WO2020220613A1 - 像素驱动电路及其驱动方法 - Google Patents

像素驱动电路及其驱动方法 Download PDF

Info

Publication number
WO2020220613A1
WO2020220613A1 PCT/CN2019/113224 CN2019113224W WO2020220613A1 WO 2020220613 A1 WO2020220613 A1 WO 2020220613A1 CN 2019113224 W CN2019113224 W CN 2019113224W WO 2020220613 A1 WO2020220613 A1 WO 2020220613A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
driving
terminal
initialization
transistor
Prior art date
Application number
PCT/CN2019/113224
Other languages
English (en)
French (fr)
Inventor
沈阳
朱晖
李永岗
朱正勇
Original Assignee
云谷(固安)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 云谷(固安)科技有限公司 filed Critical 云谷(固安)科技有限公司
Publication of WO2020220613A1 publication Critical patent/WO2020220613A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]

Definitions

  • the embodiments of the present application relate to the field of display technology, such as a pixel driving circuit and a driving method thereof.
  • the organic light-emitting display device includes a plurality of pixels, each pixel includes a pixel driving circuit and an organic light-emitting structure.
  • the driving transistor in the pixel driving circuit provides a driving current to the organic light-emitting structure.
  • the organic light-emitting structure is Glow under the action.
  • the displayed screen after the switch will have afterimages, that is, the displayed screen after the switch will be affected by the display screen before the switch, which affects the display effect of the display device.
  • the present application provides a pixel driving circuit and a driving method thereof, which not only realizes the driving function of the pixel driving circuit, but also improves the display afterimage.
  • an embodiment of the present application provides a pixel driving circuit, including: a driving module configured to provide a driving current to an organic light emitting structure, the organic light emitting structure responds to the driving current to emit light, the The driving module includes a driving transistor; a data writing module configured to write a data signal to the control terminal of the driving module; a first storage module configured to maintain the driving module The potential of the control terminal in the light-emitting phase of the organic light-emitting structure; a first initialization module configured to initialize the potential of the source of the driving transistor in the initialization phase; a second storage module, The second storage module is configured to maintain the potential of the source of the driving transistor before the data signal is written into the control terminal of the driving module.
  • embodiments of the present application also provide a driving method of a pixel driving circuit for driving the pixel driving circuit as described in the first aspect, and the driving method includes: in an initialization phase, controlling the pixel driving circuit The first initialization module is turned on, and the data writing module of the pixel driving circuit and the driving module of the pixel driving circuit are controlled to be turned off.
  • the first initialization module controls the potential of the source of the driving transistor of the driving module Perform initialization; in the data writing stage, control the data writing module and the drive module to turn on, control the first initialization module to turn off, and the data writing module writes data signals into the drive module
  • the control terminal controls the second storage module of the pixel drive circuit to maintain the potential of the source of the drive transistor before the data writing stage; in the light-emitting stage, controls the drive module to be turned on to control the data writing
  • the input module and the first initialization module are turned off, the drive module provides a drive current to the organic light-emitting structure, the organic light-emitting structure responds to the drive current to emit light, and controls the first storage module of the pixel drive circuit to maintain the The potential of the control terminal of the driving module in the light-emitting stage.
  • the embodiment of the present application provides a pixel driving circuit and a driving method thereof.
  • the pixel driving circuit is configured to include a driving module, a data writing module, a first storage module, a first initialization module, and a second storage module.
  • the driving module is configured to emit organic light.
  • the structure provides driving current
  • the organic light-emitting structure responds to the driving current to emit light
  • the driving module includes a driving transistor
  • the data writing module is configured to write data signals into the control terminal of the driving module
  • the first storage module is configured to maintain the control terminal of the driving module at
  • the first initialization module is set to initialize the potential of the source of the drive transistor in the initialization phase
  • the second storage module is set to maintain the source of the drive transistor when the data signal is written
  • FIG. 1 is a schematic structural diagram of a pixel driving circuit provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a specific circuit structure of a pixel driving circuit provided by an embodiment of the application;
  • FIG. 3 is a schematic structural diagram of another pixel driving circuit provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of a specific circuit structure of another pixel driving circuit provided by an embodiment of the application.
  • FIG. 5 is a driving timing diagram of a pixel driving circuit provided by an embodiment of the application.
  • FIG. 6 is a schematic flowchart of a driving method provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a display panel provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • the embodiment of the application provides a pixel driving circuit, including a driving module, a data writing module, a first storage module, a first initialization module, and a second storage module.
  • the driving module is configured to provide a driving current to an organic light emitting structure, and the organic light emitting The structure responds to the driving current to emit light
  • the driving module includes a driving transistor
  • the data writing module is configured to write data signals into the control terminal of the driving module
  • the first storage module is configured to maintain the control terminal of the driving module in the light-emitting phase of the organic light emitting structure.
  • the first initialization module is set to initialize the potential of the source of the drive transistor in the initialization phase
  • the second storage module is set to maintain the potential of the source of the drive transistor before the data signal is written into the control terminal of the drive module.
  • the organic light emitting display device contains a plurality of pixels. Each pixel includes a pixel driving circuit and an organic light emitting structure.
  • the driving transistor in the pixel driving circuit provides driving current to the organic light emitting structure.
  • the organic light emitting structure plays a role in the driving current flowing through the organic light emitting structure. Down glow.
  • the display screen after switching will have residuals. The display screen after switching will be affected by the display screen before switching, so that the actual display gray scale of the display screen after switching is different from the preset display gray scale, which affects the display effect of the display device.
  • the pixel driving circuit provided by the embodiment of the application includes a driving module, a data writing module, a first storage module, a first initialization module, and a second storage module.
  • the driving module is set to provide driving current to the organic light emitting structure, and the organic light emitting structure responds to the driving current
  • the driving module includes a driving transistor
  • the data writing module is configured to write data signals into the control terminal of the driving module
  • the first storage module is configured to maintain the potential of the control terminal of the driving module in the light-emitting stage of the organic light emitting structure.
  • the initialization module is set to initialize the potential of the source of the drive transistor during the initialization phase
  • the second storage module is set to maintain the potential of the source of the drive transistor before the data signal is written into the control terminal of the drive module.
  • the driving function of the circuit improves the display afterimage, and the source potential of the driving transistor can maintain the initializing potential before the data writing stage, which improves the display effect.
  • FIG. 1 is a schematic structural diagram of a pixel driving circuit provided by an embodiment of the application
  • FIG. 2 is a specific circuit structural schematic diagram of a pixel driving circuit provided by an embodiment of the application. 1 and 2, the pixel driving circuit includes a driving module 1, a data writing module 2, a first storage module 3, a first initialization module 4, and a second storage module 5.
  • the driving module 1 is configured to provide the organic light emitting structure A Driving current Id, the organic light emitting structure A responds to the driving current Id to emit light, the driving module 1 includes a driving transistor M9, the data writing module 2 is configured to write the data signal into the control terminal a1 of the driving module 1, and the data writing module 2 writes the data
  • the path for writing signals to the control terminal a1 of the drive module 1 is shown as the path L1 in Figure 1.
  • the first storage module 3 is set to maintain the potential of the control terminal a1 of the drive module 1 in the light-emitting phase of the organic light-emitting structure.
  • the module 4 is set to initialize the source of the drive transistor M9 during the initialization phase, that is, the first terminal a2 of the drive module 1 or the first terminal b2 of the drive transistor M9.
  • the second storage module 5 is set to maintain the voltage of the drive transistor M9. The potential of the source before the data signal is written into the control terminal of the drive module.
  • the first initialization module 4 is used to perform the potential of the source of the driving transistor M9, that is, the first terminal a2 of the driving module 1 or the first terminal b2 of the driving transistor M9 in the initialization phase of each frame of the display panel.
  • Initialization so that the source potential of the drive transistor M9 corresponding to the display screen after switching will not be affected by the source potential of the drive transistor M9 corresponding to the display screen before switching, and the drive current Id generated by the drive transistor M9 and the drive transistor M9
  • the source potential of the drive transistor M9 corresponding to the display screen after switching is not affected by the display screen before switching, which effectively improves the source potential of the drive transistor M9 to maintain the previous value in a short time.
  • the switched display screen caused by the potential at the time will be affected by the display screen before the switching, and the display screen after the switching may have residual images, thereby improving the display effect of the display device.
  • the second memory module 5 maintains the source potential of the driving transistor M9 before the data writing phase, that is, before the data writing phase of each frame of the display screen, the source potential of the driving transistor M9 Both can be maintained at the initialization potential provided by the first initialization module 4 to the source of the driving transistor M9.
  • the data writing phase when writing data signals to the control terminal a1 of the driving module 1, that is, the gate b1 of the driving transistor M9, ensure The source potential of the driving transistor M9 is fixed, so that when the same data signal is written, the switching state of the driving transistor M9 is the same, and the driving current Id generated by the driving transistor M9 during the light-emitting phase is also the same, thereby improving the display effect of the display device .
  • the control terminal a1 of the first initialization module 4 can be set to connect to the first scan signal S1, the first terminal a2 of the first initialization module 4 and the source of the driving transistor M9 can be set. That is, the first terminal a2 of the driving module 1 is electrically connected, and the second terminal a3 of the first initialization module 4 is connected to the first reference signal Ref1.
  • the first terminal a2 and the second terminal a3 of the first initialization module 4 can be turned on by adjusting the first scan signal S1, and the first initialization module 4 writes the first reference signal Ref1 into the driving transistor
  • the source of M9, the source of the drive transistor M9 corresponding to the switched display screen is always at the potential of the first reference signal Ref1 during the initialization phase, so that the source potential of the drive transistor M9 corresponding to the switched display screen will not Affected by the source potential of the drive transistor M9 corresponding to the display screen before switching, the drive current Id of the drive transistor M9 corresponding to the display screen after switching will not be affected by the display screen before switching, effectively improving the drive transistor M9
  • the source potential of maintains the potential at the previous moment in a short period of time, resulting in the presence of residual images in the switched display screen, thereby improving the display effect of the display device.
  • the first terminal d1 of the second storage module 5 can be set to be electrically connected to the source of the driving transistor M9, that is, the first terminal a2 of the driving module 1 is electrically connected, and the second terminal d2 of the second storage module 5 is connected to Input the first power signal VDD.
