WO2020220718A1 - 一种光通信的装置和波长选择方法 - Google Patents

一种光通信的装置和波长选择方法 Download PDF

Info

Publication number
WO2020220718A1
WO2020220718A1 PCT/CN2019/130590 CN2019130590W WO2020220718A1 WO 2020220718 A1 WO2020220718 A1 WO 2020220718A1 CN 2019130590 W CN2019130590 W CN 2019130590W WO 2020220718 A1 WO2020220718 A1 WO 2020220718A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
sub
component
beams
switch array
Prior art date
Application number
PCT/CN2019/130590
Other languages
English (en)
French (fr)
Inventor
贾伟
邹冰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19927484.6A priority Critical patent/EP3955037A4/en
Publication of WO2020220718A1 publication Critical patent/WO2020220718A1/zh
Priority to US17/514,557 priority patent/US11728919B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/35Optical coupling means having switching means
    • G02B6/354Switching arrangements, i.e. number of input/output ports and interconnection types
    • G02B6/356Switching arrangements, i.e. number of input/output ports and interconnection types in an optical cross-connect device, e.g. routing and switching aspects of interconnecting different paths propagating different wavelengths to (re)configure the various input and output links
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2753Optical coupling means with polarisation selective and adjusting means characterised by their function or use, i.e. of the complete device
    • G02B6/278Controlling polarisation mode dispersion [PMD], e.g. PMD compensation or emulation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29395Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device configurable, e.g. tunable or reconfigurable
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/0204Broadcast and select arrangements, e.g. with an optical splitter at the input before adding or dropping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0215Architecture aspects
    • H04J14/0217Multi-degree architectures, e.g. having a connection degree greater than two
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29305Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating as bulk element, i.e. free space arrangement external to a light guide
    • G02B6/29311Diffractive element operating in transmission

