broadcast the common delay in the cell where the terminal device is located; or, broadcast the height time in the coverage area of the access network device And broadcast the angular time advance in the cell where the terminal device is located.
  • a fifth aspect of the present application provides a communication device.
  • the communication device may be a terminal device.
  • the communication device includes: a communication interface, a processor, and a memory; wherein the communication interface is used to obtain TA adjustments from an access network device. Parameters and send the TA adjustment parameters to the processor; wherein, the TA adjustment parameters are used to indicate the TA adjustment amount of the terminal device; instructions are stored in the memory, and when the processor calls and executes the instructions , So that the processor, after receiving the TA adjustment parameter, determines the TA scaling factor of the terminal device, the subcarrier spacing parameter of the terminal device, and before receiving the TA adjustment parameter, the terminal device and the The first TA used when the access network device communicates; wherein the TA scaling factor is used to scale the TA adjustment amount of the terminal device; according to the TA adjustment parameter, the TA scaling factor, and the sub The carrier spacing parameter and the first TA determine the second TA.
  • TA 1 is a first TA
  • T A is the adjustment parameter TA
  • k is a scaling factor TA
  • 2 ⁇ subcarrier interval parameter 2 ⁇ ⁇ 15 [ kHz]
  • ⁇ f is the sub-carrier of the terminal device interval.
  • the processor is specifically configured to instruct the terminal device according to the maximum moving speed of the terminal device, the moving speed of the access network device, and the access network device Adjust the frequency of TA and determine the TA scaling factor.
  • v 1 is the maximum moving speed of the terminal device
  • v 2 is the moving speed of the access network device
  • f TA is the frequency at which the access network device instructs the terminal device to adjust TA
  • c is the speed of light
  • T c It is the basic time unit.
  • the processor is further configured to determine whether the TA adjustment amount of the terminal device after the TA scaling factor processing satisfies a preset condition
  • the processor is specifically configured to: according to the moving speed of the access network device, the height of the access network device, and the height time of the access network device The advance amount determines the TA scaling factor.
  • the processor is specifically configured to determine the moving speed of the access network device, the height of the access network device, and the location of the access network device by searching for a first mapping relationship.
  • the TA scaling factor corresponding to the height timing advance of the access network device; wherein, the first mapping relationship includes the moving speed of at least one access network device, the height of the access network device, and the height of the access network device Correspondence between time advance and TA scaling factor.
  • the processor is specifically configured to determine the subcarrier interval with the terminal device, the moving speed of the access network device, and the connection by searching for a second mapping relationship.
  • the height of the access network device, and the TA scaling factor corresponding to the height timing advance of the access network device; wherein, the second mapping relationship includes the subcarrier interval of at least one terminal device and the The corresponding relationship between the moving speed, the height of the access network device, the height time advance of the access network device, and the TA scaling factor.
  • the processor is specifically configured to determine the TA according to the format of the random access preamble used by the terminal device in the process of randomly accessing the access network device Scaling factor.
  • the processor is further configured to, according to the TA offset parameter, the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter, and the first TA, Determine a second TA; wherein the TA offset parameter is used to perform offset processing on the TA adjustment amount of the terminal device.
  • the processor is specifically configured to determine the TA scaling factor according to the attribute information of the access network device.
  • the communication interface is further configured to receive instruction information sent by the access network device, and send the instruction information to the processor; the instruction information is used to instruct the terminal The public delay of the cell where the device is located;
  • the processor is further configured to, when receiving instruction information, determine the common delay according to the instruction information.
  • the communication interface is further configured to obtain initial TA parameters from the access network device when the terminal device accesses the access network device for the first time, and The TA initial parameters are sent to the processor;
  • the processor is further configured to, when receiving TA initial parameters, determine an initial TA according to the common delay, the TA initial parameters, and the subcarrier spacing parameter.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the processing module is further configured to determine the TA change rate of the terminal device if the terminal device is in a static state; wherein the TA change rate is used to indicate the The TA adjustment amount in the cell where the terminal device is located due to the movement of the access network device;
  • the processing is further configured to determine a fourth TA according to the TA change rate, the third TA, the TA adjustment parameter, and the subcarrier spacing parameter; wherein, the third TA is the terminal equipment Determine the TA used when communicating with the access network device before the fourth TA.
  • the processor is further configured to determine the TA change rate of the terminal device according to a third mapping relationship; wherein, the third mapping relationship includes: at least one access Correspondence between the Doppler frequency shift of the network equipment and the TA change rate of the terminal equipment.
  • a sixth aspect of the present application provides a communication device.
  • the communication device may be an access network device. More specifically, the communication device may be a radar base station.
  • the communication device includes: a communication interface, a processor, and a memory; The memory stores instructions.
  • the processor calls and executes the instructions, the processor determines the TA adjustment parameters of the terminal device and sends the TA adjustment parameters to the communication interface; wherein the TA adjustment parameters are used To indicate the TA adjustment amount of the terminal device; when the communication interface receives the TA adjustment parameter, it sends the TA adjustment parameter to the terminal device so that the terminal device can adjust the TA according to the TA adjustment parameter, TA scaling factor, and sub
  • the carrier spacing parameter and the first TA are used to determine the second TA; wherein the TA scaling factor is used to scale the TA adjustment amount of the terminal device, and the first TA is the value received by the terminal device.
  • the TA used when the terminal device communicates with the access network device before the TA adjustment parameter.
  • the communication interface is further configured to send instruction information to the terminal device, where the instruction information is used to indicate the common delay of the cell where the terminal device is located.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the communication interface is specifically configured to broadcast the common delay in the cell where the terminal device is located; or, broadcast the height time in the coverage area of the access network device And broadcast the angular time advance in the cell where the terminal device is located.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in the first aspect of the present application.
  • an embodiment of the present application also provides a computer-readable storage medium, including instructions, which when run on a computer, cause the computer to execute the method described in the second aspect of the present application.
  • an embodiment of the present application provides a communication system, which includes the device described in the third aspect and the device described in the fourth aspect; or, the system includes the communication described in the fifth aspect.
  • Device and the communication device described in the sixth aspect are examples of the communication system.
  • Fig. 1 is a schematic diagram of a communication system applied in the prior art
  • FIG. 2 is a schematic diagram of the communication system applied by this application.
  • FIG. 3 is a schematic flowchart of an embodiment of a method for determining TA of a terminal device provided by this application;
  • FIG. 4 is a schematic diagram of the public delay of the cell where the terminal equipment is provided in this application;
  • Figure 5 is a schematic diagram of the location of the satellite base station in the application.
  • Figure 6 shows the correspondence between the position of the satellite base station and the TA of the terminal equipment in this application
  • FIG. 7 is a schematic flowchart of an embodiment of a method for determining TA of a terminal device provided by this application;
  • FIG. 8 is a schematic flowchart of an embodiment of a method for determining TA of a terminal device provided by this application;
  • FIG. 9 is a schematic diagram of Doppler frequency shift of the access network equipment provided by this application.
  • FIG. 10 is a schematic diagram of the TA change rate of terminal equipment provided by this application.
  • FIG. 11 is a schematic diagram of a terminal device provided by this application for determining a fourth TA
  • FIG. 12 is a schematic diagram 1 of dividing cells according to the TA change rate provided by this application.
  • FIG. 13 is a second schematic diagram of dividing cells according to the TA change rate provided by this application.
  • FIG. 14 is a schematic structural diagram of an embodiment of a terminal device provided by this application.
  • 15 is a schematic structural diagram of an embodiment of an access network device provided by this application.
  • FIG. 16 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • Fig. 1 is a schematic diagram of a communication system applied in the prior art.
  • the communication scenario shown in FIG. 1 includes: terminal device A, terminal device B, and access network device.
  • the terminal device After the terminal device establishes a communication connection with the access network device, it can further communicate with the core network through the access network device.
  • the access network equipment is base station E
  • both terminal equipment A and terminal equipment B can access base station E and pass
  • the established wireless connection relationship communicates with the base station E.
  • the communication includes: the terminal device sends uplink communication data to the base station, and the base station sends uplink communication data to the terminal.
  • the uplink communication data sent by the terminal equipment to the base station will have a large transmission delay, and the uplink communication data sent by different terminal equipment to the base station within the coverage of the base station will be delayed.
  • the uplink communication data sent by terminal equipment A to base station E will have a transmission delay of TA1
  • the uplink communication data sent by terminal equipment B to base station E will have a transmission delay of TA2. Since the distance between terminal equipment B and base station E is greater than the distance between terminal equipment A and base station, the transmission delay TA2>TA1.
  • the base station will set a timing advance (TA) for each terminal device that is connected to, so that the terminal device can receive reception through TA
  • TA timing advance
  • the base station controls the time when the connected terminal device sends uplink communication data, and the time when the base station receives the terminal device's uplink communication data.
  • the base station when the terminal device is in the process of random access to the base station, the base station will determine the TA of the terminal device according to the random access preamble sent by the terminal device, and use the TAC field to set the initial TA parameters Sent to the terminal device so that the terminal device can determine the initial TA according to the initial TA parameters.
  • the base station needs to continuously instruct the terminal device to adjust its TA after the terminal device determines the initial TA.
  • the base station After receiving the uplink communication data sent by the terminal device, the base station determines the TA adjustment amount for adjusting the TA of the terminal device by measuring related parameters of the uplink communication data, and also sends the TA adjustment parameter to the terminal through the TAC field Device, so that the terminal device can adjust the TA according to the TA adjustment parameter.
  • Fig. 2 is a schematic diagram of a communication system applied by this application.
  • the application scenario shown in Fig. 2 is a communication scenario of a satellite base station.
  • the communication system includes a satellite base station and at least one terminal device. Or, in some specific implementation manners, the communication system shown in FIG. 2 further includes a ground base station that is not shown.
  • Ground base stations and satellite base stations jointly provide services for terminal equipment. Among them, based on the advantages of satellite base stations with wider coverage, less susceptibility to natural disasters or external damage, they can provide communication services for areas that cannot be covered by terrestrial communication networks, such as oceans and forests, with wide coverage, reliability, and multiple Features such as connectivity and high throughput.
  • the terminal device may also be referred to as a terminal (terminal).
  • the terminal device can be a user equipment (UE), a mobile station (MS), a mobile terminal device (mobile terminal, MT), etc.
  • the terminal device can also be a mobile phone (mobile phone), a tablet computer (Pad), Computers with wireless transceiver functions, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, industrial control (industrial control) wireless terminal equipment, unmanned driving (self-driving) Wireless terminal equipment, wireless terminal equipment in remote medical surgery, wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city (smart city) Terminal equipment, wireless terminal equipment in smart home, etc.
  • VR virtual reality
  • AR augmented reality
  • Wireless terminal equipment wireless terminal equipment in remote medical surgery
  • wireless terminal equipment in smart grid wireless terminal equipment in transportation safety
  • wireless terminal equipment in smart city (smart city) Terminal equipment wireless terminal equipment in smart home, etc.
  • the satellite base station Due to the long distance between the terminal equipment and the satellite base station, the satellite base station also needs to instruct each terminal equipment accessing the satellite base station to determine its TA, so as to realize the time synchronization of the uplink communication data received by the control base station.
  • the base station E of the terrestrial communication network has a fixed position, and only the mobility of the terminal device is considered when the terminal device determines the TA.
  • 5G NR 5th generation Mobile Networks new radio access technology
  • the adjustment of the base station every time the TA of the terminal equipment is adjusted in the terrestrial communication network
  • the range, as well as the total range that can be adjusted within a period of time, are restricted.
  • the terminal device C is at the position C in the figure, and the satellite base station is at the position C'in the figure.
  • the uplink communication data sent by the terminal equipment to the satellite base station will have a transmission delay of TA3, so the terminal equipment is required to send the uplink communication data in advance with the TA3 timing advance.
  • the satellite base station moves from position C'to D', which together cause the uplink communication data sent by the terminal equipment to the satellite base station to appear TA4. Therefore, the terminal equipment is required to send uplink communication data in advance with the time advance of TA4.
  • TA4>TA3 since the distance between position D and position D'is greater than the distance between position C and position C', TA4>TA3 .
  • the frequency for determining the TA and the maximum TA adjustment amount at a time are both limited, and the mobility of the base station is not considered.
  • the existing TA determination method of the terminal equipment is not It cannot be directly applied to satellite base stations. Therefore, how to make the method for determining the terminal equipment TA applicable to the satellite base station is a technical problem to be solved urgently in this field.
  • FIG. 3 is a schematic flowchart of an embodiment of a method for determining a TA of a terminal device provided by this application. As shown in FIG. 3, the method for determining a TA of a terminal device provided in this implementation includes:
  • the access network device sends instruction information to the terminal device.
  • the access network equipment in this embodiment includes a satellite base station.
  • the access network device needs to send to the terminal device indication information that can indicate the common delay of the cell where the terminal device is located.
  • the common delay described in this embodiment includes: the height timing advance TA(h) of the access network device and the angular timing advance TA( ⁇ ) of the cell where the terminal device is located.
  • FIG. 4 is a schematic diagram of the common delay of the cell where the terminal device is located provided in this application.
  • the common delay in different cells is different.
  • the time delay is recorded as the height time advance TA(h). That is, all terminal devices within the coverage area S of the satellite base station O have at least the common delay when sending uplink communication data to the satellite base station O, and therefore all need to be compensated by TA(h).
  • the terminal equipment in other cells within the coverage area S needs to consider the angular time advance of each cell when sending uplink communication data to the satellite base station.
  • point c in the cell is the closest position to point a directly below the satellite base station O.
  • the height time advance TA(h) brought by h will also include the angle time advance TA( ⁇ ) brought about by the angle ⁇ between the point c and the satellite base station O.
  • the common delay that needs to be compensated between cO is from the height time advance TA(h) of 0-b and the angular time advance TA(h) between bc ( ⁇ ) Composition. Therefore, all terminal devices in the cell S2 have at least the above-mentioned time delay when sending uplink transmission data to the satellite base station, and therefore all need to be compensated for the common delay, namely TA(h)+TA( ⁇ ).
  • the terminal equipment also needs to perform additional ⁇ TA compensation for the terminal equipment at point e.
  • the TA compensation required by the radar base station includes: TA(h)+TA( ⁇ )+ ⁇ TA. For example, FIG.
  • FIG. 5 is a schematic diagram of the position of the satellite base station in this embodiment, where R is the radius of the earth, and h is the orbital height of the satellite base station moving around the earth. Then when the satellite base station moves around the earth and the initial position presents an angle of ⁇ , the relationship between the position of the satellite base station and the TA can be referred to Figure 6, where 6 is the position of the satellite base station in the application and the TA of the terminal equipment Correspondence between.
  • the TA of the terminal equipment in the cell includes TA(h)+TA( ⁇ ) + ⁇ TA.
  • the satellite base station will send ⁇ TA to the terminal equipment to compensate for the terminal equipment TA.
  • the satellite base station in order for the terminal equipment to determine the common delay that needs to be compensated when communicating with the satellite base station, the satellite base station needs to send instruction information to the terminal equipment within its coverage area so that the terminal equipment can determine its location based on the instruction information The public time delay of the cell.
  • the satellite base station may broadcast the common delay corresponding to the cell in each cell.
  • the satellite base station O broadcasts the common delay TA(h) corresponding to cell S1 in cell S1, and broadcasts the common delay TA(h)+TA( ⁇ ).
  • the satellite base station O can broadcast TA(h) in the coverage area S of the satellite base station O. h), and broadcast the TA( ⁇ ) corresponding to the cell in each cell.
  • the satellite base station may indicate to the terminal device the common delay of the cell where it is located in an implicit indication manner.
  • the cell ID of the satellite base station or the ID of the radar beam (beam) corresponds to the common delay in the cell
  • the indication information may be the cell ID or beam ID sent by the satellite base station to the terminal device, so that the terminal device can be
  • the cell ID or beam ID sent by the base station determines the corresponding common delay.
  • the corresponding relationship may be sent by the satellite base station to the terminal device, or the corresponding relationship may be obtained through negotiation between the satellite base station and the terminal device, or the corresponding relationship may be stored in the terminal device.
  • the access network device sends the initial TA parameters to the terminal device, so that the terminal device determines the initial TA.
  • the terminal device when it accesses the access network device for the first time, it can obtain the TA initial parameters from the access network device. For example, when a terminal device is randomly accessing a radar base station, the radar base station sends TA initial parameters to the terminal device through the TAC (timing advance command) field in a random access response (RAR) message.
  • the parameters include 12 bits, and the range of TA initial parameters is 0-3846.
  • the terminal device jointly determines the initial TA according to the indication information and the initial TA parameters.
  • the terminal device uses the initial TA to communicate with the access network device.
  • the initial TA can be used to communicate with the access network device.
  • the access network device is a radar base station
  • the terminal device can jointly determine the initial TA of the terminal device according to the common delay indicated by the access network device and the TA initial parameters. Since the terminal device can determine the initial TA according to the common delay indicated by the access network device, the TA determination method of the terminal device can be applied to the radar base station, and the radar base station can compensate the terminal device TA based on the radar height and the angle of the cell .
  • FIG. 7 is a schematic flowchart of an embodiment of a method for determining TA of a terminal device provided by this application.
  • FIG. 7 shows that after the terminal device has randomly accessed the access network device and obtained the initial TA , The subsequent process of adjusting TA, where this embodiment can be applied to the communication scenario shown in FIG. 2 where the access network device is a radar base station, then the method includes:
  • the access network device sends TA adjustment parameters to the terminal device.
  • the TA adjustment parameter is used to indicate the TA adjustment amount of the terminal device.
  • the access network device in this embodiment may measure the received uplink communication data sent by the terminal device during the communication process with the terminal device, and when it determines that the TA of the terminal device needs to be adjusted, it sends the TA to the terminal device. Adjust the parameters so that the terminal device adjusts its TA according to the TA parameters.
  • the access network device carries a TA adjustment parameter in the TAC sent to the terminal device.
  • the TA adjustment parameter includes 6 bits, and the range of the TA adjustment parameter is 0-63.
  • the terminal device determines the TA scaling factor, the subcarrier spacing parameter, and the first TA.
  • the terminal device receives the TA adjustment parameter sent by the access network device through S201, and determines that the TA needs to be adjusted, it needs to determine the TA scaling factor, the subcarrier spacing parameter, and the first TA required to calculate the TA in S202.
  • the TA scaling factor is used to scale the TA adjustment amount of the terminal device.
  • the first TA is the TA used when the terminal device communicates with the access network device before the terminal device receives the TA adjustment parameters.
  • the first TA may be the initial TA, or the first TA may be obtained after the initial TA has been adjusted TA.
  • the terminal device jointly determines the second TA according to the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter and the first TA.
  • the terminal device uses the second TA to communicate with the access network device.
  • the terminal device communicates with the access network device according to the second TA determined through the above steps, where the communication means that the terminal device needs to send uplink transmission data to the access network device in advance of the second TA.
  • the first TA before the terminal device receives the TA adjustment parameter sent by the access network device in S201, the first TA sends uplink transmission data to the access network device in advance; After the TA adjustment parameter is determined in S203, the uplink transmission data is sent to the access network device in advance of the second TA time.
  • the terminal device when the terminal device receives the TA adjustment parameter sent by the access network device and determines that the TA needs to be adjusted, it determines the TA scaling factor, subcarrier spacing parameter, and the first One TA, the second TA is obtained by adjusting the first TA together.
  • the second terminal device TA determines, on the basis of the first TA adjustment amount may be adjusted as k ⁇ (T A -31) ⁇ 16 ⁇ 64/2 ⁇ in S203 in the present embodiment, the conventional the adjustment amount (T a -31) 5G NR-specified system compared to 16 ⁇ 64/2 ⁇ , since the addition of TA adjustment parameter k, so that the terminal device when the TA adjustment, the adjustable range greater, Therefore, it can be applied to the satellite communication system shown in FIG. 2 to realize that the terminal device can adjust the TA under the condition of mobility caused by the terminal device itself and the satellite base station.
  • the method for determining the TA of the terminal device described in this embodiment can also be applied to the existing terrestrial communication system as shown in FIG. 1, and the terminal device can adjust the TA by considering only the mobility of the terminal device itself. Therefore, the method for determining the TA of the terminal equipment provided in this embodiment can also be applied to both the ground fixed base station and the satellite base station, which has portability.
  • the terminal device specifically passes through the maximum moving speed of the terminal device and the access network device The mobile speed and the access network equipment instructs the terminal equipment to adjust the frequency of TA and determine the TA scaling factor k.
  • f TA determines the type of access network device is accessed by the terminal device, wherein, the type may be a satellite of the satellite
  • the base station is divided into low-orbit type, medium-orbit type and high-orbit type according to the operating altitude. Satellites operating in different orbits have different operating parameters, and therefore need to adjust the frequency of TA accordingly.
  • the terminal equipment is accessing the satellite After the base station, the f TA corresponding to the current satellite base station can be determined according to the type of the satellite base station; or the terminal device can determine the operating parameters of the satellite base station according to the type of the satellite base station, and then further determine the corresponding f TA of the satellite base station according to the operating parameters .
  • the above-mentioned satellite types and operating parameters, as well as the corresponding relationship between the operating parameters and f TA may be stored in the access network equipment and/or terminal equipment in the form of a table; or, the access network equipment and/or terminal equipment The table can also be used to directly store the corresponding relationship between the satellite type and f TA .
  • the value of the TA scaling factor k can be expressed according to the maximum TA change that the terminal device needs to adjust each time the TA is adjusted, and when the terminal device communicates with the access network device, the elevation angle is the largest and the terminal device and the access network When the device moves in the opposite direction, the TA that the terminal device needs to adjust is the largest. Therefore, in the above formula, the sum of the maximum movement speed of the terminal device and the movement speed of the access network device needs to be considered, and the TA change speed is the largest at this time.
  • the access network equipment is a radar base station
  • the speed v 2 of the radar base station can be obtained by the formula Calculation.
  • the terminal device accesses the access network device, it can determine the subcarrier interval used in its communication and the access network device instructs the terminal device to adjust the TA frequency.
  • the frequency of adjusting the TA is the frequency at which the access network device sends TA adjustment parameters to the terminal device as shown in FIG. 7.
  • the TA range that can be indicated by the TA adjustment parameter sent by the access network equipment to the terminal equipment is the smallest, and the TA calculated by the above formula
  • the scaling factor k is based on the terminal equipment working in its maximum sub-carrier interval, so the terminal equipment can meet other sub-carrier intervals.
