WO2020220791A1 - 一种齿盘联动变速机构及齿盘联动变速器 - Google Patents

一种齿盘联动变速机构及齿盘联动变速器 Download PDF

Info

Publication number
WO2020220791A1
WO2020220791A1 PCT/CN2020/075453 CN2020075453W WO2020220791A1 WO 2020220791 A1 WO2020220791 A1 WO 2020220791A1 CN 2020075453 W CN2020075453 W CN 2020075453W WO 2020220791 A1 WO2020220791 A1 WO 2020220791A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
wheel
linkage
rotating
cylindrical
Prior art date
Application number
PCT/CN2020/075453
Other languages
English (en)
French (fr)
Inventor
黎李韦
阴长兰
Original Assignee
黎李韦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黎李韦 filed Critical 黎李韦
Publication of WO2020220791A1 publication Critical patent/WO2020220791A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/20Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear
    • F16H3/36Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear with a single gear meshable with any of a set of coaxial gears of different diameters
    • F16H3/363Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear with a single gear meshable with any of a set of coaxial gears of different diameters the teeth of the set of coaxial gears being arranged on a surface of generally conical shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms

Definitions

  • the invention relates to the field of stepped speed change, in particular to a gear wheel linkage transmission mechanism and a gear wheel linkage transmission.
  • the current stepped variable operating devices all use the clutch device to disconnect one speed ratio power connection and establish another speed ratio power connection to realize the speed change. This method is easy to cause power transmission interruption and shifting frustration, especially for electric motors. For the driven mechanical device, the startup process does not require the involvement of the clutch device. Obviously, the design method of using a clutch device to disconnect one speed ratio power connection and establish another speed ratio power connection is even less suitable for a mechanical device driven by an electric motor.
  • the purpose of the present invention is to provide a gear wheel linkage transmission mechanism and a gear wheel linkage transmission that do not need to disconnect the clutch or establish a power connection during gear shifting.
  • a gear-wheel linkage transmission mechanism including: gear set, wheel set, linkage gear and linkage wheel; linkage gear and gears in the gear set are formed
  • the active working group, the linked roulette and the roulette in the roulette group constitute an active support group.
  • the gear set has multiple gears, and the linkage gear can directly slide on each gear of the gear set, thereby changing the speed ratio between the linkage gear and the gear set, thereby realizing a stepped transmission without the involvement of a clutch .
  • a chain gear transmission includes the above-mentioned chain gear transmission mechanism, and also includes a rotating link, a pressing device, a driving/driven gear and a Set of positioning and shifting devices; the gear set and the wheel set are directly/indirectly connected to rotate at the same speed, the linkage gear and the linkage wheel are connected to a rotating shaft or a bracket structure or a composite structure composed of a bracket and a shaft.
  • the drive/driven gear shaft is hinged or directly/indirectly hinged with the transmission housing.
  • the other end of the rotating link is movably connected with the linkage gear and the linkage wheel.
  • the pressing device is connected to the rotating link.
  • the linkage wheel is connected to the wheel group.
  • the wheel disc constitutes the movable support group, the linkage gear and the gears in the gear group constitute the movable working group, the linkage gear and the driving/driven gear directly or indirectly transmit power, and the positioning shift device is installed in the transmission in cooperation.
  • the gear-plate linkage transmission mechanism is combined with the upshift and downshift mechanism to realize a stepped transmission without the involvement of the clutch, which avoids the phenomenon of power transmission interruption and shift frustration caused by the participation of the clutch. .
  • the third objective of the present invention is achieved by the following technical solutions: it also includes a rotating link movably connected at one end to the linkage gear, a pressing device for pressing the rotating link, and a drive gear hinged to the other end of the rotating link Or a driven gear and a set of positioning and shifting devices, the linkage gear and the driving gear or the driven gear mesh with each other and carry out power transmission.
  • the gear-plate linkage transmission mechanism is combined with the upshift and downshift mechanism to realize a stepped transmission without the involvement of the clutch, which avoids the phenomenon of power transmission interruption and shift frustration caused by the participation of the clutch. .
  • Figure 1a shows a schematic structural diagram of a first embodiment of a gear-plate linkage transmission mechanism
  • Figure 1b illustrates a schematic front view of the chain gear linkage speed change mechanism in Figure 1;
  • Figure 2 illustrates a schematic structural view of a tooth profile overlapping pattern of a gear set in a chain gear linkage transmission mechanism of an embodiment
  • Figure 3 shows a schematic structural diagram of a second embodiment of a chain gear speed change mechanism
  • Figure 4 shows a schematic structural diagram of a third embodiment of a chain gear speed change mechanism
  • Figure 5 shows a schematic structural diagram of a fourth embodiment of a chain gear shift mechanism
  • Figure 6 illustrates a schematic structural diagram of a fifth embodiment of a chain gear speed change mechanism
  • FIG. 7a illustrates a schematic view of the overlapping structure of the tooth profile of the gear set in the gear wheel linkage transmission mechanism of another embodiment
  • FIG. 7b illustrates a corresponding perspective schematic diagram of the gear set in the gear wheel linkage transmission mechanism in FIG. 7a when the tooth profiles are stacked;
  • Figure 8 shows a schematic structural diagram of an adjustable speed ratio between adjacent gears
  • Figure 9 illustrates a schematic diagram of a chain gear transmission with a chain gear transmission mechanism
  • FIG. 10 illustrates a perspective three-dimensional structural diagram of a chain gear transmission with a chain gear transmission mechanism
  • Figure 11 is a schematic diagram showing the state of the U-shaped lock sliding pin in the rotation positioning lock release when not being pressed;
  • Figure 12 illustrates a schematic diagram of a double locking mechanism
  • Figure 13a shows a schematic structural diagram of a U-shaped lock sliding pin
  • Figure 13b is a schematic diagram of the structure of the shift lock pin
  • Figure 13c shows a schematic structural diagram of a shift lock sliding pin
  • Figure 14a illustrates a schematic diagram of the intermittent transmission mechanism when not shifting
  • Figure 14b shows a schematic diagram of the structure of the intermittent transmission mechanism in shifting
  • Figure 15 illustrates another perspective three-dimensional structural schematic diagram of the chain gear transmission
  • Figure 16 illustrates an enlarged schematic diagram of the ratchet locking assembly in Figure 15;
  • Figure 17a shows a schematic diagram of a state in which the U-shaped lock sliding pin in the rotary positioning lock release is pressed and the cantilever enters the locking groove;
  • Figure 17b shows a schematic diagram of a state in which the U-shaped lock sliding pin in the rotation positioning lock release is pressed and the locking frame moves down to the rotating disk;
  • Fig. 18 is a schematic diagram of the three-dimensional structure of the internally meshing gear plate linkage transmission.
  • the gear wheel linkage transmission mechanism provided by the present invention includes a gear set, a wheel set, a linkage gear and a linkage wheel; the linkage gear and the gears in the gear set form a movable working group, and the linkage wheel and the wheel in the wheel set form a movable working group Activity support group.
  • Fig. 1a illustrates a schematic structural diagram of a first embodiment of a chain gear linkage transmission mechanism
  • Fig. 1b illustrates a front view schematic diagram of the chain linkage transmission mechanism in Fig. 1.
  • a gear wheel linkage transmission mechanism includes a gear set 101, a wheel set 102, a linkage gear 103 and a linkage wheel 104.
  • the gear set 101 and the wheel set 102 are connected to one rotating shaft
  • the linkage gear 103 and the linked wheel 104 are connected to another rotating shaft
  • the linked gear 103 and the gears in the gear set 101 form a movable working group
  • the linked wheel 104 and the wheel set 102 The roulette in the form of the active support group.
  • the gear set 101 is composed of at least two revolving cylindrical gears and an eccentric revolving cylindrical gear arranged between two adjacent revolving cylindrical gears.
  • the wheel set 102 is composed of at least two revolving wheels and arranged in the phase It is composed of an eccentric rotating roulette between two adjacent revolving roulettes.
  • Each revolving cylindrical gear and each eccentric rotating cylindrical gear in the gear set 101 are spur gears with the same modulus and pressure angle or helical gears with the same modulus, pressure angle, and helix angle.
  • the difference in the number of teeth of any eccentric rotating cylindrical gear is the same as that of two adjacent rotating cylindrical gears.
  • Figures 1a and 1b illustrate a situation in which there are three circumcentric rotating cylindrical gears and two eccentric rotating cylindrical gears in the gear set 101.
  • the gear set 101 consists of a first circumcentric rotating cylindrical gear 1011 used for power transmission in the first working gear, a first eccentric rotating cylindrical gear 1012 used for power transmission when shifting, and a In the second working gear, it is composed of a second center-rotating cylindrical gear 1013 that is power-transmitted.
  • the pitch circle of the first eccentric rotating cylindrical gear 1012 is tangent to the pitch circle of the first rotating cylindrical gear 1011 and the pitch circle of the second rotating cylindrical gear 1013.
  • the first eccentric rotating cylindrical gear 1012 is The tooth profile at the tangent point of the central rotating cylindrical gear 1011 is aligned, and the tooth profile at the tangent point of the first eccentric rotating cylindrical gear 1012 and the second round cylindrical gear 1013 are aligned.
  • the roulette set 102 is composed of a first circumcentric rotating roulette 1021, which is used for support in the first working gear, and is used for supporting when shifting gears.
  • the second center-rotating wheel 1023 supported in the second working gear is composed of the first eccentric rotating wheel 1022 which is tangent to the first center-rotating wheel 1021 and the second center-rotating wheel 1023 respectively.
  • the pitch circle diameter of the first eccentric rotating cylindrical gear 1011 is the same as the diameter of the first eccentric rotating wheel 1021
  • the pitch circle diameter of the first eccentric rotating cylindrical gear 1012 is the same as the diameter of the first eccentric rotating wheel 1022
  • the second The diameter of the pitch circle of the round cylindrical gear 1013 is the same as the diameter of the second round rotating wheel 1023
  • the pitch diameter of the second eccentric rotating round gear 1014 is the same as the diameter of the second eccentric rotating wheel 1024
  • the diameter of the pitch circle of the rotating cylindrical gear 1015 is the same as the diameter of the third orbiting wheel 1025.
  • the linkage wheel 104 When the linkage gear 103 meshes with the first center-rotating cylindrical gear 1011, the linkage wheel 104 is supported by the first center-rotating wheel 1021. When the linkage gear 103 meshes with the first eccentric rotating cylindrical gear 1012, the linkage wheel 104 is supported by the first eccentric rotating wheel 1021. When the linkage gear 103 meshes with the second orbiting cylindrical gear 1013, the linkage wheel 104 is supported by the second orbiting wheel 1023.
  • the above structure can be applied to a two-stage transmission mechanism.
  • the gear set 101 also includes a second eccentric rotating cylindrical gear 1014 which is sequentially stacked on the other side of the second orbiting cylindrical gear 1013 and has a diameter that is successively increased for power transmission during shifting, and a second eccentric rotating cylindrical gear 1014 used for the third working gear.
  • the third orbiting cylindrical gear 1015 of the power transmission, the second eccentric rotating cylindrical gear 1014 are respectively tangent to the other side of the second orbiting cylindrical gear 1013 and the third orbiting cylindrical gear 1015, and the second eccentric rotating cylindrical gear
  • the tooth profile at the tangent point of the gear 1014 and the second orbiting cylindrical gear 1013 is aligned, and the tooth profile at the tangent point of the second eccentric rotating cylindrical gear 1014 and the third orbiting cylindrical gear 1015 are aligned.
  • the roulette set 102 also includes a second eccentric rotating roulette 1024 and a third eccentric rotating roulette 1025, which are sequentially stacked on the other side of the second center-rotating roulette 1023 and whose diameters are sequentially increased for support when shifting gears.
  • the second eccentric rotating wheel 1024 is tangent to the other side surface of the second rotating wheel 1023 and the third rotating wheel 1025 respectively.
  • the gear set 101 and the wheel set 102 rotate at the same angular speed and are connected by the same rotating shaft 105.
  • the linkage gear 103 and the linked wheel 104 are connected together by the same rotating shaft 106.
  • the linkage gear 103 is driven by any cylindrical gear that rotates around the center. Rotating downward, the linkage wheel 104 is supported by any wheel rotating around the center.
  • the eccentric rotating cylindrical gear is used for meshing with the linkage gear 103 when shifting, and the eccentric rotating roulette is used for supporting the linkage wheel 104 when shifting.
  • the linkage gear 103 respectively meshes with each center-rotating cylindrical gear and eccentric rotating cylindrical gear.
  • Each center-rotating wheel and eccentric rotating wheel respectively externally support the linkage wheel 104, and the above-mentioned wheel group 102 It can be two and distributed on both sides of the gear set 101.
  • the above-mentioned gear set is constituted by alternately overlapping cylindrical gears rotating around the center and eccentric rotating cylindrical gears.
  • the gears in the gear set are stacked in the order of the number of teeth; each gear in the gear set is a spur gear or a module with the same modulus and pressure angle.
  • each eccentrically rotating cylindrical gear in the gear set has the same number of teeth as the adjacent two rotating cylindrical gears, and the pitch circle of each eccentrically rotating cylindrical gear in the axial direction They are respectively inscribed with the pitch circles of two adjacent cylindrical gears rotating around the center, and the tooth profile of each eccentric rotating cylindrical gear at the tangent point is aligned with the tooth profile of the two adjacent cylindrical gears rotating around the center respectively, forming
  • the height of the two parts of the tooth profile is similar to the coincident zone, and their pitch circles also form the same arc-shaped height to approximate the coincident zone; the gear set can also be an integral structure design.
  • the above-mentioned wheel set is formed by alternately stacking disk-shaped parts of a circumcentric rotating wheel and an eccentrically rotating wheel, wherein the diameter of these disk-shaped parts is the same as the pitch circle diameter of each gear in the above-mentioned gear set.
  • the wheel that rotates around the center is a gear wheel, and the wheel that rotates eccentrically is a shift wheel. These wheels are stacked in order of diameter from small to large or from large to small.
  • Each eccentrically rotating roulette is inscribed with the outer edges of two adjacent roulettes that rotate around the center, forming two arc-shaped heights approximately overlapping areas; the eccentric rotating roulette and the outer edges of the two rotating roulettes The edge is cut inward to form a two-part arc-shaped height approximately overlapping area; the wheel set can also be designed as a whole structure.
  • the aforementioned linkage gear is a spur gear with the same modulus and pressure angle as the gears in the gear set or a helical gear with the same modulus, pressure angle, and helix angle.
  • the diameter of the aforementioned interlocking wheel is the same as the diameter of the pitch circle of the interlocking gear.
  • FIG. 2 illustrates a schematic structural diagram of a tooth profile overlapping pattern of a gear set in a gear wheel linkage transmission mechanism of an embodiment.