Definitions

  • This application relates to the field of communications, and in particular to an optical communication device and wavelength selection method.
  • ROADM reconfigurable optical add-drop multiplexers
  • ROADM (referred to as CDC ROADM) with colorless (wavelength-independent) characteristics, directionless (direction-independent) characteristics, and contentionless (wavelength-free conflict) characteristics is the future development direction of ROADM architecture.
  • colorless means that any port can output any wavelength
  • directionless means that any wavelength can be scheduled to any direction
  • contentionless means that when multiple directions need to be up and down the same wavelength locally, no wavelength conflict will occur.
  • ROADM can be composed of 1*N WSS on the line side and N*MNxM on the client side.
  • ADWSS add drop wavelength selective switch
  • the function of the 1xK wavelength selective switch (WSS) on the line side is to introduce the input signal of N dimensions on the transmission link into the input port of the NxM ADWSS through the optical switching array, and then the signal beam of each dimension is incident on the first NxM ADWSS.
  • WSS wavelength selective switch
  • the two-level optical switching array of NxM ADWSS completes the signal exchange and propagates the signal to the output port.
  • 1xK WSS includes the first-level optical switching array
  • NxM ADWSS includes the second-level optical switching array.
  • the wave signal also needs to pass through the 3-level optical switching array to switch the local wave service to various directions. Since the upper and lower wave signals need to pass through a three-level optical switching array, the signal has a large insertion loss and filtering.
  • This application provides an optical communication device and wavelength selection method, so that the optical path from the dimensional input port to the dimensional output only needs to pass through two-stage optical switch arrays, and the optical path from the dimensional input port to the drop-wave output also only needs to pass through two stages.
  • the optical switch array makes the drop signal reduce the insertion loss caused by the first-level optical switch array.
  • the present application provides an optical communication device, including: a first input component, a first wavelength dispersion component, a second wavelength dispersion component, a third wavelength dispersion component, an optical deflection component, a second optical switch array, A third optical switch array, a first output component and a second output component;
  • the first wavelength dispersion component is used for decomposing the first light beam incident from the first input component into a plurality of first sub-wavelength light beams, and propagating the plurality of first sub-wavelength light beams to the light deflection component ,
  • the first wavelength dispersive component can decompose the first light beam incident from the first input component into a plurality of first sub-wavelength light beams, so that the plurality of first sub-wavelength light beams are dispersed on the wavelength plane, and the dispersed multiple first light beams
  • a sub-wavelength beam propagates to the light deflection component through the redirection component, and the wavelengths of the first sub-wavelength light beams are different from each other;
  • the light deflection component is used for angularly deflecting the plurality of first sub-wavelength beams to obtain multiple Second sub-wavelength light beam, and propagating the plurality of second sub-wavelength light beams to the second optical switch array, and the optical deflection component is also used for angularly
  • the second optical switch array is used to propagate the second sub-wavelength light beams to the third wavelength dispersion component.
  • the third wavelength dispersion component is used for combining the multiple second sub-wavelength light beams into a second light beam and propagating the second light beam to the first output component; the first output component is used for The second beam dimension is output; the second wavelength dispersion component is used to combine the plurality of third sub-wavelength beams into a third beam, and propagate the third beam to the third optical switch Array; the third optical switch array is used to propagate the third light beam to the second output component; the second output component is used to output the third light beam under wave.
  • the light deflection component deflects the multiple first sub-wavelength beams in different beam propagation directions for different output port types, so that the beam output from the downstream wave can avoid the optical path of the dimensional output, and from The drop-wave output port outputs, correspondingly, the beam of the dimension output can avoid the light path of the drop-wave output and output from the dimension output port.
  • the optical path of the first beam from the dimensional input port to the dimensional output only needs to pass through the two-stage optical switch array (the optical switch array and the second optical switch array included in the optical deflection assembly).
  • the optical path also only needs to pass through the two-stage optical switch array (the optical switch array and the third optical switch array included in the optical deflection assembly), so that the drop signal reduces the insertion loss caused by the first-stage optical switch array, and the drop signal reduces by one stage.
  • Optical switch array filtering reduces the cost of signal filtering.
  • the light deflection component includes: a first optical switch array and a redirection component;
  • the first optical switch array is used for angularly deflecting the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagating the plurality of second sub-wavelength beams through the redirecting component
  • the first optical switch array is also used for angularly deflecting the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and combining the plurality of third sub-wavelength beams
  • the sub-wavelength light beam propagates to the second wavelength dispersion component through the redirection component.
  • the first wavelength dispersion component is used to decompose the first light beam incident by the first input component into a plurality of first sub-wavelength light beams in a first plane.
  • the first optical switch array is configured to angle the plurality of first sub-wavelength beams in at least one of the first plane and the second plane. Deflection obtains a plurality of second sub-wavelength light beams, and propagates the plurality of second sub-wavelength light beams to the second optical switch array through the redirection component, or, the first optical switch array is used in Angularly deflect the plurality of first sub-wavelength light beams in at least one of the first plane and the second plane to obtain a plurality of third sub-wavelength light beams, and pass the plurality of third sub-wavelength light beams
  • the redirection component propagates to the second wavelength dispersion component, and the first plane and the second plane are orthogonal to each other.
  • the redirection component includes a first lens, a second lens, and a third lens
  • the second lens is located at the back focal plane of the first lens
  • the second lens is located at the front focal plane of the third lens
  • the second optical switch array is located at the back focal plane of the second lens
  • the first optical switch array is located at the front focal plane of the second lens
  • the first lens, the second lens, and the third lens are used to propagate the plurality of second sub-wavelength light beams to all The second optical switch array.
  • the second wavelength dispersion component is located at the back focal plane of the first lens, and the first lens is also used to propagate the plurality of third sub-wavelength light beams to The second wavelength dispersion component.
  • the second wavelength dispersion component is located at the back focal plane of the second lens, and the second lens is used to propagate the plurality of third sub-wavelength light beams to all the The second wavelength dispersion component.
  • the redirection component further includes a fourth lens and a fifth lens
  • the first wavelength dispersion component is located on the back focal plane of the fourth lens, the first wavelength dispersion component is located on the front focal plane of the fifth lens, and the fifth lens is used to disperse the first wavelength dispersion
  • the plurality of first sub-wavelength light beams incident from the component propagate to the first optical switch array.
  • the optical communication device further includes: a second input component, a fourth optical switch array, and a fourth wavelength dispersion component;
  • the second input component is used for inputting a fourth light beam and incident the fourth light beam to the fourth optical switch array;
  • the fourth optical switch array is configured to angularly deflect the fourth light beam to obtain a fifth light beam, and propagate the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component is configured to split the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagate the plurality of fourth sub-wavelength light beams to the second optical switch array;
  • the second optical switch array is also used for angularly deflecting the plurality of fourth sub-wavelength beams to obtain a plurality of fifth sub-wavelength beams, and propagating the plurality of fifth sub-wavelength beams to the third Wavelength dispersion components.
  • the third wavelength dispersion component is configured to combine the plurality of fifth sub-wavelength light beams into a sixth light beam, combine the sixth light beam, and propagate the sixth light beam to the first output component;
  • the first output component is used to output the sixth beam dimension.
  • the fourth wavelength dispersion component is configured to split the fifth light beam into a plurality of fourth sub-wavelength light beams in the first plane.
  • the fourth optical switching array is configured to perform angular deflection on the fourth light beam in at least one of the first plane and the second plane to obtain
  • the fifth light beam, the second optical switch array is also used for angularly deflecting the plurality of fourth sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of first
  • the first plane and the second plane are orthogonal to each other.
  • the redirection component includes a first lens, a second lens, and a third lens
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, and the fourth wavelength dispersion component is located at the front focal plane of the third lens,
  • the second optical switch array is located on the back focal plane of the third lens, and the third lens is used to propagate the plurality of fourth sub-wavelength light beams to the second optical switch array.
  • the redirection component includes a first lens, a second lens, and a third lens
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, and the fourth wavelength dispersion component is located at the front focal plane of the second lens,
  • the second optical switch array is located on the back focal plane of the second lens, and the second lens is used to propagate the plurality of fourth sub-wavelength light beams to the second optical switch array.
  • the light deflection component includes: a first optical switch array, a redirection component, a first polarization control element, and a polarization splitting element;
  • the first optical switch array is configured to angularly deflect the plurality of first sub-wavelength beams and propagate the plurality of first sub-wavelength beams to the first polarization control element through the redirection component;
  • the first polarization control element is used to change the polarization state of the plurality of first sub-wavelength light beams incident, and output a plurality of second sub-wavelength light beams or a plurality of third sub-wavelength light beams to the polarization splitting element, wherein ,
  • the polarization states of the plurality of second sub-wavelength light beams and the plurality of third sub-wavelength light beams are orthogonal to each other;
  • the polarization splitting element receives the multiple second sub-wavelength beams incident from the first polarization control element, it is used to control the beam propagation direction of the multiple second sub-wavelength beams so that the multiple second sub-wavelength beams Two sub-wavelength beams are incident on the second optical switch array, and if the polarization splitting element receives multiple third sub-wavelength beams incident from the first polarization control element, it is used to control the multiple third sub-wavelength beams.
  • the beam propagation direction of the wavelength beam is such that the plurality of third sub-wavelength beams are incident on the second wavelength dispersion component, wherein the beam propagation directions of the second sub-wavelength beam and the third sub-wavelength beam are different .
  • the optical communication device further includes: a second input component, a fourth optical switch array, a fourth wavelength dispersion component, and a second polarization control element;
  • the second input component is used for inputting a fourth light beam and incident the fourth light beam to the fourth optical switch array;
  • the fourth optical switch array is configured to angularly deflect the fourth light beam to obtain a fifth light beam, and propagate the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component is used to split the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagate the plurality of fourth sub-wavelength light beams to the second polarization control element;
  • the second polarization control element is used to change the polarization state of the plurality of incident fourth sub-wavelength light beams, and output the plurality of fourth sub-wavelength light beams to the polarization splitting element, so that the polarization
  • the light splitting element propagates the plurality of fourth sub-wavelength light beams to the second optical switch array.
  • the optical communication device further includes: a fifth wavelength dispersion component and a sixth wavelength dispersion component;
  • the first optical switch array is configured to angularly deflect the plurality of first sub-wavelength light beams and propagate the plurality of first sub-wavelength light beams to the fifth wavelength dispersion component;
  • the fifth wavelength dispersion component is used to combine the multiple first sub-wavelength light beams incident on the first optical switch array, and propagate the combined light beams to the first polarization through the redirection component control element;
  • the sixth wavelength dispersion component is used for decomposing the light beam incident by the polarization beam splitting element into the plurality of second sub-wavelength light beams, and propagating the plurality of second sub-wavelength light beams to the second optical switch array .
  • this application provides a method for wavelength selection, which is characterized in that it includes:
  • the first input component inputs the first light beam and propagates the first light beam to the first wavelength dispersion component;
  • the first wavelength dispersion component decomposes the first light beam incident from the first input component into a plurality of first sub-wavelength light beams, and propagates the plurality of first sub-wavelength light beams to the light deflection component;
  • the optical deflection component angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagates the plurality of second sub-wavelength beams to the second optical switch array, and the light deflects
  • the component further angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and propagates the plurality of third sub-wavelength beams to the second wavelength dispersive component, the second sub-wavelength beams Different from the beam propagation direction of the third sub-wavelength beam;
  • the second optical switch array propagates the plurality of second sub-wavelength light beams to a third wavelength dispersion component
  • the third wavelength dispersion component combines the plurality of third sub-wavelength light beams into a second light beam, and propagates the second light beam to the first output component;
  • the first output component outputs the second beam dimension
  • the second wavelength dispersion component combines the plurality of third sub-wavelength light beams into a third light beam, and propagates the third light beam to a third optical switch array;
  • the third optical switch array propagates the third light beam to the second output component
  • the second output component down-wave outputs the third light beam.
  • the light deflection component includes: a first optical switch array and a redirection component;
  • the optical deflection component angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagates the plurality of second sub-wavelength beams to the second optical switch array, and the light deflects
  • the component further angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and propagates the plurality of third sub-wavelength beams to the second wavelength dispersive component, the second sub-wavelength beams
  • the beam propagation direction is different from the third sub-wavelength beam, and includes:
  • the first optical switch array angularly deflects the plurality of first sub-wavelength light beams to obtain a plurality of second sub-wavelength light beams, and propagates the plurality of second sub-wavelength light beams through the redirecting component to the
  • the second optical switch array the first optical switch array further angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and passes the plurality of third sub-wavelength beams through the
  • the redirecting component propagates to the second wavelength dispersion component.
  • the first wavelength dispersion component decomposing the first light beam incident from the first input component into a plurality of first sub-wavelength light beams includes:
  • the first wavelength dispersion component decomposes the first light beam incident from the first input component into a plurality of first sub-wavelength light beams in a first plane.
  • the first optical switch array angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and combines the plurality of second sub-wavelength beams
  • the wavelength light beam is propagated to the second optical switch array through the redirecting component, and the first optical switch array further angularly deflects the plurality of first sub-wavelength light beams to obtain a plurality of third sub-wavelength light beams
  • the propagation of the plurality of third sub-wavelength light beams to the second wavelength dispersion component through the redirection component includes:
  • the first optical switch array angularly deflects the plurality of first sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of second sub-wavelength beams, and combine the A plurality of second sub-wavelength light beams propagate to the second optical switch array through the redirecting component, and the first optical switch array is also aligned in at least one of the first plane and the second plane
  • the plurality of first sub-wavelength light beams are angularly deflected to obtain a plurality of third sub-wavelength light beams, and the plurality of third sub-wavelength light beams are propagated to the second wavelength dispersion component through the redirection component, and
  • the first plane and the second plane are orthogonal to each other.
  • the redirection component includes a first lens, a second lens, and a third lens
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, and the second optical switch array is located at the back focal plane of the second lens, The first optical switch array is located at the front focal plane of the second lens;
  • the propagating the plurality of second sub-wavelength light beams to the second optical switch array through the redirection component includes:
  • the plurality of second sub-wavelength light beams are propagated to the second optical switch array through the first lens, the second lens, and the third lens.
  • the second wavelength dispersion component is located at the back focal plane of the first lens
  • the propagating the plurality of third sub-wavelength light beams to the second wavelength dispersion component through the redirection component includes:
  • the plurality of third sub-wavelength light beams are propagated to the second wavelength dispersion component through the first lens.
  • the second wavelength dispersion component is located at the back focal plane of the second lens
  • the propagating the plurality of third sub-wavelength light beams to the second wavelength dispersion component through the redirection component includes:
  • the plurality of third sub-wavelength light beams are propagated to the second wavelength dispersion component through the second lens.
  • the method further includes:
  • the second input component inputs a fourth light beam, and the fourth light beam is incident on the fourth optical switch array;
  • the fourth optical switch array angularly deflects the fourth light beam to obtain a fifth light beam, and propagates the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component splits the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagates the plurality of fourth sub-wavelength light beams to the second optical switch array through the redirection component;
  • the second optical switch array further performs angular deflection on the plurality of fourth sub-wavelength beams to obtain a plurality of fifth sub-wavelength beams, and propagates the plurality of fifth sub-wavelength beams to the third wavelength dispersion component .
  • the fourth wavelength dispersion component splitting the fifth light beam into a plurality of fourth sub-wavelength light beams includes:
  • the fourth wavelength dispersion component splits the fifth light beam into a plurality of fourth sub-wavelength light beams in the first plane.
  • the fourth optical switch array angularly deflects the fourth light beam to obtain the fifth light beam, including:
  • the fourth optical switching array performs angular deflection on the fourth light beam in at least one of the first plane and the second plane to obtain a fifth light beam;
  • the second optical switch array angularly deflects the plurality of fourth sub-wavelength light beams to obtain a plurality of fifth sub-wavelength light beams, including:
  • the second optical switch array angularly deflects the plurality of fourth sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of fifth sub-wavelength beams.
  • a plane and the second plane are orthogonal to each other.
  • the redirection component includes a first lens, a second lens, and a third lens
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, and the fourth wavelength dispersion component is located at the front focal plane of the third lens,
  • the second optical switch array is located on the back focal plane of the third lens;
  • the propagating the plurality of fourth sub-wavelength light beams to the second optical switch array through the redirection component includes:
  • the plurality of fourth sub-wavelength light beams are propagated to the second optical switch array through the third lens.
  • the redirection component includes a first lens, a second lens, and a third lens
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, and the fourth wavelength dispersion component is located at the front focal plane of the second lens,
  • the second optical switch array is located on the back focal plane of the second lens;
  • the propagating the plurality of fourth sub-wavelength light beams to the second optical switch array through the redirection component includes:
  • the plurality of fourth sub-wavelength light beams are propagated to the second optical switch array through the second lens.
  • the optical deflection component includes: a first optical switch array, a redirection component, a first polarization control element, and a polarization splitting element;
  • the optical deflection component angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagates the plurality of second sub-wavelength beams to the second optical switch array, and the light deflects
  • the component further angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and propagates the plurality of third sub-wavelength beams to the second wavelength dispersive component, the second sub-wavelength beams
  • the beam propagation direction is different from the third sub-wavelength beam, and includes:
  • the first optical switch array angularly deflects the plurality of first sub-wavelength beams and propagates the plurality of first sub-wavelength beams to the first polarization control element through the redirection component;
  • the first polarization control element changes the polarization state of the plurality of incident first sub-wavelength light beams, and outputs a plurality of second sub-wavelength light beams or a plurality of third sub-wavelength light beams to the polarization beam splitting element, wherein The polarization states of the plurality of second sub-wavelength light beams and the plurality of third sub-wavelength light beams are orthogonal to each other;
  • the polarization splitting element receives the multiple second sub-wavelength beams incident from the first polarization control element, it controls the beam propagation direction of the multiple second sub-wavelength beams so that the multiple second sub-wavelength beams
  • the wavelength beam is incident on the second optical switch array
  • the polarization splitting element receives the multiple third sub-wavelength beams incident from the first polarization control element, it controls the beams of the multiple third sub-wavelength beams
  • the propagation direction is such that the plurality of third sub-wavelength beams are incident on the second wavelength dispersion component, wherein the beam propagation directions of the second sub-wavelength beam and the third sub-wavelength beam are different.
  • the method further includes:
  • the second input component inputs the fourth light beam, and the fourth light beam is incident on the fourth optical switch array;
  • the fourth optical switch array angularly deflects the fourth light beam to obtain a fifth light beam, and propagates the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component splits the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagates the plurality of fourth sub-wavelength light beams to the second polarization control element;
  • the second polarization control element changes the polarization state of the plurality of incident fourth sub-wavelength light beams, and outputs the plurality of fourth sub-wavelength light beams to the polarization splitting element, so that the polarization splitting element will The plurality of fourth sub-wavelength light beams propagate to the second optical switch array.
  • an optical communication device including:
  • a first input component a first wavelength dispersion component, an optical deflection component, a second optical switch array, a third wavelength dispersion component, and a first output component;
  • the first input component is used to input a first light beam and propagate the first light beam to the first wavelength dispersion component;
  • the first wavelength dispersion component is used for decomposing the first light beam incident from the first input component into a plurality of first sub-wavelength light beams, and propagating the plurality of first sub-wavelength light beams to the light deflection component ;
  • the optical deflection component is used for angularly deflecting the plurality of first sub-wavelength light beams to obtain a plurality of second sub-wavelength light beams, and propagating the plurality of second sub-wavelength light beams to the second optical switch array ;
  • the second optical switch array is used to propagate the plurality of second sub-wavelength light beams to the third wavelength dispersion component;
  • the third wavelength dispersion component is used to combine the plurality of second sub-wavelength light beams into a second light beam, and propagate the second light beam to the first output component;
  • the first output component is used to output the second beam dimension.
  • the light deflection component includes: a first optical switch array and a redirection component;
  • the first optical switch array is used for angularly deflecting the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagating the plurality of second sub-wavelength beams through the redirecting component To the second optical switch array.
  • the first wavelength dispersion component is configured to decompose the first light beam incident by the first input component into a plurality of first sub-wavelength light beams in a first plane.
  • the first optical switch array is configured to angle the plurality of first sub-wavelength light beams in at least one of the first plane and the second plane.
  • a plurality of second sub-wavelength light beams are obtained by deflecting, and the plurality of second sub-wavelength light beams are propagated to the second optical switch array through the redirecting component.
  • the optical communication device further includes: a second input component, a fourth optical switch array, and a fourth wavelength dispersion component;
  • the second input component is used for inputting a fourth light beam and incident the fourth light beam to the fourth optical switch array;
  • the fourth optical switch array is configured to angularly deflect the fourth light beam to obtain a fifth light beam, and propagate the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component is configured to split the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagate the plurality of fourth sub-wavelength light beams to the second optical switch array;
  • the second optical switch array is also used for angularly deflecting the plurality of fourth sub-wavelength beams to obtain a plurality of fifth sub-wavelength beams, and propagating the plurality of fifth sub-wavelength beams to the third Wavelength dispersion components.
  • an optical communication device including:
  • a first input component a first wavelength dispersion component, a second wavelength dispersion component, an optical deflection component, a third optical switch array, and a second output component;
  • the first input component is used to input a first light beam and propagate the first light beam to the first wavelength dispersion component;
  • the first wavelength dispersion component is used for decomposing the first light beam incident from the first input component into a plurality of first sub-wavelength light beams, and propagating the plurality of first sub-wavelength light beams to the light deflection component ;
  • the light deflection component is used for angularly deflecting the plurality of first sub-wavelength light beams to obtain a plurality of third sub-wavelength light beams, and propagating the plurality of third sub-wavelength light beams to the second wavelength dispersion component ;
  • the second wavelength dispersion component is used to combine the plurality of third sub-wavelength light beams into a third light beam, and propagate the third light beam to the third optical switch array;
  • the third optical switch array is used to propagate the third light beam to the second output component
  • the second output component is used to drop the third light beam and output it.
  • the light deflection component includes: a first optical switch array and a redirection component;
  • the first optical switch array is used for angularly deflecting the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and propagating the plurality of third sub-wavelength beams through the redirecting component To the second wavelength dispersion component.
  • the first wavelength dispersion component is used to decompose the first light beam incident by the first input component into a plurality of first sub-wavelength light beams in a first plane.
  • the first optical switch array is used to angle the plurality of first sub-wavelength beams in at least one of the first plane and the second plane.
  • a plurality of third sub-wavelength light beams are obtained by deflection, and the plurality of third sub-wavelength light beams are propagated to the second wavelength dispersion element through the redirection component, and the first plane and the second plane are mutually aligned. cross.
  • this application provides an optical communication device, including:
  • the second input component is used for inputting a fourth light beam and incident the fourth light beam to the fourth optical switch array;
  • the fourth optical switch array is configured to angularly deflect the fourth light beam to obtain a fifth light beam, and propagate the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component is configured to split the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagate the plurality of fourth sub-wavelength light beams to the second optical switch array;
  • the second optical switch array is used for angularly deflecting the plurality of fourth sub-wavelength beams to obtain a plurality of fifth sub-wavelength beams, and propagating the plurality of fifth sub-wavelength beams to the third wavelength Dispersion component
  • the third wavelength dispersion component is configured to combine the plurality of fifth sub-wavelength light beams into a sixth light beam, and propagate the sixth light beam to the first output component;
  • the first output component is used to output the sixth beam dimension.
  • the fourth optical switching array is configured to perform angular deflection on the fourth light beam in at least one of the first plane and the second plane to obtain The fifth light beam, the second optical switch array, is also used for angularly deflecting the plurality of fourth sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of first For a five-wavelength light beam, the first plane and the second plane are orthogonal to each other.
  • the embodiment of the application provides an optical communication device, including: a first input component, a first wavelength dispersion component, a second wavelength dispersion component, a third wavelength dispersion component, an optical deflection component, a second optical switch array, and a third An optical switch array, a first output component, and a second output component;
  • the first input component is used to input a first light beam, and the first light beam is incident on the first wavelength dispersion component;
  • the first The wavelength dispersion component is used to decompose the first light beam incident by the first input component into a plurality of first sub-wavelength light beams, and to propagate the plurality of first sub-wavelength light beams to the light deflection component;
  • the deflection component is used for angularly deflecting the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagating the plurality of second sub-wavelength beams to the second optical switch array, the The light deflection component is also used
  • the optical deflection component deflects the multiple first sub-wavelength beams in different beam propagation directions for different output port types, so that the beam output from the drop wave can avoid the optical path of the dimensional output and output from the drop output port.
  • the dimensional output light beam can avoid the light path of the downstream output and output from the dimensional output port.
  • the optical path of the first beam from the dimensional input port to the dimensional output only needs to pass through the two-stage optical switch array (the optical switch array and the second optical switch array included in the optical deflection assembly).
  • the optical path also only needs to pass through the two-stage optical switch array (the optical switch array and the third optical switch array included in the optical deflection assembly), so that the drop signal reduces the insertion loss caused by the first-stage optical switch array, and the drop signal reduces by one stage.
  • Optical switch array filtering reduces the cost of signal filtering.
  • FIG. 1 is a schematic diagram of ROADM architecture
  • FIG. 2 is a schematic structural diagram of an optical communication device provided by an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an optical communication apparatus provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of the optical path structure in the wavelength plane of an optical communication device provided by an embodiment of the present invention.
  • 5a is a schematic diagram of the optical path structure of an optical communication device in the port switching plane provided by an embodiment of the present invention.
  • 5b is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the optical path structure of an optical communication device in the port switching plane provided by an embodiment of the present invention.
  • FIG. 7a is a schematic diagram of an optical path structure in a port switching plane of an optical communication device according to an embodiment of the present invention.
  • FIG. 7b is a schematic diagram of an optical path structure in a wavelength plane of an optical communication device according to an embodiment of the present invention.
  • FIG. 7c is a schematic diagram of an optical path structure in a wavelength plane of an optical communication device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of an optical communication device provided by an embodiment of the present invention.
  • 9a is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention.
  • FIG. 9b is a schematic diagram of an optical path structure in a wavelength plane of an optical communication device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an optical communication apparatus provided by an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an optical communication device provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of the optical path structure in the wavelength plane of an optical communication device according to an embodiment of the present invention.
  • FIG. 13a is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention.
  • 13b is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention.
  • FIG. 14 is a flowchart of a method for wavelength selection according to an embodiment of the present invention.
  • the technical solution of the present invention can be applied to various communication systems that can use signal light to transmit data, such as: global system of mobile communication (GSM), code division multiple access, CDMA, ) System, wideband code division multiple access (WCDMA), suitable for packet radio service (general packet radio service, GPRS), long term evolution (LTE), fifth generation (5Generation, 5G)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • suitable for packet radio service general packet radio service, GPRS
  • LTE long term evolution
  • 5G fifth generation
  • the communication system etc.
  • the communication system may also be applicable to future-oriented communication technologies, all of which are applicable to the technical solutions provided by the embodiments of the present invention.
  • the system architecture and business scenarios described in the embodiments of the present invention are to illustrate the technical solutions of the embodiments of the present invention more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present invention.