  • the above TA scaling factor k is still used completely, which will cause a decrease in the TA adjustment accuracy to a certain extent. Therefore, in this embodiment, the TA scaling factor k can also be added to the TA adjustment parameters.
  • the TA scaling factor will not be added to the TA adjustment amount, but the TA is adjusted directly according to the TA adjustment amount to improve the TA adjustment of the terminal equipment when the subcarrier spacing is small Accuracy.
  • the terminal device is specifically determined by the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device.
  • TA scaling factor For example, the terminal device can determine the TA scaling factor corresponding to the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device by searching the first mapping relationship; where, The first mapping relationship includes the corresponding relationship between the moving speed of at least one access network device, the height of the access network device, the height timing advance of the access network device, and the TA scaling factor.
  • the terminal device may store the above-mentioned first mapping relationship in the form of a table.
  • the height of the access network device can also be divided into different levels, and each level corresponds to one Among them, the largest TA scaling factor k can be further processed by rounding up or with a precision of 0.5 to further process the data in the table to reduce storage space.
  • Table 1.1 and Table 1.2 show two possible compression methods for Table 1:
  • the terminal device Since in the first mapping relationship shown in Table 1, the terminal device is operated by default using its maximum subcarrier interval, and in order to improve the accuracy of the terminal device adjusting TA, it is possible to further add sub-carriers different from the terminal device based on the first mapping relationship.
  • the TA adjustment parameter k corresponding to the carrier spacing.
  • the terminal device can determine the subcarrier interval of the terminal device, the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device by searching for the second mapping relationship The TA scaling factor; where the second mapping relationship includes the subcarrier spacing of at least one terminal device, the moving speed of the access network device, the height of the access network device, the height timing advance of the access network device, and the TA scaling factor Correspondence between
  • the terminal device may store the above-mentioned second mapping relationship in the form of a table.
  • Table 2 For a specific configuration of the table, refer to Table 2.
  • Table 2 The different correspondences listed in Table 2 are only examples, not the correspondences. Limitations made.
  • the height of the access network device can also be divided into different levels in this embodiment, and each level corresponds to one of them.
  • the maximum TA scaling factor k, and the data in the table can be further processed by rounding up or with a precision of 0.5 to reduce storage space.
  • Table 2.1 and Table 2.2 show two possible compression methods for Table 2:
  • the terminal device may use the random access preamble format ( format) to determine the TA scaling factor k.
  • the terminal device sends a random access preamble to the access network device to request to establish a connection relationship with the access network device.
  • the format of the random access preamble sent by the terminal equipment to the access network equipment in the random access process is different. For example, a terminal device in a cell with a radius of 5km needs to send a random access preamble of format 1 to the access network device during random access; while a terminal device in a cell with a radius of 10km needs to send a random access preamble in the random access process , The random access preamble of format 2 needs to be sent to the access network device.
  • the TA adjustment range that needs to be adjusted is different for cells with different radii.
  • the format of the incoming preamble determines the corresponding TA scaling factor k.
  • the correspondence between the TA scaling factor k and the format of the random access preamble may also be stored in the access network device and/or the terminal device in the form of a table. If the table is stored in the terminal device, the terminal device can determine the corresponding TA scaling factor k according to the format of the random access preamble after determining the format of the random access preamble used in the random access process . If the table is not stored in the terminal device, the terminal device sends a random access preamble to the access network device during the random access process, and the access network device can determine the corresponding TA according to the format of the random access preamble. After scaling factor k, the TA scaling factor k is returned to the terminal device.
  • the cyclic prefix (Cyclic Prefix, CP) length of the random access preamble format sent by the terminal device to the access network device determines the possible TA of the terminal device Adjustment range. In turn, it is determined whether an additional TA scaling factor needs to be introduced when determining the TA, and the specific value of the TA scaling factor is determined. Therefore, the scaling factor k can be determined according to the random access format used.
  • the TA scaling factor k may be determined according to the maximum CP length of the random access preamble format configured by the cell or beam, so that the value of the TA scaling factor is shared by the entire cell or beam.
  • the scaling factor k can be determined according to the CP length of the random access preamble format selected by each user (group), so that different users can use different TA scaling factors k to minimize the precision brought by the scaling factor as much as possible loss.
  • the terminal device may determine different TA scaling factors k according to different satellite types of the access network device to which it is connected.
  • the access network equipment is a satellite base station
  • the satellite type may be a low orbit type, a medium orbit type, a high orbit type, etc., which are classified by the satellite base station according to the operating altitude, and satellites operating in different orbits have different operating parameters , It is necessary to set different TA scaling factors.
  • the type of the satellite base station can be determined, and then the operating parameters such as the operating orbit height of the satellite base station and the common round-trip delay can be determined according to the type of the satellite base station.
  • the TA scaling factor corresponding to the base station.
  • the above-mentioned satellite types and operating parameters, as well as the corresponding relationship between the operating parameters and the TA scaling factor may be stored in the access network equipment and/or terminal equipment in the form of a table; or, the access network equipment and/or terminal
  • the device can also directly store a table for representing the correspondence between the satellite type and the TA scaling factor. Then if the table is stored in the terminal device, after the terminal device accesses the satellite base station, the corresponding TA scaling factor can be directly determined from the table according to the type of the satellite base station.
  • the method for determining the TA scaling factor k of the terminal device may be agreed in advance by the terminal device and the access network device, so as to ensure that the TA calculated by the terminal device sufficiently covers the TA adjustment range OK.
  • the terminal device at the time 2 TA 1 + k ⁇ ( T A -31) ⁇ 16 ⁇ 64/2 ⁇ adjusted by the TA TA equation
  • the offset parameter can be a fixed value, can also be obtained by a function related to the TA adjustment parameter k, or can also be obtained by a function related to the height of the access network device.
  • the mobility of the terminal equipment and the access network equipment is considered at the same time.
  • the access network equipment is a satellite base station
  • the TA change rule of the terminal equipment caused by the movement of the satellite base station is also fixed. Therefore, if the terminal equipment knows the orbital height of the satellite base station and the location of the terminal equipment, it does not need instructions from the satellite base station. Instead, the terminal equipment directly determines the TA adjustment that needs to be adjusted, and precompensates the TA. .
  • FIG. 8 is a schematic flowchart of an embodiment of a method for determining a TA of a terminal device provided by this application.
  • the method for determining a TA of a terminal device as shown in FIG. 8 includes:
  • S301 If the terminal device is in a static state, determine the TA change rate of the terminal device, where the TA change rate is used to indicate the TA adjustment amount in the cell where the terminal device is located due to the movement of the access network device.
  • the terminal device may determine the TA change rate of the terminal device according to a third mapping relationship; wherein, the third mapping relationship includes: Doppler of at least one access network device Correspondence between frequency shift and TA change rate of terminal equipment.
  • FIGS. 9 and 10 where FIG. 9 is a schematic diagram of the Doppler frequency shift of the access network device provided by this application, and FIG. 10 is a schematic diagram of the TA change rate of the terminal device provided by this application. According to the corresponding relationship between Figure 9 and Figure 10, it can be seen that the Doppler frequency shift of the access network equipment and the TA change rate of the terminal equipment are in an inverse proportional relationship.
  • the terminal device determines a fourth TA according to the TA change rate, the third TA, the TA adjustment parameter, and the subcarrier spacing parameter; where the third TA is the TA used when the terminal device communicates with the access network device before determining the fourth TA.
  • the terminal device uses the fourth TA to communicate with the access network device.
  • the terminal device communicates with the access network device according to the fourth TA determined through the above steps, where the communication means that the terminal device needs to send uplink transmission data to the access network device in advance of the fourth TA.
  • the third TA sends uplink transmission data to the access network device in advance; and after the fourth TA is determined in S302, Send the uplink transmission data to the access network device in advance of the fourth TA time.
  • FIG. 11 is a schematic diagram of the terminal device determining the fourth TA provided by this application.
  • the terminal device receives the TA adjustment parameter indicated by the satellite base station at time t0 to determine the TA adjustment amount ⁇ TA_1
  • the satellite Before the base station instructs the next TA adjustment parameter to determine the TA adjustment amount ⁇ TA_2
  • the satellite base station can estimate the corresponding TA deviation based on the received terminal device uplink signal and send it again To the terminal equipment to maintain the accuracy of the terminal equipment during TA compensation.
  • the terminal device itself can precompensate the adjustment of TA according to Doppler and other parameters, thereby avoiding frequent instructions for TA adjustment by satellite base stations and reducing resources. s expenses.
  • using this embodiment to perform self-pre-compensation can reduce the TA error caused by the delay when the satellite base station instructs to adjust the TA.
  • the embodiment shown in FIG. 8 may be implemented separately, or the embodiment shown in FIG. 8 may be based on the embodiment shown in FIG. 7, when the access network device sends TA adjustment parameters After the terminal device adjusts the TA, before the next access network device sends the TA adjustment parameters, the terminal device can adjust the TA by itself according to the method shown in FIG. 8 without instructions from the access network device.
  • the terminal device may be based on the difference between the cell where the terminal device is located and the TA change rate. Correspondence, determine its TA change rate.
  • the TA change rate caused by the movement of the satellite base station is related to the geographical location of the terminal equipment, and the TA change rate of the terminal equipment that is closer to the satellite base station is greater, and the farther the terminal equipment is directly below the satellite base station. The TA change rate is smaller and even tends to a straight line.
  • the satellite base station can divide the cells according to the change of the TA change rate, and broadcast the TA change rate of the corresponding cell within each cell, so that the terminal device receives the broadcast of the satellite base station to determine the TA Rate of change.
  • FIG. 12 is the first schematic diagram of dividing cells according to the TA change rate provided by this application.
  • the satellite base station O in order to reduce the compensation error of TA, the satellite base station O has different cells in its coverage area.
  • the radius of the cell directly below the satellite base station O is the smallest, and its TA change rate is recorded as ⁇ TA1'; while the TA change rate of the cell slightly further away from the satellite base station O is recorded as ⁇ TA2'; the satellite base station O covers
  • the radius of the outermost cell in the range is the largest, and its TA change rate is recorded as ⁇ TA3'.
  • the TA in order to reduce the signaling overhead of the access network device indicating the TA change rate to the terminal device, in this embodiment, the TA can also be changed implicitly by the access network device.
  • the rate is bound to the cell ID/indication parameter, so that the terminal device can determine the TA change rate of the cell according to the ID of the cell where it is located, without the need for the access network device to specifically send the TA change rate to the terminal device.
  • the terminal device can store the mapping relationship between the TA change rate and the cell ID through the table, where different cell IDs correspond to different TA change rates, and the terminal device can broadcast according to the satellite base station. Indicate the parameter or the detected cell ID to look up the table to obtain the specific TA change rate.
  • the satellite base station in Figure 12 moves to the left in the figure, the TA change rates on the left are all positive and the TA change rates on the right are all negative, and the TA change rates stored in Table 3 are only absolute values, so For the TA change rate of the opposite sign, the same or different indicating parameters can be used.
  • the terminal equipment can judge the positive or negative of the TA change rate according to the estimation of the Doppler frequency shift of the satellite base station to reduce Table 3.
  • the amount of storage space occupied For example, TA is negative when the Doppler frequency shift is positive, and TA is positive when the Doppler frequency shift is negative.
  • FIG. 13 is the second schematic diagram of dividing cells according to the TA change rate provided by this application. As shown in Figure 13, in the cells divided by the satellite base station, cells with different relative positions correspond to one or more TA change rates.
  • the satellite base station can broadcast all the TA change rates in the cell in the cell, and terminal equipment in different locations can be based on Doppler frequency. Move and other parameters to select the corresponding TA change rate in the cell.
  • the radius of the cell directly below the satellite base station is the smallest, and the available TA change rates for terminal equipment in this cell include: ⁇ TA11', ⁇ TA12', ⁇ TA13', - ⁇ TA11', - ⁇ TA12' and- ⁇ TA13';
  • the radius of the cell outside the cell directly below the base station is slightly larger.
  • the available TA change rates for the terminal equipment in the cell include: ⁇ TA14', ⁇ TA15' and ⁇ TA16', or include: - ⁇ TA14', - ⁇ TA15' and - ⁇ TA16'; and the cell radius at the boundary of the maximum coverage of the satellite base station is the largest.
  • the terminal equipment located in the cell are respectively
  • the available TA change rates include: ⁇ TA1k', or include: - ⁇ TA1k'.
  • the terminal equipment in addition to allowing the terminal equipment to perform self-precompensation, it can reduce the TA error introduced by the delay when the satellite base station instructs to adjust the TA, and it can also divide the cell corresponding to the satellite base station without adjusting the TA change rate.
  • the radius of the cell is limited, thereby reducing the complexity of design and implementation.
  • the access network The device and the terminal device may include a hardware structure and/or a software module, and the above functions are implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module. Whether one of the above-mentioned functions is executed in a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraint conditions of the technical solution.
  • FIG. 14 is a schematic structural diagram of an embodiment of a terminal device provided by this application, which is used to execute the method of the terminal device in the foregoing embodiment.
  • the terminal device provided in this embodiment includes: a transceiver module 1401 and a parameter determination module 1402 and TA determination module 1403.
  • the transceiver module 1401 is used to obtain the TA adjustment parameters from the access network equipment; the TA adjustment parameters are used to indicate the TA adjustment amount of the terminal device; the parameter determination module 1402 is used to determine the TA scaling factor of the terminal device and the terminal The subcarrier spacing parameter of the device, and the first TA used when the terminal device communicates with the access network device before receiving the TA adjustment parameter; wherein the TA scaling factor is used to scale the TA adjustment amount of the terminal device; TA determination module 1403, configured to determine the second TA according to the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter, and the first TA; the transceiver module 1401 is also configured to use the second TA to communicate with the access network device.
  • the terminal device provided in this embodiment can be used to execute the method executed by the terminal device in the method shown in FIG. 7, and the implementation manner and principle of the method are the same, and details are not described again.
  • the parameter determination module 1402 is specifically configured to determine the TA scaling factor according to the maximum moving speed of the terminal device, the moving speed of the access network device, and the frequency at which the access network device instructs the terminal device to adjust the TA.
  • the parameter determination module 1402 is further configured to determine whether the TA adjustment amount of the terminal device after the TA scaling factor processing satisfies a preset condition; if so, according to the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter and the first One TA, determine the second TA.
  • the parameter determination module 1402 is specifically configured to determine the TA scaling factor according to the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device.
  • the parameter determination module 1402 is specifically configured to determine the TA corresponding to the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device by searching for the first mapping relationship. Scaling factor; where the first mapping relationship includes the corresponding relationship between the moving speed of at least one access network device, the height of the access network device, the height timing advance of the access network device, and the TA scaling factor.
  • the parameter determination module 1402 is specifically configured to determine the subcarrier interval with the terminal device, the moving speed of the access network device, the height of the access network device, and the distance between the access network device and the terminal device by searching for the second mapping relationship.
  • the TA scaling factor corresponding to the height timing advance; where the second mapping relationship includes the subcarrier interval of at least one terminal device, the moving speed of the access network device, the height of the access network device, and the height timing advance of the access network device Correspondence between and TA scaling factor.
  • the parameter determination module 1402 is specifically configured to determine the TA scaling factor according to the format of the random access preamble used by the terminal device in the process of randomly accessing the access network device.
  • the TA determination module 1403 is further configured to determine the second TA according to the TA offset parameter, the TA adjustment parameter, the TA scaling factor, the subcarrier spacing parameter, and the first TA; wherein the TA offset parameter is used for the terminal The TA adjustment amount of the device is offset.
  • the transceiver module 1401 is further configured to receive indication information sent by the access network device; the indication information is used to indicate the common delay of the cell where the terminal device is located, and the parameter determination module 1402 is also configured to determine the common delay according to the indication information.
  • the terminal device provided in this embodiment can be used to execute the method performed by the terminal device in the method shown in FIG. 3, and the implementation manner and principle of the method are the same, and details are not described herein again.
  • the transceiver module 1401 is also used to obtain the TA initial parameters from the access network device when the terminal device accesses the access network device for the first time; the TA determination module 1403 is also used to, according to the common delay, TA initial parameters and sub The carrier spacing parameter determines the initial TA.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the parameter determination module 1402 is also used to determine the TA change rate of the terminal device if the terminal device is in a static state; wherein the TA change rate is used to indicate the movement of the access network device, and the terminal device is located in the cell. TA adjustment amount;
  • the TA determination module 1403 is also used to determine the fourth TA according to the TA change rate, the third TA, TA adjustment parameters, and subcarrier spacing parameters; where the third TA is when the terminal device communicates with the access network device before determining the fourth TA Used TA; the transceiver module 1401 is also used to communicate with the access network device using the fourth TA.
  • the parameter determination module 1402 is further configured to determine the TA change rate of the terminal device according to the third mapping relationship; where the third mapping relationship includes: Doppler shift of at least one access network device and TA of the terminal device Correspondence between rates of change.
  • the terminal device provided in this embodiment can be used to execute the method performed by the terminal device in the method described in the foregoing embodiment.
  • the implementation manner and principle of the method are the same, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of an embodiment of an access network device provided by this application, which is used to execute the method of the access network device in the foregoing embodiment.
  • the access network device provided in this embodiment includes: Module 1501 and determination module 1502.
  • the determining module 1502 is used to determine the TA adjustment parameters of the terminal device; the TA adjustment parameters are used to indicate the TA adjustment amount of the terminal device; the transceiver module 1501 is used to send the TA adjustment parameters to the terminal device so that the terminal device can adjust according to the TA Parameters, TA scaling factors, subcarrier spacing parameters and the first TA to determine the second TA; where the TA scaling factor is used to scale the TA adjustment amount of the terminal device, and the first TA is before the terminal device receives the TA adjustment parameter The TA used when the terminal device communicates with the access network device.
  • the access network device provided in this embodiment can be used to execute the method performed by the access network device in the method shown in FIG. 7, and the implementation mode and principle are the same, and details are not described again.
  • the transceiver module 1501 is further configured to send indication information to the terminal device, where the indication information is used to indicate the common delay of the cell where the terminal device is located.
  • the common delay includes: the height timing advance of the access network device, and the angular timing advance of the cell where the terminal device is located.
  • the transceiver module 1501 is specifically configured to broadcast the common delay in the cell where the terminal device is located; or, broadcast the height timing advance in the coverage area of the access network device, and broadcast the angular timing advance in the cell where the terminal device is located.
  • the access network device provided in this embodiment can be used to execute the method performed by the access network device in the method described in the foregoing embodiment, and the implementation mode and principle are the same, and details are not described herein again.
  • the division of modules in the above-mentioned embodiments of the present application is illustrative, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in each embodiment of the present application may be integrated into one
  • the processor may also exist alone physically, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • FIG. 16 is a schematic structural diagram of an embodiment of a communication device provided by this application.
  • the communication device shown in FIG. 16 can be used as a terminal device in any of the foregoing embodiments of this application or an access network in any embodiment
  • the device implements the TA determination method of the terminal device described above.
  • the communication device 1000 includes: a communication interface 1010, a processor 1020, and a memory 1030.
  • the communication interface 1010 may be a transceiver, a circuit, a bus, or another form of interface for communicating with other devices through a transmission medium.
  • the communication interface 1010, the processor 1020, and the memory 1030 are coupled.
  • the coupling in the embodiment of the present application is an indirect coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms for the device , Information exchange between units or modules.
  • the embodiment of the present application does not limit the specific connection medium between the communication interface 1010, the processor 1020, and the memory 1030.
  • the communication interface 1010, the memory 1030, and the processor 1020 are connected by a bus 1040.
  • the bus is represented by a thick line in FIG. 16, and the connection mode between other components is only for schematic illustration. , Is not limited.
  • the bus can be divided into address bus, data bus, control bus, etc. For ease of representation, only one thick line is used in FIG. 16, but it does not mean that there is only one bus or one type of bus.
  • the terminal device can be used to implement the method executed by the terminal device in the foregoing embodiments of the present application.
  • the communication interface 1010 is used to obtain the TA adjustment parameter from the access network device, and send the TA adjustment parameter to the processor; where the TA adjustment parameter is used to indicate the TA adjustment amount of the terminal device; the memory 1030 stores When the processor 1020 calls and executes the instruction, the processor 1020, after receiving the TA adjustment parameter, determines the TA scaling factor of the terminal device, the subcarrier spacing parameter of the terminal device, and the terminal device and the interface before receiving the TA adjustment parameter.
  • the communication interface 1010 is also used to receive instruction information sent by the access network device and send the instruction information to the processor; the instruction information is used to indicate the common delay of the cell where the terminal device is located; the processor 1020 also uses Therefore, when the instruction information is received, the common delay is determined according to the instruction information; the communication interface 1010 is also used to obtain the TA initial parameters from the access network device when the terminal device accesses the access network device for the first time, and set the TA initial parameters Sent to the processor; the processor 1020 is further configured to, when receiving the initial TA parameters, determine the initial TA according to the common delay, the initial TA parameters, and the subcarrier spacing parameters.
  • the access network device can be used to implement the methods executed by the access network device in the foregoing embodiments of the present application.
  • the processor 1020 determines the TA adjustment parameters of the terminal device, and sends the TA adjustment parameters to the communication interface 1010; when the communication interface 1010 receives the TA adjustment parameters , Send TA adjustment parameters to the terminal device.
  • the communication interface 1010 is also used to send instruction information to the terminal device, and the instruction information is used to indicate the common delay of the cell where the terminal device is located.
  • the processor may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and may implement or Perform the methods, steps, and logic block diagrams disclosed in the embodiments of the present application.
  • the general-purpose processor may be a microprocessor or any conventional processor. The steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), for example Random-access memory (random-access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiments of the present application may also be a circuit or any other device capable of realizing a storage function, for storing program instructions and/or data.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a dedicated computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请提供一种终端设备的TA确定方法及装置,当终端设备接收到接入网设备发送的TA调整参数并确定需要调整其TA后,确定TA缩放因子,子载波间隔参数以及第一TA,以共同调整第一TA得到第二TA。由于终端设备在确定第二TA时TA调整参数k的加入,使得TA的可调整范围更大,因此可以应用于终端设备与卫星基站通信时确定终端设备的TA,实现终端设备能够在由终端设备本身和卫星基站共同造成的设备移动的情况下,对TA进行调整。