  • the cross lines M and N form the upper and lower partial regions a and b, and the a region and the b region are the regions where the tooth profile and arc height of the gear set are approximately overlapped.
  • the following takes the gear-plate linkage transmission mechanism in Fig. 1a as an example for description, using spring/shrapnel, hydraulic, pneumatic, electromagnetic and other devices that can mutually compress the linkage gear 103, linkage wheel 104, gear set 101, and wheel set 102. Or a combination of several of these devices acts on the chain link speed change mechanism of the present invention.
  • a power device is used to drive the linkage gear 103, the linkage wheel 104 or the drive gear set 101 and the wheel set 102.
  • the linkage wheel 104 happens to be with the wheel set
  • the first gear wheel 1021, the second gear wheel 1023, or the third gear wheel 1025 corresponding to the gear wheel in 102 form a support group.
  • the linkage gear 103 and the shift gear in the gear set 101 are working, the first eccentric rotating cylindrical gear 1012 or the second eccentric rotating cylindrical gear 1014, the linkage wheel 104 is exactly the first eccentricity of the corresponding shift wheel in the wheel group 102
  • the rotating wheel 1022 or the second eccentric rotating wheel 1024 forms a movable support group.
  • the movable support group composed of the aforementioned linkage wheel 104 and each wheel in the wheel group 102 can maintain the linkage gear 103 and each gear in the gear group 101 to constantly mesh during operation.
  • the linkage gear 103 meshes with the first orbiting cylindrical gear 1011, that is, the linkage gear is in the first shift stage.
  • the linkage wheel 104 drives the linkage gear 103 to slide from the first revolving cylindrical gear 1011 to the first eccentric rotating cylindrical gear 1012, the first eccentric rotating cylindrical gear 1012 meshes with the linkage gear 103; when the linkage gear 103 rotates to the first
  • the linkage wheel 104 is dialed by the external dialing force, and the linkage wheel 104 drives the linkage gear 103 to rotate the cylinder from the first eccentricity
  • the gear 1012 slides onto the second orbiting cylindrical gear 1013, and the linkage gear 103 meshes with the second orbiting cylindrical gear 1013. At this time, the linkage gear 103 is in the second shift stage.
  • the second eccentric rotating cylindrical gear 1014 meshes with the linkage gear 103; when the linkage gear 103 rotates to the second eccentricity
  • the linkage wheel 104 is dialed by the external dial force, and the linkage wheel 104 drives the linkage gear 103 to rotate the cylindrical gear 1014 from the second eccentricity.
  • the linkage gear 103 meshes with the third orbiting cylindrical gear 1015.
  • the linkage gear 103 is in the third shift stage.
  • the gear-plate linkage transmission mechanism of the present invention can achieve at least two-stage transmission.
  • This embodiment embodies the principle of three-stage transmission.
  • each additional set includes an eccentric rotating cylindrical gear and a center rotation
  • the structure of the cylindrical gear can add a gear shifting level, and those skilled in the art can realize multi-stage non-clutching and stepped gear shifting by further adding multiple sets of structures including eccentric rotating cylindrical gears and revolving cylindrical gears.
  • FIG. 3 shows a schematic structural diagram of a second embodiment of a chain gear speed change mechanism.
  • the gear set 201 and the wheel set 202 rotate at the same angular speed and are connected by a rotating shaft 205; the angular velocity of the linkage gear 203 and the linkage wheel 204 are different, and the pitch circle diameter of the linkage gear 203 is larger than the diameter of the linkage wheel 204 ,
  • the linkage gear 203 and the linkage wheel 204 are respectively connected by two ends of the L-shaped bracket 206 and are parallel to each other.
  • the L-shaped bracket 206 includes a horizontal rod 216 and a vertical rod 226.
  • One end of the horizontal rod 216 is rotatably connected with the linkage gear 203, and one end of the vertical rod 226 is rotatably connected with the linkage wheel 204.
  • the gear set 201 consists of a first center-rotating gear 2011 used for power transmission in the first working gear, a first eccentric rotating cylindrical gear 2012, and a first eccentric rotating cylindrical gear used for power transmission when shifting.
  • the second revolving cylindrical gear 2013 for power transmission in the second working gear, the second eccentric revolving cylindrical gear 2014 for power transmission when shifting, and the third revolving gear for power transmission in the third working gear 2015 consists of rotating cylindrical gears.
  • the roulette set 202 is composed of a first circumcentric rotating roulette 2021 that is used to support the first working gear, and a first eccentric rotating roulette 2022 that is used to support when shifting gears.
  • the linkage gear 203 meshes with each center-rotating cylindrical gear and the eccentric rotating cylindrical gear respectively, and each center-rotating wheel and eccentric rotating wheel respectively externally support the linkage wheel 204.
  • the position relationship of each gear in the gear set 201 and the position relationship of each wheel in the wheel set 202 please refer to the method of the embodiment. Repeat it again.
  • the linkage wheel 204 is designed to be lightweight, that is, the diameter of the linkage wheel 204 can be different from the pitch circle diameter of the linkage gear. In this embodiment, because the structure of the linkage wheel 204 is lightened, the entire chain gear transmission mechanism is also lightened.
  • FIG. 4 shows a schematic structural diagram of a third embodiment of a chain gear linkage transmission mechanism.
  • the gear set 301 and the wheel set 302 rotate at the same angular speed.
  • the linkage gear 303 and the linkage wheel 304 are connected together by the same rotating shaft 306.
  • the linkage gear 303 rotates under the drive of any center-rotating cylindrical gear, and the linkage wheel 304 is supported by any center-rotating wheel.
  • the gear set 301 is composed of a first circumcentric rotating gear 3011 for power transmission in the first working gear, a first eccentric rotating cylindrical gear 3012 for power transmission when shifting, and a In the second working gear, it is composed of a second center-rotating cylindrical gear 3013 that is power-transmitted.
  • the roulette group 302 is composed of a first circumcentric rotating roulette 3021, a first eccentric rotating roulette used to support when shifting gears 3022 and a It is composed of a second center-rotating wheel 3023 supported in the second working gear.
  • the gears in this embodiment are two levels. Of course, by further adding multiple sets of structures including eccentric rotating cylindrical gears and rotating cylindrical gears around the center, more levels of speed can be achieved.
  • the eccentric rotating cylindrical gear is used to mesh with the linkage gear 303 when shifting, and the eccentric rotating wheel is used to support the linkage wheel 304 when shifting.
  • the linkage gear 303 in this embodiment meshes with each center-rotating cylindrical gear and eccentric rotating cylindrical gear respectively, and each center-rotating wheel and eccentric rotating wheel respectively internally support the linkage wheel 304.
  • the wheels in the wheel set can be disc-shaped or ring-shaped parts
  • the gears in the gear set can be external gears or internal gears
  • the diameter of each wheel in the wheel set can also be the same as that in the gear set.
  • the pitch circle of the corresponding gears is different, and the diameter of this kind of wheel disc should also be affected by the actual design requirements in the specific manufacturing process.
  • the wheel set in this embodiment is an annular part, and the gears in the gear set are internal gears. And this kind of design scheme of interlocking gears and gears in the gear set can greatly reduce the volume of the entire transmission mechanism, and in the design scheme of the internal gear mechanism, the outer edge of the ring wheel and the internal gear can be directly designed
  • the geared structure facilitates its use in specific gearshift operating devices. In this working mode, the wheel set and the gear set can be indirectly connected, as long as the angular velocity of the two is consistent.
  • the gear set 301 and the wheel set 302 may be supported by the housing, and may not be arranged on the same rotating shaft.
  • this embodiment is because the linkage gear 303 is meshed with each center-rotating cylindrical gear and the eccentric rotating cylindrical gear respectively, and each center-rotating wheel and eccentric rotating wheel respectively internally internalize the linkage wheel 304 It supports, so that the entire chain gear linkage speed change mechanism is more compact and saves more space than the foregoing embodiment.
  • Fig. 5 illustrates a schematic structural diagram of a fourth embodiment of a chain gear linkage speed change mechanism.
  • the pitch circle diameter of the linkage gear 403 is different from the diameter of the linkage wheel 404 and are respectively connected to different rotating shafts on the support frame 406.
  • the gear set 401 and the wheel set 402 are respectively connected to different rotating shafts on the support rod 405, and the gear set 401 is connected
  • the rotating shaft 4051, the wheel set 402 is connected to the rotating shaft 4052, and the pitch circle diameter of the first rotating cylindrical gear 4011 is different from the diameter of the first rotating cylindrical gear 4021, and the pitch circle diameter of the first eccentric rotating cylindrical gear 4012 Different from the diameter of the first eccentric rotating wheel 4022, the pitch circle diameter of the second orbiting cylindrical gear 4013 is different from the diameter of the second orbiting wheel 4023.
  • only a two-stage gear set is shown.
  • the rotating shaft 4051 and the rotating shaft 4052 may be connected by a chain.
  • the gear set also includes a second eccentric rotating cylindrical gear (not shown in the figure) and a third rotating cylindrical gear (not shown in the figure), and the wheel set also includes a second eccentric rotating wheel (not shown in the figure) and a Rotate the wheel three around the center (not shown in the figure).
  • the pitch circle diameter of the second eccentric rotating cylindrical gear is different from the diameter of the second eccentric rotating disc
  • the pitch circle diameter of the third eccentric rotating cylindrical gear is different from the diameter of the third eccentric rotating disc.
  • the linkage wheel 403 and the wheel assembly 402 in this embodiment are all designed to be reduced in size, so that the entire gear wheel linkage transmission mechanism is more miniaturized, and parts materials can be saved.
  • FIG. 6 shows a schematic structural diagram of a fifth embodiment of a chain gear linkage speed change mechanism.
  • the pitch circle diameter of the linkage gear 503 is larger than the diameter of the linkage wheel disc 504, and the diameter of each gear pitch circle in the gear set 501 is smaller than the diameter of each wheel disc in the corresponding wheel set 501.
  • the linkage gear 503 and the linkage wheel 504 are connected to the same rotating shaft 506.
  • the gear set 501 and the wheel set 502 are connected to the rotating shaft 505, and the pitch circle diameter of the first rotating cylindrical gear 5011 is different from the diameter of the first rotating wheel 5021, and the pitch circle diameter of the first eccentric rotating cylindrical gear 5012 Unlike the diameter of the first eccentric rotating wheel 5022, the pitch circle diameter of the second orbiting cylindrical gear 5013 is different from the diameter of the second orbiting wheel 5023.
  • the present invention only illustrates a two-stage gear set.
  • the chain link speed change mechanism of the present invention is used in the speed change operation device. Under different connection modes and different structures, the linkage gear and the linkage wheel in the chain link speed change mechanism of the present invention can be realized. Axial movement and radial movement can also occur, and it is also possible to realize both axial and radial movement of gear sets and wheel sets, or to realize linkage gears, linkage wheels and gear sets, and wheel sets Participate in axial movement and radial movement respectively.
  • Figure 7a shows a schematic diagram of the tooth profile superimposed structure of the gear set in the gear wheel linkage transmission mechanism of another embodiment
  • Figure 7b shows the gear set in the gear wheel linkage transmission mechanism in Figure 7a.
  • the difference between the tooth profile stacking of this embodiment and the first embodiment is that in this embodiment, the relative position of the two parts of the tooth profile height approximately coincident area formed by each eccentric rotating cylindrical gear and the adjacent rotating cylindrical gear can be adjusted.
  • the gear set 601 includes a first eccentric rotating cylindrical gear 6011, a second eccentric rotating cylindrical gear 6013, a third eccentric rotating cylindrical gear 6015, a shift gear, a first eccentric rotating cylindrical gear 6012 and a second eccentric rotating cylindrical gear Gear 6014.
  • c and d are two shift operation areas; the tangent point of the first eccentric rotating cylindrical gear 6011 and the first eccentric rotating cylindrical gear 6012, and the tangent point of the first eccentric rotating cylindrical gear 6012 and the second eccentric rotating cylindrical gear 6013
  • the tangent points are all located in the c area
  • the tangent points of the second eccentric rotating cylindrical gear 6013 and the second eccentric rotating cylindrical gear 6014, and the tangent points of the second eccentric rotating cylindrical gear 6014 and the third eccentric rotating cylindrical gear 6015 are all in the d area .
  • the tangent points of the cylindrical gear rotating around the center and the cylindrical gear eccentrically rotating need not be both located in the same radial direction.
  • Figure 8 illustrates a schematic structural diagram of an adjustable speed ratio between adjacent gears.
  • the gear set 701 includes a shift gear, a first eccentric rotating cylindrical gear 7011, a second eccentric rotating cylindrical gear 7013, a third eccentric rotating cylindrical gear 7015, and a shift gear, a first eccentric rotating cylindrical gear 7012 and a second eccentric rotating cylindrical gear Gear 7014.
  • the first eccentric rotating cylindrical gear 7012 and its adjacent first orbiting cylindrical gear 7011 and the second orbiting cylindrical gear 7013 have a tooth number difference of 4, and the second eccentric rotating cylindrical gear 7014 and its adjacent first
  • the difference between the number of teeth of the second orbiting cylindrical gear 7013 and the third orbiting cylindrical gear 7015 are both 6, that is, the difference between the number of teeth of one eccentric rotating cylindrical gear and two adjacent cylindrical gears and the other eccentric rotation
  • the difference in the number of teeth between the cylindrical gear and the two adjacent cylindrical gears rotating around the center can be different.
  • d f1 is the diameter of the root circle of the first rotating cylindrical gear
  • d f2 is the diameter of the root circle of the first eccentric rotating cylindrical gear
  • d f3 is the diameter of the root circle of the second rotating cylindrical gear
  • m Is the modulus and n is the difference in the number of teeth.
  • the pitch circle diameter or the addendum circle diameter of each gear can also be used to prove that the rotation centers of the cylindrical gears that rotate around the center coincide in the axial direction. And this method of stacking can be used on non-standard gear mechanisms or even non-circular gear mechanisms to meet some special requirements for gear shifting.
  • the linkage wheel in the gear wheel linkage transmission mechanism of the present invention can rotate at the same speed as the linkage gear or not at the same speed as the linkage gear, and the wheel disk in the wheel set can rotate at the same speed as the gear set.
  • the high-speed rotation also does not need to rotate at the same speed as the gear set, but the eccentric rotating wheel must keep rotating at the same speed as the gear set. Without considering some secondary factors, these variable factors do not affect the essential inventive effect of the chain gear transmission mechanism of the present invention.
  • one wheel set is used as an example, but in practical applications, two sets of wheel disks can be placed on both sides of the gear set, supplemented by linkage wheels with the same connection method, and then Improve the stability of the institution.
  • the schematic diagrams of the embodiments of the gear-plate linkage speed change mechanism of the present invention all use spur gears just to show the present invention more clearly. It is obvious that helical gears can also be used for the gears in the chain link transmission mechanism of the present invention.