  • Those of ordinary skill in the art will
  • an ROADM architecture provided by an embodiment of the present invention includes: a first input component 201, a first wavelength dispersion component 202, an optical deflection component 211, a second wavelength dispersion component 208, a third optical switch array 209, The second output component 210, the second optical switch array 205, the third wavelength dispersion component 206, and the first output component 207.
  • the first input component 201 is used to input the first light beam and propagate the first light beam to the first wavelength dispersion component 202.
  • the first input component 201 may include N input ports, where the N input ports are used for dimensional input, and the first input component 201 is used to output the input light beams received by the N input ports to the first wavelength.
  • the dispersive component 202 specifically, the first input component 201 can incident the first light beam input in dimensions to the first wavelength dispersive component 202, where the value of N in this embodiment is a positive integer.
  • the first wavelength dispersion component 202 is used for decomposing the first light beam incident from the first input component 201 into a plurality of first sub-wavelength beams, and spreading the plurality of first sub-wavelength beams to the light deflection component 211.
  • the first wavelength dispersive component 202 can split the first light beam incident from the first input component 201 into multiple first sub-wavelength light beams, so that the multiple first sub-wavelength light beams are dispersed on the wavelength plane, and The dispersed multiple first sub-wavelength light beams propagate to the light deflection component 211 via the redirecting component 203, and the wavelengths of the first sub-wavelength light beams are different from each other.
  • the light deflection component 211 is used for angularly deflecting multiple first sub-wavelength light beams to obtain multiple second sub-wavelength light beams, and propagates the multiple second sub-wavelength light beams to the second optical switch array 205, the light deflection component 211, It is also used for angularly deflecting multiple first sub-wavelength beams to obtain multiple third sub-wavelength beams, and propagating the multiple third sub-wavelength beams to the second wavelength dispersion component 208. Wavelength beams have different beam propagation directions.
  • the second optical switch array 205 is used to propagate a plurality of second sub-wavelength light beams to the third wavelength dispersion component 208.
  • the third wavelength dispersion component 206 is used to combine a plurality of second sub-wavelength beams into a second beam and spread the second beam to the first output component 207.
  • the first output component 207 is used to output the second beam dimension.
  • the first output component 207 is used to output the second light beam to a different direction.
  • the second wavelength dispersion component 208 is used to combine a plurality of third sub-wavelength light beams into a third light beam and spread the third light beam to the third optical switch array 209.
  • the third optical switch array 209 is used to propagate the third light beam to the corresponding output port in the second output component 210.
  • the second output component 210 is used for down-wave outputting the third light beam.
  • the light deflection component 211 deflects the multiple first sub-wavelength beams in different beam propagation directions for different output port types, so that the beam output from the downstream wave can avoid the dimensional output.
  • the light path is output from the drop-wave output port.
  • the beam of the dimension output can avoid the light path of the drop-wave output and output from the dimension output port.
  • the optical path of the first beam from the dimensional input port to the dimensional output only needs to pass through the two-stage optical switch array (the optical switch array included in the optical deflection component 211 and the second optical switch array 205).
  • the output optical path also only needs to pass through the two-stage optical switch array (the optical switch array included in the optical deflection assembly 211 and the third optical switch array 209), so that the drop signal reduces the insertion loss caused by the one-stage optical switch array, and the drop The signal is reduced by one level of optical switch array filtering, which reduces the cost of signal filtering.
  • FIG. 3 is a schematic structural diagram of another optical communication device provided by an embodiment of the application.
  • the difference from the embodiment corresponding to FIG. 2 is that in the embodiment of the application, the light deflection assembly 211 includes: Switch array 204 and redirection component 203.
  • the first optical switch array 204 is used to angularly deflect multiple first sub-wavelength beams to obtain multiple second sub-wavelength beams, and propagate the multiple second sub-wavelength beams through the redirection component 203
  • the first optical switch array 204 is also used for angularly deflecting the multiple first sub-wavelength beams to obtain multiple third sub-wavelength beams, and redirecting the multiple third sub-wavelength beams
  • the component 203 propagates to the second wavelength dispersion component 208.
  • optical communication device when the optical deflection component 211 is composed of the first optical switch array 204 and the redirection component 203 is discussed.
  • FIG. 4 is a schematic diagram of the optical path structure of an optical communication device in the wavelength plane provided by an embodiment of the present invention
  • FIG. 5a is an optical communication device provided by an embodiment of the present invention.
  • FIG. 5b is a schematic diagram of the optical path structure in the port switching plane of an optical communication device according to an embodiment of the present invention.
  • the wavelength plane refers to the YOZ plane
  • the port switching plane refers to the XOZ plane.
  • FIG. 5a is a schematic diagram of the optical path structure from dimensional input to dimensional output
  • FIG. 5b is a schematic diagram of the optical path structure from dimensional input to wave output.
  • the optical communication device may include: a first input component 201, a first wavelength dispersion component 202, a first optical switch array 204, a second wavelength dispersion component 208, a third optical switch array 209, and a second output The component 210, the second optical switch array 205, the third wavelength dispersion component 206, the first output component 207, and lenses 1 to 15.
  • the first input component 201 may include N input ports, where the N input ports are used for dimensional input, and the value of N is a positive integer.
  • the N input ports included in the first input component 201 may be arranged in one dimension for obtaining light beams of N dimensions.
  • the light beams of the N dimensions may be wavelength division multiplex (WDM) light.
  • the first beam in this embodiment may be a WDM beam, and a WDM beam may include multiple (at least two) sub-beams.
  • the center wavelengths of the sub-beams (or the center frequency points of the sub-beams) are mutually different. The difference is that the beams of N dimensions can come from different directions.
  • the first light beam may be incident on one of the N input ports in the first input component 201.
  • the first input component 201 may include an input fiber array 3011 and an input collimator array 3012.
  • the input fiber array 3011 may include N input fibers arranged in one dimension, and the N input fibers are used to obtain light beams from various dimensions. Specifically, the input fiber array 3011 may include N input fibers arranged in one dimension on the port switching plane. Input fiber.
  • the input collimator array 3012 may include N collimators arranged in one dimension, corresponding to the N input fibers, and used to convert the light beams input by the N input fibers into collimated light beams.
  • the input collimator The collimator array 3012 may include N collimators arranged one-dimensionally on the port switching plane. Among them, the N collimators correspond to the N input fibers one-to-one, and one collimator is used to collimate the beam output from the corresponding input fiber, which can also be understood as converting the beam input by the input fiber into parallel light , While expanding the beam waist value to facilitate subsequent optical path processing.
  • one input fiber among the N input fibers can obtain the first light beam from a certain dimension and convert it into a collimated light beam by the corresponding input collimator.
  • the ROADM in the embodiment of the present application may further include a spot beam expansion component composed of a plurality of lenses, and the spot beam expansion component is used to change the spot size of the first light beam output by the first input component 201.
  • the spot beam expanding component is used to receive the first light beam output by the first input component 201 and output the first light beam to the first wavelength dispersion component 202 after changing the beam characteristics of the first light beam.
  • the spot beam expanding component may be composed of at least one lens.
  • the lens 6 and the lens 7 constitute the spot beam expanding component, which is used to expand the collimated light beam generated by the first input component 201 in the wavelength plane.
  • the spot size on the first wavelength dispersion component 202 is changed.
  • the focal lengths of the lens 6 and the lens 7 can be different, respectively, f1 and f2, and the interval between the lens 6 and the lens 7 is the sum of f1 and f2.
  • the light spot output by the first input assembly 201 can be exchanged, so that the input light beam can better meet the processing characteristics of subsequent optical elements.
  • the first wavelength dispersion component 202 is used to decompose the first light beam incident from the first input component 201 into multiple first sub-wavelength light beams in the wavelength plane, so that the multiple first sub-wavelength light beams can be transmitted to The first optical switch array 204.
  • the first wavelength dispersion component 202 may use diffraction to split the light beam into sub-beams with different wavelengths (or center frequency points) on the wavelength plane, thereby outputting from the first wavelength dispersion component 202
  • the first sub-wavelength light beams are radiatively dispersed in the direction of the wavelength plane. It should be noted that in the port switching plane, the first wavelength dispersion component does not play a role in beam splitting.
  • the first wavelength dispersion group 202 is used to receive the first beam output by the first output component 201 and transmit the first beam to the first An optical switch array 204.
  • the first wavelength dispersion component 202 can decompose the first light beam input from one input port into first sub-wavelength light beams of different wavelengths.
  • the first wavelength dispersive component 202 can decompose the first beam into K first sub-wavelength beams, where K first sub-wavelength beams The wavelengths of the light beams are different from each other.
  • the first wavelength dispersion component 202 may include at least one dispersion unit, such as a grating.
  • the first wavelength dispersion component 202 may be an arrayed waveguide grating, a reflective grating, a transmission grating, a dispersive prism, or a planar waveguide grating.
  • a combination of multiple gratings can be used, or the light path can be adjusted to make the light beam pass through the same grating multiple times.
  • a redirection component 203 may also be included. Specifically, the redirection component 203 is configured to receive multiple first sub-wavelength beams output by the first wavelength dispersion component 202, and re-redirect the multiple first sub-wavelength beams. It is oriented to one row of switch cells in the N rows of switch cells in the first optical switch array 204.
  • the redirecting component 203 may be a lens group composed of multiple lenses.
  • the lens group can be composed of a convex lens and/or a concave mirror.
  • the redirection component 203 includes a lens 4 and a lens 5.
  • the first wavelength dispersion component 202 is located at the back focal plane of the lens 4
  • the first wavelength dispersion component 202 is located at the front focal plane of the lens 5, and the lens 5 is used for
  • the multiple first sub-wavelength light beams incident by the first wavelength dispersion component 202 are propagated to the first optical switch array 204.
  • the focal lengths of the lens 4 and the lens 5 may be the same to form a 4f (f is the focal length of the lens) system.
  • the redirecting component 203 can propagate each first sub-wavelength beam to a corresponding position in the first optical switch array 204 by changing the beam propagation route of each first sub-wavelength beam.
  • the multiple first sub-wavelength beams can be received from the first wavelength dispersion component 202 and the beam propagation characteristics of the multiple first sub-wavelength beams in the direction of the wavelength plane can be changed, so that the sub-beams of different wavelengths are The wavelength plane direction propagates to different positions of the first optical switch array 204.
  • the lens 4 can refract the first light beam on the port exchange plane
  • the first wavelength dispersive component 202 can demultiplex the first light beam on the back focal plane of the lens 4
  • the lens 5 can be on the wavelength plane and the port exchange plane.
  • the plurality of first sub-wavelength beams are refracted so that the beam propagation direction of the plurality of first sub-wavelength beams output from the lens 5 is the same as the beam propagation direction of the first beam input to the lens 4.
  • FIG. 4 is only an illustration, and the lens 4 and the lens 5 can also be replaced by other devices, which are not limited here.
  • the first optical switch array 204 is used to angularly deflect multiple first sub-wavelength beams to obtain multiple second sub-wavelength beams, and propagate the multiple second sub-wavelength beams through the redirection component 203
  • the first optical switch array 204 is also used for angularly deflecting the multiple first sub-wavelength beams to obtain multiple third sub-wavelength beams, and redirecting the multiple third sub-wavelength beams
  • the component 203 propagates to the second wavelength dispersion component 208, and the beam propagation directions of the second sub-wavelength beam and the third sub-wavelength beam are different.
  • the first optical switch array 204 can deflect multiple first sub-wavelength beams in different beam propagation directions, so that the beam output from the drop can avoid the optical path of the dimensional output, and output from the drop
  • the port output correspondingly, also enables the dimensional output light beam to avoid the light path of the wave output, and output from the dimensional output port.
  • the first optical switch array 204 may receive a deflection instruction from the optical switch controller. If the deflection instruction indicates that the plurality of first sub-wavelength beams need to be output dimensionally, the first optical switch array 204 may The first sub-wavelength beam is angularly deflected to obtain a plurality of second sub-wavelength beams, and the plurality of second sub-wavelength beams are propagated to the second optical switch array 205 through the redirecting component 203.
  • the first optical switch array 204 may receive a deflection instruction from the optical switch controller. If the deflection instruction indicates that multiple first sub-wavelength beams need to be dropped for output, the first optical switch array 204 is The first sub-wavelength light beams are angularly deflected to obtain multiple third sub-wavelength light beams, and the multiple third sub-wavelength light beams are propagated to the second wavelength dispersion component 208 through the redirection component 203.
  • the first optical switch array 204 deflects the multiple first sub-wavelength beams to obtain multiple second sub-beams or multiple third sub-beams.
  • the first optical switch array 204 is used for angularly deflecting multiple first sub-wavelength beams in at least one of the first plane and the second plane to obtain multiple second sub-wavelength beams, And propagate the multiple second sub-wavelength beams to the second optical switch array 205 and the first optical switch array 204 through the redirecting component 203, and are also used to align multiple light beams in at least one of the first plane and the second plane.
  • the first sub-wavelength beam is angularly deflected to obtain multiple third sub-wavelength beams, and the multiple third sub-wavelength beams are propagated to the second wavelength dispersion component 208 through the redirecting component 203, the first plane and the second plane are orthogonal to each other .
  • the multiple second sub-beams or multiple third sub-beams obtained by deflecting multiple first sub-wavelength beams can be classified into the following situations:
  • the first optical switch array 204 is used for angularly deflecting multiple first sub-wavelength beams in a first plane to obtain multiple second sub-wavelength beams, and the first optical switch array 204 also uses Performing angular deflection on the plurality of first sub-wavelength beams in the first plane and the second plane to obtain a plurality of third sub-wavelength beams.
  • the first optical switch array 204 is used for angularly deflecting a plurality of first sub-wavelength beams in a first plane and a second plane to obtain a plurality of second sub-wavelength beams, and the first optical switch The array 204 is also used for angularly deflecting the multiple first sub-wavelength beams in the first plane to obtain multiple third sub-wavelength beams.
  • the first optical switch array 204 is used for angularly deflecting multiple first sub-wavelength beams in the second plane to obtain multiple second sub-wavelength beams, and the first optical switch array 204 also uses Performing angular deflection on the plurality of first sub-wavelength beams in the first plane and the second plane to obtain a plurality of third sub-wavelength beams.
  • the first optical switch array 204 is used for angularly deflecting a plurality of first sub-wavelength beams in a first plane and a second plane to obtain a plurality of second sub-wavelength beams, and the first optical switch The array 204 is also used for angularly deflecting the multiple first sub-wavelength beams in the second plane to obtain multiple third sub-wavelength beams.
  • the first optical switch array 204 is configured to perform angular deflection on the plurality of first sub-wavelength beams in the first plane according to a first preset angle to obtain a plurality of second sub-wavelength beams, and the first light The switch array 204 is also used for angularly deflecting the plurality of first sub-wavelength beams in the first plane according to a second preset angle to obtain a plurality of third sub-wavelength beams.
  • the first optical switch array 204 is configured to perform angular deflection on the plurality of first sub-wavelength beams in the second plane according to a first preset angle to obtain a plurality of second sub-wavelength beams, and the first light The switch array 204 is also used for angularly deflecting the plurality of first sub-wavelength beams in the second plane according to a second preset angle to obtain a plurality of third sub-wavelength beams.
  • the first optical switch array 204 is used for angularly deflecting multiple first sub-wavelength beams in a first plane to obtain multiple second sub-wavelength beams, and the first optical switch array 204 also uses Performing angular deflection on the plurality of first sub-wavelength beams in the second plane to obtain a plurality of third sub-wavelength beams.
  • the first optical switch array 204 is used for angularly deflecting multiple first sub-wavelength beams in the second plane to obtain multiple second sub-wavelength beams, and the first optical switch array 204 also uses Performing angular deflection on the plurality of first sub-wavelength beams in the first plane to obtain a plurality of third sub-wavelength beams.
  • the first optical switch array 204 is used to perform angles on the plurality of first sub-wavelength beams according to a first preset angle in the first plane and according to a second preset angle in the second plane. A plurality of second sub-wavelength light beams are obtained by deflection.
  • the first optical switch array 204 is also used to perform a third preset angle in the first plane, and a fourth preset angle to the plurality of first sub-wavelengths in the second plane.
  • the wavelength beam is angularly deflected to obtain a plurality of third sub-wavelength beams, wherein the first preset angle and the third preset angle are different, and/or the second preset angle and the fourth preset angle are different.
  • the first preset angle and the third preset angle are different, and the second preset angle and the fourth preset angle are the same; or, the first preset angle and the first preset angle Three preset angles are different, and the second preset angle and the fourth preset angle are different; or, the first preset angle and the third preset angle are the same, and the second preset angle and the fourth preset angle are different .
  • the first optical switch array 204 may include at least N rows of switch units in a two-dimensional arrangement. Each row of switch units includes K1 switch units, and each switch unit is used to propagate the first wavelength of the corresponding wavelength.
  • a sub-wavelength beam. Kl may be the maximum number of sub-wavelengths of the wavelength division multiplexed signal input by the N input ports.
  • each of the N input ports used for dimension input corresponds to each row of switch units in the N rows of switch units in the first optical switch array 204, and the N rows of switch units are used for The sub-beams of the input beams in N dimensions are propagated.
  • one row of switch units in the N rows of switch units is used to propagate a plurality of first sub-wavelength light beams.
  • the first optical switch array 204 can be realized by micro-electro-mechanical system (MEMS) technology.
  • MEMS micro-electro-mechanical system
  • the MEMS technology is to reduce the geometric size or the operating size only in micrometers, submicrometers or even nanometers.
  • the micro-electromechanical device and the control circuit are highly integrated in a very small space on silicon-based or non-silicon-based materials to form a mechatronics device or system.
  • the optical switch array realized by MEMS technology uses electrostatic force or other control forces to make the micro-mirror generator move, thereby deflecting the light beam hitting the micro-mirror to any direction.
  • the controller can control the micromechanical structure to drive the light modulator (microlens) to rotate, thereby realizing the deflection of the optical path.
  • the first optical switch array 204 can be implemented using liquid crystal on silicon (LCoS) technology.
  • LCoS technology uses the principle of liquid crystal gratings to adjust the diffraction angle of light of different wavelengths to achieve The purpose of deflecting light. Since there are no moving parts, LCoS technology has a fairly high reliability.
  • the LCoS technology uses the refractive index change control of the liquid crystal cell to realize the diffraction angle change, which can be easily expanded and upgraded. Different wavelength channels correspond to different areas of the spatial light modulator (liquid crystal) array, and the light transmission direction is changed by adjusting the phase of the light spot.
  • the first optical switch array 204 may be realized by liquid crystal (LC) technology.
  • the incident light beam is divided into two after passing through the birefringent crystal. Polarization state. After one path passes through the half-wave plate, the polarization states of the two paths are the same, and then they are turned on on the first optical switch array (liquid crystal module), and the arrangement structure of the liquid crystal is changed by adjusting the voltage of the birefringent crystal (change the internal crystal The angle of the molecule), so that the refractive index of the crystal changes, and the light source outputs light at different angles.
  • There are two directions for light passing through each layer of liquid crystal and multiple light paths can be selected after passing through multiple liquid crystal layers.
  • the first optical switch array 204 can be realized by digital light processing (DLP) technology, the internal structure of the optical switch array realized by DLP technology and the light modulator realized by MEMS technology The internal structure is similar, the light energy is switched through the deflection of the microlens. The difference is that the rotation angle of the DLP mirror has only a few states that limit the number of output ports.
  • DLP digital light processing
  • the optical path after the first optical switch array 204 propagates the deflected multiple second sub-wavelength beams to the second optical switch array 205 through the redirection component 203.
  • the first optical switch array 204 determines that the output ports corresponding to the multiple first sub-wavelength beams are output ports for dimensional output, the multiple second sub-wavelength beams that have been deflected can be redirected through The component 203 propagates to the second optical switch array 205.
  • the second optical switch array 205 can propagate a plurality of second sub-wavelength light beams to the third wavelength dispersion component 206.
  • the redirection component 203 may include a first lens (lens 1), a second lens (lens 2), and a third lens (lens 3).
  • lens 2 is located at the back focal plane of lens 1, and lens 2 is located at the front focal plane of lens 3.
  • the second optical switch array 208 is located at the back focal plane of lens 2
  • the first optical switch array 204 is located at the front focal plane of the lens 2
  • the lens 1, the lens 2 and the lens 3 are used to propagate a plurality of second sub-wavelength light beams to the second optical switch array 205.
  • the lens 1 can converge the multiple second sub-wavelength beams output by the first optical switch array 204 to the lens 2 on the wavelength plane, as shown in FIG. 5a, the lens 2 can refract the multiple second sub-wavelength beams incident from lens 1 on the port exchange plane and enter lens 3, as shown in Figure 4, lens 3 can refraction multiple second sub-wavelength beams incident from lens 2 Refraction is performed on the wavelength plane, so that the plurality of second sub-wavelength beams are output from the lens 3 to the second optical switch array 205 according to the beam propagation direction of the plurality of second sub-wavelength beams incident on the lens 1.
  • the second optical switch array 205 is used to propagate multiple second sub-wavelength beams to the third wavelength dispersion component 206 through the redirection component 203.
  • the second optical switch array 205 can deflect the plurality of second sub-wavelength beams in at least one of the first plane and the second plane, and after the deflection The plurality of second sub-wavelength light beams propagate to the third wavelength dispersion component 206 through the redirection component 203. Specifically, if the first optical switch array 204 angularly deflects the multiple first sub-wavelength beams in the wavelength plane to obtain multiple second sub-wavelength beams, the second optical switch array 205 performs the angular deflection on the multiple second sub-wavelength beams in the wavelength plane.
  • the sub-wavelength beams are deflected, wherein the deflected multiple second sub-wavelength beams have the same beam propagation direction as the multiple first sub-wavelength beams incident on the first optical switch array 204. If the first optical switch array 204 angularly deflects the multiple first sub-wavelength beams in the port switching plane to obtain multiple second sub-wavelength beams, the second optical switch array 205 performs angular deflection on the multiple second sub-wavelength beams in the port switching plane.
  • the wavelength beams are deflected, where the deflected multiple second sub-wavelength beams have the same beam propagation direction as the multiple first sub-wavelength beams incident on the first optical switch array 204.
  • the second optical switch array 205 If the first optical switch array 204 angularly deflects the multiple first sub-wavelength beams in the port switching plane and the wavelength plane to obtain multiple second sub-wavelength beams, the second optical switch array 205 and the wavelength The multiple second sub-wavelength light beams are deflected in the plane, where the multiple second sub-wavelength light beams after the deflection have the same beam propagation direction as the multiple first sub-wavelength light beams incident on the first optical switch array 204.
  • FIG. 4 and FIG. 5a show only the case where the second optical switch array 205 performs angular deflection of multiple second sub-wavelength beams in the port switching plane. In practical applications, it can be but not limited to the above Any scheme is not limited here.
  • the redirecting component 203 may be a lens group composed of multiple lenses.
  • the lens group may be a composition of convex lens and/or concave mirror.
  • the redirection component 203 includes an eighth lens (lens 8) and a ninth lens (lens 9), the third wavelength dispersion component 206 is located at the back focal plane of the eighth lens, and the second wavelength dispersion component 206 is located The front focal plane of the ninth lens.
  • the eighth lens is used to propagate the deflected multiple second sub-wavelength beams to the third wavelength dispersion component 206.
  • the focal lengths of the eighth lens and the ninth lens may be the same to form a 4f (f is the focal length of the lens) system.
  • the redirecting component 203 can propagate the plurality of second sub-wavelength beams after each deflection to the third wavelength dispersion component 206 by changing the beam propagation route of the plurality of second sub-wavelength beams after each deflection.
  • the eighth lens can refract the deflected multiple second sub-wavelength beams on the wavelength plane and the port exchange plane, and the third wavelength dispersion component can refract the deflected multi-wavelength beams on the back focal plane of the eighth lens.
  • the second sub-wavelength light beams are combined to obtain the second light beam.
  • the ninth lens can refract the second light beam on the port switching plane, so that the beam propagation direction of the second light beam is the same as the multiple second light beams output by the second optical switch array.
  • the beam propagation directions of the sub-wavelength beams are the same.
  • the redirection component 203 shown in FIG. 4 is only an illustration, and the redirection component 203 can also select other devices. According to the difference of the selected device as the redirection component 203, the optical splitter can be reconstructed.
  • the configuration positions of the components of the add/drop multiplexer are different, or in other words, the transmission paths of the light beams in the reconfigurable optical add/drop multiplexer are different.
  • the first output component 207 is used to output the second beam dimension.
  • the arrangement of the redirection component 203 and the third wavelength dispersion component 206 makes the multiple second sub-wavelength light beams finally converge into a WDM beam (second light beam), and then the corresponding output from the first output component 207 Port output.
  • the first output component 207 may include N dimensional output ports for dimensional output, and the second light beam may be output from one of the N dimensional output ports. And, the one-dimensional output port is used to transmit light beams of N dimensions.
  • the first output component 207 may include an output fiber array 3072 and an output collimator array 3071.
  • the output fiber array 3072 may include N output fibers arranged in one dimension, and the N output fibers are used to output light beams to various dimensions.
  • the output collimator array 3071 may include N collimators arranged in one dimension, corresponding to the N output fibers, and used to convert the light beam into a collimated light beam.
  • the N collimators correspond to the N output fibers one to one, and one collimator is used to collimate the light beam.
  • one output fiber among the N output fibers can obtain the second light beam and convert it into a collimated light beam by the corresponding output collimator.
  • the embodiment of the present application may further include a spot beam expanding component composed of a plurality of lenses, and the spot beam expanding component is used to change the spot size of the second light beam output by the third wavelength dispersion component.
  • the spot beam expanding component is used to receive the second light beam output by the third wavelength dispersion component 206 and output the second light beam to the first output component 207 after changing the beam characteristics of the second light beam.
  • the spot beam expanding component can be composed of at least one lens, for example, as shown in FIG. 4, the tenth lens (lens 10) and the eleventh lens (lens 11) form the spot beam expanding component, which is used in the wavelength plane.
  • the focal lengths of the tenth lens and the eleventh lens can be different, which are f1 and f2, respectively, and the distance between the tenth lens and the eleventh lens is between f1 and f2. with.
  • the second light beam output by the third wavelength dispersive component is incident on the tenth lens and converged on the back focal plane of the tenth lens and the front focal plane of the eleventh lens.
  • the condensed beam diverges through the eleventh lens to form a new parallel beam.
  • the first optical switch array 204 will propagate the deflected multiple third sub-wavelength beams to the optical path after the second wavelength dispersion component 208 through the redirection component 203.
  • the second wavelength dispersion component 208 is located at the back focal plane of the lens 1, and the lens 1 is used to propagate a plurality of third sub-wavelength light beams to the second wavelength dispersion component 208.
  • the lens 1 can refract a plurality of third sub-wavelength beams in the wavelength plane and the port exchange plane.
  • the focal plane For example, the front focal plane
  • light beams emitted from different positions at the same angle enter the same position on the image plane at different angles after passing through the lens 1. Since the multiple third sub-wavelength light beams incident on the lens 1 are parallel to each other, the multiple third sub-wavelength light beams can be converged to the same position of the second wavelength dispersion component 208.
  • the second wavelength dispersion component 208 is used to combine the deflected multiple first sub-wavelength beams into a third beam, so as to propagate the third beam to the third optical switch array 209.
  • the third optical switch array 209 is used to propagate the third light beam to the second output component 210, and the second output component 210 is used to down-wave output the third light beam.
  • the so-called “drop” refers to the downlink signal light that needs to be sent to the local node obtained (through the output port).
  • the downlink signal light can be a signal light from a foreign communication node or a signal from a local communication node.
  • the present invention is not particularly limited. It should be noted that in the embodiment of the present invention, the output port used by the downstream signal light can be set arbitrarily.
  • the output port used by the downstream signal light can be the same as the number of wavelengths of the downstream signal light, that is, one output port is only used for To obtain the downlink signal light of one wavelength, you can also use the same output port to output a combination of multiple sub-signal lights from different ports, and you can also use time division multiplexing, so that one output port is used to receive the signal of one wavelength in a period of time. Downlink signal light receives another wavelength of downlink signal light in another period.
  • the second output component 210 may include an output fiber array 3102 and an output collimator array 3101.
  • P, Q, and M are positive integers, where P is the number of drop output ports in a row in the port direction, and Q is the number of drop output ports in the wavelength direction.
  • the ROADM in the embodiment of the present application may further include a spot beam expanding component composed of multiple lenses, and the spot beam expanding component is used to change the spot size of the third light beam output by the second wavelength dispersion component 208.
  • the spot beam expanding component is used to receive the third light beam output by the second wavelength dispersion component 208 and output the third light beam to the third optical switch array 209 after changing the beam characteristics of the third light beam.
  • the spot beam expanding component can be composed of at least one lens, for example, as shown in FIG. 4, the twelfth lens (lens 12) and the thirteenth lens (lens 13) form the spot beam expanding component for the second lens
  • the second light beam output by the wavelength dispersion component 208 is expanded.
  • the focal lengths of the twelfth lens and the thirteenth lens can be different, which are f1 and f2, respectively.
  • the distance between the twelfth lens and the thirteenth lens is the sum of f1 and f2. .
  • the third light beam output by the second wavelength dispersion component 208 is incident on the twelfth lens and converged on the back focal plane of the twelfth lens and the front focal plane of the thirteenth lens.
  • the condensed beam passes through the thirteenth lens.
  • the lens diverges to form a new parallel beam.
  • the first optical switch array 202 deflects a plurality of first sub-wavelength beams in different beam propagation directions for different output port types, so that the beam output from the lower wave can avoid the optical path of the dimensional output. , And output from the drop-wave output port.
  • the beam of the dimension output can avoid the optical path of the drop-wave output and output from the dimension output port.
  • the optical path of the first beam from the dimensional input port to the dimensional output only needs to pass through two-stage optical switch arrays (the first optical switch array 204 and the second optical switch array 205), and the optical path of the first beam from the dimensional input port to the downstream output is also Only need to pass through two levels of optical switch arrays (first optical switch array 204 and third optical switch array 209), so that the drop signal reduces the insertion loss caused by the first optical switch array, and the drop signal reduces the filtering of the first optical switch array , Reduce the cost of signal filtering.