Description

终端设备的TA确定方法及装置
本申请要求于2019年04月29日提交中国专利局、申请号为2019103566536、申请名称为“终端设备的TA确定方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种终端设备的时间提前量(timing advance,TA)确定方法、装置及系统。
背景技术
在终端设备与接入网设备(例如:基站)进行通信时,若终端设备与接入网设备距离较远,则终端设备向接入网设备发送的上行通信数据会存在较大的传输延迟。因此,接入网设备会为终端设备设置时间提前量(timing advance,TA),使得终端设备通过TA能够获得接收到接入网设备的下行通信数据的第一时间、与该终端设备向接入网设备发送上行通信数据的第二时间之间的负偏移(negative offset)。进而使得终端设备能够根据TA提前向接入网设备发送上行通信数据,以减小上行通信数据的传输延迟。
当终端设备在随机接入的过程中,接入网设备根据终端设备所发送的随机接入前导码确定该终端设备的TA,并通过TAC字段将TA初始参数发送给终端设备,使得终端设备能够根据TA初始参数确定TA。当终端设备随机接入之后,针对终端设备的移动性,接入网设备通过测量终端设备的上行通信数据,确定对该终端设备的TA进行调整,同样通过TAC字段将TA调整参数发送给终端设备,使得终端设备能够根据TA调整参数对TA进行调整。并且,在例如第五代移动网络新接入技术(5th generation Mobile Networks new radio access technology,5G NR)等通信系统中,都对接入网设备在每次对终端设备的TA进行调整时的调整范围,以及一段时间内可调整的总范围都进行了限制。
但是,现有的TA确定方法中只考虑到终端设备的移动性,当接入网设备为卫星基站时,由于卫星基站本身也具有移动性,导致了现有的终端设备的TA确定方法并不能直接应用于卫星基站。因此,如何使终端设备的TA确定方法能够应用于卫星基站,是本领域亟待解决的技术问题。
发明内容
本申请提供一种终端设备的TA确定方法、装置及系统,以解决现有技术中终端设备的TA确定方法不能应用与卫星基站的问题。
本申请第一方面提供一种终端设备的TA确定方法,包括:
获取来自接入网设备的TA调整参数;其中,所述TA调整参数用于指示所述终端 设备的TA调整量;
确定所述终端设备的TA缩放因子、所述终端设备的子载波间隔参数,以及接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的第一TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理;
根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
综上,在本实施例提供的终端设备的TA确定方法中,当终端设备接收到接入网设备发送的TA调整参数并确定需要调整其TA后,确定TA缩放因子,子载波间隔参数以及第一TA,以共同调整第一TA得到第二TA。由于在本实施例中,终端设备在确定第二TA时,由于TA调整参数k的加入,使得终端设备在对TA进行调整时,可调整的范围更大,因此可以应用于例如卫星通信系统中,实现终端设备能够在由终端设备本身和卫星基站共同造成设备移动的情况下,对TA进行调整。并且,本实施例所述的终端设备的TA确定方法,还可以应用在现有的地面通信系统中,终端设备可以仅考虑终端设备本身移动性情况下对TA进行调整。因此,本实施例提供的终端设备的TA确定方法还可以同时应用在地面固定基站以及卫星基站中,具有可移植性。
在本申请第一方面一实施例中,所述根据所述TA调整参数、TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA,包括:
通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ计算TA 2
其中,TA 1为第一TA、T A为TA调整参数、k为TA缩放因子,2 μ为子载波间隔参数,Δf=2 μ·15[kHz],△f为所述终端设备的子载波间隔。
综上,本实施例提供的终端设备的TA确定方法中,通过公式计算第二TA,在现有的TA确定方法的基础上进行扩展,使得本实施例中的TA确定方法具有可移植性,能够兼容现有的通信系统。
在本申请第一方面一实施例中,所述确定TA缩放因子,包括:
根据所述终端设备的最大移动速度、所述接入网设备的移动速度和所述接入网设备指示所述终端设备调整TA的频率,确定所述TA缩放因子。
在本申请第一方面一实施例中,所述根据所述终端设备的最大移动速度、所述接入网设备的移动速度和所述接入网设备指示所述终端设备调整TA的频率,确定所述TA缩放因子,包括:
通过公式2(v 1+v 2)/f TA/c=k·32·16·64·T c/8计算所述TA缩放因子k;
其中,v 1为所述终端设备的最大移动速度,v 2为所述接入网设备的移动速度,f TA为接入网设备指示所述终端设备调整TA的频率,c为光速,T c为基本时间单元。
在本申请第一方面一实施例中,还包括:判断经过所述TA缩放因子处理后所述终端设备的TA调整量,是否满足预设条件;
若是,则根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
在本申请第一方面一实施例中,包括:根据所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量,确定所述TA缩放因子。
在本申请第一方面一实施例中,所述根据所述接入网设备的移动速度、所述接入 网设备所在的高度,以及所述接入网设备的高度时间提前量,确定所述TA缩放因子,包括:
通过查找第一映射关系,确定与所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量对应的所述TA缩放因子;其中,所述第一映射关系包括至少一个接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
在本申请第一方面一实施例中,所述根据所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量,确定所述TA缩放因子,包括:
通过查找第二映射关系,确定与所述终端设备的子载波间隔、所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量对应的所述TA缩放因子;其中,所述第二映射关系包括至少一个终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
综上,本实施例提供的终端设备的TA确定方法中,通过查找映射关系的方式,使得终端设备能够使用更小的计算量得到需要调整后的TA,从而提高了终端设备确定TA时的速度和效率。
在本申请第一方面一实施例中,所述确定TA缩放因子,包括:根据所述终端设备在随机接入所述接入网设备过程中使用的随机接入前导码的格式,确定所述TA缩放因子。
在本申请第一方面一实施例中,所述根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA,包括:
根据TA偏移参数、所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA;其中,所述TA偏移参数用于对所述终端设备的TA调整量进行偏移处理。
在本申请第一方面一实施例中,所述确定TA缩放因子,包括:
根据所述接入网设备的属性信息,确定所述TA缩放因子。
在本申请第一方面一实施例中,所述获取来自接入网设备的TA调整参数之前,还包括:
接收所述接入网设备发送的指示信息;所述指示信息用于指示所述终端设备所在小区的公共延迟;
根据所述指示信息确定所述公共延迟。
在本申请第一方面一实施例中,所述获取来自接入网设备的TA调整参数之前,还包括:
当所述终端设备首次接入所述接入网设备时,获取来自所述接入网设备的TA初始参数;
根据所述公共延迟、所述TA初始参数和所述子载波间隔参数,确定初始TA。
在本申请第一方面一实施例中,所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
综上,在本实施例所提供的终端设备的TA确定方法中,终端设备能够根据接入网设备所指示的公共延迟,以及TA初始参数共同确定终端设备的初始TA。由于终端设备能够根据接入网设备所指示的公共延迟确定初始TA,使得该终端设备的TA确定方法能够应用于雷达基站,实现雷达基站基于雷达的高度以及小区的角度对终端设备的TA进行补偿。
在本申请第一方面一实施例中,若所述终端设备处于静止状态,确定所述终端设备的TA变化率;其中,所述TA变化率用于表示所述接入网设备的移动造成的,所述终端设备所在小区内的TA调整量;
根据所述TA变化率、所述第三TA、所述TA调整参数和所述子载波间隔参数,确定第四TA;其中,所述第三TA为所述终端设备确定所述第四TA前与所述接入网设备通信时使用的TA。
在本申请第一方面一实施例中,所述根据所述TA变化率、所述第三TA、所述TA调整参数和所述子载波间隔参数,确定第四TA,包括:
通过公式TA 4=TA 3+△N TA+△N' TA·△t计算第四TA,其中,△N TA=(T A-31)·16·64/2 μ,T A为所述接入网设备所发送的TA调整参数,△N’ TA为所述TA调整量,△t=t1-t0,t0为所述终端设备接收到所述TA调整参数的时间,t1为所述终端设备将要向所述接入网设备发送上行通信数据的时间。
在本申请第一方面一实施例中,所述确定所述终端设备的TA变化率,包括:
根据第三映射关系确定所述终端设备的TA变化率;其中,所述第三映射关系包括:至少一个所述接入网设备的多普勒频移和所述终端设备的TA变化率之间的对应关系。
综上,本实施例提供的终端设备的TA确定方法中,通过终端设备自身可以根据多普勒等参数对TA的调整进行预补偿,从而避免了卫星基站对TA调整的频繁指示,减少了资源的开销。同时,由于卫星基站和终端设备之间的通信延迟较大,使用本实施例进行自身进行预补偿可以减少由于卫星基站指示调整TA时的延迟所引入的TA误差。
本申请第二方面提供一种终端设备的TA确定方法,包括:
确定终端设备的TA调整参数;其中,所述TA调整参数用于指示所述终端设备的TA调整量;
向所述终端设备发送所述TA调整参数,以使所述终端设备根据所述TA调整参数、TA缩放因子、子载波间隔参数和所述第一TA,确定第二TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理,所述第一TA为所述终端设备接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的TA。
在本申请第二方面一实施例中,还包括:向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备所在小区的公共延迟。
在本申请第二方面一实施例中,所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
在本申请第二方面一实施例中,向所述终端设备发送指示信息,包括:在所述终端设备所在的小区广播所述公共延迟;或者,
在所述接入网设备的覆盖区域广播所述高度时间提前量,并在所述终端设备所在的小区广播所述角度时间提前量。
本申请第三方面提供一种终端设备的TA确定装置,用于执行如本申请第一方面中所述的终端设备的TA确定方法,该装置包括:
收发模块,用于获取来自接入网设备的TA调整参数;其中,所述TA调整参数用于指示所述终端设备的TA调整量;
参数确定模块,用于确定所述终端设备的TA缩放因子、所述终端设备的子载波间隔参数,以及接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的第一TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理;
TA确定模块,用于根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
在本申请第三方面一实施例中,所述TA确定模块具体用于通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ计算TA 2
其中,TA 1为第一TA、T A为TA调整参数、k为TA缩放因子,2 μ为子载波间隔参数,Δf=2 μ·15[kHz],△f为所述终端设备的子载波间隔。
在本申请第三方面一实施例中,所述参数确定模块具体用于,根据所述终端设备的最大移动速度、所述接入网设备的移动速度和所述接入网设备指示所述终端设备调整TA的频率,确定所述TA缩放因子。
在本申请第三方面一实施例中,所述参数确定模块具体用于,通过公式2(v 1+v 2)/f TA/c=k·32·16·64·T c/8计算所述TA缩放因子k;
其中,v 1为所述终端设备的最大移动速度,v 2为所述接入网设备的移动速度,f TA为接入网设备指示所述终端设备调整TA的频率,c为光速,T c为基本时间单元。
在本申请第三方面一实施例中,所述参数确定模块还用于,判断经过所述TA缩放因子处理后所述终端设备的TA调整量,是否满足预设条件;
若是,则根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
在本申请第三方面一实施例中,所述参数确定模块具体用于,根据所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量,确定所述TA缩放因子。
在本申请第三方面一实施例中,所述参数确定模块具体用于,通过查找第一映射关系,确定与所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量对应的所述TA缩放因子;其中,所述第一映射关系包括至少一个接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
在本申请第三方面一实施例中,所述参数确定模块具体用于,通过查找第二映射关系,确定与所述终端设备的子载波间隔、所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量对应的所述TA缩放因子;其中,所述第二映射关系包括至少一个终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
在本申请第三方面一实施例中,所述参数确定模块具体用于,根据所述终端设备在随机接入所述接入网设备过程中使用的随机接入前导码的格式,确定所述TA缩放因 子。
在本申请第三方面一实施例中,所述TA确定模块还用于,根据TA偏移参数、所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA;其中,所述TA偏移参数用于对所述终端设备的TA调整量进行偏移处理。
在本申请第三方面一实施例中,所述TA确定模块具体用于,根据所述接入网设备的属性信息,确定所述TA缩放因子。
在本申请第三方面一实施例中,所述收发模块还用于,接收所述接入网设备发送的指示信息;所述指示信息用于指示所述终端设备所在小区的公共延迟;
在本申请第三方面一实施例中,所述参数确定模块还用于,根据所述指示信息确定所述公共延迟。
在本申请第三方面一实施例中,所述收发模块还用于,当所述终端设备首次接入所述接入网设备时,获取来自所述接入网设备的TA初始参数;
所述TA确定模块还用于,根据所述公共延迟、所述TA初始参数和所述子载波间隔参数,确定初始TA。
在本申请第三方面一实施例中,所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
在本申请第三方面一实施例中,所述参数确定模块还用于,若所述终端设备处于静止状态,确定所述终端设备的TA变化率;其中,所述TA变化率用于表示所述接入网设备的移动造成的,所述终端设备所在小区内的TA调整量;
所述TA确定模块还用于,根据所述TA变化率、所述第三TA、所述TA调整参数和所述子载波间隔参数,确定第四TA;其中,所述第三TA为所述终端设备确定所述第四TA前与所述接入网设备通信时使用的TA。
在本申请第三方面一实施例中,所述TA确定模块还用于,通过公式TA 4=TA 3+△N TA+△N' TA·△t计算第四TA,其中,△N TA=(T A-31)·16·64/2 μ,T A为所述接入网设备所发送的TA调整参数,△N’ TA为所述TA调整量,△t=t1-t0,t0为所述终端设备接收到所述TA调整参数的时间,t1为所述终端设备将要向所述接入网设备发送上行通信数据的时间。
在本申请第三方面一实施例中,所述参数确定模块还用于,根据第三映射关系确定所述终端设备的TA变化率;其中,所述第三映射关系包括:至少一个所述接入网设备的多普勒频移和所述终端设备的TA变化率之间的对应关系。
本申请第四方面提供一种终端设备的TA确定装置,用于执行本申请第二方面中的终端设备的TA确定方法,该装置包括:
确定模块,用于确定终端设备的TA调整参数;其中,所述TA调整参数用于指示所述终端设备的TA调整量;
收发模块,用于向所述终端设备发送所述TA调整参数,以使所述终端设备根据所述TA调整参数、TA缩放因子、子载波间隔参数和所述第一TA,确定第二TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理,所述第一TA为所述终端设备接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的TA。
在本申请第四方面一实施例中,所述收发模块还用于,向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备所在小区的公共延迟。
