WO2020220923A1 - 一种玻璃及玻璃制品 - Google Patents

一种玻璃及玻璃制品 Download PDF

Info

Publication number
WO2020220923A1
WO2020220923A1 PCT/CN2020/082900 CN2020082900W WO2020220923A1 WO 2020220923 A1 WO2020220923 A1 WO 2020220923A1 CN 2020082900 W CN2020082900 W CN 2020082900W WO 2020220923 A1 WO2020220923 A1 WO 2020220923A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
value
sio
expressed
mgo
Prior art date
Application number
PCT/CN2020/082900
Other languages
English (en)
French (fr)
Inventor
毛露路
陈雪梅
匡波
郝良振
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to US17/604,674 priority Critical patent/US20220212979A1/en
Priority to JP2021564131A priority patent/JP7472171B2/ja
Publication of WO2020220923A1 publication Critical patent/WO2020220923A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/0048Moulds for lenses
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/02Other methods of shaping glass by casting molten glass, e.g. injection moulding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/20Compositions for glass with special properties for chemical resistant glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/08Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/02Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of crystals, e.g. rock-salt, semi-conductors

Definitions

  • the invention relates to a glass, in particular to a glass and glass products with a relatively large thermal expansion coefficient and excellent thermal shock resistance.
  • aspheric spectacle lenses with a refractive index greater than 1.70 and multifocal aspheric resin spectacle lenses have been widely used in the field of myopia correction.
  • the current mainstream method of producing resin lenses is to inject molten resin into upper and lower molds designed according to the curvature of the spectacle lens. After the resin is cooled, the upper and lower molds are separated to obtain a resin spectacle lens that meets the requirements.
  • the key to determining the quality and yield of resin lenses is the material and design of the injection mold.
  • Glass precision pressing molds usually use silicon carbide or tungsten carbide, but these materials have a much lower thermal expansion coefficient than resin materials, and it is difficult to obtain higher surface quality in the resin injection molding process. More importantly, the above-mentioned mold materials are expensive to process, and mold design requires precision machine tool processing, which is too expensive for injection molding of small batches of spectacle lens products.
  • the glass mold blank can be obtained by pressing, and the surface design of the mold can be obtained by grinding and polishing, and the overall cost is greatly reduced compared with the use of silicon carbide molds.
  • the surface stress of the mold can be further increased to resist thermal shock and pressure shock during injection. Therefore, if the developed glass can be chemically strengthened and has excellent chemical strengthening properties, it will greatly increase the application prospects of the glass.
  • the technical problem to be solved by the present invention is to provide a glass with higher thermal expansion coefficient and excellent thermal shock resistance.
  • the glass as described in (1) the composition of which is expressed in mole percent, and further contains: TiO 2 : 0-6%; and/or ZrO 2 : 0-5%; and/or CaO: 0-10 %; and/or SrO: 0-10%; and/or BaO: 0-10%; and/or Sb 2 O 3 : 0-1%.
  • the glass as described in (3) the composition of which is expressed in mole percentage, and further contains: B 2 O 3 : 0-10%; Al 2 O 3 : 0-10%; TiO 2 : 0-6% ; MgO: 0-15%; ZrO 2 : 0-5%; CaO: 0-10%; SrO: 0-10%; BaO: 0-10%; Sb 2 O 3 : 0-1%.
  • the thermal expansion coefficient ⁇ 100/300°C of the glass as described in any one of (1) to (4) is 85 ⁇ 10 -7 /K or more, preferably 90 ⁇ 10 -7 /K or more, and more preferably 92 ⁇ 10 -7 /K or more, more preferably 94 ⁇ 10 -7 /K or more; and/or water resistance stability D W is 2 or more, preferably 1 type; and/or acid resistance stability D A is 2 Class 1 or higher, preferably Class 1; and/or the rupture temperature is 170°C or higher, preferably 180°C or higher, more preferably 190°C or higher, even more preferably 200°C or higher; and/or the transition temperature T g is 530°C or higher, It is preferably 535°C or higher, more preferably 540°C or higher, and still more preferably 545°C or higher; and/or the bubble degree is A grade or higher, preferably A 0 grade or higher; and/or the streak degree is C grade or higher, preferably B Above level.
  • Glass products the components of which are expressed in mole percentage, containing: SiO 2 : 55-80%; B 2 O 3 : 0-10%; Al 2 O 3 : 0-10%; ZnO: 2-20% ; MgO: 0-15%; Li 2 O+Na 2 O+K 2 O: not more than 30%; TiO 2 : 0-6%; ZrO 2 : 0-5%; CaO: 0-10%; SrO: 0-10%; BaO: 0-10%; Sb 2 O 3 : 0-1%.
  • B 2 O 3 /Al 2 O 3 is 0.1-5, preferably 0.2-3, more preferably 0.25-2;
  • Al 2 O 3 /TiO 2 is 0.2-18, preferably 0.5-10, more preferably 0.5-6;
  • MgO/B 2 O 3 is 1-20, preferably 2-10, more preferably 3-8;
  • the value of Na 2 O/K 2 O is 0.3-6, preferably 0.4-4, more preferably 0.5-3;
  • B 2 O 3 /SiO 2 is 0.002-0.1, preferably 0.005-0.08, more preferably 0.005-0.06;
  • K 2 O/(MgO+CaO) is 0.2-8, preferably 0.5-5, more preferably 0.7-3;
  • Li 2 O+Na 2 O+K 2 O not more than 25%, preferably not more than 20%, more preferably not more than 18%.
  • the thermal expansion coefficient ⁇ 100/300°C of the glass product according to any one of (20) to (22) is 85 ⁇ 10 -7 /K or more, preferably 90 ⁇ 10 -7 /K or more, and more preferably 92 ⁇ 10 -7 /K or more, more preferably 94 ⁇ 10 -7 /K or more; and/or water resistance stability D W is class 2 or more, preferably class 1; and/or acid resistance stability D A is Class 2 or higher, preferably Class 1; and/or the rupture temperature is 170°C or higher, preferably 180°C or higher, more preferably 190°C or higher, even more preferably 200°C or higher; and/or the transition temperature T g is 530°C or higher , Preferably 535°C or higher, more preferably 540°C or higher, and still more preferably 545°C or higher; and/or the bubble degree is A grade or higher, preferably A 0 grade or higher; and/or the streak degree is C grade or higher, preferably Above level B.
  • the surface stress Cs of the glass product according to any one of (19) to (22) is 600 MPa or more, preferably 620 MPa or more, more preferably 630 MPa or more, and still more preferably 640 MPa or more; and/or stress layer depth DoL It is 35 nm or more, preferably 40 nm or more, more preferably 45 nm or more, and even more preferably 50 nm or more.
  • the glass preform is made of the glass described in any one of (1) to (18); or the glass product described in any one of (19) to (24).
  • optical element is made of the glass described in any one of (1)-(18); or made of the glass product described in any of (19)-(24); or made of the glass described in (25) Made of glass preforms.
  • the lens mold is made of the glass described in any one of (1) to (18); or is made of the glass product described in any one of (19) to (24).
  • the excellent effect of the present invention is that the glass obtained by the present invention has a higher coefficient of thermal expansion and excellent thermal shock resistance at the same time through a reasonable proportion of the components.
  • the glass of the present invention is suitable for chemical strengthening, and the glass product obtained after chemical strengthening has a larger surface stress and a deeper stress layer depth.
  • each component of the glass and glass products of the present invention will be described below.
  • the content and total content of each component are all expressed in mole percentage relative to the total glass substance in the composition converted to oxide.
  • the “composition in terms of oxides” means that the oxides, composite salts, hydroxides, etc. used as the raw materials of the glass or glass products of the present invention decompose and transform into oxides when they are melted. In this case, the total molar mass of the oxide is regarded as 100%.
  • the "glass” mentioned in this article refers to the glass before chemical strengthening, and the glass after chemical strengthening in this article is called “glass product”.
  • SiO 2 is the basic component of the glass of the present invention. If its content exceeds 80%, the glass will become infusible, and inclusions such as bubbles or stones will easily appear in the product, which will not meet the intrinsic quality requirements; at the same time, the thermal expansion coefficient of the glass It will drop sharply and fail to meet the design requirements. If its content is less than 55%, the water resistance and acid resistance of the glass will be lower than the design requirements, and the thermal shock resistance of the glass will not meet the design requirements. Therefore, its content is 55-80%, preferably 58-75%, more preferably 60-73%.
  • the content of B 2 O 3 in the present invention is 0-10%.
  • the content of B 2 O 3 is preferably 0.1-10%, more preferably 0.1-6%, and further preferably 0.5-4%.
  • the value of B 2 O 3 /SiO 2 has a strong correlation with the chemical strengthening performance and intrinsic quality of the glass. If the ratio is lower than 0.002, the melting performance of the glass will deteriorate sharply, which will cause The internal bubble quality of the glass cannot meet the requirements; if its content is higher than 0.1, the chemical strengthening performance of the glass will drop sharply, especially the depth of the stress layer of the glass product cannot meet the design requirements. Therefore, the ratio is limited to 0.002-0.1, preferably 0.005-0.08, and more preferably 0.005-0.06.