  • the optical path of the first beam from the first input component 201 to the first output component 207 and the optical path from the first input component 201 to the second output component 210 share a part of the optical path and optical devices (first The input component 201, lens 6, lens 7, lens 4, first wavelength dispersion component 202, lens 5, first optical switch array 204, and lens 1) reduce the number of optical devices.
  • FIG. 6 is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention
  • FIG. 7a is a schematic diagram of the optical path structure of an optical communication device in the port switching plane provided by an embodiment of the present invention
  • FIG. 7b is a schematic diagram of the optical path structure in the wavelength plane of an optical communication device provided by an embodiment of the present invention
  • FIG. 7c is a schematic diagram of the optical path structure in the wavelength plane of an optical communication device provided by an embodiment of the present invention.
  • Figure 7a is a schematic diagram of the optical path structure from dimensional input to drop output
  • Figure 7b is a schematic diagram of the optical path structure from dimensional input to dimensional output
  • Figure 7c is a schematic diagram of the optical path structure from dimensional input to drop output.
  • the wavelength plane refers to the YOZ plane
  • the port switching plane refers to the XOZ plane.
  • the second wavelength dispersion component 208 is located at the back focal plane of the second lens (lens 2), and the second lens is used to propagate a plurality of third sub-wavelength light beams to the second wavelength dispersion component 208.
  • the shared optical path and optical components include: the first input component, lens 6, lens 7, lens 4, first wavelength dispersion component 202, lens 5, first optical switch array 204, and lens 1.
  • the shared optical path and optical devices include: the first input component, the lens 6. Lens 7, lens 4, first wavelength dispersion component 202, lens 5, first optical switch array 204, and lens 2.
  • FIG. 8 is a schematic structural diagram of an optical communication device provided by an embodiment of the present invention.
  • the optical communication device in this embodiment may be a reconfigurable optical add/drop multiplexer ROADM.
  • an ROADM architecture provided by an embodiment of the present invention includes: a first input component 201, a first wavelength dispersion component 202, a second wavelength dispersion component 208, a third wavelength dispersion component 206, and a first optical switch array 204, a second optical switch array 205, a third optical switch array 209, a first output component 207, a second output component 210, a second input component 801, a fourth optical switch array 802, and a fourth wavelength dispersion component 803.
  • the specific description of the first output component 207 and the second output component 210 and their related optical paths can refer to the corresponding embodiments of FIG. 3, FIG. 4, FIG. 5a, and FIG. 5b, which will not be repeated here.
  • the ROADM further includes: a second input component 801, a fourth optical switch array 802, and a fourth wavelength dispersion component 803.
  • the second input component 801 is used for inputting the fourth light beam and incident the fourth light beam to the fourth optical switch array.
  • the second input component 801 can incident the fourth light beam input by the wave to the fourth optical switch array 802.
  • the values of P, Q, and M are positive integers. , Where P is the number of wave input ports in a column in the port direction, and Q is the number of wave input ports in the wavelength direction.
  • the fourth optical switch array 802 is used to angularly deflect the fourth light beam to obtain the fifth light beam, and transmit the fifth light beam to the fourth wavelength dispersion component 803.
  • the fourth optical switch array 802 can angularly deflect the fourth light beam on the port switching plane to obtain the fifth light beam, and propagate the fifth light beam to the fourth wavelength dispersion component 803.
  • the fourth wavelength dispersion component 803 is used for splitting the fifth light beam into a plurality of fourth sub-wavelength light beams, and spreading the plurality of fourth sub-wavelength light beams to the second optical switch array.
  • the fourth optical switch array 802 can angularly deflect the fourth light beam on the wavelength plane to obtain the fifth light beam, and propagate the fifth light beam to the fourth wavelength dispersion component 803.
  • the second optical switch array 205 is also used for angularly deflecting multiple fourth sub-wavelength beams to obtain multiple fifth sub-wavelength beams, and propagating the multiple fifth sub-wavelength beams to the third wavelength dispersion through the redirecting component 203 Component 206.
  • the second optical switch array 205 can angularly deflect multiple fourth sub-wavelength beams in at least one of the wavelength plane and the port switching plane to obtain multiple fifth sub-wavelength beams, and The plurality of fifth sub-wavelength light beams propagate to the third wavelength dispersion component 206.
  • the optical path from the wave input port to the dimension output of the fourth beam only needs to pass through the two-stage optical switch array (the fourth optical switch array 802 and the second optical switch array 802).
  • the optical switch array 205) enables the added signal to reduce the insertion loss caused by the first-level optical switch array, and the added signal reduces the filtering of the first-level optical switch array, which reduces the signal filtering cost.
  • Figure 9a is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention, where the wavelength plane refers to the YOZ plane, and the port switching plane refers to the XOZ plane.
  • the optical communication device further includes: a second input component 801, a fourth optical switch array 802, and a fourth wavelength dispersion component 803.
  • the second input component 801 is used to input a fourth light beam and incident the fourth light beam to the fourth optical switch array 802.
  • the values of P, Q and M are positive. Integer, where P is the number of wave input ports in a row in the port direction, and Q is the number of wave input ports in the wavelength direction.
  • the M input ports included in the second input component 801 may be arranged in two dimensions, and the light beam obtained by the second input component 801 may be wavelength division multiplex (WDM) light.
  • WDM wavelength division multiplex
  • the fourth light beam in this embodiment may be a WDM light beam, and a WDM light beam may include multiple (at least two) sub-beams, and the center wavelength of each sub-beam (or the center frequency point of each sub-beam) is mutually Different.
  • the fourth light beam may be incident on one of the M input ports in the second input component 801.
  • the second input component 801 may include an input fiber array 8011 and an input collimator array 8012.
  • the input fiber array 8011 may include M input fibers arranged two-dimensionally. Specifically, the input fiber array 8011 may include M input fibers arranged two-dimensionally in the wavelength plane and the port switching plane.
  • the input collimator array 8012 may include M collimators arranged in two dimensions, corresponding to M input fibers, and used to convert the light beams input by the M input fibers into collimated light beams.
  • the input collimator The collimator array 8012 may include M collimators arranged two-dimensionally in the wavelength plane and the port switching plane.
  • the M collimators correspond to the M input fibers one-to-one, and one collimator is used to collimate the light beam output from the corresponding input fiber while expanding the beam waist value to facilitate subsequent optical path processing.
  • one of the M input fibers can obtain the fourth light beam, which is converted into a collimated light beam by the corresponding input collimator.
  • the fourth optical switch array 802 is used for angularly deflecting the fourth light beam to obtain the fifth light beam, and propagates the fifth light beam to the fourth wavelength dispersion component 803.
  • the fourth optical switching array 802 is configured to perform angular deflection on the fourth light beam in at least one of the first plane and the second plane to obtain a Five beams
  • the second optical switch array 802 is also used for angularly deflecting the plurality of fourth sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of first
  • the first plane and the second plane are orthogonal to each other.
  • the embodiment of the present application may further include a spot beam expanding component composed of a plurality of lenses, and the spot beam expanding component is used to change the spot size of the fifth light beam output by the fourth optical switch array 802.
  • the spot beam expanding component is used to change the spot size of the fifth light beam output by the fourth optical switch array 802.
  • the fourth wavelength dispersion component 803 is used to split the fifth light beam into multiple fourth sub-wavelength light beams in the first plane (in the wavelength plane), and redirect the multiple fourth sub-wavelength light beams through The component 203 propagates to the second optical switch array 205.
  • the redirection component 203 in the embodiment of the present application is configured to receive multiple fourth sub-wavelength light beams output by the fourth wavelength dispersion component 803, and redirect the multiple fourth sub-wavelength light beams to corresponding positions of the second optical switch array 205 .
  • the redirection component 203 may include a first lens (lens 1), a second lens (lens 2), and a third lens (lens 3).
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, the fourth wavelength dispersion component is located at the front focal plane of the third lens, and the second optical switch array is located at the back focal plane of the third lens
  • the third lens is used to propagate multiple fourth sub-wavelength light beams to the second optical switch array 205.
  • the third lens is used to refract the multiple fourth sub-wavelength light beams in the wavelength plane and the port switching plane, and propagate the multiple fourth sub-wavelength light beams to the second optical switch array 205.
  • the redirection component 203 shown in FIG. 9a is only an illustration, and the redirection component 203 can also select other devices. According to the difference of the selected device as the redirection component 203, the optical splitter can be reconstructed.
  • the configuration positions of the components of the add/drop multiplexer are different, or in other words, the transmission paths of the light beams in the reconfigurable optical add/drop multiplexer are different.
  • the second optical switch array 205 is also used for angularly deflecting multiple fourth sub-wavelength light beams to obtain multiple fifth sub-wavelength light beams, and passing the multiple fifth sub-wavelength light beams through the redirecting component 203 Propagate to the third wavelength dispersion component 206.
  • the second optical switch array 205 is also used for angularly deflecting multiple fourth sub-wavelength beams in at least one of the wavelength plane and the port switching plane to obtain multiple fifth sub-wavelength beams.
  • the two light beams that are exchanged to the same output port by the wave signal input from the wave input port and the signal input from the dimension have the same spot positions in the second optical switch array 205.
  • the optical path from the wave input port to the dimension output of the fourth beam only needs to pass through the two-stage optical switch array (the fourth optical switch array 802 and the second optical switch array 802).
  • Switch array 205 so that the added signal reduces the insertion loss caused by the first-level optical switch array, and the added signal reduces the filtering of the first-level optical switch array, thereby reducing the signal filtering cost.
  • the shared optical paths and optical devices include: Compared with the prior art, the optical switch array 205, the lens 8, the third wavelength dispersion component 206, the lens 9, the lens 10, the lens 11, the first output component 207 and the lens 3 reduce the number of optical devices.
  • FIG. 9b is a schematic diagram of the optical path structure in the wavelength plane of an optical communication device provided by an embodiment of the present invention. Specifically, FIG. 9b is a schematic diagram of the optical path structure from wave input to dimensional output. Among them, the wavelength plane refers to the YOZ plane, and the port switching plane refers to the XOZ plane.
  • the second lens (lens 2) is located at the back focal plane of the first lens (lens 1)
  • the second lens (lens 2) is located at the front focal plane of the third lens (lens 3)
  • the fourth lens The wavelength dispersion component 803 is located on the front focal surface of the second lens (lens 2)
  • the second optical switch array 205 is located on the rear focal surface of the second lens (lens 2).
  • the second lens (lens 2) is used to combine multiple fourth lenses.
  • the sub-wavelength beam propagates to the second optical switch array 205.
  • the shared optical path and optical components include: the second optical switch array 205, the lens 8, the third wavelength dispersion component 206, the lens 9, the lens 10, the lens 11, the first output component 207 and the lens 2.
  • the shared optical paths and optical devices include : The second optical switch array 205, the lens 8, the third wavelength dispersion component 206, the lens 9, the lens 10, the lens 11, the first output component 207 and the lens 3.
  • the optical deflection component includes the first optical switch array 204, the redirection component 203, the first polarization control element 901 and the polarization splitting element 902 is discussed.
  • FIG. 10 is a schematic structural diagram of an optical communication device provided by an embodiment of the present invention.
  • the optical communication device 200 in this embodiment may be a reconfigurable optical add/drop multiplexer ROADM.
  • a ROADM architecture provided by an embodiment of the present invention includes:
  • First input component 201 First input component 201, first wavelength dispersion component 202, second wavelength dispersion component 208, third wavelength dispersion component 206, first optical switch array 204, second optical switch array 205, third optical switch array 209, first The output component 207, the redirecting component 203, the second output component 210, the first polarization control element 901, and the polarization splitting element 902.
  • the description of the output component 210 can refer to the description in the foregoing embodiment, which is not repeated here.
  • the first optical switch array 204 is used to angularly deflect multiple first sub-wavelength light beams and propagate the multiple first sub-wavelength light beams to the first polarization control element 901 through the redirection component 203.
  • the first polarization control element 901 is used to change the polarization state of a plurality of incident first sub-wavelength beams, and output a plurality of second sub-wavelength beams or a plurality of third sub-wavelength beams to the polarization splitting element 902, wherein the plurality of first sub-wavelength beams
  • the polarization states of the two-wavelength beam and the multiple third-wavelength beams are orthogonal to each other;
  • the first polarization control element 901 may be a half-wave plate, a liquid crystal modulating lens, or other first polarization control elements.
  • the polarization splitting element can change the polarization state of the passing light beam so that the polarization states of the light beam are mutually positive. One of the two polarization states that intersect.
  • the first polarization control element 901 can determine the output port type corresponding to the first beam, and change the polarization state of the first sub-wavelength beam to the corresponding output port type according to the output port type corresponding to the first beam. The corresponding polarization state.
  • the polarization splitting element 902 receives the multiple second sub-wavelength beams incident from the first polarization control element, it is used to control the beam propagation directions of the multiple second sub-wavelength beams so that the multiple second sub-wavelength beams are incident on the first polarization control element. If the second optical switch array element 205, the polarization splitting element 902 receives the multiple third sub-wavelength beams incident from the first polarization control element, it is used to control the beam propagation direction of the multiple third sub-wavelength beams so that the sixth beam It is incident on the second wavelength dispersion component 208, wherein the beam propagation directions of the second sub-wavelength beam and the third sub-wavelength beam are different.
  • the optical communication device further includes: a second input component 801, a fourth optical switch array 802, a fourth wavelength dispersion component 803, and a second polarization control element 903.
  • the second input component 801 is used for inputting the fourth light beam and incident the fourth light beam to the fourth optical switch array.
  • the fourth optical switch array 802 is used for angularly deflecting the fourth light beam to obtain the fifth light beam, and propagating the fifth light beam to the fourth wavelength dispersion component 803.
  • the fourth wavelength dispersion component 803 is used to split the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagate the plurality of fourth sub-wavelength light beams to the second polarization control element 903.
  • the second polarization control element 903 is used to change the polarization state of the incident multiple fourth sub-wavelength beams, and output the multiple fourth sub-wavelength beams to the polarization splitting element 902, so that the polarization splitting element 902 divides the multiple fourth sub-wavelength beams
  • the sub-wavelength beam propagates to the second optical switch array 205.
  • the polarization beam splitting element 902 may be equipped with a second polarization control element 903 on the client side, and the second polarization control element 903 may be a non-reciprocal optical rotation component, such as but not limited to a combination of a Faraday rotator and a half-wave plate .
  • the second polarization control element 903 can make the polarization state of the light beam passing from left to right unchanged, and the polarization state of the light beam passing from right to left changes and is not limited to being an orthogonal state.
  • the embodiment of the application provides an optical communication device.
  • the optical communication device may be a ROADM, where the first polarization control element 901 can determine the output port type corresponding to the second light beam, and according to the output port type corresponding to the second light beam The polarization state of the second light beam is changed to a polarization state corresponding to the corresponding output port type.
  • the polarization splitter 902 can control the beam propagation direction of the second beam according to the polarization transition state of the second beam.
  • the optical path of the first beam from the dimensional input port to the dimensional output only needs to pass through two-stage optical switch arrays (the first optical switch array 204 and the second optical switch array 205).
  • the optical path of the wave output also only needs to pass through two-stage optical switch arrays (the first optical switch array 204 and the third optical switch array 209), so that the drop signal reduces the insertion loss caused by the one-stage optical switch array, and the drop signal reduces by one.
  • Level optical switch array filtering reduces the cost of signal filtering.
  • FIG. 11 is a schematic structural diagram of an optical communication device provided by an embodiment of the present invention.
  • the optical communication device 200 in this embodiment may be a reconfigurable optical add/drop multiplexer ROADM.
  • a ROADM architecture provided by an embodiment of the present invention includes:
  • the second output component 801 Regarding the first input component 201, the second output component 801, the first wavelength dispersion component 202, the second wavelength dispersion component 208, the third wavelength dispersion component 206, the fourth wavelength dispersion component 803, the first optical switch array 204, the first Polarization control element 901, second polarization control element 903, polarization splitting element 902, second optical switch array 205, third optical switch array 209, fourth optical switch array 802, first output component 207, redirection component 203, and
  • the second output component 210 please refer to the above-mentioned embodiment, which will not be repeated here.
  • the fifth wavelength dispersive component 1101 is used to combine multiple first sub-wavelength beams incident from the first optical switch array through the redirecting component 203 into a second beam, and pass the second beam through the redirecting component 203 Propagate to the first polarization control element 901.
  • the sixth wavelength dispersive component 1102 is used to decompose the light beam incident by the polarization splitting element 902 into a plurality of second sub-wavelength beams, and to propagate the plurality of second sub-wavelength beams to the second optical switch array 205.
  • the first polarization control element 901 can determine the output port type corresponding to the second light beam, and change the polarization state of the second light beam to the corresponding output port type according to the output port type corresponding to the second light beam.
  • the polarization splitter 902 can control the beam propagation direction of the second beam according to the polarization transition state of the second beam.
  • the optical path of the first light beam from the dimensional input port to the dimensional output only needs to pass through two-stage optical switch arrays (the first optical switch array 204 and the second optical switch array 205), and the light beams from the dimensional input port to the drop output
  • the optical path only needs to pass through two-stage optical switch arrays (the first optical switch array 204 and the third optical switch array 209), and the light beam from the wave input port to the dimensional output port also only needs to pass through the two-stage optical switch array.
  • the up-wave signal and the down-wave signal respectively reduce the insertion loss caused by the first-level optical switch array, and the up-wave signal and the downstream signal each reduce the filtering of the first-level optical switch array, which reduces the signal filtering cost.
  • FIG. 12 is a schematic diagram of the optical path structure of an optical communication device in the wavelength plane according to an embodiment of the present invention.
  • FIG. 13a is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention.
  • 13b is a schematic diagram of the optical path structure of an optical communication device in the port switching plane according to an embodiment of the present invention.
  • the wavelength plane refers to the YOZ plane
  • the port switching plane refers to the XOZ plane.
  • ROADM includes:
  • first input component 201 For the specific description of the first input component 201, reference may be made to the above-mentioned embodiment, which will not be repeated here.
  • the embodiment of the present application may further include a third polarization control element 904.
  • the third polarization control element 904 can convert the deflection state of the incident light beam into the same polarization state.
  • a yttrium vanadate lens and a semi- The combination of wave plate, or the combination of Wollaston prism and half wave plate, etc. can be realized.
  • the embodiment of the present application may further include a spot beam expanding assembly composed of lens 1 and lens 2.
  • first wavelength dispersion component 202 For the specific description of the first wavelength dispersion component 202, reference may be made to the above-mentioned embodiment, which will not be repeated here.
  • the redirection component 203 in the embodiment of the present application may include a 4f system composed of a lens 3 and a lens 4.
  • the redirection component 203 in the embodiment of the present application may include a 4f system composed of a lens 5 and a lens 6, and a relay lens, which can reposition the incident light beam to the first polarization control element 901.
  • the redirection component 203 in the embodiment of the present application may include a 4f system composed of a lens 7 and a lens 8.
  • the redirection component 203 in the embodiment of the present application may include a 4f system composed of a lens 9 and a lens 10.
  • the embodiment of the present application may further include a spot beam expanding assembly composed of a lens 11 and a lens 12.
  • the embodiment of the present application may further include a fourth polarization control element 905, which can convert the deflection state of the incident light beam into the same polarization state as the first light beam incident from the first incident component.
  • a fourth polarization control element 905 which can convert the deflection state of the incident light beam into the same polarization state as the first light beam incident from the first incident component.
  • the embodiment of the present application may further include a spot beam expanding assembly composed of a lens 13 and a lens 14.
  • the embodiment of the present application may further include a fifth polarization control element 906, which can convert the deflection state of the incident light beam into the same polarization state as the first light beam incident from the first incident component.
  • a fifth polarization control element 906 which can convert the deflection state of the incident light beam into the same polarization state as the first light beam incident from the first incident component.
  • the second output component 210 the second input component 801, the fourth optical switch array 802 and the second polarization control element 903, please refer to the above-mentioned embodiment, and will not be repeated here.
  • the second input component 801 may include an input fiber array 12012 and an input collimator array 12011.
  • the switching plane is in the same position.
  • the input fiber array 3101 and the input fiber array 12011, the input collimator array 3102 and the input collimator array 12012, the third optical switch array 209 and the fourth optical switch array 802 are in The dispersion switching plane may not be in the same position, which is not limited here.
  • FIG. 14 is an exemplary flowchart of a method for wavelength selection according to an embodiment of the present invention. This method can be executed by ROADM and specifically includes the following steps:
  • the first input component inputs a first light beam, and the first light beam is incident on the first wavelength dispersion component;
  • the first wavelength dispersion component decomposes the first light beam incident from the first input component into a plurality of first sub-wavelength light beams, and propagates the plurality of first sub-wavelength light beams to the light deflection component;
  • the optical deflection component angularly deflects the multiple first sub-wavelength beams to obtain multiple second sub-wavelength beams, and propagates the multiple second sub-wavelength beams to the second optical switch array.
  • a sub-wavelength beam is angularly deflected to obtain a plurality of third sub-wavelength beams, and the plurality of third sub-wavelength beams are propagated to the second wavelength dispersion component, and the beam propagation directions of the second sub-wavelength beam and the third sub-wavelength beam are different;
  • the second optical switch array propagates a plurality of second sub-wavelength light beams to the third wavelength dispersion component.
  • the third wavelength dispersion component combines a plurality of third sub-wavelength light beams into a second light beam, and propagates the second light beam to the first output component.
  • the first output component outputs the second beam dimension
  • the second wavelength dispersion component combines a plurality of third sub-wavelength beams into a third beam, and propagates the third beam to the third optical switch array.
  • the third optical switch array propagates the third light beam to the second output component.
  • the second output component drops and outputs the third light beam.
  • the optical deflection component includes: a first optical switch array and a redirection component;
  • the optical deflection component angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagates the plurality of second sub-wavelength beams to the second optical switch array.
  • the wavelength beams are angularly deflected to obtain a plurality of third sub-wavelength beams, and the plurality of third sub-wavelength beams are propagated to the second wavelength dispersion component.
  • the second sub-wavelength beams and the third sub-wavelength beams have different beam propagation directions, including:
  • the first optical switch array performs angular deflection on the multiple first sub-wavelength beams to obtain multiple second sub-wavelength beams, and propagates the multiple second sub-wavelength beams to the second optical switch array through the redirection component, the first optical switch The array further performs angular deflection on the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and propagates the plurality of third sub-wavelength beams to the second wavelength dispersion component through the redirecting component.
  • the first wavelength dispersion component decomposes the first light beam incident by the first input component into a plurality of first sub-wavelength light beams, including:
  • the first wavelength dispersion component decomposes the first light beam incident from the first input component into a plurality of first sub-wavelength light beams in a first plane.
  • the first optical switch array angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagates the plurality of second sub-wavelength beams to the second optical switch array through the redirecting component
  • the first optical switch array further performs angular deflection on the plurality of first sub-wavelength beams to obtain a plurality of third sub-wavelength beams, and propagates the plurality of third sub-wavelength beams to the second wavelength dispersion component through the redirection component, including:
  • the first optical switch array angularly deflects the plurality of first sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of second sub-wavelength beams, and pass the plurality of second sub-wavelength beams
  • the redirecting component propagates to the second optical switch array, and the first optical switch array further angularly deflects the plurality of first sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of third sub-wavelength beams , And propagate a plurality of third sub-wavelength light beams to the second wavelength dispersion component through the redirecting component, and the first plane and the second plane are orthogonal to each other.
  • the redirection component includes a first lens, a second lens, and a third lens;
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, the second optical switch array is located at the back focal plane of the second lens, and the first optical switch array is located at the front focal plane of the second lens. flat;
  • Propagating multiple second sub-wavelength light beams to the second optical switch array through the redirection component includes:
  • the multiple second sub-wavelength light beams are propagated to the second optical switch array through the first lens, the second lens and the third lens.
  • the second wavelength dispersion component is located at the back focal plane of the first lens
  • Propagating multiple third sub-wavelength light beams to the second wavelength dispersion component through the redirecting component includes:
  • the plurality of third sub-wavelength light beams are propagated to the second wavelength dispersion component through the first lens.
  • the second wavelength dispersion component is located at the back focal plane of the second lens
  • Propagating multiple third sub-wavelength light beams to the second wavelength dispersion component through the redirecting component includes:
  • the plurality of third sub-wavelength light beams are propagated to the second wavelength dispersion component through the second lens.
  • the method further includes:
  • the second input component inputs the fourth light beam, and the fourth light beam is incident on the fourth optical switch array;
  • the fourth optical switch array angularly deflects the fourth light beam to obtain the fifth light beam, and propagates the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component splits the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagates the plurality of fourth sub-wavelength light beams to the second optical switch array through the redirection component;
  • the second optical switch array further performs angular deflection on the plurality of fourth sub-wavelength beams to obtain a plurality of fifth sub-wavelength beams, and propagates the plurality of fifth sub-wavelength beams to the third wavelength dispersion component.
  • the fourth wavelength dispersion component splits the fifth light beam into multiple fourth sub-wavelength light beams, including:
  • the fourth wavelength dispersion component splits the fifth light beam into a plurality of fourth sub-wavelength light beams in the first plane.
  • the fourth optical switch array angularly deflects the fourth light beam to obtain the fifth light beam, including:
  • the fourth optical switching array performs angular deflection on the fourth light beam in at least one of the first plane and the second plane to obtain the fifth light beam;
  • the second optical switch array performs angular deflection on multiple fourth sub-wavelength light beams to obtain multiple fifth sub-wavelength light beams, including:
  • the second optical switch array angularly deflects the plurality of fourth sub-wavelength beams in at least one of the first plane and the second plane to obtain a plurality of fifth sub-wavelength beams, and the first plane and the second plane are orthogonal to each other.
  • the redirection component includes a first lens, a second lens, and a third lens;
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, the fourth wavelength dispersion component is located at the front focal plane of the third lens, and the second optical switch array is located at the back focal plane of the third lens surface;
  • Propagating multiple fourth sub-wavelength light beams to the second optical switch array through the redirection component includes:
  • the multiple fourth sub-wavelength light beams are propagated to the second optical switch array through the third lens.
  • the redirection component includes a first lens, a second lens, and a third lens;
  • the second lens is located at the back focal plane of the first lens, the second lens is located at the front focal plane of the third lens, the fourth wavelength dispersion component is located at the front focal plane of the second lens, and the second optical switch array is located at the back focal plane of the second lens surface;
  • Propagating multiple fourth sub-wavelength light beams to the second optical switch array through the redirection component includes:
  • the multiple fourth sub-wavelength light beams are propagated to the second optical switch array through the second lens.
  • the optical deflection component includes: a first optical switch array, a redirection component, a first polarization control element, and a polarization splitting element;
  • the optical deflection component angularly deflects the plurality of first sub-wavelength beams to obtain a plurality of second sub-wavelength beams, and propagates the plurality of second sub-wavelength beams to the second optical switch array.
  • the wavelength beams are angularly deflected to obtain a plurality of third sub-wavelength beams, and the plurality of third sub-wavelength beams are propagated to the second wavelength dispersion component.
  • the second sub-wavelength beams and the third sub-wavelength beams have different beam propagation directions, including:
  • the first optical switch array angularly deflects the plurality of first sub-wavelength beams and propagates the plurality of first sub-wavelength beams to the first polarization control element through the redirecting component;
  • the first polarization control element changes the polarization state of the incident multiple first sub-wavelength light beams, and outputs multiple second sub-wavelength light beams or multiple third sub-wavelength light beams to the polarization splitting element, wherein the multiple second sub-wavelength light beams
  • the polarization states of the multiple third sub-wavelength beams are orthogonal to each other;
  • the polarization splitting element receives the multiple second sub-wavelength beams incident from the first polarization control element, it controls the beam propagation direction of the multiple second sub-wavelength beams so that the multiple second sub-wavelength beams are incident on the second optical switch Array, if the polarization splitting element receives multiple third sub-wavelength beams incident from the first polarization control element, it controls the beam propagation direction of the multiple third sub-wavelength beams so that the multiple third sub-wavelength beams are incident on the second The wavelength dispersive component, wherein the beam propagation directions of the second sub-wavelength beam and the third sub-wavelength beam are different.
  • the method further includes:
  • the second input component inputs the fourth light beam, and the fourth light beam is incident on the fourth optical switch array;
  • the fourth optical switch array angularly deflects the fourth light beam to obtain the fifth light beam, and propagates the fifth light beam to the fourth wavelength dispersion component;
  • the fourth wavelength dispersion component splits the fifth light beam into a plurality of fourth sub-wavelength light beams, and propagates the plurality of fourth sub-wavelength light beams to the second polarization control element;
  • the second polarization control element changes the polarization state of the incident multiple fourth sub-wavelength beams, and outputs the multiple fourth sub-wavelength beams to the polarization splitting element, so that the polarization splitting element propagates the multiple fourth sub-wavelength beams to the first Two optical switch arrays.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种光通信的装置,光通信的装置可以为可重构光分插复用器,光偏转组件(211)可以对由第一输入组件(201)入射并通过第一波长色散组件(202)分散之后的多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束传播至第二光开关阵列(205),经过第三波长色散组件(206)合成,通过第一输出组件(207)维度输出,光偏转组件(211)还可以对多个第一子波长光束进行角度偏转得到多个第三子波长光束,经过第二波长色散组件(208)合成,并入射到第三光开关阵列(209),通过第二输出组件(207)下波输出,其中,第二子波长光束与第三子波长光束的光束传播方向不同。可以使得下波信号减少一级光开关阵列导致的插损。

