WO2020220708A1 - 一种粒径精确可控的硫化物高度均匀微球及其制备方法 - Google Patents

一种粒径精确可控的硫化物高度均匀微球及其制备方法 Download PDF

Info

Publication number
WO2020220708A1
WO2020220708A1 PCT/CN2019/128950 CN2019128950W WO2020220708A1 WO 2020220708 A1 WO2020220708 A1 WO 2020220708A1 CN 2019128950 W CN2019128950 W CN 2019128950W WO 2020220708 A1 WO2020220708 A1 WO 2020220708A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle size
microspheres
highly uniform
sulfide
add
Prior art date
Application number
PCT/CN2019/128950
Other languages
English (en)
French (fr)
Inventor
武素丽
吴越
常杰
张淑芬
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Publication of WO2020220708A1 publication Critical patent/WO2020220708A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G11/00Compounds of cadmium
    • C01G11/02Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G13/00Compounds of mercury
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G21/00Compounds of lead
    • C01G21/21Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/11Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides

Definitions

  • the invention relates to a highly uniform sulfide microsphere with precise and controllable particle size and a preparation method thereof, and belongs to the field of photonic crystal material preparation.
  • Semiconductor materials are widely used in solar cells, lasers, photocatalysis and other fields.
  • metal sulfides are the main types of semiconductor materials, such as ZnS, CdS, CuS, PbS, SnS, HgS, MnS, FeS, NiS, CoS, etc.
  • semiconductor materials of the micro-nano size level exhibit many unique physical and chemical phenomena, such as quantum effects and nonlinear optical effects. The above phenomena mainly depend on the size, shape and structure of the material.
  • Monodisperse microspheres eliminate the influence of shape on material properties, and the particle size of the microspheres can be controlled to further study the effect of material size on properties. Therefore, the preparation of monodisperse metal sulfide microspheres with precise and controllable particle size is of great significance to the further research of semiconductor materials.
  • the purpose of the present invention is to provide a highly uniform sulfide microsphere with precisely controllable particle size and a preparation method thereof.
  • a method for preparing highly uniform sulfide microspheres with precise and controllable particle size, based on the idea of a core-shell-shell structure, includes two processes of primary growth into "core” and secondary "layer-to-layer” growth. Through stable reaction conditions in one step growth, sulfide nanospheres with stable particle size are obtained; in the subsequent steps, the particle size of the nanospheres can be precisely controlled by controlling the timing and amount of adding the metal salt and sulfur source.
  • the sulfide nanospheres of the target particle size can be obtained by accurately designing the test steps through the preset target particle size; at the same time, the adjustable particle size range of this method is significantly increased, and the adjustable range is 100nm-1000nm, the particle size of the microspheres is highly uniform, has a polycrystalline structure, and the particle size distribution coefficient is less than 5%.
  • step 6) Repeat step 5) until the molar ratio of M 2+ : S 2- added in the system is 1:1;
  • the concentration of concentrated nitric acid in step 2) is 0.011-0.044 mol/L.
  • the stirring speed in step 3 is 1000-1200 rpm.
  • the stirring speed in the step 4) is 300-500 rpm.
  • the sulfur source used includes thiourea, thioacetamide, and ammonium sulfide.
  • the sulfur source used is thioacetamide;
  • the metal salt used includes nitrate, acetate, sulfate and other zinc Preferably, the metal salt used is a hydrated nitrate salt.
  • the invention discloses a highly uniform sulfide microsphere with precise and controllable particle size and a preparation method thereof.
  • the sulfide nanospheres of the target particle size can be obtained by accurately designing the test steps through the preset target particle size; at the same time, the adjustable particle size range of this method is significantly increased, The adjustment range is 100nm-1000nm.
  • the particle size of the microspheres is highly uniform and has a polycrystalline structure with a particle size distribution coefficient of less than 5%.
  • Figure 1 is an X-ray diffraction pattern of the ZnS microspheres obtained in Example 1;
  • Figure 2 (a, b) is a transmission electron microscope image of the ZnS microspheres obtained in Example 1 under different magnifications; (c) is a high resolution transmission electron microscope image; (d) is a SAED image;
  • Figure 3 is a scanning electron micrograph of the ZnS microspheres obtained in Example 1;
  • Figure 4 is a particle size distribution diagram of ZnS microspheres obtained in Example 1.