  • Adding a proper amount of Al 2 O 3 to the glass can improve the chemical strengthening performance of the glass, and at the same time can improve the chemical stability of the glass; if its content exceeds 10%, the chemical strengthening performance of the glass will decrease instead, and the glass will be difficult to melt.
  • the inherent quality of the glass decreases, so the content of Al 2 O 3 is 10% or less.
  • the content of Al 2 O 3 is limited to 0-10%, preferably 0.5-8%, and more preferably 1-5%.
  • Adding a small amount of ZrO 2 to the glass can improve the chemical stability of the glass, especially the water resistance of the glass, as well as the thermal shock resistance of the glass. But its agglomeration is strong, adding to glass will cause a rapid decrease in the coefficient of thermal expansion, especially when the addition amount exceeds 5%. Therefore, its content is limited to 0-5%, preferably 0-3%, and more preferably no addition.
  • the present invention preferably controls the value of B 2 O 3 /Al 2 O 3 to be 0.1-5, more preferably 0.2-3, and still more preferably 0.25-2.
  • the addition of a proper amount of TiO 2 to the glass can significantly improve the compactness of the internal network of the glass, thereby enhancing the thermal shock resistance and chemical stability of the glass. If the content is higher than 6%, the thermal expansion coefficient of the glass will be reduced, which cannot meet the design requirements, so the content of TiO 2 is 0-6%. In some embodiments, if the TiO 2 content is less than 0.1%, the effect of improving the thermal shock resistance and chemical stability of the glass is not obvious. Therefore, the TiO 2 content is preferably 0.1-6%, more preferably 0.2-5%, and still more preferably 0.3-3%.
  • the value of Al 2 O 3 /TiO 2 has a greater influence on the glass chemical strengthening effect, especially on the surface stress (Cs) of the glass product.
  • the ratio is less than 0.2 or greater than 18, the surface stress of the glass product will drop sharply. Therefore, the value of Al 2 O 3 /TiO 2 is limited to 0.2-18, preferably 0.5-10, more preferably 0.5-6.
  • the ratio of (Al 2 O 3 +TiO 2 )/SiO 2 has a greater influence on the thermal expansion coefficient of glass.
  • the ratio is greater than 0.2, although the chemical stability of the glass is slightly improved, its The coefficient of thermal expansion will drop rapidly, failing to meet the design requirements. If the ratio is less than 0.01, the thermal shock resistance of the glass will be greatly reduced. Therefore, (Al 2 O 3 +TiO 2 )/SiO 2 is 0.01-0.2, preferably 0.02-0.15, more preferably 0.02-0.1.
  • Adding a proper amount of ZnO to the glass can make the structure of the glass more compact, improve the chemical stability of the glass, and increase the corrosion resistance of the glass to water and acid solutions during the cleaning process.
  • a certain amount of ZnO can increase the viscosity of the glass during molding and effectively eliminate the internal stripes of the glass. If its content is higher than 20%, the thermal expansion coefficient of the glass drops rapidly, which cannot meet the design requirements. If its content is less than 2%, the water resistance and acid resistance of the glass will decrease, and the glass will be prone to streaks during production. Therefore, its content is limited to 2-20%, preferably 5-15%, more preferably 6-12%.
  • MgO, CaO, SrO and BaO belong to alkaline earth metal oxides.
  • adding to the glass can adjust the glass's crystallization performance and high temperature viscosity, making it easy to obtain glass with bubbles and streaks that meet the quality requirements during production.
  • the inventor found that in terms of improving the thermal shock resistance of glass, the effect of adding MgO is the best.
  • the other three alkaline earth metal oxides are far worse than MgO, SrO, BaO, etc. Has the effect of impairing thermal shock resistance. Therefore, the alkaline earth metal oxidation of the glass of the present invention is mainly based on MgO.
  • a small amount of alkaline earth metal oxides such as CaO, SrO, BaO can be added to optimize the crystallization resistance, high temperature viscosity, and bubble degree. , Streak and other properties.
  • the MgO content is 0-15%, preferably 1-10%, more preferably 2-9%, and still more preferably 3-8%.
  • the ratio of MgO/B 2 O 3 has a greater influence on the thermal shock resistance of the glass. If the ratio is lower than 1, the thermal shock resistance of the glass cannot meet the design requirements. If the ratio is higher than 20, the thermal shock resistance of the glass will decrease, and the crystallization resistance will be greatly reduced. Therefore, the ratio of MgO/B 2 O 3 is 1-20, preferably 2-10, more preferably 3-8.
  • the thermal shock resistance of the glass is surplus, you can consider adding a small amount of CaO to adjust the melting performance and high temperature viscosity of the glass, thereby further improving the bubble (inclusion) level and streak level of the glass.
  • the content of CaO is limited to 0-10%, preferably 0-5%, more preferably 0-3%, and still more preferably no addition.
  • the thermal shock resistance of the glass has a large margin
  • a small amount of BaO or SrO can be added to improve the melting performance and high temperature viscosity of the glass.
  • SrO is preferred.
  • the SrO content is limited to 0-10%, preferably 0-5%, more preferably 0-3%, and further preferably not added.
  • BaO is used, the content is limited to 0-10%, preferably 0-5%, more preferably 0-3%, and even more preferably no addition.
  • Li 2 O, Na 2 O, and K 2 O belong to alkali metal oxides. Adding to glass can reduce the high-temperature viscosity of the glass, and it is easy to obtain products that contain almost no bubbles and inclusions. If the total content exceeds 30%, the chemical stability of the glass drops sharply, and the glass becomes extremely unstable. Therefore, the total content of Li 2 O, Na 2 O, and K 2 O Li 2 O+Na 2 O+K 2 O does not exceed 30%, preferably does not exceed 25%, more preferably does not exceed 20%, and further preferably does not exceed 18 %.
  • the amount of Li 2 O added is 0-10%, preferably 0-5%, more preferably 0-3%, and still more preferably no addition.
  • Adding a proper amount of Na 2 O to the glass can quickly improve the chemical strengthening performance of the glass, and can increase the thermal expansion coefficient of the glass.
  • the free oxygen provided by it will promote the structure of the glass to be more compact, thereby improving the thermal shock resistance of the glass. If its content is less than 3%, the above effect is not obvious, and the viscosity of the glass increases sharply, and it is difficult to obtain high-quality intrinsic quality glass; if its content exceeds 15%, the thermal shock resistance of the glass is significantly reduced and the glass is chemically stable Sex is significantly reduced. Therefore, the content of Na 2 O is limited to 3-15%, preferably 4-12%, more preferably 5-11%.
  • K 2 O is 2-12%, preferably 3-10%, more preferably 4-9%.
  • the inventor has discovered through research that when Na 2 O and K 2 O coexist, a complex synergistic effect is formed.
  • the Na 2 O/K 2 O value is 0.3-6, preferably 0.4-4, and more preferably 0.5-3, the chemical strengthening performance, thermal shock resistance, and chemical stability of the glass will be at the highest level at the same time. Excellent state.
  • the ratio of (Na 2 O+K 2 O)/SiO 2 has a greater influence on the thermal expansion coefficient, thermal shock resistance and intrinsic quality of the glass.
  • (Na 2 O+K 2 O)/SiO 2 is less than 0.1, the viscosity of the glass becomes larger, and the internal quality of bubbles and streaks becomes worse. At the same time, the thermal expansion coefficient of the glass becomes smaller, which fails to meet the design requirements.
  • (Na 2 O+K 2 O)/SiO 2 is greater than 0.4, the crystallization resistance of the glass becomes worse, and the thermal shock resistance of the glass decreases rapidly. Therefore, (Na 2 O+K 2 O)/SiO 2 is 0.1-0.4, preferably 0.12-0.35, more preferably 0.15-0.32.
  • the ratio of (Na 2 O+K 2 O)/ZnO has an influence on the chemical strengthening performance and thermal shock resistance of the glass, especially the depth of the stress layer of the glass product.
  • (Na 2 O+K 2 O)/ZnO is less than 0.4, the depth of the stress layer of the glass cannot meet the design requirements; when (Na 2 O+K 2 O)/ZnO is greater than 10, the thermal shock resistance of the glass is fast Decline and fail to meet the design requirements. Therefore, (Na 2 O+K 2 O)/ZnO is 0.4-10, preferably 0.5-8, more preferably 1-5.
  • the ratio of K 2 O/(MgO+CaO) has a greater correlation with the devitrification resistance of the glass and the depth of the stress layer of the glass product. If the ratio is lower than 0.2, the depth of the stress layer of the glass product reaches Not meet the design requirements; if the ratio is greater than 8, the devitrification resistance of the glass will deteriorate, and it cannot meet the requirements of secondary pressing. Therefore, the ratio of K 2 O/(MgO+CaO) is 0.2-8, preferably 0.5-5, and more preferably 0.7-3.