  • the core idea of the chain gear linkage transmission mechanism of the present invention is to use the movable support group formed by the linkage wheel and the wheel group to realize the variable radial distance between the movable working group formed by the linkage gear and the gear group At the same time, it can realize the method that the radial center distance between the gear and the gear is constant when the gear is working.
  • the mechanism has a variety of design schemes that are flexibly integrated into the specific speed change operation device.
  • FIG. 9 illustrates a schematic diagram of a chain gear transmission having the aforementioned chain gear transmission mechanism.
  • a chain gear transmission gear set 101, a wheel set 102, a linkage gear 103, a linkage wheel 104, a rotating link 107, a pressing device 108, a driving/driven gear 109 and a set Position the shifting device 100.
  • the gear set 101 and the wheel set 102 are connected to the same rotating shaft 105, the linkage gear 103 and the linked wheel 104 are connected to another rotating shaft, and the linkage gear 103 is respectively connected to the driving/driven gear 109 and the gear set 101 Gears mesh, one end of the rotating link 107 is hinged with the rotating shaft of the driving/driven gear 109, and the other end is movably connected with the rotating shaft of the linkage gear 103.
  • the pressing device 108 is connected to one end of the rotating link 105, and the positioning and shifting device 100 is fitted to the transmission. .
  • FIG. 10 illustrates a perspective three-dimensional structural diagram of a chain gear transmission with a chain gear transmission mechanism provided by the present invention.
  • the gear wheel linkage transmission includes the gear wheel linkage transmission mechanism in FIG. 9 and also includes a mechanical positioning shift device 100.
  • the positioning shift device 100 includes an upshift mechanism and a downshift mechanism.
  • the upshift mechanism and the downshift mechanism respectively include: a rotation positioning lock release 110 fixed on the rotating shaft 105 and an intermittent transmission mechanism 130 connected by a paddle 120.
  • Fig. 11 is a schematic diagram showing the state when the U-shaped lock sliding pin in the rotary positioning lock release is not pressed.
  • the rotation positioning lock release 110 includes a rotation positioning shaft 10 rotatably connected with a rotation shaft 105, a shift lock table 20, a double locking mechanism 30, a locking frame 40 and a downward pressure spring 50.
  • One end of the rotation positioning shaft 10 is provided with a locking groove 11, a shift lock platform groove 12 is provided in the middle, and the locking groove 11 is provided with a chamfered protruding pin 13; the other end of the rotation positioning shaft 10 is provided with a
  • the rotating disk 14 is provided with an ejector pin 15 on the rotating disk 14.
  • the double locking mechanism 30 is detachably connected to the inside of the locking frame 40, the locking frame 40 is attached to the side of the rotation positioning shaft 10, and the shift lock table 20 is placed between the locking frame 40 and the rotation positioning shaft 10
  • the lock platform groove 12 is fixedly installed in the housing or the bracket and does not rotate with the rotation positioning lock release 110.
  • Figure 12 illustrates a schematic diagram of a double locking mechanism, which includes a U-shaped lock pin 31, a U-shaped lock slide pin 32, a shift lock pin 33, a shift lock slide pin 34, and two locks located in the lock frame 40 Springs 35 and 36, unlock spring 37 and safety spring 38.
  • the lock spring 35 is connected to one end of the shift lock pin 33
  • the lock spring 36 is connected to one end of the U-shaped lock pin 31.
  • the U-shaped lock pin 31 has two cantilevers 311 and 312. Between the two cantilevers is a connecting portion 313.
  • the cantilever 311 is longer than the cantilever 312.
  • One end of the locking spring 36 is connected to the connecting portion 313 away from the rotation positioning shaft 10.
  • the other end of the lock spring 36 is fixed to the lock frame 40.
  • a shell is provided outside the double locking mechanism to limit and support the U-shaped lock sliding pin 32 to only move in a direction perpendicular to the cantilever 311.
  • Fig. 13a shows a schematic structural view of a U-shaped lock sliding pin, one end of which is a pressing portion 324 and a protrusion 321 extends from this end.
  • a through hole 322 is provided on the protrusion 321 for the shift lock sliding pin 34 One end is penetrated, and the other end has an inclined end 323 that can hold the U-shaped lock pin 31 against it when the gear is not shifted.
  • Fig. 13b is a schematic structural diagram of the shift lock pin.
  • the shift lock pin 33 has a reverse slope 331 and an extension portion 332 that is used to overlap the shift lock table 20 when the gear is not shifted.
  • Fig. 13c shows a schematic structural diagram of a shift lock sliding pin, one end of which has an elastic piece 341, the slope 342 of the elastic piece 341 is used to push the shift lock pin 33 away from the shift lock table 20, and the other end of the shift lock sliding pin 34 is detachable There is an anti-unlocking end 344 between the knob 343, the elastic piece 341 and the knob 343.
  • the inclined surface 342 of the shrapnel 341 and the reverse inclined surface 331 of the shift lock pin 33 make the shift lock slide pin 34 only have a one-way unlock function, that is, the inclined surface 342 can only remove the shift lock pin 33 from the shift lock table 20 in one direction. Break away.
  • Figure 14a shows a schematic diagram of the intermittent transmission mechanism when not shifting
  • Figure 14b shows a schematic diagram of the structure of the intermittent transmission mechanism during shifting.
  • the rotating assembly 60 includes a notch provided on the chassis 61
  • the grooved wheel assembly 70 includes four There are a sheave 71 with an arc adapted to the outer diameter of the locking cylinder 64 and a spline shaft 72 passing through the middle of the four sheaves 71, each sheave 71 has a gap 73 for accommodating the cylindrical pin 63, and the spline shaft 72 A wheel neck 74 is provided on it, and the groove wheel 71 is fixedly connected with the spline shaft 72.
  • One end 121 of the paddle 120 is fixed on the locking frame 40, and the other end 121 of the paddle 120 is fixed on
  • the wheel groove 71 and the locking cylinder 64 cooperate and do not rotate with the rotation of the locking cylinder 64.
  • shifting as shown in Figure 14b, the wheel groove 71 is pushed by the paddle 120 to move to At the gap disc 62, when the cylindrical pin 63 on the gap disc 62 moves to the gap 73, the sheave wheel 71 and the spline shaft 72 are driven to rotate.
  • the end of the spline shaft 72 away from the sheave wheel 71 is connected to the bevel gear 80.
  • the bevel gear 80 approaches the bevel gear 140 with the extension of the spline shaft 72 and drives the bevel gear 140 along with the rotation of the spline shaft 72 Spin.
  • the output shaft of the locking cylinder 64 and the rotating shaft 105 are respectively provided with a cylindrical gear 300 and a cylindrical gear 200.
  • the diameter of the cylindrical gear 300 is half the diameter of the cylindrical gear 200, so that the notched disc 62 rotates at twice the speed of the gear set 101.
  • the rotation positioning shaft 10 and the gear set 101 rotate at the same speed.
  • the sheave 71 When the gear is not shifted, the sheave 71 is located on the outer diameter of the locking cylinder 64 and does not rotate with the rotation of the locking cylinder 64.
  • the downward movement of the locking frame 40 drives the sheave assembly 70 to move down to the gap disc 62.
  • the outer diameters of the sheave 71 and the notched disc 62 are matched.
  • the cylindrical pin 63 rotates to the gap 73 and drives the spline shaft 72 to move
  • the spline shaft 72 drives the bevel gear 80 to extend and cooperate with the bevel gear 140 .
  • FIG. 15 shows a schematic diagram of the three-dimensional structure of the chain gear transmission from another perspective.
  • the side close to the gear set 101 is an upshift mechanism.
  • the upshift mechanism is used to push the linkage wheel 104 to move from a small radius around the center of the wheel to a larger radius around the center of the wheel, while the linkage gear 103 rotates the cylindrical gear from a small radius around the center Rotate the cylindrical gear around the center to a large radius that sequentially increases to achieve speed reduction.
  • the side far away from the gear set 101 is a downshift mechanism.
  • Figures 10 and 15 illustrate the working state diagrams of the upshift mechanism. It can be seen from Figures 10 and 15 that the spline shaft 72 of the upshift mechanism moves out at this time, and the spline shaft 72 drives the bevel gear 80 to extend and It cooperates with the bevel gear 140.
  • the positioning and shifting device also includes a ratchet lock assembly that controls the switch of the upshift mechanism or the downshift mechanism, and includes a ratchet 150 arranged on the output shaft of the bevel gear 140 ,
  • the pawl 1 that prevents the ratchet wheel 150 from rotating clockwise, the pawl 2 that prevents the ratchet wheel 150 from rotating counterclockwise, is used to toggle the detent 3 of the pawl 1 or 2, and drives the detent 3 to move the detent 1 or 2 back and forth Putter 4 or 5.
  • the shift pin 3, the pawls 1 and 2 are rotatably fixed on the bracket (not shown in the figure), and one end of the push rod 4 or 5 is respectively fixed on the two locking frames 40, and the locking frame 40 is moved respectively. Open pawl 1 or pawl 2.
  • the end of the push rod 4 close to the shift pin 3 has a groove 6, and the end of the push rod 5 close to the shift pin 3 is a T-shaped end 51 that matches with the groove 6.
  • the shift pin 3 and the groove 6 or the T-shaped end 51 of the push rod 5 are not in contact with the shift pin 3.
  • the upshift mechanism or the downshift mechanism shifts, the T of the groove 6 or the push rod 5
  • the character end 51 pushes the shift pin 3 to swing, and the shift pin 3 opens the pawl 1 or the pawl 2.
  • the output shaft of the ratchet 150 is connected to the shift gear 160 in rotation, and the shift gear 160 drives the shift rack 170 to move back and forth.
  • One end of the shift rack 170 is connected to the linkage wheel 104.
  • the linkage wheel 104 slides on the wheel set 102, thereby driving the linkage gear 103 to slide on the gear set 101, thereby realizing the speed change of the linkage gear 103, and the linkage gear 103 drives the driven gear 109 (set as a driven) for gear shifting.
  • the driven gear 109 is any component that needs to be shifted.
  • the input shaft of the wheel can be connected to the output shaft of the driven gear 109, etc., so as to realize the speed of the wheel.
  • the working area of the cylindrical pin 63 and the two sheaves 71 matches the approximate coincidence area of the tooth profile in the linkage gear 103 and the gear set 101, that is, the cylindrical pin 63 and the groove
  • the linkage gear 103 works in a region where the tooth profile height in the gear set 101 is approximately coincident.
  • the protruding pin 13 on the locking groove 11 of the rotating positioning shaft 10 has the function of pre-releasing the locking frame 40.
  • the locking frame 40 moves downward to drive the sheave wheel 71 is gradually moved to the notched disc 62, so that it completely enters the working area, and the ejector pin 15 on the rotating disc 14 at the bottom of the rotating positioning shaft 10 has the ability to realize the lifting and locking of the grooved wheel 71 and the notched disc 62 after the work is completed
  • the frame 40 separates the sheave 71 from the notched disc 62.
  • the protruding pin 13 and the ejecting pin 15 are offset by a small angle, which is used to realize that the locking frame 40 can be completely released.
  • Figure 17a shows the U-shaped lock slide pin in the rotary positioning lock release after being pressed.
  • the cantilever enters the locking groove.
  • Figure 17b shows the U-shaped rotary positioning lock release.
  • the process of using the above-mentioned rotation positioning lock release device to implement the shifting in the downshift is as shown in Figure 11 before shifting,
  • the inclined end 323 of the U-shaped lock sliding pin 32 abuts against the connecting portion 313 of the U-shaped lock pin 31.
  • the U-shaped lock pin 31 is in the locked state, and the extension 332 of the shift lock pin 33 overlaps the shift lock table.
  • the shift lock pin 33 is in the locked state, the lock frame 40 is locked, and the transmission works in one gear.
  • the downshift mechanism is in a non-acting state. It can be seen from FIG. 10 that the bevel gear 80 in the downshift mechanism is in a separate state from the bevel gear 140.
  • the U-shaped lock pin 31 is shorter
  • the end 3121 of the cantilever 312 blocks the movement of the anti-unlocking end 344 so that the inclined surface 342 cannot drive the shift lock sliding pin 34 to unlock; in the second half of the U-shaped lock sliding pin 32 working, the U-shaped lock sliding pin 32 presses the unlocking spring 37 makes the shift lock sliding pin 34 enter the pre-unlocking state.
  • the shift lock pin 33 fixed on the locking frame 40 is moved to the rotating disk 14 under the action of the downward pressure spring 50 to release the elastic potential energy (as shown in FIG. 17b).
  • the U-shaped lock sliding pin 32 is shifted back, the protrusion 321 extending from one side of the U-shaped lock sliding pin 32 brings back the shift lock sliding pin 34, and the inclined surface 342 of the shrapnel 341 of the shift lock sliding pin 34 passes through the shift
  • the reverse slope 331 of the stop lock pin 33 returns to the initial position, and the safety spring 38 supports the shift lock sliding pin 34 to prevent accidental unlocking due to factors such as vibration.
  • the U-shaped lock sliding pin 32 and the shift lock sliding pin 34 do not move with the downward movement of the locking frame 40.
  • the paddle 120 is driven by the locking frame 40 to quickly move with the sheave 71 from the locking cylinder 64 to the notched disc 62, and the spline shaft 72 drives its upper bevel gear 80 to move to the bevel gear 140
  • the push rod 4 turns the pawl 1 to open a locking direction of the ratchet 150, and then the cylindrical pin 63 and the sheave 71 work twice (first the linkage gear 103 first rotates the cylindrical gear 1011 around the center) Moving to the shift gear is the first eccentric rotating cylindrical gear 1012, and then moving from the first eccentric rotating cylindrical gear 1012 to the shift gear, which is the second rotating cylindrical gear 2013), so as to realize a shift.
  • Figure 18 is a schematic diagram of the three-dimensional structure of the internal meshing gear plate linkage transmission.
  • a gear plate linkage transmission gear set 301, wheel set 302, linkage gear 303, linkage wheel 304, rotating link 307, pressing device 308, drive / Driven gear 309, the linkage gear 303, the linkage wheel 304 are connected to another rotating shaft 306, the rotating shaft 306 is also provided with a gear 303', the gear 303' meshes with the driving/driven gear 309, one end of the rotating link 307 is connected to the driving /The driven gear 309 is hinged, the other end is movably connected to the linkage gear 303, the pressing device 308 is connected to one end of the rotating link 305, and the positioning and shifting device is fitted to the transmission in cooperation.
  • FIG. 10 for the combination of the positioning shift device and the chain gear transmission, which will not be repeated here.
  • a roulette set is used as an example, but in actual applications, two sets of roulettes can be placed on both sides of the gear set, supplemented by the same coupling method.
  • the linkage wheel disc thereby improving the stability of the shift operating device; the power transmission relationship between the driving/driven gear and the linkage gear can occur directly or indirectly through other transmission components; and the driving/driven gear can be inferred.
  • the rotating link between the driven gear shaft and the linkage gear shaft can be placed either in the middle area between the gear set and the wheel set, or on either side of the gear set and the wheel set; in the above embodiment
  • the connecting rod can be hinged to the driving/driven gear shaft or directly/indirectly to the transmission housing;
  • the wheel set and the gear set can be directly connected to rotate at the same speed or indirectly connected to rotate at the same speed, and the wheel It is not necessary for the rotating wheel in the disc set to rotate at the same speed as the wheel set, nor is it necessary for the linked wheel and the linked gear to rotate at the same speed;
  • the linked wheel and the linked gear can be connected by a shaft or With the support structure connection or the composite structure connection formed by the support and the rotating shaft, the movable connection mode of the rotating link can also be correspondingly optimized and designed on this basis.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Mechanical Operated Clutches (AREA)