  • Figure 5 is a scanning electron micrograph of the ZnS microspheres obtained in Example 2.
  • Example 6 is a scanning electron micrograph of the ZnS microspheres obtained in Example 3.
  • test methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials, unless otherwise specified, can be obtained from commercial sources, or can be prepared by conventional methods.
  • the obtained monodisperse ZnS nanospheres were subjected to XRD test and the crystal structure was analyzed. As shown in Figure 1, the diffraction peak position and relative intensity of the obtained product are consistent with the standard cubic phase ZnS spectrum.
  • the standard card is JCPDS NO .05-0566. In addition, there are no other impurity peaks in the figure, which proves that the product has high crystal phase purity.
  • the prepared microspheres have better spherical morphology and uniform particle size.
  • the orientation of the lattice fringes inside the microspheres is different and the selected area electron diffraction results in a concentric ring pattern.
  • the above results all indicate that the prepared ZnS microspheres have a polycrystalline structure.
  • the lattice fringe spacing measured in the HR-TEM image obtained by the high-resolution transmission electron microscope is about 0.315nm, which is consistent with the (111) plane in the cubic ZnS, which proves that the product is cubic ZnS.
  • it is also proved that the ZnS nanospheres obtained by multi-step growth are uniform in the interior without layered structure.
  • the scanning electron micrograph of Figure 3 shows that the prepared microspheres have excellent monodispersity.
  • the particle size distribution data of the microspheres are sorted to obtain Figure 4.
  • the particle size distribution coefficient is calculated to be less than 5%, and the particle size distribution is narrow.
  • the particle size distribution coefficient is calculated to be less than 4%, and the particle size distribution is narrow.
  • step 2) ten times
  • the particle size distribution coefficient is calculated to be less than 5%, and the particle size distribution is narrow.
  • Example 1 The metal salts used in Example 1 were replaced by copper nitrate trihydrate, lead nitrate, and cadmium nitrate tetrahydrate. The corresponding molar weights remained unchanged, and the particle diameters were about 240nm and the particle size distribution coefficient was less than 3%. CuS microspheres, about 210nm, PbS microspheres with a particle size distribution coefficient of less than 3%, and about 250nm, CdS microspheres with a particle size distribution coefficient of less than 2%.
  • Example 2 The metal salts used in Example 2 were replaced by copper nitrate trihydrate, lead nitrate, and cadmium nitrate tetrahydrate. The corresponding molar weights remained unchanged, and the particle diameters were about 140nm and the particle size distribution coefficient was less than 3%. CuS microspheres, about 140nm, PbS microspheres with a particle size distribution coefficient of less than 3%, and CdS microspheres with a particle size distribution coefficient of less than 2%, about 150nm.
  • Example 3 The metal salts used in Example 3 were replaced by copper nitrate trihydrate, lead nitrate, cadmium nitrate tetrahydrate, stannous chloride, mercury acetate, manganese acetate, ferrous sulfate, nickel sulfate, and cobalt nitrate, respectively.
  • CuS microspheres with a particle size of about 970nm, PbS microspheres with a particle size of about 950nm, CdS microspheres with a particle size of about 1010nm, SnS microspheres with a size of about 960nm, HgS microspheres with a size of about 950nm, and MnS microspheres with a size of about 980nm can be prepared without changing the amount.
  • the volume of concentrated nitric acid taken in step 4 of Example 1 was replaced by 0.05 mL, 0.10 mL, and 0.20 mL, respectively.
  • ZnS microspheres with particle diameters of 230 nm, 250 nm, and 190 nm can be prepared respectively, and their particle size distribution coefficients are all less than 4%.
  • Example 1 The masses of zinc nitrate hexahydrate taken in step 5 of Example 1 were replaced by 1.19g, 2.38g, 4.16g respectively, and ZnS microspheres with particle diameters of 230nm, 250nm, and 210nm could be prepared respectively, and their particle size distribution coefficients Both are less than 4%.
  • step 5 of Example 1 The vigorous stirring time in step 5 of Example 1 was replaced by 0.5 min, 1.5 min, and 5 min, respectively, and ZnS microspheres with particle sizes of 230 nm, 280 nm, and 170 nm could be prepared respectively, and the particle size distribution coefficients were all less than 4%.
  • Example 1 the reaction temperature was replaced with 60°C, 70°C, and 80°C, respectively, and ZnS microspheres with particle sizes of 270nm, 260nm, and 220nm were respectively prepared, and the particle size distribution coefficients were all less than 5%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

