WO2020220444A1 - 光学镜头、取像模组及移动终端 - Google Patents

光学镜头、取像模组及移动终端 Download PDF

Info

Publication number
WO2020220444A1
WO2020220444A1 PCT/CN2019/091801 CN2019091801W WO2020220444A1 WO 2020220444 A1 WO2020220444 A1 WO 2020220444A1 CN 2019091801 W CN2019091801 W CN 2019091801W WO 2020220444 A1 WO2020220444 A1 WO 2020220444A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical
object side
optical axis
optical lens
Prior art date
Application number
PCT/CN2019/091801
Other languages
English (en)
French (fr)
Inventor
邹金华
刘彬彬
邹海荣
Original Assignee
南昌欧菲精密光学制品有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南昌欧菲精密光学制品有限公司 filed Critical 南昌欧菲精密光学制品有限公司
Priority to US17/604,739 priority Critical patent/US20220260809A1/en
Publication of WO2020220444A1 publication Critical patent/WO2020220444A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/34Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having four components only

Definitions

  • the present invention claims the priority of the Chinese patent application whose application date is April 30, 2019 and the application number is 2019103646988.
  • the invention relates to the field of optical imaging, in particular to an optical lens, an imaging module and a mobile terminal.
  • the lens assembly used to collect light which is indispensable in the recognition technology, is also particularly important.
  • the lens assembly used to collect light which is indispensable in the recognition technology, is also particularly important.
  • For electronic equipment that pursues high screen ratio and small thickness how to make the size of the recognition lens smaller to reduce the size of the lens in electronic equipment The space occupied in the system is also a concern.
  • an optical lens an image capturing module, and a mobile terminal are provided.
  • An optical lens from the object side to the image side, including:
  • the first lens with refractive power
  • a second lens with positive refractive power the object side of the second lens is concave at the circumference, and the image side of the second lens is convex at the circumference;
  • the third lens with refractive power is the third lens with refractive power
  • a fourth lens with positive refractive power the image side surface of the fourth lens is concave at the optical axis, the object side surface and the image side surface of the fourth lens are aspherical, and the object side surface of the fourth lens and At least one of the image sides has an inflection point;
  • optical lens satisfies the following relationship:
  • TT is the distance from the object side of the first lens to the image side of the fourth lens on the optical axis
  • f is the effective focal length of the optical lens
  • An image capturing module includes a photosensitive element and the optical lens according to any one of the above embodiments, and the photosensitive element is arranged on the image side of the optical lens.
  • a mobile terminal includes a transmitting module and the image capturing module described in the above-mentioned embodiments.
  • the transmitting module can emit modulated light to the measured object, and the modulated light is reflected on the surface of the measured object to carry the measured object.
  • the information light of surface information, the image capturing module can receive the information light reflected from the measured object.
  • FIG. 1 is a schematic diagram of an optical lens provided by the first embodiment of the application
  • Fig. 2 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens in the first embodiment
  • FIG. 3 is a schematic diagram of an optical lens provided by a second embodiment of the application.
  • FIG. 4 is a diagram of spherical chromatic aberration (mm), astigmatism (mm) and distortion (%) of the optical lens in the second embodiment;
  • FIG. 5 is a schematic diagram of an optical lens provided by a third embodiment of the application.
  • FIG. 6 is a diagram of spherical chromatic aberration (mm), astigmatism (mm) and distortion (%) of the optical lens in the third embodiment;
  • FIG. 7 is a schematic diagram of an optical lens provided by a fourth embodiment of this application.
  • FIG. 9 is a schematic diagram of an optical lens provided by a fifth embodiment of the application.
  • FIG. 10 is a diagram of spherical chromatic aberration (mm), astigmatism (mm) and distortion (%) of the optical lens in the fifth embodiment;
  • FIG. 11 is a schematic diagram of an optical lens provided by a sixth embodiment of this application.
  • Fig. 12 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens in the sixth embodiment
  • FIG. 13 is a schematic diagram of an optical lens provided by a seventh embodiment of the application.
  • FIG. 14 is a diagram of spherical chromatic aberration (mm), astigmatism (mm) and distortion (%) of the optical lens in the seventh embodiment;
  • 15 is a schematic diagram of an image capturing module provided by an embodiment of the application.
  • FIG. 16 is a schematic diagram of a mobile terminal provided by an embodiment of this application.
  • the miniaturized optical lens provided by this application can be applied to face unlocking on mobile phones, auto-driving cars, man-machine interfaces and games, industrial machine vision and measurement, security monitoring, etc.
  • the optical lens 110 in an embodiment of the present application sequentially includes a first lens L1 with refractive power, a second lens L2 with positive refractive power, and a third lens with refractive power from the object side to the image side. L3 and a fourth lens L4 with positive refractive power.
  • the first lens L1 includes the object side S1 and the image side S2; the second lens L2 includes the object side S3 and the image side S4; the third lens L3 includes the object side S5 and the image side S6; the fourth lens L4 includes the object side S7 and Like the side S8.
  • the optical lens 110 includes an imaging surface S11 on the image side of the fourth lens L4.
  • the imaging surface S11 may be a photosensitive surface of a photosensitive element. After adjustment of each lens, the light carrying object information is imaged on the imaging surface S11.
  • the object side surface S3 of the second lens L2 is concave at the circumference, the image side surface S4 of the second lens L2 is convex at the circumference; the image side surface S8 of the fourth lens L4 is concave at the optical axis, and the object side of the fourth lens L4
  • the side surface S7 and the image side surface S8 are both aspherical, and at least one of the object side surface S7 and the image side surface S8 of the fourth lens L4 is provided with at least one inflection point, that is, between the object side surface S7 and the image side surface S8 of the fourth lens L4 There is an inflection point on at least one side of.
  • a side surface of the lens is convex at the optical axis (the central area of the side)
  • the area near the optical axis of the side of the lens is convex, so the side can also be considered as convex.
  • the paraxial area is a convex surface; when describing a side surface of the lens as a concave surface at the circumference, it can be understood that the side surface near the maximum effective radius is a concave surface.
  • the shape of the side surface from the center (optical axis) to the edge direction can be a pure convex surface, or a convex shape from the center first. Transition to a concave shape and then become convex when approaching the maximum effective radius. This is only an example to illustrate the relationship between the optical axis and the circumference.
  • the various shapes and structures (concave-convex relationship) on the side surface are not fully represented, but other situations can be derived from the above examples.
  • the first lens L1 and the third lens L3 have positive refractive powers, respectively, so as to help shorten the overall length of the system. In some embodiments, the first lens L1 and the third lens L3 have negative refractive powers, respectively, so as to help expand the angle of view of the system. In other embodiments, the first lens L1 has a positive refractive power, and the third lens L3 has a negative refractive power, so that the system can strike a balance between a short overall length and a large field of view.
  • system or optical system described in this application may be composed of optical elements such as an optical lens 110, a prism, and a filter.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the plastic lens can reduce the weight of the optical lens 110 and reduce the production cost.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all glass.
  • the optical lens 110 can withstand higher temperatures and has better optics. performance.
  • the optical lens 110 can also maintain a low production cost. It should be noted that, according to actual requirements, the material of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 can be any of plastic or glass, which is not limited here.
  • the optical lens 110 is further provided with a stop STO.
  • the diaphragm STO is disposed on the object side of the first lens L1.
  • the stop STO may be disposed between the first lens L1 to the fourth lens L4, and specifically may be between the first lens L1 to the second lens L2.
  • the image side of the fourth lens L4 is provided with an infrared band pass filter L5.
  • the infrared band pass filter L5 is disposed between the fourth lens L4 and the imaging surface S11.
  • the infrared bandpass filter L5 can allow infrared light of a specific wavelength band to pass through, and block interference light of other wavelength bands, avoiding interference light being received by the photosensitive element and affecting normal imaging, thereby improving the imaging quality of the optical lens 110 (such as recognition accuracy ).
  • the infrared bandpass filter L5 is not provided in the optical lens 110, but is assembled on the image side of the optical lens 110 along with the photosensitive element when the optical lens 110 is assembled with the photosensitive element. .
  • an antireflection film may be provided on the surface of each lens or infrared bandpass filter L5 to increase the transmittance of infrared light of the corresponding wavelength.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the formula of aspheric surface is:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the apex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis
  • c is the curvature of the aspheric apex
  • k is the conic constant
  • Ai is the aspheric surface
  • the optical lens 110 satisfies the following relationship:
  • TT is the distance from the object side S1 of the first lens L1 to the image side S8 of the fourth lens L4 on the optical axis
  • f is the effective focal length of the optical lens 110.
  • TT/f may be 0.920, 0.930, 0.950, 0.970, 0.990, 1.000, or 1.100. Further, in some embodiments, TT/f ⁇ 1.10.
  • T12 is the air gap between the first lens L1 and the second lens L2 on the optical axis
