WO2019076214A1 - 一种基站同步方法和装置 - Google Patents

一种基站同步方法和装置 Download PDF

Info

Publication number
WO2019076214A1
WO2019076214A1 PCT/CN2018/109549 CN2018109549W WO2019076214A1 WO 2019076214 A1 WO2019076214 A1 WO 2019076214A1 CN 2018109549 W CN2018109549 W CN 2018109549W WO 2019076214 A1 WO2019076214 A1 WO 2019076214A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
time difference
system time
server
synchronization
Prior art date
Application number
PCT/CN2018/109549
Other languages
English (en)
French (fr)
Inventor
陶震
Original Assignee
阿里巴巴集团控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里巴巴集团控股有限公司 filed Critical 阿里巴巴集团控股有限公司
Publication of WO2019076214A1 publication Critical patent/WO2019076214A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0658Clock or time synchronisation among packet nodes
    • H04J3/0661Clock or time synchronisation among packet nodes using timestamps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/003Arrangements to increase tolerance to errors in transmission or reception timing

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a base station synchronization method and a base station synchronization apparatus.
  • LoRa is a kind of ultra-long-distance transmission scheme based on spread spectrum technology in the Internet of Things, which has the characteristics of long transmission distance, low power consumption, multi-node and low cost.
  • a LoRa network usually includes a terminal, a base station, and a server.
  • the base station For the terminal in the Class B mode, the base station periodically broadcasts the beacon radio frame beacon frame periodically, and the terminal uses the beacon radio frame to calibrate its own time, and calculates the time slot for receiving the downlink message by using this time.
  • the time error of the base station may accumulate over time, resulting in the system time of each base station not being synchronized.
  • the synchronization of the downlink beacon radio frame transmission of each base station cannot be guaranteed.
  • the base station In order to ensure that the system time of each base station is kept synchronized, in the prior art, the base station needs to additionally set a Global Positioning System (GPS), and realize the base stations by using the time of the ball positioning system as the system time of the base station. Time synchronization.
  • GPS Global Positioning System
  • the base station needs to configure an additional global positioning system, which will increase the cost of data transmission; and the global positioning system signal is also vulnerable to the environment, such as being blocked by buildings or trees, weather interference, etc., thereby affecting the base stations.
  • embodiments of the present application have been made in order to provide a base station synchronization method and a corresponding base station synchronization apparatus that overcome the above problems or at least partially solve the above problems.
  • a base station synchronization method including:
  • the server determines the first base station
  • the server Receiving, by the server, a synchronization response frame sent by the second base station; the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; and the synchronization response frame includes the first base station sending the synchronization a sending timestamp of the request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the server calculates a first system time difference between the first base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame, and calculates a second system time difference between the second base station and the reference time;
  • the server Transmitting, by the server, the first system time difference to a corresponding first base station, and sending the second system time difference to a corresponding second base station;
  • the first base station is configured to perform, according to the corresponding first system time difference Time adjustment;
  • the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the server calculates a first system time difference between the first base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame, and a second system for calculating the second base station and the reference time.
  • the steps of the time difference include:
  • the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and the reference The second system time difference of time.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a system time of the first base station as a reference time
  • the server uses the system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a system time of the second base station as a reference time
  • the server sets a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a time of the clock reference device as a reference time
  • the server calculates a first system time difference between the first base station and the reference time
  • the server calculates a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a time of the clock reference device as a reference time
  • the server calculates a second system time difference between the second base station and the reference time
  • the server calculates a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the method further includes:
  • the server sends a start command to the first base station; the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the step of determining, by the server, the first base station comprises:
  • the server determines the entire network base station as the first base station.
  • the step of determining, by the server, the first base station further includes:
  • the server selects a part of base stations from the entire network base station as the first base station.
  • the step of determining, by the server, the first base station further includes:
  • the server determines the second base station in the last time synchronization process as the third base station;
  • the base station that receives the synchronization request frame sent by the third base station in the initial synchronization process is determined as the first base station.
  • the embodiment of the present application further discloses a base station synchronization method, including:
  • the server determines the first base station
  • the server Receiving, by the server, a synchronization response frame sent by the second base station; the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station;
  • the server determines a first system time difference between a system time of the first base station and a reference time, and determines a second system time difference between a system time of the second base station and the reference time;
  • the server Transmitting, by the server, the first system time difference to a corresponding first base station, and sending the second system time difference to a corresponding second base station;
  • the first base station is configured to perform, according to the corresponding first system time difference Time adjustment;
  • the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the synchronization response frame includes a sending timestamp of the first base station transmitting the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame; the server adopting the synchronization response a frame, a first system time difference determining a system time of the first base station and a reference time, and a second system time difference determining a system time of the second base station and a reference time, including:
  • the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and the reference The second system time difference of time.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a system time of the first base station as a reference time
  • the server uses the system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a system time of the second base station as a reference time
  • the server sets a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a time of the clock reference device as a reference time
  • the server calculates a first system time difference between the first base station and the reference time
  • the server calculates a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station and
  • the step of the second system time difference of the reference time includes:
  • the server selects a time of the clock reference device as a reference time
  • the server calculates a second system time difference between the second base station and the reference time
  • the server calculates a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the method further includes:
  • the server sends a start command to the first base station; the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the step of determining, by the server, the first base station comprises:
  • the server determines the entire network base station as the first base station.
  • the step of determining, by the server, the first base station further includes:
  • the server selects a part of base stations from the entire network base station as the first base station.
  • the step of determining, by the server, the first base station further includes:
  • the server determines the second base station in the last time synchronization process as the third base station;
  • the base station that receives the synchronization request frame sent by the third base station in the initial synchronization process is determined as the first base station.
  • the embodiment of the present application further discloses a base station synchronization method, including:
  • the server determines the first base station
  • the server Receiving, by the server, a synchronization response frame sent by the second base station; the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; and the synchronization response frame includes the first base station sending the synchronization a sending timestamp of the request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the server calculates a first system time difference between the first base station and the reference time according to the sending timestamp and the receiving timestamp of the synchronization request frame;
  • the server sends the first system time difference to a corresponding first base station; the first base station is configured to perform time adjustment according to the corresponding first system time difference.
  • the step of calculating, by the server, the first system time difference between the first base station and the reference time according to the sending timestamp and the receiving timestamp of the synchronization request frame comprises:
  • the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the step of calculating, by the server, the first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station includes:
  • the server selects a system time of the second base station as a reference time
  • the server sets a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the embodiment of the present application further discloses a base station synchronization method, including:
  • the server determines the first base station
  • the server Receiving, by the server, a synchronization response frame sent by the second base station; the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; and the synchronization response frame includes the first base station sending the synchronization a sending timestamp of the request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the server calculates a second system time difference between the second base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame;
  • the server sends the second system time difference to a corresponding second base station; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the step of calculating, by the server, the second system time difference between the second base station and the reference time according to the sending timestamp and the receiving timestamp of the synchronization request frame comprises:
  • the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • the server calculates a second system time difference between the second base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the step of calculating, by the server, the second system time difference between the second base station and the reference time according to the reference time and the system time difference between the first base station and the second base station comprises:
  • the server selects a system time of the first base station as a reference time
  • the server uses the system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the embodiment of the present application further discloses a base station synchronization method, including:
  • the first base station sends a synchronization request frame to the second base station;
  • the second base station is configured to send a synchronization response frame to the server according to the synchronization request frame;
  • the server is configured to determine, according to the synchronization response frame, the first The system time of a base station is different from the first system time of the reference time;
  • the first base station uses the first system time difference to perform time adjustment.
  • the step of the first base station sending a synchronization request frame to the second base station includes:
  • the first base station receives a startup command sent by the server
  • the first base station sends a synchronization request frame to the second base station according to the startup instruction.
  • the first base station adopts the first system time difference
  • the step of performing time adjustment includes:
  • the first base station adopts the first system time difference, adjusts a local system time, or adjusts a time for transmitting a beacon radio frame beacon.
  • the embodiment of the present application further discloses a base station synchronization method, including:
  • the second base station sends a synchronization response frame to the server according to the synchronization request frame;
  • the server is configured to determine, according to the synchronization response frame, a second system time difference between the system time of the second base station and the reference time;
  • the second base station uses the second system time difference to perform time adjustment.
  • the second base station adopts the second system time difference
  • the step of performing time adjustment processing includes:
  • the second base station uses the second system time difference to adjust the local system time, or adjust the time of transmitting the beacon radio frame beacon.
  • the embodiment of the present application further discloses a base station synchronization apparatus, including:
  • a first base station determining module located at the server, configured to determine the first base station
  • the synchronization response frame receiving module is configured to receive a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; Transmitting, by the first base station, a sending timestamp of the synchronization request frame, and receiving, by the second base station, a receiving timestamp of the synchronization request frame;
  • a system time difference calculation module of the server configured to calculate a first system time difference of the first base station and a reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame, and calculate the second base station and the Second system time difference of the reference time;
  • a system time difference sending module of the server configured to send the first system time difference to a corresponding first base station, and send the second system time difference to a corresponding second base station;
  • the corresponding first system time difference is time adjusted;
  • the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the system time difference calculation module comprises:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculate the second The base station is out of sync with the second system of the reference time.
  • the reference time difference determining submodule comprises:
  • a first reference time selecting unit configured to select a system time of the first base station as a reference time
  • the first reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the reference time difference determining submodule comprises:
  • a second reference time selecting unit configured to select a system time of the second base station as a reference time
  • a second reference time difference determining unit configured to use a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the reference time difference determining submodule comprises:
  • a third reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a third reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time
  • a fourth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the reference time difference determining submodule comprises:
  • a fourth reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a fifth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time
  • a sixth reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the method further includes:
  • the startup command sending module of the server is configured to send a start command to the first base station, and the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the first base station determining module includes:
  • the first determining submodule is configured to, in the initial time synchronization process, determine, by the server, the entire network base station as the first base station.
  • the first base station determining module further includes:
  • a second determining submodule configured to select, in the second time synchronization process, a part of the base stations from the entire network base station as the first base station.
  • the first base station determining module further includes:
  • a third base station determining submodule configured to determine, in the time synchronization process after the second time synchronization process, the second base station in the last time synchronization process as the third base station;
  • a third determining submodule configured to determine, in the initial synchronization process, the base station that receives the synchronization request frame sent by the third base station, as the first base station.
  • the embodiment of the present application further discloses a base station synchronization apparatus, including:
  • a first base station determining module located at the server, configured to determine the first base station
  • a synchronization response frame receiving module of the server configured to receive a synchronization response frame sent by the second base station; the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station;
  • a system time difference calculation module located at the server, configured to determine, by using the synchronization response frame, a first system time difference between a system time of the first base station and a reference time, and determining a system time of the second base station and the Second system time difference of the reference time;
  • a system time difference sending module of the server configured to send the first system time difference to a corresponding first base station, and send the second system time difference to a corresponding second base station;
  • the corresponding first system time difference is time adjusted;
  • the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the synchronization response frame includes a sending timestamp of the first base station transmitting the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame.
  • the system time difference calculation module includes:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculate the second The base station is out of sync with the second system of the reference time.
  • the reference time difference determining submodule comprises:
  • a first reference time selecting unit configured to select a system time of the first base station as a reference time
  • the first reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the reference time difference determining submodule comprises:
  • a second reference time selecting unit configured to select a system time of the second base station as a reference time
  • a second reference time difference determining unit configured to use a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the reference time difference determining submodule comprises:
  • a third reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a third reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time
  • a fourth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the reference time difference determining submodule comprises:
  • a fourth reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a fifth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time
  • a sixth reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the method further includes:
  • the startup command sending module of the server is configured to send a start command to the first base station, and the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the first base station determining module includes:
  • the first determining submodule is configured to determine, in the initial time synchronization process, the entire network base station as the first base station.
  • the first base station determining module further includes:
  • a second determining submodule configured to select, in the second time synchronization process, a part of the base stations from the entire network base station as the first base station.
  • the first base station determining module further includes:
  • a third base station determining submodule configured to determine, in the time synchronization process after the second time synchronization process, the second base station in the last time synchronization process as the third base station;
  • a third determining submodule configured to determine, in the initial synchronization process, the base station that receives the synchronization request frame sent by the third base station, as the first base station.
  • the embodiment of the present application further discloses a base station synchronization apparatus, including:
  • a first base station determining module located at the server, configured to determine the first base station
  • the synchronization response frame receiving module is configured to receive a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; Transmitting, by the first base station, a sending timestamp of the synchronization request frame, and receiving, by the second base station, a receiving timestamp of the synchronization request frame;
  • a system time difference calculation module of the server configured to calculate a first system time difference between the first base station and a reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame;
  • a system time difference sending module of the server configured to send the first system time difference to a corresponding first base station; and the first base station is configured to perform time adjustment according to the corresponding first system time difference.
  • the system time difference calculation module comprises:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the reference time difference determining submodule comprises:
  • a reference time selecting unit configured to select a system time of the second base station as a reference time
  • the reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the embodiment of the present application further discloses a base station synchronization apparatus, including:
  • a first base station determining module located at the server, configured to determine the first base station
  • the synchronization response frame receiving module is configured to receive a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; Transmitting, by the first base station, a sending timestamp of the synchronization request frame, and receiving, by the second base station, a receiving timestamp of the synchronization request frame;
  • a system time difference calculation module of the server configured to calculate a second system time difference between the second base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame;
  • a system time difference sending module located at the server, configured to send the second system time difference to a corresponding second base station; and the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the system time difference calculation module comprises:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a second system time difference between the second base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the reference time difference determining submodule comprises:
  • a reference time selecting unit configured to select a system time of the first base station as a reference time
  • the reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the embodiment of the present application further discloses a base station synchronization apparatus, including:
  • a synchronization request frame sending module of the first base station configured to send a synchronization request frame to the second base station;
  • the second base station is configured to send a synchronization response frame to the server according to the synchronization request frame; Determining, by the synchronization response frame, a first system time difference between a system time of the first base station and a reference time;
  • a system time difference receiving module located at the first base station, configured to receive the first system time difference sent by the server;
  • a first time adjustment module located at the first base station is configured to perform time adjustment by using the first system time difference.
  • the synchronization request frame sending module includes:
  • the startup instruction receiving submodule is configured to receive a startup instruction sent by the server
  • a synchronization request frame sending submodule configured to send a synchronization request frame to the second base station according to the startup instruction.
  • the first time adjustment module includes:
  • the first time adjustment submodule is configured to adopt the first system time difference, adjust a local system time, or adjust a time for transmitting a beacon radio frame beacon.
  • the embodiment of the present application further discloses a base station synchronization apparatus, including:
  • a synchronization request frame receiving module of the second base station configured to receive a synchronization request frame sent by the first base station
  • a synchronization response frame sending module of the second base station configured to send a synchronization response frame to the server according to the synchronization request frame; and the server is configured to determine, according to the synchronization response frame, a system time of the second base station Second system time difference of the reference time;
  • a second system time difference receiving module located at the second base station, configured to receive the second system time difference sent by the server;
  • a second time adjustment module located at the second base station is configured to perform time adjustment by using the second system time difference.
  • the second time adjustment module comprises:
  • the second time adjustment submodule is configured to adjust the local system time by using the second system time difference, or adjust the time for transmitting the beacon radio frame beacon.
  • the embodiment of the present application also discloses an apparatus, including:
  • One or more processors are One or more processors.
  • One or more machine-readable media having instructions stored thereon, when executed by the one or more processors, cause the apparatus to perform one or more of the methods described above.
  • Embodiments of the present application also disclose one or more machine-readable media having stored thereon instructions that, when executed by one or more processors, cause the apparatus to perform one or more of the methods described above.
  • each base station in the entire network can synchronize with the reference time according to the corresponding system time difference.
  • the synchronization method of the embodiment of the present application does not depend on the timing of the global positioning system. Therefore, the problem that the data transmission cost of the global positioning system may be increased by each base station is avoided, and the positioning signal cannot be accurately received by each base station.
  • the problem that is difficult to reliably transmit data that is, reduces the data transmission cost and improves the reliability of data transmission.
  • Each base station can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each base station. Or each base station can adjust the time of transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacon between the base stations.
  • Embodiment 1 is a flow chart showing the steps of Embodiment 1 of a base station synchronization method according to the present application;
  • Embodiment 2 is a flow chart showing the steps of Embodiment 2 of a base station synchronization method according to the present application;
  • FIG. 3 is a schematic diagram of initial time synchronization processing in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of time synchronization processing after initial time synchronization processing in the embodiment of the present application.
  • Embodiment 3 of a base station synchronization method according to the present application.
  • FIG. 6 is a flow chart showing the steps of Embodiment 4 of a base station synchronization method according to the present application.
  • Embodiment 7 is a flow chart showing the steps of Embodiment 5 of a base station synchronization method according to the present application.
  • Embodiment 8 is a flow chart showing the steps of Embodiment 6 of a base station synchronization method according to the present application.
  • Embodiment 9 is a flow chart showing the steps of Embodiment 7 of a base station synchronization method according to the present application.
  • Embodiment 8 of a base station synchronization method according to the present application.
  • Embodiment 11 is a structural block diagram of Embodiment 1 of a base station synchronization apparatus according to the present application;
  • FIG. 12 is a structural block diagram of Embodiment 2 of a base station synchronization apparatus according to the present application.