  • the second storage module 5 can be set as the storage capacitor C2.
  • the first initialization module 4 writes the first reference signal Ref1 to the source of the driving transistor M9, that is, the first end a2 of the driving module 1.
  • the first scan signal S1 It takes a certain time for the first scan signal S1 to complete the high and low level transitions, that is, the high and low level transitions of the first scan signal S1 are not completed instantaneously, and the transition from the initialization phase to the data writing phase is not completed instantaneously. If the source potential of the driving transistor M9 changes during the process of entering the data writing phase from the initialization phase, it will also affect the magnitude of the driving current Id generated by the driving transistor M9 during the light-emitting phase, even if the same data signal is written, the driving transistor M9 The magnitude of the generated driving current Id is also different, which affects the display effect of the display device.
  • the second storage module 5 maintains the source potential of the driving transistor M9 before the data writing phase, that is, before the data writing phase of each frame of the display screen, the source potential of the driving transistor M9 can be maintained at
  • the first initialization module 4 provides the potential of the first reference signal Ref1 to the source of the driving transistor M9.
  • the source potential of the driving transistor M9 is fixed.
  • the same data signal is written, it can be ensured that the switching state of the driving transistor M9 is the same, and the driving current Id generated by the driving transistor M9 in the light-emitting phase is also the same, thereby improving the display effect of the display device.
  • FIG. 3 is a schematic structural diagram of another pixel driving circuit provided by an embodiment of this application
  • FIG. 4 is a specific circuit structural schematic diagram of another pixel driving circuit provided by an embodiment of this application.
  • the pixel drive circuit of the structure shown in FIG. 3 and FIG. 4 further includes a potential maintaining module 6, and the potential maintaining module 6 is configured to be connected to the first storage module 3.
  • the potential of the control terminal a1 of the driving module 1 in the light-emitting phase of the organic light-emitting structure is jointly maintained.
  • the driving transistor M9 provides a driving current Id to the organic light-emitting structure A.
  • the organic light-emitting structure A responds to the driving current Id generated by the driving transistor M9 and emits light.
  • the light-emitting brightness of the organic light-emitting element depends on the driving transistor M9.
  • the magnitude of the driving current Id generated, and the magnitude of the driving current Id generated by the driving transistor M9 is related to the gate of the driving transistor M9, that is, the potential of the control terminal a1 of the driving module 1.
  • the pixel driving circuit is set to include the potential maintaining module 6 and the potential
  • the maintenance module 6 can maintain the potential of the control terminal a1 of the driving module 1 in the light-emitting phase, which is beneficial to improve the stability of the gate potential of the driving transistor M9 in the light-emitting phase, thereby improving the stability of the driving current Id generated by the driving transistor M9, and improving the display device The display effect.
  • the potential maintenance module 6 can be set to include a first transistor M1 and a third storage module 61.
  • the first end d1 of the third storage module 61 is connected to a fixed potential.
  • a third storage module can be provided.
  • the first terminal d1 of 61 is connected to the first power signal VDD
  • the second terminal d2 of the third storage module 61 is electrically connected to the first terminal b2 of the first transistor M1
  • the control terminal b1 of the first transistor M1 is connected to the enable signal EM
  • the second terminal b3 of the first transistor M1 is electrically connected to the control terminal a1 of the driving module 1.
  • the third storage module 61 may be set to include a storage capacitor, The third storage module 61 can maintain the potential of the control terminal a1 of the driving module 1 in the light-emitting phase, which is beneficial to improve the stability of the potential of the gate b1 of the driving transistor M9 during the light-emitting phase, thereby improving the stability of the driving current Id generated by the driving transistor M9 , Improve the display effect of the display device.
  • the pixel driving circuit may also include a threshold compensation module 7, the control terminal a1 of the threshold compensation module 7 is connected to the second scan signal S2, the first terminal a2 of the threshold compensation module 7 and the second terminal a2 of the driving module 1 Terminal a3 is electrically connected, and the second terminal a3 of the threshold compensation module 7 is electrically connected to the control terminal a1 of the driving module 1.
  • the threshold compensation module 7 is configured to compensate the threshold voltage information of the driving transistor M9 before the light-emitting phase of the organic light-emitting structure The signal is written into the control terminal a1 of the drive module 1.
  • the threshold compensation module 7 may be set to include a second transistor M2 and the second transistor M2 is set as a transistor with a multi-gate structure.
  • the second transistor M2 is set as a transistor with a three-gate structure.
  • the threshold compensation Module 7 that is, the second transistor M2 is turned off, and setting the second transistor M2 in a multi-gate structure can effectively reduce the leakage current generated by the second transistor M2, improve the stability of the potential of the gate b1 of the driving transistor M9, and thereby improve the display device display effect.
  • the pixel driving circuit may further include at least one of the first light-emitting control module 8 and the second light-emitting control module 9, wherein the control terminal a1 of the first light-emitting control module 8
  • the enable signal EM is connected, the first terminal a2 of the first light-emitting control module 8 is connected to the first power signal VDD, the second terminal a3 of the first light-emitting control module 8 and the source of the driving transistor M9, that is, the driving module 1
  • the first terminal a2 is electrically connected;
  • the control terminal a1 of the second lighting control module 9 is connected to the enable signal EM, the first terminal a2 of the second lighting control module 9 is electrically connected to the second terminal a3 of the driving module 1, and the second lighting
  • the second end a3 of the control module 9 is electrically connected to the first electrode A1 of the organic light emitting structure A, and the second electrode A2 of the organic light emitting structure A is connected to the second power signal VSS, that
  • the pixel driving circuit may further include at least one of a second initialization module 10 and a third initialization module 11, wherein the control terminal a1 of the second initialization module 10 is connected to the A scan signal S1, the first terminal a2 of the second initialization module 10 is electrically connected to the control terminal a1 of the driving module 1, the second terminal a3 of the second initialization module 10 is connected to the second reference signal Ref2, and the second initialization module 10 sets In order to initialize the potential of the control terminal a1 of the driving module 1 during the initialization phase; the control terminal a1 of the third initialization module 11 is connected to the first scan signal S1, and the first terminal a2 of the third initialization module 11 is connected to the organic light emitting structure A
  • the first electrode A1 is electrically connected, the second terminal a3 of the third initialization module 11 is connected to the third reference signal Ref3, and the third initialization module 11 is set to initialize the potential of the first electrode A1 of the organic light emitting structure
  • the pixel driving circuit includes both the second initialization module 10 and the third initialization module 11.
  • the first reference signal Ref1, the second reference signal Ref2, and the third reference signal Ref3 can be the same, that is, the three can be provided by the same reference signal line to reduce the number of signal lines connected to the pixel driving circuit. It is beneficial to increase the aperture ratio of the display device.
  • the second initialization module 10 may be set to include a third transistor M3, and the third initialization module 11 may include a fourth transistor M4.
  • the third transistor M3 and the fourth transistor M4 may be set as transistors with a multi-gate structure.
  • the third transistor M3 and the fourth transistor M4 are both transistors with a tri-gate structure. Setting the third transistor M3 as a transistor with a multi-gate structure can effectively reduce the leakage current generated by the third transistor M3 during the light-emitting phase and increase the gate potential of the driving transistor M9 The stability of the display device further improves the display effect of the display device.
  • Setting the fourth transistor M4 as a transistor with a multi-gate structure can effectively reduce the leakage current generated by the fourth transistor M4 in the light-emitting phase, improve the stability of the potential of the first electrode A1 of the organic light-emitting structure A, and thereby improve the display effect of the display device.
  • FIG. 5 is a driving timing diagram of a pixel driving circuit provided by an embodiment of the application. 1 and 2, it can be set that the first initialization module 4 includes a fifth transistor M5, the data writing module 2 includes a sixth transistor M6, the first light emission control module 8 includes a seventh transistor M7, and the second light emission control module 9 includes
  • the eighth transistor M8 and the driving transistor M9 may be all P-type transistors, or the first transistor M1 to the eighth transistor M8 and the driving transistor M9 may be all N-type transistors.
  • the embodiment does not limit this. Taking the first transistor M1 to the eighth transistor M8 and the driving transistor M9 as P-type transistors as an example, the working principle of the pixel driving circuit will be described with reference to FIGS. 1, 2 and 5.
  • the third transistor M3, the fourth transistor M4, and the fifth transistor M5 are between the corresponding first terminal b2 and the second terminal b3 under the action of the low-level first scan signal S1 Connected, the first transistor M1, the second transistor M2, the sixth transistor M6 to the eighth transistor M8, and the driving transistor M9 correspond to the first terminal b2 and the second terminal b3 under the action of the control signal input from the respective gate b1 Shut down between.
  • the second reference signal Ref2 is written to the gate of the driving transistor M9 through the third transistor M3 to complete the initialization of the potential of the gate b1 of the driving transistor M9, and the fourth transistor M4 is applied to the first reference signal Ref2 of the organic light emitting structure A.
  • An electrode A1 writes a third reference signal Ref3 to complete the initialization of the potential of the first electrode A1 of the organic light emitting structure A, and writes the first reference signal Ref1 to the source of the driving transistor M9, that is, the first terminal b2 through the fifth transistor M5
  • the source potential of the driving transistor M9 corresponding to the display screen after switching will not be affected by the source potential of the driving transistor M9 corresponding to the display screen before switching, which effectively improves
  • the source potential of the driving transistor M9 maintains the potential at the previous moment in a short period of time, which causes the after-switching display screen to have an afterimage, thereby improving the display effect of the display device.
  • the second transistor M2 and the sixth transistor M6 are connected between the corresponding first terminal b2 and the second terminal b3 under the action of the second scan signal S2 at the low level.
  • a transistor M1, a third transistor M3 to a fifth transistor M5, and a seventh transistor to an eighth transistor M8 are closed between the corresponding first terminal b2 and the second terminal b3 under the action of the control signal input from the respective gate b1 Off.
  • the first terminal b2 of the sixth transistor M6 is connected to the data signal DATA and the data signal is written into the gate b1 of the driving transistor M9.
  • the writing path of the data signal is shown as the path L2 in FIG.
  • the driving transistor M9 is equivalent to a diode through the second transistor M2 and is forward biased.
  • of the threshold voltage of the driving transistor M9 from the voltage V data of the data signal is applied to the driving transistor M9.
  • the gate b1, that is, the threshold compensation module 7 writes the compensation signal containing the threshold voltage information of the driving transistor M9 into the control terminal a1 of the driving module 1 before the light-emitting stage of the organic light-emitting structure.
  • the first terminal of the first storage module 3 The voltage value on d1 is equal to the compensation voltage, the voltage value on the second terminal d2 of the first storage module 3 is equal to the voltage value Vdd of the first power signal VDD, and the first terminal d1 and the second terminal d2 of the first storage module 3 are The charge corresponding to the voltage difference between the two is stored in the storage capacitor C1 of the first storage module 3.
  • the second memory module 5 maintains the source of the driving transistor M9 before the data writing phase, that is, the first terminal b2 potential, that is, before the data writing phase of each frame of display screen