  • T23 is the air gap between the second lens L2 and the third lens L3 on the optical axis
  • T34 is the third lens L3 and the fourth lens L4 is the air gap on the optical axis.
  • T12+T23+T34 may be 0.430, 0.470, 0.520, 0.570, 0.610, 0.650, 0.680, 0.710, or 0.730, and the unit of value is mm.
  • f2 is the focal length of the second lens L2
  • f4 is the focal length of the fourth lens L4.
  • f2/f4 may be 1.20, 1.40, 1.60, 1.80, 1.90, or 2.00.
  • the second lens L2 and the fourth lens L4 can reasonably distribute the positive refractive power to balance the spherical aberration generated by the third lens L3, reduce the system tolerance sensitivity, and improve the system imaging quality.
  • f2/f4 ⁇ 1.0 the fourth lens L4 needs to provide most of the positive refractive power, which causes the object side S7 of the fourth lens L4 to be excessively bent, poorly formed, and affects the manufacturing yield.
  • f2/f4 ⁇ 2.5 the refractive power distribution of the second lens L2 and the fourth lens L4 is unbalanced, resulting in excessive aberration of the optical system and difficulty in correction.
  • FNO is the aperture number of the optical lens 110.
  • the FNO may be 1.13, 1.17, 1.21, 1.23, 1.25, 1.27, or 1.29.
  • the amount of light passing through the optical lens 110 can be increased, and the optical lens 110 can also obtain clear and detailed information of the measured object in a dark environment or under the condition of insufficient light, thereby improving the imaging quality.
  • the optical lens 110 includes a diaphragm, and the diaphragm STO is disposed on the object side of the first lens L1 or between the first lens L1 to the fourth lens L4, and the optical lens 110 satisfies the following relationship:
  • SL is the distance from the stop STO to the imaging surface S11 of the optical lens 110 on the optical axis
  • TTL is the distance from the object side S1 of the first lens L1 to the imaging surface S11 of the optical lens 110 on the optical axis.
  • the SL/TTL may be 0.830, 0.850, 0.870, 0.890, 0.910, 0.930, 0.950, or 0.970.
  • FFL is the distance of the image side surface S8 of the fourth lens L4 closest to the imaging surface S11 of the optical lens 110 in the optical axis direction.
  • FFL may be 0.75, 0.78, 0.81, 0.84, 0.87, or 0.90
  • the data unit is mm.
  • R8 is the curvature radius of the object side surface S7 of the fourth lens L4 at the paraxial position
  • R9 is the curvature radius of the image side surface S8 of the fourth lens L4 at the paraxial position.
  • R8/R9 may be 0.680, 0.690, 0.730, 0.760, 0.780, 0.810, 0.830, 0.860, or 0.890.
  • R4 is the curvature radius of the object side surface S3 of the second lens L2 at the paraxial position
  • f2 is the focal length of the second lens L2.
  • R4/f2 may be 0.240, 0.270, 0.300, 0.330, 0.360, 0.390, 0.420, 0.450, 0.510 or 0.520.
  • the object side surface S3 of the second lens L2 has an appropriate radius of curvature on the optical axis, which is beneficial to correct aberrations.
  • R2/f2 ⁇ 0.2 the positive bending force provided by the second lens L2 is insufficient, resulting in excessive spherical aberration of the system.
  • R4/f2 ⁇ 0.6 the edge of the lens aperture of the second lens L2 will be excessively recurved, which will increase the stray light of the optical lens 110 and affect the imaging quality.
  • the optical lens 110 includes, from the object side to the image side, a first lens L1 with a positive refractive power, a stop STO, a second lens L2 with a positive refractive power, and a second lens with a negative refractive power.
  • FIG. 2 shows the spherical chromatic aberration diagram (mm), astigmatism diagram (mm), and distortion diagram (%) of the optical lens 110 in the first embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the optical axis, the image side S6 of the third lens L3 is concave at the optical axis; the object side S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis
  • the image side S8 of the fourth lens L4 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object and image sides of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical.
  • the aspherical design can solve the problem of distortion of the field of view, and can also make the lens smaller and larger.
  • An excellent optical effect is achieved in the case of being thin and relatively flat, thereby enabling the optical lens 110 to have a smaller volume.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the plastic lens can reduce the weight of the optical lens 110 and also reduce the production cost.
  • an infrared band-pass filter L5 is also provided on the image side of the fourth lens L4.
  • the infrared band-pass filter L5 can allow infrared light of a specific waveband to pass through, and block interference light of other wavebands to prevent interference light from being exposed to light.
  • the component reception affects normal imaging, thereby improving the imaging quality of the optical lens 110.
  • the optical lens 110 in the first embodiment satisfies the following relationship:
  • TT/f 0.98; where TT is the distance from the object side S1 of the first lens L1 to the image side S8 of the fourth lens L4 on the optical axis, and f is the effective focal length of the optical lens 110.
  • the effective focal length of the optical lens 110 and the total length of the optical axis between the first lens L1 to the fourth lens L4 can be reasonably controlled, which can not only achieve the miniaturization of the optical lens 110, but also ensure better light Converged on the imaging surface S11.
  • T12+T23+T34 0.739; where T12 is the air gap between the first lens L1 and the second lens L2 on the optical axis, T23 is the air gap between the second lens L2 and the third lens L3 on the optical axis, and T34 is The air space between the third lens L3 and the fourth lens L4 on the optical axis.
  • T12+T23+T34 ⁇ 0.35 the space allowance for the space distribution between the lenses is too small, which leads to increased sensitivity of the optical system and is not conducive to lens assembly.
  • f2/f4 1.37; where f2 is the focal length of the second lens L2, and f4 is the focal length of the fourth lens L4.
  • the second lens L2 and the fourth lens L4 can reasonably distribute the positive refractive power to balance the spherical aberration generated by the third lens L3, reduce the system tolerance sensitivity, and improve the system imaging quality.
  • the fourth lens L4 needs to provide most of the positive refractive power, which causes the object side S7 of the fourth lens L4 to be excessively bent, poorly formed, and affects the manufacturing yield.
  • f2/f4 ⁇ 2.5 the refractive power distribution of the second lens L2 and the fourth lens L4 is unbalanced, resulting in excessive aberration of the optical system and difficulty in correction.
  • FNO 1.3; where FNO is the aperture number of the optical lens 110.
  • SL/TTL 0.823; where SL is the distance from the stop STO to the imaging surface S11 on the optical axis, and TTL is the distance from the object side surface S1 of the first lens L1 to the imaging surface S11 on the optical axis.
  • FFL 0.74; where FFL is the distance of the image side surface S8 of the fourth lens L4 closest to the imaging surface S11 in the optical axis direction, and the unit of FFL is mm.
  • the fourth lens L4 satisfies the above relationship, it can ensure that the optical lens 110 has sufficient focusing space during the installation of the module, thereby improving the assembly yield of the module, and at the same time, the focal depth of the optical lens 110 can be widened. In order to obtain more in-depth information about the object.
  • R8/R9 0.821; where R8 is the curvature radius of the object side surface S7 of the fourth lens L4 at the paraxial position, and R9 is the curvature radius of the image side surface S8 of the fourth lens L4 at the paraxial position.
  • R4/f2 0.233; where R4 is the radius of curvature of the object side surface S3 of the second lens L2 at the paraxial position, and f2 is the focal length of the second lens L2.
  • the object side surface S3 of the second lens L2 has an appropriate radius of curvature on the optical axis, which is beneficial to correct aberrations.
  • various parameters of the optical lens 110 are given in Table 1 and Table 2.
  • the elements from the object surface to the imaging surface S11 are arranged in the order of the elements in Table 1 from top to bottom.
  • the surface numbers 2 and 3 in Table 1 are the object side S1 and the image side S2 of the first lens L1 respectively. That is, in the same lens, the surface with the smaller surface number is the object side, and the surface with the larger surface number is the image side.
  • the Y radius is the curvature radius of the object side or image side at the paraxial position of the corresponding surface number.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis
  • the second value is the distance from the image side of the lens to the object side of the latter lens on the optical axis.
  • the value corresponding to the surface number 11 in the "thickness" parameter of the infrared band pass filter L5 is the distance from the image side surface S10 of the infrared band pass filter L5 to the imaging surface S11.
  • K in Table 2 is the conic constant
  • Ai is the coefficient corresponding to the i-th higher-order term in the aspheric surface formula.
  • the refractive index, Abbe number, and focal length of each lens are values at the reference wavelength.
  • the calculation of the relationship is based on lens parameters (such as the data in Table 1) and surface parameters (such as the data in Table 2).
  • the distance on the optical axis TTL 3.0mm.
  • the optical lens 110 includes a first lens L1 with a positive refractive power, a stop STO, a second lens L2 with a positive refractive power, a second lens L2 with a negative refractive power, from the object side to the image side.
  • an infrared band pass filter L5 is also provided on the image side of the fourth lens L4.
  • FIG. 4 shows the spherical chromatic aberration (mm), astigmatism (mm), and distortion (%) of the optical lens 110 in the second embodiment, where the astigmatism and distortion are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the optical axis, the image side S6 of the third lens L3 is convex at the optical axis; the object side S5 of the third lens L3 is convex at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis, the image side S8 of the fourth lens L4 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the distance on the optical axis TTL 3.0mm.
  • the various parameters of the optical lens 110 are given in Table 3 and Table 4, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical lens 110 includes a first lens L1 with a positive refractive power, a stop STO, a second lens L2 with a positive refractive power, and a second lens L2 with a positive refractive power, from the object side to the image side.
  • an infrared band pass filter L5 is also provided on the image side of the fourth lens L4.