一种粒径精确可控的硫化物高度均匀微球及其制备方法。该方法基于核-壳-壳结构的思想,包括一次生长成"核"和二次"层-层"生长两个过程。在第一步生长中通过稳定的反应条件,得到稳定粒径的硫化物纳米微球;在后续步骤中,控制金属盐和硫源加入的时机与量,即可精确控制纳米微球的粒径。按照上述合成方法,可以通过预先设定的目标粒径,精确设计试验步骤,得到目标粒径的硫化物纳米微球;同时,此方法可调控的粒径范围明显增大,可以调控范围为100nm-1000nm。

Description

一种粒径精确可控的硫化物高度均匀微球及其制备方法 技术领域
本发明涉及一种粒径精确可控的硫化物高度均匀微球及其制备方法,属于光子晶体材料制备领域。
背景技术
半导体材料在太阳能电池,激光器,光催化等领域被广泛应用,其中多种金属硫化物是半导体材料的主要种类,如ZnS,CdS,CuS,PbS,SnS,HgS,MnS,FeS,NiS,CoS等。进一步的研究发现微纳米尺寸级别的半导体材料表现出诸多独特的物理化学现象,如量子效应,非线性光学效应等。而上述这些现象,主要取决于材料的尺寸,形状和结构。单分散的微球消除了形状对材料性质的影响,微球的粒径可控可以进一步研究材料尺寸对性质的影响。因此,粒径精确可控的单分散金属硫化物的微球制备对半导体材料的进一步研究有重要的意义。
目前在合成硫化物微球的研究中,可以从多种因素入手,控制所合成的微球的粒径,例如,控制反应时间(参见X.Wang,Z.Wang,L.Bai,H.Wang,L.Kang,D.H.Werner,M.Xu,B.Li,J.Li and X.-F.Yu,Opt.Express,2018,26,27001-27013.),反应温度(参见M.G.Han,C.G.Shin,S.-J.Jeon,H.Shim,C.-J.Heo,H.Jin,J.W.Kim and S.Lee,Adv.Mater.,2012,24,6438-6444.),配体用量(参见I.D.Hosein and C.M.Liddell,Langmuir,2007,23,2892-2897.),药品浓度(参见专利CN 105113006 A)等。但简单的条件控制仅能粗略的控制产物粒径,且可调控的粒径范围较窄,通常在50nm-400nm的范围内(参见专利CN 1923702 A;CN 104213399 A;CN 108321389 A)。因此,进一步提高所制备的硫化物微球的单分散性,且实现更精确的粒径控制具有重要的意义。
发明内容
本发明的目的是提供一种粒径精确可控的硫化物高度均匀微球及其制备方法。一种粒径精确可控的硫化物高度均匀微球的制备方法,基于核-壳-壳结构的思想,包括一次生长成“核”和二次“层-层”生长两个过程,在第一步生长中通过稳定的反应条件,得到稳定粒径的硫化物纳米微球;在后续步骤中,控制金属盐和硫源加入的时机与量,即可精确控制纳米微球的粒径。按照上述合成方法,可以通过预先设定的目标粒径,精确设计试验步骤,得到目标粒径的硫化物纳米微球;同时,此方法可调控的粒径范围明显增大,其可以调控范围为100nm-1000nm,微球粒径高度均匀,为多晶结构, 粒径分布系数小于5%。
本发明具体是通过以下工艺步骤实现:
1)按照(0.25-1.25)mmol/L的浓度,取一定量的聚乙烯吡咯烷酮(平均分子量:10000-58000)分散在去离子水中,得均匀溶液,搅拌加热至50-80℃;
2)按照(0.1-0.3)mol/L的浓度,取一定量的硫源加入已加热至稳定温度的聚乙烯吡咯烷酮的水溶液中;取一定量的浓硝酸加入上述溶液中;
3)按照M 2+(M 2+=Zn 2+、Cd 2+、Pb 2+、Cu 2+、Sn 2+、Hg 2+、Mn 2+、Fe 2+、Ni 2+或Co 2+):S 2-=(0.5-1.5):3的摩尔比,取一定量的金属盐,预先分散到一定体积的去离子水中,然后将金属盐水溶液加入上述溶液中,搅拌0.5-5min;
4)将搅拌速度调低,于50-80℃下,根据所加入的金属盐的量的不同,水浴搅拌反应1-5h;
5)按照M 2+:S 2-=(0.5-1.5):3的摩尔比,向步骤4)得到的体系中加入一定量的预分散在去离子水中的锌源,根据所加入的金属源的量不同,反应1-5h;
6)重复步骤5),直至体系内已加入的M 2+:S 2-的摩尔比为1:1;
7)按照(0.1-0.3)mol/L的浓度,取一定量的硫源加入反应体系中;