  • Sb 2 O 3 is a fining agent, added to glass to make it easier to eliminate bubbles.
  • its content is limited to 0-1%, preferably 0-0.8%, more preferably 0-0.5%.
  • the coefficient of thermal expansion ( ⁇ 100/300°C ) of glass or glass products at 100°C-300°C is tested according to the method specified in GB/T7962.16-2010.
  • the thermal expansion coefficient ( ⁇ 100/300° C. ) of the glass or glass product of the present invention is 85 ⁇ 10 -7 /K or more, preferably 90 ⁇ 10 -7 /K or more, more preferably 92 ⁇ 10 -7 /K or more, and further Preferably it is 94 ⁇ 10 -7 /K or more.
  • the water resistance stability (D W ) of glass or glass products is tested in accordance with the method specified in GB/T 17129.
  • the water resistance stability (D W ) of the glass or glass product of the present invention is Class 2 or more, preferably Class 1.
  • the thermal shock resistance of glass or glass products is tested by the water cooling method.
  • the glass sample is processed into a disc with a diameter of 30mm and a thickness of 2mm, with a smooth surface.
  • Put the processed glass discs in a heating furnace heat up to the preset temperature, start at 100°C, keep for 5 minutes, after the glass discs are uniform in temperature, take them out and put them in cold water at 10°C. If the glass does not crack, increase The temperature of the heating furnace is 10°C, and the above experiment is carried out until the glass disc is thrown into cold water to break. At this time, the temperature of the heating furnace is recorded as the "rupture temperature". The higher the rupture temperature, the stronger the thermal shock resistance of the glass.
  • the breaking temperature of the glass or glass product of the present invention is 170°C or higher, preferably 180°C or higher, more preferably 190°C or higher, and even more preferably 200°C or higher.
  • transition temperature (T g ) of glass or glass products is tested in accordance with the method specified in GB/T 7962.16-2010.
  • the transition temperature (T g ) of the glass or glass product of the present invention is 530°C or higher, preferably 535°C or higher, more preferably 540°C or higher, and still more preferably 545°C or higher.
  • the test method for the devitrification resistance of glass or glass products is as follows: cut the sample glass into 20 ⁇ 20 ⁇ 10mm size, put it in a muffle furnace with a temperature of T g +230 °C for 30 minutes, and put it in insulation cotton after taking it out Cool slowly and observe the surface crystallization after cooling. If the glass after cooling has obvious devitrification, the anti-devitrification performance of the glass is poor, which is recorded as "B”; if the glass does not have obvious devitrification after cooling, the anti-devitrification performance of the glass meets the requirements of the secondary compression type, which is recorded as "A".
  • the devitrification resistance of the glass or glass product of the invention can reach Class A, which meets the needs of secondary pressing to produce blanks.
  • the degree of air bubbles (including inclusions) of glass or glass products is measured and classified according to the test method specified in GB/T7962.8-2010.
  • the bubble degree of the glass or glass product of the present invention is A level or higher, preferably A 0 level or higher.
  • the fringe degree of glass or glass products uses a fringe meter composed of a point light source and a lens. From the direction where the fringes are most easily seen, the fringe degree is compared with the standard sample and is divided into four levels, as shown in Table 1.
  • the fringe degree of the glass or glass product of the present invention is C level or higher, preferably B level or higher.
  • the glass manufacturing method of the present invention is: weighing and mixing common raw materials for glass (such as oxides, hydroxides, carbonates, nitrates, etc.) according to the ratio, and placing the mixed raw materials in a platinum crucible at 1320-1420°C It is melted in the middle for 2.5-4 hours, and after clarification, stirring and homogenization, a homogeneous molten glass with no bubbles and no undissolved substances is obtained. The molten glass is cast in a mold and annealed.
  • common raw materials for glass such as oxides, hydroxides, carbonates, nitrates, etc.
  • the glass obtained by the present invention is processed into a preform, and then chemically strengthened.
  • the chemical strengthening described in the present invention is an ion exchange method, and the glass of the present invention can be ion exchanged by methods known in the art.
  • the ion exchange process smaller metal ions in the glass are replaced or "exchanged" by larger metal ions of the same valence close to the glass. Replace the smaller ions with larger ions to build up compressive stress in the glass and form a compressive stress layer.
  • the metal ion is a monovalent alkali metal ion (e.g., Na + , K + , Rb + , Cs +, etc.), and ion exchange is performed by immersing the glass in a salt containing at least one molten salt of a larger metal ion. In a bath, the larger metal ions are used to replace the smaller metal ions in the glass. Alternatively, other monovalent metal ions such as Ag + , Tl + , Cu + etc. can also be used for exchange.
  • monovalent alkali metal ion e.g., Na + , K + , Rb + , Cs +, etc.
  • One or more ion exchange processes used for glassware can include, but are not limited to: immersing it in a single salt bath, or immersing it in multiple salt baths with the same or different compositions, between immersion There are washing and/or annealing steps.
  • the glass can be ion-exchanged by immersing in a salt bath of molten Na salt (such as NaNO 3 ) at a temperature of about 420° C.-480° C. for about 4-20 hours.
  • Na ions replace part of Li ions in the glass, thereby forming a surface compression layer.
  • the glass may be immersed in a salt bath of molten K salt (such as KNO 3 ) at a temperature of about 420° C.-480° C. for 4-20 hours to perform ion exchange for the embodiment.
  • the ion implantation method of implanting ions into the surface layer of the glass and the thermal strengthening method of heating the glass and then rapidly cooling it.
  • the glass products obtained by the present invention also have the following properties:
  • the surface stress (Cs) of the glass product of the present invention is 600 MPa or more, preferably 620 MPa or more, more preferably 630 MPa or more, and still more preferably 640 MPa or more.
  • the depth of stress layer (DoL) of the glass product of the present invention is 35 nm or more, preferably 40 nm or more, more preferably 45 nm or more, and even more preferably 50 nm or more.
  • the glass or glass products of the present invention can be used to make molds for glass preforms, optical elements, optical instruments and lenses (such as resin spectacle lenses).
  • the glass preform can be made from the glass or glass products made by means of grinding, or compression molding, such as re-hot pressing and precision stamping. That is, glass or glass products can be made by mechanical processing such as grinding and grinding to produce glass preforms, or by making preforms for compression molding from glass or glass products, and then hot press forming the preforms Afterwards, grinding is performed to make a glass preform, or the preforms made by grinding are precision stamped to make a glass preform.
  • the means for preparing the glass preform is not limited to the above-mentioned means.
  • the glass or glass product of the present invention is useful for various optical elements and optical designs. Among them, it is particularly preferable to form a preform from the glass or glass product of the present invention, and use the preform to perform re-hot press molding, Precision stamping molding, etc., to produce optical components such as lenses and prisms.
  • the glass preform and the optical element of the present invention are both formed of the above-mentioned glass or glass product of the present invention.
  • the glass preform of the present invention has excellent characteristics of glass or glass products;
  • the optical element of the present invention has excellent characteristics of glass or glass products, and can provide various lenses, prisms and other optical elements with high optical value.
  • lenses include various lenses such as concave meniscus lenses, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, and plano-concave lenses whose lens surfaces are spherical or aspherical.
  • optical element formed by the glass or glass product of the present invention can be made into optical instruments such as photographic equipment, imaging equipment, display equipment and monitoring equipment.
  • the glass or glass products of the present invention can be applied to electronic devices or display devices, such as mobile phones, watches, computers, touch screens and the like.
  • the glass or glass product of the present invention can be applied to the sealing or packaging between metals, such as the sealing or packaging between platinum, iron-nickel alloy, iron-nickel-chromium alloy and the like.
  • the glass of Examples 1-15 obtained in Table 1 to Table 2 was made into glass products according to the manufacturing method of the above glass products, and the surface stress and the depth of the stress layer were tested, and the results were listed in Tables 3 to 4 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Glass Compositions (AREA)