  • FIG. 6 shows the spherical chromatic aberration (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens 110 in the third embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is convex at the optical axis, the image side S6 of the third lens L3 is concave at the optical axis; the object side S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is convex at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis, the image side S8 of the fourth lens L4 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the distance on the optical axis TTL 3.1mm.
  • the parameters of the optical lens 110 are given in Tables 5 and 6, and the definitions of the parameters can be obtained from the first embodiment, which will not be repeated here.
  • the optical lens 110 includes a first lens L1 with a positive refractive power, a stop STO, a second lens L2 with a positive refractive power, and a negative refractive power from the object side to the image side.
  • an infrared band pass filter L5 is also provided on the image side of the fourth lens L4.
  • FIG. 8 shows the spherical chromatic aberration (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens 110 in the fourth embodiment, where the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the optical axis, the image side S6 of the third lens L3 is convex at the optical axis; the object side S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis, the image side S8 of the fourth lens L4 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the distance on the optical axis TTL 2.91 mm.
  • the parameters of the optical lens 110 are given in Table 7 and Table 8, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical lens 110 sequentially includes a stop STO, a first lens L1 with a negative refractive power, a second lens L2 with a positive refractive power, and a negative refractive power from the object side to the image side.
  • an infrared band pass filter L5 is also provided on the image side of the fourth lens L4.
  • FIG. 10 shows the spherical chromatic aberration (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens 110 in the fifth embodiment, where the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the optical axis, the image side S6 of the third lens L3 is convex at the optical axis; the object side S5 of the third lens L3 is convex at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis, the image side S8 of the fourth lens L4 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the various parameters of the optical lens 110 are given in Table 9 and Table 10, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical lens 110 includes a stop STO, a first lens L1 with positive refractive power, a second lens L2 with positive refractive power, and a second lens L2 with negative refractive power in sequence from the object side to the image side.
  • an infrared band pass filter L5 is also provided on the image side of the fourth lens L4.
  • FIG. 12 shows the spherical chromatic aberration (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens 110 in the sixth embodiment.
  • the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the optical axis, the image side S6 of the third lens L3 is convex at the optical axis; the object side S5 of the third lens L3 is convex at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis, the image side S8 of the fourth lens L4 is concave at the optical axis; the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the distance on the optical axis TTL 2.99 mm.
  • the various parameters of the optical lens 110 are given in Table 11 and Table 12, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical lens 110 includes a stop STO, a first lens L1 with a positive refractive power, a second lens L2 with a positive refractive power, and a negative refractive power from the object side to the image side.
  • an infrared band pass filter L5 is also provided on the image side of the fourth lens L4.
  • FIG. 14 shows the spherical chromatic aberration (mm), astigmatism diagram (mm) and distortion diagram (%) of the optical lens 110 in the seventh embodiment, where the astigmatism diagram and the distortion diagram are data diagrams at the reference wavelength.
  • the object side surface S1 of the first lens L1 is convex at the optical axis
  • the image side surface S2 of the first lens L1 is concave at the optical axis
  • the object side S1 of the first lens L1 is convex at the circumference
  • the first lens L1 The image side surface S2 is convex at the circumference.
  • the object side S3 of the second lens L2 is convex at the optical axis
  • the image side S4 of the second lens L2 is concave at the optical axis
  • the object side S3 of the second lens L2 is concave at the circumference
  • the image of the second lens L2 The side surface S4 is convex at the circumference.
  • the object side S5 of the third lens L3 is concave at the optical axis, the image side S6 of the third lens L3 is concave at the optical axis; the object side S5 of the third lens L3 is concave at the circumference, and the image of the third lens L3
  • the side surface S6 is concave at the circumference.
  • the object side S7 of the fourth lens L4 is convex at the optical axis
  • the image side S8 of the fourth lens L4 is concave at the optical axis;
  • the object side S7 of the fourth lens L4 is concave at the circumference, and the image of the fourth lens L4
  • the side surface S8 is convex at the circumference.
  • the object side surface and the image side surface of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are aspherical surfaces.
  • the materials of the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4 are all plastic.
  • the distance on the optical axis TTL 3.03mm.
  • the various parameters of the optical lens 110 are given in Table 13 and Table 14, and the definition of each parameter can be obtained from the first embodiment, which will not be repeated here.
  • the optical lens 110 and the photosensitive element 120 are assembled together to form an image capturing module 100, and the photosensitive element 120 is disposed on the image side of the optical lens 110.
  • the photosensitive element 120 is disposed on the imaging surface S11 of the optical lens 110.
  • the photosensitive element 120 may be a CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor, complementary metal oxide semiconductor).
  • the photosensitive element 120 is relatively fixedly disposed at the imaging surface S11 of the optical lens 110, and the imaging module 100 at this time is a fixed focus module.
  • a voice coil motor is configured on the photosensitive element 120 to enable the photosensitive element 120 to move relative to the lens in the optical lens 110.
  • a fixing member may be provided to relatively fix the diaphragm STO, the first lens L1, the second lens L2, the third lens L3, and the fourth lens L4, and at the same time, a voice coil motor is arranged on the fixing member to drive the lens and the light The stop STO moves relative to the photosensitive element 120, so that the imaging module 100 has a focusing function.
  • the image capturing module 100 can meet the needs of electronic devices for optical recognition functions, such as face unlocking on mobile phones, auto-driving cars, man-machine interfaces and games, industrial machine vision and measurement, security monitoring, etc.
  • the image capturing module 100 when realizing the recognition function, the image capturing module 100 also needs the cooperation of the transmitting module 200.
  • the image capturing module 100 and the transmitting module 200 are assembled together to form an identification device.
  • the transmitting module 200 emits modulated infrared light to the measured object.
  • the infrared light can be continuous light or pulsed light. After the modulated light reaches the surface of the measured object, it reflects and carries the depth information of the measured object surface to form information.
  • the imaging module 100 can receive the information light reflected by the object under test.
  • the modulated light emitted by the emission module 200 may be 3D structured light or modulated pulsed light in TOF technology.
  • the infrared band-pass filter in the imaging module 100 can allow the infrared light of a specific wavelength band emitted by the transmitter module 200 to pass, while filtering out other wavelengths of light to prevent interference light from being received by the photosensitive element.
  • the image module 100 can perfectly cooperate with the transmitting module 200.
  • the identification device can be applied to a mobile terminal 10, which can be a smart phone, a smart watch, a tablet computer, a personal digital assistant, a game console, a PC, and other devices.
  • a mobile terminal 10 can be a smart phone, a smart watch, a tablet computer, a personal digital assistant, a game console, a PC, and other devices.
  • the mobile terminal 10 can be designed to be thinner and smaller.
  • the "electronic device" used in the embodiment of the present invention may include, but is not limited to, being set to be connected via a wired line (such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network) and/or via (for example, for cellular networks, wireless local area network (WLAN), such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital TV network, satellite network, amplitude modulation-frequency modulation (AM-FM) broadcast transmitter, and/or another communication terminal) wireless interface to receive/transmit communication signals s installation.
  • a wired line such as via a public switched telephone network (PSTN), digital subscriber line, DSL), digital cable, direct cable connection, and/or another data connection/network
  • WLAN wireless local area network
  • WLAN such as handheld digital video broadcasting (digital video) Broadcasting handheld, DVB-H) network digital TV network
  • satellite network amplitude modulation-frequency
  • An electronic device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” and/or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communication system (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet/ Personal digital assistant (PDA) with intranet access, web browser, notebook, calendar, and/or global positioning system (GPS) receiver; and conventional laptop and/or palmtop Receiver or other electronic device including a radio telephone transceiver.
  • PCS personal communication system
  • PDA Internet/ Personal digital assistant
  • GPS global positioning system
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. contact.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the level of the first feature is higher than the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学镜头(110),由物侧至像侧依次包括:第一透镜(L1);具有正屈折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)于圆周处为凹面,第二透镜(L2)的像侧面(S4)于圆周处为凸面;第三透镜(L3);具有正屈折力的第四透镜(L4),第四透镜(L4)的像侧面(S8)于光轴处为凹面,第四透镜(L4)的物侧面(S7)和像侧面(S8)皆为非球面,第四透镜(L4)的物侧面(S7)与像侧面(S8)中的至少一个面存在反曲点;光学镜头(110)满足关系:TT/f<1.3;TT为第一透镜(L1)的物侧面(S1)到第四透镜(L4)的像侧面(S8)于光轴上的距离,f为光学镜头(110)的有效焦距。

