WO2022236817A1 - 光学系统、取像模组及电子设备 - Google Patents

光学系统、取像模组及电子设备 Download PDF

Info

Publication number
WO2022236817A1
WO2022236817A1 PCT/CN2021/093870 CN2021093870W WO2022236817A1 WO 2022236817 A1 WO2022236817 A1 WO 2022236817A1 CN 2021093870 W CN2021093870 W CN 2021093870W WO 2022236817 A1 WO2022236817 A1 WO 2022236817A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
optical system
optical axis
object side
image side
Prior art date
Application number
PCT/CN2021/093870
Other languages
English (en)
French (fr)
Inventor
党绪文
李明
刘彬彬
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2021/093870 priority Critical patent/WO2022236817A1/zh
Publication of WO2022236817A1 publication Critical patent/WO2022236817A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the field of imaging, in particular to an optical system, an imaging module and electronic equipment.
  • TOF Time of Flight
  • advantages such as fast response speed, less interference from ambient light, and high accuracy of depth information acquisition.
  • the industry has also put forward higher requirements for the performance of TOF equipment.
  • the current TOF equipment has limited access to scene information, and it is difficult to meet the needs of large-scale detection.
  • an optical imaging system an imaging module and electronic equipment are provided.
  • An optical system which sequentially includes from the object side to the image side along the optical axis:
  • a first lens with negative refractive power, the image side of the first lens is concave at the near optical axis;
  • a second lens with refractive power, the object side of the second lens is convex at the near optical axis;
  • a fourth lens with refractive power, the object side of the fourth lens is convex at the near optical axis;
  • a fifth lens with refractive power the object side of the fifth lens is convex at the near optical axis, and the image side is concave at the near optical axis;
  • FOV is the maximum field of view angle of the optical system
  • FNO is the aperture number of the optical system
  • An image capturing module comprising a photosensitive element and the optical system described in any one of the above embodiments, the photosensitive element is arranged on the image side of the optical system.
  • An electronic device includes a transmitting module and the above image capturing module, the infrared rays emitted by the transmitting module can be received by the image capturing module after being reflected by the object to be measured.
  • FIG. 1 is a schematic structural view of the optical system in the first embodiment of the present application
  • Fig. 2 is the longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the first embodiment of the present application;
  • FIG. 3 is a schematic structural diagram of an optical system in a second embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an optical system in a third embodiment of the present application.
  • FIG. 6 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the third embodiment of the present application;
  • FIG. 7 is a schematic structural diagram of an optical system in a fourth embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an optical system in a fifth embodiment of the present application.
  • FIG. 10 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the fifth embodiment of the present application;
  • FIG. 11 is a schematic structural diagram of an optical system in a sixth embodiment of the present application.
  • Fig. 12 is a longitudinal spherical aberration diagram, astigmatism diagram and distortion diagram of the optical system in the sixth embodiment of the present application;
  • FIG. 13 is a schematic diagram of an imaging module in an embodiment of the present application.
  • FIG. 14 is a schematic diagram of an electronic device in an embodiment of the present application.
  • the optical system 100 includes a first lens L1, a second lens L2, a third lens L3, a fourth lens L4, and a first lens L1 along the optical axis 110 from the object side to the image side in sequence.
  • the first lens L1 includes the object side S1 and the image side S2
  • the second lens L2 includes the object side S3 and the image side S4
  • the third lens L3 includes the object side S5 and the image side S6
  • the fourth lens L4 includes the object side S7 and the image side S8
  • the fifth lens L5 includes the object side S9 and the image side S10.
  • the first lens L1 has a negative refractive power, which is beneficial to expand the viewing angle of the optical system 100, so that the optical system 100 can obtain more scene information.
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 , which facilitates light rays with a large viewing angle to enter the optical system 100 .
  • the second lens L2 has refractive power.
  • the object side S3 of the second lens L2 is convex at the near optical axis 110 , which is beneficial to correct the astigmatism of the optical system 100 .
  • the third lens L3 has refractive power.
  • the fourth lens L4 has refractive power.
  • the object side S7 of the fourth lens L4 is convex at the near optical axis 110 , which is beneficial to shorten the total length of the optical system 100 .
  • Fifth lens L5 has refractive power.
  • the object side surface S9 of the fifth lens L5 is convex at the near optical axis 110 , which is beneficial to correct the aberration of the optical system 100 .
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 .
  • the optical system 100 is provided with an aperture STO, and the aperture STO may be disposed between the first lens L1 and the second lens L2, or between the second lens L2 and the third lens L3.
  • the stop STO may be an aperture stop.
  • the optical system 100 further includes an infrared bandpass filter L6 disposed on the image side of the fifth lens L5, and the infrared bandpass filter L6 includes an object side S11 and an image side S12.
  • the optical system 100 further includes an image surface S13 located on the image side of the fifth lens L5, the image surface S13 is the imaging surface of the optical system 100, and the incident light passes through the first lens L1, the second lens L2, the third lens The lens L3 , the fourth lens L4 and the fifth lens L5 can form an image on the image plane S13 after adjustment.
  • the infrared band-pass filter L6 can transmit infrared rays.
  • the infrared band-pass filter L6 can transmit infrared light with a wavelength in the range of 930nm-950nm.
  • the optical system 100 can be applied to electronic devices with stereoscopic imaging and infrared detection functions, for example, in the receiving module of TOF equipment, and the infrared rays emitted by the transmitting module of TOF equipment enter the receiving module after being reflected by the object to be measured Received by the optical system 100.
  • the object side and the image side of each lens of the optical system 100 are both aspherical.
  • the adoption of the aspherical structure can improve the flexibility of lens design, effectively correct spherical aberration, and improve imaging quality.
  • the object side and the image side of each lens of the optical system 100 may also be spherical. It should be noted that the above-mentioned embodiments are only examples of some embodiments of the present application, and in some embodiments, the surfaces of the lenses in the optical system 100 may be any combination of aspherical surfaces or spherical surfaces.
  • each lens in the optical system 100 may be made of glass or plastic.
  • the lens made of plastic material can reduce the weight of the optical system 100 and lower the production cost, and cooperate with the small size of the optical system 100 to realize the light and thin design of the optical system 100 .
  • the lens made of glass makes the optical system 100 have excellent optical performance and high temperature resistance.
  • the material of each lens in the optical system 100 may also be any combination of glass and plastic, not necessarily all glass or all plastic.
  • the first lens L1 does not mean that there is only one lens.
  • the surface of the cemented lens closest to the object side can be regarded as the object side S1, and the surface closest to the image side can be regarded as the image side S2.
  • no cemented lens is formed between the lenses in the first lens L1, but the distance between the lenses is relatively fixed.
  • the object side of the lens closest to the object side is the object side S1, and the lens closest to the image side The image side is the image side S2.
  • the number of lenses in the second lens L2, third lens L3, fourth lens L4 or fifth lens L5 in some embodiments can also be greater than or equal to two, and a cemented lens can be formed between any adjacent lenses, Non-cemented lenses are also possible.
  • the optical system 100 satisfies the conditional formula: 95° ⁇ FOV/FNO ⁇ 120°; wherein, FOV is the maximum field of view of the optical system 100, and FNO is the f-number of the optical system 100.
  • FOV/FNO may be: 98.777, 99.321, 100.369, 105.847, 108.257, 110.774, 114.198, 115.024, 115.885 or 116.218, and the value unit is °. Satisfying the above conditional formula is conducive to expanding the field of view of the optical system 100 and increasing the aperture of the optical system 100 to achieve a large viewing angle and large aperture characteristics.
  • the realization of the large viewing angle characteristic is conducive to the optical system 100 obtaining more scene information, satisfying
  • the need for wide-range detection and the realization of the large aperture feature are conducive to improving the problem of rapid decrease in the relative brightness of the edge caused by the large viewing angle, which is also conducive to obtaining more scene information.
  • the upper limit of the above conditional expression is exceeded, the viewing angle and the aperture of the optical system 100 are too large, and it is difficult to achieve balance of aberrations and improvement of optical performance.
  • Below the lower limit of the above conditional expression the field of view and aperture of the optical system 100 are too small, resulting in limited scene information acquired by the optical system 100, which is difficult to meet the demand for large-scale detection.