Description

一种光通信的装置和波长选择方法
本申请要求于2019年04月30日提交中国国家知识产权局、申请号为201910370986.4、发明名称为“一种光通信的装置和波长选择方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种光通信的装置和波长选择方法。
背景技术
随着视频和云端业务的迅速增长,运营商对光网络构建的灵活性、光网络的建设和运行维护费用的降低尤为关注。网络节点需要交叉连接的方向维度(或者说,传输路径)越来越多,运营商可通过使用可重构光分插复用器(reconfigurable optical add-drop multiplexer,ROADM)远程自动地进行维度切换等,来取代之前人工下站点的方式去更换光纤的连接,从而满足网络动态连接的言求。
随着ROADM技术的迅速发展,具备colorless(波长无关)特性、directionless(方向无关)特性和contentionless(无波长冲突)特性的ROADM(简称为CDC ROADM)是未来ROADM架构的发展方向。其中colorless指的是任意端口可以输出任意波长;directionless指的是任意波长可以调度到任意方向;contentionless指的是多个方向同时需要在本地上下相同波长时,不会发生波长冲突。
现有技术中,如图1所示,ROADM可以由线路侧1*N WSS,和客户侧N*MNxM上下波长选择开关(add drop wavelength selective switch,ADWSS)构成,对客户侧NxM ADWSS而言,线路侧1xK波长选择开关(wavelength selective switch,WSS)的作用是通过光交换阵列将传输链路上N个维度的输入信号引入NxM ADWSS的输入端口,进而将各维度信号光束入射到NxM ADWSS的第一级光交换阵列上面,然后NxM ADWSS的两级光交换阵列完成信号交换,将信号传播至输出端口,其中,1xK WSS包括1级光交换阵列,NxM ADWSS包括2级光交换阵列,下波信号总计经过3级光交换阵列。同理,上波信号也需要经过3级光交换阵列才能将本地上波业务交换至各个维度方向。由于上下波信号需要经过3级光交换阵列,对信号造成了较大的插损和滤波。
发明内容
本申请提供了一种光通信的装置和波长选择方法,使得从维度输入端口到维度输出的光路仅需要经过两级光开关阵列,从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列,使得下波信号减少一级光开关阵列导致的插损。
第一方面,本申请提供了一种光通信的装置,包括:第一输入组件、第一波长色散组件、第二波长色散组件、第三波长色散组件、光偏转组件、第二光开关阵列、第三光开关阵列、第一输出组件和第二输出组件;
所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述光偏转组件,第一波长色散组件可以 将第一输入组件入射的第一光束分解为多个第一子波长光束,使得多个第一子波长光束在波长平面上分散,并将该分散后的多个第一子波长光束经由重定向组件传播至光偏转组件,各个第一子波长光束的波长彼此相异;所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至所述第二光开关阵列,所述光偏转组件,还用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至所述第二波长色散组件,所述第二子波长光束与所述第三子波长光束的光束传播方向不同;
所述第二光开关阵列用于将所述个第二子波长光束传播到所述第三波长色散组件。
所述第三波长色散组件,用于将所述多个第二子波长光束合成为第二光束,并将所述第二光束传播至所述第一输出组件;所述第一输出组件用于将所述第二光束维度输出;所述第二波长色散组件,用于将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至所述第三光开关阵列;所述第三光开关阵列,用于将所述第三光束传播至所述第二输出组件;所述第二输出组件,用于将所述第三光束下波输出。
本申请实施例中,光偏转组件通过针对于不同的输出端口类型,将多个第一子波长光束进行不同的光束传播方向偏转,使得下波输出的光束可以避开维度输出的光路,而从下波输出端口输出,相应的,也使得维度输出的光束可以避开下波输出的光路,而从维度输出端口输出。第一光束从维度输入端口到维度输出的光路仅需要经过两级光开关阵列(光偏转组件中包括的光开关阵列和第二光开关阵列),第一光束从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列(光偏转组件中包括的光开关阵列和第三光开关阵列),使得下波信号减少一级光开关阵列导致的插损,同时下波信号减少一级光开关阵列滤波,降低了信号滤波代价。
在第一方面的一种可选设计中,所述光偏转组件包括:第一光开关阵列和重定向组件;
所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,所述第一光开关阵列,还用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件。
在第一方面的一种可选设计中,所述第一波长色散组件,用于将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
在第一方面的一种可选设计中,所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,或,所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,所述第一平面与所述第二平面相互正交。
在第一方面的一种可选设计中,所述重定向组件包括第一透镜、第二透镜和第三透镜;
所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第二光开关阵列位于所述第二透镜的后焦平面,所述第一光开关阵列位于所述 第二透镜的前焦平面,所述第一透镜、所述第二透镜和所述第三透镜用于将所述多个第二子波长光束传播至所述第二光开关阵列。
在第一方面的一种可选设计中,所述第二波长色散组件位于所述第一透镜的后焦平面,所述第一透镜还用于将所述多个第三子波长光束传播至所述第二波长色散组件。
在第一方面的一种可选设计中,所述第二波长色散组件位于所述第二透镜的后焦平面,所述第二透镜用于将所述多个第三子波长光束传播至所述第二波长色散组件。
在第一方面的一种可选设计中,所述重定向组件还包括第四透镜和第五透镜;
所述第一波长色散组件位于所述第四透镜的后焦平面,所述第一波长色散组件位于所述第五透镜的前焦平面,所述第五透镜用于将所述第一波长色散组件入射的所述多个第一子波长光束传播至所述第一光开关阵列。
在第一方面的一种可选设计中,所述光通信的装置还包括:第二输入组件、第四光开关阵列和第四波长色散组件;
所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
所述第四波长色散组件,用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二光开关阵列;
所述第二光开关阵列,还用于对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将所述多个第五子波长光束传播至所述第三波长色散组件。
所述第三波长色散组件,用于将所述多个第五子波长光束合成为第六光束,并将所述第六光束,并将所述第六光束传播至所述第一输出组件;
所述第一输出组件用于将所述第六光束维度输出。
在第一方面的一种可选设计中,所述第四波长色散组件,用于在所述第一平面内将所述第五光束分解为多个第四子波长光束。
在第一方面的一种可选设计中,所述第四光交换阵列,用于在所述第一平面和所述第二平面中的至少一个平面内对所述第四光束进行角度偏转得到第五光束,所述第二光开关阵列,还用于在所述第一平面和所述第二平面中的至少一个平面内对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,所述第一平面和所述第二平面相互正交。
在第一方面的一种可选设计中,所述重定向组件包括第一透镜、第二透镜和第三透镜;
所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第四波长色散组件位于所述第三透镜的前焦面,所述第二光开关阵列位于所述第三透镜的后焦面,所述第三透镜用于将所述多个第四子波长光束传播至所述第二光开关阵列。
在第一方面的一种可选设计中,所述重定向组件包括第一透镜、第二透镜和第三透镜;
所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第四波长色散组件位于所述第二透镜的前焦面,所述第二光开关阵列位于所述 第二透镜的后焦面,所述第二透镜用于将所述多个第四子波长光束传播至所述第二光开关阵列。
在第一方面的一种可选设计中,所述光偏转组件包括:第一光开关阵列、重定向组件、第一偏振控制元件和偏振分光元件;
所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束通过所述重定向组件传播至所述第一偏振控制元件;
所述第一偏振控制元件用于改变入射的所述多个第一子波长光束的偏振状态,并输出多个第二子波长光束或多个第三子波长光束到所述偏振分光元件,其中,所述多个第二子波长光束和所述多个第三子波长光束的偏振状态互为正交;
所述偏振分光元件若接收到所述第一偏振控制元件入射的多个第二子波长光束,则用于控制所述多个第二子波长光束的光束传播方向,以使得所述多个第二子波长光束入射到所述第二光开关阵列,所述偏振分光元件若接收到所述第一偏振控制元件入射的多个第三子波长光束,则用于控制所述多个第三子波长光束的光束传播方向,以使得所述多个第三子波长光束入射到所述第二波长色散组件,其中,所述第二子波长光束和所述第三子波长光束的光束传播方向不同。
在第一方面的一种可选设计中,所述光通信的装置还包括:第二输入组件、第四光开关阵列、第四波长色散组件和第二偏振控制元件;
所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
所述第四波长色散组件用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二偏振控制元件;
所述第二偏振控制元件,用于改变入射的所述多个第四子波长光束的偏振状态,并将所述多个第四子波长光束输出至所述偏振分光元件,以使得所述偏振分光元件将所述多个第四子波长光束传播至所述第二光开关阵列。
在第一方面的一种可选设计中,所述光通信的装置还包括:第五波长色散组件和第六波长色散组件;
所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束传播至所述第五波长色散组件;
所述第五波长色散组件,用于将所述第一光开关阵列入射的所述多个第一子波长光束合成,并将合成后的光束通过所述重定向组件传播至所述第一偏振控制元件;
所述第六波长色散组件用于将所述偏振分光元件入射的光束分解为所述多个第二子波长光束,并将所述多个第二子波长光束传播到所述第二光开关阵列。
第二方面,本申请提供了一种波长选择的方法,其特征在于,包括:
第一输入组件输入第一光束,并将所述第一光束传播至第一波长色散组件;
所述第一波长色散组件将所述第一输入组件入射的第一光束分解为多个第一子波长光 束,并将所述多个第一子波长光束传播至光偏转组件;
所述光偏转组件对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至第二光开关阵列,所述光偏转组件还对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至第二波长色散组件,所述第二子波长光束与所述第三子波长光束的光束传播方向不同;
所述第二光开关阵列将所述多个第二子波长光束传播至第三波长色散组件;
所述第三波长色散组件将所述多个第三子波长光束合成为第二光束,并将所述第二光束传播至第一输出组件;
所述第一输出组件将所述第二光束维度输出;
所述第二波长色散组件将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至第三光开关阵列;
所述第三光开关阵列将所述第三光束传播至第二输出组件;
所述第二输出组件将所述第三光束下波输出。
在第二方面的一种可选设计中,所述光偏转组件包括:第一光开关阵列和重定向组件;
所述光偏转组件对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至第二光开关阵列,所述光偏转组件还对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至第二波长色散组件,所述第二子波长光束与所述第三子波长光束的光束传播方向不同,包括:
所述第一光开关阵列对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,所述第一光开关阵列还对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件。
在第二方面的一种可选设计中,所述第一波长色散组件将所述第一输入组件入射的第一光束分解为多个第一子波长光束,包括:
所述第一波长色散组件将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
在第二方面的一种可选设计中,所述第一光开关阵列对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,所述第一光开关阵列还对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,包括:
所述第一光开关阵列在所述第一平面内和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,所述第一光开关阵列还在所述第一平面和所述第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组 件,所述第一平面与所述第二平面相互正交。
在第二方面的一种可选设计中,所述重定向组件包括第一透镜、第二透镜和第三透镜;
所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第二光开关阵列位于所述第二透镜的后焦平面,所述第一光开关阵列位于所述第二透镜的前焦平面;
所述将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,包括:
将所述多个第二子波长光束通过所述第一透镜、所述第二透镜和所述第三透镜传播至所述第二光开关阵列。
在第二方面的一种可选设计中,所述第二波长色散组件位于所述第一透镜的后焦平面;
所述将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,包括:
将所述多个第三子波长光束通过所述第一透镜传播至所述第二波长色散组件。
在第二方面的一种可选设计中,所述第二波长色散组件位于所述第二透镜的后焦平面;
所述将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,包括:
将所述多个第三子波长光束通过所述第二透镜传播至所述第二波长色散组件。
在第二方面的一种可选设计中,所述方法还包括:
第二输入组件输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
所述第四光开关阵列对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
所述第四波长色散组件将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束通过所述重定向组件传播至所述第二光开关阵列;
所述第二光开关阵列还对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将所述多个第五子波长光束传播至所述第三波长色散组件。
在第二方面的一种可选设计中,所述第四波长色散组件将所述第五光束分解为多个第四子波长光束,包括:
所述第四波长色散组件在所述第一平面内将所述第五光束分解为多个第四子波长光束。
在第二方面的一种可选设计中,所述第四光开关阵列对所述第四光束进行角度偏转得到第五光束,包括:
所述第四光交换阵列在所述第一平面和所述第二平面中的至少一个平面内对所述第四光束进行角度偏转得到第五光束;
所述第二光开关阵列对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,包括:
所述第二光开关阵列在所述第一平面和所述第二平面中的至少一个平面内对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,所述第一平面和所述第二平面相 互正交。
在第二方面的一种可选设计中,所述重定向组件包括第一透镜、第二透镜和第三透镜;
所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第四波长色散组件位于所述第三透镜的前焦面,所述第二光开关阵列位于所述第三透镜的后焦面;
所述将所述多个第四子波长光束通过所述重定向组件传播至所述第二光开关阵列,包括:
将所述多个第四子波长光束通过所述第三透镜传播至所述第二光开关阵列。
在第二方面的一种可选设计中,所述重定向组件包括第一透镜、第二透镜和第三透镜;
所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第四波长色散组件位于所述第二透镜的前焦面,所述第二光开关阵列位于所述第二透镜的后焦面;
所述将所述多个第四子波长光束通过所述重定向组件传播至所述第二光开关阵列,包括:
将所述多个第四子波长光束通过所述第二透镜传播至所述第二光开关阵列。
在第二方面的一种可选设计中,所述光偏转组件包括:第一光开关阵列、重定向组件、第一偏振控制元件和偏振分光元件;
所述光偏转组件对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至第二光开关阵列,所述光偏转组件还对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至第二波长色散组件,所述第二子波长光束与所述第三子波长光束的光束传播方向不同,包括:
所述第一光开关阵列对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束通过所述重定向组件传播至所述第一偏振控制元件;
所述第一偏振控制元件改变入射的所述多个第一子波长光束的偏振状态,并输出多个第二子波长光束或多个第三子波长光束到所述偏振分光元件,其中,所述多个第二子波长光束和所述多个第三子波长光束的偏振状态互为正交;
所述偏振分光元件若接收到所述第一偏振控制元件入射的多个第二子波长光束,则控制所述多个第二子波长光束的光束传播方向,以使得所述多个第二子波长光束入射到所述第二光开关阵列,所述偏振分光元件若接收到所述第一偏振控制元件入射的多个第三子波长光束,则控制所述多个第三子波长光束的光束传播方向,以使得所述多个第三子波长光束入射到所述第二波长色散组件,其中,所述第二子波长光束和所述第三子波长光束的光束传播方向不同。
在第二方面的一种可选设计中,所述方法还包括:
第二输入组件输入第四光束,并将所述第四光束入射至第四光开关阵列;
所述第四光开关阵列对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至第四波长色散组件;
所述第四波长色散组件将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至第二偏振控制元件;
所述第二偏振控制元件改变入射的所述多个第四子波长光束的偏振状态,并将所述多个第四子波长光束输出至所述偏振分光元件,以使得所述偏振分光元件将所述多个第四子波长光束传播至所述第二光开关阵列。
第三方面,本申请实施例提供了一种光通信的装置,包括:
第一输入组件、第一波长色散组件、光偏转组件、第二光开关阵列、第三波长色散组件和第一输出组件;
所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述光偏转组件;
所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至所述第二光开关阵列;
所述第二光开关阵列,用于将所述多个第二子波长光束传播至所述第三波长色散组件;
所述第三波长色散组件,用于将所述多个第二子波长光束合成为第二光束,并将所述第二光束传播至所述第一输出组件;
所述第一输出组件用于将所述第二光束维度输出。
在第三方面的一种可选设计中,所述光偏转组件包括:第一光开关阵列和重定向组件;
所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列。
在第三方面的一种可选设计中,所述第一波长色散组件,用于将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
在第三方面的一种可选设计中,所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列。
在第三方面的一种可选设计中,所述光通信的装置还包括:第二输入组件、第四光开关阵列和第四波长色散组件;
所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
所述第四波长色散组件,用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二光开关阵列;
所述第二光开关阵列,还用于对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将所述多个第五子波长光束传播至所述第三波长色散组件。
第四方面,本申请实施例提供了一种光通信的装置,包括:
第一输入组件、第一波长色散组件、第二波长色散组件、光偏转组件、第三光开关阵列和第二输出组件;
所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述光偏转组件;
所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至所述第二波长色散组件;
所述第二波长色散组件,用于将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至所述第三光开关阵列;
所述第三光开关阵列,用于将所述第三光束传播至所述第二输出组件;
所述第二输出组件,用于将所述第三光束下波输出。
在第四方面的一种可选设计中,所述光偏转组件包括:第一光开关阵列和重定向组件;
所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件。
在第四方面的一种可选设计中,所述第一波长色散组件,用于将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
在第四方面的一种可选设计中,所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,所述第一平面与所述第二平面相互正交。
第五方面,本申请提供了一种光通信的装置,包括:
第二输入组件、第四光开关阵列、第四波长色散组件、第三波长色散组件和第一输出组件;
所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
所述第四波长色散组件,用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二光开关阵列;
所述第二光开关阵列,用于对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将所述多个第五子波长光束传播至所述第三波长色散组件;
所述第三波长色散组件,用于将所述多个第五子波长光束合成为第六光束,并将所述第六光束传播至所述第一输出组件;
所述第一输出组件用于将所述第六光束维度输出。
在第五方面的一种可选设计中,所述第四光交换阵列,用于在所述第一平面和所述第 二平面中的至少一个平面内对所述第四光束进行角度偏转得到第五光束,所述第二光开关阵列,还用于在所述第一平面和所述第二平面中的至少一个平面内对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,所述第一平面和所述第二平面相互正交。
从以上技术方案可以看出,本申请具有以下优点:
本申请实施例提供了一种光通信的装置,包括:第一输入组件、第一波长色散组件、第二波长色散组件、第三波长色散组件、光偏转组件、第二光开关阵列、第三光开关阵列、第一输出组件、和第二输出组件;所述第一输入组件,用于输入第一光束,并将所述第一光束入射至所述第一波长色散组件;所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述光偏转组件;所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至所述第二光开关阵列,所述光偏转组件,还用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至所述第二波长色散组件,所述第二子波长光束与所述第三子波长光束的光束传播方向不同;所述第二光开关阵列,用于将所述多个第二子波长光束传播至第三波长色散组件;所述第三波长色散组件,用于将所述多个第二子波长光束合成为第二光束,并将所述第二光束传播至第一输出组件;所述第一输出组件用于将所述第二光束维度输出;所述第二波长色散组件,用于将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至所述第三光开关阵列;所述第三光开关阵列,用于将所述第三光束传播至第二输出组件;所述第二输出组件,用于将所述第三光束下波输出。光偏转组件通过针对于不同的输出端口类型,将多个第一子波长光束进行不同的光束传播方向偏转,使得下波输出的光束可以避开维度输出的光路,而从下波输出端口输出,相应的,也使得维度输出的光束可以避开下波输出的光路,而从维度输出端口输出。第一光束从维度输入端口到维度输出的光路仅需要经过两级光开关阵列(光偏转组件中包括的光开关阵列和第二光开关阵列),第一光束从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列(光偏转组件中包括的光开关阵列和第三光开关阵列),使得下波信号减少一级光开关阵列导致的插损,同时下波信号减少一级光开关阵列滤波,降低了信号滤波代价。
附图说明
图1是一种ROADM架构示意图;
图2是本发明实施例提供的一种光通信的装置的架构示意图;
图3是本发明实施例提供的一种光通信的装置的架构示意图;
图4是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图;
图5a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图5b是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图6是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图7a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图7b是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图;
图7c是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图;
图8是本发明实施例提供的一种光通信的装置的架构示意图;
图9a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图9b是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图;
图10是本发明实施例提供的一种光通信的装置的架构示意图;
图11是本发明实施例提供的一种光通信的装置的架构示意图;
图12是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图;
图13a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图13b是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图;
图14是本发明实施例提供的一种波长选择的方法的流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面将结合本实施例中的附图,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的保护范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
本发明的技术方案,可以应用于各种能够使用信号光来传输数据的通信系统,例如:全球移动通讯系统(global system of mobile communication,GSM),码分多址(code division multiple access,CDMA,)系统,宽带码分多址(wideband code division multiple access wireless,WCDMA),适用分组无线业务(general packet radio service,GPRS),长期演进(long term evolution,LTE),第五代(5Generation,5G)通信系统等,此外,所述通信系统还可以适用于面向未来的通信技术,都适用本发明实施例提供的技术方案。本发明实施例描述的系统架构以及业务场景是为了更加清楚的说明本 发明实施例的技术方案,并不构成对于本发明实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本发明实施例提供的技术方案对于类似的技术问题,同样适用。
图2是本发明实施例提供的一种光通信的装置的架构示意图,具体的,本实施例中的光通信的装置可以为可重构光分插复用器ROADM。如图2所示,本发明实施例提供的一种ROADM架构包括:第一输入组件201、第一波长色散组件202、光偏转组件211、第二波长色散组件208、第三光开关阵列209、第二输出组件210、第二光开关阵列205、第三波长色散组件206和第一输出组件207。
具体的,第一输入组件201,用于输入第一光束,并将第一光束传播至第一波长色散组件202。
本申请实施例中,第一输入组件201可以包括N个输入端口,其中,N个输入端口用于维度输入,第一输入组件201用于将N个输入端口接收的输入光束输出至第一波长色散组件202,具体的,第一输入组件201可以将维度输入的第一光束入射至第一波长色散组件202,其中,本实施例中N的取值为正整数。
第一波长色散组件202,用于将第一输入组件201入射的第一光束分解为多个第一子波长光束,并将多个第一子波长光束传播至光偏转组件211。
本申请实施例中,第一波长色散组件202可以将第一输入组件201入射的第一光束分解为多个第一子波长光束,使得多个第一子波长光束在波长平面上分散,并将该分散后的多个第一子波长光束经由重定向组件203传播至光偏转组件211,各个第一子波长光束的波长彼此相异。
光偏转组件211,用于对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束传播至第二光开关阵列205,光偏转组件211,还用于对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束传播至第二波长色散组件208,第二子波长光束与第三子波长光束的光束传播方向不同。
第二光开关阵列205,用于将多个第二子波长光束传播至第三波长色散组件208。
第三波长色散组件206,用于将多个第二子波长光束合成为第二光束,并将第二光束传播至第一输出组件207。
第一输出组件207用于将第二光束维度输出。
换一种表述方式,第一输出组件207用于将第二光束输出到不同的方向。第二波长色散组件208,用于将多个第三子波长光束合成为第三光束,并将第三光束传播至第三光开关阵列209。
第三光开关阵列209用于将第三光束传播至第二输出组件210中对应的输出端口。
第二输出组件210,用于将第三光束下波输出。
由上可知,本申请实施例中,光偏转组件211通过针对于不同的输出端口类型,将多个第一子波长光束进行不同的光束传播方向偏转,使得下波输出的光束可以避开维度输出的光路,而从下波输出端口输出,相应的,也使得维度输出的光束可以避开下波输出的光路,而从维度输出端口输出。第一光束从维度输入端口到维度输出的光路仅需要经过两级 光开关阵列(光偏转组件211中包括的光开关阵列和第二光开关阵列205),第一光束从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列(光偏转组件211中包括的光开关阵列和第三光开关阵列209),使得下波信号减少一级光开关阵列导致的插损,同时下波信号减少一级光开关阵列滤波,降低了信号滤波代价。
参照图3,图3为本申请实施例提供的另一种光通信的装置的架构示意图,和图2对应的实施例不同的是,本申请实施例中,光偏转组件211包括:第一光开关阵列204和重定向组件203。
本申请实施例中,第一光开关阵列204,用于对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件203传播至第二光开关阵列205,第一光开关阵列204,还用于对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束通过重定向组件203传播至第二波长色散组件208。
接下来论述当光偏转组件211由第一光开关阵列204和重定向组件203组成时,光通信的装置的具体结构。
参照图4、图5a、图5b,图4是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图,图5a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图,图5b是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图。其中,波长平面指的是YOZ平面,端口交换平面指的是XOZ平面。具体的,图5a是从维度输入到维度输出的光路结构示意图,图5b是从维度输入到下波输出的光路结构示意图。
如图4所示,光通信的装置可以包括:第一输入组件201、第一波长色散组件202、第一光开关阵列204、第二波长色散组件208、第三光开关阵列209、第二输出组件210、第二光开关阵列205、第三波长色散组件206、第一输出组件207以及透镜1至透镜15。
本申请实施例中,第一输入组件201可以包括N个输入端口,其中,N个输入端口用于维度输入,其中,N的取值为正整数。第一输入组件201包括的N个输入端口可以呈一维排列,用于获取N个维度的光束。该N个维度的光束可以为波分复用(wavelength division multiplex,WDM)光。本实施例中的第一光束可以为一束WDM光束,一束WDM光束可以包括多束(至少两束)子光束,各子光束的中心波长(或者说,各子光束的中心频点)彼此相异,其中,N个维度的光束可以来自不同的方向。
本申请实施例中,第一光束可以入射到第一输入组件201中N个输入端口中的一个输入端口。
可选地,本申请实施例中,第一输入组件201可以包括输入光纤阵列3011和输入准直器阵列3012。
其中,输入光纤阵列3011可以包括一维排列的N个输入光纤,其中N个输入光纤用于获取来自各维度的光束,具体的,输入光纤阵列3011可以包括在端口交换平面一维排列的N个输入光纤。
其中,输入准直器阵列3012可以包括一维排列的N个准直器,分别与N个输入光纤对 应,用于将该N个输入光纤输入的光束转换成准直光束,具体的,输入准直器阵列3012可以包括在端口交换平面一维排列的N个准直器。其中,该N个准直器与N个输入光纤一一对应,一个准直器用于对从所对应的输入光纤输出的光束进行准直,也可以理解为将输入光纤输入的光束转换成平行光,同时扩展光束束腰值以便于进行后续的光路处理。
本申请实施例中,N个输入光纤中的一个输入光纤可以获取来自某一个维度的第一光束,并由相对应的输入准直器转换成准直光束。
可选的,本申请实施例中的ROADM还可以包括由多个透镜构成的光斑扩束组件,该光斑扩束组件用于对第一输入组件201输出的第一光束的光斑大小进行改变。
具体的,光斑扩束组件,用于接收第一输入组件201输出的第一光束并改变第一光束的光束特性后输出至第一波长色散组件202。其中,光斑扩束组件可以由至少一个透镜组成,图4中,透镜6和透镜7组成了光斑扩束组件,用于在波长平面内对第一输入组件201产生的准直光束进行扩束,改变第一波长色散组件202上的光斑尺寸。透镜6和透镜7的焦距可以不同,分别为f1和f2,透镜6和透镜7的间隔为f1和f2之和。
本申请实施例中,通过光斑扩束组件的设置,能够将第一输入组件201输出的光束进行光斑交换,使得输入光束能够更好的满足后续光学元件的处理特性。
本申请实施例中,第一波长色散组件202,用于将第一输入组件201入射的第一光束在波长平面内分解为多个第一子波长光束,使多个第一子波长光束传播至第一光开关阵列204。
本申请实施例中,第一波长色散组件202可以利用衍射方式,在波长平面将光束分解成波长(或者说,中心频点)相异的各子光束,从而,从第一波长色散组件202输出的各第一子波长光束在波长平面方向上辐射式分散。需要说明的是,在端口交换平面内,第一波长色散组件没有起分解波束的作用。在光束入射方向(即从第一输入组件到第一光开关阵列204的方向),第一波长色散组202件用于接收第一输出组件201输出的第一光束,将第一光束透射至第一光开关阵列204。
在本申请实施例中,第一波长色散组件202可以将从一个输入端口输入的第一光束分解为不同波长的第一子波长光束。
例如:第一光束中包括K个不同波长的第一子波长光束复合而成,则第一波长色散组件202可以将第一光束分解为K个第一子波长光束,其中K个第一子波长光束的波长彼此之间不同。
在本申请实施例中,第一波长色散组件202可以包括至少一个色散单元,如光栅等,例如该第一波长色散组件202可以为阵列波导光栅、反射光栅、透射光栅、色散棱镜或平面波导光栅,并且,为增加色散效应,可采用多片光栅组合,或者,可以采用调整光路使光束多次经过同一光栅。
本申请实施例中,还可以包括重定向组件203,具体的,重定向组件203用于接收第一波长色散组件202输出的多个第一子波长光束,并将多个第一子波长光束重定向至第一光开关阵列204中的N行开关单元中的一行开关单元。
本申请实施例中,重定向组件203可以为由多个透镜构成的透镜组。其中,透镜组可 以为凸透镜和/或凹面镜的组成。具体的,参照图4,重定向组件203包括透镜4和透镜5,第一波长色散组件202位于透镜4的后焦平面,第一波长色散组件202位于透镜5的前焦平面,透镜5用于将第一波长色散组件202入射的多个第一子波长光束传播至第一光开关阵列204。可选地,透镜4和透镜5的焦距可以相同,构成4f(f为透镜的焦距)系统。重定向组件203可以通过改变各第一子波长光束的光束传播路线,将各第一子波长光束传播至第一光开关阵列204中的相应位置。在本发明实施中,可以从第一波长色散组件202接收上述多个第一子波长光束并改变该多个第一子波长光束在波长平面方向的光束传播特性,使不同波长的子光束在该波长平面方向上传播至第一光开关阵列204的不同位置。具体的,透镜4可以在端口交换平面对第一光束进行折射,第一波长色散组件202可以在透镜4的后焦面上对第一光束进行分波,透镜5可以在波长平面和端口交换平面对多个第一子波长光束进行折射,以使得从透镜5输出的多个第一子波长光束的光束传播方向与从输入到透镜4的第一光束的光束传播方向相同。
需要说明的是,图4中示出仅为一种示意,透镜4和透镜5还可以用其他器件替代,这里并不限定。
本申请实施例中,第一光开关阵列204,用于对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件203传播至第二光开关阵列205,第一光开关阵列204,还用于对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束通过重定向组件203传播至第二波长色散组件208,第二子波长光束与第三子波长光束的光束传播方向不同。
第一光开关阵列204针对于不同的输出端口类型,可以将多个第一子波长光束进行不同的光束传播方向偏转,使得下波输出的光束可以避开维度输出的光路,而从下波输出端口输出,相应的,也使得维度输出的光束可以避开下波输出的光路,而从维度输出端口输出。
在一种实施例中,第一光开关阵列204可以接收到光开关控制器的偏转指令,若该偏转指令指示多个第一子波长光束需要维度输出,则第一光开关阵列204对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件203传播至第二光开关阵列205。
在一种实施例中,第一光开关阵列204可以接收到光开关控制器的偏转指令,若该偏转指令指示多个第一子波长光束需要下波输出,则第一光开关阵列204对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束通过重定向组件203传播至第二波长色散组件208。
接下来论述,第一光开关阵列204如何对多个第一子波长光束进行偏转进行得到多个第二子光束或多个第三子光束。
在一种实施例中,第一光开关阵列204,用于在第一平面和第二平面中的至少一个平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件203传播至第二光开关阵列205,第一光开关阵列204,还用于在第一平面和第二平面中的至少一个平面内对多个第一子波长光束进行角度偏转得到多个第三子 波长光束,并将多个第三子波长光束通过重定向组件203传播至第二波长色散组件208,第一平面与第二平面相互正交。
具体的,对多个第一子波长光束进行偏转进行得到多个第二子光束或多个第三子光束可以分为如下几种情况:
在一种实施例中,第一光开关阵列204,用于在第一平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第一平面内和第二平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第一平面内和第二平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第一平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第二平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第一平面内和第二平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第一平面内和第二平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第二平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第一平面内根据第一预设角度对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第一平面内根据第二预设角度对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第二平面内根据第一预设角度对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第二平面内根据第二预设角度对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第一平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第二平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第二平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第一平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束。
在一种实施例中,第一光开关阵列204,用于在第一平面内根据第一预设角度,且在第二平面内根据第二预设角度对多个第一子波长光束进行角度偏转得到多个第二子波长光束,第一光开关阵列204,还用于在第一平面内根据第三预设角度,且在第二平面内根据第四预设角度对多个第一子波长光束进行角度偏转得到多个第三子波长光束,其中,第一预设角度和第三预设角度不同,和/或,第二预设角度和第四预设角度不同。换一种描述方式,即,本实施例中,第一预设角度和第三预设角度不同,且,第二预设角度和第四预设角度相同;或,第一预设角度和第三预设角度不同,且,第二预设角度和第四预设角度不 同;或,第一预设角度和第三预设角度相同,且,第二预设角度和第四预设角度不同。
本申请实施例中,第一光开关阵列204可以包括至少N行呈二维排布的开关单元,每行开关单元,包括Kl个开关单元,每个开关单元用于传播各自对应的波长的第一子波长光束。Kl可以是N个输入端口输入的波分复用信号的最大子波长数。
其中,用于维度输入的N个输入端口中的每个输入端口分别与该第一光开关阵列204中的N行开关单元中的每行开关单元一一对应,该N行开关单元,用于对N个维度输入的光束的子光束进行传播。本申请实施例中,该N行开关单元中的一行开关单元,用于对多个第一子波长光束进行传播。
在本发明实施例中,第一光开关阵列204可以通过微电子机械系统(micro-electro-mechanical system,MEMS)技术实现,MEMS技术是将几何尺寸或操作尺寸仅在微米、亚微米甚至纳米量级的微机电装置与控制电路高度集成在硅基或非硅基材料上的一个非常小的空间里,构成一个机电一体化的器件或系统。通过MEMS技术实现的光开关阵列是通过静电力或其他控制力使微反射镜产生机被运动,从而使打在微反射镜上的光束偏转至任意一个方向。在通过MEMS技术实现本发明的第一光开关阵列204的情况下,控制器可以控制微机械结构,以驱动光调制器(微透镜)转动,从而实现光路的偏转。
再例如,在本发明实施例中,第一光开关阵列204可以适过硅基液晶(liquid crystal on silicon,LCoS)技术实现,LCoS技术是利用液晶光栅原理,调整不同波长的光衍射角度来达到偏转光的目的。由于没有活动部件,LCoS技术具有相当高的可靠性。LCoS技术采用液晶单元折射率变化控制实现衍射角变化,可以方便的实现扩展和升级。不同波长通道对应空间光调制器(液晶)阵列的不同区域,通过调节光斑的相位,来改变光的传输方向。
再例如,在本发明实施中,第一光开关阵列204可以通过液晶(liquid crystal,LC)技术实现,在通过LC技术实现的光开关阵列中,入射的光束经过双折射晶体后,分成两个偏振态,其中一路经过半波片后,两路光的偏振态相同,然后打开在第一光开关阵列(液晶模组)上,通过调节双折射晶体的电压改变液晶的排列结构(改变晶体内部分子的角度),从而使晶体折射率发生变化,光源以不同角度的光输出。光经过每层液晶都有两个方向可以选择,经过多层液晶层后可以有多个光路可供选择。
再例如,在本发明实施中,第一光开关阵列204可以通过数字光处理(digital light processing,DLP)技术实现,通过DLP技术实现的光开关阵列的内部结构与通过MEMS技术实现的光调制器的内部结构相似,通过微透镜的偏转实现光能量的切换。区别在于,DLP微镜转动角度只有几个状态限制输出端口数量。
接下来论述第一光开关阵列204将偏转后的多个第二子波长光束通过重定向组件203传播至第二光开关阵列205之后的光路。
本申请实施例中,若第一光开关阵列204确定多个第一子波长光束对应的输出端口为用于维度输出的输出端口,则可以将偏转后的多个第二子波长光束通过重定向组件203传播至第二光开关阵列205。第二光开关阵列205可以将多个第二子波长光束传播至第三波长色散组件206。
本申请实施例中,重定向组件203可以包括第一透镜(透镜1)、第二透镜(透镜2) 和第三透镜(透镜3)。
如图4中示出的,透镜2位于透镜1的后焦平面,透镜2位于透镜3的前焦平面,如图5a中示出的,第二光开关阵列208位于透镜2的后焦平面,第一光开关阵列204位于透镜2的前焦平面,透镜1、透镜2和透镜3用于将多个第二子波长光束传播至第二光开关阵列205。
本申请实施例中,如图4中示出的,透镜1可以将第一光开关阵列204输出的多个第二子波长光束在波长平面汇聚到透镜2,如图5a中示出的,透镜2可以将透镜1入射的多个第二子波长光束在端口交换平面进行折射,并入射到透镜3,如图4中示出的,透镜3可以将透镜2入射的多个第二子波长光束在波长平面进行折射,使得多个第二子波长光束按照入射到透镜1的多个第二子波长光束的光束传播方向从透镜3输出到第二光开关阵列205。
本申请实施例中,第二光开关阵列205,用于将多个第二子波长光束通过重定向组件203传播至第三波长色散组件206。
本申请实施例中,第二光开关阵列205可以将多个第二子波长光束在第一平面和第二平面中的至少一个平面内对多个第二子波长光束进行偏转,并将偏转后的多个第二子波长光束通过重定向组件203传播至第三波长色散组件206。具体的,若第一光开关阵列204在波长平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,则第二光开关阵列205在波长平面内对多个第二子波长光束进行偏转,其中,偏转后的多个第二子波长光束,与入射到第一光开关阵列204的多个第一子波长光束的光束传播方向相同。若第一光开关阵列204在端口交换平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,则第二光开关阵列205在端口交换平面内对多个第二子波长光束进行偏转,其中,偏转后的多个第二子波长光束,与入射到第一光开关阵列204的多个第一子波长光束的光束传播方向相同。若第一光开关阵列204在端口交换平面内和波长平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,则第二光开关阵列205在端口交换平面内和波长平面内对多个第二子波长光束进行偏转,其中,偏转后的多个第二子波长光束,与入射到第一光开关阵列204的多个第一子波长光束的光束传播方向相同。
需要说明的是,图4和图5a中示出的仅为第二光开关阵列205在端口交换平面内对多个第二子波长光束进行角度偏转的情况,实际应用中,可以但不限于如上任意一种方案,这里并不限定。
本申请实施例中,重定向组件203可以为由多个透镜构成的透镜组。其中,透镜组可以为凸透镜和/或凹面镜的组成。具体的,参照图4,重定向组件203包括第八透镜(透镜8)和第九透镜(透镜9),第三波长色散组件206位于第八透镜的后焦平面,第二波长色散组件206位于第九透镜的前焦平面,第八透镜用于将偏转后的多个第二子波长光束传播至第三波长色散组件206。可选地,第八透镜和第九透镜的焦距可以相同,构成4f(f为透镜的焦距)系统。重定向组件203可以通过改变各偏转后的多个第二子波长光束的光束传播路线,将各偏转后的多个第二子波长光束传播至第三波长色散组件206。在本发明实施中,第八透镜可以在波长平面和端口交换平面对偏转后的多个第二子波长光束折射,第 三波长色散组件可以在第八透镜的后焦面上对偏转后的多个第二子波长光束进行合波,得到第二光束,第九透镜可以在端口交换平面对第二光束进行折射,使得第二光束的光束传播方向与第二光开关阵列输出的多个第二子波长光束的光束传播方向相同。
需要说明的是,图4中示出的重定向组件203仅为一种示意,重定向组件203还可以选择其他器件,根据所选择的作为重定向组件203的器件的差异,可重构光分插复用器的各器件的配置位置相异,或者说,光束在可重构光分插复用器中的传输路径相异。
本申请实施例中,第一输出组件207用于将第二光束维度输出。
本申请实施例中,重定向组件203和第三波长色散组件206的布置使得多个第二子波长光束最终汇聚成一束WDM束(第二光束),进而从第一输出组件207中对应的输出端口输出。
本申请实施例中,第一输出组件207可以包括N个用于维度输出的维度输出端口,第二光束可以从N个维度输出端口中的一个端口输出。并且,该个维度输出端口用于发送N个维度的光束。
本申请实施例中,如图4中示出的,第一输出组件207可以包括输出光纤阵列3072和输出准直器阵列3071。
其中,输出光纤阵列3072可以包括一维排列的N个输出光纤,其中N个输出光纤用于输出光束至各个维度。
其中,输出准直器阵列3071可以包括一维排列的N个准直器,分别与N个输出光纤对应,用于将光束转换成准直光束。其中,该N个准直器与N个输出光纤一一对应,一个准直器用于对光束进行准直。
本申请实施例中,N个输出光纤中的一个输出光纤可以获取第二光束,并由相对应的输出准直器转换成准直光束。
可选的,本申请实施例还可以包括由多个透镜构成的光斑扩束组件,该光斑扩束组件用于对第三波长色散组件输出的第二光束的光斑大小进行改变。
具体的,光斑扩束组件,用于接收第三波长色散组件206输出的第二光束并改变第二光束的光束特性后输出至第一输出组件207。其中,光斑扩束组件可以由至少一个透镜组成,例如图4中示出的,第十透镜(透镜10)和第十一透镜(透镜11)组成了光斑扩束组件,用于在波长平面内对第三波长色散组件206输出的第二光束进行扩束,第十透镜和第十一透镜的焦距可以不同,分别为f1和f2,第十透镜和第十一透镜的间隔为f1和f2之和。第三波长色散组件输出的第二光束入射到第十透镜,汇聚到第十透镜的后焦平面以及第十一透镜的前焦平面上,汇聚光束通过第十一透镜发散形成新的平行光束。
接下来论述第一光开关阵列204将偏转后的多个第三子波长光束通过重定向组件203传播至第二波长色散组件208之后的光路。
本申请实施例中,第二波长色散组件208位于透镜1的后焦平面,透镜1用于将多个第三子波长光束传播至第二波长色散组件208。
如图4和图5b中示出的,本申请实施例中,透镜1可以将多个第三子波长光束在波长平面内和端口交换平面内进行折射,根据几何光学成像原理,从焦平面(例如前焦平面) 不同位置以同一角度出射的光束,经过透镜1后以不同角度入射到像面的同一位置。由于入射到透镜1的多个第三子波长光束彼此平行,则多个第三子波长光束可以汇聚到第二波长色散组件208的同一位置。
本申请实施例中,第二波长色散组件208,用于将偏转后的多个第一子波长光束合成为第三光束,以将第三光束传播至第三光开关阵列209。
第三光开关阵列209,用于将第三光束传播至第二输出组件210,第二输出组件210,用于将第三光束下波输出。
这里,所谓“下波”,是指(通过输出端口)获取的需要发送至本地节点的下行信号光,该下行信号光可以是来自外地通信节点的信号光,也可以是来自本地通信节点的信号光,本发明并未特别限定。需要说明的是,在本发明实施例中,下行信号光使用的输出端口可以任意设置,例如,下行信号光使用的输出端口可以与下行信号光的波长数量相同,即,一个输出端口仅用于获取一个波长的下行信号光,也可以使用同一个输出端口输出来自于不同端口的多个子信号光的组合,还可以采用时分复用方式,而使一个输出端口在一个时段用于接收一个波长的下行信号光,在另一个时段接收另一个波长的下行信号光。
本申请实施例中,如图4中示出的,第二输出组件210可以包括输出光纤阵列3102和输出准直器阵列3101。
本申请实施例中,第二输出组件210可以包括M=P*Q个用于下波输出的下波输出端口,第三光束可以从M个下波输出端口中的一个端口输出,本实施例中,P、Q和M的取值为正整数,其中,P为端口方向一列下波输出端口的数目,Q为波长方向的下波输出端口的列数。
可选的,本申请实施例中的ROADM还可以包括由多个透镜构成的光斑扩束组件,该光斑扩束组件用于对第二波长色散组件208输出的第三光束的光斑大小进行改变。
具体的,光斑扩束组件,用于接收第二波长色散组件208输出的第三光束并改变第三光束的光束特性后输出至第三光开关阵列209。其中,光斑扩束组件可以由至少一个透镜组成,例如图4中示出的,第十二透镜(透镜12)和第十三透镜(透镜13)组成了光斑扩束组件,用于对第二波长色散组件208输出的第二光束进行扩束,第十二透镜和第十三透镜的焦距可以不同,分别为f1和f2,第十二透镜和第十三透镜的间隔为f1和f2之和。本实施例中,第二波长色散组件208输出的第三光束入射到第十二透镜,汇聚到第十二透镜的后焦平面以及第十三透镜的前焦平面上,汇聚光束通过第十三透镜发散形成新的平行光束。
本申请实施例中,第一光开关阵列202通过针对于不同的输出端口类型,将多个第一子波长光束进行不同的光束传播方向偏转,使得下波输出的光束可以避开维度输出的光路,而从下波输出端口输出,相应的,也使得维度输出的光束可以避开下波输出的光路,而从维度输出端口输出。第一光束从维度输入端口到维度输出的光路仅需要经过两级光开关阵列(第一光开关阵列204和第二光开关阵列205),第一光束从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列(第一光开关阵列204和第三光开关阵列209),使得下波信号减少一级光开关阵列导致的插损,同时下波信号减少一级光开关阵列滤波,降低了信号滤波代价。且本实施例中,第一光束从第一输入组件201到第一输出组件207的光路 和从第一输入组件201到第二输出组件210的光路中,共用了部分光路和光学器件(第一输入组件201、透镜6、透镜7、透镜4、第一波长色散组件202、透镜5、第一光开关阵列204和透镜1),减少了光器件的数量。
图6是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图,图7a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图,图7b是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图,图7c是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图,具体的,图7a是从维度输入到下波输出的光路结构示意图,图7b是从维度输入到维度输出的光路结构示意图,图7c是从维度输入到下波输出的光路结构示意图。波长平面指的是YOZ平面,端口交换平面指的是XOZ平面。具体的,如图7a所示,第二波长色散组件208位于第二透镜(透镜2)的后焦平面,第二透镜用于将多个第三子波长光束传播至第二波长色散组件208。
和上述图4以及图5b对应的实施例不同的是,图4以及图5b对应的实施例中,第一光束从第一输入组件到第一输出组件的光路和从第一输入组件到第二输出组件的光路中,共用的光路和光学器件包括:第一输入组件、透镜6、透镜7、透镜4、第一波长色散组件202、透镜5、第一光开关阵列204和透镜1。而本实施例中,第一光束从第一输入组件到第一输出组件的光路和从第一输入组件到第二输出组件的光路中,共用的光路和光学器件包括:第一输入组件、透镜6、透镜7、透镜4、第一波长色散组件202、透镜5、第一光开关阵列204和透镜2。
参照图8,图8是本发明实施例提供的一种光通信的装置的架构示意图,具体的,本实施例中的光通信的装置可以为可重构光分插复用器ROADM。如图8所示,本发明实施例提供的一种ROADM架构包括:第一输入组件201、第一波长色散组件202、第二波长色散组件208、第三波长色散组件206、第一光开关阵列204、第二光开关阵列205、第三光开关阵列209、第一输出组件207、第二输出组件210、第二输入组件801、第四光开关阵列802和第四波长色散组件803。
具体的,关于第一输入组件201、第一波长色散组件202、第二波长色散组件208、第三波长色散组件206、第一光开关阵列204、第二光开关阵列205、第三光开关阵列209、第一输出组件207和第二输出组件210及其相关光路的具体描述可参照上述图3、图4、图5a以及图5b对应的实施例,这里不再赘述。
本申请实施例中,ROADM还包括:第二输入组件801、第四光开关阵列802和第四波长色散组件803。
其中,第二输入组件801,用于输入第四光束,并将第四光束入射至第四光开关阵列。
本申请实施例中,第二输入组件801可以包括M=P*Q个输入端口,其中,M个输入端口用于上波输入,第二输入组件用于将M个输入端口接收的输入光束输出至第四光开关阵列802,具体的,第二输入组件801可以将上波输入的第四光束入射至第四光开关阵列802,本实施例中,P、Q和M的取值为正整数,其中,P为端口方向一列上波输入端口的数目,Q为波长方向的上波输入端口的列数。
第四光开关阵列802,用于对第四光束进行角度偏转得到第五光束,并将第五光束传 播至第四波长色散组件803。
本申请实施例中,第四光开关阵列802可以在端口交换平面对第四光束进行角度偏转得到第五光束,并将第五光束传播至第四波长色散组件803。
第四波长色散组件803用于将第五光束分解为多个第四子波长光束,并将多个第四子波长光束传播至第二光开关阵列。
本申请实施例中,第四光开关阵列802可以在波长平面对第四光束进行角度偏转得到第五光束,并将第五光束传播至第四波长色散组件803。
第二光开关阵列205,还用于对多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将多个第五子波长光束通过重定向组件203传播至第三波长色散组件206。
本申请实施例中,第二光开关阵列205可以在波长平面内和端口交换平面内中的至少一个平面内对多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将多个第五子波长光束传播至第三波长色散组件206。
由上可知,本申请实施例中,针对于客户端的上波输入光束,第四光束从上波输入端口到维度输出的光路仅需要经过两级光开关阵列(第四光开关阵列802和第二光开关阵列205),使得上波信号减少一级光开关阵列导致的插损,同时上波信号减少一级光开关阵列滤波,降低了信号滤波代价。
参照图9a,图9a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图,其中,波长平面指的是YOZ平面,端口交换平面指的是XOZ平面。具体的,光通信的装置还包括:第二输入组件801、第四光开关阵列802和第四波长色散组件803。
具体的,第二输入组件801,用于输入第四光束,并将第四光束入射至第四光开关阵列802。
本申请实施例中,第二输入组件801包括M=P*Q个输入端口,其中,M个输入端口用于客户端的上波输入,本实施例中,P、Q和M的取值为正整数,其中,P为端口方向一列上波输出端入的数目,Q为波长方向的上波输入端口的列数。第二输入组件801包括的M个输入端口可以呈二维排列,第二输入组件801获取的光束可以为波分复用(wavelength division multiplex,WDM)光。本实施例中的第四光束可以为一束WDM光束,一束WDM光束可以包括多束(至少两束)子光束,各子光束的中心波长(或者说,各子光束的中心频点)彼此相异。
本申请实施例中,第四光束可以入射到第二输入组件801中M个输入端口中的一个输入端口。
可选地,本申请实施例中,第二输入组件801可以包括输入光纤阵列8011和输入准直器阵列8012。
其中,输入光纤阵列8011可以包括二维排列的M个输入光纤,具体的,输入光纤阵列8011可以包括在波长平面和端口交换平面内二维排列的M个输入光纤。
其中,输入准直器阵列8012可以包括二维排列的M个准直器,分别与M个输入光纤对应,用于将该M个输入光纤输入的光束转换成准直光束,具体的,输入准直器阵列8012可以包括在波长平面和端口交换平面内二维排列的M个准直器。其中,该M个准直器与M个 输入光纤一一对应,一个准直器用于对从所对应的输入光纤输出的光束进行准直,同时扩展光束束腰值以便于进行后续的光路处理。
本申请实施例中,M个输入光纤中的一个输入光纤可以获取第四光束,并由相对应的输入准直器转换成准直光束。
本申请实施例中,第四光开关阵列802,用于对第四光束进行角度偏转得到第五光束,并将第五光束传播至第四波长色散组件803。
本申请实施例中,可选的,所述第四光交换阵列802,用于在所述第一平面和所述第二平面中的至少一个平面内对所述第四光束进行角度偏转得到第五光束,所述第二光开关阵列802,还用于在所述第一平面和所述第二平面中的至少一个平面内对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,所述第一平面和所述第二平面相互正交。
可选的,本申请实施例中还可以包括由多个透镜构成的光斑扩束组件,该光斑扩束组件用于对第四光开关阵列802输出的第五光束的光斑大小进行改变。通过光斑扩束组件的设置,能够将第四光开关阵列802输出的光束进行光斑交换,使得输入光束能够更好的满足后续光学元件的处理特性。
本申请实施例中,第四波长色散组件803用于在第一平面内(波长平面内)将第五光束分解为多个第四子波长光束,并将多个第四子波长光束通过重定向组件203传播至第二光开关阵列205。
本申请实施例中的重定向组件203用于接收第四波长色散组件803输出的多个第四子波长光束,并将多个第四子波长光束重定向至第二光开关阵列205的相应位置。
本申请实施例中,重定向组件203可以包括第一透镜(透镜1)、第二透镜(透镜2)和第三透镜(透镜3)。
第二透镜位于第一透镜的后焦平面,第二透镜位于第三透镜的前焦平面,第四波长色散组件位于第三透镜的前焦面,第二光开关阵列位于第三透镜的后焦面,第三透镜用于将多个第四子波长光束传播至第二光开关阵列205。
具体的,第三透镜用于在波长平面内和端口交换平面内对多个第四子波长光束进行折射,并将多个第四子波长光束传播至第二光开关阵列205。
需要说明的是,图9a中示出的重定向组件203仅为一种示意,重定向组件203还可以选择其他器件,根据所选择的作为重定向组件203的器件的差异,可重构光分插复用器的各器件的配置位置相异,或者说,光束在可重构光分插复用器中的传输路径相异。
本申请实施例中,第二光开关阵列205,还用于对多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将多个第五子波长光束通过重定向组件203传播至第三波长色散组件206。
本申请实施例中,第二光开关阵列205,还用于在波长平面和端口交换平面的至少一个平面内对多个第四子波长光束进行角度偏转得到多个第五子波长光束。
需要说明的是,从上波输入端口输入的上波信号和从维度输入的信号交换至同一输出端口的两种光束在第二光开关阵列205的光斑位置相同。
由上可知,本实施例中,针对于客户端的上波输入光束,第四光束从上波输入端口到 维度输出的光路仅需要经过两级光开关阵列(第四光开关阵列802和第二光开关阵列205),使得上波信号减少一级光开关阵列导致的插损,同时上波信号减少一级光开关阵列滤波,降低了信号滤波代价。且本实施例中,第四光束从第二输入组件801到第一输出组件207的光路和从第一输入组件201到第一输出组件207的光路中,共用的光路和光学器件包括:第二光开关阵列205、透镜8、第三波长色散组件206、透镜9、透镜10、透镜11、第一输出组件207和透镜3,和现有技术相比,减少了光器件的数量。
图9b是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图,具体的,图9b为从上波输入到维度输出的光路结构示意图。其中,波长平面指的是YOZ平面,端口交换平面指的是XOZ平面。具体的,图9b所示,第二透镜(透镜2)位于第一透镜(透镜1)的后焦平面,第二透镜(透镜2)位于第三透镜(透镜3)的前焦平面,第四波长色散组件803位于第二透镜(透镜2)的前焦面,第二光开关阵列205位于第二透镜(透镜2)的后焦面,第二透镜(透镜2)用于将多个第四子波长光束传播至第二光开关阵列205。
和上述图4以及图9a对应的实施例不同的是,本实施例中,第四光束从第二输入组件801到第一输出组件207的光路和从第一输入组件201到第一输出组件207的光路中,共用的光路和光学器件包括:第二光开关阵列205、透镜8、第三波长色散组件206、透镜9、透镜10、透镜11、第一输出组件207和透镜2。而上述图4以及图9a对应的实施例中从第二输入组件801到第一输出组件207的光路和从第一输入组件201到第一输出组件207的光路中,共用的光路和光学器件包括:第二光开关阵列205、透镜8、第三波长色散组件206、透镜9、透镜10、透镜11、第一输出组件207和透镜3。
接下来论述,光偏转组件包括第一光开关阵列204、重定向组件203、第一偏振控制元件901和偏振分光元件902时,光通信装置的具体结构。
图10是本发明实施例提供的一种光通信的装置的架构示意图,具体的,本实施例中的光通信的装置200可以为可重构光分插复用器ROADM。如图10所示,本发明实施例提供的一种ROADM架构包括:
第一输入组件201、第一波长色散组件202、第二波长色散组件208、第三波长色散组件206、第一光开关阵列204、第二光开关阵列205、第三光开关阵列209、第一输出组件207、重定向组件203、第二输出组件210、第一偏振控制元件901和偏振分光元件902。
关于第一输入组件201、第一波长色散组件202、第二波长色散组件208、第三波长色散组件206、第二光开关阵列205、第三光开关阵列209、第一输出组件207和第二输出组件210的描述可参照上述实施例中的描述,这里不再赘述。
本申请实施例中,第一光开关阵列204,用于对多个第一子波长光束进行角度偏转并将多个第一子波长光束通过重定向组件203传播至第一偏振控制元件901。
第一偏振控制元件901用于改变入射的多个第一子波长光束的偏振状态,并输出多个第二子波长光束或多个第三子波长光束到偏振分光元件902,其中,多个第二子波长光束和多个第三子波长光束的偏振状态互为正交;
本申请实施例中,该第一偏振控制元件901可以为半波片、液晶调制镜片或者其他第一偏振控制元件,该偏振分光元件可改变通过光束的偏振状态,使得光束的偏振状态为互 相正交的两个偏振态中的一个。
本申请实施例中,第一偏振控制元件901可以确定第一光束对应的输出端口类型,并根据第一光束对应的输出端口类型将第一子波长光束的偏振状态改变为与对应的输出端口类型对应的偏振状态。
偏振分光元件902若接收到第一偏振控制元件入射的多个第二子波长光束,则用于控制多个第二子波长光束的光束传播方向,以使得多个第二子波长光束入射到第二光开关阵列件205,偏振分光元件902若接收到第一偏振控制元件入射的多个第三子波长光束,则用于控制多个第三子波长光束的光束传播方向,以使得第六光束入射到第二波长色散组件208,其中,第二子波长光束和第三子波长光束的光束传播方向不同。
本申请实施例中,光通信的装置还包括:第二输入组件801、第四光开关阵列802、第四波长色散组件803和第二偏振控制元件903。
第二输入组件801,用于输入第四光束,并将第四光束入射至第四光开关阵列。
第四光开关阵列802,用于对第四光束进行角度偏转得到第五光束,并将第五光束传播至第四波长色散组件803。
第四波长色散组件803用于将第五光束分解为多个第四子波长光束,并将多个第四子波长光束传播至第二偏振控制元件903。
第二偏振控制元件903,用于改变入射的多个第四子波长光束的偏振状态,并将多个第四子波长光束输出至偏振分光元件902,以使得偏振分光元件902将多个第四子波长光束传播至第二光开关阵列205。
本申请实施例中,偏振分光元件902可以在客户侧安装有第二偏振控制元件903,第二偏振控制元件903可以是非互易旋光组件,例如但不限于是法拉第旋光片与半波片的组合。该第二偏振控制元件903可以使得从左到右通过的光束偏振态不变,从右到左通过的光束偏振态改变且不限于为正交态。多个第四子波长光束通过非互易的旋光组件后,通过偏振分光元件902后会折向第一输出组件207方向,进而实现上波功能。
本申请实施例提供了一种光通信的装置,光通信的装置可以为ROADM,其中,第一偏振控制元件901可以确定第二光束对应的输出端口类型,并根据第二光束对应的输出端口类型将第二光束的偏振状态改变为与对应的输出端口类型对应的偏振状态。偏振分光元件902则可以根据第二光束的偏振转态对第二光束进行光束传播方向的控制。本实施例中,第一光束从维度输入端口到维度输出的光路仅需要经过两级光开关阵列(第一光开关阵列204和第二光开关阵列205),第一光束从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列(第一光开关阵列204和第三光开关阵列209),使得下波信号减少一级光开关阵列导致的插损,同时下波信号减少一级光开关阵列滤波,降低了信号滤波代价。
图11是本发明实施例提供的一种光通信的装置的架构示意图,具体的,本实施例中的光通信的装置200可以为可重构光分插复用器ROADM。如图11所示,本发明实施例提供的一种ROADM架构包括:
第一输入组件201、第二输出组件801、第一波长色散组件202、第二波长色散组件208、第三波长色散组件206、第四波长色散组件803、第五波长色散组件1101、第六波长色散 组件1102、第一光开关阵列204、第一偏振控制元件901、第二偏振控制元件903、偏振分光元件902、第二光开关阵列205、第三光开关阵列209、第四光开关阵列802、第一输出组件207、重定向组件203和第二输出组件210。
关于第一输入组件201、第二输出组件801、第一波长色散组件202、第二波长色散组件208、第三波长色散组件206、第四波长色散组件803、第一光开关阵列204、第一偏振控制元件901、第二偏振控制元件903、偏振分光元件902、第二光开关阵列205、第三光开关阵列209、第四光开关阵列802、第一输出组件207、重定向组件203和第二输出组件210的描述,可参照上述实施例,这里不再赘述。
本实施例中,第五波长色散组件1101,用于将第一光开关阵列通过重定向组件203入射的多个第一子波长光束合成为第二光束,并将第二光束通过重定向组件203传播至第一偏振控制元件901。
第六波长色散组件1102,用于将偏振分光元件902入射的光束分解为多个第二子波长光束,并将多个第二子波长光束传播到第二光开关阵列205。
由上可知,本申请实施例中,第一偏振控制元件901可以确定第二光束对应的输出端口类型,并根据第二光束对应的输出端口类型将第二光束的偏振状态改变为与对应的输出端口类型对应的偏振状态。偏振分光元件902则可以根据第二光束的偏振转态对第二光束进行光束传播方向的控制。本实施例中,第一光束从维度输入端口到维度输出的光路仅需要经过两级光开关阵列(第一光开关阵列204和第二光开关阵列205),光束从维度输入端口到下波输出的光路也仅需要经过两级光开关阵列(第一光开关阵列204和第三光开关阵列209),光束从上波输入端口到维度输出端口也仅需要经过两级光开关阵列。使得上波信号和下波信号各减少一级光开关阵列导致的插损,同时上波信号和下波信号各减少一级光开关阵列滤波,降低了信号滤波代价。
图12是本发明实施例提供的一种光通信的装置在波长平面内的光路结构示意图,图13a是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图,图13b是本发明实施例提供的一种光通信的装置在端口交换平面内的光路结构示意图。其中,波长平面指的是YOZ平面,端口交换平面指的是XOZ平面。具体的,如图12所示,ROADM包括:
第一输入组件201、第二输入组件801、第一波长色散组件202、第三波长色散组件206、第五波长色散组件1101、第六波长色散组件1102、第一光开关阵列204、第一偏振控制元件901、第二偏振控制元件903、偏振分光元件902、第二光开关阵列205、第三光开关阵列209、第四光开关阵列802、第一输出组件207、重定向组件203和第二输出组件210。
关于第一输入组件201的具体描述可参照上述实施例,这里不再赘述。
可选的,本申请实施例还可以包括第三偏振控制元件904,第三偏振控制元件904可以将入射的光束的偏转状态转换为同一偏振态,比如可以但不限于采用钒酸钇透镜和半波片的组合,或者沃拉斯顿棱镜与半波片的组合等来实现。
可选的,本申请实施例还可以包括由透镜1和透镜2构成的光斑扩束组件。
关于第一波长色散组件202的具体描述可参照上述实施例,这里不再赘述。
可选的,本申请实施例中的重定向组件203可以包括由透镜3和透镜4构成的4f系统。
关于第一光开关阵列204、第五波长色散组件1101的具体描述可参照上述实施例,这里不再赘述。
可选的,本申请实施例中的重定向组件203可以包括由透镜5和透镜6构成的4f系统,以及接力透镜,该接力透镜可以将入射的光束重定位至第一偏振控制元件901上。
关于第一偏振控制元件901、偏振分光元件902、第六波长色散组件1102的具体描述可参照上述实施例,这里不再赘述。
可选的,本申请实施例中的重定向组件203可以包括由透镜7和透镜8构成的4f系统。
关于第二光开关阵列205、第三波长色散组件206的具体描述可参照上述实施例,这里不再赘述。
可选的,本申请实施例中的重定向组件203可以包括由透镜9和透镜10构成的4f系统。
可选的,本申请实施例还可以包括由透镜11和透镜12构成的光斑扩束组件。
可选的,本申请实施例还可以包括第四偏振控制元件905,第四偏振控制元件905可以将入射的光束的偏转状态转换为与从第一入射组件入射的第一光束相同的偏振状态。
关于第一输出组件207、第三光开关阵列209的具体描述可参照上述实施例,这里不再赘述。
可选的,本申请实施例还可以包括由透镜13和透镜14构成的光斑扩束组件。
可选的,本申请实施例还可以包括第五偏振控制元件906,第五偏振控制元件906可以将入射的光束的偏转状态转换为与从第一入射组件入射的第一光束相同的偏振状态。
关于第二输出组件210、第二输入组件801、第四光开关阵列802和第二偏振控制元件903的具体描述可参照上述实施例,这里不再赘述。
可选地,本申请实施例中,第二输入组件801可以包括输入光纤阵列12012和输入准直器阵列12011。
需要说明的是,图12中示出的输入光纤阵列3101和输入光纤阵列12011、输入准直器阵列3102和输入准直器阵列12012、第三光开关阵列209和第四光开关阵列802在色散交换平面是同一个位置的,实际应用中,输入光纤阵列3101和输入光纤阵列12011、输入准直器阵列3102和输入准直器阵列12012、第三光开关阵列209和第四光开关阵列802在色散交换平面也可以不处于同一个位置,这里并不限定。
图14是本发明实施例提供的一种波长选择的方法的示范性流程图。该方法可以由ROADM执行,具体包括如下步骤:
1401、第一输入组件输入第一光束,并将第一光束入射至第一波长色散组件;
1402、第一波长色散组件将第一输入组件入射的第一光束分解为多个第一子波长光束,并将多个第一子波长光束传播至光偏转组件;
1403、光偏转组件对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束传播至第二光开关阵列,光偏转组件还对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束传播至第二波长色散组件, 第二子波长光束与第三子波长光束的光束传播方向不同;
1404、第二光开关阵列将多个第二子波长光束传播至第三波长色散组件;
1405、第三波长色散组件将多个第三子波长光束合成为第二光束,并将第二光束传播至第一输出组件;
1406、第一输出组件将第二光束维度输出;
1407、第二波长色散组件将多个第三子波长光束合成为第三光束,并将第三光束传播至第三光开关阵列;
1408、第三光开关阵列将第三光束传播至第二输出组件;
1409、第二输出组件将第三光束下波输出。
可选地,光偏转组件包括:第一光开关阵列和重定向组件;
光偏转组件对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束传播至第二光开关阵列,光偏转组件还对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束传播至第二波长色散组件,第二子波长光束与第三子波长光束的光束传播方向不同,包括:
第一光开关阵列对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件传播至第二光开关阵列,第一光开关阵列还对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束通过重定向组件传播至第二波长色散组件。
可选地,第一波长色散组件将第一输入组件入射的第一光束分解为多个第一子波长光束,包括:
第一波长色散组件将第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
可选地,第一光开关阵列对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件传播至第二光开关阵列,第一光开关阵列还对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束通过重定向组件传播至第二波长色散组件,包括:
第一光开关阵列在第一平面内和第二平面中的至少一个平面内对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束通过重定向组件传播至第二光开关阵列,第一光开关阵列还在第一平面和第二平面中的至少一个平面内对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束通过重定向组件传播至第二波长色散组件,第一平面与第二平面相互正交。
可选地,重定向组件包括第一透镜、第二透镜和第三透镜;
第二透镜位于第一透镜的后焦平面,第二透镜位于第三透镜的前焦平面,第二光开关阵列位于第二透镜的后焦平面,第一光开关阵列位于第二透镜的前焦平面;
将多个第二子波长光束通过重定向组件传播至第二光开关阵列,包括:
将多个第二子波长光束通过第一透镜、第二透镜和第三透镜传播至第二光开关阵列。
可选地,第二波长色散组件位于第一透镜的后焦平面;
将多个第三子波长光束通过重定向组件传播至第二波长色散组件,包括:
将多个第三子波长光束通过第一透镜传播至第二波长色散组件。
可选地,第二波长色散组件位于第二透镜的后焦平面;
将多个第三子波长光束通过重定向组件传播至第二波长色散组件,包括:
将多个第三子波长光束通过第二透镜传播至第二波长色散组件。
可选地,方法还包括:
第二输入组件输入第四光束,并将第四光束入射至第四光开关阵列;
第四光开关阵列对第四光束进行角度偏转得到第五光束,并将第五光束传播至第四波长色散组件;
第四波长色散组件将第五光束分解为多个第四子波长光束,并将多个第四子波长光束通过重定向组件传播至第二光开关阵列;
第二光开关阵列还对多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将多个第五子波长光束传播至第三波长色散组件。
可选地,第四波长色散组件将第五光束分解为多个第四子波长光束,包括:
第四波长色散组件在第一平面内将第五光束分解为多个第四子波长光束。
可选地,第四光开关阵列对第四光束进行角度偏转得到第五光束,包括:
第四光交换阵列在第一平面和第二平面中的至少一个平面内对第四光束进行角度偏转得到第五光束;
第二光开关阵列对多个第四子波长光束进行角度偏转得到多个第五子波长光束,包括:
第二光开关阵列在第一平面和第二平面中的至少一个平面内对多个第四子波长光束进行角度偏转得到多个第五子波长光束,第一平面和第二平面相互正交。
可选地,重定向组件包括第一透镜、第二透镜和第三透镜;
第二透镜位于第一透镜的后焦平面,第二透镜位于第三透镜的前焦平面,第四波长色散组件位于第三透镜的前焦面,第二光开关阵列位于第三透镜的后焦面;
将多个第四子波长光束通过重定向组件传播至第二光开关阵列,包括:
将多个第四子波长光束通过第三透镜传播至第二光开关阵列。
可选地,重定向组件包括第一透镜、第二透镜和第三透镜;
第二透镜位于第一透镜的后焦平面,第二透镜位于第三透镜的前焦平面,第四波长色散组件位于第二透镜的前焦面,第二光开关阵列位于第二透镜的后焦面;
将多个第四子波长光束通过重定向组件传播至第二光开关阵列,包括:
将多个第四子波长光束通过第二透镜传播至第二光开关阵列。
可选地,光偏转组件包括:第一光开关阵列、重定向组件、第一偏振控制元件和偏振分光元件;
光偏转组件对多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将多个第二子波长光束传播至第二光开关阵列,光偏转组件还对多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将多个第三子波长光束传播至第二波长色散组件,第二子波长光束与第三子波长光束的光束传播方向不同,包括:
第一光开关阵列对多个第一子波长光束进行角度偏转并将多个第一子波长光束通过重定向组件传播至第一偏振控制元件;
第一偏振控制元件改变入射的多个第一子波长光束的偏振状态,并输出多个第二子波长光束或多个第三子波长光束到偏振分光元件,其中,多个第二子波长光束和多个第三子波长光束的偏振状态互为正交;
偏振分光元件若接收到第一偏振控制元件入射的多个第二子波长光束,则控制多个第二子波长光束的光束传播方向,以使得多个第二子波长光束入射到第二光开关阵列,偏振分光元件若接收到第一偏振控制元件入射的多个第三子波长光束,则控制多个第三子波长光束的光束传播方向,以使得多个第三子波长光束入射到第二波长色散组件,其中,第二子波长光束和第三子波长光束的光束传播方向不同。
可选地,方法还包括:
第二输入组件输入第四光束,并将第四光束入射至第四光开关阵列;
第四光开关阵列对第四光束进行角度偏转得到第五光束,并将第五光束传播至第四波长色散组件;
第四波长色散组件将第五光束分解为多个第四子波长光束,并将多个第四子波长光束传播至第二偏振控制元件;
第二偏振控制元件改变入射的多个第四子波长光束的偏振状态,并将多个第四子波长光束输出至偏振分光元件,以使得偏振分光元件将多个第四子波长光束传播至第二光开关阵列。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims (27)