Description

光学镜头、取像模组及移动终端
本发明要求申请日为2019年04月30日,申请号为2019103646988的中国专利申请的优先权。
技术领域
本发明涉及光学成像领域,特别是涉及一种光学镜头、取像模组及移动终端。
背景技术
随着识别技术(结构光及TOF)的飞速发展,以及支持识别技术的感光元件的量产,识别技术的应用领域将会变得十分广泛,如手机上的人脸解锁、汽车自动驾驶、人机界面与游戏、工业机器视觉与测量、安防监控等。
其中,识别技术中必不可少的用于收集光线的镜头组件也显得尤为重要,对于追求高屏占比以及小厚度的电子设备而言,如何使识别镜头的尺寸变小以缩小镜头在电子设备中的占用空间也是备受关注的问题。
发明内容
根据本申请的各种实施例,提供一种光学镜头、取像模组及移动终端。
一种光学镜头,由物侧至像侧依次包括:
具有屈折力的第一透镜;
具有正屈折力的第二透镜,所述第二透镜的物侧面于圆周处为凹面,所述第二透镜的像侧面于圆周处为凸面;
具有屈折力的第三透镜;
具有正屈折力的第四透镜,所述第四透镜的像侧面于光轴处为凹面,所述第四透镜的物侧面和像侧面皆为非球面,且所述第四透镜的物侧面与像侧面中的至少一个面存在反曲点;
所述光学镜头满足以下关系:
TT/f<1.3;
其中,TT为所述第一透镜的物侧面到所述第四透镜的像侧面于光轴上的距离,f为所述光学镜头的有效焦距。
一种取像模组,包括感光元件及上述任意一项实施例所述的光学镜头,所述感光元件设置于所述光学镜头的像侧。
一种移动终端,包括发射模组及上述实施例所述的取像模组,所述发射模组能够向被测物发射调制光,调制光于被测物表面反射后形成携带有被测物表面信息的信息光,所述取像模组能够接收从被测物反射回来的信息光。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例提供的光学镜头示意图;
图2为第一实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图3为本申请第二实施例提供的光学镜头的示意图;
图4为第二实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图5为本申请第三实施例提供的光学镜头的示意图;
图6为第三实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图7为本申请第四实施例提供的光学镜头的示意图;
图8为第四实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图9为本申请第五实施例提供的光学镜头的示意图;
图10为第五实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图11为本申请第六实施例提供的光学镜头的示意图;
图12为第六实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图13为本申请第七实施例提供的光学镜头的示意图;
图14为第七实施例中光学镜头的球色差图(mm)、像散图(mm)和畸变图(%);
图15为本申请一实施例提供的取像模组的示意图;
图16为本申请一实施例提供的移动终端的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请所提供的具有小型化特性的光学镜头可应用于手机上的人脸解锁、汽车自动驾驶、人机界面与游戏、工业机器视觉与测量、安防监控等。
参考图1所示,本申请一实施例中的光学镜头110由物侧至像侧依次包括具有屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。
其中,第一透镜L1包括物侧面S1及像侧面S2;第二透镜L2包括物侧面S3及像侧面S4;第三透镜L3包括物侧面S5及像侧面S6;第四透镜L4包括物侧面S7及像侧面S8。另外,光学镜头110包括位于第四透镜L4像侧的成像面S11,成像面S11可以为感光元件的感光表面,经过各透镜的调节后,携带被摄物信息的光线成像于成像面S11上。
第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面;第四透镜L4的像侧面S8于光轴处为凹面,且第四透镜L4的物侧面S7和像侧面S8皆为非球面,第四透镜L4的物侧面S7与像侧面S8中的至少一个面设置有至少一个反曲点,即第四透镜L4的物侧面S7与像侧面S8中的至少一个面存在反曲点。
需要注意的是,当描述透镜的一个侧面于光轴处(该侧面的中心区域)为凸面时,可理解为该透镜的该侧面于光轴附近的区域为凸面,因此也可认为该侧面于近轴处为凸面;当描述透镜的一个侧面于圆周处为凹面时,可理解为该侧面在靠近最大有效半径处的区域为凹面。举例而言,当该侧面于光轴处为凸面,且于圆周处也为凸面时,该侧面由中心(光轴)至边缘方向的形状可以为纯粹的凸面,或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴处与圆周处的关系而做出的示例,侧面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
在一些实施例中,第一透镜L1和第三透镜L3分别具有正屈折力,从而有利于缩短系 统总长。在一些实施例中,第一透镜L1和第三透镜L3分别具有负屈折力,从而有利于扩大系统的视场角。在另一些实施例中,第一透镜L1具有正屈折力,第三透镜L3具有负屈折力,从而,系统能够在短总长与大视场角之间取得平衡。
另外需要注意的是,本申请所述的系统或光学系统可以由光学镜头110、棱镜、滤光片等光学元件构成。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料,此时,塑料材质的透镜能够减少光学镜头110的重量并降低生产成本。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为玻璃,此时,光学镜头110能够耐受较高的温度且具有较好的光学性能。在另一些实施例中,也可以仅是第一透镜L1的材质为玻璃,而其他透镜的材质为塑料,此时,最靠近物侧的第一透镜L1能够很好地耐受物侧的环境温度影响,且由于其他透镜为塑料材质的关系,光学镜头110也能够保持较低的生产成本。需要注意的是,根据实际需求,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质可以为塑料或玻璃种的任一种,此处并不作限定。
在一些实施例中,光学镜头110中还设置有光阑STO。光阑STO在一些实施例中,光阑STO设置于第一透镜L1的物侧。在另一些实施例中,光阑STO可设置于第一透镜L1至第四透镜L4之间,具体可以在第一透镜L1至第二透镜L2之间。
在一些实施例中,第四透镜L4的像侧设置有红外带通滤光片L5。红外带通滤光片L5设置于第四透镜L4与成像面S11之间。红外带通滤光片L5能够允许特定波段的红外光通过,并阻挡其他波段的干扰光,避免干扰光被感光元件接收而影响正常的成像,从而提升光学镜头110的成像品质(如识别精确度)。需要注意的是,在另一些实施例中,红外带通滤光片L5并不设置于光学镜头110中,而是在光学镜头110与感光元件组装时随感光元件装配于光学镜头110的像侧。
当光学镜头110用于接收特定波长的红外光时,可在各透镜或红外带通滤光片L5的表面设置增透膜以增加相应波长的红外光的透光率。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。非球面的面型公式为:
Figure PCTCN2019091801-appb-000001
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴的距离,c为非球面顶点的曲率,k为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
在一些实施例中,光学镜头110满足以下关系:
TT/f<1.3;
其中,TT为第一透镜L1的物侧面S1到第四透镜L4的像侧面S8于光轴上的距离,f为光学镜头110的有效焦距。具体地,TT/f可以为0.920、0.930、0.950、0.970、0.990、1.000或1.100。进一步地,在一些实施例中,TT/f≤1.10。当光学镜头110满足上述关系时,光学镜头110的焦距以及第一透镜L1至第四透镜L4于光轴上的长度能够得到合理控制,从而不仅能实现光学镜头110的小型化,同时也能使光线更好地汇聚于成像面S11上。
0.35mm<T12+T23+T34<0.85mm;
其中,T12为第一透镜L1与第二透镜L2于光轴上的空气间隔,T23为第二透镜L2与第三透镜L3于光轴上的空气间隔,T34为第三透镜L3与第四透镜L4于光轴上的空气间隔。具体地,T12+T23+T34可以为0.430、0.470、0.520、0.570、0.610、0.650、0.680、0.710或0.730,数值单位为mm。当相邻透镜间的间距配置满足上述关系时,将有利于各 透镜的组装,且可进一步缩短系统总长。当T12+T23+T34≤0.35mm时,各透镜之间的间隔分配空间余量太小,导致光学系统敏感度加大且不利于各透镜的组装;当T12+T23+T34≥0.85mm时,不利于光学镜头110的小型化设计。
1.0<f2/f4<2.5;