  • FIG. 13 is a structural block diagram of Embodiment 3 of a base station synchronization apparatus according to the present application.
  • FIG. 14 is a structural block diagram of Embodiment 4 of a base station synchronization apparatus according to the present application.
  • Embodiment 15 is a structural block diagram of Embodiment 5 of a base station synchronization apparatus according to the present application.
  • FIG. 16 is a structural block diagram of Embodiment 6 of a base station synchronization apparatus according to the present application.
  • a LoRa network consists of a terminal node, a base station node, and a server.
  • the terminal has a LoRa network connection capability and is connected to the LoRa network.
  • the terminal may include different electronic devices according to different application scenarios deployed by the LoRa network. For example, when the LoRa network is applied to urban management, the terminal may include a smart meter; and the LoRa network is used in a digital home.
  • the terminal can include various smart home appliances and the like.
  • the base station also referred to as a gateway or concentrator in the LoRa network, has a wireless connection aggregation function, including the terminal providing access to the LoRa network, forwarding data from the server or the terminal, and realizing data between the terminal and the server. Interaction.
  • the base station can also perform data interaction by transmitting wireless frames with other base stations within the signal coverage of the base station.
  • the server may include a server or a server cluster for performing service processing according to data acquired from the base station or the terminal, and controlling the working mode and working state of the base station or the terminal.
  • Embodiment 1 of a base station synchronization method of the present application is shown, which may specifically include the following steps:
  • Step 101 The server determines the first base station.
  • the entire network base station is connected to the server.
  • the server when the server needs to perform time synchronization processing on the base station, the server first selects a part of the entire network base station or uses all the base stations as the first base station.
  • Step 102 The server receives a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station.
  • the first base station transmits a synchronization request frame to the second base station through the LoRa channel. After receiving the synchronization request frame, the second base station generates a synchronization response frame and sends the synchronization response frame to the server.
  • the synchronization request frame is a radio frame.
  • the synchronization response frame may be a radio frame or a wired frame.
  • the same second base station may receive synchronization request frames sent by multiple first base stations.
  • the second base station generates a synchronization response frame for each synchronization request frame, and sends the synchronization response frame to the server.
  • Step 103 The server uses the synchronization response frame to determine a first system time difference between a system time of the first base station and a reference time, and determine a second system time difference between a system time of the second base station and a reference time;
  • the server may receive a synchronization response frame sent by multiple second base stations.
  • the server determines, for each synchronization response frame, a first system time difference of the system time of the corresponding first base station and the reference time, and determines a second system time difference between the system time of the corresponding second base station and the reference time.
  • the reference time may be a system time of one of the plurality of first base stations and the plurality of second base stations. After determining the system time difference between one of the base stations and the reference time, the system time difference between each base station and the reference time can be calculated according to the system time difference between the base stations.
  • the LoRa network includes: a base station 1, a base station 2, a base station 3, and a server. Both the base station 1 and the base station 2 transmit a synchronization request frame to the base station 3.
  • the base station 3 generates a synchronization response frame for the synchronization request frame of the base station 1, and a synchronization response frame for the synchronization request frame of the base station 2.
  • the server may select one system time as the reference time from the system time of the base station 1, or the system time of the base station 2, or the system time of the base station 3.
  • the server may calculate the second system time difference between the system time of the base station 3 and the reference time according to the synchronization response frame of the synchronization request frame for the base station 1 transmitted by the base station 3. Since the system time of the base station 1 is the reference time, that is, the first system time difference between the system time of the base station 1 and the reference time is zero.
  • the server may calculate the system time difference between the base station 2 and the base station 3 according to the synchronization response frame of the synchronization request frame for the base station 2 sent by the base station 3, and then calculate the first system of the base station 2 and the reference time according to the system time difference between the base station 3 and the reference time. jet lag.
  • Step 104 The server sends the first system time difference to a corresponding first base station, and sends the second system time difference to a corresponding second base station; the first base station is configured to use the corresponding first The system time difference is time adjusted; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the server sends the system time difference between each base station and the reference time to the corresponding base stations.
  • Each base station can make time adjustments according to the corresponding system time difference.
  • the time adjustment may include: adjusting the local system time, or adjusting the time of transmitting the beacon radio frame beacon to the terminal of the Class B mode.
  • the base station 1 when the base station 1 knows its system time difference with the reference time, the base station 1 can choose to adjust the local system time, and then use the corrected system time to control the transmission time of the beacon radio frame beacon, or not modify the local system time. Instead, use your own system time plus the system time difference to control the beacon transmission time of the beacon radio frame beacon.
  • each base station in the entire network can synchronize with the reference time according to the corresponding system time difference.
  • the synchronization method of the embodiment of the present application does not depend on the timing of the global positioning system. Therefore, the problem that the data transmission cost of the global positioning system may be increased by each base station is avoided, and the positioning signal cannot be accurately received by each base station.
  • the problem that is difficult to reliably transmit data that is, reduces the data transmission cost and improves the reliability of data transmission.
  • Each base station can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each base station. Or each base station can adjust the time of transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacon between the base stations.
  • Embodiment 2 of a base station synchronization method of the present application is shown, which may specifically include the following steps:
  • Step 201 The server determines the first base station.
  • the server determines the entire network base station as the first base station. That is to say, all base stations will send a synchronization request frame.
  • the first base station can transmit the synchronization request frame by means of broadcast.
  • Other base stations around a certain first base station may receive a synchronization request frame broadcast by the first base station.
  • the base station that receives the synchronization request frame is referred to as the second base station. Therefore, a certain base station is the first base station that sends the synchronization request frame, and is also the second base station that receives the synchronization request frame.
  • the server if the server is performing the second time synchronization process, the server selects a part of the base stations from the entire network base station as the first base station.
  • the server may select only a part of the base stations from the entire network base station as the first base station.
  • the server may select a base station having a global positioning system timing capability as the first base station only from the entire network base station.
  • the server determines the second base station in the last time synchronization processing process as the third base station;
  • the base station that the server receives the synchronization request frame sent by the third base station during the initial synchronization process is determined as the first base station.
  • the server searches for the second base station that received the synchronization request frame in the third time synchronization processing based on the record of the time synchronization processing.
  • the server determines the base station 4 as the third base station.
  • the server searches for the base station that has received the synchronization request frame transmitted by the base station 4 in the initial time synchronization processing based on the record of the time synchronization processing.
  • the server uses the base station 5 and the base station 6 as the first base station in the fourth time synchronization processing.
  • Step 202 The server sends a start command to the first base station, where the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the server After selecting the first base station, the server simultaneously sends a start command to each of the first base stations.
  • the first base station generates a synchronization request frame according to the startup instruction.
  • a synchronization request frame is then transmitted to the second base station on the LoRa channel.
  • Step 203 The server receives a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station.
  • the second base station After receiving the synchronization request frame, the second base station generates a synchronization response frame and sends the synchronization response frame to the server.
  • the synchronization request frame is a radio frame.
  • the synchronization response frame may be a radio frame or a wired frame.
  • Step 204 The server uses the synchronization response frame to determine a first system time difference between a system time of the first base station and a reference time, and determine a second system time difference between a system time of the second base station and a reference time;
  • the server may select a system time of one of the first base station and the second base station as a reference time.
  • Step 205 The server sends the first system time difference to a corresponding first base station, and sends the second system time difference to a corresponding second base station; the first base station is configured to use according to the corresponding first The system time difference is time adjusted; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the synchronization response frame may include a sending timestamp of the first base station sending the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame.
  • 205 can include the following sub-steps:
  • Sub-step S11 the server determines a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame, where the measurement transmission duration is that the synchronization request frame is sent from the first base station to the second base station. The length of time used to receive the completion;
  • the transmission timestamp of the synchronization request frame may be added to the synchronization request frame by the first base station when transmitting the synchronization request frame.
  • the second base station records the current time as the reception time stamp after receiving the synchronization request frame.
  • the second base station may add the transmission timestamp and the reception timestamp of the synchronization request frame to the synchronization response frame.
  • the difference between the sending timestamp of the synchronization request frame and the receiving timestamp of the synchronization request frame may be used as the measurement transmission used by the synchronization request frame to start sending from the first base station to the second base station. duration.
  • the second base station carries the transmission timestamp according to the radio frame 1, and determines that the transmission time of the radio frame 1 is 1444440000000 microseconds, and when the second base station receives the radio frame 1, determines the reception timestamp of the radio frame 1, the radio frame 1
  • the receiving time is 1444448000000 microseconds
  • Sub-step S12 the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • the actual transmission duration of the radio frame is the processing time when the radio frame is transmitted by the base station, the duration of transmitting the radio frame, and the processing time when the radio frame is received by another base station. Since the transmission precision of the radio frame is high in the LoRa network, the real transmission duration used for transmitting the radio frame between the base stations is usually only related to the frame format of the radio frame. Therefore, for the radio frame of the same frame format, The actual transmission duration of the radio frame is fixed.
  • the real transmission duration corresponding to the radio frame may be determined according to the frame format of the radio frame, for example, the correspondence between the frame format and the real transmission duration is obtained, and the frame format corresponding to the radio frame is obtained.
  • the actual transmission duration may be determined according to the frame format of the radio frame, for example, the correspondence between the frame format and the real transmission duration is obtained, and the frame format corresponding to the radio frame is obtained. The actual transmission duration.
  • the corresponding relationship between the frame format and the real transmission duration may be tested by previously transmitting the radio frame of different frame formats, and storing the real transmission duration and the corresponding frame format.
  • the accuracy of determining the system time difference between the first base station and the second base station is improved, and the radio frame may be determined to be in the first A round trip time between the base station and the second base station, and determining a half of the round trip duration as the real transmission duration.
  • the timestamp determined by the base station is very accurate, and can usually reach the microsecond level. Therefore, the time difference between the transmission time and the reception time of the radio frame and the transmission time and the reception time can be accurately determined by the timestamp.
  • the value is the measurement transmission duration of the radio frame. If the measured transmission duration is the same as the real transmission duration, the system time difference between the first base station and the second base station is 0, that is, the system time of the first base station is synchronized with the system time of the second base station; if the measurement transmission duration is If the real transmission duration is different, the system time difference between the first base station and the second base station is not 0, and the difference between the measurement transmission duration and the real transmission duration is the system time difference.
  • t ref1 indicates the transmission time of the first base station transmitting the synchronization request frame, that is, the system time of the first base station when the first base station transmits the radio frame
  • t ref2 indicates the reception time of the second base station receiving the synchronization request frame, that is, the second The system time of the second base station when the base station receives the synchronization request frame
  • ⁇ t 1 represents the processing time of the synchronization request frame when the first base station transmits, such as the time occupied by the modulation, etc.
  • ⁇ t 2 indicates that the synchronization request frame is sent to the first base station.
  • ⁇ t 3 represents the processing time when the synchronization request frame is received by the second base station, such as the time taken by the demodulation.
  • the system time difference between the first base station and the second base station can be:
  • ⁇ T 3 microseconds.
  • the transmission time t ref1 1444440000000 microseconds
  • the reception time t ref2 1444448000000 microseconds
  • Sub-step S13 the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station.
  • the second system time difference from the reference time.
  • the server may receive a synchronization response frame sent by multiple second base stations.
  • the server determines, for each synchronization response frame, a first system time difference of the system time of the corresponding first base station and the reference time, and determines a second system time difference between the system time of the corresponding second base station and the reference time.
  • the reference time may be a system time of one of the plurality of first base stations and the plurality of second base stations. After determining the system time difference between one of the base stations and the reference time, the system time difference between each base station and the reference time can be calculated according to the system time difference between the base stations.
  • the sub-step S13 may further include the following sub-steps:
  • Sub-step S1301 the server selects a system time of the first base station as a reference time
  • Sub-step S1302 the server sets a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the sub-step S13 may further include the following sub-steps:
  • Sub-step S1303 the server selects a system time of the second base station as a reference time
  • Sub-step S1304 the server sets a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the reference time may be the system time of the server, or may be the time of other highly accurate clock reference devices, such as a cesium atomic clock.
  • the server may calculate a system time difference between one of the first base station and the second base station and the reference time. Then, based on the system time difference between the base station and the reference time and the system time difference between the base stations, the system time difference between each base station and the base station time is calculated.
  • the sub-step S13 may further include the following sub-steps:
  • Sub-step S1307 the server calculates a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the sub-step S13 may further include the following sub-steps:
  • Sub-step S1308, the server selects the time of the clock reference device as the reference time
  • Sub-step S1309 the server calculates a second system time difference between the second base station and the reference time
  • Sub-step S1310 the server calculates a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the LoRa network includes: a base station 1, a base station 2, a base station 3, a base station 4, and a server.
  • the server uses all base stations of the entire network as the first base station.
  • the server first transmits a start command to the base station 1, the base station 2, the base station 3, and the base station 4.
  • each base station After receiving the activation command, each base station broadcasts a synchronization request frame to the surrounding base stations.
  • the synchronization request frame broadcasted by the base station 1 is received by the base station 2;
  • the synchronization request frame broadcasted by the base station 2 is received by the base station 1 and the base station 3;
  • the synchronization request frame broadcast by the base station 3 is received by the base station 2 and the base station 4;
  • the request frame is received by the base station 3.
  • the base station After receiving the synchronization request frame, the base station generates a corresponding synchronization response frame for each synchronization request frame, and sends a synchronization response frame to the server.
  • the base station 2 After receiving the synchronization request frame sent by the base station 1 and the base station 3, the base station 2 generates a synchronization response frame for the synchronization request frame of the base station 1 and a synchronization response frame for the synchronization request frame of the base station 3, respectively.
  • the base station 2 transmits the two synchronization response frames to the server.
  • the server calculates a system time difference between the corresponding first base station and the second base station according to each synchronization response frame.
  • the server may calculate the measurement transmission duration between the base stations according to the sending timestamp of the synchronization request frame sent by the base station and the receiving timestamp of the synchronization request frame received by another base station. Then, the system time difference between the base stations is calculated according to the measured transmission duration and the pre-determined real transmission duration.
  • the synchronization response frame for the synchronization request frame of the base station 1 includes: a transmission timestamp of the base station 1 transmitting the synchronization request frame, and a reception timestamp of the base station 2 receiving the synchronization request frame.
  • the server calculates the system time difference between the base station 1 and the base station 2 according to the transmission timestamp of the base station 1 transmitting the synchronization request frame and the receiving timestamp of the base station 2 receiving the synchronization request frame.
  • the synchronization response frame for the synchronization request frame of the base station 3 includes: a transmission time stamp in which the base station 3 transmits the synchronization request frame, and a reception time stamp in which the base station 2 receives the synchronization request frame.
  • the server calculates the system time difference between the base station 3 and the base station 2 according to the transmission timestamp of the base station 3 transmitting the synchronization request frame and the receiving timestamp of the base station 2 receiving the synchronization request frame.
  • one of the system time of each base station can be selected as the reference time. Then, based on the system time difference between the base stations, the system time difference between each base station and the reference time is calculated.
  • the server sends the system time difference between each base station and the reference time to the corresponding base station.
  • Each base station performs time adjustment according to the corresponding system time difference.
  • the server calculates the system time difference between the base station 1 and the base station 2, the system time difference between the base station 2 and the base station 3, and the system time difference between the base station 3 and the base station 4.
  • the server selects the system time of the base station 3 as the reference time, and the system time difference between the base station 2 and the base station 3 is the system time difference between the base station 2 and the reference time.
  • the server can calculate the system time difference between the base station 1 and the base station 3, that is, the system time difference between the base station 1 and the reference time, according to the system time difference between the base station 1 and the base station 2 and the system time difference between the base station 2 and the base station 3.
  • the server may select only a part of the base stations as the first base station from the entire network base stations.
  • FIG. 4 is a schematic diagram of time synchronization processing after the initial time synchronization process in the embodiment of the present application. The server selects the base station 1 and the base station 3 as the first base station.
  • the server first sends a start command to the base station 1 and the base station 3.
  • the base station 1 and the base station 3 After receiving the start command, the base station 1 and the base station 3 broadcast a synchronization request frame to the surrounding base stations.
  • the synchronization request frame broadcast by the base station 1 is received by the base station 2; the synchronization request frame broadcast by the base station 3 is received by the base station 2 and the base station 4.
  • the base station After receiving the synchronization request frame, the base station generates a corresponding synchronization response frame for each synchronization request frame, and sends a synchronization response frame to the server.
  • the server calculates a system time difference between the corresponding first base station and the second base station according to each synchronization response frame.
  • the measurement transmission duration between the base stations may be calculated according to the timestamp of the base station transmitting the synchronization request frame and the timestamp of the other base station receiving the synchronization request frame.
  • the system time difference between the base stations is calculated according to the measured transmission duration and the pre-determined real transmission duration.
  • one of the system time of each base station can be selected as the reference time. Then, based on the system time difference between the base stations, the system time difference between each base station and the reference time is calculated.
  • the server sends the system time difference between each base station and the reference time to the corresponding base station.
  • Each base station performs time adjustment according to the corresponding system time difference.
  • the difference between the initial time synchronization process and the subsequent time synchronization process is only that the manner of selecting the first base station is different.
  • the server selects the entire network base station as the first base station.
  • the server selects some base stations from the entire network base station as the first base station.
  • the server determines the second base station in the last time synchronization process as the third base station; the server will receive the first process during the initial synchronization process.
  • the base station of the synchronization request frame sent by the three base stations is determined to be the first base station.
  • FIG. 5 is a flowchart of the steps of Embodiment 3 of a base station synchronization method according to the present application, which may specifically include the following steps:
  • Step 301 The first base station sends a synchronization request frame to the second base station, where the second base station is configured to send a synchronization response frame to the server according to the synchronization request frame, and the server is configured to determine, according to the synchronization response frame, The system time of the first base station is different from the first system time of the reference time;
  • the synchronization request frame is a radio frame.
  • the synchronization response frame may be a radio frame or a wired frame.
  • the step 301 may include the following sub-steps:
  • Sub-step S21 the first base station receives a startup command sent by the server
  • Sub-step S22 the first base station sends a synchronization request frame to the second base station according to the start command.
  • the first base station may send the synchronization request frame by means of broadcast.
  • the second base station that receives the synchronization request frame transmits a synchronization response frame to the server according to the synchronization request frame.
  • the server determines a system time difference between the system time of the first base station and the reference time according to the synchronization response frame.
  • the method for determining the system time difference between the system time of the first base station and the reference time according to the synchronization response frame may be referred to in the foregoing description, and details are not described herein again.
  • Step 302 The first base station receives the first system time difference sent by the server.
  • Step 303 The first base station uses the first system time difference to perform time adjustment.
  • the step 303 may include:
  • the first base station adopts the first system time difference, adjusts a local system time, or adjusts a time for transmitting a beacon radio frame beacon.
  • each first base station sends a synchronization request frame to the corresponding second base station, and the second base station sends a synchronization response frame to the server according to the synchronization request frame.
  • the server calculates a system time difference between the corresponding first base station and the reference time according to the synchronization response frame.
  • Each of the first base stations can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each of the first base stations.
  • each of the first base stations may adjust the time for transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacons between the first base stations.
  • FIG. 6 is a flowchart of the steps of Embodiment 4 of a method for synchronizing a base station according to the present application. Specifically, the method may include the following steps:
  • Step 401 The second base station receives a synchronization request frame sent by the first base station.
  • the second base station may receive the synchronization request frame broadcast by the first base station.
  • Step 402 The second base station sends a synchronization response frame to the server according to the synchronization request frame.
  • the server is configured to determine, according to the synchronization response frame, a second system time difference between the system time of the second base station and the reference time. ;
  • the synchronization request frame is a radio frame.
  • the synchronization response frame may be a radio frame or a wired frame.
  • the second base station that receives the synchronization request frame sends a synchronization response frame to the server according to the synchronization request frame.
  • the server determines a system time difference between the system time of the second base station and the reference time according to the synchronization response frame.
  • the method for determining the system time difference between the system time of the first base station and the reference time according to the synchronization response frame may be referred to in the foregoing description, and details are not described herein again.
  • Step 403 The second base station receives, by the server, the second system time difference.
  • Step 404 The second base station uses the second system time difference to perform time adjustment.
  • the step 404 may include:
  • the second base station uses the second system time difference to adjust the local system time, or adjust the time of transmitting the beacon radio frame beacon.
  • each first base station sends a synchronization request frame to the corresponding second base station
  • the second base station sends a synchronization response frame to the server according to the synchronization request frame.
  • the server calculates a system time difference between the corresponding second base station and the reference time according to the synchronization response frame.
  • Each of the second base stations can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each of the second base stations.
  • each of the second base stations may adjust the time for transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacons between the respective second base stations.
  • FIG. 7 is a flowchart of the steps of Embodiment 5 of a base station synchronization method according to the present application, which may specifically include the following steps:
  • Step 501 The server determines the first base station.
  • Step 502 The server receives a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station, where the synchronization response frame includes the first base station sends a sending timestamp of the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • Step 503 The server calculates a first system time difference between the first base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame, and calculates a second system of the second base station and the reference time. jet lag;
  • Step 504 The server sends the first system time difference to a corresponding first base station, and sends the second system time difference to a corresponding second base station; the first base station is configured to use according to the corresponding first The system time difference is time adjusted; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the time adjustment may include: adjusting the local system time, or adjusting the time of transmitting the beacon radio frame beacon to the terminal of the Class B mode.
  • each base station in the entire network can synchronize with the reference time according to the corresponding system time difference.
  • the synchronization method of the embodiment of the present application does not depend on the timing of the global positioning system. Therefore, the problem that the data transmission cost of the global positioning system may be increased by each base station is avoided, and the positioning signal cannot be accurately received by each base station.
  • the problem that is difficult to reliably transmit data that is, reduces the data transmission cost and improves the reliability of data transmission.
  • Each base station can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each base station. Or each base station can adjust the time of transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacon between the base stations.
  • FIG. 8 is a flowchart of the steps of Embodiment 6 of a base station synchronization method according to the present application, which may specifically include the following steps:
  • Step 601 The server determines the first base station.
  • the server determines the entire network base station as the first base station.
  • the server if the server is performing the second time synchronization process, the server selects a part of the base stations from the entire network base station as the first base station.
  • the server determines the second base station in the last time synchronization processing to be the third base station.
  • the server will receive the synchronization request frame sent by the third base station in the initial synchronization process, and determine the base station as the first base station.
  • Step 602 The server sends a start command to the first base station, where the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • Step 603 the server receives a synchronization response frame sent by the second base station;
  • the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station;
  • the synchronization response frame includes the first base station sending a sending timestamp of the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • Step 604 The server calculates a first system time difference between the first base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame, and calculates a second system of the second base station and the reference time. jet lag;
  • the step 604 may include the following sub-steps:
  • Sub-step S31 the server determines the measurement transmission duration according to the sending timestamp and the receiving timestamp of the synchronization request frame;
  • Sub-step S32 the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • Sub-step S33 the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculates the second base station.
  • the second system time difference from the reference time.
  • the sub-step S33 may further include the following sub-steps:
  • Sub-step S3301 the server selects a system time of the first base station as a reference time
  • Sub-step S3302 the server sets a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • sub-step S33 may further include the following sub-steps:
  • Sub-step S3303, the server selects a system time of the second base station as a reference time
  • Sub-step S3304 the server sets a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • sub-step S33 may further include the following sub-steps:
  • Sub-step S3305 the server selects a time of the clock reference device as a reference time
  • Sub-step S3307 the server calculates a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • sub-step S33 may further include the following sub-steps:
  • Sub-step S3308, the server selects the time of the clock reference device as the reference time
  • Sub-step S3309 the server calculates a second system time difference between the second base station and the reference time
  • Sub-step S3310 the server calculates a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • Step 605 The server sends the first system time difference to the corresponding first base station, and sends the second system time difference to the corresponding second base station; the first base station is configured to use according to the corresponding first The system time difference is time adjusted; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • FIG. 9 is a flowchart of the steps of Embodiment 7 of a method for synchronizing a base station according to the present application. Specifically, the method may include the following steps:
  • Step 701 The server determines the first base station.
  • Step 702 The server receives a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station, where the synchronization response frame includes the first base station sends a sending timestamp of the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • Step 703 The server calculates a first system time difference between the first base station and the reference time according to the sending timestamp and the receiving timestamp of the synchronization request frame.
  • the step 703 may include the following sub-steps:
  • Sub-step S41 the server determines the measurement transmission duration according to the sending timestamp and the receiving timestamp of the synchronization request frame;
  • Sub-step S42 the server calculates a measured difference between the measured transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • Sub-step S43 the server calculates a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the sub-step S43 may include the following sub-steps:
  • Sub-step S4301 the server selects a system time of the second base station as a reference time
  • Sub-step S4302 the server sets a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • Step 704 The server sends the first system time difference to a corresponding first base station; and the first base station is configured to perform time adjustment according to the corresponding first system time difference.
  • FIG. 10 is a flow chart showing the steps of Embodiment 8 of a method for synchronizing a base station according to the present application. Specifically, the method may include the following steps:
  • Step 801 The server determines the first base station.
  • Step 802 The server receives a synchronization response frame sent by the second base station; the synchronization response frame is generated by the second base station according to a synchronization request frame sent by the first base station; and the synchronization response frame includes the first base station sending a sending timestamp of the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • Step 803 The server calculates a second system time difference between the second base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame.
  • the step 803 may include the following sub-steps:
  • Sub-step S51 the server determines the measurement transmission duration according to the sending timestamp and the receiving timestamp of the synchronization request frame;
  • Sub-step S52 the server calculates a measured difference between the measurement transmission duration and a real transmission duration of the preset radio frame, and uses the measured difference as a system time difference between the first base station and the second base station;
  • Sub-step S53 the server calculates a second system time difference between the second base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the sub-step S53 may include the following sub-steps:
  • Sub-step S5301 the server selects a system time of the first base station as a reference time
  • Sub-step S5302 the server sets a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • Step 804 The server sends the second system time difference to a corresponding second base station; and the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • Embodiment 1 of a base station synchronization apparatus of the present application may specifically include the following modules:
  • a first base station determining module 901 located at the server, configured to determine the first base station
  • the synchronization response frame receiving module 902 of the server is configured to receive a synchronization response frame sent by the second base station; and the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station;
  • a system time difference calculation module 903 of the server configured to determine, by using the synchronization response frame, a first system time difference between a system time of the first base station and a reference time, and determine a system time and a location of the second base station The second system time difference of the reference time;
  • a system time difference sending module 904 located at the server, configured to send the first system time difference to a corresponding first base station, and send the second system time difference to a corresponding second base station; Performing time adjustment according to the corresponding first system time difference; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the synchronization response frame includes a sending timestamp of the first base station sending the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the calculation module 903 can include:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculate the second The base station is out of sync with the second system of the reference time.
  • the reference time difference determining submodule may include:
  • a first reference time selecting unit configured to select a system time of the first base station as a reference time
  • the first reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the reference time difference determining submodule may include:
  • a second reference time selecting unit configured to select a system time of the second base station as a reference time
  • a second reference time difference determining unit configured to use a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the reference time difference determining submodule may include:
  • a third reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a third reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time
  • a fourth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the reference time difference determining submodule may include:
  • a fourth reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a fifth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time
  • a sixth reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the device may further include:
  • the startup command sending module of the server is configured to send a start command to the first base station, and the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the first base station determining module 901 may include:
  • the first determining submodule is configured to determine, in the initial time synchronization process, the entire network base station as the first base station.
  • the first base station determining module 901 may further include:
  • a second determining submodule configured to select, in the second time synchronization process, a part of the base stations from the entire network base station as the first base station.
  • the first base station determining module 901 may further include:
  • a third base station determining submodule configured to determine, in the time synchronization process after the second time synchronization process, the second base station in the last time synchronization process as the third base station;
  • a third determining submodule configured to determine, in the initial synchronization process, the base station that receives the synchronization request frame sent by the third base station, as the first base station.
  • each base station in the entire network can synchronize with the reference time according to the corresponding system time difference.
  • the synchronization method of the embodiment of the present application does not depend on the timing of the global positioning system. Therefore, the problem that the data transmission cost of the global positioning system may be increased by each base station is avoided, and the positioning signal cannot be accurately received by each base station.
  • the problem that is difficult to reliably transmit data that is, reduces the data transmission cost and improves the reliability of data transmission.
  • Each base station can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each base station. Or each base station can adjust the time of transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacon between the base stations.
  • Embodiment 2 of a base station synchronization apparatus of the present application is shown, which may specifically include the following modules:
  • a synchronization request frame sending module 1001 located at the first base station, configured to send a synchronization request frame to the second base station; the second base station is configured to send a synchronization response frame to the server according to the synchronization request frame; Determining, according to the synchronization response frame, a first system time difference between a system time of the first base station and a reference time;
  • a system time difference receiving module 1002 located at the first base station, configured to receive the first system time difference sent by the server;
  • the first time adjustment module 1003 located at the first base station is configured to perform time adjustment by using the first system time difference.
  • the synchronization request frame sending module 1001 may include:
  • the startup instruction receiving submodule is configured to receive a startup instruction sent by the server
  • a synchronization request frame sending submodule configured to send a synchronization request frame to the second base station according to the startup instruction.
  • the first time adjustment module 1003 may include:
  • the first time adjustment submodule is configured to adopt the first system time difference, adjust a local system time, or adjust a time for transmitting a beacon radio frame beacon.
  • each first base station sends a synchronization request frame to the corresponding second base station, and the second base station sends a synchronization response frame to the server according to the synchronization request frame.
  • the server calculates a system time difference between the corresponding first base station and the reference time according to the synchronization response frame.
  • Each of the first base stations can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each of the first base stations.
  • each of the first base stations may adjust the time for transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacons between the first base stations.
  • Embodiment 3 of a base station synchronization apparatus of the present application is shown, which may specifically include the following modules:
  • the synchronization request frame receiving module 1101 of the second base station is configured to receive a synchronization request frame sent by the first base station;
  • the synchronization response frame sending module 1102 of the second base station is configured to send a synchronization response frame to the server according to the synchronization request frame; and the server is configured to determine a system time of the second base station according to the synchronization response frame. The second system time difference from the reference time;
  • the second time adjustment module 1104 located at the second base station is configured to perform time adjustment by using the second system time difference.
  • the second time adjustment module 1104 may include:
  • the second time adjustment submodule is configured to adjust the local system time by using the second system time difference, or adjust the time for transmitting the beacon radio frame beacon.
  • each first base station sends a synchronization request frame to the corresponding second base station
  • the second base station sends a synchronization response frame to the server according to the synchronization request frame.
  • the server calculates a system time difference between the corresponding second base station and the reference time according to the synchronization response frame.
  • Each of the second base stations can adjust the local system time according to the corresponding system time difference, thereby ensuring time synchronization of each of the second base stations.
  • each of the second base stations may adjust the time for transmitting the beacon radio frame beacon according to the corresponding system time difference, thereby ensuring synchronization of the beacon radio frame beacons between the respective second base stations.
  • Embodiment 4 of a base station synchronization apparatus of the present application is shown, which may specifically include the following modules:
  • a first base station determining module 1201 located at the server, configured to determine the first base station
  • the server synchronization response frame receiving module 1202 is configured to receive a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station; And including a sending timestamp of the first base station sending the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the system time difference calculation module 1203 of the server is configured to calculate a first system time difference between the first base station and the reference time according to a sending timestamp and a receiving timestamp of the synchronization request frame, and calculate the second base station and the The second system time difference of the reference time;
  • a system time difference sending module 1204 configured to send the first system time difference to a corresponding first base station, and send the second system time difference to a corresponding second base station; Performing time adjustment according to the corresponding first system time difference; the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • the system time difference calculation module 1203 may include:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station, and calculate the second The base station is out of sync with the second system of the reference time.
  • the reference time difference determining submodule may include:
  • a first reference time selecting unit configured to select a system time of the first base station as a reference time
  • the first reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the reference time difference determining submodule may include:
  • a second reference time selecting unit configured to select a system time of the second base station as a reference time
  • a second reference time difference determining unit configured to use a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • the reference time difference determining submodule may include:
  • a third reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a third reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time
  • a fourth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time according to a system time difference between the first base station and the second base station, and the first system time difference.
  • the reference time difference determining submodule may include:
  • a fourth reference time selecting unit configured to select a time of the clock reference device as a reference time
  • a fifth reference time difference determining unit configured to calculate a second system time difference between the second base station and the reference time
  • a sixth reference time difference determining unit configured to calculate a first system time difference between the first base station and the reference time according to a system time difference between the first base station and the second base station, and the second system time difference.
  • the device may further include:
  • the startup command sending module of the server is configured to send a start command to the first base station, and the first base station is configured to send a synchronization request frame to the second base station according to the start command.
  • the first base station determining module 1201 may include:
  • the first determining submodule is configured to, in the initial time synchronization process, determine, by the server, the entire network base station as the first base station.
  • the first base station determining module 1201 may further include:
  • a second determining submodule configured to select, in the second time synchronization process, a part of the base stations from the entire network base station as the first base station.
  • the first base station determining module 1201 may further include:
  • a third base station determining submodule configured to determine, in the time synchronization process after the second time synchronization process, the second base station in the last time synchronization process as the third base station;
  • a third determining submodule configured to determine, in the initial synchronization process, the base station that receives the synchronization request frame sent by the third base station, as the first base station.
  • Embodiment 5 of a base station synchronization apparatus of the present application is shown, which may specifically include the following modules:
  • a first base station determining module 1301 located at the server, configured to determine the first base station
  • the server synchronization response frame receiving module 1302 is configured to receive a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station; And including a sending timestamp of the first base station sending the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the system time difference sending module 1304 is located at the server, and is configured to send the first system time difference to a corresponding first base station; and the first base station is configured to perform time adjustment according to the corresponding first system time difference.
  • the system time difference calculation module 1303 may include:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a first system time difference between the first base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the reference time difference determining submodule may include:
  • a reference time selecting unit configured to select a system time of the second base station as a reference time
  • the reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a first system time difference between the first base station and the reference time.
  • Embodiment 6 of a base station synchronization apparatus of the present application is shown, which may specifically include the following modules:
  • a first base station determining module 1401 located at the server, configured to determine the first base station
  • the server synchronization response frame receiving module 1402 is configured to receive a synchronization response frame sent by the second base station, where the synchronization response frame is generated by the second base station according to the synchronization request frame sent by the first base station; And including a sending timestamp of the first base station sending the synchronization request frame, and a receiving timestamp of the second base station receiving the synchronization request frame;
  • the system time difference sending module 1404 is located at the server, and is configured to send the second system time difference to a corresponding second base station; and the second base station is configured to perform time adjustment according to the corresponding second system time difference.
  • system time difference calculation module 1403 may include:
  • a measurement transmission duration determining submodule configured to determine a measurement transmission duration according to a transmission timestamp and a reception timestamp of the synchronization request frame
  • An inter-station time difference determining sub-module configured to calculate a measured difference between the measured transmission duration and a true transmission duration of the preset radio frame, where the measured difference is used as the system of the first base station and the second base station jet lag;
  • a reference time difference determining submodule configured to calculate a second system time difference between the second base station and the reference time according to a reference time and a system time difference between the first base station and the second base station.
  • the reference time difference determining submodule may include:
  • a reference time selecting unit configured to select a system time of the first base station as a reference time
  • the reference time difference determining unit is configured to use a system time difference between the first base station and the second base station as a second system time difference between the second base station and the reference time.
  • the description is relatively simple, and the relevant parts can be referred to the description of the method embodiment.
  • the embodiment of the present application further provides an apparatus, including:
  • One or more processors are One or more processors.
  • One or more machine readable medium having instructions stored thereon, when executed by the one or more processors, causes the apparatus to perform the methods described in the embodiments of the present application.
  • the embodiments of the present application further provide one or more machine readable mediums having instructions stored thereon that, when executed by one or more processors, cause the apparatus to perform the methods described in the embodiments of the present application.
  • embodiments of the embodiments of the present application can be provided as a method, apparatus, or computer program product. Therefore, the embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, embodiments of the present application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • These computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor or other programmable data processing terminal device to produce a machine such that instructions are executed by a processor of a computer or other programmable data processing terminal device
  • Means are provided for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing terminal device to operate in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the instruction device implements the functions specified in one or more blocks of the flow or in a flow or block diagram of the flowchart.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种基站同步方法和装置,所述方法包括:服务器确定第一基站;服务器接收第二基站发送的同步应答帧;同步应答帧包括第一基站发送同步请求帧的发送时间戳,以及第二基站接收同步请求帧的接收时间戳;服务器根据同步请求帧的发送时间戳和接收时间戳,计算第一基站与基准时间的第一系统时差,以及计算第二基站与所述基准时间的第二系统时差;服务器将第一系统时差发送至相应的第一基站,将第二系统时差发送至相应的第二基站;第一基站用于根据相应的第一系统时差进行时间调整;第二基站用于根据相应的第二系统时差进行时间调整。在本申请实施例中,全网中的各个基站都可以根据相应的系统时差,实现与基准时间的同步。