  • the optical system 100 satisfies the conditional formula: 130° ⁇ FOV ⁇ 160.0°.
  • the FOV may be: 140.26, 142.34, 147.15, 151.30, 152.44, 154.32, 155.11, 157.36, 158.74 or 159.29, and the numerical unit is °.
  • the optical system 100 can realize wide-angle characteristics, so as to obtain more scene information and meet the demand for wide-range detection.
  • the optical system 100 satisfies the conditional formula: 1.3 ⁇ FNO ⁇ 1.5.
  • the FNO can be: 1.33, 1.35, 1.36, 1.38, 1.40, 1.42, 1.45, 1.46, 1.47 or 1.48. If the above conditional formula is satisfied, the optical system 100 can realize the characteristic of a large aperture, and provide more incident light for the optical system 100, thereby obtaining sufficient scene analysis data.
  • the optical system 100 satisfies the conditional formula: 1.25 ⁇ TTL/IMGH ⁇ 1.55; wherein, TTL is the distance from the object side S1 of the first lens L1 to the imaging plane of the optical system 100 on the optical axis 110, and IMGH is The image height corresponding to the maximum viewing angle of the optical system 100 .
  • TTL/IMGH may be: 1.301, 1.325, 1.367, 1.398, 1.412, 1.435, 1.466, 1.471, 1.498 or 1.500.
  • Satisfying the above conditional formula can rationally configure the ratio of the total optical length of the optical system 100 to the image height, which is conducive to shortening the total system length of the optical system 100 and realizing a miniaturized design while taking good imaging quality into consideration. If the upper limit of the above conditional expression is exceeded, the total optical length of the optical system 100 is too long, which is not conducive to the realization of miniaturized design. Below the lower limit of the above conditional formula, the total optical length of the optical system 100 is too short, which will easily make the lens surface shape in the optical system 100 too complicated, reduce the production yield of the optical system 100, and simultaneously easily reduce the ability of the optical system 100 to correct aberrations, result in a decrease in image quality.
  • the optical system 100 can match a photosensitive element with a rectangular photosensitive surface, and the imaging surface of the optical system 100 coincides with the photosensitive surface of the photosensitive element.
  • FOV can be understood as the maximum field of view angle in the diagonal direction of the optical system 100
  • ImgH can be understood as the effective pixel area on the imaging surface of the optical system 100.
  • the optical system 100 satisfies the conditional formula: 5.5mm ⁇ TTL ⁇ 6.5mm.
  • the TTL may be: 5.52, 5.61, 5.68, 5.73, 5.82, 5.99, 6.01, 6.03, 6.11 or 6.36, and the value unit is mm.
  • the optical system 100 can realize a miniaturized design, which is beneficial to the application of the optical system 100 in electronic devices.
  • the optical system 100 satisfies the conditional formula: 0.45 ⁇ SD11/IMGH ⁇ 0.75; wherein, SD11 is the maximum effective semi-diameter of the object side S1 of the first lens L1, and IMGH is the maximum viewing angle of the optical system 100 The corresponding image height.
  • SD11/IMGH can be: 0.507, 0.523, 0.564, 0.578, 0.599, 0.654, 0.677, 0.682, 0.702 or 0.723.
  • Satisfying the above conditional formula can reasonably configure the ratio of the maximum effective radius of the object side S1 of the first lens L1 to the image height of the optical system 100, which is beneficial to limit the effective radius of the object side S1 of the first lens L1 to Reasonable range, so that it is beneficial to shorten the overall size of the optical system 100, realize a small head design, and further facilitate the application of the optical system 100 in electronic equipment.
  • the effective aperture of the object side S1 of the first lens L1 is too small, which makes it difficult to correct the aberration of the peripheral field of view, and the relative illuminance of the peripheral edge decreases rapidly, thereby reducing the imaging quality of the optical system 100 . If the upper limit of the above conditional expression is exceeded, the effective aperture of the object side surface S1 of the first lens L1 is too large, which is not conducive to the miniaturization design of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 1.09mm ⁇ R21/IND2 ⁇ 4.1mm; wherein, R21 is the radius of curvature of the object side surface S3 of the second lens L2 at the optical axis 110, and IND2 is the second lens L2 Effective refractive index at a wavelength of 940nm.
  • R21/IND2 may be: 1.090, 1.347, 1.555, 1.854, 2.664, 2.766, 3.024, 3.285, 3.951 or 4.061, and the value unit is mm.
  • the refractive power provided by the second lens L2 can be reduced, and the high refractive index material of the second lens L2 can be matched, It is beneficial to reasonably deflect the light passing through the first lens L1 and share the refractive power of the first lens L1, thereby reducing the complexity of the surface shape of the first lens L1 and further facilitating the balance of axial chromatic aberration and distortion; for the aperture
  • the STO is arranged between the first lens L1 and the second lens L2
  • the light of L1 improves the imaging quality of the optical system 100 .
  • the position of the diaphragm STO in the optical system 100 is different, and in order to improve the imaging quality of the optical system 100 , the distribution of the refractive power of the lenses in the optical system 100 is also different.
  • the stop STO when the stop STO is set between the second lens L2 and the third lens L3, the second lens L2 needs to provide a smaller refractive power and use a higher refractive index material; when the stop STO is set between the first lens L1 and the third lens L3 Between the second lens L2, the second lens L2 needs to provide greater refractive power and use a material with a lower refractive index. Satisfying the above conditional expression, selecting different parameters of the second lens L2 according to different setting requirements of the second lens L2 can improve the imaging quality of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 130 ⁇ V1+V3+V5 ⁇ 135; wherein, V1 is the Abbe number of the first lens L1 at a wavelength of 940 nm, and V3 is the third lens L3 at a wavelength of 940 nm V5 is the Abbe number of the fifth lens L5 at a wavelength of 940nm.
  • V1+V3+V5 may be: 132.224, 132.354, 132.368, 132.377, 132.420, 132.469, 132.552, 132.567, 132.603 or 132.624.
  • Satisfying the above conditional formula can rationally configure the Abbe numbers of the first lens L1, the third lens L3 and the fifth lens L5, and increase the Abbe numbers of the first lens L1, the third lens L3 and the fifth lens L5,
  • the chromatic aberration correction effects of the first lens L1, the third lens L3, and the fifth lens L5 can be improved, and at the same time, the three lenses with good chromatic aberration correction effects can be evenly distributed in the optical system 100, thereby helping to improve the dispersion of the optical system 100 correction ability, thereby improving the imaging quality of the optical system 100;
  • setting the sum of the Abbe numbers of the first lens L1, the third lens L3 and the fifth lens L5 within a reasonable range is also conducive to reducing material dispersion in actual production Undesirable effects caused by value changes.
  • the optical system 100 satisfies the conditional formula: 1.1mm ⁇ CT23+CT34+CT45+CT2 ⁇ 1.5mm; wherein, CT23 is the distance between the image side S4 of the second lens L2 and the object side S5 of the third lens L3.
  • CT34 is the distance on the optical axis 110 from the image side S5 of the third lens L3 to the object side S7 of the fourth lens L4, and CT45 is the distance from the image side S8 of the fourth lens L4 to the object side S8 of the fifth lens L5
  • the distance of the side surface S9 on the optical axis 110 , CT2 is the thickness of the second lens L2 on the optical axis 110 .
  • CT23+CT34+CT45+CT2 may be: 1.147, 1.164, 1.189, 1.203, 1.237, 1.269, 1.322, 1.357, 1.398 or 1.477, and the value unit is mm. Satisfying the above conditional formula is conducive to compressing the gap between the adjacent two lenses in the second lens L2 to the fifth lens L5, so that the structure of the optical system 100 is more compact, which is beneficial to the arrangement of the mechanical structure of the optical system 100, and at the same time reduces the Manufacturing and assembly costs of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 5.0 ⁇
  • can be: 5.361, 7.156, 9.339, 12.274, 15.954, 19.351, 22.305, 29, 875, 35.641 or 47.003.
  • Satisfying the above conditional formula can reasonably configure the surface shape of the first lens L1, which is beneficial to limit the central thickness of the first lens L1 within a reasonable range, so that the difference between the central thickness and the edge thickness of the first lens L1 will not be too large.