  • the source potential of the driving transistor M9 can be maintained at the potential of the first reference signal Ref1 provided by the fifth transistor M5 to the source of the driving transistor M9, when the data signal is written to the gate b1 of the driving transistor M9 during the data writing phase , To ensure that the source potential of the driving transistor M9 is fixed, so that when the same data signal is written, the switching state of the driving transistor M9 is the same, and the driving current Id generated by the driving transistor M9 in the light-emitting phase is also the same, thereby improving the display device display effect.
  • the seventh transistor M7 and the eighth transistor M8 are connected between the corresponding first terminal b2 and the second terminal b3 under the action of the low-level enable signal EM, and the first transistor M1
  • the to sixth transistors M6 are turned off between the corresponding first terminal b2 and the second terminal b3 under the action of the control signal input from the respective gate b1.
  • the first power signal VDD is transmitted through the seventh transistor M7 to the first terminal b2, which is the source, of the driving transistor M9.
  • the voltage of the gate b1 of the driving transistor M9 is different from the voltage value Vdd of the first power signal VDD.
  • the driving current Id generated by the voltage difference therebetween flows to the organic light emitting structure A through the eighth transistor M8, and the organic light emitting structure A emits light in response to the driving current Id.
  • the driving current Id of the driving transistor M9 has nothing to do with the threshold voltage Vth of the driving transistor M9, that is, the pixel driving circuit realizes the capture of
  • the pixel driving circuit further includes a potential maintenance module 6, and the potential maintenance module 6 includes a first transistor M1 and a third storage module 61, in the t1 phase, namely the initialization phase and the t2 phase, namely During the data writing phase, the first transistor M1 is turned off between the corresponding first terminal b2 and the second terminal b3 under the action of the high-level enable signal EM.
  • the first transistor M1 is connected between the corresponding first terminal b2 and the second terminal b3 under the action of the low-level enable signal EM, and the third storage module 61 maintains the drive module 1
  • Controlling the potential of the terminal a1 in the light-emitting phase is beneficial to improve the stability of the potential of the gate b1 of the driving transistor M9 during the light-emitting phase, thereby increasing the stability of the driving current Id generated by the driving transistor M9, and improving the display effect of the display device.
  • the high level and the low level mentioned in the foregoing embodiments are all relative concepts, and the embodiment of the present application does not limit the magnitude of the level values included in the high level and the low level.
  • the embodiment of the present application does not limit the number of transistors and the number of capacitive elements in the pixel driving circuit, and the number of transistors and the number of capacitive elements in the pixel driving circuit can be selected according to requirements.
  • the pixel driving circuit includes a driving module, a data writing module, a first storage module, a first initialization module, and a second storage module.
  • the driving module is set to provide driving current to the organic light emitting structure, and the organic light emitting structure responds to the driving current
  • the driving module includes a driving transistor, the data writing module is configured to write data signals into the control terminal of the driving module, the first storage module is configured to maintain the potential of the control terminal of the driving module in the light-emitting stage, and the first initialization module is set to The initialization phase initializes the potential of the source of the driving transistor, and the second storage module is set to maintain the potential of the source of the driving transistor before the data writing phase, which realizes the driving function of the pixel driving circuit and improves the display failure.
  • the source potential of the driving transistor can maintain the initialization potential, which improves the display effect.
  • FIG. 6 is a schematic flowchart of a driving method provided by an embodiment of the application. As shown in FIG. 6, the driving method includes step S110 to step S130.
  • step S110 in the initialization phase, the first initialization module of the pixel driving circuit is controlled to be turned on, the data writing module of the pixel driving circuit and the driving module of the pixel driving circuit are controlled to be turned off, and the first initialization module The potential of the source of the driving transistor of the driving module is initialized.
  • the first initialization module 4 is controlled to be turned on, the data writing module 2 and the driving module 1 are controlled to be turned off, and the first initialization module 4 controls the driving transistor M9 The potential of the source is initialized.
  • step S120 in the data writing stage, the data writing module and the driving module are controlled to be turned on, the first initialization module is controlled to be turned off, and the data writing module writes the data signal into the control terminal of the driving module to control the pixel driving
  • the second storage module of the circuit maintains the potential of the source of the driving transistor before the data writing phase.
  • step S130 in the light-emitting phase, the driving module is controlled to be turned on, the data writing module and the first initialization module are controlled to be turned off, the driving module provides a driving current to the organic light-emitting structure, and the organic light-emitting structure responds to the driving current to emit light, and controls the
  • the first storage module of the pixel driving circuit maintains the potential of the control terminal of the driving module in the light-emitting stage.
  • the driving module 1 in the t3 phase, that is, the light-emitting phase, the driving module 1 is controlled to be turned on, the data writing module 2 and the first initialization module 4 are turned off, and the driving module 1 provides driving to the organic light emitting structure A With the current Id, the organic light emitting structure A emits light in response to the driving current Id.
  • the pixel driving circuit further includes a potential maintaining module 6;
  • the potential maintaining module 6 includes a first transistor M1 and a third storage module 61, the first of the third storage module 61
  • the terminal d1 is connected to a fixed potential
  • the second terminal d2 of the third storage module 61 is electrically connected to the first terminal b2 of the first transistor M1
  • the control terminal b1 of the first transistor M1 is connected to the enable signal EM
  • the second terminal b3 is electrically connected to the control terminal a1 of the driving module 1.
  • the driving method includes: controlling the first transistor to be turned off during the initialization phase and the data writing phase.
  • the first transistor M1 is controlled to be turned off.
  • the first transistor is controlled to be turned on, and the third storage module maintains the potential of the control terminal of the driving module in the light-emitting phase.
  • the first transistor M1 in the t3 phase, that is, the light-emitting phase, is controlled to be turned on, and the third storage module 61 maintains the potential of the control terminal a1 of the driving module 1 in the light-emitting phase .
  • FIG. 7 is a schematic structural diagram of a display panel provided by an embodiment of the present application.
  • the display panel may be an organic light emitting display panel.
  • the display panel may also include a plurality of scanning signal lines D12, a plurality of data signal lines D13, a gate driving module D121, a source driving module D131, and a driving control module D101.
  • the power supply module D102, the pixel driving circuit D1 is arranged in the space formed by the intersection of the scanning signal line D12 and the data signal line D13.
  • the gate driving module D121 responds to the scanning driving control signal generated by the driving control module D101 through the scanning signal line D12
  • the scan signal is input to the corresponding pixel driving circuit
  • the pixel driving circuit D1 is connected to the corresponding data signal line D13 electrically connected to it under the action of the scanning signal input from the scanning signal line D12 electrically connected to it
  • the source driving circuit D131 responds
  • the data drive control signal generated by the drive control module D101 inputs the data signal to the corresponding pixel drive circuit D1 through the data signal line D13.
  • the power supply module D102 provides the pixel drive circuit with the first power signal VDD and the second power signal VSS, and the display panel In this way, the display function is realized.
  • the display panel includes the pixel driving circuit in the above embodiment.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the application.
  • the display device 27 includes the display panel 26 in the above embodiment.
  • the display device may be an electronic device such as a mobile phone, a computer, or a wearable device.
  • control terminal a1 of the first initialization module 4 is connected to the first scan signal S1, the first terminal a2 of the first initialization module 4 is electrically connected to the source of the driving transistor M9, and the first initialization module 4 is The two terminals a3 are connected to the first reference signal Ref1; the first terminal d1 of the second storage module 5 is electrically connected to the source of the driving transistor M9, and the second terminal d2 of the second storage module 5 is connected to the first power signal VDD.
  • the pixel driving circuit further includes a potential maintaining module 6; in the light-emitting phase, the control potential maintaining module 6 and the first storage module 3 jointly maintain the potential of the control terminal a1 of the driving module 1.
  • the first terminal d1 of the third storage module 61 is connected to the first power signal VDD.
  • the pixel driving circuit further includes a threshold compensation module 7.
  • the control terminal a1 of the threshold compensation module 7 is connected to the second scan signal S2, the first terminal a2 of the threshold compensation module 7 and the second terminal a3 of the driving module 1
  • the second terminal a3 of the threshold compensation module 7 is electrically connected to the control terminal a1 of the driving module 1.
  • the driving method further includes: before the light-emitting stage, controlling the threshold value supplement module 7 to be turned on, and writing a compensation signal containing the threshold voltage information of the driving transistor M9 into the control terminal a1 of the driving module 1.
  • the pixel driving circuit further includes at least one of a first light emission control module 8 and a second light emission control module 9.
  • the control terminal a1 of the first lighting control module 8 is connected to the enable signal EM, the first terminal a2 of the first lighting control module 8 is connected to the first power signal VDD, and the second terminal a3 of the first lighting control module 8 is connected to the driving transistor
  • the source of M9 is electrically connected.
  • the control terminal a1 of the second lighting control module 9 is connected to the enable signal EM, the first terminal a2 of the second lighting control module 9 is electrically connected to the second terminal a3 of the driving module 1, and the second terminal of the second lighting control module 9 a3 is electrically connected to the first electrode A1 of the organic light emitting structure A, and the second electrode A2 of the organic light emitting structure A is connected to the second power signal VSS.
  • the pixel driving circuit further includes at least one of a second initialization module 10 and a third initialization module 11.
  • the control terminal a1 of the second initialization module 10 is connected to the first scan signal S1
  • the first terminal a2 of the second initialization module 10 is electrically connected to the control terminal a1 of the driving module 1
  • the second terminal a3 of the second initialization module 10 is connected to The second reference signal Ref2
  • the driving method includes: in the initialization phase, controlling the second initialization module to initialize the potential of the control terminal of the driving module.
  • the control terminal a1 of the third initialization module 11 is connected to the first scan signal S1, the first terminal a2 of the third initialization module 11 is electrically connected to the first electrode A1 of the organic light emitting structure A, and the second terminal a3 of the third initialization module 11 Accessing the third reference signal Ref3, the driving method includes: in the initialization phase, controlling the third initialization module to initialize the potential of the first electrode of the organic light emitting structure.
  • the threshold compensation module 7 (the second transistor M2 in FIGS. 2 and 4) has a leakage phenomenon, which causes the control terminal of the drive module 1 to be written to the gate of the drive transistor M9
  • the compensation voltage of b1 cannot be maintained permanently, which affects the stability of the potential of the gate b1 of the driving transistor M9 during the light-emitting phase. Therefore, the first storage module 3 and the potential maintenance module 6 are arranged so that the control terminal a1 of the driving module 1 is in the light-emitting phase of the organic light-emitting structure A.
  • the potential of is maintained at V data -