Abstract

一种齿盘联动变速机构,属于有级变速领域。齿盘联动变速机构包括齿轮组(101)、轮盘组(102)、联动齿轮(103)和联动轮盘(104);联动齿轮与齿轮组中的齿轮构成活动工作组,联动轮盘与轮盘组中的轮盘构成活动支撑组。该变速机构能够实现无离合参与的有级式换挡变速。还涉及具有该齿盘联动变速机构的齿盘联动变速器。

Description

一种齿盘联动变速机构及齿盘联动变速器 技术领域
本发明涉及有级式变速领域,尤其涉及一种齿盘联动变速机构及齿盘联动变速器。
背景技术
目前有级式变操作装置均是利用离合装置断开一个速比动力连接和建立另一个速比动力连接的方法实现变速工作,这种方法易造成动力传递中断和换挡顿挫,尤其对于以电动机驱动的机械装置来说,其启动过程并不需要离合装置的参与。显然,利用离合装置断开一个速比动力连接和建立另一个速比动力连接的设计方法对于以电动机驱动的机械装置来说更不契合。
发明内容
针对现有技术存在的不足,本发明的目的是提供一种变速时无需离合器断开或者建立动力连接的齿盘联动变速机构及齿盘联动变速器。
本发明的上述发明目的之一是通过以下技术方案得以实现的:一种齿盘联动变速机构;包括:齿轮组、轮盘组、联动齿轮和联动轮盘;联动齿轮与齿轮组中的齿轮构成活动工作组,联动轮盘与轮盘组中的轮盘构成活动支撑组。
通过采用上述技术方案,齿轮组具有多个齿轮,联动齿轮能够直接在齿轮组的各个齿轮上滑移,从而改变联动齿轮与齿轮组的速比,进而实现一种无需离合器参与的有级式变速。
本发明的上述发明目的二是通过以下技术方案得以实现的:一种齿盘联动变速器包括上述的齿盘联动变速机构,还包括一个转动连杆、压紧装置、一个驱动/从动齿轮和一套定位换挡装置;齿轮组与轮盘组直接/间接联接同转速转动,联动齿轮与联动轮盘联接于一个转轴或一个支架结构或支架与轴等构成的复合型结构,转动连杆一端与驱动/从动齿轮转轴铰接或与变速器壳体直接/间接铰接,转动连杆另一端与联动齿轮和联动轮盘活动联接,压紧装置联接于转动连杆,联动轮盘与轮盘组中的轮盘构成活动支撑组,联动齿轮与齿轮组中的齿轮构成活动工作组,联动齿轮与驱动/从动齿轮直接或间接发生动力传递,定位换挡装置配合安装于变速器。
通过采用上述技术方案,将齿盘联动变速机构与升档和降档机构结合,实现一种无需离合器参与的有级式变速,避免了因为离合器的参与易造成动力传递中断和换挡顿挫的现象。
本发明的上述发明目的三是通过以下技术方案得以实现的:还包括一个一端和联动齿轮活动连接的转动连杆、压制转动连杆的压紧装置、一个和转动连杆另一端铰接的驱动齿轮或从动齿轮以及一套定位换挡装置,联动齿轮与驱动齿轮或从动齿轮互相啮合并进行动力传递。
通过采用上述技术方案,将齿盘联动变速机构与升档和降档机构结合,实现一种无需离合器参与的有级式变速,避免了因为离合器的参与易造成动力传递中断和换挡顿挫的现象。
附图说明
图1a示意了一种齿盘联动变速机构第一实施例结构示意图;
图1b示意了图1中齿盘联动变速机构的前视示意图;
图2示意了一实施例的齿盘联动变速机构中的齿轮组的齿形叠置图样的结构示意图;
图3示意了一种齿盘联动变速机构第二实施例结构示意图;
图4示意了一种齿盘联动变速机构第三实施例结构示意图;
图5示意了一种齿盘联动变速机构第四实施例结构示意图;
图6示意了一种齿盘联动变速机构第五实施例结构示意图;
图7a示意了另一实施例的齿盘联动变速机构中的齿轮组的齿形叠置结构示意图;
图7b示意了图7a中齿盘联动变速机构中的齿轮组的齿形叠置时对应的立体示意图;
图8示意了相邻档位之间转速比可调的结构示意图;
图9示意了具有齿盘联动变速机构的齿盘联动变速器的简要图;
图10示意了一种具有齿盘联动变速机构的齿盘联动变速器一视角立体结构示意图;
图11示意了转动定位锁止释放器中U形锁滑销未被按压时的状态示意图;
图12示意了双重锁止机构的示意图;
图13a示意了U形锁滑销的结构示意图;
图13b为换挡锁销的结构示意图;
图13c示意了换挡锁滑销的结构示意图;
图14a示意了未换挡时间歇传递机构的示意图;
图14b示意了换挡中间歇传递机构的结构的示意图;
图15示意了齿盘联动变速器另一视角立体结构示意图;
图16示意了图15中棘轮锁止组件的放大示意图;
图17a示意转动定位锁止释放器中U形锁滑销被按压后悬臂进入锁止槽中状态示意图;
图17b示意了转动定位锁止释放器中U形锁滑销被按压后锁止框架下移至转动盘的状态示意图;
图18为内啮合齿盘联动变速器的立体结构示意图。
具体实施方式
为了更好的了解本发明的目的、结构及功能,下面结合附图,对本发明做进一步详细的 描述。
本发明提供的齿盘联动变速机构,包括齿轮组、轮盘组、联动齿轮和联动轮盘;联动齿轮与齿轮组中的齿轮构成活动工作组,联动轮盘与轮盘组中的轮盘构成活动支撑组。
实施例一
请参阅图1a,图1a示意了一种齿盘联动变速机构第一实施例结构示意图,图1b示意了图1中齿盘联动变速机构的前视示意图。一种齿盘联动变速机构包括一个齿轮组101、一个轮盘组102、一个联动齿轮103和一个联动轮盘104构成。齿轮组101与轮盘组102连接于一个转轴,联动齿轮103与联动轮盘104连接另一个转轴,联动齿轮103与齿轮组101中的齿轮构成活动工作组,联动轮盘104与轮盘组102中的轮盘构成活动支撑组。
齿轮组101由至少两个绕心转动圆柱齿轮以及设置在相邻两个绕心转动圆柱齿轮之间的偏心转动圆柱齿轮组成,轮盘组102由至少两个绕心转动轮盘以及设置在相邻两个绕心转动轮盘之间的偏心转动轮盘组成。
齿轮组101中的各个绕心转动圆柱齿轮以及各个偏心转动圆柱齿轮为模数、压力角均相同的直齿轮或模数、压力角、螺旋角均相同的斜齿轮。
本实施例中任一偏心转动圆柱齿轮分别与相邻的两个绕心转动圆柱齿轮的齿数差相同。
图1a和图1b示意了齿轮组101中绕心转动圆柱齿轮为三个,偏心转动圆柱齿轮为两个的情况。齿轮组101由依次层叠设置并且直径依次增大的用于第一工作档位时动力输送的第一绕心转动圆柱1011齿轮、用于换挡时动力输送的第一偏心转动圆柱齿轮1012和用于第二工作档位时动力输送的第二绕心转动圆柱齿轮1013组成。
其中,第一偏心转动圆柱齿轮1012的节圆和第一绕心转动圆柱齿轮1011的节圆以及第二绕心转动圆柱齿轮1013的节圆相切,第一偏心转动圆柱齿轮1012和第一绕心转动圆柱齿轮1011切点位置的齿形对齐,第一偏心转动圆柱齿轮1012和第二绕心转动圆柱齿轮1013切点位置的齿形对齐。
进一步地,所有绕心转动圆柱齿轮和偏心转动圆柱齿轮的切点均在同一个径向上。
轮盘组102由依次层叠设置并且直径依次增大的用于第一工作档位时支撑的第一绕心转动轮盘1021、用于换挡时支撑的第一偏心转动轮盘1022和用于第二工作档位时支撑的第二绕心转动轮盘1023组成,第一偏心转动轮盘1022分别和第一绕心转动轮盘1021以及第二绕心转动轮盘1023相切。
第一绕心转动圆柱齿轮1011的节圆直径和第一绕心转动轮盘1021的直径相同,第一偏 心转动圆柱齿轮1012的节圆直径和第一偏心转动轮盘1022的直径相同,第二绕心转动圆柱齿轮1013的节圆直径和第二绕心转动轮盘1023的直径相同,第二偏心转动圆柱齿轮1014的节圆直径和第二偏心转动轮盘1024的直径相同,第三绕心转动圆柱齿轮1015的节圆直径和第三绕心转动轮盘1025的直径相同。
当联动齿轮103和第一绕心转动圆柱齿轮1011啮合时,联动轮盘104被第一绕心转动轮盘1021支撑。当联动齿轮103和第一偏心转动圆柱齿轮1012啮合时,联动轮盘104被第一偏心转动轮盘1021支撑。当联动齿轮103和第二绕心转动圆柱齿轮1013啮合时,联动轮盘104被第二绕心转动轮盘1023支撑。上述结构能够应用到两级变速机构中。
齿轮组101还包括依次层叠设置在第二绕心转动圆柱齿轮1013另一侧面且直径依次增大的用于换挡时动力输送的第二偏心转动圆柱齿轮1014和用于第三工作档位时动力输送的第三绕心转动圆柱齿轮1015,第二偏心转动圆柱齿轮1014分别和第二绕心转动圆柱齿轮1013的另一侧面以及第三绕心转动圆柱齿轮1015相切,第二偏心转动圆柱齿轮1014和第二绕心转动圆柱齿轮1013切点位置的齿形对齐,第二偏心转动圆柱齿轮1014和第三绕心转动圆柱齿轮1015切点位置的齿形对齐。
轮盘组102还包括依次层叠设置在第二绕心转动轮盘1023另一侧面并直径依次增大的用于换挡时支撑的第二偏心转动轮盘1024和第三绕心转动轮盘1025,第二偏心转动轮盘1024分别和第二绕心转动轮盘1023的另一侧面以及第三绕心转动轮盘1025相切。
当联动齿轮103和第二偏心转动圆柱齿轮1014啮合时,联动轮盘104和第二偏心转动轮盘1024支撑。当联动齿轮103和第三绕心转动圆柱齿轮1015啮合时,联动轮盘104和第三绕心转动轮盘1025支撑。本结构适用两级或三级变速机构。
齿轮组101和轮盘组102同角速转动并用同一个转动轴105连接一起,联动齿轮103和联动轮盘104用同一个转动轴106连接一起,联动齿轮103在任一绕心转动圆柱齿轮的带动下转动,联动轮盘104被任一绕心转动轮盘支撑。
偏心转动圆柱齿轮用于换挡时和联动齿轮103啮合,偏心转动轮盘用于换挡时支撑联动轮盘104。
本实施例中的联动齿轮103分别和各个绕心转动圆柱齿轮及偏心转动圆柱齿轮外啮合,各个绕心转动轮盘和偏心转动轮盘分别对联动轮盘104进行外支撑,上述轮盘组102可以为两个并且分布在齿轮组101的两侧。
上述的齿轮组由绕心转动圆柱齿轮和偏心转动圆柱齿轮交替叠置构成,齿轮组中各齿轮 按齿数顺序叠置;齿轮组中各齿轮为模数、压力角均相同的直齿轮或模数、压力角、螺旋角均相同的斜齿轮,齿轮组中各偏心转动的圆柱齿轮分别与相邻的两个绕心转动的圆柱齿轮齿数差相同,在轴向上各偏心转动圆柱齿轮的节圆分别与相邻的绕心转动的两个圆柱齿轮的节圆内切,在切点处各偏心转动圆柱齿轮的齿形分别与相邻的绕心转动的两个圆柱齿轮的齿形对齐,形成两部分齿形高度近似重合区,它们的节圆也形成同样的弧形高度近似重合区;该齿轮组亦可为一个整体结构设计。
上述的轮盘组由绕心转动轮盘和偏心转动轮盘的盘形零件交替叠置而成,其中,这些盘形零件的直径分别与上述齿轮组中的各齿轮的节圆直径相同。绕心转动的轮盘为档位轮盘,偏心转动的轮盘为换挡轮盘,这些轮盘按直径从小到大或从大到小大小顺序叠置。各偏心转动的轮盘与分别与相邻的两个绕心转动的轮盘的外边缘内切,形成两部分弧形高度近似重合区;偏心转动轮盘与两个绕心转动轮盘的外边缘内切,形成两部分弧形高度近似重合区;该轮盘组亦可为一个整体结构设计。
上述的联动齿轮为与上述的齿轮组中的齿轮的模数、压力角均相同的直齿轮或模数、压力角、螺旋角的大小均相同的斜齿轮。
上述的联动轮盘的直径与联动齿轮的节圆直径相同。
本实施例一中齿盘联动变速机构的变速原理为:
请参阅图2,图2示意了一实施例的齿盘联动变速机构中的齿轮组的齿形叠置图样的结构示意图。图中交叉线M和N形成上下两部分区域a和b,而a区域和b区域为齿轮组齿形及弧形高度近似重合区域。