  • the surface shape of the fifth lens L5 can be reasonably configured, so that the object side S9 of the fifth lens L5 will not be excessively curved, and with an appropriate BF value, it is conducive to the deployment of optical components.
  • the incident angle between the system 100 and the photosensitive element makes the matching angle of the optical system 100 to the photosensitive element more reasonable, avoiding the difficulty of the optical system 100 in the selection of the photosensitive element; in addition, the value of BF can also be reasonably configured, so that there is It is beneficial to reduce the matching difficulty between the optical system 100 and the photosensitive element, and improve the process reliability.
  • BF is too large, which is not conducive to the miniaturization design of the optical system 100 .
  • Exceeding the upper limit of the above conditional formula BF is too small, which will increase the difficulty of assembling the optical system 100 and easily reduce the matching between the optical system 100 and the photosensitive element, thereby resulting in a decrease in resolution and abnormal colors of the optical system 100 .
  • the optical system 100 satisfies the conditional formula: 0.1 ⁇ (R12+
  • may be: 0.147, 0.441, 0.695, 1.224, 1.553, 1.741, 2.136, 2.328, 2.431 or 2.550.
  • Satisfying the above conditional formula can effectively constrain the image side profile of the first lens L1 and the second lens L2, and reduce the degree of curvature of the edge profile of the image side of the first lens L1 and the second lens L2, thereby helping to avoid large-angle light rays Multiple reflections occur locally between the first lens L1 and the second lens L2, thereby reducing the risk of ghost images; at the same time, the image side surfaces of the first lens L1, the second lens L2, and the fourth lens L4 can be reasonably configured type, reducing the degree of change in surface shape of each lens in the first lens L1 to the fourth lens L4, thereby helping to reduce the overall tolerance sensitivity of the optical system 100; in addition, it can reduce the first lens L1, the second lens L2 and the second lens The curvature of the image side of the quadruple lens L4 is beneficial to reduce the generation of stray light in the optical system 100 .
  • FIG. 1 is a schematic structural view of an optical system 100 in the first embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a lens L1 with positive refractive power from the object side to the image side.
  • Fig. 2 is, from left to right, graphs of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the first embodiment, wherein the reference wavelength of the astigmatism graph and distortion graph is 940nm, and other embodiments are the same.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S5 of the third lens L3 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side and the image side of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • one surface of the lens is convex at the near optical axis 110 (the central area of the surface)
  • the area of the surface of the lens near the optical axis 110 is convex .
  • one surface of a lens is concave at the circumference, it is understood that the surface is concave in a region near the maximum effective radius.
  • the surface when the surface is convex near the optical axis 110 and also convex at the circumference, the surface may be purely convex in shape from the center (the intersection of the surface and the optical axis 110 ) to the edge; Or transition from a convex shape in the center to a concave shape, then become convex as you approach the maximum effective radius.
  • the various shape structures (concave-convex relationship) of the surface are not fully reflected, but other situations can be deduced according to the above examples.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • Satisfying the above conditional formula is conducive to expanding the field of view of the optical system 100 and increasing the aperture of the optical system 100 to achieve a large viewing angle and large aperture characteristics.
  • the realization of the large viewing angle characteristic is conducive to the optical system 100 obtaining more scene information, satisfying
  • the need for wide-range detection and the realization of the large aperture feature are conducive to improving the problem of rapid decrease in the relative brightness of the edge caused by the large viewing angle, which is also conducive to obtaining more scene information.
  • the viewing angle and the aperture of the optical system 100 are too large, and it is difficult to achieve balance of aberrations and improvement of optical performance.
  • the field of view and aperture of the optical system 100 are too small, resulting in limited scene information acquired by the optical system 100, which is difficult to meet the demand for large-scale detection.
  • the total optical length of the optical system 100 is too short, which will easily make the lens surface shape in the optical system 100 too complicated, reduce the production yield of the optical system 100, and simultaneously easily reduce the ability of the optical system 100 to correct aberrations, result in a decrease in image quality.
  • the effective aperture of the object side S1 of the first lens L1 is too small, which makes it difficult to correct the aberration of the peripheral field of view, and the relative illuminance of the peripheral edge decreases rapidly, thereby reducing the imaging quality of the optical system 100 . If the upper limit of the above conditional expression is exceeded, the effective aperture of the object side surface S1 of the first lens L1 is too large, which is not conducive to the miniaturization design of the optical system 100 .
  • the refractive power provided by the second lens L2 can be reduced, and the high refractive index material of the second lens L2 can be matched, It is beneficial to reasonably deflect the light passing through the first lens L1 and share the refractive power of the first lens L1, thereby reducing the complexity of the surface shape of the first lens L1 and further facilitating the balance of axial chromatic aberration and distortion; for the aperture
  • the STO is arranged between the first lens L1 and the second lens L2
  • the light of L1 improves the imaging quality of the optical system 100 .
  • Satisfying the above conditional formula can rationally configure the Abbe numbers of the first lens L1, the third lens L3 and the fifth lens L5, and increase the Abbe numbers of the first lens L1, the third lens L3 and the fifth lens L5,
  • the chromatic aberration correction effects of the first lens L1, the third lens L3, and the fifth lens L5 can be improved, and at the same time, the three lenses with good chromatic aberration correction effects can be evenly distributed in the optical system 100, thereby helping to improve the dispersion of the optical system 100 correction ability, thereby improving the imaging quality of the optical system 100;
  • setting the sum of the Abbe numbers of the first lens L1, the third lens L3 and the fifth lens L5 within a reasonable range is also conducive to reducing material dispersion in actual production Undesirable effects caused by value changes.
  • CT23 is the distance on the optical axis 110 from the image side S5 of the third lens L3 to the object side S7 of the fourth lens L4 on the optical axis 110
  • CT45 is the distance on the optical axis 110 from the image side S8 of the fourth lens L4 to the object side S9 of the fifth lens L5
  • CT2 is the thickness of the second lens L2 on the optical axis 110 .
  • Satisfying the above conditional formula is conducive to compressing the gap between the adjacent two lenses in the second lens L2 to the fifth lens L5, so that the structure of the optical system 100 is more compact, which is beneficial to the arrangement of the mechanical structure of the optical system 100, and at the same time reduces the Manufacturing and assembly costs of the optical system 100 .
  • the optical system 100 satisfies the conditional formula:
  • 13.120; wherein, R11 is the radius of curvature of the object side S1 of the first lens L1 at the optical axis 110, and R51 is the object side S9 of the fifth lens L5
  • the radius of curvature at the optical axis 110 , BF is the shortest distance from the image side S10 of the fifth lens L5 to the imaging plane of the optical system 100 in the direction of the optical axis 110 .
  • Satisfying the above conditional formula can reasonably configure the surface shape of the first lens L1, which is beneficial to limit the central thickness of the first lens L1 within a reasonable range, so that the difference between the central thickness and the edge thickness of the first lens L1 will not be too large.
  • the surface shape of the fifth lens L5 can be reasonably configured, so that the object side S9 of the fifth lens L5 will not be excessively curved, and with an appropriate BF value, it is conducive to the deployment of optical components.
  • the incident angle between the system 100 and the photosensitive element makes the matching angle of the optical system 100 to the photosensitive element more reasonable, avoiding the difficulty of the optical system 100 in the selection of the photosensitive element; in addition, the value of BF can also be reasonably configured, so that there is It is beneficial to reduce the matching difficulty between the optical system 100 and the photosensitive element, and improve the process reliability.
  • the optical system 100 satisfies the conditional formula: (R12+
  • 1.474; wherein, R12 is the radius of curvature of the image side S2 of the first lens L1 at the optical axis 110, and R22 is the image side of the second lens L2 The radius of curvature of S4 at the optical axis 110 , and R42 is the radius of curvature of the image side S8 of the fourth lens L4 at the optical axis 110 .