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

一种像素驱动电路及其驱动方法,像素驱动电路包括:驱动模块(1),驱动模块(1)设置为向有机发光结构(A)提供驱动电流(Id),有机发光结构(A)响应驱动电流(Id)以发光,驱动模块(1)包括驱动晶体管(M9);数据写入模块(2)设置为将数据信号写入驱动模块(1)的控制端(a1);第一存储模块(3)设置为维持驱动模块(1)的控制端(a1)在有机发光结构(A)的发光阶段的电位;第一初始化模块(4)设置为在初始化阶段对驱动晶体管(M9)的源极的电位进行初始化;第二存储模块(5)设置为维持驱动晶体管(M9)的源极在数据信号写入驱动模块(1)的控制端(a1)阶段之前的电位。

Description

像素驱动电路及其驱动方法
本申请要求在2019年4月29日提交中国专利局、申请号为201910356076.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,例如一种像素驱动电路及其驱动方法。
背景技术
有机发光显示装置包含有多个像素,每个像素包括像素驱动电路和有机发光结构,像素驱动电路中的驱动晶体管向有机发光结构提供驱动电流,有机发光结构在流经有机发光结构的驱动电流的作用下发光。
当有机发光显示装置在不同灰阶的显示画面之间进行切换时,切换后的显示画面会存在残影,即切换后的显示画面会受到切换前显示画面的影响,影响显示装置的显示效果。
发明内容
本申请提供一种像素驱动电路及其驱动方法,在实现了像素驱动电路的驱动功能的同时,改善了显示残影情况。
第一方面,本申请实施例提供了一种像素驱动电路,包括:驱动模块,所述驱动模块设置为向有机发光结构提供驱动电流,所述有机发光结构响应所述驱动电流以发光,所述驱动模块包括驱动晶体管;数据写入模块,所述数据写入模块设置为将数据信号写入所述驱动模块的控制端;第一存储模块,所述第一存储模块设置为维持所述驱动模块的控制端在所述有机发光结构的发光阶段的电位;第一初始化模块,所述第一初始化模块设置为在初始化阶段对所述驱动晶体管的源极的电位进行初始化;第二存储模块,所述第二存储模块设置为维持所述驱动晶体管的源极在所述数据信号写入所述驱动模块的控制端阶段之前的电位。
第二方面,本申请实施例还提供了一种像素驱动电路的驱动方法,用于驱动如第一方面所述的像素驱动电路,所述驱动方法包括:在初始化阶段,控制所述像素驱动电路的第一初始化模块导通,控制所述像素驱动电路的数据写入 模块以及所述像素驱动电路的驱动模块关断,所述第一初始化模块对所述驱动模块的驱动晶体管的源极的电位进行初始化;在数据写入阶段,控制所述数据写入模块以及所述驱动模块导通,控制所述第一初始化模块关断,所述数据写入模块将数据信号写入所述驱动模块的控制端,控制所述像素驱动电路的第二存储模块维持所述驱动晶体管的源极在所述数据写入阶段之前的电位;在发光阶段,控制所述驱动模块导通,控制所述数据写入模块与所述第一初始化模块关断,所述驱动模块向有机发光结构提供驱动电流,所述有机发光结构响应所述驱动电流以发光,控制所述像素驱动电路的第一存储模块维持所述驱动模块的控制端在所述发光阶段的电位。
本申请实施例提供了一种像素驱动电路及其驱动方法,设置像素驱动电路包括驱动模块、数据写入模块、第一存储模块、第一初始化模块和第二存储模块,设置驱动模块向有机发光结构提供驱动电流,有机发光结构响应驱动电流以发光,驱动模块包括驱动晶体管,数据写入模块设置为将数据信号写入驱动模块的控制端,第一存储模块设置为维持驱动模块的控制端在所述有机发光结构的发光阶段的电位,第一初始化模块设置为在初始化阶段对驱动晶体管的源极的电位进行初始化,第二存储模块设置为维持驱动晶体管的源极在所述数据信号写入所述驱动模块的控制端阶段之前的电位,在实现了像素驱动电路的驱动功能的同时,改善了显示残影问题,且数据写入阶段之前驱动晶体管的源极电位能够保持初始化电位,进一步改善了显示效果。
附图说明
图1为本申请一实施例提供的一种像素驱动电路的结构示意图;
图2为本申请一实施例提供的一种像素驱动电路的具体电路结构示意图;
图3为本申请一实施例提供的另一种像素驱动电路的结构示意图;
图4为本申请一实施例提供的另一种像素驱动电路的具体电路结构示意图;
图5为本申请一实施例提供的一种像素驱动电路的驱动时序图;
图6为本申请一实施例提供的一种驱动方法的流程示意图;
图7为本申请一实施例提供的一种显示面板的结构示意图;
图8为本申请一实施例提供的一种显示装置的结构示意图。
具体实施方式
本申请实施例提供了一种像素驱动电路,包括驱动模块、数据写入模块、第一存储模块、第一初始化模块和第二存储模块,驱动模块设置为向有机发光结构提供驱动电流,有机发光结构响应驱动电流以发光,驱动模块包括驱动晶体管,数据写入模块设置为将数据信号写入驱动模块的控制端,第一存储模块设置为维持驱动模块的控制端在有机发光结构的发光阶段的电位,第一初始化模块设置为在初始化阶段对驱动晶体管的源极的电位进行初始化,第二存储模块设置为维持驱动晶体管的源极在数据信号写入驱动模块的控制端阶段之前的电位。
有机发光显示装置包含有多个像素,每个像素包括像素驱动电路和有机发光结构,像素驱动电路中的驱动晶体管向有机发光结构提供驱动电流,有机发光结构在流经有机发光结构驱动电流的作用下发光。当有机发光显示装置在不同灰阶的显示画面之间进行切换时,由于像素驱动电路中的驱动晶体管的源极电位在短时间内会维持上一时刻的电位,切换后的显示画面会存在残影情况,即切换后的显示画面会受到切换前显示画面的影响,使得切换后的显示画面的实际显示灰阶与预设的显示灰阶不同,影响显示装置的显示效果。例如显示面板在经历了黑白棋盘格画面点屏了一段时间,即显示画面维持黑白棋盘格显示画面一段时间后,在将显示画面切换到低灰阶的灰画面时,会出现棋盘格的残影。
本申请实施例提供的像素驱动电路包括驱动模块、数据写入模块、第一存储模块、第一初始化模块和第二存储模块,设置驱动模块向有机发光结构提供驱动电流,有机发光结构响应驱动电流以发光,驱动模块包括驱动晶体管,数据写入模块设置为将数据信号写入驱动模块的控制端,第一存储模块设置为维持驱动模块的控制端在有机发光结构的发光阶段的电位,第一初始化模块设置为在初始化阶段对驱动晶体管的源极的电位进行初始化,第二存储模块设置为维持驱动晶体管的源极在数据信号写入驱动模块的控制端阶段之前的电位,在实现了像素驱动电路的驱动功能的同时,改善了显示残影情况,且数据写入阶段之前驱动晶体管的源极电位能够保持初始化电位,改善了显示效果。
图1为本申请一实施例提供的一种像素驱动电路的结构示意图,图2为本申请一实施例提供的一种像素驱动电路的具体电路结构示意图。结合图1和图2,像素驱动电路包括驱动模块1、数据写入模块2、第一存储模块3、第一初始化模块4和第二存储模块5,驱动模块1设置为向有机发光结构A提供驱动电流 Id,有机发光结构A响应驱动电流Id以发光,驱动模块1包括驱动晶体管M9,数据写入模块2设置为将数据信号写入驱动模块1的控制端a1,数据写入模块2将数据信号写入驱动模块1的控制端a1的路径如图1中的路径L1所示,第一存储模块3设置为维持驱动模块1的控制端a1在有机发光结构的发光阶段的电位,第一初始化模块4设置为在初始化阶段对驱动晶体管M9的源极,即驱动模块1的第一端a2或者驱动晶体管M9的第一端b2的电位进行初始化,第二存储模块5设置为维持驱动晶体管M9的源极在数据信号写入驱动模块的控制端阶段之前的电位。
结合图1和图2,利用第一初始化模块4在每一帧显示面板的初始化阶段对驱动晶体管M9的源极即驱动模块1的第一端a2或者驱动晶体管M9的第一端b2的电位进行初始化,使得切换后的显示画面对应的驱动晶体管M9的源极电位不会受切换前的显示画面对应的驱动晶体管M9的源极电位的影响,驱动晶体管M9产生的驱动电流Id又和驱动晶体管M9的源极电位相关,也就使得切换后显示画面对应的驱动晶体管M9的驱动电流Id不会受切换前显示画面的影响,进而有效改善了驱动晶体管M9的源极电位在短时间内维持上一时刻的电位导致的切换后的显示画面会受到切换前的显示画面的影响,切换后的显示画面存在残影的情况,进而改善显示装置的显示效果。
另外,结合图1和图2,第二存储模块5在数据写入阶段之前维持驱动晶体管M9的源极电位,即在每一帧显示画面的数据写入阶段之前,驱动晶体管M9的源极电位均能够维持在第一初始化模块4向驱动晶体管M9的源极提供的初始化电位,在数据写入阶段向驱动模块1的控制端a1,即驱动晶体管M9的栅极b1写入数据信号时,确保驱动晶体管M9的源极电位固定,这样写入相同的数据信号时,也就能够确保驱动晶体管M9的开关状态相同,发光阶段驱动晶体管M9产生的驱动电流Id也相同,进而改善显示装置的显示效果。
在一实施例中,结合图1和图2,可以设置第一初始化模块4的控制端a1接入第一扫描信号S1,第一初始化模块4的第一端a2与驱动晶体管M9的源极,即驱动模块1的第一端a2电连接,第一初始化模块4的第二端a3接入第一参考信号Ref1。示例性的,在初始化阶段,可以通过调节第一扫描信号S1使得第一初始化模块4的第一端a2和第二端a3导通,第一初始化模块4将第一参考信号Ref1写入驱动晶体管M9的源极,切换后的显示画面对应的驱动晶体管M9的源极在初始化阶段的电位始终为第一参考信号Ref1的电位,这样切换后的显示 画面对应的驱动晶体管M9的源极电位不会受切换前的显示画面对应的驱动晶体管M9的源极电位的影响,也就使得切换后显示画面对应的驱动晶体管M9的驱动电流Id不会受切换前显示画面的影响,有效改善了驱动晶体管M9的源极电位在短时间内维持上一时刻的电位导致的切换后的显示画面存在残影的情况,进而改善了显示装置的显示效果。