下面以图1a中齿盘联动变速机构为例进行说明,采用能够使联动齿轮103、联动轮盘104与齿轮组101、轮盘组102相互压紧的弹簧/弹片、液压、气压、电磁等装置或其中几种装置的组合装置作用于本发明齿盘联动变速机构。用动力装置驱动联动齿轮103、联动轮盘104或驱动齿轮组101、轮盘组102。联动齿轮103与齿轮组101中的档位齿轮第一绕心转动圆柱齿轮1011、第二绕心转动圆柱齿轮1013或第三绕心转动圆柱齿轮1015工作时,联动轮盘104恰好与轮盘组102中对应的档位轮盘第一绕心转动轮盘1021、第二绕心转动轮盘1023或第三绕心转动轮盘1025组成支撑组。联动齿轮103与齿轮组101中的换挡齿轮第一偏心转动圆柱齿轮1012或第二偏心转动圆柱齿轮1014工作时,联动轮盘104恰好与轮盘组102中对应的换挡轮盘第一偏心转动轮盘1022或第二偏心转动轮盘1024组成活动支撑组。上述联动轮盘104与轮盘组102中的各个轮盘组成的活动支撑组能够维持联动齿轮103与齿轮组101中的各个齿轮在工作时常啮合。
更进一步地,当齿轮组与联动齿轮构成工作组时,且联动齿轮103与第一绕心转动圆柱齿轮1011啮合,即联动齿轮处于第一变速级。
需要进行下一级变速时,当联动齿轮103转动至第一绕心转动圆柱齿轮1011和第一偏心转动圆柱齿轮1012的切点的高度近似重合区域时,通过外界拨动力拨动联动轮盘104,联动轮盘104带动联动齿轮103从第一绕心转动圆柱齿轮1011滑移至第一偏心转动圆柱齿轮1012上,第一偏心转动圆柱齿轮1012与联动齿轮103啮合;当联动齿轮103转动至第一偏心转动圆柱齿轮1012和第二绕心转动圆柱齿轮1013的切点的高度近似重合区域时,通过外界拨动力拨动联动轮盘104,联动轮盘104带动联动齿轮103从第一偏心转动圆柱齿轮1012滑移至第二绕心转动圆柱齿轮1013上,联动齿轮103与第二绕心转动圆柱齿轮1013啮合。此时联动齿轮103处于第二变速级。
还需要进一步变速时,当联动齿轮103转动至第二绕心转动圆柱齿轮1013和第二偏心转动圆柱齿轮1014的切点的高度近似重合区域时,通过外界拨动力拨动联动轮盘104,联动轮盘104带动联动齿轮103从第二绕心转动圆柱齿轮1013滑移至第二偏心转动圆柱齿轮1014上,第二偏心转动圆柱齿轮1014与联动齿轮103啮合;当联动齿轮103转动至第二偏心转动圆柱齿轮1014和第三绕心转动圆柱齿轮1015的切点的高度近似重合区域时,通过外界拨动力拨动联动轮盘104,联动轮盘104带动联动齿轮103从第二偏心转动圆柱齿轮1014滑移至第三绕心转动圆柱齿轮1015上,联动齿轮103与第三绕心转动圆柱齿轮1015啮合。联动齿轮103处于第三变速级。
显而易见的,不管是升档还是降档上述方法均适用,只需改变联动齿轮103的拨动方向即可。
需要指出的是,在上述操作方法中,利用齿形和弧形高度近似重合区变速的理论方法仍然具有可以变通的性质,可以在高度近似重合区完成部分换挡操作,即在齿形高度近似重合区联动齿轮103与齿轮组101中两个相邻齿轮完成一部分交替工作。
由上可以看出本发明的齿盘联动变速机构能够实现至少二级变速,本实施例体现了三级变速的原理,由上也可以看出每增设一组包含偏心转动圆柱齿轮和绕心转动圆柱齿轮的结构即可增加一个变速级别,本领域技术人员通过进一步增设多组包含偏心转动圆柱齿轮和绕心转动圆柱齿轮的结构即可实现多级无离合参与的有级变速。
实施例二
请参阅图3,图3示意了一种齿盘联动变速机构第二实施例结构示意图。本实施例中齿轮组201和轮盘组202同角速转动并通过一个转动轴205连接一起;联动齿轮203和联动轮 盘204角速度不同且联动齿轮203的节圆直径大于联动轮盘204的直径,联动齿轮203和联动轮盘204分别通过L型支架206的两端连接一起并互相平行。
其中,L型支架206包括一横杆216和一竖杆226,横杆216的一端和联动齿轮203转动连接,竖杆226的一端和联动轮盘204转动连接。
其中,齿轮组201由依次层叠设置并且直径依次增大的用于第一工作档位时动力输送的第一绕心转动2011齿轮、用于换挡时动力输送的第一偏心转动圆柱齿轮2012、用于第二工作档位时动力输送的第二绕心转动圆柱齿轮2013、用于换挡时动力输送的第二偏心转动圆柱齿轮2014和用于第三工作档位时动力输送的第三绕心转动圆柱齿轮2015组成。
轮盘组202由依次层叠设置并且直径依次增大的用于第一工作档位时支撑的第一绕心转动轮盘2021、用于换挡时支撑的第一偏心转动轮盘2022、用于第二工作档位时支撑的第二绕心转动轮盘2023、用于换挡时支撑的第二偏心转动轮盘2024、用于第三工作档位时支撑的第三绕心转动轮盘2025组成。
本实施例中的联动齿轮203分别和各个绕心转动圆柱齿轮及偏心转动圆柱齿轮外啮合,各个绕心转动轮盘和偏心转动轮盘分别对联动轮盘204进行外支撑。
本实施例中的齿轮组201和轮盘组202的具体结构,齿轮组201中各个齿轮的位置关系及轮盘组202中各个轮盘的位置关系请参照实施例一种的方式,此处不再赘述。
本实施例对联动轮盘204进行了轻量化的设计,即联动轮盘204的直径可以不同于联动齿轮的节圆直径。本实施例中因为联动轮盘204的结构被轻量化,所以整个齿盘联动变速机构也实现了轻量化。
本实施例的工作原理请参考实施例一,此处不再赘述。
实施例三
请参阅图4,图4示意了一种齿盘联动变速机构第三实施例结构示意图。齿轮组301和轮盘组302同角速转动。联动齿轮303和联动轮盘304用同一个转动轴306连接一起,联动齿轮303在任一绕心转动圆柱齿轮的带动下转动,联动轮盘304被任一绕心转动轮盘支撑。
齿轮组301由依次层叠设置并且直径依次增大的用于第一工作档位时动力输送的第一绕心转动3011齿轮、用于换挡时动力输送的第一偏心转动圆柱齿轮3012和用于第二工作档位时动力输送的第二绕心转动圆柱齿轮3013组成。
轮盘组302由依次层叠设置并且直径依次增大的用于第一工作档位时支撑的第一绕心转动轮盘3021、用于换挡时支撑的第一偏心转动轮盘3022和用于第二工作档位时支撑的第二绕心转动轮盘3023组成。
本实施例中的档位为两级,当然通过进一步增设多组包含偏心转动圆柱齿轮和绕心转动圆柱齿轮的结构即可实现更多级别的变速。
偏心转动圆柱齿轮用于换挡时和联动齿轮303啮合,偏心转动轮盘用于换挡时支撑联动轮盘304。
本实施例中的联动齿轮303分别和各个绕心转动圆柱齿轮及偏心转动圆柱齿轮内啮合,各个绕心转动轮盘和偏心转动轮盘分别对联动轮盘304进行内支撑。
不同的结构设计下,轮盘组中的轮盘可为盘形或环形零件,齿轮组中的齿轮可为外齿轮或内齿轮,轮盘组中的各轮盘的直径亦可与齿轮组中对应齿轮的节圆不同,并且这种轮盘的直径在具体的制造过程中还应该受实际设计需要的影响。
本实施例中的轮盘组为环形零件,齿轮组中的齿轮为内齿轮。而这种联动齿轮与齿轮组中齿轮内啮合的设计方案可以在很大程度上减小整个变速机构的体积,并且在内齿轮机构设计方案中,环形轮盘和内齿轮的外边缘可以直接设计成齿轮结构便于其用于具体的变速操作装置中。此种工作方式中轮盘组和齿轮组可以间接连接,只需保证两者的角速度一致即可。
本实施例中齿轮组301和轮盘组302可以通过外壳进行支撑,可以不设置在同一转轴上。
相比前述实施例一和二本实施例因为联动齿轮303分别和各个绕心转动圆柱齿轮及偏心转动圆柱齿轮内啮合,各个绕心转动轮盘和偏心转动轮盘分别对联动轮盘304进行内支撑,而使得整个齿盘联动变速机构更佳小型化,比前述实施例更佳节省了空间。
实施例四
请参阅图5,图5示意了一种齿盘联动变速机构第四实施例结构示意图。联动齿轮403的节圆直径和联动轮盘404的直径不同且分别连接支撑架406上不同的转动轴,齿轮组401和轮盘组402分别连接支撑杆405上不同的转动轴,齿轮组401连接转动轴4051,轮盘组402连接转动轴4052,且第一绕心转动圆柱齿轮4011的节圆直径和第一绕心转动轮盘4021的直径不同,第一偏心转动圆柱齿轮4012的节圆直径和第一偏心转动轮盘4022的直径不同,第二绕心转动圆柱齿轮4013的节圆直径和第二绕心转动轮盘4023的直径不同,本发明中仅示意了二级变速的齿轮组。
进一步地,为了让齿轮组401和轮盘组402同角速度运转,可以将转动轴4051和转动轴4052之间可以通过链条连接。
进一步地,齿轮组还包括第二偏心转动圆柱齿轮(图未示意)和第三绕心转动圆柱齿轮(图未示意),轮盘组还包括第二偏心转动轮盘(图未示意)和第三绕心转动轮盘(图未示意)。第二偏心转动圆柱齿轮的节圆直径和第二偏心转动轮盘的直径不同及第三绕心转动圆柱齿轮 的节圆直径和第三绕心转动轮盘的直径不同。
当然本领域技术人员通过进一步增设多组包含偏心转动圆柱齿轮和绕心转动圆柱齿轮的结构还可以实现更多级变速。
相比前述实施例一至三,本实施例中联动轮盘403、轮盘组402都进行了缩小设计,所以使得整个齿盘联动变速机构更加小型化,还可以节省零部件的材料。
实施例六
请参阅图6,图6示意了一种齿盘联动变速机构第五实施例结构示意图。联动齿轮503的节圆直径大于联动轮盘504的直径,齿轮组501中各齿轮节圆的直径小于对应轮盘组501中各轮盘的直径。
联动齿轮503和联动轮盘504连接同一转动轴506。齿轮组501和轮盘组502连接转动轴505,且第一绕心转动圆柱齿轮5011的节圆直径和第一绕心转动轮盘5021的直径不同,第一偏心转动圆柱齿轮5012的节圆直径和第一偏心转动轮盘5022的直径不同,第二绕心转动圆柱齿轮5013的节圆直径和第二绕心转动轮盘5023的直径不同,本发明中仅示意了二级变速的齿轮组。
相比前述实施例在这种方案的设计下,换挡过程中所需的拨动力可以有效的减少。
显而易见的是,本发明齿盘联动变速机构用于变速操作装置中,在不同的连接方式的及不同构造的情况下,可以实现本发明齿盘联动变速机构中的联动齿轮、联动轮盘既能发生轴向移动又能发生径向运动,也可以实现齿轮组、轮盘组既能发生轴向移动又能发生径向运动,又或者可以实现联动齿轮、联动轮盘和齿轮组、轮盘组分别参与轴向运动和径向运动。
请参阅图7a和图7b,图7a示意了另一实施例的齿盘联动变速机构中的齿轮组的齿形叠置结构示意图,图7b示意了图7a中齿盘联动变速机构中的齿轮组的齿形叠置时对应的立体示意图。本实施例的齿形叠置与前述实施例一的区别在于:本实施例中各偏心转动圆柱齿轮与相邻绕心转动圆柱齿轮形成的两部分齿形高度近似重合区相对位置是可以调整的。齿轮组601包括档位齿轮第一绕心转动圆柱齿轮6011、第二绕心转动圆柱齿轮6013和第三绕心转动圆柱齿轮6015以及换挡齿轮第一偏心转动圆柱齿轮6012和第二偏心转动圆柱齿轮6014。
其中,c、d为两个换挡操作区域;第一绕心转动圆柱齿轮6011和第一偏心转动圆柱齿轮6012的切点以及第一偏心转动圆柱齿轮6012和第二绕心转动圆柱齿轮6013的切点均位于c区域,第二绕心转动圆柱齿轮6013和第二偏心转动圆柱齿轮6014的切点以及第二偏心转动圆柱齿轮6014和第三绕心转动圆柱齿轮6015的切点均位于d区域。
进一步,由上我们可以看出增设一组包含偏心转动圆柱齿轮和绕心转动圆柱齿轮的结构 即可与之前的一组包含偏心转动圆柱齿轮和绕心转动圆柱齿轮的结构齿形高度近似重合区不同。
绕心转动圆柱齿轮和偏心转动圆柱齿轮的切点不必均设在同一个径向上。
请参阅图8,图8示意了相邻档位之间转速比可调的结构示意图。齿轮组701包括档位齿轮第一绕心转动圆柱齿轮7011、第二绕心转动圆柱齿轮7013和第三绕心转动圆柱齿轮7015以及换挡齿轮第一偏心转动圆柱齿轮7012和第二偏心转动圆柱齿轮7014。图中的第一偏心转动圆柱齿轮7012与其相邻的第一绕心转动圆柱齿轮7011和第二绕心转动圆柱齿轮7013的齿数差均为4,第二偏心转动圆柱齿轮7014与其相邻的第二绕心转动圆柱齿轮7013和第三绕心转动圆柱齿轮7015的齿数差均为6,即一个偏心转动圆柱齿轮与相邻的两个绕心转动圆柱齿轮之间的齿数差和另一个偏心转动圆柱齿轮与相邻的两个绕心转动圆柱齿轮之间的齿数差可以不同。