  • Satisfying the above conditional formula can effectively constrain the image side profile of the first lens L1 and the second lens L2, and reduce the degree of curvature of the edge profile of the image side of the first lens L1 and the second lens L2, thereby helping to avoid large-angle light rays Multiple reflections occur locally between the first lens L1 and the second lens L2, thereby reducing the risk of ghost images; at the same time, the image side surfaces of the first lens L1, the second lens L2, and the fourth lens L4 can be reasonably configured type, reducing the degree of change in surface shape of each lens in the first lens L1 to the fourth lens L4, thereby helping to reduce the overall tolerance sensitivity of the optical system 100; in addition, it can reduce the first lens L1, the second lens L2 and the second lens The curvature of the image side of the quadruple lens L4 is beneficial to reduce the generation of stray light in the optical system 100 .
  • the image plane S13 in Table 1 can be understood as the imaging plane of the optical system 100 .
  • the elements from the object plane (not shown in the figure) to the image plane S13 are arranged in sequence according to the order of the elements in Table 1 from top to bottom.
  • the Y radius in Table 1 is the curvature radius at the optical axis 110 of the object side or image side of the corresponding surface number.
  • the surface number S1 and the surface number S2 are the object side S1 and the image side S2 of the first lens L1 respectively, that is, in the same lens, the surface with a smaller surface number is the object side, and the surface with a larger surface number is the image side.
  • the first value in the "thickness" parameter column of the first lens L1 is the thickness of the lens on the optical axis 110, and the second value is the rear surface of the lens in the direction from the image side to the image side on the optical axis 110 the distance.
  • the Y aperture is the maximum effective semi-diameter of the object side or image side of the corresponding surface number.
  • the optical system 100 may not be provided with an infrared bandpass filter L6, but at this time the distance from the image side S10 to the image surface S13 of the fifth lens L5 remains unchanged .
  • the reference wavelength of the focal length, refractive index and Abbe number of each lens is 940 nm, and other embodiments are also the same.
  • the aspheric coefficients of each lens of the optical system 100 on the image side or the object side are given in Table 2.
  • the plane numbers from S1-S10 represent the image side or the object side S1-S10 respectively.
  • the K-A20 from left to right represent the types of aspheric coefficients, among them, K represents the conical coefficient, A4 represents the fourth degree aspheric coefficient, A6 represents the sixth degree aspheric coefficient, and A8 represents the eighth degree aspheric coefficient. analogy.
  • the aspheric coefficient formula is as follows:
  • Z is the distance from the corresponding point on the aspheric surface to the plane tangent to the vertex of the surface
  • r is the distance from the corresponding point on the aspheric surface to the optical axis 110
  • c is the curvature of the vertex of the aspheric surface
  • k is the conic coefficient
  • Ai is the The coefficient corresponding to the i-th high-order term in the spherical surface formula.
  • FIG. 2 includes a Longitudinal Spherical Aberration diagram (Longitudinal Spherical Aberration) of the optical system 100 , which indicates the deviation of converging focal points of light rays of different wavelengths after passing through the lens.
  • the ordinate of the longitudinal spherical aberration diagram represents the normalized pupil coordinate (Normalized Pupil Coordinator) from the pupil center to the pupil edge, and the abscissa represents the distance from the imaging plane to the intersection point of the ray and the optical axis 110 (in mm) .
  • FIG. 2 also includes the field curvature diagram (ASTIGMATIC FIELD CURVES) of the optical system 100, wherein the S curve represents the sagittal field curvature at 940nm, and the T curve represents the meridional field curvature at 940nm. It can be seen from the figure that the field curvature of the optical system 100 is small, the field curvature and astigmatism of each field of view are well corrected, and the center and edge of the field of view have clear imaging.
  • FIG. 2 also includes a distortion diagram (DISTORTION) of the optical system 100. It can be seen from the diagram that the image distortion caused by the main beam is small, and the imaging quality of the system is excellent.
  • DISTORTION distortion diagram
  • FIG. 3 is a schematic structural view of the optical system 100 in the second embodiment.
  • the optical system 100 sequentially includes a first lens L1 with negative refractive power, a diaphragm STO, and a lens with negative refractive power from the object side to the image side.
  • FIG. 4 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the second embodiment from left to right.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is convex at the near optical axis 110 and convex at the circumference;
  • the object side surface S5 of the third lens L3 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S6 of the third lens L3 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side and the image side of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • FIG. 5 is a schematic structural view of the optical system 100 in the third embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a lens L1 with positive refractive power from the object side to the image side.
  • FIG. 6 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the third embodiment from left to right.
  • the object side S1 of the first lens L1 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S5 of the third lens L3 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side and the image side of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 6, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 7 is a schematic structural view of the optical system 100 in the fourth embodiment.
  • the optical system 100 sequentially includes a first lens L1 with negative refractive power, a diaphragm STO, and a The second lens L2 with positive refractive power, the third lens L3 with positive refractive power, the fourth lens L4 with negative refractive power, and the fifth lens L5 with positive refractive power.
  • FIG. 8 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fourth embodiment from left to right.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is convex at the near optical axis 110 and convex at the circumference;
  • the object side S5 of the third lens L3 is concave at the near optical axis 110 and concave at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side and the image side of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 8, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • FIG. 9 is a schematic structural view of the optical system 100 in the fifth embodiment.
  • the optical system 100 includes a first lens L1 with negative refractive power and a first lens L1 with positive refractive power from the object side to the image side.
  • Fig. 10 is, from left to right, graphs of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the fifth embodiment.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and concave at the circumference;
  • the object side surface S3 of the second lens L2 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S5 of the third lens L3 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S8 of the fourth lens L4 is convex at the near optical axis 110 and concave at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side and the image side of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the aspheric coefficients of the image side or object side of each lens of the optical system 100 are given in Table 10, and the definition of each parameter can be obtained from the first embodiment, and will not be repeated here.
  • the optical system 100 of this embodiment has good imaging quality.
  • FIG. 11 is a schematic structural diagram of the optical system 100 in the sixth embodiment.
  • the optical system 100 includes the first lens L1 with negative refractive power, the first lens L1 with negative refractive power in sequence from the object side to the image side.
  • FIG. 12 is a graph of longitudinal spherical aberration, astigmatism and distortion of the optical system 100 in the sixth embodiment from left to right.
  • the object side S1 of the first lens L1 is concave at the near optical axis 110 and convex at the circumference;
  • the image side S2 of the first lens L1 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S3 of the second lens L2 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the image side S4 of the second lens L2 is concave at the near optical axis 110 and concave at the circumference;
  • the object side S5 of the third lens L3 is convex at the near optical axis 110 and convex at the circumference;
  • the image side S6 of the third lens L3 is a convex surface at the near optical axis 110 and a convex surface at the circumference;
  • the object side S7 of the fourth lens L4 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S8 of the fourth lens L4 is concave at the near optical axis 110 and convex at the circumference;
  • the object side surface S9 of the fifth lens L5 is a convex surface at the near optical axis 110 and a concave surface at the circumference;
  • the image side S10 of the fifth lens L5 is concave at the near optical axis 110 and convex at the circumference.
  • the object side and the image side of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all aspherical surfaces.
  • the materials of the first lens L1 , the second lens L2 , the third lens L3 , the fourth lens L4 and the fifth lens L5 are all plastic.
  • the optical system 100 can be assembled with the photosensitive element 210 to form the imaging module 200 .
  • the photosensitive surface of the photosensitive element 210 can be regarded as the image surface S13 of the optical system 100.
  • the imaging module 200 can also be provided with an infrared bandpass filter L6, which is disposed between the image side S10 and the image surface S13 of the fifth lens L5.
  • the photosensitive element 210 may be a charge coupled device (Charge Coupled Device, CCD) or a complementary metal oxide semiconductor device (Complementary Metal-Oxide Semiconductor Sensor, CMOS Sensor). Adopting the above-mentioned optical system 100 in the imaging module 200 is beneficial to realize the characteristics of a large viewing angle and a large aperture, thereby facilitating acquisition of more scene information and meeting the demand for wide-range detection.
  • the imaging module 200 can be applied in the electronic device 300, and the electronic device 300 also includes an emitting module 310, and the emitting module 310 can emit infrared rays toward the object under test, when The infrared rays emitted by the transmitting module 310 are reflected by the object to be measured, and then can be received by the imaging module 200 to obtain depth information of the object to be measured.
  • the electronic device 300 may be, but not limited to, a mobile phone, a video phone, a smart phone, an e-book reader, a driving recorder, a smart watch, an infrared detection device, and other devices capable of obtaining depth information of the object under test.