8)重复上述5-7)的步骤0-10次,在微球粒径达到100-1000nm后,停止反应;
9)得到的硫化物纳米微球通过三次或三次以上水洗,离心处理,并通过干燥、研磨得到固态硫化物纳米微球。
进一步的,上述方案中,所述步骤2)中的浓硝酸浓度为0.011-0.044mol/L。
进一步的,上述方案中,所述步骤3)中的搅拌速度为1000-1200rpm。
进一步的,上述方案中,所述步骤4)中的搅拌速度为300-500rpm。
上述方案中,所用的硫源包括硫脲,硫代乙酰胺,硫化铵,优选地,所用硫源为硫代乙酰胺;所用的金属盐包括硝酸盐,醋酸盐,硫酸盐等多种锌的无机盐,优选地,所用金属盐为水合硝酸盐。
发明有益效果
本发明公开的一种粒径精确可控的硫化物高度均匀微球及其制备方法。根据本发明所述的合成方法,可以通过预先设定的目标粒径,精确设计试验步骤,得到目标粒径的硫化物纳米微球;同时,此方法可调控的粒径范围明显增大,可以调控范围为100nm-1000nm。微球粒径高度均匀,为多晶结构,粒径分布系数小于5%。
附图说明
图1为实施例1所得的ZnS微球的X射线衍射图;
图2(a,b)为实施例1所得的ZnS微球的不同放大倍数下的透射电镜图;(c)为高分辨透射电镜图;(d)为SAED图;
图3为实施例1所得的ZnS微球的扫描电镜图;
图4为实施例1所得的ZnS微球的粒径分布图;
图5为实施例2所得的ZnS微球的扫描电镜图;
图6为实施例3所得的ZnS微球的扫描电镜图。
具体实施方式
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得,或可以常规方法制备。
实施例1
通过精确调控粒径的多步生长方法,制备单分散的粒径为235±5nm的ZnS纳米微球,并利用此粒径的微球构筑三维光子晶体。具体制备方法为:
1)称取3.00g聚乙烯吡咯烷酮,100mL去离子水,使聚乙烯吡咯烷酮充分溶解在去离子水中;得均匀溶液,搅拌加热至75℃;称取2.25g硫代乙酰胺,加至反应体系;量取0.07mL浓硝酸,加至反应体系;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加至反应体系,1000rpm的速度剧烈搅拌3min;将搅拌速度调低至300-500rpm,于75℃下搅拌反应2h;
2)称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三口烧瓶中,水浴搅拌反应2h;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三口烧瓶中,水浴搅拌反应2h;称取2.25g硫代乙酰胺,加入至三口烧瓶中,磁力搅拌30min;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三口烧瓶中,水浴搅拌反应2h;
3)重复步骤2)两遍;
4)反应体系趁热离心,水洗3次,并干燥、研磨得固态的ZnS纳米微球;
对所得单分散的ZnS纳米微球进行XRD测试并对其晶体结构进行分析,如图1所示,所得产物的衍射峰位置以及相对强度均与标准的立方相ZnS图谱一致,标准卡片为JCPDS NO.05-0566。另外图中并没有其他杂质峰的存在,证明产物具有很高的 晶相纯度。
观察图2的透射电镜图可以发现,所制备的微球球形形貌较好且粒径均一。另外,微球内部晶格条纹取向各异且选区电子衍射得到同心圆环图样,以上结果均说明了所制备的ZnS微球是多晶结构。由高分辨透射电镜得到的HR-TEM图像中测得晶格条纹间距约为0.315nm,与立方相ZnS中(111)面相吻合,证明产物为立方相ZnS。此外,还证明多步生长得到的ZnS纳米微球内部均一,未有分层结构。
图3的扫描电镜图表明,所制备的微球具有优异的单分散性,整理微球的粒径分布数据得到图4,经计算其粒径分布系数小于5%,粒径分布较窄。
实施例2
通过精确调控粒径的多步生长方法,制备单分散的粒径为150±5nm的ZnS纳米微球,并利用此粒径的微球构筑三维光子晶体。具体制备方法为:
1)称取3.00g聚乙烯吡咯烷酮,100mL去离子水,使聚乙烯吡咯烷酮充分溶解在去离子水中;得均匀溶液,搅拌加热至75℃;称取2.25g硫代乙酰胺,加至反应体系;量取0.07mL浓硝酸,加至反应体系;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加至反应体系,1000rpm的速度剧烈搅拌3min;将搅拌速度调低至300-500rpm,于75℃下搅拌反应2h;