Abstract

一种具有较高热膨胀系数、抗热冲击性能优异的玻璃,玻璃组分以摩尔百分比表示,含有:SiO 2:55-80%;B 2O 3:0-10%;Al 2O 3:0-10%;ZnO:2-20%;MgO:0-15%;Li 2O+Na 2O+K 2O:不超过30%。通过对组分的合理配比,使获得的玻璃同时具有较高热膨胀系数和优异的抗热冲击性能。该玻璃适于化学强化。化学强化后获得的玻璃制品具有较大的表面应力和较深的应力层深度。

Description

一种玻璃及玻璃制品 技术领域
本发明涉及一种玻璃,尤其是涉及一种具有较大热膨胀系数、抗热冲击性能优异的玻璃及玻璃制品。
技术领域
近年来,折射率大于1.70的非球面眼镜片,以及多焦点非球面树脂眼镜片在近视矫正领域得到了广泛的应用。
目前主流生产树脂镜片的方法是将熔融的树脂注入按眼镜片曲率设计的上下模具中,待树脂冷却后将上下模具分离,即可得到符合要求的树脂眼镜片。决定树脂镜片品质和良品率的关键在于其注塑模具的材质和设计。
玻璃精密压型模具通常使用碳化硅或者碳化钨,但这类材料热膨胀系数较树脂材料低很多,在树脂注塑工艺中很难获得较高的表面质量。更为重要的是,上述模具材质加工昂贵,模具设计需要精密机床加工,对于小批量多规格的眼镜片产品注塑来说,价格过于昂贵。而玻璃模具毛坯可以通过压型获得,模具的表面设计可以通过研磨抛光获得,综合成本较使用碳化硅模具大幅度降低。
并非所有的玻璃都能够作为树脂模具使用,具有大的膨胀系数的玻璃有利于提升树脂镜片的表面质量,但现有技术中膨胀系数较大的玻璃抗热冲击性能往往都较低,在注塑模压工艺中,尤其是降温工艺中,玻璃模具会受到极强的热冲击,若抗热冲击性能不良,玻璃模具会发生炸裂,因此树脂镜片模具玻璃需要有优异的抗热冲击性能。因此,开发一款具有同时具有较高热膨胀系数和抗热冲击性能的玻璃成了玻璃研发的目标。
另一方面,通过对玻璃进行化学强化,可进一步提升模具的表面应力以抵抗注塑时的热冲击和压力冲击。因此,若开发的玻璃可进行化学强化,具有优异的化学强化性能,将大大增加玻璃的应用前景。
发明内容
本发明所要解决的技术问题是提供一种具有较高热膨胀系数、抗热冲击性能优异的玻璃。
本发明解决技术问题所采用的技术方案是:
(1)一种玻璃,其组分以摩尔百分比表示,含有:SiO 2:55-80%;B 2O 3:0-10%;Al 2O 3:0-10%;ZnO:2-20%;MgO:0-15%;Li 2O+Na 2O+K 2O:不超过30%。
(2)如(1)所述的玻璃,其组分以摩尔百分比表示,还含有:TiO 2:0-6%;和/或ZrO 2:0-5%;和/或CaO:0-10%;和/或SrO:0-10%;和/或BaO:0-10%;和/或Sb 2O 3:0-1%。
(3)一种玻璃,含有SiO 2、ZnO、碱土金属氧化物和碱金属氧化物,其组分以摩尔百分比表示,含有:SiO 2:55-80%;ZnO:2-20%;Li 2O+Na 2O+K 2O:不超过30%,其中(Na 2O+K 2O)/ZnO的值为0.4-10。
(4)如(3)所述的玻璃,其组分以摩尔百分比表示,还含有:B 2O 3:0-10%;Al 2O 3:0-10%;TiO 2:0-6%;MgO:0-15%;ZrO 2:0-5%;CaO:0-10%;SrO:0-10%;BaO:0-10%;Sb 2O 3:0-1%。
(5)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,含有:SiO 2:58-75%;和/或B 2O 3:0.1-10%;和/或Al 2O 3:0.5-8%;和/或TiO 2:0.1-6%;和/或ZnO:5-15%;和/或MgO:1-10%;和/或Li 2O+Na 2O+K 2O:不超过25%;和/或ZrO 2:0-3%;和/或CaO:0-5%;和/或SrO:0-5%;和/或BaO:0-5%;和/或Sb 2O 3:0-0.8%。
(6)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:B 2O 3/SiO 2的值为0.002-0.1,优选B 2O 3/SiO 2的值为0.005-0.08,更优选B 2O 3/SiO 2的值为0.005-0.06。
(7)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:B 2O 3/Al 2O 3的值为0.1-5,优选B 2O 3/Al 2O 3的值为0.2-3,更优选B 2O 3/Al 2O 3的值为0.25-2。
(8)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其 中:Al 2O 3/TiO 2的值为0.2-18,优选Al 2O 3/TiO 2的值为0.5-10,更优选Al 2O 3/TiO 2的值为0.5-6。
(9)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:(Al 2O 3+TiO 2)/SiO 2的值为0.01-0.2,优选(Al 2O 3+TiO 2)/SiO 2的值为0.02-0.15,更优选(Al 2O 3+TiO 2)/SiO 2的值为0.02-0.1。
(10)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:MgO/B 2O 3的值为1-20,优选MgO/B 2O 3的值为2-10,更优选MgO/B 2O 3的值为3-8。
(11)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:Na 2O/K 2O的值为0.3-6,优选Na 2O/K 2O的值为0.4-4,更优选Na 2O/K 2O的值为0.5-3。
(12)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:(Na 2O+K 2O)/SiO 2的值为0.1-0.4,优选(Na 2O+K 2O)/SiO 2的值为0.12-0.35,更优选(Na 2O+K 2O)/SiO 2的值为0.15-0.32。
(13)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:(Na 2O+K 2O)/ZnO的值为0.4-10,优选(Na 2O+K 2O)/ZnO的值为0.5-8,更优选(Na 2O+K 2O)/ZnO的值为1-5。
(14)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,其中:K 2O/(MgO+CaO)的值为0.2-8,优选K 2O/(MgO+CaO)的值为0.5-5,更优选K 2O/(MgO+CaO)的值为0.7-3。
(15)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,含有:SiO 2:60-73%;和/或B 2O 3:0.1-6%;和/或Al 2O 3:1-5%;和/或TiO 2:0.2-5%;和/或ZnO:6-12%;和/或MgO:2-9%;和/或CaO:0-3%;和/或SrO:0-3%;和/或BaO:0-3%;和/或Li 2O+Na 2O+K 2O:不超过20%;和/或Sb 2O 3:0-0.5%。
(16)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,含有:B 2O 3:0.5-4%;和/或TiO 2:0.3-3%;和/或MgO:3-8%;和/或Li 2O+Na 2O+K 2O: 不超过18%。
(17)如(1)-(4)任一所述的玻璃,其组分以摩尔百分比表示,含有:Li 2O:0-10%,优选Li 2O:0-5%,更优选Li 2O:0-3%;和/或Na 2O:3-15%,优选Na 2O:4-12%,更优选Na 2O:5-11%;和/或K 2O:2-12%,优选K 2O:3-10%,更优选K 2O:4-9%。
(18)如(1)-(4)任一所述的玻璃的热膨胀系数α 100/300℃为85×10 -7/K以上,优选为90×10 -7/K以上,更优选为92×10 -7/K以上,进一步优选为94×10 -7/K以上;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或破裂温度为170℃以上,优选为180℃以上,更优选为190℃以上,进一步优选为200℃以上;和/或转变温度T g为530℃以上,优选为535℃以上,更优选为540℃以上,进一步优选为545℃以上;和/或气泡度为A级以上,优选为A 0级以上;和/或条纹度为C级以上,优选为B级以上。
(19)玻璃制品,由(1)-(18)任一所述的玻璃经化学强化制成。
(20)玻璃制品,其组分以摩尔百分比表示,含有:SiO 2:55-80%;B 2O 3:0-10%;Al 2O 3:0-10%;ZnO:2-20%;MgO:0-15%;Li 2O+Na 2O+K 2O:不超过30%;TiO 2:0-6%;ZrO 2:0-5%;CaO:0-10%;SrO:0-10%;BaO:0-10%;Sb 2O 3:0-1%。
(21)如(20)所述的玻璃制品,其组分以摩尔百分比表示,满足以下10种情形中的一种或一种以上:
1)(Na 2O+K 2O)/SiO 2的值为0.1-0.4,优选为0.12-0.35,更优选为0.15-0.32;
2)B 2O 3/Al 2O 3的值为0.1-5,优选为0.2-3,更优选为0.25-2;
3)Al 2O 3/TiO 2的值为0.2-18,优选为0.5-10,更优选为0.5-6;
4)(Al 2O 3+TiO 2)/SiO 2的值为0.01-0.2,优选为0.02-0.15,更优选为0.02-0.1;
5)MgO/B 2O 3的值为1-20,优选为2-10,更优选为3-8;
6)Na 2O/K 2O的值为0.3-6,优选为0.4-4,更优选为0.5-3;
7)B 2O 3/SiO 2的值为0.002-0.1,优选为0.005-0.08,更优选为0.005-0.06;
8)(Na 2O+K 2O)/ZnO的值为0.4-10,优选为0.5-8,更优选为1-5;
9)K 2O/(MgO+CaO)的值为0.2-8,优选为0.5-5,更优选为0.7-3;
10)Li 2O+Na 2O+K 2O:不超过25%,优选不超过20%,更优选不超过18%。