Description

一种基站同步方法和装置
本申请要求2017年10月20日递交的申请号为201710985486.2、发明名称为“一种基站同步方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是涉及一种基站同步方法和一种基站同步装置。
背景技术
物联网技术是继计算机和互联网之后的第三次信息技术革命,具有实时性和交互性等优点,已经被广泛应用于城市管理、数字家庭、定位导航、物流管理、安保系统等多个领域。其中,LoRa是物联网中一种基于扩频技术的超远距离传输方案,具有传输距离远、低功耗、多节点和低成本等特性。
现有的数据传输方法中,LoRa网络中通常包括终端、基站和服务器。
对于在Class B模式下的终端,基站会定时周期性地下行广播信标无线帧beacon帧,终端利用信标无线帧来校准自己的时间,并以这个时间计算自己接收下行消息的时隙。但由于晶振偏移等因素,基站的时间误差会随着时间而累计,导致各个基站的系统时间无法保持同步。不能保证各个基站的下行信标无线帧发送的同步。
为了保证各个基站的系统时间保持同步,在现有技术中,基站需要额外设置全球定位系统(Global Positioning System,GPS),通过将该球定位系统的时间作为该基站的系统时间,从而实现各基站的时间同步。但这种方式,基站需要配置额外的全球定位系统,会提高数据传输的成本;且全球定位系统的信号也容易受所处环境限制,比如被建筑或树木阻挡、天气干扰等,从而影响各基站间的系统时间同步。
发明内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种基站同步方法和相应的一种基站同步装置。
为了解决上述问题,本申请实施例公开了一种基站同步方法,包括:
服务器确定第一基站;
所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据 第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差;
所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
优选的,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取第一基站的系统时间作为基准时间;
所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取第二基站的系统时间作为基准时间;
所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准 时间的第二系统时差的步骤包括:
所述服务器选取时钟参考设备的时间作为基准时间;
所述服务器计算所述第一基站与所述基准时间的第一系统时差;
所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取时钟参考设备的时间作为基准时间;
所述服务器计算所述第二基站与所述基准时间的第二系统时差;
所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
优选的,还包括:
所述服务器向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
优选的,所述服务器确定第一基站的步骤包括:
在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
优选的,所述服务器确定第一基站的步骤还包括:
在第二次时间同步处理中,所述服务器从全网基站中选取部分基站作为第一基站。
优选的,所述服务器确定第一基站的步骤还包括:
在第二次时间同步处理之后的时间同步处理中,所述服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;
所述服务器将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
本申请实施例还公开了一种基站同步方法,包括:
服务器确定第一基站;
所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
所述服务器采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一 系统时差,以及确定所述第二基站的系统时间与所述基准时间的第二系统时差;
所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
优选的,所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;所述服务器采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与基准时间的第二系统时差的步骤包括:
所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取第一基站的系统时间作为基准时间;
所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取第二基站的系统时间作为基准时间;
所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取时钟参考设备的时间作为基准时间;
所述服务器计算所述第一基站与所述基准时间的第一系统时差;
所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取时钟参考设备的时间作为基准时间;
所述服务器计算所述第二基站与所述基准时间的第二系统时差;
所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
优选的,还包括:
所述服务器向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
优选的,所述服务器确定第一基站的步骤包括:
在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
优选的,所述服务器确定第一基站的步骤还包括:
在第二次时间同步处理中,所述服务器从全网基站中选取部分基站作为第一基站。
优选的,所述服务器确定第一基站的步骤还包括:
在第二次时间同步处理之后的时间同步处理中,所述服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;
所述服务器将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
本申请实施例还公开了一种基站同步方法,包括:
服务器确定第一基站;
所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差;
所述服务器将所述第一系统时差发送至相应的第一基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整。
优选的,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差的步骤包括:
所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差的步骤包括:
所述服务器选取第二基站的系统时间作为基准时间;
所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
本申请实施例还公开了一种基站同步方法,包括:
服务器确定第一基站;
所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与所述基准时间的第二系统时差;
所述服务器将所述第二系统时差发送至相应的第二基站;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
优选的,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述 第二基站与所述基准时间的第二系统时差。
优选的,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
所述服务器选取第一基站的系统时间作为基准时间;
所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
本申请实施例还公开了一种基站同步方法,包括:
第一基站向第二基站发送同步请求帧;所述第二基站用于根据所述同步请求帧向所述服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差;
所述第一基站接收所述服务器发送的所述第一系统时差;
所述第一基站采用所述第一系统时差,进行时间调整。
优选的,所述第一基站向第二基站发送同步请求帧的步骤包括:
第一基站接收服务器发送的启动指令,
所述第一基站根据所述启动指令,向第二基站发送同步请求帧。
优选的,所述第一基站采用所述第一系统时差,进行时间调整的步骤包括:
所述第一基站采用所述第一系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
本申请实施例还公开了一种基站同步方法,包括:
第二基站接收第一基站发送的同步请求帧;
所述第二基站根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第二基站的系统时间与基准时间的第二系统时差;
所述第二基站接收所述服务器发送的所述第二系统时差;
所述第二基站采用所述第二系统时差,进行时间调整。
优选的,所述第二基站采用所述第二系统时差,进行时间调整处理的步骤包括:
所述第二基站采用所述第二系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
本申请实施例还公开了一种基站同步装置,包括:
位于服务器的第一基站确定模块,用于确定第一基站;
位于所述服务器同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
位于所述服务器的系统时差计算模块,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差;
位于所述服务器的系统时差发送模块,用于将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
优选的,所述系统时差计算模块包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
第一基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
第一基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
第二基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
第二基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
优选的,所述基准时差确定子模块包括:
第三基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第三基准时差确定单元,用于计算所述第一基站与所述基准时间的第一系统时差;
第四基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
第四基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第五基准时差确定单元,用于计算所述第二基站与所述基准时间的第二系统时差;
第六基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
优选的,还包括:
位于所述服务器的启动指令发送模块,用于向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
优选的,所述第一基站确定模块包括:
第一确定子模块,用于在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
优选的,所述第一基站确定模块还包括:
第二确定子模块,用于在第二次时间同步处理中,从全网基站中选取部分基站作为第一基站。
优选的,所述第一基站确定模块还包括:
第三基站确定子模块,用于在第二次时间同步处理之后的时间同步处理中,将上一次时间同步处理过程中的第二基站,确定为第三基站;
第三确定子模块,用于将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
本申请实施例还公开了一种基站同步装置,包括:
位于服务器的第一基站确定模块,用于确定第一基站;
位于所述服务器的同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
位于所述服务器的系统时差计算模块,用于采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与所述基 准时间的第二系统时差;
位于所述服务器的系统时差发送模块,用于将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
优选的,所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;所述系统时差计算模块包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
第一基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
第一基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
第二基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
第二基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
优选的,所述基准时差确定子模块包括:
第三基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第三基准时差确定单元,用于计算所述第一基站与所述基准时间的第一系统时差;
第四基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
第四基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第五基准时差确定单元,用于计算所述第二基站与所述基准时间的第二系统时差;
第六基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
优选的,还包括:
位于所述服务器的启动指令发送模块,用于向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
优选的,所述第一基站确定模块包括:
第一确定子模块,用于在初次时间同步处理中,将全网基站确定为第一基站。
优选的,所述第一基站确定模块还包括:
第二确定子模块,用于在第二次时间同步处理中,从全网基站中选取部分基站作为第一基站。
优选的,所述第一基站确定模块还包括:
第三基站确定子模块,用于在第二次时间同步处理之后的时间同步处理中,将上一次时间同步处理过程中的第二基站,确定为第三基站;
第三确定子模块,用于将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
本申请实施例还公开了一种基站同步装置,包括:
位于服务器的第一基站确定模块,用于确定第一基站;
位于所述服务器同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
位于所述服务器的系统时差计算模块,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差;
位于所述服务器的系统时差发送模块,用于将所述第一系统时差发送至相应的第一基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整。
优选的,所述系统时差计算模块包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长 的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差。
优选的,所述基准时差确定子模块包括:
基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
本申请实施例还公开了一种基站同步装置,包括:
位于服务器的第一基站确定模块,用于确定第一基站;
位于所述服务器同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
位于所述服务器的系统时差计算模块,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与所述基准时间的第二系统时差;
位于所述服务器的系统时差发送模块,用于将所述第二系统时差发送至相应的第二基站;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
优选的,所述系统时差计算模块包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差。
优选的,所述基准时差确定子模块包括:
基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
本申请实施例还公开了一种基站同步装置,包括:
位于第一基站的同步请求帧发送模块,用于向第二基站发送同步请求帧;所述第二基站用于根据所述同步请求帧向所述服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差;
位于所述第一基站的系统时差接收模块,用于接收所述服务器发送的所述第一系统时差;
位于所述第一基站的第一时间调整模块,用于采用所述第一系统时差,进行时间调整。
优选的,所述同步请求帧发送模块包括:
启动指令接收子模块,用于接收服务器发送的启动指令,
同步请求帧发送子模块,用于根据所述启动指令,向第二基站发送同步请求帧。
优选的,所述第一时间调整模块包括:
第一时间调整子模块,用于采用所述第一系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
本申请实施例还公开了一种基站同步装置,包括:
位于第二基站的同步请求帧接收模块,用于接收第一基站发送的同步请求帧;
位于所述第二基站的同步应答帧发送模块,用于根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第二基站的系统时间与基准时间的第二系统时差;
位于所述第二基站的第二系统时差接收模块,用于接收所述服务器发送的所述第二系统时差;
位于所述第二基站的第二时间调整模块,用于采用所述第二系统时差,进行时间调整。
优选的,所述第二时间调整模块包括:
第二时间调整子模块,用于采用所述第二系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
本申请实施例还公开了一种装置,包括:
一个或多个处理器;和
其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述装置执行如上所述的一个或多个的方法。
本申请实施例还公开了一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得装置执行如上所述的一个或多个的方法。
本申请实施例包括以下优点:
在本申请实施例中,全网中的各个基站都可以根据相应的系统时差,实现与基准时间的同步。并且本申请实施例的同步方法不依于全球定位系统的授时,因此,既避免了各基站设置全球定位系统可能带来的数据传输成本升高的问题,也减少了因各基站无法准确接收定位信号导致的难以可靠进行数据传输的问题,也即是,降低了数据传输成本,提高了数据传输的可靠性。
各个基站可以根据相应的系统时差调整本地系统时间,从而保证各个基站的时间同步。或各个基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个基站之间发送信标无线帧beacon的同步。
附图说明
图1是本申请的一种基站同步方法实施例1的步骤流程图;
图2是本申请的一种基站同步方法实施例2的步骤流程图;
图3是本申请实施例中初次时间同步处理的示意图;
图4是本申请实施例中初次时间同步处理之后的时间同步处理示意图;
图5是本申请的一种基站同步方法实施例3的步骤流程图;
图6是本申请的一种基站同步方法实施例4的步骤流程图;
图7是本申请的一种基站同步方法实施例5的步骤流程图;
图8是本申请的一种基站同步方法实施例6的步骤流程图;
图9是本申请的一种基站同步方法实施例7的步骤流程图;
图10是本申请的一种基站同步方法实施例8的步骤流程图;
图11是本申请的一种基站同步装置实施例1的结构框图;
图12是本申请的一种基站同步装置实施例2的结构框图;