在本申请第四方面一实施例中,所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
在本申请第四方面一实施例中,所述收发模块具体用于,在所述终端设备所在的小区广播所述公共延迟;或者,在所述接入网设备的覆盖区域广播所述高度时间提前量,并在所述终端设备所在的小区广播所述角度时间提前量。
本申请第五方面提供一种通信装置,所述通信装置可以是终端设备,该通信装置包括:通信接口、处理器和存储器;其中,所述通信接口用于获取来自接入网设备的TA调整参数,并将TA调整参数发送给处理器;其中,所述TA调整参数用于指示所述终端设备的TA调整量;所述存储器中存储有指令,所述处理器调用并执行所述指令时,使得所述处理器在接收到TA调整参数后,确定所述终端设备的TA缩放因子、所述终端设备的子载波间隔参数,以及接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的第一TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理;根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
在本申请第五方面一实施例中,所述处理器具体用于通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ计算TA 2
其中,TA 1为第一TA、T A为TA调整参数、k为TA缩放因子,2 μ为子载波间隔参数,Δf=2 μ·15[kHz],△f为所述终端设备的子载波间隔。
在本申请第五方面一实施例中,所述处理器具体用于,根据所述终端设备的最大移动速度、所述接入网设备的移动速度和所述接入网设备指示所述终端设备调整TA的频率,确定所述TA缩放因子。
在本申请第五方面一实施例中,所述处理器具体用于,通过公式2(v 1+v 2)/f TA/c=k·32·16·64·T c/8计算所述TA缩放因子k;
其中,v 1为所述终端设备的最大移动速度,v 2为所述接入网设备的移动速度,f TA为接入网设备指示所述终端设备调整TA的频率,c为光速,T c为基本时间单元。
在本申请第五方面一实施例中,所述处理器还用于,判断经过所述TA缩放因子处理后所述终端设备的TA调整量,是否满足预设条件;
若是,则根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
在本申请第五方面一实施例中,所述处理器具体用于,根据所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量,确定所述TA缩放因子。
在本申请第五方面一实施例中,所述处理器具体用于,通过查找第一映射关系,确定与所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量对应的所述TA缩放因子;其中,所述第一映射关系包括至少一个接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
在本申请第五方面一实施例中,所述处理器具体用于,通过查找第二映射关系,确定与所述终端设备的子载波间隔、所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量对应的所述TA缩放因子;其中,所述第二映射关系包括至少一个终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
在本申请第五方面一实施例中,所述处理器具体用于,根据所述终端设备在随机接入所述接入网设备过程中使用的随机接入前导码的格式,确定所述TA缩放因子。
在本申请第五方面一实施例中,所述处理器还用于,根据TA偏移参数、所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA;其中,所述TA偏移参数用于对所述终端设备的TA调整量进行偏移处理。
在本申请第五方面一实施例中,所述处理器具体用于,根据所述接入网设备的属性信息,确定所述TA缩放因子。
在本申请第五方面一实施例中,所述通信接口还用于,接收所述接入网设备发送的指示信息,并将指示信息发送至处理器;所述指示信息用于指示所述终端设备所在小区的公共延迟;
在本申请第五方面一实施例中,所述处理器还用于,当接收到指示信息,根据所述指示信息确定所述公共延迟。
在本申请第五方面一实施例中,所述通信接口还用于,当所述终端设备首次接入所述接入网设备时,获取来自所述接入网设备的TA初始参数,并将TA初始参数发送至处理器;
所述处理器还用于,当接收到TA初始参数,根据所述公共延迟、所述TA初始参数和所述子载波间隔参数,确定初始TA。
在本申请第五方面一实施例中,所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
在本申请第五方面一实施例中,所述处理模块还用于,若所述终端设备处于静止状态,确定所述终端设备的TA变化率;其中,所述TA变化率用于表示所述接入网设备的移动造成的,所述终端设备所在小区内的TA调整量;
所述处理还用于,根据所述TA变化率、所述第三TA、所述TA调整参数和所述子载波间隔参数,确定第四TA;其中,所述第三TA为所述终端设备确定所述第四TA前与所述接入网设备通信时使用的TA。
在本申请第五方面一实施例中,所述处理器还用于,通过公式TA 4=TA 3+△N TA+△N' TA·△t计算第四TA,其中,△N TA=(T A-31)·16·64/2 μ,T A为所述接入网设备所发送的TA调整参数,△N’ TA为所述TA调整量,△t=t1-t0,t0为所述终端设备接收到所述TA调整参数的时间,t1为所述终端设备将要向所述接入网设备发送上行通信数据的时间。
在本申请第五方面一实施例中,所述处理器还用于,根据第三映射关系确定所述终端设备的TA变化率;其中,所述第三映射关系包括:至少一个所述接入网设备的多普勒频移和所述终端设备的TA变化率之间的对应关系。
本申请第六方面提供一种通信装置,该通信装置可以是接入网设备,更为具体地, 该通信装置可以是雷达基站,该通信装置包括:通信接口、处理器和存储器;其中,所述存储器中存储有指令,所述处理器调用并执行所述指令时,使得所述处理器确定终端设备的TA调整参数,并将TA调整参数发送至通信接口;其中,所述TA调整参数用于指示所述终端设备的TA调整量;通信接口当接收到TA调整参数,向所述终端设备发送所述TA调整参数,以使所述终端设备根据所述TA调整参数、TA缩放因子、子载波间隔参数和所述第一TA,确定第二TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理,所述第一TA为所述终端设备接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的TA。
在本申请第六方面一实施例中,所述通信接口还用于,向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备所在小区的公共延迟。
在本申请第六方面一实施例中,所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
在本申请第六方面一实施例中,所述通信接口具体用于,在所述终端设备所在的小区广播所述公共延迟;或者,在所述接入网设备的覆盖区域广播所述高度时间提前量,并在所述终端设备所在的小区广播所述角度时间提前量。
第七方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行本申请第一方面所述的方法。
第八方面,本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行本申请第二方面所述的方法。
第九方面,本申请实施例提供了一种通信系统,所述系统包括上述第三方面所述的装置和第四方面所述的装置;或者,所述系统包括上述第五方面所述的通信装置和第六方面所述的通信装置。
附图说明
图1为现有技术所应用的通信系统的示意图;
图2为本申请所应用的通信系统的示意图;
图3为本申请提供的终端设备的TA确定方法一实施例的流程示意图;
图4为本申请提供的终端设备所在小区公共延迟的示意图;
图5为本申请中卫星基站的位置示意图;
图6为本申请中卫星基站的位置与终端设备的TA之间的对应关系;
图7为本申请提供的终端设备的TA确定方法一实施例的流程示意图;
图8为本申请提供的终端设备的TA确定方法一实施例的流程示意图;
图9为本申请提供的接入网设备的多普勒频移的示意图;
图10为本申请提供的终端设备的TA变化率的示意图;
图11为本申请提供的终端设备确定第四TA的示意图;
图12为本申请提供的根据TA变化率划分小区的示意图一;
图13为本申请提供的根据TA变化率划分小区的示意图二;
图14为本申请提供的终端设备一实施例的结构示意图;
图15为本申请提供的接入网设备一实施例的结构示意图;
图16为本申请提供的通信装置一实施例的结构示意图。
具体实施方式
图1为现有技术所应用的通信系统的示意图。如图1所示的通信场景中包括:终端设备A、终端设备B和接入网设备,终端设备与接入网设备建立通信连接之后,可以通过接入网设备进一步与核心网进行通信。例如,在如图1所示的示例中,示出了当接入网设备为基站E时,在基站E的覆盖范围之内,终端设备A和终端设备B均可以接入基站E,并通过所建立的无线连接关系与基站E通信。所述的通信包括:终端设备向基站发送上行通信数据,以及基站向终端发送上行通信数据。
现有技术中,当终端设备与基站的距离较远时,终端设备向基站发送的上行通信数据会存在较大的传输延迟,并且基站覆盖范围之内不同终端设备向基站发送的上行通信数据会呈现不同的传输延迟。例如,在如图1所示的示例中,终端设备A向基站E所发送的上行通信数据会出现TA1的传输延迟,而终端设备B向基站E所发送的上行通信数据会出现TA2的传输延迟,由于终端设备B与基站E的距离大于终端设备A与基站的距离,传输延迟TA2>TA1。因此,为了保证基站侧所接收到的终端设备的上行通信数据的时间同步,基站会为每个所接入的终端设备设置时间提前量(timing advance,TA),使得终端设备通过TA能够获得接收到基站发送的下行通信数据的第一时间、与该终端设备向基站发送上行通信数据的第二时间之间的负偏移(negative offset)。实现基站通过控制所接入的终端设备发送上行通信数据的时间,实现控制基站接收到终端设备的上行通信数据的时间。
例如:在一些具体的实现方式中,当终端设备在随机接入的基站过程中,基站会根据终端设备所发送的随机接入前导码确定该终端设备的TA,并通过TAC字段将TA初始参数发送给终端设备,使得终端设备能够根据TA初始参数确定初始TA。而由于终端设备所具有的移动性,基站在终端设备确定初始TA之后还需要在此之后不断指示终端设备调整其TA。其中,基站在接收到终端设备所发送的上行通信数据后,通过测量上行通信数据的相关参数,确定对该终端设备的TA进行调整的TA调整量,同样通过TAC字段将TA调整参数发送给终端设备,使得终端设备能够根据TA调整参数对TA进行调整。
图2为本申请所应用的通信系统的示意图,如图2所示的应用场景为卫星基站的通信场景,该通信系统包括:卫星基站和至少一个终端设备。或者,在一些具体的实现方式中,如图2所示的通信系统还包括未示出的地面基站。由地面基站和卫星基站共同为终端设备提供服务。其中,基于卫星基站具有更广的覆盖范围、不容易受到自然灾害或者外力的破坏等优势,可以为海洋、森林等一些地面通信网络不能覆盖的区域提供通信服务,具有广覆盖、可靠性、多连接和高吞吐等特点。
在本申请各实施例中,终端设备也可以称为终端(terminal)。终端设备可以是用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等,终端设备也可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终 端设备、无人驾驶(self driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。
由于终端设备与卫星基站之间的距离较远,因此卫星基站同样需要指示每个接入该卫星基站的终端设备确定其TA,以实现控制基站接收到终端设备的上行通信数据的时间同步。而在如图1所示的现有技术中,地面通信网络的基站E位置固定,在终端设备确定TA时仅考虑到终端设备的移动性。在例如第五代移动网络新接入技术(5th generation Mobile Networks new radio access technology,5G NR)等通信系统中,都对地面通信网络中,基站在每次对终端设备的TA进行调整时的调整范围,以及一段时间内可调整的总范围都进行了限制。
在如图2所示的通信场景中,基于现有的卫星基站一般均处于不断运动的状态,例如,在第一时刻,终端设备C处于图中C位置、卫星基站处于图中C’位置,此时终端设备向卫星基站所发送的上行通信数据会出现TA3的传输延迟,因此需要终端设备以TA3的时间提前量提前发送上行通信数据。而在第二时刻,除了终端设备从位置C移动到位置D,还会由于卫星基站从位置C’移动到D’,共同造成了此时终端设备向卫星基站所发送的上行通信数据会出现TA4的传输延迟,因此需要终端设备以TA4的时间提前量提前发送上行通信数据.明显地,由于位置D-位置D’之间的距离大于位置C-位置C’之间的距离,因此TA4>TA3。
在例如5G NR通信系统中对终端设备在确定TA时,确定TA的频率和一次最大的TA调整量均进行了限定,并没有考虑基站的移动性。而在如图2所示的卫星通信系统中,由于卫星基站本身也具有移动性,且卫星基站的移动速度远大于终端设备的移动速度,也就导致了现有的终端设备的TA确定方法并不能直接应用于卫星基站。因此,如何使终端设备TA的确定方法能够应用于卫星基站,是本领域亟待解决的技术问题。
下面结合附图,对本申请提供的终端设备的TA确定方法进行说明。
图3为本申请提供的终端设备的TA确定方法一实施例的流程示意图,如图3所示,本实施了提供的终端设备的TA确定方法包括:
S101:接入网设备向终端设备发送指示信息。
具体地,本实施例中的接入网设备包括卫星基站。则为了在终端设备接入卫星基站过程中,确定初始TA时进行TA值的补偿,接入网设备需要向终端设备发送能够指示终端设备所在小区公共延迟的指示信息。
其中,本实施例中所述的公共延迟包括:接入网设备的高度时间提前量TA(h)和终端设备所在小区的角度时间提前量TA(θ)。
例如,图4为本申请提供的终端设备所在小区公共延迟的示意图,在图4中卫星基站O的覆盖范围S内,不同的小区内的公共延迟不同。
以卫星基站O正下方的小区S1为例,该小区内位于卫星基站O正下方a点的终端设备向卫星基站O发送上行通信数据时,会由于卫星基站0的高度h造成a-O之间具有时间延迟,本实施例中将该时间延迟记为高度时间提前量TA(h)。也就是在卫星基站O的覆盖范围S内的所有终端设备在向卫星基站O发送上行通信数据时,都至少 存在该公共延迟,也就都需要进行TA(h)的补偿。
除了位于卫星基站O正下方的小区S1,覆盖范围S内的其他小区内的终端设备在向卫星基站发送上行通信数据时,还需要考虑每个小区的角度时间提前量。例如,以如图4所示的基站S2为例,该小区内c点为最靠近卫星基站O正下方的a点距离最近的位置,当终端设备位于c位置时,会存在由于卫星基站的高度h所带来的高度时间提前量TA(h),还会存在c点与卫星基站O之间的角度θ所带来的角度时间提前量TA(θ)。也就是在c点的终端设备向卫星基站O发送上行通信数据时,c-O之间需要补偿的公共延迟由0-b的高度时间提前量TA(h)和b-c之间的角度时间提前量TA(θ)组成。因此,对于小区S2内的所有终端设备在向卫星基站发送上行传输数据时,都至少存在上述时间延迟,也就都需要进行公共延迟即TA(h)+TA(θ)的补偿。
而对于小区S2内每个终端设备与a点的距离都不会完全相同,而不同的距离会造成即使同一个小区内,不同终端设备的所需要进行的TA补偿值不同,例如小区S2内与a点距离最远的位置e点,终端设备在e点时除了进行上述TA(h)+TA(θ)的补偿,还需要对该终端设备额外进行△TA的补偿。最终,对于小区S2内的终端设备,雷达基站所需要进行的TA补偿包括:TA(h)+TA(θ)+△TA。例如,图5为本实施例中卫星基站的位置示意图,其中,R为地球的半径,h为卫星基站绕地球运动的轨道高度。则当卫星基站在绕地球运动过程中与初始位置所呈现的α角度时,卫星基站的位置与TA的变化关系可参照图6,其中,6为本申请中卫星基站的位置与终端设备的TA之间的对应关系。如图6所示,对于图中150s时刻、高度约为1300km、角度α约为0.33rad的卫星基站覆盖范围内某小区,该小区内的终端设备的TA包括TA(h)+TA(θ)+△TA。可选地,终端设备在接入卫星基站时,卫星基站会向终端设备发送△TA以对终端设备的TA进行补偿。
因此,在S101中,为了使终端设备在与卫星基站通信时,确定需要补偿的公共延迟,卫星基站需要向其覆盖范围内的终端设备发送指示信息,以使终端设备可以根据指示信息确定其所在小区的公共时延。
可选地,在S101第一种可能的实现方式中,卫星基站可以在每个小区广播该小区对应的公共延迟。例如,在如图4所示的场景中,卫星基站O在小区S1内广播小区S1对应的公共延迟TA(h),并在小区S2内广播小区S2对应的公共延迟TA(h)+TA(θ)。
或者,在S101第二种可能的实现方式中,由于卫星基站O的覆盖范围S内的所有终端设备都存在TA(h)的延迟,因此,卫星基站O可以在其覆盖范围S内广播TA(h),并在每个小区内广播与该小区对应的TA(θ)。