(22)如(20)所述的玻璃制品,其组分以摩尔百分比表示,含有:SiO 2:58-75%,优选为60-73%;和/或B 2O 3:0.1-10%,优选为0.1-6%,更优选为0.5-4%;和/或Al 2O 3:0.5-8%,优选为1-5%;和/或ZnO:5-15%,优选为6-12%;和/或MgO:1-10%,优选为2-9%,更优选为3-8%;和/或TiO 2:0.1-6%,优选为0.2-5%,更优选为0.3-3%;和/或ZrO 2:0-3%;和/或CaO:0-5%,优选为0-3%;和/或SrO:0-5%,优选为0-3%;和/或BaO:0-5%,优选为0-3%;和/或Li 2O:0-10%,优选为0-5%,更优选为0-3%;和/或Na 2O:3-15%,优选为4-12%,更优选为5-11%;和/或K 2O:2-12%,优选为3-10%,更优选为4-9%;和/或Sb 2O 3:0-0.8%,优选为0-0.5%。
(23)如(20)-(22)任一所述的玻璃制品的热膨胀系数α 100/300℃为85×10 -7/K以上,优选为90×10 -7/K以上,更优选为92×10 -7/K以上,进一步优选为94×10 -7/K以上;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或破裂温度为170℃以上,优选为180℃以上,更优选为190℃以上,进一步优选为200℃以上;和/或转变温度T g为530℃以上,优选为535℃以上,更优选为540℃以上,进一步优选为545℃以上;和/或气泡度为A级以上,优选为A 0级以上;和/或条纹度为C级以上,优选为B级以上。
(24)如(19)-(22)任一所述的玻璃制品的表面应力Cs为600MPa以上,优选为620MPa以上,更优选为630MPa以上,进一步优选为640MPa以上;和/或应力层深度DoL为35nm以上,优选为40nm以上,更优选为45nm以上,进一步优选为50nm以上。
(25)玻璃预制件,采用(1)-(18)任一所述的玻璃制成;或采用(19)-(24)任一所述的玻璃制品制成。
(26)光学元件,采用(1)-(18)任一所述的玻璃制成;或采用(19)-(24)任一所述的玻璃制品制成;或采用(25)所述的玻璃预制件制成。
(27)光学仪器,采用(1)-(18)任一所述的玻璃制成;或采用(19)-(24)任一所述的玻璃制品制成;或采用(25)所述的玻璃预制件制成;或采用(26)所述的光学元件制成。
(28)镜片模具,采用(1)-(18)任一所述的玻璃制成;或采用(19)-(24)任一所述的玻璃制品制成。
(29)(1)-(18)任一所述的玻璃或(19)-(24)任一所述的玻璃制品在电子设备或显示设备中的应用,或在金属之间的封装或封接的应用。
本发明的优异效果是:通过对组分的合理配比,使本发明获得的玻璃同时具有较高热膨胀系数和优异的抗热冲击性能。本发明的玻璃适于化学强化,化学强化后获得的玻璃制品具有较大的表面应力和较深的应力层深度。
具体实施方式
下面,对本发明的玻璃和玻璃制品的实施方式进行详细说明,但本发明不限于下述的实施方式,在本发明目的的范围内可进行适当的变更来加以实施。此外,关于重复说明部分,虽然有适当的省略说明的情况,但不会因此而限制发明的主旨。
下面对本发明玻璃和玻璃制品的各组分范围进行说明。在本说明书中,如果没有特殊说明,各组分的含量、总含量全部采用相对于换算成氧化物的组成的玻璃物质总量的摩尔百分比表示。在这里,所述“换算成氧化物的组成”是指,作为本发明的玻璃或玻璃制品组成成分的原料而使用的氧化物、复合盐及氢氧化物等熔融时分解并转变为氧化物的情况下,将该氧化物的物质总摩尔量作为100%。本文中所述“玻璃”,是指未经化学强化前的玻璃,本文中经化学强化后的玻璃称为“玻璃制品”。
除非在具体情况下另外指出,本文所列出的数值范围包括上限和下限值,“以上”和“以下”包括端点值,以及包括在该范围内的所有整数和分数,而不限于所限定范围时所列的具体值。本文所称“和/或”是包含性的,例如“A和/或B”,是指只有A,或者只有B,或者同时有A和B。
SiO 2是本发明形成玻璃的基础组分,若其含量超过80%,玻璃会变得难熔,容易在产品中出现气泡或结石等夹杂物从而达不到内在质量要求;同时玻璃的热膨胀系数会急剧变低,达不到设计要求。若其含量低于55%,玻璃的耐水性和耐酸性会低于设计要求,玻璃的抗热冲击性能达不到设计要求。因此,其含量为55-80%,优选为58-75%,更优选为60-73%。
B 2O 3加入玻璃中可以降低玻璃的熔融温度,改善玻璃的内在质量。在本发明中若B 2O 3含量超过10%,玻璃的化学强化性能快速下降,因此本发明中B 2O 3含量为0-10%。在本发明的一些实施方式中,通过引入0.1%以上的B 2O 3,有利于玻璃网络结构的加强,从而进一步提升玻璃的耐水性和耐酸性,尤其是B 2O 3含量在0.5%以上时,还可有效解决玻璃的“发缸”问题,提高玻璃内部质量,因此优选B 2O 3含量为0.1-10%,更优选为0.1-6%,进一步优选为0.5-4%。
在本发明的一些实施方式中,B 2O 3/SiO 2的值对玻璃的化学强化性能和内在质量有较强的关联,若其比值低于0.002,玻璃的融化性能急剧变差,会导致玻璃内在气泡质量达不到要求;若其含量高于0.1,玻璃的化学强化性能会急剧下降,尤其是玻璃制品的应力层深度达不到设计要求。因此,其比值限定为0.002-0.1,优选为0.005-0.08,进一步优选为0.005-0.06。
合适量的Al 2O 3加入玻璃中可以提升玻璃的化学强化性能,同时可以提升玻璃的化学稳定性;若其含量超过10%,玻璃的化学强化性能反而会下降,同时玻璃熔化困难,带来玻璃内在质量的下降,因此Al 2O 3的含量为10%以下。在一些实施方式中,若Al 2O 3含量低于0.5%,提升化学强化性能的效果不明显。因此,Al 2O 3含量限定为0-10%,优选为0.5-8%,进一步优选为1-5%。
少量的ZrO 2添加到玻璃中可以提升玻璃的化学稳定性,尤其是玻璃的耐水性,同时还可以提升玻璃的抗热冲击性能。但其聚集性较强,加入玻璃中会导致热膨胀系数的快速下降,尤其是在添加量超过5%的情况下。因此其含量限定为0-5%,优选为0-3%,进一步优选为不添加。
发明人研究发现,在一些实施方式中,当玻璃中同时存在B 2O 3与Al 2O 3时,其相对含量对玻璃的抗热冲击性能有较大的影响。当B 2O 3/Al 2O 3的值大于5或小于0.1时,玻璃的抗热冲击性能下降,破裂温度大幅度下降。因此,本发明优选控制B 2O 3/Al 2O 3的值为0.1-5,更优选为0.2-3,进一步优选为0.25-2。
合适量的TiO 2加入玻璃中能够明显提升玻璃内部网络的致密性,从而提升玻璃的抗热冲击性能和化学稳定性。若其含量高于6%,玻璃的热膨胀系数会降低,达不到设计要求,因此TiO 2的含量为0-6%。在一些实施方式中,若TiO 2含量低于0.1%,提升玻璃抗热冲击性以及化学稳定性的效果不明显。因此,TiO 2含量优选为0.1-6%,更优选为0.2-5%,进一步优选为0.3-3%。
在一些实施方式中,Al 2O 3/TiO 2的值对玻璃化学强化效果,尤其是对玻璃制品的表面应力(Cs)有较大的影响。当其比值小于0.2或大于18时,玻璃制品的表面应力会急剧下降。因此,Al 2O 3/TiO 2的值限定为0.2-18,优选为0.5-10,更优选为0.5-6。
在一些实施方式中,(Al 2O 3+TiO 2)/SiO 2比值对玻璃的热膨胀系数有较大的影响,当其比值大于0.2时,虽然玻璃的化学稳定性有稍微的提升,但其热膨胀系数会快速下降,达不到设计要求。若其比值低于0.01,玻璃的抗热冲击性能会大幅度下降。因此,(Al 2O 3+TiO 2)/SiO 2为0.01-0.2,优选为0.02-0.15之间,更优选为0.02-0.1。
合适量的ZnO加入玻璃中可以使得玻璃的结构更加致密,提升玻璃的化学稳定性,增加玻璃在清洗过程中对水和酸性溶液的抗腐蚀性。另外,一定量的ZnO能够增加玻璃在成型时的粘度,有效消除玻璃内部条纹。若 其含量高于20%,玻璃的热膨胀系数快速下降,不能满足设计要求。若其含量低于2%,玻璃的耐水和耐酸性能下降,同时玻璃在生产时容易产生条纹。因此,其含量限定为2-20%,优选为5-15%,更优选为6-12%。
MgO、CaO、SrO和BaO属于碱土金属氧化物,从生产工艺性能来讲,加入玻璃中可以调整玻璃的析晶性能和高温粘度,使得在生产中容易获得气泡和条纹达到质量要求的玻璃。但是,发明人研究发现,从提升玻璃抗热冲击性能来讲,添加MgO的效果最佳,其他三种碱土金属氧化物对提升玻璃抗热冲击性能的能力远差于MgO,SrO、BaO等甚至有损害抗热冲击性能的作用。因此,本发明玻璃的碱土金属氧化主要是以MgO为主,当抗热冲击性能有富余时,可以少量添加CaO、SrO、BaO等碱土金属氧化物来优化抗析晶性能、高温粘度、气泡度、条纹度等其他性能。
本发明中引入15%以下的MgO,在获得上述性能的同时防止玻璃因过量添加MgO而导致的不稳定。在一些实施方式中,当MgO的添加量低于1%时,提升玻璃抗热冲击性能效果不明显;若其含量高于10%,玻璃变得极不稳定。因此,MgO含量为0-15%,优选为1-10%,更优选为2-9%,进一步优选为3-8%。
在一些实施方式中,MgO/B 2O 3的比值对玻璃的抗热冲击性能有较大影响,若其比值低于1,玻璃的抗热冲击性能达不到设计要求。若其比值高于20,玻璃的抗热冲击性能反而下降,同时抗析晶性能会大幅度降低。因此,MgO/B 2O 3的比值为1-20,优选为2-10,更优选为3-8。
当玻璃的抗热冲击性能还有富余时,可以考虑添加少量的CaO来调整玻璃的熔化性能和高温粘度,从而进一步提升玻璃的气泡(夹杂物)水平以及条纹水平。但若其含量超过10%,玻璃的抗热冲击性能会快速下降。因此CaO含量限定为0-10%,优选为0-5%,更优选为0-3%,进一步优选为不添加。
当玻璃的抗热冲击性能还有较大富余时,可以添加少量BaO或SrO来改善玻璃的熔化性能和高温粘度,优选使用SrO,但若SrO含量超过10%, 玻璃的抗热冲击性能快速下降,因此,SrO含量限定为0-10%,优选为0-5%,更优选为0-3%,进一步优选为不添加。若使用BaO,含量限定为0-10%,优选为0-5%,更优选为0-3%,进一步优选为不添加。
Li 2O、Na 2O、K 2O属于碱金属氧化物,加入玻璃中能够降低玻璃的高温粘度,容易获得几乎不含气泡、夹杂物的产品。若其合计含量超过30%,玻璃的化学稳定性急剧下降,玻璃变得极不稳定。因此,Li 2O、Na 2O、K 2O的合计含量Li 2O+Na 2O+K 2O不超过30%,优选不超过25%,更优选不超过20%,进一步优选不超过18%。
通过发明人大量试验发现,以上三种碱金属氧化物的相对含量对于玻璃的抗热冲击性能、热膨胀系数以及化学强化性能密切相关。
少量的Li 2O加入到玻璃中,可以快速地降低玻璃的高温粘度和熔融温度,有效地改善玻璃的气泡、结石、条纹等内在指标,相对于其他两种碱金属氧化物而言,还可以提升玻璃的抗热冲击性能。但是,若其含量超过10%,玻璃的转变温度快速下降,达不到要求。因此,Li 2O添加量为0-10%,优选为0-5%,更优选为0-3%,进一步优选为不添加。