2)称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三口烧瓶中,水浴搅拌反应2h;
3)反应体系趁热离心,水洗3次,并干燥、研磨得固态的ZnS纳米微球;
经扫描电镜表征以及粒径分布统计,计算其粒径分布系数小于4%,粒径分布较窄。
实施例3
通过精确调控粒径的多步生长方法,制备单分散的粒径为1000±5nm的ZnS纳米微球。具体制备方法为:
1)称取3.00g聚乙烯吡咯烷酮,100mL去离子水,使聚乙烯吡咯烷酮充分溶解在去离子水中;得均匀溶液,搅拌加热至75℃;称取2.25g硫代乙酰胺,加至反应体系;量取0.07mL浓硝酸,加至反应体系;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加至反应体系,以1000rpm的速度剧烈搅拌3min;将搅拌速度调低至300-500rpm,于75℃下搅拌反应2h;
2)称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三 口烧瓶中,水浴搅拌反应2h;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三口烧瓶中,水浴搅拌反应2h;称取2.25g硫代乙酰胺,加入至三口烧瓶中,磁力搅拌30min;称取2.97g六水合硝酸锌,预先溶解到5mL去离子水中,然后迅速加入到三口烧瓶中,水浴搅拌反应2h;
3)重复步骤2)十遍;
4)反应体系趁热离心,水洗3次,并干燥、研磨得固态的ZnS纳米微球;
经扫描电镜表征以及粒径分布统计,计算其粒径分布系数小于5%,粒径分布较窄。
实施例4-6
实施例1中所用的金属盐分别用三水硝酸铜,硝酸铅,四水合硝酸镉代替,对应称取的摩尔量不变,可分别制备出粒径为240nm左右,粒径分布系数小于3%的CuS微球,210nm左右,粒径分布系数小于3%的PbS微球,250nm左右,粒径分布系数小于2%的CdS微球。
实施例7~9
实施例2中所用的金属盐分别用三水硝酸铜,硝酸铅,四水合硝酸镉代替,对应称取的摩尔量不变,可分别制备出粒径为140nm左右,粒径分布系数小于3%的CuS微球,140nm左右,粒径分布系数小于3%的PbS微球,150nm左右,粒径分布系数小于2%的CdS微球。
实施例10~18
实施例3中所用的金属盐分别用三水硝酸铜,硝酸铅,四水合硝酸镉,氯化亚锡,乙酸汞,乙酸锰,硫酸亚铁,硫酸镍,硝酸钴代替,对应称取的摩尔量不变,可分别制备出粒径为970nm左右的CuS微球,950nm左右的PbS微球,1010nm左右的CdS微球960nm左右的SnS微球,950nm左右的HgS微球,980nm左右的MnS微球,990nm左右的FeS微球,960nm左右的NiS微球,1000nm左右的CoS微球,其粒径分布系数均小于5%。
实施例19~21
实施例1步骤1中所取的聚乙烯吡咯烷酮的质量分别用1.00g,2.00g,3.00g代替,可分别制备出粒径为160nm,240nm,230nm左右的ZnS微球,其粒径分布系数均小于3%。
实施例22~24
实施例1步骤3中所取的硫代乙酰胺的质量分别用1.00g,2.00g,5.00g代替,可分别制备出粒径为220nm,260nm,180nm左右的ZnS微球,其粒径分布系数均小于3%。
实施例25~27
实施例1步骤4中所取的浓硝酸的体积分别用0.05mL,0.10mL,0.20mL代替,可分别制备出粒径为230nm,250nm,190nm左右的ZnS微球,其粒径分布系数均小于4%。
实施例28~30
实施例1步骤5中所取的六水合硝酸锌的质量分别用1.19g,2.38g,4.16g代替,可分别制备出粒径为230nm,250nm,210nm左右的ZnS微球,其粒径分布系数均小于4%。
实施例31~33
实施例1步骤5中剧烈搅拌的时间分别用0.5min,1.5min,5min代替,可分别制备出粒径为230nm,280nm,170nm左右的ZnS微球,其粒径分布系数均小于4%。
实施例34~36
实施例1中反应温度分别用60℃,70℃,80℃代替,可分别制备出粒径为270nm,260nm,220nm左右的ZnS微球,其粒径分布系数均小于5%。