其中,f2为第二透镜L2的焦距,f4为第四透镜L4的焦距。具体地,f2/f4可以为1.20、1.40、1.60、1.80、1.90或2.00。满足上述关系时,第二透镜L2和第四透镜L4能够合理分配正屈折力,以平衡第三透镜L3产生的球差,降低系统公差敏感度,提高系统成像质量。当f2/f4≤1.0时,第四透镜L4需要提供大部分正屈折力,导致第四透镜L4的物侧面S7会过度弯曲,成型不良,影响制造良率。当f2/f4≥2.5时,第二透镜L2与第四透镜L4屈折力分配不平衡,导致光学系统像差过大,修正困难。
FNO≤1.3;
其中,FNO为光学镜头110的光圈数。具体地,FNO可以为1.13、1.17、1.21、1.23、1.25、1.27或1.29。满足上述关系时,能够增大光学镜头110的通光量,在较暗的环境下或者光线不足的情况下也能使光学镜头110获取被测物清晰的细节信息,从而提升成像品质。
在一些实施例中,光学镜头110包括光阑,光阑STO设置于第一透镜L1的物侧或第一透镜L1至第四透镜L4之间,光学镜头110满足以下关系:
0.8<SL/TTL<1.1;
其中,SL为光阑STO至光学镜头110的成像面S11于光轴上的距离,TTL为第一透镜L1的物侧面S1至光学镜头110的成像面S11于光轴上的距离。具体地,SL/TTL可以为0.830、0.850、0.870、0.890、0.910、0.930、0.950或0.970。当光阑STO的位置满足上述配置关系时,可使系统在短总长和大视场角的特性中取得较好的平衡。
FFL>0.7mm;
其中,FFL为第四透镜L4的像侧面S8于光轴方向上最靠近光学镜头110的成像面S11的距离。具体地,FFL可以为0.75、0.78、0.81、0.84、0.87或0.90,数据单位为mm。当第四透镜L4满足上述关系时,可保证光学镜头110在模组的安装过程中有足够的对焦空间,从而提升模组的组装良率,同时,还能使光学镜头110的焦深变宽以获取物方更多的深度信息。
R8/R9<1.0;
其中,R8为第四透镜L4的物侧面S7于近轴处的曲率半径,R9为第四透镜L4的像侧面S8于近轴处的曲率半径。具体地,R8/R9可以为0.680、0.690、0.730、0.760、0.780、0.810、0.830、0.860或0.890。满足上述关系时,第四透镜L4的物侧面S7和像侧面S8于近轴处的曲率半径能够得到合适的配置,从而增加第四透镜L4的形状的可加工性,同时,还能改善光学镜头110的慧差并避免其他像差过大。
0.2<R4/f2<0.6;
其中,R4为第二透镜L2的物侧面S3于近轴处的曲率半径,f2为第二透镜L2的焦距。具体地,R4/f2可以为0.240、0.270、0.300、0.330、0.360、0.390、0.420、0.450、0.510或0.520。满足上述关系时,第二透镜L2的物侧面S3于光轴上具有合适的曲率半径,从而有利于修正像差。当R2/f2≤0.2时,第二透镜L2提供正曲折力不足,致使系统球差过大。当R4/f2≥0.6时,第二透镜L2的镜片孔径边缘会出现过度反曲现象,导致光学镜头110的杂散光增多,影响成像质量。
第一实施例
如图1所示的第一实施例中,光学镜头110由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。图2为第一实施例中光学镜头110的球色差图(mm)、像散图 (mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凹面,第三透镜L3的像侧面S6于光轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面和像侧面均为非球面,非球面的设计能够解决视界歪曲的问题,也能够使透镜在较小、较薄且较平的情况下实现优良的光学效果,进而使光学镜头110具有更小的体积。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料,塑料材质的透镜能够减少光学镜头110的重量,同时还能降低生产成本。
另外,在第四透镜L4的像侧还设置有红外带通滤光片L5,红外带通滤光片L5能够允许特定波段的红外光通过,并阻挡其他波段的干扰光,避免干扰光被感光元件接收而影响正常的成像,从而提升光学镜头110的成像品质。
第一实施例中的光学镜头110满足以下关系:
TT/f=0.998;其中,TT为第一透镜L1的物侧面S1到第四透镜L4的像侧面S8于光轴上的距离,f为光学镜头110的有效焦距。满足上述关系时,可合理控制光学镜头110的有效焦距及第一透镜L1至第四透镜L4之间于光轴的总长度,不仅能实现光学镜头110的小型化,也能保证光线更好地汇聚于成像面S11上。
T12+T23+T34=0.739;其中,T12为第一透镜L1与第二透镜L2于光轴上的空气间隔,T23为第二透镜L2与第三透镜L3于光轴上的空气间隔,T34为第三透镜L3与第四透镜L4于光轴上的空气间隔。各透镜间距配置满足以上关系时将有利于透镜组装,且可进一步缩短系统总长。当T12+T23+T34≤0.35时,各透镜之间的间隔分配空间余量太小,导致光学系统敏感度加大且不利于透镜的组装。当T12+T23+T34≥0.85时,不利于光学镜头110的小型化。
f2/f4=1.37;其中,f2为第二透镜L2的焦距,f4为第四透镜L4的焦距。满足上述关系时,第二透镜L2和第四透镜L4能够合理分配正屈折力,以平衡第三透镜L3产生的球差,降低系统公差敏感度,提高系统成像质量。当f2/f4≤1.0时,第四透镜L4需要提供大部分正屈折力,导致第四透镜L4的物侧面S7会过度弯曲,成型不良,影响制造良率。当f2/f4≥2.5时,第二透镜L2与第四透镜L4屈折力分配不平衡,导致光学系统像差过大,修正困难。
FNO=1.3;其中,FNO为光学镜头110的光圈数。满足上述关系时,能够增大光学镜头110的通光量,在较暗的环境下或者光线不足的情况下也能使光学镜头110获取被测物清晰的细节信息,从而提升成像品质。
SL/TTL=0.823;其中,SL为光阑STO至成像面S11于光轴上的距离,TTL为第一透镜L1的物侧面S1至成像面S11于光轴上的距离。当光阑STO的位置满足上述配置关系时,可使系统在短总长和大视场角的特性中取得较好的平衡。
FFL=0.74;其中,FFL为第四透镜L4的像侧面S8于光轴方向上最靠近成像面S11的距离,FFL的单位为mm。当第四透镜L4满足上述关系时,可保证光学镜头110在模组的安装过程中有足够的对焦空间,从而提升模组的组装良率,同时,还能使光学镜头110的焦深变宽以获取物方更多的深度信息。
R8/R9=0.821;其中,R8为第四透镜L4的物侧面S7于近轴处的曲率半径,R9为第四 透镜L4的像侧面S8于近轴处的曲率半径。满足上述关系时,第四透镜L4的物侧面S7和像侧面S8于近轴处的曲率半径能够得到合适的配置,从而增加第四透镜L4的形状的可加工性,同时,还能改善光学镜头110的慧差并避免其他像差过大。
R4/f2=0.233;其中,R4为第二透镜L2的物侧面S3于近轴处的曲率半径,f2为第二透镜L2的焦距。满足上述关系时,第二透镜L2的物侧面S3于光轴上具有合适的曲率半径,有利于修正像差。
另外,光学镜头110的各项参数由表1和表2给出。由物面至成像面S11的各元件依次按照表1从上至下的各元件的顺序排列。表1中的面序号2和3分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。Y半径为相应面序号的物侧面或像侧面于近轴处的曲率半径。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴上的厚度,第二个数值为该透镜的像侧面至后一透镜的物侧面于光轴上的距离。红外带通滤光片L5于“厚度”参数中面序号11所对应的数值为红外带通滤光片L5的像侧面S10至成像面S11的距离。表2中的K为圆锥常数,Ai为非球面面型公式中与第i项高次项相对应的系数。
另外,各透镜的折射率、阿贝数及焦距均为参考波长下的数值。关系式的计算以透镜参数(如表1的数据)和面型参数(如表2的数据)为准。
在第一实施例中,光学镜头110的有效焦距f=2.09mm,光圈数FNO=1.30,最大视场角FOV=75.4度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=3.0mm。
表1
Figure PCTCN2019091801-appb-000002
表2
Figure PCTCN2019091801-appb-000003
Figure PCTCN2019091801-appb-000004
第二实施例
如图3所示的第二实施例中,光学镜头110由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。另外,第四透镜L4的像侧还设置有红外带通滤光片L5。图4为第二实施例中光学镜头110的球色差(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凹面,第三透镜L3的像侧面S6于光轴处为凸面;第三透镜L3的物侧面S5于圆周处为凸面,第三透镜L3的像侧面S6于圆周处为凹面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料。
在第二实施例中,光学镜头110的有效焦距f=1.85mm,光圈数FNO=1.30,最大视场角FOV=81.7度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=3.0mm。