图13是本申请的一种基站同步装置实施例3的结构框图;
图14是本申请的一种基站同步装置实施例4的结构框图;
图15是本申请的一种基站同步装置实施例5的结构框图;
图16是本申请的一种基站同步装置实施例6的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
LoRa网络由终端节点、基站节点和服务器组成。终端具有LoRa网络连接能力,并接入该LoRa网络。根据该LoRa网络所部署的应用场景的不同,该终端可以包括不同的电子设备,比如,在该LoRa网络应用于城市管理中时,该终端可以包括智能电表;在该LoRa网络应用于数字家庭中时,该终端可以包括各种智能家电等等。
基站,在LoRa网络中又称为网关或者集中器,具有无线连接汇聚功能,包括终端提供接入LoRa网络的入口,对来自服务器或终端的数据进行转发,实现该终端与该服务器之间的数据交互。当然,基站也能够与处于该基站的信号覆盖范围内的其它基站通过传输无线帧的方式进行数据交互。
服务器可以包括一个服务器或者服务器集群,用于根据从基站或终端获取到的数据进行业务处理,以及对该基站或该终端的工作模式和工作状态进行控制。
参照图1,示出了本申请的一种基站同步方法实施例1的步骤流程图,具体可以包括如下步骤:
步骤101,服务器确定第一基站;
在LoRa网络中,全网基站都与服务器连接。
在本申请实施例中,当服务器需要对基站进行时间同步处理时,服务器首先从全网基站中选择部分或将全部基站作为第一基站。
步骤102,所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
第一基站通过LoRa信道向第二基站发送同步请求帧。第二基站在接收到同步请求帧后,生成同步应答帧,并向服务器发送该同步应答帧。
在本申请实施例中,所述同步请求帧为无线帧。所述同步应答帧可以为无线帧,也 可以为有线帧。
在本申请实施例中,同一个第二基站可以接收到多个第一基站发送的同步请求帧。第二基站针对每一个同步请求帧,生成一个同步应答帧,并将该同步应答帧发送给服务器。
步骤103,所述服务器采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与基准时间的第二系统时差;
在本申请实施例中,服务器可以接收到多个第二基站发送的同步应答帧。服务器针对每一个同步应答帧,确定相应的第一基站的系统时间与基准时间的第一系统时差,以及确定相应的第二基站的系统时间与基准时间的第二系统时差。
基准时间可以是多个第一基站和多个第二基站中的其中一个基站的系统时间。当确定其中一个基站与基准时间的系统时差后,就可以根据各个基站之间的系统时差,计算到各个基站与基准时间的系统时差。
例如,LoRa网络包括:基站1、基站2、基站3和服务器。基站1和基站2,都向基站3发送了同步请求帧。
基站3生成一个针对基站1的同步请求帧的同步应答帧,以及一个针对基站2的同步请求帧的同步应答帧。
服务器可以从基站1的系统时间,或基站2的系统时间,或基站3的系统时间中选取一个系统时间作为基准时间。
若服务器选择基站1的系统时间作为基准时间,则服务器可以根据基站3发送的针对基站1的同步请求帧的同步应答帧,计算基站3的系统时间与基准时间的第二系统时差。由于基站1的系统时间即为基准时间,即基站1的系统时间与基准时间的第一系统时差为0。
服务器可以根据基站3发送的针对基站2的同步请求帧的同步应答帧,计算基站2与基站3的系统时差,然后根据基站3与基准时间的系统时差,计算基站2与基准时间的第一系统时差。
步骤104,所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
在本申请实施例中,服务器将各个基站与基准时间的系统时差,发送到相应的各个基站。各个基站可以根据相应的系统时差进行时间调整。时间调整可以包括:调整本地 的系统时间,或者,调整向Class B模式的终端发送信标无线帧beacon的时间。
例如,当基站1知道了它和基准时间的系统时差,基站1可以选择调整本地的系统时间,然后用修正后的系统时间来控制信标无线帧beacon的发送时间,或者不修改本地的系统时间,而是直接用自己的系统时间加上系统时差来控制信标无线帧beacon的发送时间。
在本申请实施例中,全网中的各个基站都可以根据相应的系统时差,实现与基准时间的同步。并且本申请实施例的同步方法不依于全球定位系统的授时,因此,既避免了各基站设置全球定位系统可能带来的数据传输成本升高的问题,也减少了因各基站无法准确接收定位信号导致的难以可靠进行数据传输的问题,也即是,降低了数据传输成本,提高了数据传输的可靠性。
各个基站可以根据相应的系统时差调整本地系统时间,从而保证各个基站的时间同步。或各个基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个基站之间发送信标无线帧beacon的同步。
参照图2,示出了本申请的一种基站同步方法实施例2的步骤流程图,具体可以包括如下步骤:
步骤201,服务器确定第一基站;
在本申请实施例的一种示例中,如果服务器是在进行初次时间同步处理,则服务器将全网基站确定为第一基站。也就是说所有基站都会向发送同步请求帧。
在LoRa网络中,第一基站可以通过广播的方式发送同步请求帧。在某个第一基站周边的其他基站可以收到该第一基站广播的同步请求帧。在本申请实施例中,将接收到同步请求帧的基站称为第二基站,因此,某个基站即是发送同步请求帧的第一基站,也是接收同步请求帧的第二基站。
由于初次时间同步处理中,全网所有基站都会与其他其他进行同步请求帧的交互过程。因此,全网所有基站都可以与基准时间同步。
在本申请实施例的另一种示例中,如果服务器是在进行第二次时间同步处理,则服务器从全网基站中选取部分基站作为第一基站。
在第二次时间同步处理中,服务器可以只从全网基站中选取部分基站作为第一基站。
例如,服务器可以只从全网基站中,选取具备全球定位系统授时能力的基站作为第一基站。
在本申请实施例的又一种示例中,如果服务器是在进行第二次时间同步处理之后的时间同步处理,则服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;服务器将在初次同步处理过程中,接收到第三基站发送的同步请求帧的基站,确定为第一基站。
例如,在第四次的时间同步处理中,服务器根据时间同步处理的记录,查找在第三次时间同步处理中,接收到同步请求帧的第二基站。
若在第三次时间同步处理中,基站4为接收到基站3发送的同步请求帧的第二基站,则服务器将基站4确定为第三基站。
服务器根据时间同步处理的记录,查找在初次时间同步处理中,接收过基站4发送的同步请求帧的基站。
若基站5和基站6是在初次时间同步处理中,接收过基站4发送的同步请求帧的基站,则服务器将基站5和基站6作为第四次的时间同步处理中的第一基站。
步骤202,所述服务器向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧;
服务器在选定第一基站后,同时向各个第一基站发送启动指令。第一基站根据启动指令,生成同步请求帧。然后在LoRa信道向第二基站发送同步请求帧。
步骤203,所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
第二基站在接收到同步请求帧后,生成同步应答帧,并向服务器发送该同步应答帧。
在本申请实施例中,所述同步请求帧为无线帧。所述同步应答帧可以为无线帧,也可以为有线帧。
步骤204,所述服务器采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与基准时间的第二系统时差;
在本申请实施例中,服务器可以选取第一基站和第二基站中的一个基站的系统时间作为基准时间。
步骤205,所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
在本申请实施例中,所述同步应答帧可以包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;所述步骤205可以 包括如下子步骤:
子步骤S11,所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长,所述测量传输时长为所述同步请求帧从所述第一基站开始发送到所述第二基站接收完成所用的时长;
同步请求帧的发送时间戳可以由第一基站在发送同步请求帧时添加到同步请求帧中。
第二基站接收到同步请求帧后记录当时的时间作为接收时间戳。第二基站可以将同步请求帧的发送时间戳和接收时间戳添加到同步应答帧中。
在本申请实施例中,同步请求帧的发送时间戳与该同步请求帧的接收时间戳的差值,即可作为该同步请求帧从第一基站开始发送到第二基站接收完成所用的测量传输时长。
例如,第二基站根据无线帧1携带发送时间戳,确定无线帧1的发送时间为1444440000000微秒,第二基站在接收到无线帧1时,确定无线帧1的接收时间戳,无线帧1的接收时间为1444448000000微秒,则无线帧1的测量传输时长为1444448000000-1444440000000=8000000微秒。
子步骤S12,所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
无线帧的真实传输时长为无线帧在基站发送时的处理时间、发送无线帧的持续时间以及该无线帧在另一基站接收时的处理时间。由于在LoRa网络中,无线帧的传输精度很高,通常情况下,基站之间传输无线帧所用的真实传输时长仅与该无线帧的帧格式有关,因此,对于同一帧格式的无线帧,该无线帧的真实传输时长是固定的。
在本申请实施例中,可以事先根据无线帧的帧格式,确定与该无线帧对应的真实传输时长,比如,从帧格式与真实传输时长的对应关系中,获取与该无线帧的帧格式对应的真实传输时长。
其中,帧格式与真实传输时长的对应关系,可以通过事先对不同帧格式的无线帧的传输过程进行测试,并将测试得到的真实传输时长与对应的帧格式进行存储得到。
在本申请实施例中,优选的,为了提高确定该真实传输时长的准确性,提高了提高确定第一基站与第二基站的系统时差的准确性,可以确定所述无线帧在所述第一基站与所述第二基站之间往返一次的往返时长,将所述往返时长的一半确定为所述真实传输时长。
在LoRa网络中,基站所确定的时间戳精度很高,通常可以达到微秒级别,所以, 可以通过时间戳,准确地确定无线帧的发送时间和接收时间,发送时间与接收时间之间的差值即为无线帧的测量传输时长。如果该测量传输时长与该真实传输时长相同,则说明第一基站与第二基站的系统时差为0,即第一基站的系统时间与第二基站的系统时间同步;如果该测量传输时长与该真实传输时长不同,则说明第一基站与第二基站的系统时差不为0,该测量传输时长与该真实传输时长之间的差值即为该系统时差。
例如,t ref1表示第一基站发送同步请求帧的发送时间,即第一基站发送该无线帧时第一基站的系统时间;t ref2表示第二基站接收到同步请求帧的接收时间,即第二基站接收同步请求帧时第二基站的系统时间;Δt 1表示同步请求帧在第一基站发送时的处理时间,比如调制所占的时间等;Δt 2表示同步请求帧在第一基站发送至第二基站的持续时间;Δt 3表示同步请求帧在第二基站接收时的处理时间,比如解调所占的时间等。
因此,同步请求帧从所述第一基站开始发送到所述第二基站接收完成所用的测量传输时长Δt ref为:Δt ref=|t ref2-t ref1|。
同步请求帧从所述第一基站开始发送到所述第二基站接收完成所用的真实传输时长ΔT为:ΔT=Δt 1+Δt 2+Δt 3
第一基站与第二基站的系统时差即可为:
Figure PCTCN2018109549-appb-000001
Figure PCTCN2018109549-appb-000002
其中,如果
Figure PCTCN2018109549-appb-000003
则当Δt大于0时,表示第二基站的系统时间超前于第一基站的系统时间,当Δt小于0表示第二基站的系统时间落后于第一基站的系统时间。
如果
Figure PCTCN2018109549-appb-000004
当Δt大于0表示第一基站的系统时间超前于第二基站的系统时间,当Δt小于0表示第一基站的系统时间落后于第二基站的系统时间。
Figure PCTCN2018109549-appb-000005
表示第一基站与第二基站的系统时差为例,ΔT=3微秒。对于无线帧1,发送时间t ref1=1444440000000微秒,接收时间t ref2=1444448000000微秒,Δt ref=1444448000000-1444440000000=8000000微秒,
Figure PCTCN2018109549-appb-000006
即Δt=7990000微秒。
子步骤S13,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,服务器可以接收多个第二基站发送的同步应答帧。服务器针对每一个同步应答帧,确定相应的第一基站的系统时间与基准时间的第一系统时差,以及确定相应的第二基站的系统时间与基准时间的第二系统时差。
基准时间可以是多个第一基站和多个第二基站中的其中一个基站的系统时间。当确定其中一个基站与基准时间的系统时差后,就可以根据各个基站之间的系统时差,计算到各个基站与基准时间的系统时差。
在本申请实施例的一种示例中,所述子步骤S13可以进一步包括如下子步骤:
子步骤S1301,所述服务器选取第一基站的系统时间作为基准时间;
子步骤S1302,所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
在本申请实施例的另一种示例中,所述子步骤S13可以进一步包括如下子步骤:
子步骤S1303,所述服务器选取第二基站的系统时间作为基准时间;
子步骤S1304,所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,基准时间可以是所述服务器的系统时间,也可以是其他精度较高的时钟参考设备的时间,比如铯原子钟等。
服务器可以计算第一基站和第二基站中的一个基站与基准时间的系统时差。然后根据这一个基站与基准时间的系统时差以及各个基站之间系统时差,计算各个基站与基站时间的系统时差。
在本申请实施例的又一种示例中,所述子步骤S13可以进一步包括如下子步骤:
子步骤S1305,所述服务器选取时钟参考设备的时间作为基准时间;
子步骤S1306,所述服务器计算所述第一基站与所述基准时间的第一系统时差;
子步骤S1307,所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例的再一种示例中,所述子步骤S13可以进一步包括如下子步骤:
子步骤S1308,所述服务器选取时钟参考设备的时间作为基准时间;
子步骤S1309,所述服务器计算所述第二基站与所述基准时间的第二系统时差;
子步骤S1310,所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
为了使本领域技术人员能够更好地理解本申请实施例,下面通过一个例子对本申请实施例加以说明:参照图3所示为本申请实施例中初次时间同步处理的示意图。其中LoRa网络包括:基站1、基站2、基站3、基站4以及服务器。
在初次时间同步处理时,服务器将全网所有基站都作为第一基站。服务器首先向基站1、基站2、基站3、基站4发送启动指令。
各基站接收到启动指令后,向周边的基站广播同步请求帧。基站1广播的同步请求帧会被基站2接收;基站2广播的同步请求帧会被基站1和基站3接收;基站3广播的同步请求帧会被基站2和基站4接收;基站4广播的同步请求帧会被基站3接收。
基站在接收到同步请求帧后,针对各个同步请求帧生成相应的同步应答帧,并向服务器发送同步应答帧。
如,基站2在收到基站1和基站3发送的同步请求帧后,分别生成一个针对基站1的同步请求帧的同步应答帧和一个针对基站3的同步请求帧的同步应答帧。基站2将这两个同步应答帧发送至服务器。
服务器根据各个同步应答帧,计算相应的第一基站与第二基站之间的系统时差。
服务器可以根据基站发送同步请求帧的发送时间戳和另一个基站接收同步请求帧的接收时间戳,计算基站之间的测量传输时长。然后根据测量传输时长和预先测定的真实传输时长,计算基站之间的系统时差。
具体的,针对基站1的同步请求帧的同步应答帧包括:基站1发送同步请求帧的发送时间戳,以及基站2接收该同步请求帧的接收时间戳。
服务器根据基站1发送同步请求帧的发送时间戳,以及基站2接收该同步请求帧的接收时间戳,计算基站1与基站2之间的系统时差。
针对基站3的同步请求帧的同步应答帧包括:基站3发送同步请求帧的发送时间戳,以及基站2接收该同步请求帧的接收时间戳。
服务器根据基站3发送同步请求帧的发送时间戳,以及基站2接收该同步请求帧的接收时间戳,计算基站3与基站2之间系统时差。
在计算到各个基站之间系统时差后,可以从各个基站的系统时间中选取其中一个作 为基准时间。然后根据各个基站之间系统时差,计算各个基站与基准时间的系统时差。
服务器将各个基站与基准时间的系统时差,发送至相应的基站。各个基站根据相应的系统时差进行时间调整。
如,服务器在计算到基站1与基站2的系统时差、基站2与基站3的系统时差、基站3与基站4的系统时差后。
服务器选取基站3的系统时间作为基准时间,则基站2与基站3的系统时差,即为基站2与基准时间的系统时差。服务器根据基站1与基站2的系统时差和基站2与基站3的系统时差,可以计算得到基站1与基站3的系统时差,即基站1与基准时间的系统时差。
在初次时间同步处理之后的时间同步处理中,服务器可以只从全网基站中选择部分基站作为第一基站。参照图4所示为本申请实施例中初次时间同步处理之后的时间同步处理示意图。其中,服务器选择基站1和基站3作为第一基站。
服务器首先向基站1、基站3发送启动指令。
基站1、基站3接收到启动指令后,向周边的基站广播同步请求帧。
基站1广播的同步请求帧会被基站2接收;基站3广播的同步请求帧会被基站2和基站4接收。
基站在接收到同步请求帧后,针对各个同步请求帧生成相应的同步应答帧,并向服务器发送同步应答帧。
服务器根据各个同步应答帧,计算相应的第一基站与第二基站之间的系统时差。具体的,可以根据基站发送同步请求帧的时间戳和另一个基站接收同步请求帧的时间戳,计算基站之间的测量传输时长。然后根据测量传输时长和预先测定的真实传输时长,计算基站之间的系统时差。
在计算到各个基站之间系统时差后,可以从各个基站的系统时间中选取其中一个作为基准时间。然后根据各个基站之间系统时差,计算各个基站与基准时间的系统时差。
服务器将各个基站与基准时间的系统时差,发送至相应的基站。各个基站根据相应的系统时差进行时间调整。
在本申请实施例中,初次时间同步处理与之后的时间同步处理的区别只在于选取第一基站的方式不同。
在初次时间同步处理中,服务器将全网基站选取为第一基站。
在之后的时间同步处理中,服务器从全网基站中选取部分基站作为第一基站。
优选的,在进行第二次时间同步处理之后的时间同步处理中,服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;服务器将在初次同步处理过程中,接收到第三基站发送的同步请求帧的基站,确定为第一基站。
参照图5示出了本申请的一种基站同步方法实施例3的步骤流程图,具体可以包括如下步骤:
步骤301,第一基站向第二基站发送同步请求帧;所述第二基站用于根据所述同步请求帧向所述服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差;
在本申请实施例中,所述同步请求帧为无线帧。所述同步应答帧可以为无线帧,也可以为有线帧。
在本申请实施例中,所述步骤301可以包括如下子步骤:
子步骤S21,第一基站接收服务器发送的启动指令,
子步骤S22,所述第一基站根据所述启动指令,向第二基站发送同步请求帧。
在本申请实施例中,第一基站可以通过广播的方式发送同步请求帧。接收到同步请求帧的第二基站,根据同步请求帧向服务器发送同步应答帧。
服务器根据同步应答帧确定第一基站的系统时间与基准时间的系统时差。
其中,服务器根据同步应答帧确定第一基站的系统时间与基准时间的系统时差的方式,可以参见前述中的相关描述,此处不再一一赘述。
步骤302,所述第一基站接收所述服务器发送的所述第一系统时差;
步骤303,所述第一基站采用所述第一系统时差,进行时间调整。
在本申请实施例中,所述步骤303可以包括:
所述第一基站采用所述第一系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
在本申请实施例中,各个第一基站向相应的第二基站发送同步请求帧,第二基站根据同步请求帧向服务器发送同步应答帧。服务器根据同步应答帧,计算相应的第一基站与基准时间的系统时差。各个第一基站可以根据相应的系统时差调整本地系统时间,从而保证各个第一基站的时间同步。或各个第一基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个第一基站之间发送信标无线帧beacon的同步。
参照图6示出了本申请的一种基站同步方法实施例4的步骤流程图,具体可以包括如下步骤:
步骤401,第二基站接收第一基站发送的同步请求帧;
在本申请实施例中,第二基站可以接收第一基站广播的同步请求帧。
步骤402,所述第二基站根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第二基站的系统时间与基准时间的第二系统时差;
在本申请实施例中,所述同步请求帧为无线帧。所述同步应答帧可以为无线帧,也可以为有线帧。