合适量的Na 2O加入玻璃中,可以快速地提升玻璃的化学强化性能,可以提升玻璃的热膨胀系数,同时其提供的自由氧会促使玻璃的结构更加紧密,从而提升玻璃的抗热冲击性能。若其含量低于3%,上述效果不明显,同时玻璃的粘度急剧增大,难以获得高品质内在质量的玻璃;若其含量超过15%,玻璃的抗热冲击性能显著下降,玻璃的化学稳定性显著下降。因此,Na 2O的含量限定为3-15%,优选为4-12%,更优选为5-11%。
合适量的K 2O添加到玻璃中,可以促进玻璃化学强化性能的提升,显著地提升玻璃的热膨胀系数。若其含量低于2%,上述效果不明显;若其含量高于12%,玻璃的化学稳定性快速下降,同时玻璃会变得极其不稳定。因此K 2O的含量为2-12%,优选为3-10%,更优选为4-9%。
发明人研究发现,当Na 2O与K 2O共存时,会形成复杂的协同效应。在一些实施方式在,当Na 2O/K 2O值处于0.3-6,优选0.4-4,进一步优选0.5-3 时,玻璃的化学强化性能、抗热冲击性能与化学稳定性会同时处于最优状态。
(Na 2O+K 2O)/SiO 2的比值对玻璃的热膨胀系数、抗热冲击性能与内在品质有较大的影响。在一些实施方式中,当(Na 2O+K 2O)/SiO 2小于0.1时,玻璃粘度变大,气泡、条纹等内在品质变差,同时玻璃的热膨胀系数变小,达不到设计要求;当(Na 2O+K 2O)/SiO 2大于0.4时,玻璃的抗析晶性能变差,玻璃的抗热冲击性能快速下降。因此,(Na 2O+K 2O)/SiO 2为0.1-0.4,优选为0.12-0.35,更优选为0.15-0.32。
在一些实施方式中,(Na 2O+K 2O)/ZnO的比值对玻璃的化学强化性能和抗热冲击性能有影响,尤其是对玻璃制品的应力层深度有较大的影响。当(Na 2O+K 2O)/ZnO小于0.4时,玻璃的应力层深度达不到设计要求;当(Na 2O+K 2O)/ZnO大于10时,玻璃的抗热冲击性能快速下降,达不到设计要求。因此,(Na 2O+K 2O)/ZnO为0.4-10,优选为0.5-8,更优选为1-5。
在一些实施方式中,K 2O/(MgO+CaO)的比值对玻璃的抗析晶性能与玻璃制品的应力层深度有较大关联,若其比值低于0.2,玻璃制品的应力层深度达不到设计要求;若其比值大于8,玻璃的抗析晶性能变差,不能满足二次压型的要求。因此,K 2O/(MgO+CaO)的比值为0.2-8,优选为0.5-5,更优选为0.7-3。
Sb 2O 3是一种澄清剂,添加到玻璃中使气泡消除变得更加容易。在本发明中其含量限定为0-1%,优选为0-0.8%,进一步优选为0-0.5%。
下面将描述本发明的玻璃和玻璃制品的性能:
【热热膨胀系数】
玻璃或玻璃制品100℃-300℃的热膨胀系数(α 100/300℃)按照GB/T7962.16-2010规定的方法测试。
本发明玻璃或玻璃制品的热膨胀系数(α 100/300℃)为85×10 -7/K以上,优选为90×10 -7/K以上,更优选为92×10 -7/K以上,进一步优选为94×10 -7/K以上。
【耐水作用稳定性】
玻璃或玻璃制品的耐水作用稳定性(D W)按照GB/T 17129规定的方法测试。
本发明玻璃或玻璃制品的耐水作用稳定性(D W)为2类以上,优选为1类。
【耐酸作用稳定性】
玻璃或玻璃制品的耐酸作用稳定性(D A)按照GB/T 17129规定的方法测试。
本发明玻璃或玻璃制品的耐酸作用稳定性(D A)为2类以上,优选为1类。
【抗热冲击性能】
玻璃或玻璃制品的抗热冲击性能采用水冷法进行测试,将玻璃样品加工为直径为30mm,厚度为2mm的圆片,表面研磨光滑。将加工好的玻璃圆片放入升温炉中,升温到预设温度,从100℃开始,保温5分钟,待玻璃圆片温度均匀后取出投入10℃的冷水中,若玻璃未出现炸裂,增加升温炉温度10℃,再进行以上实验,直到玻璃圆片投入冷水中出现破裂为止,此时升温炉的温度记为“破裂温度”,破裂温度越高,玻璃的抗热冲击能力越强。
本发明玻璃或玻璃制品的破裂温度为170℃以上,优选为180℃以上,更优选为190℃以上,进一步优选为200℃以上。
【转变温度】
玻璃或玻璃制品的转变温度(T g)按照GB/T 7962.16-2010规定的方法测试。
本发明玻璃或玻璃制品的转变温度(T g)为530℃以上,优选为535℃以上,更优选为540℃以上,进一步优选为545℃以上。
【抗析晶性能】
玻璃或玻璃制品的抗析晶性能测试方法为:将样品玻璃切割为20×20 ×10mm规格,放入温度为T g+230℃温度的马弗炉中保30分钟,取出后放入保温棉中徐冷,冷却后观察表面析晶情况。若冷却后的玻璃有明显析晶,则玻璃的抗析晶性能差,记为“B”;若冷却后玻璃无明显析晶,则玻璃的抗析晶性能满足二次压型要求,记为“A”。
本发明玻璃或玻璃制品的抗析晶性能能够达到A级,满足二次压型生产毛坯的需要。
【气泡度】
玻璃或玻璃制品的气泡度(含夹杂物)按GB/T7962.8-2010规定的测试方法进行测量和分类。
本发明玻璃或玻璃制品的气泡度为A级以上,优选为A 0级以上。
【条纹度】
玻璃或玻璃制品的条纹度用点光源和透镜组成的条纹仪,从最容易看到条纹的方向上,与标准试样作比较检查,分为四级,见表1。
表1
级别 条纹程度
A 在规定检测条件下无肉眼可见的条纹
B 在规定检测条件下有细而分散的条纹
C 在规定检测条件下有轻微平行的条纹
D 在规定检测条件下有初略的平行条纹
本发明玻璃或玻璃制品的条纹度为C级以上,优选为B级以上。
<玻璃制造方法>
本发明中玻璃制造方法为:按照比值称重并混合玻璃用普通原料(如氧化物、氢氧化物、碳酸盐、硝酸盐等),将混合原料放置在铂金坩埚中,在1320-1420℃中融化2.5-4小时,并且经澄清、搅拌和均化后,得到没有气泡及不含未溶解物质的均质熔融玻璃,将此熔融玻璃在模具内铸型并退火而成。
<玻璃制品的制造方法>
将本发明获得的玻璃加工成预制件,然后进行化学强化。本发明所述的化学强化,即是离子交换法,本发明的玻璃可通过本技术领域所公知的方法进行离子交换。在离子交换过程中,玻璃中的较小的金属离子被靠近玻璃的具有相同价态的较大金属离子置换或“交换”。用较大的离子置换较小的离子,在玻璃中构建压缩应力,形成压缩应力层。
在一些实施方式中,金属离子是单价碱金属离子(例如Na +、K +、Rb +、Cs +等),离子交换通过将玻璃浸没在包含较大的金属离子的至少一种熔融盐的盐浴中来进行,该较大的金属离子用于置换玻璃中的较小的金属离子。或者,其他单价金属离子例如Ag +、Tl +、Cu +等也可用于交换。用来玻璃制品的一种或更多种离子交换过程可包括但不限于:将其浸没在单一盐浴中,或者将其浸没在具有相同或不同组成的多个盐浴中,在浸没之间有洗涤和/或退火步骤。
在一些实施方式中,玻璃可通过在浸没于约420℃-480℃的温度的熔融Na盐(如NaNO 3)的盐浴中约4-20小时来进行离子交换。在这种实施方式中,Na离子置换玻璃中的部分Li离子,从而形成表面压缩层。在一些实施方式中,玻璃可浸没于约420℃-480℃的温度下熔融K盐(如KNO 3)的盐浴中4-20小时来对实施方式进行离子交换。
在一些实施方式中,向玻璃的表层注入离子的离子注入法,以及对玻璃进行加热,然后快速冷却的热强化法。
本发明获得的玻璃制品除具有上述的性能外,还具有以下性能:
【表面应力与应力层深度】
将玻璃加工为30×30×3mm双面抛光,然后放入盐浴池(成分为99.5%硝酸钾、0.5%添加剂)中以450℃的条件下化学强化16小时,然后用FSM6000LE测试仪测定玻璃制品的表面应力(Cs)和应力层深度(DoL)。
本发明玻璃制品的表面应力(Cs)为600MPa以上,优选为620MPa以上,更优选为630MPa以上,进一步优选为640MPa以上。
本发明玻璃制品的应力层深度(DoL)为35nm以上,优选为40nm以上, 更优选为45nm以上,进一步优选为50nm以上。
本发明的玻璃或玻璃制品均可用于制成玻璃预制件、光学元件、光学仪器以及镜片(如树脂眼镜片)的模具。
可以使用例如研磨加工的手段、或再热压成型、精密冲压成型等模压成型的手段,由所制成的玻璃或玻璃制品来制作玻璃预制件。即,可以通过对玻璃或玻璃制品进行磨削和研磨等机械加工来制作玻璃预制件,或通过对由玻璃或玻璃制品制作模压成型用的预成型坯,对该预成型坯进行再热压成型后再进行研磨加工来制作玻璃预制件,或通过对进行研磨加工而制成的预成型坯进行精密冲压成型来制作玻璃预制件。
需要说明的是,制备玻璃预制件的手段不限于上述手段。如上所述,本发明的玻璃或玻璃制品对于各种光学元件和光学设计是有用的,其中特别优选由本发明的玻璃或玻璃制品形成预成型坯,使用该预成型坯来进行再热压成型、精密冲压成型等,制作透镜、棱镜等光学元件。
本发明的玻璃预制件与光学元件均由上述本发明的玻璃或玻璃制品形成。本发明的玻璃预制件具有玻璃或玻璃制品所具有的优异特性;本发明的光学元件具有玻璃或玻璃制品所具有的优异特性,能够提供光学价值高的各种透镜、棱镜等光学元件。
作为透镜的例子,可举出透镜面为球面或非球面的凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。
本发明玻璃或玻璃制品所形成的光学元件可制作如照相设备、摄像设备、显示设备和监控设备等光学仪器。
本发明玻璃或玻璃制品可应用于电子设备或显示设备中,如手机、手表、电脑、触摸显示屏等。
本发明玻璃或玻璃制品可应用于金属之间的封接或封装,如铂、铁镍合金、铁镍铬合金等之间的封接或封装。
实施例
为了进一步了解本发明的技术方案,现在将描述本发明玻璃和玻璃制 品的实施例。应该注意到,这些实施例没有限制本发明的范围。
<玻璃实施例>
本实施例采用上述玻璃的制造方法得到具有表1-表2所示的组成的玻璃。另外,通过本发明所述的测试方法测定各玻璃的性能,并将测定结果表示在表1-表2中,本发明实施例1-15的组成,其中K1为B 2O 3/SiO 2的值;K2为B 2O 3/Al 2O 3的值;K3为Al 2O 3/TiO 2的值;K4为(Al 2O 3+TiO 2)/SiO 2的值;K5为MgO/B 2O 3的值;K6为Li 2O+Na 2O+K 2O的值;K7为Na 2O/K 2O的值;K8为(Na 2O+K 2O)/SiO 2的值;K9为(Na 2O+K 2O)/ZnO的值;K10为K 2O/(MgO+CaO)的值。
表1
Figure PCTCN2020082900-appb-000001
Figure PCTCN2020082900-appb-000002
表2
Figure PCTCN2020082900-appb-000003
Figure PCTCN2020082900-appb-000004
<玻璃制品实施例>
将表1-表2中所获得的实施例1-15的玻璃按照上述玻璃制品的制造方法制成玻璃制品,并测试其表面应力与应力层深度,并将结果列在表3-表4中。
表3
Figure PCTCN2020082900-appb-000005
表4
Figure PCTCN2020082900-appb-000006
Figure PCTCN2020082900-appb-000007