结合图1和图2,可以设置第二存储模块5的第一端d1与驱动晶体管M9的源极,即驱动模块1的第一端a2电连接,第二存储模块5的第二端d2接入第一电源信号VDD。示例性地,可以设置第二存储模块5为存储电容C2,初始化阶段,第一初始化模块4向驱动晶体管M9的源极,即驱动模块1的第一端a2写入第一参考信号Ref1,由于第一扫描信号S1完成高低电平的跳变需要一定的时间,即第一扫描信号S1高低电平的跳变并不是瞬间完成的,初始化阶段到数据写入阶段的转变也不是瞬间完成的,若由初始化阶段进入数据写入阶段的过程中驱动晶体管M9的源极电位发生变化,同样会影响驱动晶体管M9在发光阶段产生的驱动电流Id的大小,即使写入相同的数据信号,驱动晶体管M9产生的驱动电流Id的大小也不同,影响显示装置的显示效果。本申请实施例设置第二存储模块5在数据写入阶段之前维持驱动晶体管M9的源极电位,即在每一帧显示画面的数据写入阶段之前,驱动晶体管M9的源极电位均能够维持在第一初始化模块4向驱动晶体管M9的源极提供的第一参考信号Ref1的电位,在数据写入阶段向驱动晶体管M9的栅极写入数据信号时,驱动晶体管M9的源极电位固定,这样写入相同的数据信号时,也就能够确保驱动晶体管M9的开关状态相同,发光阶段驱动晶体管M9产生的驱动电流Id也相同,进而改善显示装置的显示效果。
图3为本申请一实施例提供的另一种像素驱动电路的结构示意图,图4为本申请一实施例提供的另一种像素驱动电路的具体电路结构示意图。在图1和图2所示结构的像素驱动电路的基础上,图3和图4所示结构的像素驱动电路还包括电位维持模块6,电位维持模块6设置为与所述第一存储模块3共同维持驱动模块1的控制端a1在有机发光结构的发光阶段的电位。如图3所示,在发光阶段,驱动晶体管M9向有机发光结构A提供驱动电流Id,有机发光结构A响应驱动晶体管M9产生的驱动电流Id并发光,有机发光元件的发光亮度取决于驱动晶体管M9产生的驱动电流Id的大小,驱动晶体管M9产生的驱动电流Id的大小又与驱动晶体管M9的栅极,即驱动模块1的控制端a1的电位相关, 设置像素驱动电路包括电位维持模块6且电位维持模块6能够维持驱动模块1的控制端a1在发光阶段的电位,有利于提高发光阶段驱动晶体管M9栅极电位的稳定性,进而提高驱动晶体管M9产生的驱动电流Id的稳定性,提升显示装置的显示效果。
结合图3和图4,可以设置电位维持模块6包括第一晶体管M1和第三存储模块61,第三存储模块61的第一端d1接入固定电位,示例性地,可以设置第三存储模块61的第一端d1接入第一电源信号VDD,第三存储模块61的第二端d2与第一晶体管M1的第一端b2电连接,第一晶体管M1的控制端b1接入使能信号EM,第一晶体管M1的第二端b3与驱动模块1的控制端a1电连接。
结合图3和图4,在发光阶段,通过调节使能信号EM控制第一晶体管M1的第一端b2和第二端b3导通,示例性地,可以设置第三存储模块61包括存储电容,第三存储模块61则可以维持驱动模块1的控制端a1在发光阶段的电位,有利于提高发光阶段驱动晶体管M9栅极b1电位的稳定性,进而提高驱动晶体管M9产生的驱动电流Id的稳定性,提升显示装置的显示效果。
结合图1至图4,像素驱动电路还可以包括阈值补偿模块7,阈值补偿模块7的控制端a1接入第二扫描信号S2,阈值补偿模块7的第一端a2与驱动模块1的第二端a3电连接,阈值补偿模块7的第二端a3与驱动模块1的控制端a1电连接,阈值补偿模块7设置为在有机发光结构的发光阶段之前,将包含驱动晶体管M9阈值电压信息的补偿信号写入驱动模块1的控制端a1。示例性地,可以设置阈值补偿模块7包括第二晶体管M2且设置第二晶体管M2为多栅结构的晶体管,这里示例性地设置第二晶体管M2为三栅结构的晶体管,在发光阶段,阈值补偿模块7,即第二晶体管M2关断,设置第二晶体管M2为多栅结构能够有效降低第二晶体管M2产生的漏电流,提高驱动晶体管M9的栅极b1电位的稳定性,进而提升显示装置的显示效果。
在一实施例中,结合图1至图4,像素驱动电路还可以包括第一发光控制模块8和第二发光控制模块9中的至少一种,其中,第一发光控制模块8的控制端a1接入使能信号EM,第一发光控制模块8的第一端a2接入第一电源信号VDD,第一发光控制模块8的第二端a3与驱动晶体管M9的源极,即驱动模块1的第一端a2电连接;第二发光控制模块9的控制端a1接入使能信号EM,第二发光控制模块9的第一端a2与驱动模块1的第二端a3电连接,第二发光控制模块9的第二端a3与有机发光结构A的第一电极A1电连接,有机发光结构A 的第二电极A2接入第二电源信号VSS,即像素驱动电路可以仅包括第一发光控制模块8或者仅包括第二发光控制模块9,也可以如图1至图4所示,像素驱动电路同时包括第一发光控制模块8和第二发光控制模块9。
在一实施例中,结合图1至图4,像素驱动电路还可以包括第二初始化模块10和第三初始化模块11中的至少一种,其中,第二初始化模块10的控制端a1接入第一扫描信号S1,第二初始化模块10的第一端a2与驱动模块1的控制端a1电连接,第二初始化模块10的第二端a3接入第二参考信号Ref2,第二初始化模块10设置为在初始化阶段对驱动模块1的控制端a1的电位进行初始化;第三初始化模块11的控制端a1接入第一扫描信号S1,第三初始化模块11的第一端a2与有机发光结构A的第一电极A1电连接,第三初始化模块11的第二端a3接入第三参考信号Ref3,第三初始化模块11设置为在初始化阶段对有机发光结构A的第一电极A1的电位进行初始化,即像素驱动电路可以仅包括第二初始化模块10或者仅包括第三初始化模块11,或者如图1至图4所示,像素驱动电路同时包括第二初始化模块10和第三初始化模块11。示例性地,第一参考信号Ref1、第二参考信号Ref2以及第三参考信号Ref3可以相同,即三者可以由同一条参考信号线提供,以减少与像素驱动电路连接的信号线的数量,有利于提高显示装置的开口率。
示例性地,可以设置第二初始化模块10包括第三晶体管M3,第三初始化模块11包括第四晶体管M4,设置第三晶体管M3以及第四晶体管M4为多栅结构的晶体管,这里示例性地设置第三晶体管M3和第四晶体管M4均为三栅结构的晶体管,设置第三晶体管M3为多栅结构的晶体管可以有效降低发光阶段第三晶体管M3产生的漏电流,提高驱动晶体管M9的栅极电位的稳定性,进而提升显示装置的显示效果。设置第四晶体管M4为多栅结构的晶体管可以有效降低发光阶段第四晶体管M4产生的漏电流,提高有机发光结构A的第一电极A1电位的稳定性,进而提升显示装置的显示效果。
图5为本申请一实施例提供的一种像素驱动电路的驱动时序图。结合图1和图2,可以设置第一初始化模块4包括第五晶体管M5,数据写入模块2包括第六晶体管M6,第一发光控制模块8包括第七晶体管M7,第二发光控制模块9包括第八晶体管M8,可以设置第一晶体管M1至第八晶体管M8以及驱动晶体管M9均为P型晶体管,也可以设置第一晶体管M1至第八晶体管M8以及驱动晶体管M9均为N型晶体管,本申请实施例对此不作限定,下面以第一晶体 管M1至第八晶体管M8以及驱动晶体管M9均为P型晶体管为例,结合图1、图2和图5对像素驱动电路的工作原理进行说明:
在t1阶段,即初始化阶段,第三晶体管M3、第四晶体管M4和第五晶体管M5在低电平的第一扫描信号S1的作用下,各自对应的第一端b2与第二端b3之间连通,第一晶体管M1、第二晶体管M2以及第六晶体管M6至第八晶体管M8和驱动晶体管M9在各自的栅极b1输入的控制信号的作用下,对应的第一端b2与第二端b3之间关断。
在这种情况下,通过第三晶体管M3向驱动晶体管M9的栅极写入第二参考信号Ref2以完成对驱动晶体管M9栅极b1电位的初始化,通过第四晶体管M4向有机发光结构A的第一电极A1写入第三参考信号Ref3以完成对有机发光结构A第一电极A1电位的初始化,通过第五晶体管M5向驱动晶体管M9的源极,即第一端b2写入第一参考信号Ref1以完成对驱动晶体管M9源极电位的初始化,使得切换后的显示画面对应的驱动晶体管M9的源极电位不会受切换前的显示画面对应的驱动晶体管M9的源极电位的影响,有效改善了驱动晶体管M9的源极电位在短时间内维持上一时刻的电位导致的切换后的显示画面存在残影的情况,进而改善了显示装置的显示效果。
在t2阶段,即数据写入阶段,第二晶体管M2、第六晶体管M6在低电平的第二扫描信号S2的作用下,各自对应的第一端b2与第二端b3之间连通,第一晶体管M1、第三晶体管M3至第五晶体管M5以及第七晶体管至第八晶体管M8在各自的栅极b1输入的控制信号的作用下,对应的第一端b2与第二端b3之间关断。
在这种情况下,第六晶体管M6的第一端b2接入数据信号DATA并将数据信号写入驱动晶体管M9的栅极b1,数据信号的写入路径如图2中的路径L2所示,驱动晶体管M9通过第二晶体管M2等效成二极管且正向偏置,数据信号的电压V data减去驱动晶体管M9的阈值电压的绝对值|Vth|后获得的补偿电压被施加至驱动晶体管M9的栅极b1,即阈值补偿模块7在有机发光结构的发光阶段之前,将包含驱动晶体管M9阈值电压信息的补偿信号写入驱动模块1的控制端a1,此时第一存储模块3的第一端d1上的电压值等于补偿电压,第一存储模块3的第二端d2上的电压值等于第一电源信号VDD的电压值Vdd,第一存储模块3的第一端d1与第二端d2之间的电压差对应的电荷存储在第一存储模块3的存储电容C1中。
结合图1、图2和图5,第二存储模块5在数据写入阶段之前维持驱动晶体管M9的源极,即第一端b2电位,即在每一帧显示画面的数据写入阶段之前,驱动晶体管M9的源极电位均能够维持在第五晶体管M5向驱动晶体管M9的源极提供的第一参考信号Ref1的电位,在数据写入阶段向驱动晶体管M9的栅极b1写入数据信号时,确保驱动晶体管M9的源极电位固定,这样写入相同的数据信号时,也就能够确保驱动晶体管M9的开关状态相同,发光阶段驱动晶体管M9产生的驱动电流Id也相同,进而改善显示装置的显示效果。