Claims (7)

  1. 一种粒径精确可控的硫化物高度均匀微球,其特征在于,所述硫化物包括ZnS、CdS、CuS、PbS、SnS、HgS、MnS、FeS、NiS、CoS,微球粒径高度均匀,为多晶结构,而且微球粒径调控范围在100-1000nm,粒径分布系数小于5%。
  2. 根据权利要求1所述的粒径精确可控的硫化物高度均匀微球的制备方法,其特征在于,包括如下工艺步骤:
    1)按照0.25-1.25mmol/L的浓度,取平均分子量为10000-58000的聚乙烯吡咯烷酮分散在去离子水中,得均匀溶液,搅拌加热至50-80℃;
    2)将浓度为0.1-0.3mol/L的硫源加入步骤1)所述溶液中,再将浓硝酸加入上述溶液中;
    3)按照M 2+:S 2-=0.5-1.5:3的摩尔比,所述M 2+为Zn 2+、Cd 2+、Pb 2+、Cu 2+、Sn 2+、Hg 2+、Mn 2+、Fe 2+、Ni 2+或Co 2+,取金属盐预先分散到去离子水中,然后将金属盐水溶液加入到步骤2)所得溶液中,搅拌0.5-5min;
    4)将搅拌速度调低,于50-80℃下,水浴搅拌反应1-5h;
    5)按照M 2+:S 2-=0.5-1.5:3的摩尔比,再次向步骤4)得到的体系中加入预分散在去离子水中的金属盐,反应1-5h;
    6)重复步骤5),直至体系内已加入的M 2+:S 2-的摩尔比为1:1;
    7)将浓度为0.1-0.3mol/L的硫源加入步骤6)的反应体系中;
    8)重复上述5)-7)的步骤0-10次,在微球粒径达到100-1000nm后,停止反应;
    9)得到的硫化物纳米微球通过三次或三次以上水洗,离心处理,并通过干燥、研磨得到固态硫化物纳米微球。
  3. 根据权利要求2所述的粒径精确可控的硫化物高度均匀微球的制备方法,其特征在于,所述步骤2)中的浓硝酸浓度为0.011-0.044mol/L。
  4. 根据权利要求2所述的粒径精确可控的硫化物高度均匀微球的制备方法,其特征在于,所述步骤3)中的搅拌速度为1000-1200rpm。
  5. 根据权利要求2所述的粒径精确可控的硫化物高度均匀微球的制备方法,其特征在于,所述步骤4)中的搅拌速度为300-500rpm。
  6. 根据权利要求2所述的粒径精确可控的硫化物高度均匀微球的制备方法,其特征在于,所述硫源为硫脲,硫代乙酰胺,硫化铵。
  7. 根据权利要求2所述的粒径精确可控的硫化物高度均匀微球的制备方法,其特征在于,所述金属盐为硝酸盐、醋酸盐、水合硝酸盐,硫酸盐。
PCT/CN2019/128950 2019-04-30 2019-12-27 一种粒径精确可控的硫化物高度均匀微球及其制备方法 WO2020220708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910365130.8A CN109942017B (zh) 2019-04-30 2019-04-30 一种粒径精确可控的硫化物高度均匀微球及其制备方法
CN201910365130.8 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220708A1 true WO2020220708A1 (zh) 2020-11-05