光学镜头110的各参数由表3和表4给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表3
Figure PCTCN2019091801-appb-000005
Figure PCTCN2019091801-appb-000006
表4
Figure PCTCN2019091801-appb-000007
根据上述所提供的各参数信息,可推得以下数据:
Figure PCTCN2019091801-appb-000008
第三实施例
如图5所示的第三实施例中,光学镜头110由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。另外,第四透镜L4的像侧还设置有红外带通滤光片L5。图6为第三实施例中光学镜头110的球色差(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凸面,第三透镜L3的像侧面S6于光轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凸面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料。
在第三实施例中,光学镜头110的有效焦距f=1.98mm,光圈数FNO=1.30,最大视场 角FOV=74度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=3.1mm。
光学镜头110的各参数由表5和表6给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表5
Figure PCTCN2019091801-appb-000009
表6
Figure PCTCN2019091801-appb-000010
Figure PCTCN2019091801-appb-000011
根据上述所提供的各参数信息,可推得以下数据:
Figure PCTCN2019091801-appb-000012
第四实施例
如图7所示的第四实施例中,光学镜头110由物侧至像侧依次包括具有正屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。另外,第四透镜L4的像侧还设置有红外带通滤光片L5。图8为第四实施例中光学镜头110的球色差(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凹面,第三透镜L3的像侧面S6于光轴处为凸面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料。
在第四实施例中,光学镜头110的有效焦距f=1.8mm,光圈数FNO=1.20,最大视场角FOV=85.3度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=2.91mm。
光学镜头110的各参数由表7和表8给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表7
Figure PCTCN2019091801-appb-000013
Figure PCTCN2019091801-appb-000014
表8
Figure PCTCN2019091801-appb-000015
根据上述所提供的各参数信息,可推得以下数据:
Figure PCTCN2019091801-appb-000016
第五实施例
如图9所示的第五实施例中,光学镜头110由物侧至像侧依次包括光阑STO、具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。另外,第四透镜L4的像侧还设置有红外带通滤光片L5。图10为第五实施例中光学镜头110的球色差(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凹面,第三透镜L3的像侧面S6于光轴处为凸面;第三透镜L3的物侧面S5于圆周处为凸面,第三透镜L3的像侧面S6于圆周处为凹面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料。
在第五实施例中,光学镜头110的有效焦距f=1.81mm,光圈数FNO=1.10,最大视场角FOV=85.5度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=2.99mm。
光学镜头110的各参数由表9和表10给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表9
Figure PCTCN2019091801-appb-000017
表10
Figure PCTCN2019091801-appb-000018
Figure PCTCN2019091801-appb-000019
根据上述所提供的各参数信息,可推得以下数据:
Figure PCTCN2019091801-appb-000020
第六实施例
如图11所示的第六实施例中,光学镜头110由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。另外,第四透镜L4的像侧还设置有红外带通滤光片L5。图12为第六实施例中光学镜头110的球色差(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凹面,第三透镜L3的像侧面S6于光轴处为凸面;第三透镜L3的物侧面S5于圆周处为凸面,第三透镜L3的像侧面S6于圆周处为凹面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料。
在第六实施例中,光学镜头110的有效焦距f=1.81mm,光圈数FNO=1.18,最大视场角FOV=85.5度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=2.99mm。
光学镜头110的各参数由表11和表12给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表11
Figure PCTCN2019091801-appb-000021
Figure PCTCN2019091801-appb-000022
表12
Figure PCTCN2019091801-appb-000023
根据上述所提供的各参数信息,可推得以下数据:
Figure PCTCN2019091801-appb-000024
Figure PCTCN2019091801-appb-000025
第七实施例
如图13所示的第七实施例中,光学镜头110由物侧至像侧依次包括光阑STO、具有正屈折力的第一透镜L1、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3以及具有正屈折力的第四透镜L4。另外,第四透镜L4的像侧还设置有红外带通滤光片L5。图14为第七实施例中光学镜头110的球色差(mm)、像散图(mm)和畸变图(%),其中的像散图和畸变图为参考波长下的数据图。
其中,第一透镜L1的物侧面S1于光轴处为凸面,第一透镜L1的像侧面S2于光轴处为凹面;第一透镜L1的物侧面S1于圆周处为凸面,第一透镜L1的像侧面S2于圆周处为凸面。第二透镜L2的物侧面S3于光轴处为凸面,第二透镜L2的像侧面S4于光轴处为凹面;第二透镜L2的物侧面S3于圆周处为凹面,第二透镜L2的像侧面S4于圆周处为凸面。第三透镜L3的物侧面S5于光轴处为凹面,第三透镜L3的像侧面S6于光轴处为凹面;第三透镜L3的物侧面S5于圆周处为凹面,第三透镜L3的像侧面S6于圆周处为凹面。第四透镜L4的物侧面S7于光轴处为凸面,第四透镜L4的像侧面S8于光轴处为凹面;第四透镜L4的物侧面S7于圆周处为凹面,第四透镜L4的像侧面S8于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的物侧面及像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料。
在第七实施例中,光学镜头110的有效焦距f=2.05mm,光圈数FNO=1.15,最大视场角FOV=78.7度(deg.),第一透镜L1的物侧面S1到成像面S11于光轴上的距离TTL=3.03mm。
光学镜头110的各参数由表13和表14给出,且其中各参数的定义可从第一实施例中得出,此处不加以赘述。
表13
Figure PCTCN2019091801-appb-000026
表14
Figure PCTCN2019091801-appb-000027
根据上述所提供的各参数信息,可推得以下数据:
Figure PCTCN2019091801-appb-000028
参考图13和图15所示,光学镜头110与感光元件120一同组装成取像模组100,感光元件120设置于光学镜头110的像侧。感光元件120设置于光学镜头110的成像面S11上。感光元件120可以为CCD(Charge Coupled Device,电荷耦合器件)或CMOS(Complementary Metal Oxide Semiconductor,互补金属氧化物半导体)。