在本申请实施例中,接收到同步请求帧的第二基站,根据同步请求帧向服务器发送同步应答帧。
服务器根据同步应答帧确定第二基站的系统时间与基准时间的系统时差。
其中,服务器根据同步应答帧确定第一基站的系统时间与基准时间的系统时差的方式,可以参见前述中的相关描述,此处不再一一赘述。
步骤403,所述第二基站接收所述服务器发送所述第二系统时差;
步骤404,所述第二基站采用所述第二系统时差,进行时间调整。
在本申请实施例中,所述步骤404可以包括:
所述第二基站采用所述第二系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
在本申请实施例中,各个第一基站向相应的第二基站发送同步请求帧,第二基站根据同步请求帧向服务器发送同步应答帧。服务器根据同步应答帧,计算相应的第二基站与基准时间的系统时差。各个第二基站可以根据相应的系统时差调整本地系统时间,从而保证各个第二基站的时间同步。或各个第二基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个第二基站之间发送信标无线帧beacon的同步。
参照图7示出了本申请的一种基站同步方法实施例5的步骤流程图,具体可以包括如下步骤:
步骤501,服务器确定第一基站;
步骤502,所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所 述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
步骤503,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差;
步骤504,所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
时间调整可以包括:调整本地的系统时间,或者,调整向Class B模式的终端发送信标无线帧beacon的时间。
在本申请实施例中,全网中的各个基站都可以根据相应的系统时差,实现与基准时间的同步。并且本申请实施例的同步方法不依于全球定位系统的授时,因此,既避免了各基站设置全球定位系统可能带来的数据传输成本升高的问题,也减少了因各基站无法准确接收定位信号导致的难以可靠进行数据传输的问题,也即是,降低了数据传输成本,提高了数据传输的可靠性。
各个基站可以根据相应的系统时差调整本地系统时间,从而保证各个基站的时间同步。或各个基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个基站之间发送信标无线帧beacon的同步。
参照图8示出了本申请的一种基站同步方法实施例6的步骤流程图,具体可以包括如下步骤:
步骤601,服务器确定第一基站;
在本申请实施例中的一种示例中,如果服务器是在进行初次时间同步处理,则服务器将全网基站确定为第一基站。
在本申请实施例中的另一种示例中,如果服务器是在进行第二次时间同步处理,则述服务器从全网基站中选取部分基站作为第一基站。
在本申请实施例中的又一种示例中,如果服务器是在进行第二次时间同步处理之后的时间同步处理,则服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;服务器将在初次同步处理过程中,接收到第三基站发送的同步请求帧的基站,确定为第一基站。
步骤602,所述服务器向第一基站发送启动指令;所述第一基站用于根据所述启动 指令,向第二基站发送同步请求帧。
步骤603,所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
步骤604,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差;
在本申请实施例中,所述步骤604可以包括如下子步骤:
子步骤S31,所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
子步骤S32,所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
子步骤S33,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中的一种示例中,所述子步骤S33可以进一步包括如下子步骤:
子步骤S3301,所述服务器选取第一基站的系统时间作为基准时间;
子步骤S3302,所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中的另一种示例中,所述子步骤S33可以进一步包括如下子步骤:
子步骤S3303,所述服务器选取第二基站的系统时间作为基准时间;
子步骤S3304,所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中的又一种示例中,所述子步骤S33可以进一步包括如下子步骤:
子步骤S3305,所述服务器选取时钟参考设备的时间作为基准时间;
子步骤S3306,所述服务器计算所述第一基站与所述基准时间的第一系统时差;
子步骤S3307,所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中的再一种示例中,所述子步骤S33可以进一步包括如下子步骤:
子步骤S3308,所述服务器选取时钟参考设备的时间作为基准时间;
子步骤S3309,所述服务器计算所述第二基站与所述基准时间的第二系统时差;
子步骤S3310,所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
步骤605,所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
参照图9示出了本申请的一种基站同步方法实施例7的步骤流程图,具体可以包括如下步骤:
步骤701,服务器确定第一基站;
步骤702,所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
步骤703,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差;
在本申请实施例中,所述步骤703可以包括如下子步骤:
子步骤S41,所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
子步骤S42,所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
子步骤S43,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,所述子步骤S43可以包括如下子步骤:
子步骤S4301,所述服务器选取第二基站的系统时间作为基准时间;
子步骤S4302,所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
步骤704,所述服务器将所述第一系统时差发送至相应的第一基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整。
参照图10示出了本申请的一种基站同步方法实施例8的步骤流程图,具体可以包括 如下步骤:
步骤801,服务器确定第一基站;
步骤802,所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
步骤803,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与所述基准时间的第二系统时差;
在本申请实施例中,所述步骤803可以包括如下子步骤:
子步骤S51,所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
子步骤S52,所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
子步骤S53,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述子步骤S53可以包括如下子步骤:
子步骤S5301,所述服务器选取第一基站的系统时间作为基准时间;
子步骤S5302,所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
步骤804,所述服务器将所述第二系统时差发送至相应的第二基站;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为根据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图11,示出了本申请的一种基站同步装置实施例1的结构框图,具体可以包括如下模块:
位于服务器的第一基站确定模块901,用于确定第一基站;
位于所述服务器的同步应答帧接收模块902,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
位于所述服务器的系统时差计算模块903,用于采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与所述基准时间的第二系统时差;
位于所述服务器的系统时差发送模块904,用于将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
在本申请实施例中,所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;所述系统时差计算模块903可以包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第一基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
第一基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第二基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
第二基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第三基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第三基准时差确定单元,用于计算所述第一基站与所述基准时间的第一系统时差;
第四基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第四基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第五基准时差确定单元,用于计算所述第二基站与所述基准时间的第二系统时差;
第六基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,所述装置还可以包括:
位于所述服务器的启动指令发送模块,用于向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
在本申请实施例中,所述第一基站确定模块901可以包括:
第一确定子模块,用于在初次时间同步处理中,将全网基站确定为第一基站。
在本申请实施例中,所述第一基站确定模块901还可以包括:
第二确定子模块,用于在第二次时间同步处理中,从全网基站中选取部分基站作为第一基站。
在本申请实施例中,所述第一基站确定模块901还可以包括:
第三基站确定子模块,用于在第二次时间同步处理之后的时间同步处理中,将上一次时间同步处理过程中的第二基站,确定为第三基站;
第三确定子模块,用于将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
在本申请实施例中,全网中的各个基站都可以根据相应的系统时差,实现与基准时间的同步。并且本申请实施例的同步方法不依于全球定位系统的授时,因此,既避免了各基站设置全球定位系统可能带来的数据传输成本升高的问题,也减少了因各基站无法准确接收定位信号导致的难以可靠进行数据传输的问题,也即是,降低了数据传输成本,提高了数据传输的可靠性。
各个基站可以根据相应的系统时差调整本地系统时间,从而保证各个基站的时间同步。或各个基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个基站之间发送信标无线帧beacon的同步。
参照图12,示出了本申请的一种基站同步装置实施例2的结构框图,具体可以包括 如下模块:
位于第一基站的同步请求帧发送模块1001,用于向第二基站发送同步请求帧;所述第二基站用于根据所述同步请求帧向所述服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差;
位于所述第一基站的系统时差接收模块1002,用于接收所述服务器发送的所述第一系统时差;
位于所述第一基站的第一时间调整模块1003,用于采用所述第一系统时差,进行时间调整。
在本申请实施例中,所述同步请求帧发送模块1001可以包括:
启动指令接收子模块,用于接收服务器发送的启动指令,
同步请求帧发送子模块,用于根据所述启动指令,向第二基站发送同步请求帧。
在本申请实施例中,所述第一时间调整模块1003可以包括:
第一时间调整子模块,用于采用所述第一系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
在本申请实施例中,各个第一基站向相应的第二基站发送同步请求帧,第二基站根据同步请求帧向服务器发送同步应答帧。服务器根据同步应答帧,计算相应的第一基站与基准时间的系统时差。各个第一基站可以根据相应的系统时差调整本地系统时间,从而保证各个第一基站的时间同步。或各个第一基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个第一基站之间发送信标无线帧beacon的同步。
参照图13,示出了本申请的一种基站同步装置实施例3的结构框图,具体可以包括如下模块:
位于第二基站的同步请求帧接收模块1101,用于接收第一基站发送的同步请求帧;
位于所述第二基站的同步应答帧发送模块1102,用于根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第二基站的系统时间与基准时间的第二系统时差;
位于所述第二基站的第二系统时差接收模块1103,用于接收所述服务器发送的所述第二系统时差;
位于所述第二基站的第二时间调整模块1104,用于采用所述第二系统时差,进行时间调整。
在本申请实施例中,所述第二时间调整模块1104可以包括:
第二时间调整子模块,用于采用所述第二系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
在本申请实施例中,各个第一基站向相应的第二基站发送同步请求帧,第二基站根据同步请求帧向服务器发送同步应答帧。服务器根据同步应答帧,计算相应的第二基站与基准时间的系统时差。各个第二基站可以根据相应的系统时差调整本地系统时间,从而保证各个第二基站的时间同步。或各个第二基站可以根据相应的系统时差,调整发送信标无线帧beacon的时间,从而保证各个第二基站之间发送信标无线帧beacon的同步。
参照图14,示出了本申请的一种基站同步装置实施例4的结构框图,具体可以包括如下模块:
位于服务器的第一基站确定模块1201,用于确定第一基站;
位于所述服务器同步应答帧接收模块1202,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
位于所述服务器的系统时差计算模块1203,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差;
位于所述服务器的系统时差发送模块1204,用于将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
在本申请实施例中,所述系统时差计算模块1203可以包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所 述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第一基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
第一基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第二基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
第二基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第三基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第三基准时差确定单元,用于计算所述第一基站与所述基准时间的第一系统时差;
第四基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
第四基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
第五基准时差确定单元,用于计算所述第二基站与所述基准时间的第二系统时差;
第六基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,所述的装置还可以包括:
位于所述服务器的启动指令发送模块,用于向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
在本申请实施例中,所述第一基站确定模块1201可以包括:
第一确定子模块,用于在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
在本申请实施例中,所述第一基站确定模块1201还可以包括:
第二确定子模块,用于在第二次时间同步处理中,从全网基站中选取部分基站作为第一基站。
在本申请实施例中,所述第一基站确定模块1201还可以包括:
第三基站确定子模块,用于在第二次时间同步处理之后的时间同步处理中,将上一 次时间同步处理过程中的第二基站,确定为第三基站;
第三确定子模块,用于将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
参照图15,示出了本申请的一种基站同步装置实施例5的结构框图,具体可以包括如下模块:
位于服务器的第一基站确定模块1301,用于确定第一基站;
位于所述服务器同步应答帧接收模块1302,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
位于所述服务器的系统时差计算模块1303,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差;
位于所述服务器的系统时差发送模块1304,用于将所述第一系统时差发送至相应的第一基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整。
在本申请实施例中,所述系统时差计算模块1303可以包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
参照图16,示出了本申请的一种基站同步装置实施例6的结构框图,具体可以包括如下模块:
位于服务器的第一基站确定模块1401,用于确定第一基站;
位于所述服务器同步应答帧接收模块1402,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
位于所述服务器的系统时差计算模块1403,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与所述基准时间的第二系统时差;
位于所述服务器的系统时差发送模块1404,用于将所述第二系统时差发送至相应的第二基站;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
在本申请实施例中,所述系统时差计算模块1403可以包括:
测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差。
在本申请实施例中,所述基准时差确定子模块可以包括:
基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还提供了一种装置,包括:
一个或多个处理器;和
其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述装置执行本申请实施例所述的方法。
本申请实施例还提供了一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得装置执行本申请实施例所述的方法。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者 终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种基站同步方法和一种基站同步装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,根据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (64)