在t3阶段,即发光阶段,第七晶体管M7和第八晶体管M8在低电平的使能信号EM的作用下,各自对应的第一端b2与第二端b3之间连通,第一晶体管M1至第六晶体管M6在各自的栅极b1输入的控制信号的作用下,对应的第一端b2与第二端b3之间关断。
在这种情况下,第一电源信号VDD通过第七晶体管M7传输至驱动晶体管M9的第一端b2,即源极,驱动晶体管M9的栅极b1电压与第一电源信号VDD的电压值Vdd之间的电压差产生的驱动电流Id经过第八晶体管M8流向有机发光结构A,有机发光结构A响应驱动电流Id发光。
在t3阶段,由于第一存储模块3与驱动晶体管M9的栅极b1电连接,且第一存储模块3能够维持驱动晶体管M9的栅极b1在发光阶段,即t3阶段的电压,驱动晶体管M9的栅极b1与第一端b2(即源极)之间的电压Vgs通过第一存储模块3保持或者基本上保持(Vdata+Vth)-Vdd,根据驱动晶体管M9的驱动电流Id与栅极b1和源极之间电压差的对应关系,驱动晶体管M9的驱动电流Id和栅极b1与源极之间的电压Vgs减去驱动晶体管M9的阈值电压Vth的平方即(Vdata-Vdd) 2成比例,因此驱动晶体管M9的驱动电流Id与驱动晶体管M9的阈值电压Vth无关,即像素驱动电路在发光阶段之前实现了对驱动晶体管M9阈值电压的抓取并在发光阶段对驱动晶体管M9的阈值电压进行了补偿,使得在发光阶段流经有机发光结构A的驱动电流Id与驱动晶体管M9的阈值电压无关,有效避免了驱动晶体管M9阈值电压漂移引起的显示不均匀的情况。
结合图3、图4和图5,当像素驱动电路还包括电位维持模块6,电位维持模块6包括第一晶体管M1和第三存储模块61时,在t1阶段,即初始化阶段和t2阶段,即数据写入阶段,第一晶体管M1在高电平的使能信号EM的作用下,对应的第一端b2与第二端b3之间关断。在t3阶段,即发光阶段,第一晶体管M1在低电平的使能信号EM的作用下,对应的第一端b2与第二端b3之间连通, 第三存储模块61维持驱动模块1的控制端a1在发光阶段的电位,有利于提高发光阶段驱动晶体管M9栅极b1电位的稳定性,进而提高驱动晶体管M9产生的驱动电流Id的稳定性,提升显示装置的显示效果。
需要说明的是,上述实施例中提到的高电平与低电平均为相对概念,本申请实施例对高电平与低电平所包含的电平值的大小不作限定。另外,本申请实施例对像素驱动电路中晶体管的数量以及电容元件的数量不作限定,可以根据需求对像素驱动电路中晶体管的数量以及电容元件的数量进行选择。
本申请实施例提供的像素驱动电路包括驱动模块、数据写入模块、第一存储模块、第一初始化模块和第二存储模块,设置驱动模块向有机发光结构提供驱动电流,有机发光结构响应驱动电流发光,驱动模块包括驱动晶体管,数据写入模块设置为将数据信号写入驱动模块的控制端,第一存储模块设置为维持驱动模块的控制端在发光阶段的电位,第一初始化模块设置为在初始化阶段对驱动晶体管的源极的电位进行初始化,第二存储模块设置为维持驱动晶体管的源极在数据写入阶段之前的电位,在实现了像素驱动电路的驱动功能的同时,改善了显示残影情况,且数据写入阶段之前驱动晶体管的源极电位能够保持初始化电位,改善了显示效果。
本申请一实施例还提供了一种像素驱动电路的驱动方法,用于驱动上述实施例的像素驱动电路。图6为本申请一实施例提供的一种驱动方法的流程示意图。如图6所示,驱动方法包括步骤S110至步骤S130。
在步骤S110中,在初始化阶段,控制所述像素驱动电路的第一初始化模块导通,控制所述像素驱动电路的数据写入模块以及所述像素驱动电路的驱动模块关断,第一初始化模块对所述驱动模块的驱动晶体管的源极的电位进行初始化。
结合图1、图2和图5,在t1阶段,即初始化阶段,控制第一初始化模块4导通,控制数据写入模块2以及驱动模块1关断,第一初始化模块4对驱动晶体管M9的源极的电位进行初始化。
在步骤S120中,在数据写入阶段,控制数据写入模块以及驱动模块导通,控制第一初始化模块关断,数据写入模块将数据信号写入驱动模块的控制端,控制所述像素驱动电路的第二存储模块维持所述驱动晶体管的源极在所述数据写入阶段之前的电位。
结合图1、图2和图5,在t2阶段,即数据写入阶段,控制数据写入模块2 以及驱动模块1导通,控制第一初始化模块4关断,数据写入模块2将数据信号写入驱动模块1的控制端a1。
在步骤S130中,在发光阶段,控制驱动模块导通,控制数据写入模块与第一初始化模块关断,驱动模块向有机发光结构提供驱动电流,有机发光结构响应驱动电流以发光,控制所述像素驱动电路的第一存储模块维持所述驱动模块的控制端在所述发光阶段的电位。
结合图1、图2和图5,在t3阶段,即发光阶段,控制驱动模块1导通,控制数据写入模块2与第一初始化模块4关断,驱动模块1向有机发光结构A提供驱动电流Id,有机发光结构A响应驱动电流Id发光。
在一实施例中,结合图3、图4和图5,像素驱动电路还包括电位维持模块6;电位维持模块6包括第一晶体管M1和第三存储模块61,第三存储模块61的第一端d1接入固定电位,第三存储模块61的第二端d2与第一晶体管M1的第一端b2电连接,第一晶体管M1的控制端b1接入使能信号EM,第一晶体管M1的第二端b3与驱动模块1的控制端a1电连接。驱动方法包括:在初始化阶段和数据写入阶段,控制第一晶体管关断。
结合图3、图4和图5,在t1阶段,即初始化阶段,以及t2阶段,即数据写入阶段,控制第一晶体管M1关断。
在发光阶段,控制第一晶体管导通,第三存储模块维持驱动模块的控制端在发光阶段的电位。
在一实施例中,结合图3、图4和图5,在t3阶段,即发光阶段,控制第一晶体管M1导通,第三存储模块61维持驱动模块1的控制端a1在发光阶段的电位。
本申请实施例还提供的一种显示面板,图7为本申请一实施例提供的一种显示面板的结构示意图。如图7所示,显示面板可以是有机发光显示面板,显示面板还可以包括多条扫描信号线D12、多条数据信号线D13、栅极驱动模块D121、源极驱动模块D131、驱动控制模块D101和电源供给模块D102,像素驱动电路D1设置于扫描信号线D12与数据信号线D13交叉设置形成的空间内,栅极驱动模块D121响应驱动控制模块D101产生的扫描驱动控制信号,通过扫描信号线D12向对应的像素驱动电路输入扫描信号,像素驱动电路D1在与之电连接的扫描信号线D12输入的扫描信号的作用下,连通与之对应电连接的数据信号线D13,源极驱动电路D131响应驱动控制模块D101产生的数据驱动控 制信号,通过数据信号线D13向对应的像素驱动电路D1输入数据信号,电源供给模块D102向像素驱动电路提供第一电源信号VDD和第二电源信号VSS,显示面板依此实现显示功能。显示面板包括上述实施例中的像素驱动电路。
本申请实施例还提供的一种显示装置,图8为本申请一实施例提供的一种显示装置的结构示意图。如图8所示,显示装置27包括上述实施例中的显示面板26。示例性地,显示装置可以是手机、电脑或可穿戴设备等电子设备。
在一实施例中,第一初始化模块4的控制端a1接入第一扫描信号S1,第一初始化模块4的第一端a2与驱动晶体管M9的源极电连接,第一初始化模块4的第二端a3接入第一参考信号Ref1;第二存储模块5的第一端d1与驱动晶体管M9的源极电连接,第二存储模块5的第二端d2接入第一电源信号VDD。
在一实施例中,像素驱动电路还包括电位维持模块6;在发光阶段,控制电位维持模块6与第一存储模块3共同维持驱动模块1的控制端a1的电位。
在一实施例中,第三存储模块61的第一端d1接入第一电源信号VDD。
在一实施例中,像素驱动电路还包括阈值补偿模块7,阈值补偿模块7的控制端a1接入第二扫描信号S2,阈值补偿模块7的第一端a2与驱动模块1的第二端a3电连接,阈值补偿模块7的第二端a3与驱动模块1的控制端a1电连接。驱动方法还包括:在所述发光阶段之前,控制所述阈值补充模块7导通,将包含驱动晶体管M9阈值电压信息的补偿信号写入驱动模块1的控制端a1。
在一实施例中,像素驱动电路还包括第一发光控制模块8和第二发光控制模块9中的至少一种。
第一发光控制模块8的控制端a1接入使能信号EM,第一发光控制模块8的第一端a2接入第一电源信号VDD,第一发光控制模块8的第二端a3与驱动晶体管M9的源极电连接。
第二发光控制模块9的控制端a1接入使能信号EM,第二发光控制模块9的第一端a2与驱动模块1的第二端a3电连接,第二发光控制模块9的第二端a3与有机发光结构A的第一电极A1电连接,有机发光结构A的第二电极A2接入第二电源信号VSS。
在一实施例中,像素驱动电路还包括第二初始化模块10和第三初始化模块11中的至少一种。
第二初始化模块10的控制端a1接入第一扫描信号S1,第二初始化模块10的第一端a2与驱动模块1的控制端a1电连接,第二初始化模块10的第二端a3 接入第二参考信号Ref2,所述驱动方法包括:在所述初始化阶段,控制所述第二初始化模块对所述驱动模块的控制端的电位进行初始化。
第三初始化模块11的控制端a1接入第一扫描信号S1,第三初始化模块11的第一端a2与有机发光结构A的第一电极A1电连接,第三初始化模块11的第二端a3接入第三参考信号Ref3,所述驱动方法包括:在所述初始化阶段,控制所述第三初始化模块对所述有机发光结构的第一电极的电位进行初始化。
结合图1至图4,在发光阶段,阈值补偿模块7(在图2和图4中为第二晶体管M2)存在漏流现象,导致写入驱动模块1的控制端即驱动晶体管M9的栅极b1的补偿电压不能持久保持,影响发光阶段驱动晶体管M9栅极b1电位的稳定性,因此设置第一存储模块3和电位维持模块6使得驱动模块1的控制端a1在有机发光结构A的发光阶段的电位维持在V data-|V th|,提高发光阶段驱动晶体管M9栅极b1电位的稳定性,进而提高驱动晶体管M9产生的驱动电流Id的稳定性,提升显示装置的显示效果。