Family

ID=67016928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/128950 WO2020220708A1 (zh) 2019-04-30 2019-12-27 一种粒径精确可控的硫化物高度均匀微球及其制备方法

Country Status (2)

Country Link
CN (1) CN109942017B (zh)
WO (1) WO2020220708A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942017B (zh) * 2019-04-30 2020-07-14 大连理工大学 一种粒径精确可控的硫化物高度均匀微球及其制备方法
CN110467225A (zh) * 2019-09-03 2019-11-19 大连理工大学 一种单分散硫化钴中空夹心微球的制备方法
CN112158880B (zh) * 2020-08-28 2022-12-13 昆明理工大学 一种β-硫化汞纳米粒子的制备方法
CN112194172B (zh) * 2020-10-21 2022-01-04 中国科学院南京土壤研究所 一种快速制备球形硫化汞纳米颗粒的方法
CN114835154B (zh) * 2022-03-31 2024-01-26 宁波大学 一种粒径可调控的单分散ZnS胶体微球的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529877B2 (zh) * 1972-11-20 1977-03-18
CN102502775A (zh) * 2011-11-23 2012-06-20 陕西科技大学 一种球状硫化铜粒子的制备方法
CN102515255A (zh) * 2012-01-09 2012-06-27 西南大学 硫化锌纳米球的制备方法
CN102951675A (zh) * 2012-11-14 2013-03-06 陕西科技大学 一种单分散硫化镉纳米球的制备方法
CN105016374A (zh) * 2015-08-14 2015-11-04 天津城建大学 一种分级结构CuS微米球的制备方法
CN105113006A (zh) * 2015-09-21 2015-12-02 陕西科技大学 一种表面粗糙的单分散球形硫化锌光子晶体及其制备方法
CN108321389A (zh) * 2018-01-16 2018-07-24 浙江衡远新能源科技有限公司 一种锂离子电池用碳包覆硫化锌纳米球负极材料及其制备方法
CN109110827A (zh) * 2018-11-20 2019-01-01 安阳师范学院 一种二硫化镍纳米球的制备方法及其应用
CN109942017A (zh) * 2019-04-30 2019-06-28 大连理工大学 一种粒径精确可控的硫化物高度均匀微球及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529877B2 (zh) * 1972-11-20 1977-03-18
CN102502775A (zh) * 2011-11-23 2012-06-20 陕西科技大学 一种球状硫化铜粒子的制备方法
CN102515255A (zh) * 2012-01-09 2012-06-27 西南大学 硫化锌纳米球的制备方法
CN102951675A (zh) * 2012-11-14 2013-03-06 陕西科技大学 一种单分散硫化镉纳米球的制备方法
CN105016374A (zh) * 2015-08-14 2015-11-04 天津城建大学 一种分级结构CuS微米球的制备方法
CN105113006A (zh) * 2015-09-21 2015-12-02 陕西科技大学 一种表面粗糙的单分散球形硫化锌光子晶体及其制备方法
CN108321389A (zh) * 2018-01-16 2018-07-24 浙江衡远新能源科技有限公司 一种锂离子电池用碳包覆硫化锌纳米球负极材料及其制备方法
CN109110827A (zh) * 2018-11-20 2019-01-01 安阳师范学院 一种二硫化镍纳米球的制备方法及其应用
CN109942017A (zh) * 2019-04-30 2019-06-28 大连理工大学 一种粒径精确可控的硫化物高度均匀微球及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, YANBO ET AL.: "Preparation of Uniform Cadmium Sulfide Spheres and Their Controllable Morphology", JOURNAL OF INORGANIC MATERIALS, vol. 20, no. 03, 20 May 2005 (2005-05-20), pages 575 - 579 *