又或者,在S101第三种可能的实现方式中,卫星基站可以通过隐式指示的方式,向终端设备指示所在小区的公共延迟。例如,卫星基站的小区ID或者雷达波束(beam)的ID与小区内的公共延迟存在对应关系,则所述指示信息可以是卫星基站向终端设备发送的小区ID或者波束ID,使得终端设备根据卫星基站所发送的小区ID或波束ID,确定对应的公共延迟。其中,所述对应关系可以是卫星基站向终端设备发送,或者所述对应关系可以是卫星基站和终端设备之间进行协商得到,又或者,所述对应关系可以存储在终端设备中。
S102:接入网设备向终端设备发送TA初始参数,使得终端设备确定初始TA。
具体地,当终端设备首次接入接入网设备时,可以获取来自接入网设备的TA初始参数。例如,终端设备在随机接入雷达基站的过程中,雷达基站通过随机接入响应消息(random access response,RAR)中的TAC(timing advance command)字段向终端设备发送TA初始参数,所述TA初始参数包括12比特,TA初始参数的范围为0-3846。
S103:终端设备根据指示信息和TA初始参数,共同确定初始TA。
具体地,终端设备可以通过公式N TA0=TA(h)+TA(θ)+T A0·16·64/2 μ,得到初始TA,其中,TA(h)+TA(θ)为公共延迟,T AO为TA初始参数,2 μ为子载波间隔参数,对于子载波间隔参数,有Δf=2 μ·15[kHz],△f为所述终端设备的子载波间隔,N TA0的时间单位为Tc=0.509ns,为TS 38.211标准中所定义的基本时间单元。
S104:终端设备使用初始TA与接入网设备通信。
最终,当终端设备经过上述步骤确定其初始TA之后,即可使用该初始TA与接入网设备通信。例如,当接入网设备为雷达基站时,所述的通信指,终端设备需要提前TA的时间向雷达基站发送上行传输数据。
综上,在本实施例所提供的终端设备的TA确定方法中,终端设备能够根据接入网设备所指示的公共延迟,以及TA初始参数共同确定终端设备的初始TA。由于终端设备能够根据接入网设备所指示的公共延迟确定初始TA,使得该终端设备的TA确定方法能够应用于雷达基站,实现雷达基站基于雷达的高度以及小区的角度对终端设备的TA进行补偿。
随后,在终端设备随机接入并确定初始TA之后,由于本实施例中终端设备和接入网设备同时具有的移动性,终端设备在随后需要对TA进行不断的调整,以满足TA实时的需求。其中,如图7所示,图7为本申请提供的终端设备的TA确定方法一实施例的流程示意图,如图7示出了在终端设备已经随机接入接入网设备并获得初始TA之后,后续对TA进行调整的过程,其中,本实施例可应用与如图2所示的通信场景中,接入网设备为雷达基站,则该方法包括:
S201:接入网设备向终端设备发送TA调整参数。其中,TA调整参数用于指示终端设备的TA调整量。
具体地,本实施例中接入网设备可以在与终端设备通信过程中,测量所接收的终端设备所发送的上行通信数据,并判断该终端设备的TA需要进行调整时,向终端设备发送TA调整参数,使得终端设备根据TA参数调整其TA。可选地,本步骤中,接入网设备通过向终端设备所发送的TAC中携带TA调整参数,所述TA调整参数包括6比特,TA调整参数的范围为0-63。
S202:终端设备确定TA缩放因子、子载波间隔参数,以及第一TA。
随后,终端设备通过S201接收到接入网设备所发送的TA调整参数后,确定需要调整TA,则需要在S202中确定计算TA所需要的TA缩放因子、子载波间隔参数,以及第一TA。其中,TA缩放因子用于对终端设备的TA调整量进行缩放处理。第一TA为终端设备接收到TA调整参数之前,与接入网设备通信时使用的TA,该第一TA可以是初始TA,或者,该第一TA也可以是已经由初始TA进行调整后得到的TA。
S203:终端设备根据TA调整参数、TA缩放因子、子载波间隔参数和第一TA,共 同确定第二TA。
具体地,本步骤中终端设备具体通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ计算TA 2;其中,T A为S201中所接收到的TA调整参数、TA 1为S202中所确定的第一TA、k为S202中所确定的TA缩放因子,2 μ为S202中所确定的子载波间隔参数,对于子载波间隔参数,有Δf=2 μ·15[kHz],△f为所述终端设备的子载波间隔。
S204:终端设备使用第二TA与接入网设备通信。
最终,终端设备根据通过上述步骤所确定的第二TA与接入网设备进行通信,其中,所述的通信指,终端设备需要提前第二TA的时间向接入网设备发送上行传输数据。可以理解的是,在如图7所示的实施例中,在终端设备接收到S201中接入网设备发送的TA调整参数之前,提前第一TA的时间向接入网设备发送上行传输数据;而在S203确定TA调整参数之后,提前第二TA的时间向接入网设备发送上行传输数据。
综上,在本实施例提供的终端设备的TA确定方法中,当终端设备接收到接入网设备发送的TA调整参数并确定需要调整其TA后,确定TA缩放因子,子载波间隔参数以及第一TA,以共同调整第一TA得到第二TA。由于在本实施例中,终端设备在S203中确定第二TA时,在第一TA的基础上可以调整的调整量为k·(T A-31)·16·64/2 μ,与现有5G NR系统中所规定的调整量(T A-31)·16·64/2 μ相比,由于TA调整参数k的加入,使得终端设备在对TA进行调整时,可调整的范围更大,因此可以应用于如图2所示的卫星通信系统中,实现终端设备能够在由终端设备本身和卫星基站共同造成的移动性的情况下,对TA进行调整。并且,本实施例所述的终端设备的TA确定方法,还可以应用在现有的如图1所示的地面通信系统中,终端设备可以仅考虑终端设备本身移动性情况下对TA进行调整。因此,本实施例提供的终端设备的TA确定方法还可以同时应用在地面固定基站以及卫星基站中,具有可移植性。
可选地,在如图7所示实施例的基础上,在S202中,确定TA缩放因子k的一种可能的具体实现方式中,终端设备具体通过终端设备的最大移动速度、接入网设备的移动速度和接入网设备指示终端设备调整TA的频率,确定TA缩放因子k。例如:终端设备可以通过公式2(v 1+v 2)/f TA/c=k·32·16·64·T c/8计算TA缩放因子k;其中,v 1为终端设备的最大移动速度,v 2为接入网设备的移动速度,f TA为接入网设备指示终端设备调整TA的频率,c为光速,光速的典型取值为299792458m/s,T c为基本时间单元。
可选地,所述f TA可以在接入网设备不直接指示的情况下,由终端设备自行根据所接入的接入网设备的卫星类型确定f TA,其中,所述卫星类型可以是卫星基站按照运行高度所划分的低轨类型、中轨类型和高轨类型等,不同轨道运行的卫星具有不同的工作参数,也就需要对应不同的调整TA的频率,因此,终端设备在接入卫星基站后即可根据卫星基站的类型确定当前卫星基站所对应的f TA;或者,终端设备可以根据卫星基站的类型确定卫星基站的工作参数后,进一步根据工作参数确定卫星基站的所对应的f TA。可选地,上述卫星类型和工作参数,以及工作参数与f TA之间的对应关系可以通过表格形式存储在接入网设备和/或终端设备中;或者,接入网设备和/或终端设备中还可以直接存储用于表示卫星类型与f TA之间对应关系的表格。
其中,由于TA缩放因子k的取值可以根据终端设备在每次TA调整时所需要调整的最大TA变化来表示,而当终端设备与接入网设备通信时仰角最大且终端设备与接入 网设备运动方向相反时,终端设备需要调整的TA最大。因此,在上述公式中,需要考虑终端设备的最大运动速度和接入网设备的运动速度之和,此时TA变化速度最大。当接入网设备为雷达基站时,由于雷达基站的运行高度已知,则雷达基站的速度v 2可以通过公式
Figure PCTCN2020086323-appb-000001
计算。其中,万有引力常量G=6.67*10 -11N m/kg;地球重量M=5.965*10 24kg,地球半径R=6371km,雷达基站的运行高度为h。而雷达基站的运行高度h可以通过公式TA(h)=2h/c得到,其中TA(h)为终端设备接收雷达基站所发送的公共延迟中的高度时间提前量。可选地,本实施例中在S203中,终端设备在接入接入网设备后,即可确定其通信时使用的子载波间隔、以及接入网设备指示终端设备调整TA的频率。所述调整TA的频率也就是如图7所示的接入网设备向终端设备发送TA调整参数的频率。
进一步地,在上述实施例基础上,由于终端设备工作在其最大子载波间隔时,接入网设备向终端设备发送的TA调整参数所能指示的TA范围最小,而通过上述公式计算得到的TA缩放因子k基于终端设备工作在其最大子载波间隔,因此终端设备其他子载波间隔都可以满足。但是,当子载波间隔减小时,还是完全使用上述TA缩放因子k,会造成一定程度上TA调整精度的下降,因此,本实施例中,还可以对TA调整参数中不加入TA缩放因子k时不能满足TA调整范围的情况进行判断,例如在判断TA缩放因子处理后的TA调整量是否满足预设条件,并在只有在当2(v 1+v 2)/f TA/c>k·32·16·64·T c/8时,可使用如前述公式TA 2=TA 1+k·(T A-31)·16·64/2 μ对TA进行调整;而当2(v 1+v 2)/f TA/c≤k·32·16·64·T c/8时,使用公式TA 2=TA 1+(T A-31)·16·64/2 μ对TA进行调整。从而使得终端设备的子载波间隔较小时,不会再给TA的调整量加入TA缩放因子,而是直接根据TA的调整量对TA进行调整,以提高终端设备在子载波间隔较小时的TA调整精度。
而S202中确定TA缩放因子k的另一种可能的具体实现方式中,终端设备具体通过接入网设备的移动速度、接入网设备所在的高度,以及接入网设备的高度时间提前量确定TA缩放因子。例如,终端设备可以通过查找第一映射关系的方式,确定与接入网设备的移动速度、接入网设备所在的高度,以及接入网设备的高度时间提前量对应的TA缩放因子;其中,第一映射关系包括至少一个接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
例如,终端设备可以通过表格的方式存储上述第一映射关系,该表格的一种具体的配置方式可参照表1,表1所列出的不同对应关系仅为举例说明,而非对该对应关系进行的限定。其中,在表1中,接入网设备指示终端设备调整TA的频率f TA=5,即每200ms调整一次TA,终端设备的最大运动速度为1000KM/h。因此,可以理解的是,若因调整TA的频率、终端设备的运动速度等其他参数的变化,得到的其他接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系,若仅仅为数值上的变化,也在本申请所保护范围之内。
表1
Figure PCTCN2020086323-appb-000002
Figure PCTCN2020086323-appb-000003
Figure PCTCN2020086323-appb-000004
可选地,在表1所示实施例基础上,为了减少终端设备存储表格时所占用的存储空间,本实施例中还可以将接入网设备所在高度划分为不同等级,每个等级对应一个其中最大的TA缩放因子k,并可以通过向上取整或者以精度0.5的方式进一步对表格中的数据进行处理以减少存储空间。例如,表1.1和表1.2示出了两种可能的对表1的压缩方式:
表1.1
Figure PCTCN2020086323-appb-000005
表1.2
Figure PCTCN2020086323-appb-000006
Figure PCTCN2020086323-appb-000007
由于在如表1所示的第一映射关系中,默认将终端设备使用其最大子载波间隔工作,而为了提高终端设备调整TA精度,可以进一步基于第一映射关系,加入对终端设备不同的子载波间隔对应的TA调整参数k。其中,终端设备可以通过查找第二映射关系的方式,确定与终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在的高度,以及接入网设备的高度时间提前量对应的TA缩放因子;其中,第二映射关系包括至少一个终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系
例如,终端设备可以通过表格的方式存储上述第二映射关系,该表格的一种具体的配置方式可参照表2,表2所列出的不同对应关系仅为举例说明,而非对该对应关系进行的限定。其中,在表2中,接入网设备指示终端设备调整TA的频率f TA=5,即每200ms调整一次TA,终端设备的最大运动速度为1000KM/h。因此,可以理解的是,若因调整TA的频率、终端设备的运动速度等其他参数的变化,得到的子载波间隔、接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系,若仅仅为数值上的变化,也在本申请所保护范围之内。
表2
Figure PCTCN2020086323-appb-000008
Figure PCTCN2020086323-appb-000009
Figure PCTCN2020086323-appb-000010
同样地,在表2所示实施例基础上,为了减少终端设备存储表格时所占用的存储空间,本实施例中还可以将接入网设备所在高度划分为不同等级,每个等级对应一个其中最大的TA缩放因子k,并可以通过向上取整或者以精度0.5的方式进一步对表格中的数据进行处理以减少存储空间。例如,表2.1和表2.2示出了两种可能的对表2的压缩方式:
表2.1
Figure PCTCN2020086323-appb-000011
表2.2
Figure PCTCN2020086323-appb-000012
可选地,在S202中确定TA缩放因子k的第三种可能的具体实现方式中,终端设备可以根据所述终端设备在随机接入过程中使用的随机接入前导码(preamble)的格式(format),确定所述TA缩放因子k。
其中,终端设备在随机接入的过程中,终端设备向接入网设备发送随机接入前导码,以请求与接入网设备建立连接关系。对于接入网设备所覆盖范围的半径不同小区,终端设备在随机接入过程中向接入网设备发送的随机接入前导码的格式不同。例如,半径为5km的小区内的终端设备在随机接入过程中,需要向接入网设备发送格式1的随机接入前导码;而半径为10km的小区内的终端设备在随机接入过程中,需要向接入网设备发送格式2的随机接入前导码。同时,由于半径不同的小区需要调整的TA调整 范围也不同,半径越大的小区TA调整范围越大、半径越小的小区TA调整范围越小。因此,在确定终端设备的TA时,可以将终端设备的TA调整范围即TA缩放因子k,与随机接入前导码的格式建立对应关系,使得终端设备能够根据随机接入过程中使用的随机接入前导码的格式确定对应的TA缩放因子k。
可选地,所述TA缩放因子k与随机接入前导码的格式之间的对应关系也可以通过表格的形式存储在接入网设备和/或终端设备中。则若终端设备中存储有该表格,则终端设备在随机接入过程中,确定其使用的随机接入前导码的格式之后,即可根据随机接入前导码的格式确定对应的TA缩放因子k。而若终端设备中未存储有该表格,则终端设备在随机接入过程中,向接入网设备发送随机接入前导码,接入网设备可根据随机接入前导码的格式确定对应的TA缩放因子k后,向终端设备返回该TA缩放因子k。
具体地,在上述实施例中,由于随机接入过程中,终端设备向接入网设备所发送的随机接入前导码的格式的循环前缀(Cyclic Prefix,CP)长度决定了终端设备可能的TA调整范围。进而决定了在确定TA时是否需要引入额外的TA缩放因子,以及决定了TA缩放因子的具体数值。因此,缩放因子k可以根据所使用的随机接入的格式来确定。
其中,TA缩放因子k可以根据小区或者波束配置的随机接入前导码的格式的最大CP长度决定,从而整个小区或者波束公用TA缩放因子的取值。或者,缩放因子k可以根据每个用户(组)选择的随机接入前导码的格式的CP长度决定,从而不同用户可以使用不同的TA缩放因子k,尽最大可能减少使用缩放因子带来的精度损失。
可选地,在S202中确定TA缩放因子k的第四种可能的实现方式中,终端设备可以根据所接入的接入网设备的不同的卫星类型来确定不同的TA缩放因子k。
其中,所述接入网设备是卫星基站,则所述卫星类型可以是卫星基站按照运行高度所划分的低轨类型、中轨类型和高轨类型等,不同轨道运行的卫星具有不同的工作参数,也就需要设置不同的TA缩放因子。则对于终端设备在接入卫星基站后,即可确定卫星基站的类型,进而根据卫星基站的类型确定卫星基站的运行轨道高度、公共往返延迟等工作参数,最终根据卫星基站的工作参数确定当前卫星基站所对应的TA缩放因子。可选地,上述卫星类型和工作参数,以及工作参数与TA缩放因子之间的对应关系可以通过表格形式存储在接入网设备和/或终端设备中;或者,接入网设备和/或终端设备中还可以直接存储用于表示卫星类型与TA缩放因子之间对应关系的表格。则若终端设备中存储有该表格,则终端设备接入卫星基站后,即可从表格中根据卫星基站的类型直接确定出对应的TA缩放因子。
可选地,在本申请上述各实施例中,终端设备的TA缩放因子k的确定方法可以事先由终端设备和接入网设备共同约定,从而保证终端设备所计算得到的TA足够覆盖TA调整范围即可。
可选地,在本申请另一实施例中,终端设备在S203中在通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ对TA进行调整时,还可以在TA调整量加入偏移参数offset,即通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ+offset对TA进行调整。从而进一步地扩大终端设备对TA的调整范围。而偏移参数可以是固定的值,也可以通过与TA调整参数k有关的函数得到,又或者还可以通过与接入网设备所在高度有 关的函数得到。
进一步地,在上述实施例中所提供的终端设备确定TA的方法,同时考虑终端设备以及接入网设备的移动性。而当接入网设备为卫星基站时,由于卫星基站的运动轨迹相对固定,则当终端设备处于静止状态时,因卫星基站运动所引起的终端设备的TA变化规律也是固定的。因此,若终端设备已知卫星基站的轨道高度以及终端设备所在位置等信息,就可以不需要卫星基站的指示,而是直接由终端设备自己确定需要调整的TA调整量,并对TA进行预补偿。