Claims (16)

  1. 一种像素驱动电路,包括;
    驱动模块,所述驱动模块设置为向有机发光结构提供驱动电流,所述有机发光结构响应所述驱动电流以发光,所述驱动模块包括驱动晶体管;
    数据写入模块,所述数据写入模块设置为将数据信号写入所述驱动模块的控制端;
    第一存储模块,所述第一存储模块设置为维持所述驱动模块的控制端在所述有机发光结构的发光阶段的电位;
    第一初始化模块,所述第一初始化模块设置为在初始化阶段对所述驱动晶体管的源极的电位进行初始化;
    第二存储模块,所述第二存储模块设置为维持所述驱动晶体管的源极在所述数据信号写入所述驱动模块的控制端阶段之前的电位。
  2. 根据权利要求1所述的像素驱动电路,其中,
    所述第一初始化模块的控制端接入第一扫描信号,所述第一初始化模块的第一端与所述驱动晶体管的源极电连接,所述第一初始化模块的第二端接入第一参考信号;
    所述第二存储模块的第一端与所述驱动晶体管的源极电连接,所述第二存储模块的第二端接入第一电源信号。
  3. 根据权利要求1所述的像素驱动电路,还包括电位维持模块;
    所述电位维持模块设置为与所述第一存储模块共同维持所述驱动模块的控制端在有机发光结构的发光阶段的电位。
  4. 根据权利要求3所述的像素驱动电路,其中,所述电位维持模块包括第一晶体管和第三存储模块,所述第三存储模块的第一端接入固定电位,所述第三存储模块的第二端与所述第一晶体管的第一端电连接,所述第一晶体管的控制端接入使能信号,所述第一晶体管的第二端与所述驱动模块的控制端电连接。
  5. 根据权利要求4所述的像素驱动电路,其中,所述第三存储模块的第一端接入第一电源信号。
  6. 根据权利要求1-5任一项所述的像素驱动电路,还包括阈值补偿模块;
    所述阈值补偿模块的控制端接入第二扫描信号,所述阈值补偿模块的第一端与所述驱动模块的第二端电连接,所述阈值补偿模块的第二端与所述驱动模块的控制端电连接,所述阈值补偿模块设置为在所述有机发光结构的发光阶段之前,将包含所述驱动晶体管阈值电压信息的补偿信号写入所述驱动模块的控 制端。
  7. 根据权利要求1-5任一项所述的像素驱动电路,还包括第一发光控制模块和第二发光控制模块中的至少一种;
    所述第一发光控制模块的控制端接入使能信号,所述第一发光控制模块的第一端接入第一电源信号,所述第一发光控制模块的第二端与所述驱动晶体管的源极电连接;
    所述第二发光控制模块的控制端接入使能信号,所述第二发光控制模块的第一端与所述驱动模块的第二端电连接,所述第二发光控制模块的第二端与所述有机发光结构的第一电极电连接,所述有机发光结构的第二电极接入第二电源信号。
  8. 根据权利要求1-5任一项所述的像素驱动电路,还包括第二初始化模块和第三初始化模块中的至少一种;
    所述第二初始化模块的控制端接入第一扫描信号,所述第二初始化模块的第一端与所述驱动模块的控制端电连接,所述第二初始化模块的第二端接入第二参考信号,所述第二初始化模块设置为在所述初始化阶段对所述驱动模块的控制端的电位进行初始化;
    所述第三初始化模块的控制端接入第一扫描信号,所述第三初始化模块的第一端与所述有机发光结构的第一电极电连接,所述第三初始化模块的第二端接入第三参考信号,所述第三初始化模块设置为在所述初始化阶段对所述有机发光结构的第一电极的电位进行初始化。
  9. 一种像素驱动电路的驱动方法,用于驱动如权利要求1所述的像素驱动电路,所述驱动方法包括:
    在初始化阶段,控制所述像素驱动电路的第一初始化模块导通,控制所述像素驱动电路的数据写入模块以及所述像素驱动电路的驱动模块关断,所述第一初始化模块对所述驱动模块的驱动晶体管的源极的电位进行初始化;
    在数据写入阶段,控制所述数据写入模块以及所述驱动模块导通,控制所述第一初始化模块关断,所述数据写入模块将数据信号写入所述驱动模块的控制端,控制所述像素驱动电路的第二存储模块维持所述驱动晶体管的源极在所述数据写入阶段之前的电位;
    在发光阶段,控制所述驱动模块导通,控制所述数据写入模块与所述第一初始化模块关断,所述驱动模块向所述有机发光结构提供驱动电流,所述有机 发光结构响应所述驱动电流以发光,控制所述像素驱动电路的第一存储模块维持所述驱动模块的控制端在所述发光阶段的电位。
  10. 根据权利要求9所述的驱动方法,其中,所述第一初始化模块的控制端接入第一扫描信号,所述第一初始化模块的第一端与所述驱动晶体管的源极电连接,所述第一初始化模块的第二端接入第一参考信号;所述第二存储模块的第一端与所述驱动晶体管的源极电连接,所述第二存储模块的第二端接入第一电源信号。
  11. 根据权利要求9所述的驱动方法,其中,所述像素驱动电路还包括电位维持模块;
    在发光阶段,控制所述电位维持模块与所述第一存储模块共同维持所述驱动模块的控制端的电位。
  12. 根据权利要求11所述的驱动方法,其中,所述电位维持模块包括第一晶体管和第三存储模块,所述第三存储模块的第一端接入固定电位,所述第三存储模块的第二端与所述第一晶体管的第一端电连接,所述第一晶体管的控制端接入使能信号,所述第一晶体管的第二端与所述驱动模块的控制端电连接;
    所述驱动方法包括:
    在所述初始化阶段和所述数据写入阶段,控制所述第一晶体管关断;
    在所述发光阶段,控制所述第一晶体管导通,所述第三存储模块维持所述驱动模块的控制端在所述发光阶段的电位。
  13. 根据权利要求12所述的驱动方法,其中,所述第三存储模块的第一端接入第一电源信号。
  14. 根据权利要求9-13任一项所述的驱动方法,其中,所述像素驱动电路还包括阈值补偿模块,所述阈值补偿模块的控制端接入第二扫描信号,所述阈值补偿模块的第一端与所述驱动模块的第二端电连接,所述阈值补偿模块的第二端与所述驱动模块的控制端电连接,
    所述驱动方法还包括:
    在所述发光阶段之前,控制所述阈值补偿模块导通,将包含所述驱动晶体管阈值电压信息的补偿信号写入所述驱动模块的控制端。
  15. 根据权利要求9-13任一项所述的驱动方法,其中,所述像素驱动电路还包括第一发光控制模块和第二发光控制模块中的至少一种;
    所述第一发光控制模块的控制端接入使能信号,所述第一发光控制模块的 第一端接入第一电源信号,所述第一发光控制模块的第二端与所述驱动晶体管的源极电连接;
    所述第二发光控制模块的控制端接入使能信号,所述第二发光控制模块的第一端与所述驱动模块的第二端电连接,所述第二发光控制模块的第二端与所述有机发光结构的第一电极电连接,所述有机发光结构的第二电极接入第二电源信号。
  16. 根据权利要求9-13任一项所述的驱动方法,其中,所述像素驱动电路还包括第二初始化模块和第三初始化模块中的至少一种;
    所述第二初始化模块的控制端接入第一扫描信号,所述第二初始化模块的第一端与所述驱动模块的控制端电连接,所述第二初始化模块的第二端接入第二参考信号;所述驱动方法包括:在所述初始化阶段,控制所述第二初始化模块对所述驱动模块的控制端的电位进行初始化;
    所述第三初始化模块的控制端接入第一扫描信号,所述第三初始化模块的第一端与所述有机发光结构的第一电极电连接,所述第三初始化模块的第二端接入第三参考信号;所述驱动方法包括:在所述初始化阶段,控制所述第三初始化模块对所述有机发光结构的第一电极的电位进行初始化。
PCT/CN2019/113224 2019-04-29 2019-10-25 像素驱动电路及其驱动方法 WO2020220613A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356076.0A CN110047431A (zh) 2019-04-29 2019-04-29 像素驱动电路及其驱动方法
CN201910356076.0 2019-04-29