综合以上齿盘联动变速机构可以归纳如下:
可以证明齿盘联动机构技术方案的齿轮组叠置方式,齿轮组中各绕心转动的圆柱齿轮的转动中心在轴向上是重合的,证明如下:
Figure PCTCN2020075453-appb-000001
上述式子中符号d f1为第一绕心转动圆柱齿轮齿根圆直径、d f2为第一偏心转动圆柱齿轮齿根圆直径、d f3为第二绕心转动圆柱齿轮齿根圆直径,m为模数,n为齿数差。
进一步地,除了采用齿根圆直径的计算方式之外,也可以利用各个齿轮的节圆直径或齿顶圆直径证明上述绕心转动的圆柱齿轮的转动中心在轴向上是重合的。并且这种叠置的方法可以利用到非标准齿轮机构上甚至于非圆齿轮机构上用以满足某些特殊要求的变速需求。
显而易见的是,本发明齿盘联动变速机构中的联动轮盘即可以与联动齿轮同速转动也可以不与联动齿轮同速转动,轮盘组中绕心转动的轮盘即可以与齿轮组同速转动也可以不与齿轮组同速转动,但偏心转动的轮盘则必须保持与齿轮组同转速转动。在不考虑一些次要因素的情况下,这些可变的因素并不影响本发明齿盘联动变速机构的实质发明效果。
另外,本发明齿盘联动变速机构实施例中均以一个轮盘组做示例,但实际应用中,可以用两组轮盘置于齿轮组两侧,辅以同样联接方式的联动轮盘,进而提高该机构的稳定性。本发明齿盘联动变速机构实施例示意图均使用直齿轮只是为了更清晰的展现本发明。显而易见 的是,本发明齿盘联动变速机构中的齿轮亦可以使用斜齿轮。
结合上述几个实施例,本发明齿盘联动变速机构的核心构思为利用联动轮盘与轮盘组构成的活动支撑组实现联动齿轮与齿轮组构成的活动工作组之间的径向距离可变,同时又能实现齿轮与齿轮工作时齿轮之间的径向中心距离不变的方法,在这种构思下,该机构具有灵活的融合于具体的变速操作装置中的多种设计方案。
请参阅图9,图9示意了具有前述的齿盘联动变速机构的齿盘联动变速器的简要图。一种齿盘联动变速器:齿轮组101、一个轮盘组102、一个联动齿轮103、一个联动轮盘104、一个转动连杆107、一个压紧装置108、一个驱动/从动齿轮109和一套定位换挡装置100。
如图9所示,齿轮组101、轮盘组102联接于同一转轴105,联动齿轮103、联动轮盘104联接于另一转轴,联动齿轮103分别与驱动/从动齿轮109和齿轮组101中齿轮啮合,转动连杆107一端与驱动/从动齿轮109的转轴铰接,另一端与联动齿轮103转轴活动联接,压紧装置108联接于转动连杆105一端,定位换挡装置100配合安装于变速器。
实施例齿盘联动变速器的换挡过程具体可以通过一套机械式定位换挡装置实现:
请参阅图10,图10示意了本发明提供的一种具有齿盘联动变速机构的齿盘联动变速器一视角立体结构示意图。齿盘联动变速器包括图9中齿盘联动变速机构,还包括机械式定位换挡装置100,定位换挡装置100包括:升档机构和降档机构。
升档机构和降档机构分别包括:一个固定在转轴105上的转动定位锁止释放器110、通过拨片120连接的间歇传递机构130。
图11示意了转动定位锁止释放器中U形锁滑销未被按压时的状态示意图。转动定位锁止释放器110包括和转轴105旋转连接的转动定位轴10、换挡锁台20、双重锁止机构30、锁止框架40和下压弹簧50。
转动定位轴10一端设有一个锁止槽11、中间设有一个换挡锁台槽12,锁止槽11内设有一个具有倒角的凸出销13;转动定位轴10另一端设有一个转动盘14、转动盘14上设有一个顶出销15。
双重锁止机构30可拆卸联接于锁止框架40内部,锁止框架40贴置于转动定位轴10一侧,换挡锁台20置于锁止框架40和转动定位轴10之间的换挡锁台槽12内并固定安装于壳体或支架且不随转动定位锁止释放器110转动。
图12示意了双重锁止机构的示意图,其包括位于锁止框架40内的U形锁销31、U形锁滑销32、换挡锁销33、换挡锁滑销34、两个锁止弹簧35和36、开锁弹簧37和保险弹簧38。其中锁止弹簧35连接换挡锁销33的一端,锁止弹簧36连接U形锁销31的一端。
其中,U形锁销31具有两个悬臂311和312,两个悬臂之间为连接部313,悬臂311比悬臂312长,锁止弹簧36的一端连接在连接部313远离转动定位轴10的一侧,锁止弹簧36的另一端固定在锁止框架40上。
进一步地双重锁止机构外面设有外壳用于限位并支撑U形锁滑销32只能在垂直于悬臂311的方向运动。
图13a示意了U形锁滑销的结构示意图,其一端为按压部324并且该端往一侧伸出一凸块321,凸块321上设一穿插孔322用于换挡锁滑销34一端的穿入,另一端具有在未换挡状态时将U形锁销31抵住不动的倾斜端323。
图13b为换挡锁销的结构示意图,换挡锁销33具有一反向斜面331和用于未换挡时搭接于换挡锁台20上的延伸部332。
图13c示意了换挡锁滑销的结构示意图,其一端具有弹片341,弹片341的斜面342用于推动换挡锁销33脱离换挡锁台20,换挡锁滑销34另一端为可拆卸旋钮343,弹片341和旋钮343之间具有防开锁端344。弹片341的斜面342与换挡锁销33的反向斜面331使换挡锁滑销34只具有单向开锁功能即为斜面342只能单向将换挡锁销33从换挡锁台20上脱离。
图14a示意了未换挡时间歇传递机构的示意图,图14b示意了换挡中间歇传递机构的结构示意图,其包括旋转组件60和槽轮组件70,旋转组件60包括设置在底盘61上的缺口圆盘62、圆柱销63和固定在缺口圆盘62上的锁止圆柱64,圆柱销63设置在缺口圆盘62的最大外径和底盘61的最大外径之间;槽轮组件70包括四个弧度适配锁止圆柱64的外径的槽轮71和穿过四个槽轮71中部的花键轴72,每个槽轮71之间具有容纳圆柱销63的间隙73,花键轴72上设有轮脖74,槽轮71与花键轴72固定联接。拨片120的一端121固定在锁止框架40上,另一端122卡接于轮脖74上。
当无需换挡时如图14a所示,轮槽71和锁止圆柱64配合不随锁止圆柱64旋转而旋转,换挡时如图14b所示,轮槽71在拨片120的推动下移动至缺口圆盘62处,当缺口圆盘62上的圆柱销63运动至间隙73时带动槽轮71及花键轴72旋转。
请一并参阅图10,花键轴72远离槽轮71的一端连接伞齿轮80,伞齿轮80随花键轴72的伸出而靠近锥齿轮140并随花键轴72的旋转带动锥齿轮140旋转。锁止圆柱64的输出轴和转轴105上分别穿设圆柱齿轮300和圆柱齿轮200,圆柱齿轮300的直径是圆柱齿轮200直径的一半,使缺口圆盘62以齿轮组101转速的二倍转动。转动定位轴10与齿轮组101同转速转动。
未换挡时,槽轮71位于锁止圆柱64的外径上不随锁止圆柱64的旋转而旋转,换挡时 锁止框架40的下移带动槽轮组件70下移至缺口圆盘62处,此时槽轮71和缺口圆盘62的外径配合,当圆柱销63旋转至间隙73中并带动花键轴72移动,同时花键轴72带动伞齿轮80伸出并和锥齿轮140配合。
图15示意了齿盘联动变速器另一视角立体结构示意图,图10和图15中靠近齿轮组101一侧的为升档机构。当齿轮组为动力源时,升档机构用于推动联动轮盘104从小半径绕心转动轮盘向依次增大的大半径绕心转动轮盘运动,同时联动齿轮103从小半径绕心转动圆柱齿轮向依次增大的大半径绕心转动圆柱齿轮运动从而实现降速。而远离齿轮组101一侧为降档机构。
图10和图15中示意了升档机构的工作状态图,从图10和图15中可以看出此时升档机构的花键轴72移出,同时花键轴72带动伞齿轮80伸出并和锥齿轮140配合。
图16示意了图15中棘轮锁止组件的放大示意图,定位换挡装置还包括控制升档机构或降档机构开关的棘轮锁止组件,其包括设置在锥齿轮140的输出轴上的棘轮150,防止棘轮150顺时针运转的棘爪1,防止棘轮150逆时针运转的棘爪2,用于拨动棘爪1或2的拨销3,带动拨销3来回拨动棘爪1或2的推杆4或5。其中拨销3、棘爪1和2可转动固定在支架上(图未示意),推杆4或5的一端分别固定在两个锁止框架40上,在锁止框架40的移动下分别拨开棘爪1或棘爪2。推杆4靠近拨销3的一端具有凹槽6,推杆5靠近拨销3的一端为和凹槽6配合的T字端51。未换挡时,拨销3和凹槽6或推杆5的T字端51均不和拨销3接触,当升档机构或降档机构换挡时,凹槽6或推杆5的T字端51推动拨销3摆动,拨销3打开棘爪1或棘爪2。
当齿轮组101为动力源时,棘轮150输出轴转动连接换挡齿轮160,换挡齿轮160带动换挡齿条170来回运动,换挡齿条170的一端连接联动轮盘104,在换挡齿条170的来回运动下拨动联动轮盘104在轮盘组102上滑移,从而带动联动齿轮103在齿轮组101上滑移,从而实现联动齿轮103的速度改变,联动齿轮103带动从动齿轮109(设定其为从动)进行变速,从动齿轮109为任何需要变速的部件,例如轮子的输入轴可以连接从动齿轮109的输出轴等,从而实现轮子的变速。
圆柱销63和两个槽轮71的工作区域(圆柱销63进入间隙73并带动槽轮71旋转时)与联动齿轮103和齿轮组101中齿形高度近似重合区匹配,即圆柱销63和槽轮71工作时联动齿轮103处于齿轮组101中齿形高度近似重合区域工作。
转动定位轴10的锁止槽11上的凸出销13具有预释放锁止框架40的作用,当转动定位轴10转动至凸出销13接触悬臂311时,锁止框架40下移带动槽轮71逐渐移动至缺口圆盘 62处,使其完全进入到工作区域,转动定位轴10底部转动盘14上的顶出销15具有能实现槽轮71与缺口圆盘62工作完毕后顶起锁止框架40使槽轮71与缺口圆盘62分离的作用。凸出销13与顶出销15错开一个小的角度,用于实现锁止框架40能被完全释放。
请参阅图17a和图17b,图17a示意转动定位锁止释放器中U形锁滑销被按压后悬臂进入到锁止槽中状态示意图了,图17b示意了转动定位锁止释放器中U形锁滑销被按压后锁止框架下移至转动盘的状态示意图。利用上述转动定位锁止释放器装置实施降档中的换挡(将联动齿轮从最小直径绕心转动圆柱齿轮推动至最大绕心转动圆柱齿轮)的过程为:换挡前如图11所示,U形锁滑销32的倾斜端323抵住U形锁销31的连接部313,此时U形锁销31处于锁止状态,换挡锁销33的延伸部332搭接于换挡锁台20上,换挡锁销33处于锁定状态,锁止框架40被锁止,变速器在一个档位上工作。同时降档机构处于不动作的状态,从图10中可以看出降档机构中的伞齿轮80处于和锥齿轮140分离的状态。
实施换挡时,迅速按下U形锁滑销32的按压部324,在U形锁滑销32工作的前半程U形锁销31因为没有倾斜端323的抵压而被解除锁止状态,锁止弹簧36推动连接部313,使U形锁销31的较长的悬臂311进入到转动定位轴10锁止槽11中(如图17a所示),同时,U形锁销31的较短的悬臂312的端部3121阻挡防开锁端344运动从而使斜面342不能带动换挡锁滑销34开锁;在U形锁滑销32工作的后半程,U形锁滑销32压紧开锁弹簧37使换挡锁滑销34进入预开锁状态,当锁止槽11上的凸出销13顶回U形锁销31时,端部3121对防开锁端344的阻挡消失,防开锁端344在开锁弹簧37的作用下迅速阻止U形锁销31再次进入锁止槽11锁止,并同时在开锁弹簧37弹性势能释放下推动换挡锁滑销34及其斜面342向靠近换挡锁销33并将其打开,此时,U形锁销31和换挡锁销33同时开锁,锁止框架40及通过锁止弹簧36固定在锁止框架40上的U形锁销31和通过锁止弹簧35固定在锁止框架40上的换挡锁销33一起在下压弹簧50释放弹性势能的作用下移至转动盘14上(如图17b所示)。换挡完成后拨回U形锁滑销32,U形锁滑销32一侧伸出的凸块321带回换挡锁滑销34,换挡锁滑销34的弹片341的斜面342通过换挡锁销33的反向斜面331恢复到初始位置,保险弹簧38顶住换挡锁滑销34防止由于震动等因素导致的意外开锁现象。U形锁滑销32和换挡锁滑销34不随锁止框架40下移而移动。