  1. 一种光通信的装置,其特征在于,包括:
    第一输入组件、第一波长色散组件、第二波长色散组件、第三波长色散组件、光偏转组件、第二光开关阵列、第三光开关阵列、第一输出组件和第二输出组件;
    所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
    所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述光偏转组件;
    所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至所述第二光开关阵列,所述光偏转组件,还用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至所述第二波长色散组件,所述第二子波长光束与所述第三子波长光束的光束传播方向不同;
    所述第二光开关阵列,用于将所述多个第二子波长光束传播至所述第三波长色散组件;
    所述第三波长色散组件,用于将所述多个第二子波长光束合成为第二光束,并将所述第二光束传播至所述第一输出组件;
    所述第一输出组件用于将所述第二光束维度输出;
    所述第二波长色散组件,用于将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至所述第三光开关阵列;
    所述第三光开关阵列,用于将所述第三光束传播至所述第二输出组件;
    所述第二输出组件,用于将所述第三光束下波输出。
  2. 根据权利要求1所述的光通信的装置,其特征在于,所述光偏转组件包括:第一光开关阵列和重定向组件;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,所述第一光开关阵列,还用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件。
  3. 根据权利要求1或2所述的光通信的装置,其特征在于,所述第一波长色散组件,用于将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
  4. 根据权利要求3所述的光通信的装置,其特征在于,
    所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列,所述第一光开关阵列,还用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,所述第一平面与所述第二平面相互正交。
  5. 根据权利要求2至4所述的光通信的装置,其特征在于,所述重定向组件包括第一 透镜、第二透镜和第三透镜;
    所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第二光开关阵列位于所述第二透镜的后焦平面,所述第一光开关阵列位于所述第二透镜的前焦平面,所述第一透镜、所述第二透镜和所述第三透镜用于将所述多个第二子波长光束传播至所述第二光开关阵列。
  6. 根据权利要求5所述的光通信的装置,其特征在于,
    所述第二波长色散组件位于所述第一透镜的后焦平面,所述第一透镜还用于将所述多个第三子波长光束传播至所述第二波长色散组件。
  7. 根据权利要求5所述的光通信的装置,其特征在于,
    所述第二波长色散组件位于所述第二透镜的后焦平面,所述第二透镜用于将所述多个第三子波长光束传播至所述第二波长色散组件。
  8. 根据权利要求2至7任一所述的光通信的装置,其特征在于,所述光通信的装置还包括:第二输入组件、第四光开关阵列和第四波长色散组件;
    所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
    所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
    所述第四波长色散组件,用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二光开关阵列;
    所述第二光开关阵列,还用于对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将所述多个第五子波长光束传播至所述第三波长色散组件。
  9. 根据权利要求8所述的光通信的装置,其特征在于,所述第四波长色散组件,用于在所述第一平面内将所述第五光束分解为多个第四子波长光束。
  10. 根据权利要求9所述的光通信的装置,其特征在于,所述第四光交换阵列,用于在所述第一平面和所述第二平面中的至少一个平面内对所述第四光束进行角度偏转得到第五光束,所述第二光开关阵列,还用于在所述第一平面和所述第二平面中的至少一个平面内对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,所述第一平面和所述第二平面相互正交。
  11. 根据权利要求8至10任一所述的光通信的装置,其特征在于,所述重定向组件包括第一透镜、第二透镜和第三透镜;
    所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦平面,所述第四波长色散组件位于所述第三透镜的前焦面,所述第二光开关阵列位于所述第三透镜的后焦面,所述第三透镜用于将所述多个第四子波长光束传播至所述第二光开关阵列。
  12. 根据权利要求8至10任一所述的光通信的装置,其特征在于,所述重定向组件包括第一透镜、第二透镜和第三透镜;
    所述第二透镜位于所述第一透镜的后焦平面,所述第二透镜位于所述第三透镜的前焦 平面,所述第四波长色散组件位于所述第二透镜的前焦面,所述第二光开关阵列位于所述第二透镜的后焦面,所述第二透镜用于将所述多个第四子波长光束传播至所述第二光开关阵列。
  13. 根据权利要求1所述的光通信的装置,其特征在于,所述光偏转组件包括:第一光开关阵列、重定向组件、第一偏振控制元件和偏振分光元件;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束通过所述重定向组件传播至所述第一偏振控制元件;
    所述第一偏振控制元件用于改变入射的所述多个第一子波长光束的偏振状态,并输出多个第二子波长光束或多个第三子波长光束到所述偏振分光元件,其中,所述多个第二子波长光束和所述多个第三子波长光束的偏振状态互为正交;
    所述偏振分光元件若接收到所述第一偏振控制元件入射的多个第二子波长光束,则用于控制所述多个第二子波长光束的光束传播方向,以使得所述多个第二子波长光束入射到所述第二光开关阵列,所述偏振分光元件若接收到所述第一偏振控制元件入射的多个第三子波长光束,则用于控制所述多个第三子波长光束的光束传播方向,以使得所述多个第三子波长光束入射到所述第二波长色散组件,其中,所述第二子波长光束和所述第三子波长光束的光束传播方向不同。
  14. 根据权利要求13所述的光通信的装置,其特征在于,所述光通信的装置还包括:第二输入组件、第四光开关阵列、第四波长色散组件和第二偏振控制元件;
    所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
    所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
    所述第四波长色散组件用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二偏振控制元件;
    所述第二偏振控制元件,用于改变入射的所述多个第四子波长光束的偏振状态,并将所述多个第四子波长光束输出至所述偏振分光元件,以使得所述偏振分光元件将所述多个第四子波长光束传播至所述第二光开关阵列。
  15. 根据权利要求13或14所述的光通信的装置,其特征在于,所述光通信的装置还包括:第五波长色散组件和第六波长色散组件;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束传播至所述第五波长色散组件;
    所述第五波长色散组件,用于将所述第一光开关阵列入射的所述多个第一子波长光束合成,并将合成后的光束通过所述重定向组件传播至所述第一偏振控制元件;
    所述第六波长色散组件用于将所述偏振分光元件入射的光束分解为所述多个第二子波长光束,并将所述多个第二子波长光束传播到所述第二光开关阵列。
  16. 一种光通信的装置,其特征在于,包括:
    第一输入组件、第一波长色散组件、光偏转组件、第二光开关阵列、第三波长色散组 件和第一输出组件;
    所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
    所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述光偏转组件;
    所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束传播至所述第二光开关阵列;
    所述第二光开关阵列,用于将所述多个第二子波长光束传播至所述第三波长色散组件;
    所述第三波长色散组件,用于将所述多个第二子波长光束合成为第二光束,并将所述第二光束传播至所述第一输出组件;
    所述第一输出组件用于将所述第二光束维度输出。
  17. 根据权利要求16所述的光通信的装置,其特征在于,所述光偏转组件包括:第一光开关阵列和重定向组件;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列。
  18. 根据权利要求16或17所述的光通信的装置,其特征在于,所述第一波长色散组件,用于将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
  19. 根据权利要求18所述的光通信的装置,其特征在于,
    所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第二子波长光束,并将所述多个第二子波长光束通过所述重定向组件传播至所述第二光开关阵列。
  20. 根据权利要求16至19任一所述的光通信的装置,其特征在于,所述光通信的装置还包括:第二输入组件、第四光开关阵列和第四波长色散组件;
    所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
    所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
    所述第四波长色散组件,用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二光开关阵列;
    所述第二光开关阵列,还用于对所述多个第四子波长光束进行角度偏转得到多个第五子波长光束,并将所述多个第五子波长光束传播至所述第三波长色散组件。
  21. 一种光通信的装置,其特征在于,包括:
    第一输入组件、第一波长色散组件、光偏转组件、第二波长色散组件、第三光开关阵列和第二输出组件;
    所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
    所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子 波长光束,并将所述多个第一子波长光束传播至所述光偏转组件;
    所述光偏转组件,用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束传播至所述第二波长色散组件;
    所述第二波长色散组件,用于将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至所述第三光开关阵列;
    所述第三光开关阵列,用于将所述第三光束传播至所述第二输出组件;
    所述第二输出组件,用于将所述第三光束下波输出。
  22. 根据权利要求21所述的光通信的装置,其特征在于,所述光偏转组件包括:第一光开关阵列和重定向组件;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件。
  23. 根据权利要求21或22所述的光通信的装置,其特征在于,所述第一波长色散组件,用于将所述第一输入组件入射的第一光束在第一平面内分解为多个第一子波长光束。
  24. 根据权利要求23所述的光通信的装置,其特征在于,
    所述第一光开关阵列,用于在所述第一平面和第二平面中的至少一个平面内对所述多个第一子波长光束进行角度偏转得到多个第三子波长光束,并将所述多个第三子波长光束通过所述重定向组件传播至所述第二波长色散组件,所述第一平面与所述第二平面相互正交。
  25. 一种光通信的装置,其特征在于,包括:
    第一输入组件、第一波长色散组件、第二波长色散组件、第一光开关阵列、重定向组件、第一偏振控制元件、偏振分光元件、第二光开关阵列和第一输出组件;
    所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
    所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述第一光开关阵列;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束通过所述重定向组件传播至所述第一偏振控制元件;
    所述第一偏振控制元件用于改变入射的所述多个第一子波长光束的偏振状态,并输出多个第二子波长光束到所述偏振分光元件;
    所述偏振分光元件用于控制所述多个第二子波长光束的光束传播方向,以使得所述多个第二子波长光束入射到所述第二光开关阵列;
    所述第二光开关阵列,用于将所述多个第二子波长光束传播至所述第三波长色散组件;
    所述第三波长色散组件,用于将所述多个第二子波长光束合成为第二光束,并将所述第二光束传播至所述第一输出组件;
    所述第一输出组件用于将所述第二光束维度输出。
  26. 根据权利要求25所述的光通信的装置,其特征在于,所述光通信的装置还包括: 第二输入组件、第四光开关阵列、第四波长色散组件和第二偏振控制元件;
    所述第二输入组件,用于输入第四光束,并将所述第四光束入射至所述第四光开关阵列;
    所述第四光开关阵列,用于对所述第四光束进行角度偏转得到第五光束,并将所述第五光束传播至所述第四波长色散组件;
    所述第四波长色散组件用于将所述第五光束分解为多个第四子波长光束,并将所述多个第四子波长光束传播至所述第二偏振控制元件;
    所述第二偏振控制元件,用于改变入射的所述多个第四子波长光束的偏振状态,并将所述多个第四子波长光束输出至所述偏振分光元件,以使得所述偏振分光元件将所述多个第四子波长光束传播至所述第二光开关阵列。
  27. 一种光通信的装置,其特征在于,包括:
    第一输入组件、第一波长色散组件、第一光开关阵列、重定向组件、第一偏振控制元件、偏振分光元件、第二波长色散组件、第三光开关阵列和第二输出组件;
    所述第一输入组件,用于输入第一光束,并将所述第一光束传播至所述第一波长色散组件;
    所述第一波长色散组件,用于将所述第一输入组件入射的第一光束分解为多个第一子波长光束,并将所述多个第一子波长光束传播至所述第一光开关阵列;
    所述第一光开关阵列,用于对所述多个第一子波长光束进行角度偏转并将所述多个第一子波长光束通过所述重定向组件传播至所述第一偏振控制元件;
    所述第一偏振控制元件用于改变入射的所述多个第一子波长光束的偏振状态,并输出多个第三子波长光束到所述偏振分光元件;
    所述偏振分光元件用于控制所述多个第三子波长光束的光束传播方向,以使得所述多个第三子波长光束入射到所述第二波长色散组件;
    所述第二波长色散组件,用于将所述多个第三子波长光束合成为第三光束,并将所述第三光束传播至所述第三光开关阵列;
    所述第三光开关阵列,用于将所述第三光束传播至所述第二输出组件;
    所述第二输出组件,用于将所述第三光束下波输出。
PCT/CN2019/130590 2019-04-30 2019-12-31 一种光通信的装置和波长选择方法 WO2020220718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19927484.6A EP3955037A4 (en) 2019-04-30 2019-12-31 OPTICAL COMMUNICATION DEVICE AND WAVELENGTH SELECTION METHOD
US17/514,557 US11728919B2 (en) 2019-04-30 2021-10-29 Optical communications apparatus and wavelength selection method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910370986.4 2019-04-30
CN201910370986.4A CN111856658B (zh) 2019-04-30 2019-04-30 一种光通信的装置和波长选择方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/514,557 Continuation US11728919B2 (en) 2019-04-30 2021-10-29 Optical communications apparatus and wavelength selection method