具体地,图8为本申请提供的终端设备的TA确定方法一实施例的流程示意图,如图8所示的终端设备的TA确定方法,包括:
S301:若终端设备处于静止状态,则确定终端设备的TA变化率,其中,TA变化率用于表示因接入网设备移动造成的,终端设备所在小区内的TA调整量。
其中,在S301一种具体的实现方式中,终端设备可以根据第三映射关系确定所述终端设备的TA变化率;其中,所述第三映射关系包括:至少一个接入网设备的多普勒频移和终端设备的TA变化率之间的对应关系。
例如,终端设备可以根据测量得到的接入网设备的多普勒频移,确定终端设备的TA变化率,其对应关系为D TA=-λFd,其中,D TA为TA的变化率,λ为接入网设备所发送的无线通信信号的波长,Fd为多普勒频移。可参照图9和图10,其中,图9为本申请提供的接入网设备的多普勒频移的示意图,图10为本申请提供的终端设备的TA变化率的示意图。如图9和图10之间的对应关系,可以看出,接入网设备的多普勒频移和终端设备的TA变化率之间呈反比例关系。
S302:终端设备根据TA变化率、第三TA、TA调整参数和子载波间隔参数,确定第四TA;其中,第三TA为终端设备确定第四TA前与接入网设备通信时使用的TA。
具体地,终端设备可以通过公式TA 4=TA 3+△N TA+△N' TA·△t计算第四TA,其中,△N TA=(T A-31)·16·64/2 μ,T A为所述接入网设备所发送的TA调整参数,△N' TA为S301中所确定的TA调整量,△t=t1-t0,其中t0为所述终端设备接收到所述TA调整参数的时间,t1为所述终端设备将要向所述接入网设备发送上行通信数据的时间。
S303:终端设备使用第四TA与接入网设备通信。
最终,终端设备根据通过上述步骤所确定的第四TA与接入网设备进行通信,其中,所述的通信指,终端设备需要提前第四TA的时间向接入网设备发送上行传输数据。可以理解的是,在如图8所示的实施例中,在终端设备确定第四TA之前,提前第三TA的时间向接入网设备发送上行传输数据;而在S302确定第四TA之后,提前第四TA的时间向接入网设备发送上行传输数据。
例如,图11为本申请提供的终端设备确定第四TA的示意图,如图11所示,当终端设备在t0时刻接收到卫星基站所指示的TA调整参数确定TA调整量△TA_1后,在卫星基站指示下一次TA调整参数以确定的TA调整量△TA_2之前,终端设备预计在未来一段时间t0-t1时间内的TA调整量为△TA’,并通过公式TA 4=TA 3+△TA_1+△TA'·(t0-t1)计算出第四TA,并使用第四TA,在t1时刻向卫星基站发送上行通信数据。
可选地,由于终端设备根据多普勒频移自行进行TA预补偿之后,会还存在一定的TA偏差,因此,卫星基站可以根据接收到的终端设备上行信号,估计相应的TA偏差 并再发送至终端设备,以保持终端设备在TA补偿时的准确性。
综上,本实施例提供的终端设备的TA确定方法中,通过终端设备自身可以根据多普勒等参数对TA的调整进行预补偿,从而避免了卫星基站对TA调整的频繁指示,减少了资源的开销。同时,由于卫星基站和终端设备之间的通信延迟较大,使用本实施例进行自身进行预补偿可以减少由于卫星基站指示调整TA时的延迟所引入的TA误差。
需要说明的是,如图8所示的实施例可以单独实现,或者,如图8所示的实施例可以在如图7所示的实施例基础上,当接入网设备通过发送TA调整参数使得终端设备对TA进行调整之后,在下一次接入网设备发送TA调整参数之前,终端设备可以根据如图8所示的方式,在无需接入网设备指示的情况下,自行对TA进行调整。
可选地,在如图8所示的实施例中,S301确定终端设备的TA变化率的另一种可能的实现方式中,终端设备可以根据该终端设备所在的小区与TA变化率之间的对应关系,确定其TA变化率。其中,由于卫星基站运动引起的TA变化率与终端设备所在的地理位置相关,且距离卫星基站正下方越近的终端设备的TA变化率变化越大,而距离卫星基站正下方越远的终端设备的TA变化率越小甚至趋于直线。因此,本实施例中,卫星基站可以根据TA变化率的变化情况,对小区进行划分,并在每个小区内部分别广播相应该小区的TA变化率,使得终端设备接收到卫星基站的广播确定TA变化率。
例如,图12为本申请提供的根据TA变化率划分小区的示意图一,在如图12所示的示例中,为了减小TA的补偿误差,卫星基站O在其覆盖范围内的不同小区具有不同的半径,而距离卫星基站O正下方的小区的半径最小,将其TA变化率记为△TA1’;而距离卫星基站O稍远的小区的TA变化率记为△TA2’;卫星基站O覆盖范围最外侧的小区的半径最大,将其TA变化率记为△TA3’。
并且,在如图12所示的实例中,为了减少接入网设备向终端设备指示TA变化率的信令开销,本实施例中还可以通过接入网设备隐式指示的方式,将TA变化率与小区ID/指示参数绑定,使得终端设备根据所在小区的ID即可确定该小区的TA变化率而不需要接入网设备专门向终端设备发送TA变化率。
表3
Figure PCTCN2020086323-appb-000013
例如,如上表3中示出了终端设备可以通过表格存储的TA变化率与小区ID之间映射关系的方式,其中,不同的小区ID对应不同的TA变化率,终端设备可以根据卫星基站广播的指示参数或者检测到的小区ID进行查表获得具体的TA变化率。由于图12中卫星基站向图中左侧运行时,左侧的TA变化率均为正而右侧的TA变化率均为负,且表3中所存储的TA变化率仅为绝对数值,因此,对于相反符号的TA变化率可以采用相同或不同的指示参数,当指示参数相同时,终端设备可以根据卫星基站的多普勒 频移的估计来判断TA变化率的正负,以减少表3所占用存储空间的大小。例如,当多普勒频移为正时TA为负,多普勒频移为负时TA为正。
可选地,在如图12所示的根据TA变化率划分小区的基础上,若要达到现有5G NR中所要求的TA误差精度,需要在划分小区时,将雷达基站正下方的小区半径设置为10km,但是,该小区半径对于卫星来说太小,且不同的小区半径设计,增加了设计和实现的复杂度。因此,本申请在如图12所示实施例基础上,还提供一种每个小区内不同TA变化率的划分方法,其中,图13为本申请提供的根据TA变化率划分小区的示意图二,如图13所示,卫星基站所划分的小区内,相对位置不同的小区对应一个或者多个TA变化率。而包含多个TA变化率的小区内不同区域所对应的TA变化率不同,因此,卫星基站可以在小区内广播该小区内所有的TA变化率,由不同位置的终端设备可以根据多普勒频移等参数选择所在小区内相应的TA变化率。其中,位于卫星基站正下方的小区的半径最小,该小区中的终端设备可使用的TA变化率包括:△TA11’,△TA12’,△TA13’,-△TA11’,-△TA12’和-△TA13’;位于上述基站正下方的小区外侧的小区半径略大,根据卫星基站不同的运动方向,位于小区内的终端设备分别可使用的TA变化率包括:△TA14’,△TA15’和△TA16’,或者包括:-△TA14’,-△TA15’和-△TA16’;而位于卫星基站最大覆盖范围边界处的小区半径最大,根据卫星基站不同的运动方向,位于小区内的终端设备分别可使用的TA变化率包括:△TA1k’,或者包括:-△TA1k’。因此,本实施例中除了可以使终端设备进行自身进行预补偿可以减少由于卫星基站指示调整TA时的延迟所引入的TA误差,还能在划分卫星基站对应的小区时,无需根据TA变化率对小区的半径进行限制,从而减少了设计和实现的复杂度。
上述实本申请提供的实施例中,从接入网设备和终端设备的角度对本申请提供的方法进行了介绍与说明,而为了实现上述本申请实施例提供的方法中的各功能,接入网设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图14为本申请提供的终端设备一实施例的结构示意图,用于执行上述实施例中终端设备的方法,如图14所示,本实施例提供的终端设备包括:收发模块1401,参数确定模块1402和TA确定模块1403。其中,收发模块1401,用于获取来自接入网设备的TA调整参数;其中,TA调整参数用于指示终端设备的TA调整量;参数确定模块1402,用于确定终端设备的TA缩放因子、终端设备的子载波间隔参数,以及接收到TA调整参数之前终端设备与接入网设备通信时使用的第一TA;其中,TA缩放因子用于对终端设备的TA调整量进行缩放处理;TA确定模块1403,用于根据TA调整参数、TA缩放因子、子载波间隔参数和第一TA,确定第二TA;收发模块1401还用于,使用第二TA与接入网设备通信。
本实施例提供的终端设备可用于执行如图7所示的方法中,终端设备所执行的方法,其实现方式与原理相同,不再赘述。
可选地,TA确定模块1403具体用于通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ计算TA 2;其中,TA 1为第一TA、T A为TA调整参数、k为TA缩放因子,2 μ为子载波间 隔参数,Δf=2 μ·15[kHz],△f为终端设备的子载波间隔。
可选地,参数确定模块1402具体用于,根据终端设备的最大移动速度、接入网设备的移动速度和接入网设备指示终端设备调整TA的频率,确定TA缩放因子。
可选地,参数确定模块1402具体用于,通过公式2(v 1+v 2)/f TA/c=k·32·16·64·T c/8计算TA缩放因子k;其中,v 1为终端设备的最大移动速度,v 2为接入网设备的移动速度,f TA为接入网设备指示终端设备调整TA的频率,c为光速,T c为基本时间单元。
可选地,参数确定模块1402还用于,判断经过TA缩放因子处理后终端设备的TA调整量,是否满足预设条件;若是,则根据TA调整参数、TA缩放因子、子载波间隔参数和第一TA,确定第二TA。
可选地,参数确定模块1402具体用于,根据接入网设备的移动速度、接入网设备所在的高度,以及接入网设备的高度时间提前量,确定TA缩放因子。
可选地,参数确定模块1402具体用于,通过查找第一映射关系,确定与接入网设备的移动速度、接入网设备所在的高度,以及接入网设备的高度时间提前量对应的TA缩放因子;其中,第一映射关系包括至少一个接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
可选地,参数确定模块1402具体用于,通过查找第二映射关系,确定与终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在的高度,以及接入网设备的高度时间提前量对应的TA缩放因子;其中,第二映射关系包括至少一个终端设备的子载波间隔、接入网设备的移动速度、接入网设备所在高度、接入网设备的高度时间提前量和TA缩放因子之间的对应关系。
可选地,参数确定模块1402具体用于,根据终端设备在随机接入接入网设备过程中使用的随机接入前导码的格式,确定TA缩放因子。
可选地,TA确定模块1403还用于,根据TA偏移参数、TA调整参数、TA缩放因子、子载波间隔参数和第一TA,确定第二TA;其中,TA偏移参数用于对终端设备的TA调整量进行偏移处理。
可选地,收发模块1401还用于,接收接入网设备发送的指示信息;指示信息用于指示终端设备所在小区的公共延迟,参数确定模块1402还用于,根据指示信息确定公共延迟。
本实施例提供的终端设备可用于执行如图3所示的方法中,终端设备所执行的方法,其实现方式与原理相同,不再赘述。
可选地,收发模块1401还用于,当终端设备首次接入接入网设备时,获取来自接入网设备的TA初始参数;TA确定模块1403还用于,根据公共延迟、TA初始参数和子载波间隔参数,确定初始TA。
可选地,公共延迟包括:接入网设备的高度时间提前量,和终端设备所在小区的角度时间提前量。
可选地,参数确定模块1402还用于,若终端设备处于静止状态,确定终端设备的TA变化率;其中,TA变化率用于表示接入网设备的移动造成的,终端设备所在小区内的TA调整量;
TA确定模块1403还用于,根据TA变化率、第三TA、TA调整参数和子载波间隔参 数,确定第四TA;其中,第三TA为终端设备确定第四TA前与接入网设备通信时使用的TA;收发模块1401还用于,使用第四TA与接入网设备通信。
可选地,TA确定模块1403还用于,通过公式TA 4=TA 3+△N TA+△N' TA·△t计算第四TA,其中,△N TA=(T A-31)·16·64/2 μ,T A为接入网设备所发送的TA调整参数,△N' TA为TA调整量,△t=t1-t0,t0为终端设备接收到TA调整参数的时间,t1为终端设备将要向接入网设备发送上行通信数据的时间。
可选地,参数确定模块1402还用于,根据第三映射关系确定终端设备的TA变化率;其中,第三映射关系包括:至少一个接入网设备的多普勒频移和终端设备的TA变化率之间的对应关系。
本实施例提供的终端设备可用于执行前述实施例所述的方法中,终端设备所执行的方法,其实现方式与原理相同,不再赘述。
图15为本申请提供的接入网设备一实施例的结构示意图,用于执行上述实施例中接入网设备的方法,如图15所示,本实施例提供的接入网设备包括:收发模块1501和确定模块1502。其中,确定模块1502用于确定终端设备的TA调整参数;其中,TA调整参数用于指示终端设备的TA调整量;收发模块1501用于向终端设备发送TA调整参数,以使终端设备根据TA调整参数、TA缩放因子、子载波间隔参数和第一TA,确定第二TA;其中,TA缩放因子用于对终端设备的TA调整量进行缩放处理,第一TA为终端设备接收到TA调整参数之前终端设备与接入网设备通信时使用的TA。
本实施例提供的接入网设备可用于执行如图7所示的方法中,接入网设备所执行的方法,其实现方式与原理相同,不再赘述。
可选地,收发模块1501还用于,向终端设备发送指示信息,指示信息用于指示终端设备所在小区的公共延迟。可选地,公共延迟包括:接入网设备的高度时间提前量,和终端设备所在小区的角度时间提前量。
可选地,收发模块1501具体用于,在终端设备所在的小区广播公共延迟;或者,在接入网设备的覆盖区域广播高度时间提前量,并在终端设备所在的小区广播角度时间提前量。
本实施例提供的接入网设备可用于执行前述实施例所述的方法中,接入网设备所执行的方法,其实现方式与原理相同,不再赘述。
本申请上述实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
图16为本申请提供的通信装置一实施例的结构示意图,如图16所示的通信装置,可用于作为本申请前述任一实施例中的终端设备、或者任一实施例中的接入网设备,实现上述终端设备的TA确定方法,该通信装置1000包括:通信接口1010、处理器1020和存储器1030。其中,通信接口1010可以是收发器、电路、总线或者其他形式的接口,用于通过传输介质和其他设备通信。通信接口1010、处理器1020和存储器1030之间耦合,本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接, 可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。
本申请实施例中不限定上述通信接口1010、处理器1020以及存储器1030之间的具体连接介质。本申请实施例在图16中以通信接口1010、存储器1030以及处理器1020之间通过总线1040连接,总线在图16中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图16中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在一种可能的实现方式中,若如图16所示的通信装置为终端设备,则终端设备可用于实现本申请前述各实施例中终端设备所执行的方法。
示例性地,通信接口1010用于获取来自接入网设备的TA调整参数,并将TA调整参数发送给处理器;其中,TA调整参数用于指示终端设备的TA调整量;存储器1030中存储有指令,处理器1020调用并执行指令时,使得处理器1020在接收到TA调整参数后,确定终端设备的TA缩放因子、终端设备的子载波间隔参数,以及接收到TA调整参数之前终端设备与接入网设备通信时使用的第一TA;处理器1020还根据TA调整参数、TA缩放因子、子载波间隔参数和第一TA,确定第二TA;通信端口1010还使用第二TA与接入网设备通信。或者,示例性地,通信接口1010还用于,接收接入网设备发送的指示信息,并将指示信息发送至处理器;指示信息用于指示终端设备所在小区的公共延迟;处理器1020还用于,当接收到指示信息,根据指示信息确定公共延迟;通信接口1010还用于,当终端设备首次接入接入网设备时,获取来自接入网设备的TA初始参数,并将TA初始参数发送至处理器;处理器1020还用于,当接收到TA初始参数,根据公共延迟、TA初始参数和子载波间隔参数,确定初始TA。
上述示例的具体实现,可参见前述方法对应的示例中的详细描述,此处不做赘述。
在另一种可能的实现方式中,若如图16所示的通信装置为接入网设备,则接入网设备可用于实现本申请前述各实施例中接入网设备所执行的方法。
示例性地,处理器1020调用并执行存储器1030中存储的指令时,使得处理器1020确定终端设备的TA调整参数,并将TA调整参数发送至通信接口1010;通信接口1010当接收到TA调整参数,向终端设备发送TA调整参数。或者,示例性地,通信接1010口还用于,向终端设备发送指示信息,指示信息用于指示终端设备所在小区的公共延迟。
上述示例的具体实现,可参见前述方法对应的示例中的详细描述,此处不做赘述。
在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用 于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请各实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (20)