  1. 一种基站同步方法,其特征在于,包括:
    服务器确定第一基站;
    所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差;
    所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
  2. 根据权利要求1所述的方法,其特征在于,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
  3. 根据权利要求2所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取第一基站的系统时间作为基准时间;
    所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
  4. 根据权利要求2所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第 二系统时差的步骤包括:
    所述服务器选取第二基站的系统时间作为基准时间;
    所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
  5. 根据权利要求2所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取时钟参考设备的时间作为基准时间;
    所述服务器计算所述第一基站与所述基准时间的第一系统时差;
    所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
  6. 根据权利要求2所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取时钟参考设备的时间作为基准时间;
    所述服务器计算所述第二基站与所述基准时间的第二系统时差;
    所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
  7. 根据权利要求1所述的方法,其特征在于,还包括:
    所述服务器向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
  8. 根据权利要求7所述的方法,其特征在于,所述服务器确定第一基站的步骤包括:
    在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
  9. 根据权利要求8所述的方法,其特征在于,所述服务器确定第一基站的步骤还包括:
    在第二次时间同步处理中,所述服务器从全网基站中选取部分基站作为第一基站。
  10. 根据权利要求8或9所述的方法,其特征在于,所述服务器确定第一基站的步骤还包括:
    在第二次时间同步处理之后的时间同步处理中,所述服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;
    所述服务器将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
  11. 一种基站同步方法,其特征在于,包括:
    服务器确定第一基站;
    所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
    所述服务器采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与所述基准时间的第二系统时差;
    所述服务器将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
  12. 根据权利要求11所述的方法,其特征在于,所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;所述服务器采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与基准时间的第二系统时差的步骤包括:
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
  13. 根据权利要求11所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取第一基站的系统时间作为基准时间;
    所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述 基准时间的第二系统时差。
  14. 根据权利要求11所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取第二基站的系统时间作为基准时间;
    所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
  15. 根据权利要求11所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取时钟参考设备的时间作为基准时间;
    所述服务器计算所述第一基站与所述基准时间的第一系统时差;
    所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
  16. 根据权利要求11所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取时钟参考设备的时间作为基准时间;
    所述服务器计算所述第二基站与所述基准时间的第二系统时差;
    所述服务器根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
  17. 根据权利要求11所述的方法,其特征在于,还包括:
    所述服务器向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
  18. 根据权利要求17所述的方法,其特征在于,所述服务器确定第一基站的步骤包括:
    在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
  19. 根据权利要求18所述的方法,其特征在于,所述服务器确定第一基站的步骤还包括:
    在第二次时间同步处理中,所述服务器从全网基站中选取部分基站作为第一基站。
  20. 根据权利要求18或19所述的方法,其特征在于,所述服务器确定第一基站的步骤还包括:
    在第二次时间同步处理之后的时间同步处理中,所述服务器将上一次时间同步处理过程中的第二基站,确定为第三基站;
    所述服务器将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
  21. 一种基站同步方法,其特征在于,包括:
    服务器确定第一基站;
    所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差;
    所述服务器将所述第一系统时差发送至相应的第一基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整。
  22. 根据权利要求21所述的方法,其特征在于,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差的步骤包括:
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差。
  23. 根据权利要求22所述的方法,其特征在于,所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差的步骤包括:
    所述服务器选取第二基站的系统时间作为基准时间;
    所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
  24. 一种基站同步方法,其特征在于,包括:
    服务器确定第一基站;
    所述服务器接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与基准时间的第二系统时差;
    所述服务器将所述第二系统时差发送至相应的第二基站;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
  25. 根据权利要求24所述的方法,其特征在于,所述服务器根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    所述服务器计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差。
  26. 根据权利要求25所述的方法,其特征在于,
    所述服务器根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差的步骤包括:
    所述服务器选取第一基站的系统时间作为基准时间;
    所述服务器将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
  27. 一种基站同步方法,其特征在于,包括:
    第一基站向第二基站发送同步请求帧;所述第二基站用于根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差;
    所述第一基站接收所述服务器发送的所述第一系统时差;
    所述第一基站采用所述第一系统时差,进行时间调整。
  28. 根据权利要求27所述的方法,其特征在于,所述第一基站向第二基站发送同步请求帧的步骤包括:
    第一基站接收服务器发送的启动指令,
    所述第一基站根据所述启动指令,向第二基站发送同步请求帧。
  29. 根据权利要求27或28所述的方法,其特征在于,所述第一基站采用所述第一系统时差,进行时间调整的步骤包括:
    所述第一基站采用所述第一系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
  30. 一种基站同步方法,其特征在于,包括:
    第二基站接收第一基站发送的同步请求帧;
    所述第二基站根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第二基站的系统时间与基准时间的第二系统时差;
    所述第二基站接收所述服务器发送的所述第二系统时差;
    所述第二基站采用所述第二系统时差,进行时间调整。
  31. 根据权利要求30所述的方法,其特征在于,所述第二基站采用所述第二系统时差,进行时间调整处理的步骤包括:
    所述第二基站采用所述第二系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
  32. 一种基站同步装置,其特征在于,包括:
    位于服务器的第一基站确定模块,用于确定第一基站;
    位于所述服务器同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
    位于所述服务器的系统时差计算模块,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差,以及计算所述第二基站与所述基 准时间的第二系统时差;
    位于所述服务器的系统时差发送模块,用于将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
  33. 根据权利要求32所述的装置,其特征在于,所述系统时差计算模块包括:
    测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
  34. 根据权利要求33所述的装置,其特征在于,所述基准时差确定子模块包括:
    第一基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
    第一基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
  35. 根据权利要求33所述的装置,其特征在于,所述基准时差确定子模块包括:
    第二基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
    第二基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
  36. 根据权利要求33所述的装置,其特征在于,所述基准时差确定子模块包括:
    第三基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
    第三基准时差确定单元,用于计算所述第一基站与所述基准时间的第一系统时差;
    第四基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
  37. 根据权利要求33所述的装置,其特征在于,所述基准时差确定子模块包括:
    第四基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
    第五基准时差确定单元,用于计算所述第二基站与所述基准时间的第二系统时差;
    第六基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及 所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
  38. 根据权利要求32所述的装置,其特征在于,还包括:
    位于所述服务器的启动指令发送模块,用于向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
  39. 根据权利要求38所述的装置,其特征在于,所述第一基站确定模块包括:
    第一确定子模块,用于在初次时间同步处理中,所述服务器将全网基站确定为第一基站。
  40. 根据权利要求39所述的装置,其特征在于,所述第一基站确定模块还包括:
    第二确定子模块,用于在第二次时间同步处理中,从全网基站中选取部分基站作为第一基站。
  41. 根据权利要求39或40所述的装置,其特征在于,所述第一基站确定模块还包括:
    第三基站确定子模块,用于在第二次时间同步处理之后的时间同步处理中,将上一次时间同步处理过程中的第二基站,确定为第三基站;
    第三确定子模块,用于将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
  42. 一种基站同步装置,其特征在于,包括:
    位于服务器的第一基站确定模块,用于确定第一基站;
    位于所述服务器的同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;
    位于所述服务器的系统时差计算模块,用于采用所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差,以及确定所述第二基站的系统时间与所述基准时间的第二系统时差;
    位于所述服务器的系统时差发送模块,用于将所述第一系统时差发送至相应的第一基站,将所述第二系统时差发送至相应的第二基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
  43. 根据权利要求42所述的装置,其特征在于,所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;所述系统时差计算模块包括:
    测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差,以及计算所述第二基站与所述基准时间的第二系统时差。
  44. 根据权利要求43所述的装置,其特征在于,所述基准时差确定子模块包括:
    第一基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
    第一基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
  45. 根据权利要求43所述的装置,其特征在于,所述基准时差确定子模块包括:
    第二基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
    第二基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
  46. 根据权利要求43所述的装置,其特征在于,所述基准时差确定子模块包括:
    第三基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
    第三基准时差确定单元,用于计算所述第一基站与所述基准时间的第一系统时差;
    第四基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第一系统时差计算所述第二基站与所述基准时间的第二系统时差。
  47. 根据权利要求43所述的装置,其特征在于,所述基准时差确定子模块包括:
    第四基准时间选取单元,用于选取时钟参考设备的时间作为基准时间;
    第五基准时差确定单元,用于计算所述第二基站与所述基准时间的第二系统时差;
    第六基准时差确定单元,用于根据所述第一基站与所述第二基站的系统时差,以及所述第二系统时差计算所述第一基站与所述基准时间的第一系统时差。
  48. 根据权利要求42所述的装置,其特征在于,还包括:
    位于所述服务器的启动指令发送模块,用于向第一基站发送启动指令;所述第一基站用于根据所述启动指令,向第二基站发送同步请求帧。
  49. 根据权利要求48所述的装置,其特征在于,所述第一基站确定模块包括:
    第一确定子模块,用于在初次时间同步处理中,将全网基站确定为第一基站。
  50. 根据权利要求49所述的装置,其特征在于,所述第一基站确定模块还包括:
    第二确定子模块,用于在第二次时间同步处理中,从全网基站中选取部分基站作为第一基站。
  51. 根据权利要求49或50所述的装置,其特征在于,所述第一基站确定模块还包括:
    第三基站确定子模块,用于在第二次时间同步处理之后的时间同步处理中,将上一次时间同步处理过程中的第二基站,确定为第三基站;
    第三确定子模块,用于将在初次同步处理过程中,接收到所述第三基站发送的同步请求帧的基站,确定为第一基站。
  52. 一种基站同步装置,其特征在于,包括:
    位于服务器的第一基站确定模块,用于确定第一基站;
    位于所述服务器同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
    位于所述服务器的系统时差计算模块,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第一基站与基准时间的第一系统时差;
    位于所述服务器的系统时差发送模块,用于将所述第一系统时差发送至相应的第一基站;所述第一基站用于根据所述相应的第一系统时差进行时间调整。
  53. 根据权利要求52所述的装置,其特征在于,所述系统时差计算模块包括:
    测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第一基站与所述基准时间的第一系统时差。
  54. 根据权利要求53所述的装置,其特征在于,所述基准时差确定子模块包括:
    基准时间选取单元,用于选取第二基站的系统时间作为基准时间;
    基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第一基站与所述基准时间的第一系统时差。
  55. 一种基站同步装置,其特征在于,包括:
    位于服务器的第一基站确定模块,用于确定第一基站;
    位于所述服务器同步应答帧接收模块,用于接收第二基站发送的同步应答帧;所述同步应答帧由所述第二基站根据第一基站发送的同步请求帧生成;所述同步应答帧包括所述第一基站发送所述同步请求帧的发送时间戳,以及所述第二基站接收所述同步请求帧的接收时间戳;
    位于所述服务器的系统时差计算模块,用于根据同步请求帧的发送时间戳和接收时间戳,计算所述第二基站与基准时间的第二系统时差;
    位于所述服务器的系统时差发送模块,用于将所述第二系统时差发送至相应的第二基站;所述第二基站用于根据所述相应的第二系统时差进行时间调整。
  56. 根据权利要求55所述的装置,其特征在于,所述系统时差计算模块包括:
    测量传输时长确定子模块,用于根据同步请求帧的发送时间戳和接收时间戳,确定测量传输时长;
    站间时差确定子模块,用于计算所述测量传输时长与预设的无线帧的真实传输时长的测量差值,将所述测量差值作为所述第一基站与所述第二基站的系统时差;
    基准时差确定子模块,用于根据基准时间以及所述第一基站与所述第二基站的系统时差,计算所述第二基站与所述基准时间的第二系统时差。
  57. 根据权利要求56所述的装置,其特征在于,所述基准时差确定子模块包括:
    基准时间选取单元,用于选取第一基站的系统时间作为基准时间;
    基准时差确定单元,用于将所述第一基站与所述第二基站的系统时差,作为所述第二基站与所述基准时间的第二系统时差。
  58. 一种基站同步装置,其特征在于,包括:
    位于第一基站的同步请求帧发送模块,用于向第二基站发送同步请求帧;所述第二基站用于根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第一基站的系统时间与基准时间的第一系统时差;
    位于所述第一基站的系统时差接收模块,用于接收所述服务器发送的所述第一系统时差;
    位于所述第一基站的第一时间调整模块,用于采用所述第一系统时差,进行时间调 整。
  59. 根据权利要求58所述的装置,其特征在于,所述同步请求帧发送模块包括:
    启动指令接收子模块,用于接收服务器发送的启动指令,
    同步请求帧发送子模块,用于根据所述启动指令,向第二基站发送同步请求帧。
  60. 根据权利要求58或59所述的装置,其特征在于,所述第一时间调整模块包括:
    第一时间调整子模块,用于采用所述第一系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
  61. 一种基站同步装置,其特征在于,包括:
    位于第二基站的同步请求帧接收模块,用于接收第一基站发送的同步请求帧;
    位于所述第二基站的同步应答帧发送模块,用于根据所述同步请求帧向服务器发送同步应答帧;所述服务器用于根据所述同步应答帧,确定所述第二基站的系统时间与基准时间的第二系统时差;
    位于所述第二基站的第二系统时差接收模块,用于接收所述服务器发送的所述第二系统时差;
    位于所述第二基站的第二时间调整模块,用于采用所述第二系统时差,进行时间调整。
  62. 根据权利要求61所述的装置,其特征在于,所述第二时间调整模块包括:
    第二时间调整子模块,用于采用所述第二系统时差,调整本地的系统时间,或,调整发送信标无线帧beacon的时间。
  63. 一种基站同步装置,其特征在于,包括:
    一个或多个处理器;和
    其上存储有指令的一个或多个机器可读介质,当由所述一个或多个处理器执行时,使得所述装置执行如权利要求1-10或11-20或21-23或24-26或27-29或30-31所述的一个或多个的方法。
  64. 一个或多个机器可读介质,其上存储有指令,当由一个或多个处理器执行时,使得装置执行如权利要求1-10或11-20或21-23或24-26或27-29或30-31所述的一个或多个的方法。
PCT/CN2018/109549 2017-10-20 2018-10-10 一种基站同步方法和装置 WO2019076214A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710985486.2A CN109699068B (zh) 2017-10-20 2017-10-20 一种基站同步方法和装置
CN201710985486.2 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019076214A1 true WO2019076214A1 (zh) 2019-04-25