Claims (29)

  1. 一种玻璃,其特征在于,其组分以摩尔百分比表示,含有:SiO 2:55-80%;B 2O 3:0-10%;Al 2O 3:0-10%;ZnO:2-20%;MgO:0-15%;Li 2O+Na 2O+K 2O:不超过30%。
  2. 如权利要求1所述的玻璃,其特征在于,其组分以摩尔百分比表示,还含有:TiO 2:0-6%;和/或ZrO 2:0-5%;和/或CaO:0-10%;和/或SrO:0-10%;和/或BaO:0-10%;和/或Sb 2O 3:0-1%。
  3. 一种玻璃,其特征在于,含有SiO 2、ZnO、碱土金属氧化物和碱金属氧化物,其组分以摩尔百分比表示,含有:SiO 2:55-80%;ZnO:2-20%;Li 2O+Na 2O+K 2O:不超过30%,其中(Na 2O+K 2O)/ZnO的值为0.4-10。
  4. 如权利要求3所述的玻璃,其特征在于,其组分以摩尔百分比表示,还含有:B 2O 3:0-10%;Al 2O 3:0-10%;TiO 2:0-6%;MgO:0-15%;ZrO 2:0-5%;CaO:0-10%;SrO:0-10%;BaO:0-10%;Sb 2O 3:0-1%。
  5. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,含有:SiO 2:58-75%;和/或B 2O 3:0.1-10%;和/或Al 2O 3:0.5-8%;和/或TiO 2:0.1-6%;和/或ZnO:5-15%;和/或MgO:1-10%;和/或Li 2O+Na 2O+K 2O:不超过25%;和/或ZrO 2:0-3%;和/或CaO:0-5%;和/或SrO:0-5%;和/或BaO:0-5%;和/或Sb 2O 3:0-0.8%。
  6. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:B 2O 3/SiO 2的值为0.002-0.1,优选B 2O 3/SiO 2的值为0.005-0.08,更优选B 2O 3/SiO 2的值为0.005-0.06。
  7. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:B 2O 3/Al 2O 3的值为0.1-5,优选B 2O 3/Al 2O 3的值为0.2-3,更优选B 2O 3/Al 2O 3的值为0.25-2。
  8. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:Al 2O 3/TiO 2的值为0.2-18,优选Al 2O 3/TiO 2的值为0.5-10,更优选Al 2O 3/TiO 2的值为0.5-6。
  9. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:(Al 2O 3+TiO 2)/SiO 2的值为0.01-0.2,优选(Al 2O 3+TiO 2)/SiO 2的值为0.02-0.15,更优选(Al 2O 3+TiO 2)/SiO 2的值为0.02-0.1。
  10. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:MgO/B 2O 3的值为1-20,优选MgO/B 2O 3的值为2-10,更优选MgO/B 2O 3的值为3-8。
  11. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:Na 2O/K 2O的值为0.3-6,优选Na 2O/K 2O的值为0.4-4,更优选Na 2O/K 2O的值为0.5-3。
  12. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:(Na 2O+K 2O)/SiO 2的值为0.1-0.4,优选(Na 2O+K 2O)/SiO 2的值为0.12-0.35,更优选(Na 2O+K 2O)/SiO 2的值为0.15-0.32。
  13. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:(Na 2O+K 2O)/ZnO的值为0.4-10,优选(Na 2O+K 2O)/ZnO的值为0.5-8,更优选(Na 2O+K 2O)/ZnO的值为1-5。
  14. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,其中:K 2O/(MgO+CaO)的值为0.2-8,优选K 2O/(MgO+CaO)的值为0.5-5,更优选K 2O/(MgO+CaO)的值为0.7-3。
  15. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,含有:SiO 2:60-73%;和/或B 2O 3:0.1-6%;和/或Al 2O 3:1-5%;和/或TiO 2:0.2-5%;和/或ZnO:6-12%;和/或MgO:2-9%;和/或CaO:0-3%;和/或SrO:0-3%;和/或BaO:0-3%;和/或Li 2O+Na 2O+K 2O:不超过20%;和/或Sb 2O 3:0-0.5%。
  16. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,含有:B 2O 3:0.5-4%;和/或TiO 2:0.3-3%;和/或MgO:3-8%;和/或Li 2O+Na 2O+K 2O:不超过18%。
  17. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,其组分以摩尔百分比表示,含有:Li 2O:0-10%,优选Li 2O:0-5%,更优选Li 2O:0-3%;和/或Na 2O:3-15%,优选Na 2O:4-12%,更优选Na 2O:5-11%;和/或K 2O:2-12%,优选K 2O:3-10%,更优选K 2O:4-9%。
  18. 如权利要求1-4任一权利要求所述的玻璃,其特征在于,所述玻璃的热膨胀系数α 100/300℃为85×10 -7/K以上,优选为90×10 -7/K以上,更优选为92×10 -7/K以上,进一步优选为94×10 -7/K以上;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或破裂温度为170℃以上,优选为180℃以上,更优选为190℃以上,进一步优选为200℃以上;和/或转变温度T g为530℃以上,优选为535℃以上,更优选为540℃以上,进一步优选为545℃以上;和/或气泡度为A级以上,优选为A 0级以上;和/或条纹度为C级以上,优选为B级以上。
  19. 玻璃制品,由权利要求1-18任一权利要求所述的玻璃经化学强化制成。
  20. 玻璃制品,其特征在于,其组分以摩尔百分比表示,含有:SiO 2:55-80%;B 2O 3:0-10%;Al 2O 3:0-10%;ZnO:2-20%;MgO:0-15%;Li 2O+Na 2O+K 2O:不超过30%;TiO 2:0-6%;ZrO 2:0-5%;CaO:0-10%;SrO:0-10%;BaO:0-10%;Sb 2O 3:0-1%。
  21. 如权利要求20所述的玻璃制品,其特征在于,其组分以摩尔百分比表示,满足以下10种情形中的一种或一种以上:
    1)(Na 2O+K 2O)/SiO 2的值为0.1-0.4,优选为0.12-0.35,更优选为0.15-0.32;
    2)B 2O 3/Al 2O 3的值为0.1-5,优选为0.2-3,更优选为0.25-2;
    3)Al 2O 3/TiO 2的值为0.2-18,优选为0.5-10,更优选为0.5-6;
    4)(Al 2O 3+TiO 2)/SiO 2的值为0.01-0.2,优选为0.02-0.15,更优选为0.02-0.1;
    5)MgO/B 2O 3的值为1-20,优选为2-10,更优选为3-8;
    6)Na 2O/K 2O的值为0.3-6,优选为0.4-4,更优选为0.5-3;
    7)B 2O 3/SiO 2的值为0.002-0.1,优选为0.005-0.08,更优选为0.005-0.06;
    8)(Na 2O+K 2O)/ZnO的值为0.4-10,优选为0.5-8,更优选为1-5;
    9)K 2O/(MgO+CaO)的值为0.2-8,优选为0.5-5,更优选为0.7-3;
    10)Li 2O+Na 2O+K 2O:不超过25%,优选不超过20%,更优选不超过18%。
  22. 如权利要求20所述的玻璃制品,其特征在于,其组分以摩尔百分比表示,含有:SiO 2:58-75%,优选为60-73%;和/或B 2O 3:0.1-10%,优选为0.1-6%,更优选为0.5-4%;和/或Al 2O 3:0.5-8%,优选为1-5%;和/或ZnO:5-15%,优选为6-12%;和/或MgO:1-10%,优选为2-9%,更优选为3-8%;和/或TiO 2:0.1-6%,优选为0.2-5%,更优选为0.3-3%;和/或ZrO 2:0-3%;和/或CaO:0-5%,优选为0-3%;和/或SrO:0-5%,优选为0-3%;和/或BaO:0-5%,优选为0-3%;和/或Li 2O:0-10%,优选为0-5%,更优选为0-3%;和/或Na 2O:3-15%,优选为4-12%,更优选为5-11%;和/或K 2O:2-12%,优选为3-10%,更优选为4-9%;和/或Sb 2O 3:0-0.8%,优选为0-0.5%。
  23. 如权利要求20-22任一权利要求所述的玻璃制品,其特征在于,所述玻璃制品的热膨胀系数α 100/300℃为85×10 -7/K以上,优选为90×10 -7/K以上,更优选为92×10 -7/K以上,进一步优选为94×10 -7/K以上;和/或耐水作用稳定性D W为2类以上,优选为1类;和/或耐酸作用稳定性D A为2类以上,优选为1类;和/或破裂温度为170℃以上,优选为180℃以上,更优选为190℃以上,进一步优选为200℃以上;和/或转变温度T g为530℃以上,优选为535℃以上,更优选为540℃以上,进一步优选为545℃以上;和/或气泡度为A级以上,优选为A 0级以上;和/或条纹度为C级以上,优选为B级以上。
  24. 如权利要求19-22任一权利要求所述的玻璃制品,其特征在于,玻璃制品的表面应力Cs为600MPa以上,优选为620MPa以上,更优选为 630MPa以上,进一步优选为640MPa以上;和/或应力层深度DoL为35nm以上,优选为40nm以上,更优选为45nm以上,进一步优选为50nm以上。
  25. 玻璃预制件,采用权利要求1-18任一权利要求所述的玻璃制成;或采用权利要求19-24任一权利要求所述的玻璃制品制成。
  26. 光学元件,采用权利要求1-18任一权利要求所述的玻璃制成;或采用权利要求19-24任一权利要求所述的玻璃制品制成;或采用权利要求25所述的玻璃预制件制成。
  27. 光学仪器,采用权利要求1-18任一权利要求所述的玻璃制成;或采用权利要求19-24任一权利要求所述的玻璃制品制成;或采用权利要求25所述的玻璃预制件制成;或采用权利要求26所述的光学元件制成。
  28. 镜片模具,采用权利要求1-18任一权利要求所述的玻璃制成;或采用权利要求19-24任一权利要求所述的玻璃制品制成。
  29. 权利要求1-18任一权利要求所述的玻璃或权利要求19-24任一权利要求所述的玻璃制品在电子设备或显示设备中的应用,或在金属之间的封装或封接的应用。
PCT/CN2020/082900 2019-04-29 2020-04-02 一种玻璃及玻璃制品 WO2020220923A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/604,674 US20220212979A1 (en) 2019-04-29 2020-04-02 Glass and glass product
JP2021564131A JP7472171B2 (ja) 2019-04-29 2020-04-02 ガラス及びガラス製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910354561.4 2019-04-29
CN201910354561.4A CN109987839A (zh) 2019-04-29 2019-04-29 一种玻璃及玻璃制品