  • the electronic device 300 when the electronic device 300 is a smart phone, the electronic device 300 may adopt TOF detection technology, and the imaging module 200 serves as a receiving module in the electronic device 300 .
  • Adopting the imaging module 200 described above in the electronic device 300 is beneficial to realize the characteristics of a large viewing angle and a large aperture, thereby facilitating acquisition of more scene information and meeting the demand for wide-range detection.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the first feature may be in direct contact with the first feature or the first and second feature may be in direct contact with the second feature through an intermediary. touch.
  • “above”, “above” and “above” the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • “Below”, “beneath” and “beneath” the first feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is less horizontally than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Lenses (AREA)

Abstract

一种光学系统(100)包括:具有负屈折力的第一透镜(L1),第一透镜(L1)的像侧面(S2)为凹面;具有屈折力的第二透镜(L2),第二透镜(L2)的物侧面(S3)为凸面;具有屈折力的第三透镜(L3);具有屈折力的第四透镜(L4),第四透镜(L4)的物侧面(S7)为凸面;具有屈折力的第五透镜(L5),第五透镜(L5)的物侧面(S9)为凸面,像侧面(S10)为凹面;光学系统(100)满足:95°≤FOV/FNO≤120°;FOV为光学系统(100)的最大视场角,FNO为光学系统(100)的光圈数。

Description

光学系统、取像模组及电子设备 技术领域
本发明涉及摄像领域,特别是涉及一种光学系统、取像模组及电子设备。
背景技术
近些年来,基于飞行时间(Time of flight,TOF)的技术因具有响应速度快、不容易受环境光线干扰、深度信息获取精度高等优点,得到越来越广泛的运用。为获取更多场景信息,提升探测效率,业界对TOF设备的性能也提出了更高的要求。然而,目前的TOF设备获取场景信息有限,难以满足大范围探测需求。
发明内容
根据本申请的各种实施例,提供一种光学成像系统、取像模组和电子设备。
一种光学系统,沿光轴由物侧至像侧依次包括:
具有负屈折力的第一透镜,所述第一透镜的像侧面于近光轴处为凹面;
具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
具有屈折力的第三透镜;
具有屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凸面;
具有屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
且所述光学系统满足以下条件式:
95°≤FOV/FNO≤120°;
其中,FOV为所述光学系统的最大视场角,FNO为所述光学系统的光圈数。
一种取像模组,包括感光元件以及上述任一实施例所述的光学系统,所述感光元件设置于所述光学系统的像侧。
一种电子设备,包括发射模组以及上述的取像模组,所述发射模组发射的红外线能够经待测物反射后被所述取像模组接收。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些发明的实施例和/或示例,可以参考一幅或多幅附图。用于描述附图的附加细节或示例不应当被认为是对所公开的发明、目前描述的实施例和/或示例以及目前理解的这些发明的最佳模式中的任何一者的范围的限制。
图1为本申请第一实施例中的光学系统的结构示意图;
图2为本申请第一实施例中的光学系统的纵向球差图、像散图及畸变图;
图3为本申请第二实施例中的光学系统的结构示意图;
图4为本申请第二实施例中的光学系统的纵向球差图、像散图及畸变图;
图5为本申请第三实施例中的光学系统的结构示意图;
图6为本申请第三实施例中的光学系统的纵向球差图、像散图及畸变图;
图7为本申请第四实施例中的光学系统的结构示意图;
图8为本申请第四实施例中的光学系统的纵向球差图、像散图及畸变图;
图9为本申请第五实施例中的光学系统的结构示意图;
图10为本申请第五实施例中的光学系统的纵向球差图、像散图及畸变图;
图11为本申请第六实施例中的光学系统的结构示意图;
图12为本申请第六实施例中的光学系统的纵向球差图、像散图及畸变图;
图13为本申请一实施例中的取像模组的示意图;
图14为本申请一实施例中的电子设备的示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施方式。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施方式。相反地,提供这些实施方式的目的是使对本发明的公开内容理解的更加透彻全面。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“内”、“外”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
请参见图1,在本申请的一些实施例中,光学系统100沿光轴110由物侧到像侧依次包括第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5。具体地,第一透镜L1包括物侧面S1及像侧面S2,第二透镜L2包括物侧面S3及像侧面S4,第三透镜L3包括物侧面S5及像侧面S6,第四透镜L4包括物侧面S7及像侧面S8,第五透镜L5包括物侧面S9及像侧面S10。
其中,第一透镜L1具有负屈折力,有利于扩大光学系统100的视场角,使得光学系统100能够获取更多的场景信息。第一透镜L1的像侧面S2于近光轴110处为凹面,有利于大视角的光线进入光学系统100中。第二透镜L2具有屈折力。第二透镜L2的物侧面S3于近光轴110处为凸面,有利于修正光学系统100的像散。第三透镜L3具有屈折力。第四透镜L4具有屈折力。第四透镜L4的物侧面S7于近光轴110处为凸面,有利于缩短光学系统100的系统总长。第五透镜L5具有屈折力。第五透镜L5的物侧面S9于近光轴110处为凸面,有利于校正光学系统100的像差。第五透镜L5的像侧面S10于近光轴110处为凹面。
另外,在一些实施例中,光学系统100设置有光阑STO,光阑STO可设置于第一透镜L1及第二透镜L2之间,或者设置于第二透镜L2及第三透镜L3之间。光阑STO可以为孔径光阑。在一些实施例中,光学系统100还包括设置于第五透镜L5像侧的红外带通滤光片L6,红外带通滤光片L6包括物侧面S11及像侧面S12。在一些实施例中,光学系统100还包括位于第五透镜L5像侧的像面S13,像面S13即为光学系统100的成像面,入射光经第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5调节后能够成像于像面S13。值得注意的是,红外带通滤光片L6可以供红外线透过,例如,在一些实施例中,红外带通滤光片L6可透过波长在930nm-950nm范围内的红外光。由此,光学系统100可应用于具有立体成像及红外探测功能的电子设备中,例如,应用于TOF设备的接收模块中,TOF设备的发射模块发射的红外线经待测物反射后进入接收模块中被光学系统100接收。
在一些实施例中,光学系统100的各透镜的物侧面和像侧面均为非球面。非球面结构的采用能够提高透镜设计的灵活性,并有效地校正球差,改善成像质量。在另一些实施例中,光学系统100的各透镜的物侧面和像侧面也可以均为球面。需要注意的是,上述实施例仅是对本申请的一些实施例的举例,在一些实施例中,光学系统100中各透镜的表面可以是非球面或球面的任意组合。
在一些实施例中,光学系统100中的各透镜的材质可以均为玻璃或均为塑料。采用塑料材质的透镜能够减少光学系统100的重量并降低生产成本,配合光学系统100的小尺寸以实现光学系统100的轻薄化设计。而采用玻璃材质的透镜使光学系统100具备优良的光学性能以及较高的耐温性能。需要注意的是,光学系统100中各透镜的材质也可以为玻璃和塑料的任意组合,并不一定要是均为玻璃或均为塑料。