  1. 一种终端设备的TA确定方法,其特征在于,包括:
    获取来自接入网设备的TA调整参数;其中,所述TA调整参数用于指示所述终端设备的TA调整量;
    确定所述终端设备的TA缩放因子、所述终端设备的子载波间隔参数,以及接收到所述TA调整参数之前所述终端设备与所述接入网设备通信时使用的第一TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理;
    根据所述TA调整参数、所述TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述TA调整参数、TA缩放因子、所述子载波间隔参数和所述第一TA,确定第二TA,包括:
    通过公式TA 2=TA 1+k·(T A-31)·16·64/2 μ计算TA 2
    其中,TA 1为第一TA、T A为TA调整参数、k为TA缩放因子,2 μ为子载波间隔参数,Δf=2 μ·15[kHz],△f为所述终端设备的子载波间隔。
  3. 根据权利要求1或2所述的方法,其特征在于,所述确定TA缩放因子,包括:
    根据所述终端设备的最大移动速度、所述接入网设备的移动速度和所述接入网设备指示所述终端设备调整TA的频率,确定所述TA缩放因子。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述终端设备的最大移动速度、所述接入网设备的移动速度和所述接入网设备指示所述终端设备调整TA的频率,确定所述TA缩放因子,包括:
    通过公式2(v 1+v 2)/f TA/c=k·32·16·64·T c/8计算所述TA缩放因子k;
    其中,v 1为所述终端设备的最大移动速度,v 2为所述接入网设备的移动速度,f TA为接入网设备指示所述终端设备调整TA的频率,c为光速,T c为基本时间单元。
  5. 根据权利要求1或2所述的方法,其特征在于,所述确定TA缩放因子,包括:
    根据所述接入网设备的移动速度、所述接入网设备所在的高度,以及所述接入网设备的高度时间提前量,确定所述TA缩放因子。
  6. 根据权利要求1或2所述的方法,其特征在于,所述确定TA缩放因子,包括:
    根据所述终端设备在随机接入所述接入网设备过程中使用的随机接入前导码的格式,确定所述TA缩放因子。
  7. 根据权利要求1或2所述的方法,其特征在于,所述确定TA缩放因子,包括:
    根据所述接入网设备的属性信息,确定所述TA缩放因子。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述获取来自接入网设备的TA调整参数之前,还包括:
    接收所述接入网设备发送的指示信息;所述指示信息用于指示所述终端设备所在小区的公共延迟;
    根据所述指示信息确定所述公共延迟。
  9. 根据权利要求8所述的方法,其特征在于,所述获取来自接入网设备的TA调整参数之前,还包括:
    当所述终端设备首次接入所述接入网设备时,获取来自所述接入网设备的TA初始 参数;
    根据所述公共延迟、所述TA初始参数和所述子载波间隔参数,确定初始TA。
  10. 根据权利要求8或9所述的方法,其特征在于,
    所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
  11. 根据权利要求1-10任一项所述的方法,其特征在于,还包括:
    若所述终端设备处于静止状态,确定所述终端设备的TA变化率;其中,所述TA变化率用于表示所述接入网设备的移动造成的,所述终端设备所在小区内的TA调整量;
    根据所述TA变化率、第三TA、所述TA调整参数和所述子载波间隔参数,确定第四TA;其中,所述第三TA为所述终端设备确定所述第四TA前与所述接入网设备通信时使用的TA。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述TA变化率、所述第三TA、所述TA调整参数和所述子载波间隔参数,确定第四TA,包括:
    通过公式TA 4=TA 3+△N TA+△N' TA·△t计算第四TA,其中,△N TA=(T A-31)·16·64/2 μ,T A为所述接入网设备所发送的TA调整参数,△N' TA为所述TA调整量,△t=t1-t0,t0为所述终端设备接收到所述TA调整参数的时间,t1为所述终端设备将要向所述接入网设备发送上行通信数据的时间。
  13. 根据权利要求11或12所述的方法,其特征在于,所述确定所述终端设备的TA变化率,包括:
    根据第三映射关系确定所述终端设备的TA变化率;其中,所述第三映射关系包括:至少一个所述接入网设备的多普勒频移和所述终端设备的TA变化率之间的对应关系。
  14. 一种终端设备的TA确定方法,其特征在于,包括:
    确定终端设备的TA调整参数;其中,所述TA调整参数用于指示所述终端设备的TA调整量;
    向所述终端设备发送所述TA调整参数,以使所述终端设备根据所述TA调整参数、TA缩放因子、子载波间隔参数和第一TA,确定第二TA;其中,所述TA缩放因子用于对所述终端设备的TA调整量进行缩放处理,所述第一TA为所述终端设备接收到所述TA调整参数之前所述终端设备与接入网设备通信时使用的TA。
  15. 根据权利要求14所述的方法,其特征在于,还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示所述终端设备所在小区的公共延迟。
  16. 根据权利要求15所述的方法,其特征在于,
    所述公共延迟包括:所述接入网设备的高度时间提前量,和所述终端设备所在小区的角度时间提前量。
  17. 根据权利要求16所述的方法,其特征在于,向所述终端设备发送指示信息,包括:
    在所述终端设备所在的小区广播所述公共延迟;
    或者,
    在所述接入网设备的覆盖区域广播所述高度时间提前量,并在所述终端设备所在 的小区广播所述角度时间提前量。
  18. 一种终端设备的TA确定装置,其特征在于,用于执行如权利要求1-17任一项所述的方法。
  19. 一种通信装置,其特征在于,包括:处理器和存储器;所述存储器中存储有指令,所述处理器调用并执行所述指令时,使所述装置执行如权利要求1-17任一项所述的方法。
  20. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得所述计算机执行如权利要求1-17任一项所述的方法。
PCT/CN2020/086323 2019-04-29 2020-04-23 终端设备的ta确定方法及装置 WO2020221088A2 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20799167.0A EP3952491A4 (en) 2019-04-29 2020-04-23 METHOD AND DEVICE FOR TA DETERMINATION OF A TERMINAL DEVICE
AU2020266926A AU2020266926B2 (en) 2019-04-29 2020-04-23 Ta determining method and apparatus for terminal device
BR112021021709A BR112021021709A2 (pt) 2019-04-29 2020-04-23 Método e dispositivos de determinação de avanço de tempo (ta) para dispositivo terminal
CA3135510A CA3135510A1 (en) 2019-04-29 2020-04-23 Ta determining method and apparatus for terminal device
US17/513,546 US11985697B2 (en) 2019-04-29 2021-10-28 Timing advance (TA) determining method and apparatus for terminal device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356653.6 2019-04-29
CN201910356653.6A CN111867039B (zh) 2019-04-29 2019-04-29 终端设备的ta确定方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/513,546 Continuation US11985697B2 (en) 2019-04-29 2021-10-28 Timing advance (TA) determining method and apparatus for terminal device