Publications (1)

Publication Number Publication Date
WO2020220613A1 true WO2020220613A1 (zh) 2020-11-05

Family

ID=67280305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113224 WO2020220613A1 (zh) 2019-04-29 2019-10-25 像素驱动电路及其驱动方法

Country Status (2)

Country Link
CN (1) CN110047431A (zh)
WO (1) WO2020220613A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114898703A (zh) * 2022-05-27 2022-08-12 云谷(固安)科技有限公司 像素电路及其驱动方法、显示面板
US20230043626A1 (en) * 2020-03-24 2023-02-09 Beijing Boe Display Technology Co., Ltd. Pixel driving circuits and display devices

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110047431A (zh) * 2019-04-29 2019-07-23 云谷(固安)科技有限公司 像素驱动电路及其驱动方法
CN110751927B (zh) * 2019-10-31 2021-10-26 上海天马有机发光显示技术有限公司 像素驱动电路及其驱动方法、显示面板和显示装置
CN110942743B (zh) * 2019-12-26 2021-04-13 云谷(固安)科技有限公司 像素电路的驱动方法、显示面板和显示装置
CN111383596A (zh) 2020-03-25 2020-07-07 昆山国显光电有限公司 像素电路、显示面板和像素电路的驱动方法
CN117995090A (zh) * 2020-10-15 2024-05-07 厦门天马微电子有限公司 显示面板及其驱动方法以及显示装置
CN112992055B (zh) * 2021-04-27 2021-07-27 武汉华星光电半导体显示技术有限公司 像素电路及显示面板
US11935470B2 (en) 2021-04-30 2024-03-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Pixel circuit and driving method thereof, and display device
CN113936600A (zh) * 2021-11-10 2022-01-14 云谷(固安)科技有限公司 像素电路及显示面板
CN114170967A (zh) * 2021-12-22 2022-03-11 云谷(固安)科技有限公司 阵列基板、阵列基板的制作方法和显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186822A1 (en) * 2005-02-18 2006-08-24 Samsung Sdi Co., Ltd. Time-divisional driving organic electroluminescence display
CN101630481A (zh) * 2008-07-18 2010-01-20 三星移动显示器株式会社 像素和使用所述像素的有机发光显示装置
CN103050080A (zh) * 2011-10-11 2013-04-17 上海天马微电子有限公司 有机发光显示器的像素电路及其驱动方法
CN103927976A (zh) * 2013-12-31 2014-07-16 上海天马微电子有限公司 有机发光二级管像素驱动电路及有机发光二极管显示器
CN108154840A (zh) * 2018-01-19 2018-06-12 昆山国显光电有限公司 一种像素电路及其驱动方法、显示装置
CN108288457A (zh) * 2018-01-19 2018-07-17 昆山国显光电有限公司 像素电路及其驱动方法、显示装置
CN110047431A (zh) * 2019-04-29 2019-07-23 云谷(固安)科技有限公司 像素驱动电路及其驱动方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003177709A (ja) * 2001-12-13 2003-06-27 Seiko Epson Corp 発光素子用の画素回路
KR101950819B1 (ko) * 2011-07-15 2019-04-26 엘지디스플레이 주식회사 발광표시장치
JP2018077600A (ja) * 2016-11-08 2018-05-17 株式会社ジャパンディスプレイ 表示装置
KR102448030B1 (ko) * 2017-09-21 2022-09-28 삼성디스플레이 주식회사 표시장치
CN108564920B (zh) * 2018-04-26 2019-11-05 上海天马有机发光显示技术有限公司 一种像素电路及显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060186822A1 (en) * 2005-02-18 2006-08-24 Samsung Sdi Co., Ltd. Time-divisional driving organic electroluminescence display
CN101630481A (zh) * 2008-07-18 2010-01-20 三星移动显示器株式会社 像素和使用所述像素的有机发光显示装置
CN103050080A (zh) * 2011-10-11 2013-04-17 上海天马微电子有限公司 有机发光显示器的像素电路及其驱动方法
CN103927976A (zh) * 2013-12-31 2014-07-16 上海天马微电子有限公司 有机发光二级管像素驱动电路及有机发光二极管显示器
CN108154840A (zh) * 2018-01-19 2018-06-12 昆山国显光电有限公司 一种像素电路及其驱动方法、显示装置
CN108288457A (zh) * 2018-01-19 2018-07-17 昆山国显光电有限公司 像素电路及其驱动方法、显示装置
CN110047431A (zh) * 2019-04-29 2019-07-23 云谷(固安)科技有限公司 像素驱动电路及其驱动方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230043626A1 (en) * 2020-03-24 2023-02-09 Beijing Boe Display Technology Co., Ltd. Pixel driving circuits and display devices
US11955061B2 (en) * 2020-03-24 2024-04-09 Beijing Boe Display Technology Co., Ltd. Pixel driving circuits and display devices
CN114898703A (zh) * 2022-05-27 2022-08-12 云谷(固安)科技有限公司 像素电路及其驱动方法、显示面板

Also Published As

Publication number Publication date
CN110047431A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
WO2020220613A1 (zh) 像素驱动电路及其驱动方法
CN107358917B (zh) 一种像素电路、其驱动方法、显示面板及显示装置
KR102370381B1 (ko) 픽셀 회로, 픽셀 회로의 구동 방법 및 표시 장치
US11688319B2 (en) Driving method of a pixel circuit, display panel, and display device
CN113838421B (zh) 像素电路及其驱动方法、显示面板
US11881164B2 (en) Pixel circuit and driving method thereof, and display panel
CN109493795B (zh) 像素电路、像素驱动方法和显示装置
WO2020001635A1 (zh) 驱动电路及其驱动方法、显示装置
US10978002B2 (en) Pixel circuit and driving method thereof, and display panel
US11227548B2 (en) Pixel circuit and display device
WO2020192278A1 (zh) 像素电路及其驱动方法、显示基板、显示装置
TWI417843B (zh) 對偶畫素單元及對偶驅動電路
TW201322223A (zh) 像素電路及其驅動方法
JP2019527844A (ja) 電子回路及び駆動方法、表示パネル、並びに表示装置
JP2021536026A (ja) 画素回路およびその駆動方法、表示装置
US20090146928A1 (en) Organic Electroluminescence Display Device
WO2020187158A1 (zh) 像素驱动电路和显示面板及其驱动方法、显示装置
CN112908267B (zh) 像素电路及驱动方法、显示装置
CN111354315B (zh) 显示面板及显示装置、像素驱动方法
KR20210055146A (ko) 표시장치 및 이의 구동방법
GB2620507A (en) Pixel circuit and driving method therefor and display panel
CN113012642A (zh) 像素电路、显示面板以及驱动方法
JP2014038168A (ja) 表示装置、電子機器、駆動方法および駆動回路
JP2011069943A (ja) 表示装置および電子機器
CN111445836B (zh) 像素电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926968

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926968

Country of ref document: EP

Kind code of ref document: A1