需要注意的是,第一透镜L1并不意味着只存在一片透镜,在一些实施例中,第一透镜L1中也可以存在两片或多片透镜,两片或多片透镜能够形成胶合透镜,胶合透镜最靠近物侧的表面可视为物侧面S1,最靠近像侧的表面可视为像侧面S2。或者,第一透镜L1中的各透镜之间并不形成胶合透镜,但各透镜之间的距离相对固定,此时最靠近物侧的透镜的物侧面为物侧面S1,最靠近像侧的透镜的像侧面为像侧面S2。另外,一些实施例中的第二透镜L2、第三透镜L3、第四透镜L4或第五透镜L5中的透镜数量也可大于或等于两片,且任意相邻透镜之间可以形成胶合透镜,也可以为非胶合透镜。
进一步地,在一些实施例中,光学系统100满足条件式:95°≤FOV/FNO≤120°;其中,FOV为光学 系统100的最大视场角,FNO为光学系统100的光圈数。具体地,FOV/FNO可以为:98.777、99.321、100.369、105.847、108.257、110.774、114.198、115.024、115.885或116.218,数值单位为°。满足上述条件式,有利于扩大光学系统100的视场角并增大光学系统100的光圈,实现大视角及大光圈特性,大视角特性的实现有利于光学系统100获取更多的场景信息,满足大范围探测的需求,大光圈特性的实现有利于改善大视角带来的边缘相对亮度下降快的问题,从而也有利于获取更多的场景信息。超过上述条件式的上限,光学系统100的视场角及光圈过大,难以实现像差平衡以及光学性能的提升。低于上述条件式的下限,光学系统100的视场角及光圈太小,导致光学系统100获取的场景信息有限,难以满足大范围探测需求。
在一些实施例中,光学系统100满足条件式:130°≤FOV≤160.0°。具体地,FOV可以为:140.26、142.34、147.15、151.30、152.44、154.32、155.11、157.36、158.74或159.29,数值单位为°。满足上述条件式,光学系统100能够实现广角特性,从而能够获取更多的场景信息,满足大范围探测的需求。
在一些实施例中,光学系统100满足条件式:1.3≤FNO≤1.5。具体地,FNO可以为:1.33、1.35、1.36、1.38、1.40、1.42、1.45、1.46、1.47或1.48。满足上述条件式,光学系统100能够实现大光圈特性,为光学系统100提供更多入射光线,从而获取足够的场景分析数据。
在一些实施例中,光学系统100满足条件式:1.25≤TTL/IMGH≤1.55;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离,IMGH为光学系统100的最大视场角所对应的像高。具体地,TTL/IMGH可以为:1.301、1.325、1.367、1.398、1.412、1.435、1.466、1.471、1.498或1.500。满足上述条件式,能够合理配置光学系统100的光学总长与像高的比值,在兼顾良好的成像质量的同时有利于缩短光学系统100的系统总长,实现小型化设计。超过上述条件式的上限,光学系统100的光学总长过长,不利于小型化设计的实现。低于上述条件式的下限,光学系统100的光学总长过短,容易使得光学系统100中透镜面型过于复杂,降低光学系统100的生产良率,同时容易降低光学系统100校正像差的能力,导致成像质量的下降。
需要说明的是,在一些实施例中,光学系统100可以匹配具有矩形感光面的感光元件,光学系统100的成像面与感光元件的感光面重合。此时,光学系统100成像面上有效像素区域具有水平方向以及对角线方向,则FOV可以理解为光学系统100对角线方向的最大视场角,ImgH可以理解为光学系统100成像面上有效像素区域对角线方向的长度的一半。
在一些实施例中,光学系统100满足条件式:5.5mm≤TTL≤6.5mm。具体地,TTL可以为:5.52、5.61、5.68、5.73、5.82、5.99、6.01、6.03、6.11或6.36,数值单位为mm。满足上述条件式,光学系统100能够实现小型化设计,有利于光学系统100在电子设备中的应用。
在一些实施例中,光学系统100满足条件式:0.45≤SD11/IMGH≤0.75;其中,SD11为第一透镜L1的物侧面S1的最大有效半口径,IMGH为光学系统100的最大视场角所对应的像高。具体地,SD11/IMGH可以为:0.507、0.523、0.564、0.578、0.599、0.654、0.677、0.682、0.702或0.723。满足上述条件式,能够对第一透镜L1的物侧面S1的最大有效半口径以及光学系统100的像高的比值进行合理配置,有利于将第一透镜L1的物侧面S1的有效半口径限制在合理范围,从而有利于缩短光学系统100的整体尺寸,实现小头部设计,进而有利于光学系统100在电子设备中的应用。低于上述条件式的下限,第一透镜L1的物侧面S1的有效口径过小,导致边缘视场像差校正困难,边缘相对照度快速降低,进而降低光学系统100的成像质量。超过上述条件式的上限,第一透镜L1的物侧面S1的有效口径过大,不利于光学系统100的小型化设计。
在一些实施例中,光学系统100满足条件式:1.09mm≤R21/IND2≤4.1mm;其中,R21为第二透镜L2的物侧面S3于光轴110处的曲率半径,IND2为第二透镜L2在940nm波长处的有效折射率。具体地,R21/IND2可以为:1.090、1.347、1.555、1.854、2.664、2.766、3.024、3.285、3.951或4.061,数值单位为mm。满足上述条件式,对于光阑STO设置于第二透镜L2及第三透镜L3之间的方案而言,能够减小第二透镜L2提供的屈折力,配合第二透镜L2的高折射率材料,有利于合理偏折经第一透镜L1的光线,分担第一透镜L1的屈折力,从而有利于降低第一透镜L1的面型复杂度,进而有利于轴上色差与畸变的平衡;对于光阑STO设置于第一透镜L1与第二透镜L2之间的方案而言,能够增强第二透镜L2提供的屈折力,配合第二透镜L2的低折射率材料,有利于合理偏折经第一透镜L1的光线,提升光学系统100的成像质量。
需要说明的是,光阑STO在光学系统100中的设置位置不同,为提升光学系统100的成像质量,光学系统100中透镜的屈折力分配也不同。具体地,当光阑STO设置于第二透镜L2及第三透镜L3之间,需要第二透镜L2提供更小屈折力并采用更高折射率材质,当光阑STO设置于第一透镜L1与第二透镜L2之间,需要第二透镜L2提供更大屈折力并采用更低折射率材质。满足上述条件式,根据第二透镜L2的不同设置需求选用不同的第二透镜L2参数,能够提升光学系统100的成像质量。
在一些实施例中,光学系统100满足条件式:130≤V1+V3+V5≤135;其中,V1为第一透镜L1在940nm波长处的阿贝数,V3为第三透镜L3在940nm波长处的阿贝数,V5为第五透镜L5在940nm波长处的阿贝数。具体地,V1+V3+V5可以为:132.224、132.354、132.368、132.377、132.420、132.469、132.552、132.567、132.603或132.624。满足上述条件式,能够对第一透镜L1、第三透镜L3及第五透镜L5的阿贝数进行合理配置,增大第一透镜L1、第三透镜L3以及第五透镜L5的阿贝数,从而提升第一透镜L1、第三透镜L3及第五透镜L5的色差校正效果,同时,也能够使得色差校正效果良好的三片透镜均匀分布于光学系统100中,从而有利于提升光学系统100色散校正能力,进而提升光学系统100的成像质量;另外,将第一透镜L1、第三透镜L3及第五透镜L5的阿贝数之和设置在合理范围内,也有利于降低实际生产中材料色散值变化引起的不良影响。
在一些实施例中,光学系统100满足条件式:1.1mm≤CT23+CT34+CT45+CT2≤1.5mm;其中,CT23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴110上的距离,CT34为第三透镜L3的像侧面S5至第四透镜L4的物侧面S7于光轴110上的距离,CT45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离,CT2为第二透镜L2于光轴110上的厚度。具体地,CT23+CT34+CT45+CT2可以为:1.147、1.164、1.189、1.203、1.237、1.269、1.322、1.357、1.398或1.477,数值单位为mm。满足上述条件式,有利于压缩第二透镜L2至第五透镜L5中相邻两透镜之间的间隙,从而使得光学系统100的结构更加紧凑,有利于光学系统100机械结构的排布,同时降低光学系统100的制造及装配成本。
在一些实施例中,光学系统100满足条件式:5.0≤|(R11+R51)/BF|≤1100;其中,R11为第一透镜L1的物侧面S1于光轴110处的曲率半径,R51为第五透镜L5的物侧面S9于光轴110处的曲率半径,BF为第五透镜L5的像侧面S10至光学系统100的成像面于光轴110方向上的最短距离。具体地,|(R11+R51)/BF|可以为:5.361、7.156、9.339、12.274、15.954、19.351、22.305、29、875、35.641或47.003。满足上述条件式,能够对第一透镜L1的面型进行合理配置,有利于将第一透镜L1的中心厚度限制于合理范围内,从而使得第一透镜L1的中心厚度与边缘厚度差异不会过大,有利于第一透镜L1的加工;同时,能够对第五透镜L5的面型进行合理配置,使得第五透镜L5的物侧面S9不会过度弯曲,配合合适的BF值,有利于调配光学系统100与感光元件的入射角,从而使得光学系统100对感光元件的匹配角更加合理,避免光学系统100在感光元件的选择上陷入困难;另外,还能够对BF的数值进行合理配置,从而有利于降低光学系统100与感光元件的匹配难度,提升制程可靠性。低于上述条件式的下限,BF过大,不利于光学系统100的小型化设计。超过上述条件式的上限,BF过小,加大光学系统100的组装难度,且容易使得光学系统100与感光元件的匹配性下降,从而导致光学系统100的解像力下降及色彩异常。