在一些实施例中,感光元件120相对固定地设置在光学镜头110的成像面S11处,此时的取像模组100为定焦模组。
在另一些实施例中,通过在感光元件120上配置音圈马达以使感光元件120能够相对光学镜头110中的透镜相对移动。或者,也可以设置固定件以将光阑STO、第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4相对固定,同时在固定件上配置音圈马达以驱动上述透镜及光阑STO相对感光元件120移动,从而使取像模组100具备对焦功能。
取像模组100可满足电子设备对光学识别功能的需求,具体如手机上的人脸解锁、汽车自动驾驶、人机界面与游戏、工业机器视觉与测量、安防监控等。
参考图16所示,在实现识别功能时,取像模组100同时还需要发射模组200配合。在一些实施例中,取像模组100与发射模组200共同装配以形成识别装置。其中,发射模组200对被测物发射经调制后的红外光,红外光可以为连续光或脉冲光,调制光到达被测 物的表面后反射并携带被测物表面的深度信息从而形成信息光,取像模组100能够接收由被测物反射回来的信息光。具体的,发射模组200所发射的调制光可以为3D结构光或TOF技术中的调制脉冲光。取像模组100中的红外带通滤光片可允许发射模组200所发出的特定波段的红外光通过,而过滤掉其他波段的光线,避免干扰光也一同被感光元件接收,从而,取像模组100能够与发射模组200完好地配合。
识别装置可以应用于移动终端10上,移动终端10可以为智能手机、智能手表、平板电脑、个人数字助理、游戏机、PC等设备。通过采用本申请的光学镜头,移动终端10能够往更薄更小型化的方向设计。
本发明实施例中所使用到的“电子装置”可包括,但不限于被设置成经由有线线路连接(如经由公共交换电话网络(public switched telephone network,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接,以及/或另一数据连接/网络)和/或经由(例如,针对蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如手持数字视频广播(digital video broadcasting handheld,DVB-H)网络的数字电视网络、卫星网络、调幅-调频(amplitude modulation-frequency modulation,AM-FM)广播发送器,以及/或另一通信终端的)无线接口接收/发送通信信号的装置。被设置成通过无线接口通信的电子装置可以被称为“无线通信终端”、“无线终端”以及/或“移动终端”。移动终端的示例包括,但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communication system,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(global positioning system,GPS)接收器的个人数字助理(personal digital assistant,PDA);以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或 者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学镜头,其特征在于,由物侧至像侧依次包括:
    具有屈折力的第一透镜;
    具有正屈折力的第二透镜,所述第二透镜的物侧面于圆周处为凹面,所述第二透镜的像侧面于圆周处为凸面;
    具有屈折力的第三透镜;
    具有正屈折力的第四透镜,所述第四透镜的像侧面于光轴处为凹面,所述第四透镜的物侧面和像侧面皆为非球面,且所述第四透镜的物侧面与像侧面中至少一个面存在反曲点;
    所述光学镜头满足以下关系:
    TT/f<1.3;
    其中,TT为所述第一透镜的物侧面到所述第四透镜的像侧面于光轴上的距离,f为所述光学镜头的有效焦距。
  2. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    0.35mm<T12+T23+T34<0.85mm;
    其中,T12为所述第一透镜与所述第二透镜于光轴上的空气间隔,T23为所述第二透镜与所述第三透镜于光轴上的空气间隔,T34为所述第三透镜与所述第四透镜于光轴上的空气间隔。
  3. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    1.0<f2/f4<2.5;
    其中,f2为所述第二透镜的焦距,f4为所述第四透镜的焦距。
  4. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    FNO≤1.3;
    其中,FNO为所述光学镜头的光圈数。
  5. 根据权利要求1所述的光学镜头,其特征在于,包括光阑,所述光阑设置于所述第一透镜的物侧,所述光学镜头满足以下关系:
    0.8<SL/TTL<1.1;
    其中,SL为所述光阑至所述光学镜头的成像面于光轴上的距离,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于光轴上的距离。
  6. 根据权利要求1所述的光学镜头,其特征在于,包括光阑,所述光阑设置于所述第一透镜与所述第四透镜之间,所述光学镜头满足以下关系:
    0.8<SL/TTL<1.1;
    其中,SL为所述光阑至所述光学镜头的成像面于光轴上的距离,TTL为所述第一透镜的物侧面至所述光学镜头的成像面于光轴上的距离。
  7. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    FFL>0.7mm;
    其中,FFL为所述第四透镜的像侧面于光轴方向上最靠近所述光学镜头的成像面的距离。
  8. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    R8/R9<1.0;
    其中,R8为所述第四透镜的物侧面于近轴处的曲率半径,R9为所述第四透镜的像侧面于近轴处的曲率半径。
  9. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    0.2<R4/f2<0.6;
    其中,R4为所述第二透镜的物侧面于近轴处的曲率半径,f2为所述第二透镜的焦距。
  10. 根据权利要求1所述的光学镜头,其特征在于,所述光学镜头满足以下关系:
    TT/f≤1.10。
  11. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜和所述第三透镜分别具有正屈折力。
  12. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜和所述第三透镜分别具有负屈折力。
  13. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜具有正屈折力,所述第三透镜具有负屈折力。
  14. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜的物侧面于光轴处为凸面,所述第一透镜的像侧面于光轴处为凹面。
  15. 根据权利要求1所述的光学镜头,其特征在于,所述第二透镜的物侧面于光轴处为凸面,所述第二透镜的像侧面于光轴处为凹面。
  16. 根据权利要求1所述的光学镜头,其特征在于,所述第四透镜的物侧面于光轴处为凸面。
  17. 根据权利要求1所述的光学镜头,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜和所述第四透镜的材质为塑料。
  18. 一种取像模组,其特征在于,包括感光元件及权利里要求1至17任意一项所述的光学镜头,所述感光元件设置于所述光学镜头的像侧。
  19. 根据权利要求18所述的取像模组,其特征在于,包括红外带通滤光片,所述红外带通滤光片设置于所述第四透镜与所述感光元件之间。
  20. 一种移动终端,其特征在于,包括发射模组及权利要求19所述的取像模组,所述发射模组能够向被测物发射调制光,调制光于被测物表面反射后形成携带有被测物表面信息的信息光,所述取像模组能够接收从被测物反射回来的信息光。
PCT/CN2019/091801 2019-04-30 2019-06-19 光学镜头、取像模组及移动终端 WO2020220444A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/604,739 US20220260809A1 (en) 2019-04-30 2019-06-19 Optical lens assembly, image capturing module, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910364698.8A CN111856706A (zh) 2019-04-30 2019-04-30 光学镜头、取像模组及移动终端
CN201910364698.8 2019-04-30