Publications (1)

Publication Number Publication Date
WO2020220923A1 true WO2020220923A1 (zh) 2020-11-05

Family

ID=67135613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/082900 WO2020220923A1 (zh) 2019-04-29 2020-04-02 一种玻璃及玻璃制品

Country Status (4)

Country Link
US (1) US20220212979A1 (zh)
JP (1) JP7472171B2 (zh)
CN (2) CN118619545A (zh)
WO (1) WO2020220923A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118619545A (zh) * 2019-04-29 2024-09-10 成都光明光电股份有限公司 一种玻璃及玻璃制品
CN112851113B (zh) * 2019-11-27 2022-04-15 成都光明光电股份有限公司 玻璃组合物
US20220402810A1 (en) * 2020-04-10 2022-12-22 Nitto Boseki Co., Ltd. Glass composition for glass fibers, glass fibers, glass fiber fabric, and glass fiber-reinforced resin composition
CN111574049B (zh) * 2020-05-27 2022-04-15 成都光明光电股份有限公司 玻璃组合物
CN111777327A (zh) * 2020-07-20 2020-10-16 成都光明光电股份有限公司 玻璃组合物、玻璃制品及其制造方法
CN111977977A (zh) * 2020-08-17 2020-11-24 宿州竹梦光学科技有限公司 一种手机触控玻璃镜片

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790260A (en) * 1972-01-03 1974-02-05 Corning Glass Works High strength ophthalmic lens
US3951671A (en) * 1973-12-06 1976-04-20 Pilkington Brothers Limited Ophthalmic glass compositions
WO1998050315A1 (en) * 1997-05-07 1998-11-12 Corning Incorporated Organic lens molds in inorganic glass and novel inorganic glasses
JPH11191212A (ja) * 1997-12-25 1999-07-13 Toshitomo Morisane 高強度スムーズガラス基板
CN101250025A (zh) * 2007-02-19 2008-08-27 日本板硝子株式会社 折射率分布型透镜用母体玻璃组合物、折射率分布型透镜及其制造方法、和光学制品及光学设备
CN109987839A (zh) * 2019-04-29 2019-07-09 成都光明光电股份有限公司 一种玻璃及玻璃制品

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUP9600148A3 (en) * 1996-01-24 1999-01-28 Gen Electric Company Cleveland Glass composition
EP0982274A3 (en) 1998-08-14 2000-08-02 Corning Incorporated Sealing frits
JP4051698B2 (ja) 2001-03-08 2008-02-27 日本電気硝子株式会社 蛍光ランプ用外套管
JP5541434B2 (ja) 2007-02-23 2014-07-09 日本電気硝子株式会社 複合材用ガラス繊維、ガラス繊維の製造方法、及び可視光透過複合材
JPWO2011132753A1 (ja) 2010-04-21 2013-07-18 旭硝子株式会社 ガラス製部材の製造方法、ならびに、平面レンズおよびガラスペースト
JP5700623B2 (ja) 2010-05-31 2015-04-15 Hoya株式会社 ガラス基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3790260A (en) * 1972-01-03 1974-02-05 Corning Glass Works High strength ophthalmic lens
US3951671A (en) * 1973-12-06 1976-04-20 Pilkington Brothers Limited Ophthalmic glass compositions
WO1998050315A1 (en) * 1997-05-07 1998-11-12 Corning Incorporated Organic lens molds in inorganic glass and novel inorganic glasses
JPH11191212A (ja) * 1997-12-25 1999-07-13 Toshitomo Morisane 高強度スムーズガラス基板
CN101250025A (zh) * 2007-02-19 2008-08-27 日本板硝子株式会社 折射率分布型透镜用母体玻璃组合物、折射率分布型透镜及其制造方法、和光学制品及光学设备
CN109987839A (zh) * 2019-04-29 2019-07-09 成都光明光电股份有限公司 一种玻璃及玻璃制品

Also Published As

Publication number Publication date
CN118619545A (zh) 2024-09-10
US20220212979A1 (en) 2022-07-07
JP2022531160A (ja) 2022-07-06
JP7472171B2 (ja) 2024-04-22
CN109987839A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2020220923A1 (zh) 一种玻璃及玻璃制品
JP7179865B2 (ja) 微結晶ガラス、微結晶ガラス製品、およびその製造方法
JP7048767B2 (ja) 電子デバイスカバープレート用ガラスセラミック物品およびガラスセラミック
JP7184073B2 (ja) 化学強化用ガラス
US10899658B2 (en) Crystallized glass and crystallized glass substrate
TWI756114B (zh) 光學玻璃
JP5296345B2 (ja) 光学ガラス
CN113402173B (zh) 微晶玻璃、微晶玻璃制品及其制造方法
US11440835B2 (en) Glass composition
TW202208294A (zh) 光學玻璃、玻璃預製件及光學元件
TW201638040A (zh) 具有低軟化點的快速可離子交換的無硼玻璃
WO2022166028A1 (zh) 铝硅酸盐强化玻璃及其制备方法
JP2024511087A (ja) 光学ガラス、光学素子及び光学機器
CN110981188A (zh) 无机化学强化玻璃及其制备方法和应用
WO2020078075A1 (zh) 一种具有高应变点、可快速离子交换和耐弱酸性的锌磷铝硅酸盐玻璃
TW202204278A (zh) 玻璃及化學強化玻璃
CN110937802B (zh) 光学玻璃
CN115072992A (zh) 适于化学强化的玻璃和化学强化玻璃
JPWO2017002956A1 (ja) 光学ガラスおよび光学素子
CN116639871A (zh) 光学玻璃和光学元件
TW202400532A (zh) 光學玻璃及光學元件
CN118184132A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN117023975A (zh) 光学玻璃
CN116639872A (zh) 光学玻璃、玻璃预制件、光学元件和光学仪器
CN117185649A (zh) 铝硅酸盐玻璃、钢化玻璃及其制备方法、玻璃制品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798546

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021564131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798546

Country of ref document: EP

Kind code of ref document: A1