Family

ID=66174280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109549 WO2019076214A1 (zh) 2017-10-20 2018-10-10 一种基站同步方法和装置

Country Status (3)

Country Link
CN (1) CN109699068B (zh)
TW (1) TW201918100A (zh)
WO (1) WO2019076214A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113079562B (zh) * 2020-01-06 2022-06-03 广东博智林机器人有限公司 基站间时间同步方法、时间同步装置及电子设备
CN111107169B (zh) * 2020-02-10 2020-10-02 中国人民解放军32021部队 一种基于web浏览器的时间管理方法
CN113395753B (zh) * 2021-08-17 2021-12-14 汉朔科技股份有限公司 一种无线终端与基站同步的方法、系统及无线终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427987B2 (en) * 2008-07-09 2013-04-23 Rockwell Automation Technologies, Inc. System and method for time synchronized beacon enabled wireless personal area network communication
CN103813382A (zh) * 2012-11-14 2014-05-21 华为技术有限公司 时钟同步方法、设备及系统
CN105611621A (zh) * 2016-01-14 2016-05-25 南京航空航天大学 一种适用于多跳无线传感器网络的主从同步方法
CN106961312A (zh) * 2017-05-06 2017-07-18 西北工业大学 一种网络仪器用时间同步系统及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1969475B (zh) * 2005-03-25 2012-07-04 桥扬科技有限公司 用于蜂窝广播和通信系统的方法和设备
CN1946002B (zh) * 2006-09-30 2010-10-06 华为技术有限公司 一种基站之间的时钟同步方法
CN105515710B (zh) * 2011-01-26 2019-05-24 华为技术有限公司 一种实现时间同步的方法和装置
KR20130085507A (ko) * 2011-12-14 2013-07-30 삼성전자주식회사 무선 통신 시스템 및 무선 통신 시스템에서 시간 동기 방법
US9420476B2 (en) * 2013-02-20 2016-08-16 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods of triggering interference mitigation without resource partitioning
US9088941B2 (en) * 2013-07-10 2015-07-21 Freescale Semiconductor,Inc Wireless communication apparatus and method
CN104349450A (zh) * 2013-07-30 2015-02-11 上海贝尔股份有限公司 一种时钟同步的方法及装置
WO2016065642A1 (zh) * 2014-10-31 2016-05-06 华为技术有限公司 一种同步装置及方法
CN105682215A (zh) * 2014-11-21 2016-06-15 中兴通讯股份有限公司 一种时钟同步方法、装置及级联基站系统
US10261165B2 (en) * 2014-12-31 2019-04-16 Qualcomm Incorporated Determining network synchronization status
CN106358283A (zh) * 2015-07-17 2017-01-25 中国移动通信集团公司 一种时间同步的方法、基站、传输设备及系统
US20170091726A1 (en) * 2015-09-07 2017-03-30 NXT-ID, Inc. Low bandwidth crypto currency transaction execution and synchronization method and system
CN106656385B (zh) * 2015-10-29 2019-03-05 华为技术有限公司 中继系统的空口时间同步方法、设备
CN106899370A (zh) * 2015-12-18 2017-06-27 中兴通讯股份有限公司 一种时钟链路切换方法、装置及基站
CN106911414A (zh) * 2015-12-22 2017-06-30 中兴通讯股份有限公司 时钟同步方法和装置
CN107231208A (zh) * 2017-07-19 2017-10-03 京信通信系统(中国)有限公司 一种时钟同步方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8427987B2 (en) * 2008-07-09 2013-04-23 Rockwell Automation Technologies, Inc. System and method for time synchronized beacon enabled wireless personal area network communication
CN103813382A (zh) * 2012-11-14 2014-05-21 华为技术有限公司 时钟同步方法、设备及系统
CN105611621A (zh) * 2016-01-14 2016-05-25 南京航空航天大学 一种适用于多跳无线传感器网络的主从同步方法
CN106961312A (zh) * 2017-05-06 2017-07-18 西北工业大学 一种网络仪器用时间同步系统及方法

Also Published As

Publication number Publication date
TW201918100A (zh) 2019-05-01
CN109699068A (zh) 2019-04-30
CN109699068B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
US11988778B2 (en) Determining a location of a transmitter device
EP4436275A1 (en) Positioning method and apparatus, and storage medium
US11758364B2 (en) Many to many ranging techniques
JP6894059B2 (ja) ビーコンメッセージの伝送
US9954669B2 (en) Method and apparatus for over-the-air anchor-anchor synchronization
WO2020221088A2 (zh) 终端设备的ta确定方法及装置
WO2019076214A1 (zh) 一种基站同步方法和装置
WO2015041959A1 (en) Devices and methods for sending or receiving assistance data
JP2018509095A (ja) デバイスを同期させるための方法およびシステム
EP2545737A1 (en) Location determination of infrastructure device and terminal device
US11411848B2 (en) Flexible ethernet latency measurement method and related device
CN101765198A (zh) 一种时钟同步的方法、装置和系统
WO2019165899A1 (zh) 一种通信网络的定位方法和系统
CN110557823A (zh) 时钟同步方法、装置、终端设备、芯片及可读存储介质
WO2016177090A1 (zh) 时钟同步方法及装置
WO2019037611A1 (zh) 数据传输方法、装置、基站和服务器
TWI577218B (zh) 用於存取點位置符記之方法及設備
WO2023109950A1 (zh) 一种跟踪区边界信息的处理方法、装置、电子设备和可读介质
KR20150023183A (ko) 디바이스의 위치를 결정하는 장치 및 방법
EP3608686A1 (en) Methods and apparatuses for distance measurement
KR20240132368A (ko) 위치 결정 방법, 장치, 디바이스, 저장 매체 및 프로그램 제품
WO2022268067A1 (zh) 定位方法、装置及相关设备
TW202002573A (zh) 伺服器的資料發送方法和裝置
WO2019205925A1 (zh) 通信方法及通信装置
WO2024103393A1 (en) Integrated sensing and communication (isac) configuration design

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868582

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868582

Country of ref document: EP

Kind code of ref document: A1