请参阅图10,拨片120在锁止框架40的带动下迅速连带槽轮71从锁止圆柱64处移动至缺口圆盘62处,花键轴72带动其上伞齿轮80移动至锥齿轮140处并互相啮合,同时推杆4拨动棘爪1打开对棘轮150的一个锁止方向,随后圆柱销63与槽轮71工作两次(首先联动齿轮103先从第一绕心转动圆柱齿轮1011运动到换挡齿轮即为第一偏心转动圆柱齿轮1012 上,再从第一偏心转动圆柱齿轮1012运动到档位齿轮即为第二绕心转动圆柱齿轮2013上),从而实现一次换挡,这也是缺口圆盘62以齿轮组101转速的二倍转动的原因。随后锁止框架40被转动定位轴10底部的顶出销15顶起并带离槽轮71离开缺口圆盘62,换挡锁销33在锁止弹簧35的作用下再次锁止在换挡锁台20上,同时锁止框架40迅速被换挡锁销33锁止,上述即为一次换挡过程。
图18为内啮合齿盘联动变速器的立体结构示意图,一种齿盘联动变速器:齿轮组301、轮盘组302、联动齿轮303、联动轮盘304、转动连杆307、压紧装置308、驱动/从动齿轮309,联动齿轮303、联动轮盘304联接于另一转轴306,转轴306上还设有齿轮303’,齿轮303’与驱动/从动齿轮309啮合,转动连杆307一端与驱动/从动齿轮309轴铰接,另一端与联动齿轮303轴活动联接,压紧装置308联接于转动连杆305一端,定位换挡装置配合安装于变速器。具体地,定位换挡装置与齿盘联动变速器的结合请参阅图10,此处不再赘述。
结合实施例,显而易见的是,本发明齿盘联动变速器实施例中均以一个轮盘组做示例,但实际应用中,可以用两组轮盘置于齿轮组两侧,辅以同样联接方式的联动轮盘,进而提高该变速操作装置的稳定性;驱动/从动齿轮与联动齿轮之间的动力传递关系可以是直接发生的,也可以通过其他传动零部件间接发生的;并且可以推知驱动/从动齿轮转轴与联动齿轮转轴之间的转动连杆即可以置于齿轮组与轮盘组的中间区域也可以置于齿轮组与轮盘组的两侧中的任意一侧;上述实施例中的连杆即可以铰接于驱动/从动齿轮转轴也可以直接/间接铰接于变速器壳体上;轮盘组与齿轮组之间即可以直接联接同转速转动也可以间接联接同转速转动,且轮盘组中的绕心转动的轮盘与轮盘组同转速转动并非必要条件,联动轮盘与联动齿轮同转速转动亦并非必要条件;联动轮盘与联动齿轮之间即可以用转轴联接也可以用支架结构联接或支架与转轴等构成的复合型结构联接,转动连杆的活动联接方式亦可以在此基础上进行相应的多种优化设计。
以上仅是本发明优选的实施方式,本发明的保护范围并不能仅仅局限于上述实施例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种齿盘联动变速机构,其特征在于,包括:齿轮组、轮盘组、联动齿轮和联动轮盘;联动齿轮与齿轮组中的齿轮构成活动工作组,联动轮盘与轮盘组中的轮盘构成活动支撑组。
  2. 根据权利要求1所述的齿盘联动变速机构,其特征在于:所述的齿轮组为一组由绕心转动圆柱齿轮和偏心转动圆柱齿轮交替叠置构成,齿轮组中各齿轮按齿数顺序叠置;齿轮组中各齿轮为模数、压力角均相同的直齿轮或模数、压力角、螺旋角均相同的斜齿轮;齿轮组中任一偏心转动圆柱齿轮分别与相邻的两个绕心转动圆柱齿轮的齿数差相同;在轴向上各偏心转动圆柱齿轮的节圆分别与相邻的两个绕心转动圆柱齿轮的节圆内切,在切点处各偏心转动圆柱齿轮的齿形分别与相邻的绕心转动两个圆柱齿轮的齿形对齐;该齿轮组或为一个整体结构设计。
  3. 根据权利要求1所述的齿盘联动变速机构,其特征在于:所述的轮盘组为一组或两组由绕心转动和偏心转动的盘形的或环形的零件交替叠置构成,轮盘组中各轮盘直径大小以上述齿轮组中的各齿轮的节圆为基准,并按实际设计要求的和/或结构设计要求的尺寸制造的零部件,轮盘组中的各轮盘按直径大小顺序叠置,在轴向上各偏心转动的轮盘的外边缘或内边缘分别与相邻的绕心转动的两个轮盘的外边缘或内边缘内切;该轮盘组或为一个整体结构设计。
  4. 根据权利要求1所述的齿盘联动变速机构,其特征在于:所述的联动齿轮为模数、压力角均与上述齿轮组中的齿轮相同的圆柱直齿轮或模数、压力角、螺旋角的大小均与上述齿轮组中的齿轮相同的圆柱斜齿轮。
  5. 根据权利要求1所述的齿盘联动变速机构,其特征在于:
    所述齿轮组由至少两个绕心转动圆柱齿轮以及设置在相邻两个绕心转动圆柱齿轮之间的偏心转动圆柱齿轮组成,所述轮盘组由至少两个绕心转动轮盘以及设置在相邻两个绕心转动轮盘之间的偏心转动轮盘组成;
    所述齿轮组中的各个绕心转动圆柱齿轮以及各个偏心转动圆柱齿轮为模数、压力角均相同的直齿轮或模数、压力角、螺旋角均相同的斜齿轮;
    任一偏心转动圆柱齿轮分别与相邻的两个绕心转动圆柱齿轮的齿数差相同;
    当所述联动齿轮和所述任一绕心转动圆柱齿轮之间外啮合时,所述联动轮盘和所述任一绕心转动轮盘之间外支撑;
    当所述联动齿轮和所述任一绕心转动圆柱齿轮之间内啮合时,所述联动轮盘和所述任一绕心转动轮盘之间内支撑。
  6. 根据权利要求5所述的齿盘联动变速机构,其特征在于:
    所述齿轮组由依次层叠设置并且直径依次增大的用于第一工作档位时动力输送的第一绕心转动圆柱齿轮、用于换挡时动力输送的第一偏心转动圆柱齿轮和用于第二工作档位时动力输送的第二绕心转动圆柱齿轮组成;
    其中,第一偏心转动圆柱齿轮的节圆和第一绕心转动圆柱齿轮的节圆以及第二绕心转动圆柱齿轮的节圆相切,第一偏心转动圆柱齿轮和第一绕心转动圆柱齿轮切点位置的齿形对齐,第一偏心转动圆柱齿轮和第二绕心转动圆柱齿轮切点位置的齿形对齐;
    所述轮盘组由依次层叠设置并且直径依次增大的用于第一工作档位时支撑的第一绕心转动轮盘、用于换挡时支撑的第一偏心转动轮盘和用于第二工作档位时支撑的第二绕心转动轮盘组成;其中,
    第一偏心转动轮盘分别和第一绕心转动轮盘以及第二绕心转动轮盘相切;
    当联动齿轮和第一绕心转动圆柱齿轮啮合时,联动轮盘被第一绕心转动轮盘支撑;
    当联动齿轮和第一偏心转动圆柱齿轮啮合时,联动轮盘被第一偏心转动轮盘支撑;
    当联动齿轮和第二绕心转动圆柱齿轮啮合时,联动轮盘被第二绕心转动轮盘支撑。
  7. 根据权利要求6所述的齿盘联动变速机构,其特征在于:
    所述齿轮组还包括依次层叠设置在第二绕心转动圆柱齿轮另一侧面且直径依次增大的用于换挡时动力输送的第二偏心转动圆柱齿轮和用于第三工作档位时动力输送的第三绕心转动圆柱齿轮;其中,
    第二偏心转动圆柱齿轮分别和第二绕心转动圆柱齿轮的另一侧面以及第三绕心转动圆柱齿轮相切,第二偏心转动圆柱齿轮和第二绕心转动圆柱齿轮切点位置的齿形对齐,第二偏心转动圆柱齿轮和第三绕心转动圆柱齿轮切点位置的齿形对齐;
    所述轮盘组还包括依次层叠设置在第二绕心转动轮盘另一侧面并直径依次增大的用于换挡时支撑的第二偏心转动轮盘和第三绕心转动轮盘组成;其中,
    第二偏心转动轮盘分别和第二绕心转动轮盘的另一侧面以及第三绕心转动轮盘相切;
    当联动齿轮和第二偏心转动圆柱齿轮啮合时,联动轮盘和第二偏心转动轮盘支撑;
    当联动齿轮和第三绕心转动圆柱齿轮啮合时,联动轮盘和第三绕心转动轮盘支撑。
  8. 根据权利要求6或7所述的齿盘联动变速机构,其特征在于:所述齿轮组和所述轮盘组同角速转动并用同一个转动轴连接一起;
    所述联动齿轮和所述联动轮盘用同一个转动轴连接一起,所述联动齿轮在任一绕心转动圆柱齿轮的带动下转动,所述联动轮盘被对应绕心转动轮盘支撑;
    所述偏心转动圆柱齿轮用于换挡时和所述联动齿轮啮合,所述偏心转动轮盘用于换挡时支撑所述联动轮盘。
  9. 根据权利要6或7所述的齿盘联动变速机构,其特征在于:所述齿轮组和所述轮盘组同角速转动并通过一个转动轴连接一起;
    所述联动齿轮和所述联动轮盘角速度不同且所述联动齿轮的节圆直径大于所述联动轮盘的直径,所述联动齿轮和所述联动轮盘分别通过L型支架的两端连接一起并互相平行;
    所述联动齿轮在任一绕心转动圆柱齿轮的带动下转动,所述联动轮盘被对应绕心转动轮盘支撑;
    所述偏心转动圆柱齿轮用于换挡时带动所述联动齿轮转动,所述偏心转动轮盘用于换挡时支撑所述联动轮盘。
  10. 根据权利要6或7所述的齿盘联动变速机构,其特征在于:所述联动齿轮的节圆直径和所述联动轮盘的直径不同且分别连接相同的转动轴或连接不同的转动轴,所述齿轮组和所述轮盘组分别连接相同的转动轴或不同的转动轴且第一绕心转动圆柱齿轮的节圆直径和第一绕心转动轮盘的直径不同,第一偏心转动圆柱齿轮的节圆直径和第一偏心转动轮盘的直径不同,第二绕心转动圆柱齿轮的节圆直径和第二绕心转动轮盘的直径不同,第二偏心转动圆柱齿轮的节圆直径和第二偏心转动轮盘的直径不同及第三绕心转动圆柱齿轮的节圆直径和第三绕心转动轮盘的直径不同。
  11. 根据权利要求5至7任一项所述的齿盘联动变速机构,其特征在于:所述轮盘组为一个,所述联动轮盘对应所述轮盘组为一个;
    或所述轮盘组为两个分别对称设置在齿轮组的两侧,所述联动轮盘对应所述轮盘组为两个分别对称设置在齿轮组的两侧。
  12. 一种齿盘联动变速器,包括权利要求1至11任一项所述的齿盘联动变速机构,其特征在于:还包括一个转动连杆、压紧装置、一个驱动/从动齿轮和一套定位换挡装置;齿轮组与轮盘组直接/间接联接同转速转动,联动齿轮与联动轮盘联接于一个转轴或一个支架结构或支架与轴等构成的复合型结构,转动连杆一端与驱动/从动齿轮转轴铰接或与变速器壳体直接/间接铰接,转动连杆另一端与联动齿轮和联动轮盘活动联接,压紧装置联接于转动连杆,联动轮盘与轮盘组中的轮盘构成活动支撑组,联动齿轮与齿轮组中的齿轮构成活动工作组,联 动齿轮与驱动/从动齿轮直接或间接发生动力传递,定位换挡装置配合安装于变速器。
  13. 一种齿盘联动变速器,包括权利要求1至11任一项所述的齿盘联动变速机构,其特征在于:还包括一个一端和联动齿轮活动连接的转动连杆、压制转动连杆的压紧装置、一个和转动连杆另一端铰接的驱动齿轮或从动齿轮以及一套定位换挡装置,联动齿轮与驱动齿轮或从动齿轮互相啮合并进行动力传递。
  14. 根据权利要求13所述的齿盘联动变速器,其特征在于,定位换挡装置包括升档机构和降档机构,升档机构和降档机构分别包括:一个固定在转轴上的转动定位锁止释放器、通过拨片连接的间歇传递机构、与升档机构中间歇传递机构的伞齿轮或降档机构中间歇传递机构的伞齿轮啮合的锥齿轮、设置在锥齿轮的输出轴上的换挡齿轮以及在换挡齿轮的带动下来回运动的换挡齿条,换挡齿条用于带动联动齿轮进行换挡;
    还包括控制升档机构或降档机构开关的棘轮锁止组件,其包括设置在锥齿轮和换挡齿轮之间的棘轮,防止棘轮顺时针运转的棘爪,防止棘轮逆时针运转的棘爪,用于拨动两个棘爪的拨销,带动拨销分别拨动两个棘爪的两个推杆。
PCT/CN2020/075453 2019-04-29 2020-02-16 一种齿盘联动变速机构及齿盘联动变速器 WO2020220791A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910354052.1 2019-04-29
CN201910354052.1A CN110107658B (zh) 2019-04-29 2019-04-29 齿盘联动变速机构及齿盘联动变速器