Publications (2)

Publication Number Publication Date
WO2020221088A2 true WO2020221088A2 (zh) 2020-11-05
WO2020221088A3 WO2020221088A3 (zh) 2021-01-21

Family

ID=72966457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086323 WO2020221088A2 (zh) 2019-04-29 2020-04-23 终端设备的ta确定方法及装置

Country Status (7)

Country Link
US (1) US11985697B2 (zh)
EP (1) EP3952491A4 (zh)
CN (2) CN114364009A (zh)
AU (1) AU2020266926B2 (zh)
BR (1) BR112021021709A2 (zh)
CA (1) CA3135510A1 (zh)
WO (1) WO2020221088A2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364009A (zh) * 2019-04-29 2022-04-15 华为技术有限公司 终端设备的ta确定方法及装置
US11889450B2 (en) * 2020-05-06 2024-01-30 Qualcomm Incorporated Techniques for compensating timing advance for full duplex communication
KR20230035599A (ko) * 2020-08-06 2023-03-14 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
US20240073840A1 (en) * 2020-12-31 2024-02-29 Beijing Xiaomi Mobile Software Co., Ltd. Method and device for determining uplink timing advance, and method and device for broadcasting common timing-related information
WO2022151093A1 (zh) * 2021-01-13 2022-07-21 北京小米移动软件有限公司 定时调整方法及装置、存储介质
CN114245454B (zh) * 2021-12-30 2022-08-09 上海星思半导体有限责任公司 数据发送装置、时间调整量的确定方法及装置、电子设备
CN115066011B (zh) * 2022-08-18 2022-11-22 广州世炬网络科技有限公司 小区管理终端的方法及系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101505214A (zh) * 2009-03-10 2009-08-12 华为技术有限公司 时间同步的方法、装置和系统
US8634313B2 (en) 2009-06-19 2014-01-21 Qualcomm Incorporated Method and apparatus that facilitates a timing alignment in a multicarrier system
CN102647783B (zh) * 2012-04-19 2015-02-18 北京创毅讯联科技股份有限公司 一种上行时间提前量的控制方法及基站、终端
CN108243391B (zh) * 2016-12-23 2020-06-12 展讯通信(上海)有限公司 卫星通信中的小区搜索、小区接入方法及装置
US11032816B2 (en) * 2017-08-10 2021-06-08 Qualcomm Incorporated Techniques and apparatuses for variable timing adjustment granularity
CN110999427B (zh) * 2017-08-11 2022-07-22 Lg电子株式会社 在无线通信系统中调整上行链路定时的方法及其装置
EP3447936A1 (en) * 2017-08-22 2019-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
KR102524905B1 (ko) * 2017-09-11 2023-04-21 노키아 테크놀로지스 오와이 다수의 뉴머럴러지를 가진 업 링크 타이밍 조정
CN108012329B (zh) * 2017-09-27 2023-11-10 华为技术有限公司 一种寻呼的方法、通信定时的方法和装置
WO2020093000A1 (en) * 2018-11-02 2020-05-07 Intel Corporation Time synchronization accuracy enhancements
US20220039045A1 (en) * 2019-02-14 2022-02-03 Samsung Electronics Co., Ltd. Time synchronization method, ue, base station, device and computer readable storage medium
CN111565472B (zh) * 2019-02-14 2022-05-20 大唐移动通信设备有限公司 一种确定定时提前量的方法及设备
CN111757510A (zh) * 2019-03-26 2020-10-09 夏普株式会社 由用户设备执行的方法以及用户设备
CN114364009A (zh) * 2019-04-29 2022-04-15 华为技术有限公司 终端设备的ta确定方法及装置

Also Published As

Publication number Publication date
CN111867039A (zh) 2020-10-30
EP3952491A4 (en) 2022-05-18
WO2020221088A3 (zh) 2021-01-21
CN114364009A (zh) 2022-04-15
AU2020266926A1 (en) 2021-12-02
US11985697B2 (en) 2024-05-14
BR112021021709A2 (pt) 2022-04-19
AU2020266926B2 (en) 2023-04-13
CA3135510A1 (en) 2020-11-05
EP3952491A2 (en) 2022-02-09
CN111867039B (zh) 2021-12-10
US20220053555A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020221088A2 (zh) 终端设备的ta确定方法及装置
US11968640B2 (en) Timing advance update method, terminal, and base station
CN111800851B (zh) 一种时延补偿方法及装置
EP3955476A1 (en) Time delay compensation method and apparatus and time delay control method and apparatus
RU2676532C9 (ru) Устройство управления связью и устройство беспроводной связи
EP2747497B1 (en) Positioning method, device and system in multi-carrier system
CN111800852B (zh) 一种时延补偿及其控制方法及装置
EP2997393B1 (en) Access point-assisted positioning framework
CN111565083A (zh) 时间同步的方法、ue、基站、设备及计算机可读存储介质
US20220407639A1 (en) Information communication method and device
EP3755065B1 (en) Cell search method and communication apparatus
WO2022016990A1 (zh) 一种卫星系统配置信息的指示方法及设备
CN111163513A (zh) 基站间同步误差测量、上报、计算方法及网络节点
WO2019076214A1 (zh) 一种基站同步方法和装置
CN101594179A (zh) 一种频偏补偿的方法、装置及系统
RU2798043C2 (ru) Способ и аппаратура определения та для оконечного устройства
CN103843383A (zh) 远距离覆盖方法及基站
US20230076690A1 (en) Random access channel (prach) signal transmission method and device
JP2024514296A (ja) 無線システムにおける支援型測位のための方法及びデバイス
CN114503703A (zh) 基于前导码的定位方法和设备
CN116939873B (zh) 随机接入方法、定时调整方法、基站和设备
WO2023221931A1 (zh) 用于定位的方法和装置
WO2023071591A1 (zh) 一种定时提前ta确定方法及通信装置
CN117119576A (zh) 针对时间提前量ta的处理方法及装置
WO2022078920A1 (en) Methods and systems for propagation delay compensation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3135510

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021021709

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020799167

Country of ref document: EP

Effective date: 20211104

ENP Entry into the national phase

Ref document number: 2020266926

Country of ref document: AU

Date of ref document: 20200423

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20799167

Country of ref document: EP

Kind code of ref document: A2

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112021021709

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE CN 201910356653.6 DE 29/04/2019 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA CONFORME O ART. 15 DA PORTARIA 39/2021. O DOCUMENTO APRESENTADO NAO ESTA TRADUZIDO.

ENP Entry into the national phase

Ref document number: 112021021709

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211028