在一些实施例中,光学系统100满足条件式:0.1≤(R12+|R22|)/|R42|≤2.6;其中,R12为第一透镜L1的像侧面S2于光轴110处的曲率半径,R22为第二透镜L2的像侧面S4于光轴110处的曲率半径,R42为第四透镜L4的像侧面S8于光轴110处的曲率半径。具体地,(R12+|R22|)/|R42|可以为:0.147、0.441、0.695、1.224、1.553、1.741、2.136、2.328、2.431或2.550。满足上述条件式,能够有效约束第一透镜L1与第二透镜L2的像侧面面型,降低第一透镜L1与第二透镜L2的像侧面边缘面型的弯曲程度,从而有利于避免大角度光线在第一透镜L1与第二透镜L2之间的局部发生多次反射,进而降低鬼像产生的风险;同时,能够合理配置第一透镜L1、第二透镜L2及第四透镜L4的像侧面面型,缩小第一透镜L1至第四透镜L4中各透镜的面形变化程度,从而有利于降低光学系统100的整体公差敏感度;另外,能够减小第一透镜L1、第二透镜L2及第四透镜L4的像侧面面型弯曲程度,有利于减少光学系统100杂散光的产生。
根据上述各实施例的描述,以下提出更为具体的实施例及附图予以详细说明。
第一实施例
请参见图1和图2,图1为第一实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜 L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图2由左至右依次为第一实施例中光学系统100的纵向球差、像散及畸变的曲线图,其中像散图和畸变图的参考波长为940nm,其他实施例相同。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
需要注意的是,在本申请中,当描述透镜的一个表面于近光轴110处(该表面的中心区域)为凸面时,可理解为该透镜的该表面于光轴110附近的区域为凸面。当描述透镜的一个表面于圆周处为凹面时,可理解为该表面在靠近最大有效半径处的区域为凹面。举例而言,当该表面于近光轴110处为凸面,且于圆周处也为凸面时,该表面由中心(该表面与光轴110的交点)至边缘方向的形状可以为纯粹的凸面;或者是先由中心的凸面形状过渡到凹面形状,随后在靠近最大有效半径处时变为凸面。此处仅为说明光轴110处与圆周处的关系而做出的示例,表面的多种形状结构(凹凸关系)并未完全体现,但其他情况可根据以上示例推导得出。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
进一步地,学系统100满足条件式:FOV/FNO=106.465°;其中,FOV为光学系统100的最大视场角,FNO为光学系统100的光圈数。满足上述条件式,有利于扩大光学系统100的视场角并增大光学系统100的光圈,实现大视角及大光圈特性,大视角特性的实现有利于光学系统100获取更多的场景信息,满足大范围探测的需求,大光圈特性的实现有利于改善大视角带来的边缘相对亮度下降快的问题,从而也有利于获取更多的场景信息。超过上述条件式的上限,光学系统100的视场角及光圈过大,难以实现像差平衡以及光学性能的提升。低于上述条件式的下限,光学系统100的视场角及光圈太小,导致光学系统100获取的场景信息有限,难以满足大范围探测需求。
光学系统100满足条件式:TTL/IMGH=1.415;其中,TTL为第一透镜L1的物侧面S1至光学系统100的成像面于光轴110上的距离,IMGH为光学系统100的最大视场角所对应的像高。满足上述条件式,能够合理配置光学系统100的光学总长与像高的比值,在兼顾良好的成像质量的同时有利于缩短光学系统100的系统总长,实现小型化设计。超过上述条件式的上限,光学系统100的光学总长过长,不利于小型化设计的实现。低于上述条件式的下限,光学系统100的光学总长过短,容易使得光学系统100中透镜面型过于复杂,降低光学系统100的生产良率,同时容易降低光学系统100校正像差的能力,导致成像质量的下降。
光学系统100满足条件式:SD11/IMGH=0.646;其中,SD11为第一透镜L1的物侧面S1的最大有效半口径,IMGH为光学系统100的最大视场角所对应的像高。满足上述条件式,能够对第一透镜L1的物侧面S1的最大有效半口径以及光学系统100的像高的比值进行合理配置,有利于将第一透镜L1的物侧面S1的有效半口径限制在合理范围,从而有利于缩短光学系统100的整体尺寸,实现小头部设计,进而有利于光学系统100在电子设备中的应用。低于上述条件式的下限,第一透镜L1的物侧面S1的有效口径过小,导致边缘视场像差校正困难,边缘相对照度快速降低,进而降低光学系统100的成像质量。超过上述条件式的上限,第一透镜L1的物侧面S1的有效口径过大,不利于光学系统100的小型化设计。
光学系统100满足条件式:R21/IND2=1.963mm;其中,R21为第二透镜L2的物侧面S3于光轴110处的曲率半径,IND2为第二透镜L2在940nm波长处的有效折射率。满足上述条件式,对于光阑STO设置于 第二透镜L2及第三透镜L3之间的方案而言,能够减小第二透镜L2提供的屈折力,配合第二透镜L2的高折射率材料,有利于合理偏折经第一透镜L1的光线,分担第一透镜L1的屈折力,从而有利于降低第一透镜L1的面型复杂度,进而有利于轴上色差与畸变的平衡;对于光阑STO设置于第一透镜L1与第二透镜L2之间的方案而言,能够增强第二透镜L2提供的屈折力,配合第二透镜L2的低折射率材料,有利于合理偏折经第一透镜L1的光线,提升光学系统100的成像质量。
光学系统100满足条件式:V1+V3+V5=132.224;其中,V1为第一透镜L1在940nm波长处的阿贝数,V3为第三透镜L3在940nm波长处的阿贝数,V5为第五透镜L5在940nm波长处的阿贝数。满足上述条件式,能够对第一透镜L1、第三透镜L3及第五透镜L5的阿贝数进行合理配置,增大第一透镜L1、第三透镜L3以及第五透镜L5的阿贝数,从而提升第一透镜L1、第三透镜L3及第五透镜L5的色差校正效果,同时,也能够使得色差校正效果良好的三片透镜均匀分布于光学系统100中,从而有利于提升光学系统100色散校正能力,进而提升光学系统100的成像质量;另外,将第一透镜L1、第三透镜L3及第五透镜L5的阿贝数之和设置在合理范围内,也有利于降低实际生产中材料色散值变化引起的不良影响。
光学系统100满足条件式:CT23+CT34+CT45+CT2=1.339mm;其中,CT23为第二透镜L2的像侧面S4至第三透镜L3的物侧面S5于光轴110上的距离,CT34为第三透镜L3的像侧面S5至第四透镜L4的物侧面S7于光轴110上的距离,CT45为第四透镜L4的像侧面S8至第五透镜L5的物侧面S9于光轴110上的距离,CT2为第二透镜L2于光轴110上的厚度。满足上述条件式,有利于压缩第二透镜L2至第五透镜L5中相邻两透镜之间的间隙,从而使得光学系统100的结构更加紧凑,有利于光学系统100机械结构的排布,同时降低光学系统100的制造及装配成本。
光学系统100满足条件式:|(R11+R51)/BF|=13.120;其中,R11为第一透镜L1的物侧面S1于光轴110处的曲率半径,R51为第五透镜L5的物侧面S9于光轴110处的曲率半径,BF为第五透镜L5的像侧面S10至光学系统100的成像面于光轴110方向上的最短距离。满足上述条件式,能够对第一透镜L1的面型进行合理配置,有利于将第一透镜L1的中心厚度限制于合理范围内,从而使得第一透镜L1的中心厚度与边缘厚度差异不会过大,有利于第一透镜L1的加工;同时,能够对第五透镜L5的面型进行合理配置,使得第五透镜L5的物侧面S9不会过度弯曲,配合合适的BF值,有利于调配光学系统100与感光元件的入射角,从而使得光学系统100对感光元件的匹配角更加合理,避免光学系统100在感光元件的选择上陷入困难;另外,还能够对BF的数值进行合理配置,从而有利于降低光学系统100与感光元件的匹配难度,提升制程可靠性。
光学系统100满足条件式:(R12+|R22|)/|R42|=1.474;其中,R12为第一透镜L1的像侧面S2于光轴110处的曲率半径,R22为第二透镜L2的像侧面S4于光轴110处的曲率半径,R42为第四透镜L4的像侧面S8于光轴110处的曲率半径。满足上述条件式,能够有效约束第一透镜L1与第二透镜L2的像侧面面型,降低第一透镜L1与第二透镜L2的像侧面边缘面型的弯曲程度,从而有利于避免大角度光线在第一透镜L1与第二透镜L2之间的局部发生多次反射,进而降低鬼像产生的风险;同时,能够合理配置第一透镜L1、第二透镜L2及第四透镜L4的像侧面面型,缩小第一透镜L1至第四透镜L4中各透镜的面形变化程度,从而有利于降低光学系统100的整体公差敏感度;另外,能够减小第一透镜L1、第二透镜L2及第四透镜L4的像侧面面型弯曲程度,有利于减少光学系统100杂散光的产生。