Also Published As

Publication number Publication date
CN109942017A (zh) 2019-06-28
CN109942017B (zh) 2020-07-14

Similar Documents

Publication Publication Date Title
WO2020220708A1 (zh) 一种粒径精确可控的硫化物高度均匀微球及其制备方法
Mourdikoudis et al. Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles
Gedanken Using sonochemistry for the fabrication of nanomaterials
US7160525B1 (en) Monodisperse noble metal nanocrystals
JP3989868B2 (ja) マグネタイト・ナノ粒子の合成および鉄をベースとするナノ材料形成方法
Zhang et al. Shape‐selective synthesis of gold nanoparticles with controlled sizes, shapes, and plasmon resonances
Wang et al. Size-controlled synthesis of water-dispersible superparamagnetic Fe 3 O 4 nanoclusters and their magnetic responsiveness
Liu et al. One-pot hydrothermal synthesis of highly monodisperse water-dispersible hollow magnetic microspheres and construction of photonic crystals
Ungelenk et al. Polyol-mediated low-temperature synthesis of crystalline tungstate nanoparticles MWO4 (M= Mn, Fe, Co, Ni, Cu, Zn)
Wang et al. Shape-control and characterization of magnetite prepared via a one-step solvothermal route
Zhang et al. Synthesis of Ag–Fe3O4 heterodimeric nanoparticles
Mohapatra et al. One-pot synthesis of uniform and spherically assembled functionalized MFe2O4 (M= Co, Mn, Ni) nanoparticles
Dippong et al. Effect of annealing on the structure and magnetic properties of CoFe2O4: SiO2 nanocomposites
Chen et al. Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method
Al-Hada et al. Fabrication and characterization of Manganese–Zinc Ferrite nanoparticles produced utilizing heat treatment technique
Zou et al. Shape and phase control of CdS nanocrystals using cationic surfactant in noninjection synthesis
WO2020019384A1 (zh) 一种银纳米环的制备方法
Choi et al. A facile fabrication of Fe $ _ {3} $ O $ _ {4} $/ZnO core-shell submicron particles with controlled size
Tsuji et al. Toward to branched platinum nanoparticles by polyol reduction: a role of poly (vinylpyrrolidone) molecules
Lee et al. Morphology-selective synthesis of polyhedral gold nanoparticles: What factors control the size and morphology of gold nanoparticles in a wet-chemical process
Meenatchi et al. Size-controlled synthesis of chalcogen and chalcogenide nanoparticles using protic ionic liquids with imidazolium cation
CN109052489B (zh) 一种亚微米级NiCo2S4空心球的制备方法
Mazloumi et al. Self-assembly of ZnO nanoparticles and subsequent formation of hollow microspheres
Gerdes et al. Sculpting of lead sulfide nanoparticles by means of acetic acid and dichloroethane
Cai et al. Spherically aggregated Cu 2 O–Ta hybrid sub-microparticles with modulated size and improved chemical stability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927155

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927155

Country of ref document: EP

Kind code of ref document: A1