Publications (1)

Publication Number Publication Date
WO2020220718A1 true WO2020220718A1 (zh) 2020-11-05

Family

ID=72965874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130590 WO2020220718A1 (zh) 2019-04-30 2019-12-31 一种光通信的装置和波长选择方法

Country Status (4)

Country Link
US (1) US11728919B2 (zh)
EP (1) EP3955037A4 (zh)
CN (1) CN111856658B (zh)
WO (1) WO2020220718A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022225975A1 (en) * 2021-04-20 2022-10-27 The Regents Of The University Of California Hyperspectral compressive imaging with integrated photonics
EP4318066A4 (en) * 2021-04-30 2024-09-04 Huawei Tech Co Ltd OPTICAL SWITCHING DEVICE, OPTICAL SWITCHING METHOD, OPTICAL SWITCHING NODE AND SYSTEM

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110780388B (zh) * 2018-07-31 2022-03-29 华为技术有限公司 一种波长交换装置及系统
CN116413861A (zh) * 2021-12-29 2023-07-11 华为技术有限公司 一种波长选择开关
WO2023209391A1 (en) 2022-04-29 2023-11-02 Huber+Suhner Polatis Limited Optical switch

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039669A1 (en) * 2003-04-25 2006-02-23 Nikon Corporation Attenuator device, and optical switching device
CN101726870A (zh) * 2009-12-04 2010-06-09 南京大学 一种利用电光晶体实现ocdma编解码的方法与装置
CN102437879A (zh) * 2011-11-15 2012-05-02 浙江工业大学 一种用于网状拓扑结构光轨网络的多个光纤输入输出的光轨网络节点结构
CN107003480A (zh) * 2016-03-01 2017-08-01 肖峰 波长选择开关装置、通信设备和波长切换方法
CN107153194A (zh) * 2016-12-30 2017-09-12 深圳市速腾聚创科技有限公司 多线激光雷达及多线激光雷达控制方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2300780C (en) * 2000-03-15 2007-08-07 Nortel Networks Corporation Integrated photonic switch
WO2004015469A1 (en) * 2002-08-08 2004-02-19 The Regents Of The University Of California Wavelength-selective 1xn2 switches with two-dimensional input/output fiber arrays
US20040086218A1 (en) * 2002-10-31 2004-05-06 Asia Pacific Microsystems, Inc. Apparatus and method for optical signal processing system
US7092599B2 (en) * 2003-11-12 2006-08-15 Engana Pty Ltd Wavelength manipulation system and method
US7397980B2 (en) * 2004-06-14 2008-07-08 Optium Australia Pty Limited Dual-source optical wavelength processor
US9103991B2 (en) * 2005-09-08 2015-08-11 Finisar Corporation Multi-pole optical signal switch
US7616372B2 (en) * 2006-04-06 2009-11-10 Jds Uniphase Corporation Piano MEMS with hidden hinge
JP2009134294A (ja) * 2007-11-08 2009-06-18 Fujitsu Ltd 光デバイスおよび波長選択スイッチ
US7676126B2 (en) * 2007-12-12 2010-03-09 Jds Uniphase Corporation Optical device with non-equally spaced output ports
US8045854B2 (en) 2008-02-07 2011-10-25 Jds Uniphase Corporation M×N wavelength selective optical switch
JP2011185971A (ja) * 2010-03-04 2011-09-22 Olympus Corp 波長選択スイッチ
WO2013016758A1 (en) * 2011-08-01 2013-02-07 Finisar Corporation Multi directional multiplexer
JP5750163B2 (ja) * 2011-09-16 2015-07-15 日本電信電話株式会社 光スイッチ
JP2013101201A (ja) * 2011-11-08 2013-05-23 Sanyo Engineer & Construction Inc 波長選択光スイッチ装置
US9188831B2 (en) * 2012-02-17 2015-11-17 Alcatel Lucent Compact wavelength-selective cross-connect device having multiple input ports and multiple output ports
WO2014034144A1 (ja) * 2012-08-30 2014-03-06 日本電信電話株式会社 光信号処理装置
WO2014087673A1 (ja) * 2012-12-07 2014-06-12 日本電信電話株式会社 光入出力装置
US20140355984A1 (en) * 2013-05-29 2014-12-04 Calient Technologies, Inc. Colorless, reconfigurable, optical add-drop multiplexer (roadm) apparatus and method
US20150085884A1 (en) * 2013-09-20 2015-03-26 Alcatel-Lucent Usa, Inc. Wavelength-selective switch for space-division multiplexed systems
CN103543497B (zh) * 2013-11-05 2016-08-24 武汉邮电科学研究院 波长选择开关装置、用于其的波长切换方法、和通信设备
WO2015161452A1 (zh) 2014-04-22 2015-10-29 华为技术有限公司 光通信的装置和方法
US9661406B2 (en) * 2015-02-09 2017-05-23 Nistica, Inc. Multipoint, contentionless wavelength selective switch (WSS)
CN107850738B (zh) * 2015-07-10 2020-02-14 华为技术有限公司 一种波长选择开关、可重构光分插复用器和波长选择的方法
GB201516862D0 (en) * 2015-09-23 2015-11-04 Roadmap Systems Ltd Optical switching systems
EP3364575B1 (en) * 2015-11-25 2022-05-04 Huawei Technologies Co., Ltd. Reconfigurable optical add-drop multiplexer
WO2017190331A1 (zh) * 2016-05-05 2017-11-09 华为技术有限公司 可重构光分插复用器
CN106054322B (zh) * 2016-07-18 2019-04-16 贝耐特光学科技(昆山)有限公司 一种扩展波长选择开关端口数目的方法
GB201620744D0 (en) * 2016-12-06 2017-01-18 Roadmap Systems Ltd Multimode fibre optical switching systems
US10028040B1 (en) 2017-04-21 2018-07-17 Lumentum Operations Llc Colorless, directionless, contentionless optical network using MxN wavelength selective switches
US9913008B1 (en) 2017-06-06 2018-03-06 Lumentum Operations Llc Multicast wavelength selective switch
CN110780388B (zh) * 2018-07-31 2022-03-29 华为技术有限公司 一种波长交换装置及系统
CN114355514A (zh) * 2020-10-13 2022-04-15 华为技术有限公司 光交换的方法和装置、硅基液晶和波长选择开关

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039669A1 (en) * 2003-04-25 2006-02-23 Nikon Corporation Attenuator device, and optical switching device
CN101726870A (zh) * 2009-12-04 2010-06-09 南京大学 一种利用电光晶体实现ocdma编解码的方法与装置
CN102437879A (zh) * 2011-11-15 2012-05-02 浙江工业大学 一种用于网状拓扑结构光轨网络的多个光纤输入输出的光轨网络节点结构
CN107003480A (zh) * 2016-03-01 2017-08-01 肖峰 波长选择开关装置、通信设备和波长切换方法
CN107153194A (zh) * 2016-12-30 2017-09-12 深圳市速腾聚创科技有限公司 多线激光雷达及多线激光雷达控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022225975A1 (en) * 2021-04-20 2022-10-27 The Regents Of The University Of California Hyperspectral compressive imaging with integrated photonics
EP4318066A4 (en) * 2021-04-30 2024-09-04 Huawei Tech Co Ltd OPTICAL SWITCHING DEVICE, OPTICAL SWITCHING METHOD, OPTICAL SWITCHING NODE AND SYSTEM

Also Published As

Publication number Publication date
US11728919B2 (en) 2023-08-15
EP3955037A1 (en) 2022-02-16
CN111856658B (zh) 2022-03-25
CN111856658A (zh) 2020-10-30
EP3955037A4 (en) 2022-06-01
US20220052778A1 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2020220718A1 (zh) 一种光通信的装置和波长选择方法
JP6609789B2 (ja) 波長選択スイッチアレイ
KR102039597B1 (ko) 집적 채널 모니터를 포함하는 파장 선택 스위치
CN107850738B (zh) 一种波长选择开关、可重构光分插复用器和波长选择的方法
US6707959B2 (en) Wavelength switch
EP1682931B1 (en) Wavelength manipulation system and method
US8300995B2 (en) M X N WSS with reduced optics size
US9641917B2 (en) Optical communications apparatus and method
JP6697476B2 (ja) 波長選択スイッチにおけるダイバーシティおよびポート間のアイソレーションを管理するための光学配置
US9084033B2 (en) Optical cross-connect apparatus
JP2012028929A (ja) 波長選択光クロスコネクト装置
US11067752B2 (en) Reconfigurable optical add/drop multiplexer
WO2017147770A1 (zh) 波长选择开关装置、通信设备和波长切换方法
JP6533743B2 (ja) 光クロスコネクト装置
JP2018508839A (ja) クロストークを回避するために周波数分離を増大させた波長選択スイッチ
WO2020024840A1 (zh) 一种波长交换装置及系统
JP2020514797A (ja) 波長選択スイッチにおける帯域外クロストークを抑制するための光学配置
CN108702234B (zh) 可重构光分插复用器
JP5651904B2 (ja) N×n波長選択スイッチ
WO2024093330A1 (zh) 光交换装置和光交换方法
CN118112721A (zh) 一种波长选择开关和相关设备
JP6431461B2 (ja) 光入出力装置
CN118567038A (zh) 光学装置和光通信设备
CN117075266A (zh) 一种wss、roadm、光传输系统和光信号的传输方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019927484

Country of ref document: EP

Effective date: 20211110