Publications (1)

Publication Number Publication Date
WO2020220791A1 true WO2020220791A1 (zh) 2020-11-05

Family

ID=67487412

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075453 WO2020220791A1 (zh) 2019-04-29 2020-02-16 一种齿盘联动变速机构及齿盘联动变速器

Country Status (2)

Country Link
CN (1) CN110107658B (zh)
WO (1) WO2020220791A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441167A (zh) * 2021-12-30 2022-05-06 潍柴动力股份有限公司 码盘支架工装

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110107658B (zh) * 2019-04-29 2022-05-10 黎李韦 齿盘联动变速机构及齿盘联动变速器
CN110630077B (zh) * 2019-08-12 2021-02-26 国网浙江省电力有限公司嘉兴供电公司 一种输电线杆塔抱杆安装固定装置
CN110757942B (zh) * 2019-11-29 2021-07-30 湖北淡雅香生物科技股份有限公司 一种卫星式柔版印刷机的压印装置
CN111250864B (zh) * 2020-02-02 2021-12-17 山东高速新材料科技有限公司 一种钢筋电渣压焊机自动控制装置
CN114918053B (zh) * 2022-05-26 2023-03-24 沧州信联化工有限公司 一种光刻胶喷涂设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191505577A (en) * 1915-04-13 1915-09-16 Viggo Emmanuel Hanson Improvements in Variable-speed Gearing.
GB270696A (en) * 1926-05-06 1928-01-26 Joseph Destree Improvements in change speed power-transmission mechanisms
US3826152A (en) * 1973-05-11 1974-07-30 K Alexeev Variable-ratio gear transmission
US4050324A (en) * 1976-10-12 1977-09-27 Gaston Teyssandier Transmission gear mechanism
FR2508132A1 (fr) * 1981-06-18 1982-12-24 Martin Alain Boite de vitesses automatique
EP0597924A1 (en) * 1991-07-11 1994-05-25 CELANI, Luigi Helical toothed continuous speed change gear
WO2017190727A1 (de) * 2016-05-04 2017-11-09 Universität Kassel Getriebe
CN110107658A (zh) * 2019-04-29 2019-08-09 黎李韦 齿盘联动变速机构及齿盘联动变速器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB813666A (en) * 1956-07-05 1959-05-21 Alfred M Voelkl Improvements relating to variable speed transmission
US5490433A (en) * 1995-01-23 1996-02-13 Althen; Craig L. Semi-continuous transmission

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191505577A (en) * 1915-04-13 1915-09-16 Viggo Emmanuel Hanson Improvements in Variable-speed Gearing.
GB270696A (en) * 1926-05-06 1928-01-26 Joseph Destree Improvements in change speed power-transmission mechanisms
US3826152A (en) * 1973-05-11 1974-07-30 K Alexeev Variable-ratio gear transmission
US4050324A (en) * 1976-10-12 1977-09-27 Gaston Teyssandier Transmission gear mechanism
FR2508132A1 (fr) * 1981-06-18 1982-12-24 Martin Alain Boite de vitesses automatique
EP0597924A1 (en) * 1991-07-11 1994-05-25 CELANI, Luigi Helical toothed continuous speed change gear
WO2017190727A1 (de) * 2016-05-04 2017-11-09 Universität Kassel Getriebe
CN110107658A (zh) * 2019-04-29 2019-08-09 黎李韦 齿盘联动变速机构及齿盘联动变速器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441167A (zh) * 2021-12-30 2022-05-06 潍柴动力股份有限公司 码盘支架工装
CN114441167B (zh) * 2021-12-30 2023-09-19 潍柴动力股份有限公司 码盘支架工装

Also Published As

Publication number Publication date
CN110107658B (zh) 2022-05-10
CN110107658A (zh) 2019-08-09

Similar Documents

Publication Publication Date Title
WO2020220791A1 (zh) 一种齿盘联动变速机构及齿盘联动变速器
CN101228367B (zh) 行星齿轮装置
KR100304140B1 (ko) 감속장치
US6418810B1 (en) Coplanar reverted gear train loop
EP1629220B1 (en) Gear drive having continuously variable drive
JP6568233B2 (ja) 部分サイクロイド歯輪郭を有する駆動装置
EA015293B1 (ru) Зубчатое зацепление колес (варианты) и планетарный зубчатый механизм на его основе (варианты)
JP2014501372A (ja) チェーンベルト式無段変速機
WO2017064549A2 (zh) 内啮合传动机构
CN201196247Y (zh) 一种定轴偏心摆线轮减速器
CN113309842B (zh) 摆线针轮谐波减速器
TWI535950B (zh) 大比例速度轉換裝置
CN110259890A (zh) 一种轴向激波活齿减速器
CN214118860U (zh) 复合行星减速机
CN109268453B (zh) 双环减速器
JP5540442B1 (ja) 増減速機のシリーズと増減速機
RU2362925C1 (ru) Реечное зацепление для линейного привода (варианты)
TWI255317B (en) Coaxial differential-speed transmission apparatus
RU2355923C1 (ru) Планетарный зубчатый механизм с двойными сателлитами
CN100436867C (zh) 活齿端面谐波齿轮传动装置
KR20160019880A (ko) 큰-비율 변형파동기어 변속장치
KR200415269Y1 (ko) 감속기
KR200221679Y1 (ko) 유성기어 감속기
CN211737888U (zh) 一种调整丝杠转速用的结构
JP3217060U6 (ja) マイクロ減速機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798310

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798310

Country of ref document: EP

Kind code of ref document: A1