Publications (1)

Publication Number Publication Date
WO2020220444A1 true WO2020220444A1 (zh) 2020-11-05

Family

ID=72965824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091801 WO2020220444A1 (zh) 2019-04-30 2019-06-19 光学镜头、取像模组及移动终端

Country Status (3)

Country Link
US (1) US20220260809A1 (zh)
CN (1) CN111856706A (zh)
WO (1) WO2020220444A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI758101B (zh) * 2021-02-05 2022-03-11 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭
TWI764580B (zh) * 2021-02-05 2022-05-11 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭
US11940598B2 (en) 2019-11-29 2024-03-26 Largan Precision Co., Ltd. Lens system and electronic device
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116107059A (zh) * 2021-02-05 2023-05-12 玉晶光电(厦门)有限公司 光学成像镜头
CN112904582A (zh) * 2021-02-19 2021-06-04 南昌欧菲光电技术有限公司 光学镜组、光学模组及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046970A1 (en) * 2003-04-23 2005-03-03 Olympus Corporation Imaging optical system and apparatus using the same
CN102466864A (zh) * 2010-11-15 2012-05-23 大立光电股份有限公司 光学摄像系统
CN106970464A (zh) * 2017-01-11 2017-07-21 玉晶光电(厦门)有限公司 目镜光学系统
CN108459394A (zh) * 2018-03-19 2018-08-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109814235A (zh) * 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109814234A (zh) * 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828317B2 (ja) * 2005-09-29 2011-11-30 富士フイルム株式会社 撮像レンズ
KR101425792B1 (ko) * 2012-12-31 2014-08-06 주식회사 코렌 촬영 렌즈 광학계
TWI592683B (zh) * 2015-07-13 2017-07-21 先進光電科技股份有限公司 光學成像系統

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050046970A1 (en) * 2003-04-23 2005-03-03 Olympus Corporation Imaging optical system and apparatus using the same
CN102466864A (zh) * 2010-11-15 2012-05-23 大立光电股份有限公司 光学摄像系统
CN106970464A (zh) * 2017-01-11 2017-07-21 玉晶光电(厦门)有限公司 目镜光学系统
CN108459394A (zh) * 2018-03-19 2018-08-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109814235A (zh) * 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头
CN109814234A (zh) * 2018-12-28 2019-05-28 玉晶光电(厦门)有限公司 光学成像镜头

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953756B2 (en) 2019-08-15 2024-04-09 Jiangxi Ofilm Optical Co., Ltd. Optical system, image capturing module and electronic device
US11940598B2 (en) 2019-11-29 2024-03-26 Largan Precision Co., Ltd. Lens system and electronic device
TWI758101B (zh) * 2021-02-05 2022-03-11 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭
TWI764580B (zh) * 2021-02-05 2022-05-11 大陸商玉晶光電(廈門)有限公司 光學成像鏡頭

Also Published As

Publication number Publication date
CN111856706A (zh) 2020-10-30
US20220260809A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
WO2020220444A1 (zh) 光学镜头、取像模组及移动终端
US7821724B2 (en) Photographing optical lens assembly
WO2020073978A1 (zh) 光学透镜组、取像模组和电子装置
CN112987252B (zh) 光学系统、红外接收模组及电子设备
US11953756B2 (en) Optical system, image capturing module and electronic device
WO2020078451A1 (zh) 光学摄像镜头、取像模组和电子装置
WO2021109127A1 (zh) 光学系统、摄像模组及电子装置
US20220236536A1 (en) Optical imaging system, image capturing module, and electronic device
WO2020073983A1 (zh) 光学摄像镜头组、取像模组及电子装置
CN113625425B (zh) 光学镜头、摄像模组及电子设备
US20220206262A1 (en) Optical system, camera module and electronic device
CN112782833A (zh) 成像镜头、取像模组和电子装置
WO2021164013A1 (zh) 光学系统、摄像模组、电子装置及汽车
KR20190106199A (ko) 소형 광학계
WO2020258269A1 (zh) 成像镜头、摄像模组及电子装置
US20220174193A1 (en) Optical system, photographing module, and electronic device
CN113741008B (zh) 光学系统、取像模组及电子设备
CN110927939A (zh) 光学成像系统、取像模组和电子装置
WO2022183473A1 (zh) 光学系统、红外接收模组及电子设备
WO2022236817A1 (zh) 光学系统、取像模组及电子设备
WO2022236732A1 (zh) 红外光学系统、红外接收模组及电子设备
WO2022109820A1 (zh) 光学系统、摄像模组及电子设备
WO2022160120A1 (zh) 光学系统、摄像模组及电子设备
CN209928117U (zh) 光学镜头、取像模组及移动终端
WO2021134784A1 (zh) 光学系统、摄像模组及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926944

Country of ref document: EP

Kind code of ref document: A1