另外,光学系统100的各项参数由表1给出。其中,表1中的像面S13可理解为光学系统100的成像面。由物面(图未示出)至像面S13的各元件依次按照表1从上至下的各元件的顺序排列。表1中的Y半径为相应面序号的物侧面或像侧面于光轴110处的曲率半径。面序号S1和面序号S2分别为第一透镜L1的物侧面S1和像侧面S2,即同一透镜中,面序号较小的表面为物侧面,面序号较大的表面为像侧面。第一透镜L1的“厚度”参数列中的第一个数值为该透镜于光轴110上的厚度,第二个数值为该透镜的像侧面至像侧方向的后一表面于光轴110上的距离。Y孔径为相应面序号的物侧面或像侧面的最大有效半口径。
需要注意的是,在该实施例及以下各实施例中,光学系统100也可不设置红外带通滤光片L6,但此时第五透镜L5的像侧面S10至像面S13的距离保持不变。
在第一实施例中,光学系统100的有效焦距f=1.10mm,光圈数FNO=1.42,最大视场角FOV=151.18°,光学总长TTL=6.00mm。可知光学系统100能够实现广角特性、大光圈特性、小型化设计以及小头部设计,在其他实施例中光学系统100也能够实现上述效果。
且各透镜的焦距、折射率和阿贝数的参考波长均为940nm,其他实施例也相同。
表1
Figure PCTCN2021093870-appb-000001
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表2给出。其中,面序号从S1-S10分别表示像侧面或物侧面S1-S10。而从左到右的K-A20分别表示非球面系数的类型,其中,K表示圆锥系数,A4表示四次非球面系数,A6表示六次非球面系数,A8表示八次非球面系数,以此类推。另外,非球面系数公式如下:
Figure PCTCN2021093870-appb-000002
其中,Z为非球面上相应点到与表面顶点相切的平面的距离,r为非球面上相应点到光轴110的距离,c为非球面顶点的曲率,k为圆锥系数,Ai为非球面面型公式中与第i项高次项相对应的系数。
表2
Figure PCTCN2021093870-appb-000003
Figure PCTCN2021093870-appb-000004
另外,图2包括光学系统100的纵向球面像差图(Longitudinal Spherical Aberration),其表示不同波长的光线经由镜头后的汇聚焦点偏离。纵向球面像差图的纵坐标表示归一化的由光瞳中心至光瞳边缘的光瞳坐标(Normalized Pupil Coordinator),横坐标表示成像面到光线与光轴110交点的距离(单位为mm)。由纵向球面像差图可知,第一实施例中的各波长光线的汇聚焦点偏离程度趋于一致,成像画面中的弥散斑或色晕得到有效抑制。图2还包括光学系统100的场曲图(ASTIGMATIC FIELD CURVES),其中S曲线代表940nm下的弧矢场曲,T曲线代表940nm下的子午场曲。由图中可知,光学系统100的场曲较小,各视场的场曲和像散均得到了良好的校正,视场中心和边缘均拥有清晰的成像。图2还包括光学系统100的畸变图(DISTORTION),由图中可知,由主光束引起的图像变形较小,系统的成像质量优良。
第二实施例
请参见图3和图4,图3为第二实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有负屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图4由左至右依次为第二实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凹面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凹面,于圆周处为凹面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表3给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表3
Figure PCTCN2021093870-appb-000005
Figure PCTCN2021093870-appb-000006
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表4给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表4
面序号 K A4 A6 A8 A10
S1 4.3649E+00 2.4571E-01 -1.6472E-01 9.0297E-02 -3.5676E-02
S2 5.0467E-01 4.1417E-01 -1.0758E+00 4.9604E+00 -1.3240E+01
S3 3.1816E+00 5.9931E-02 -4.6128E+00 5.3918E+01 -3.9174E+02
S4 -8.0706E+01 2.1616E+00 -2.2048E+01 1.1922E+02 -4.1768E+02
S5 5.5770E+01 2.6509E+00 -2.2459E+01 1.0911E+02 -3.3822E+02
S6 -8.4379E+01 2.4349E+00 -1.7717E+01 6.9591E+01 -1.6832E+02
S7 -3.2783E+00 2.3361E+00 -1.3112E+01 4.1152E+01 -8.0610E+01
S8 -9.9000E+01 6.0038E-01 -3.3181E+00 7.7030E+00 -9.5666E+00
S9 -1.0045E+00 -4.1609E-01 -9.2394E-01 1.5016E+00 2.7181E-01
S10 -1.3505E+00 7.8757E-04 -1.1278E+00 2.3058E+00 -2.3754E+00
面序号 A12 A14 A16 A18 A20
S1 9.6158E-03 -1.7798E-03 2.2744E-04 -1.8767E-05 7.6209E-07
S2 2.1542E+01 -2.1471E+01 1.2601E+01 -3.9840E+00 5.2300E-01
S3 1.7570E+03 -4.8472E+03 7.8524E+03 -6.6342E+03 2.1011E+03
S4 9.5714E+02 -1.4247E+03 1.3263E+03 -7.0057E+02 1.6011E+02
S5 6.7231E+02 -8.5233E+02 6.5839E+02 -2.7744E+02 4.7669E+01
S6 2.5588E+02 -2.4539E+02 1.4326E+02 -4.5832E+01 6.0181E+00
S7 1.0103E+02 -8.1061E+01 4.0299E+01 -1.1309E+01 1.3704E+00
S8 7.1318E+00 -3.3448E+00 9.8264E-01 -1.6825E-01 1.3019E-02
S9 -2.1541E+00 2.0125E+00 -8.8132E-01 1.9238E-01 -1.6879E-02
S10 1.5033E+00 -6.1760E-01 1.6141E-01 -2.4316E-02 1.5990E-03
根据上述所提供的各参数信息,可推得以下数据:
FOV/FNO 105.016° V1+V3+V5 132.624
TTL/IMGH 1.301 CT23+CT34+CT45+CT2 1.477mm
SD11/IMGH 0.517 |(R11+R51)/BF| 5.361
R21/IND2 1.090mm (R12+|R22|)/|R42| 0.147
另外,由图4中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第三实施例
请参见图5和图6,图5为第三实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有负屈折力的第五透镜L5。图6由左至右依次为第三实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凸面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表5给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表5
Figure PCTCN2021093870-appb-000007
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表6给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表6
面序号 K A4 A6 A8 A10
S1 9.9000E+01 9.5465E-02 -2.5649E-02 1.9409E-03 8.3148E-04
S2 -4.5825E-01 7.8159E-02 2.8823E-01 -4.1171E-01 3.9018E-01
S3 5.2917E+00 -6.1982E-02 8.4520E-02 -1.0889E+00 4.5532E+00
S4 -5.2548E+00 7.6937E-02 -6.6143E-03 -9.1835E-01 1.4169E+01
S5 -2.3997E+01 -7.5096E-03 8.4267E-01 -1.0374E+01 7.1560E+01
S6 1.2719E+00 -6.8050E-01 3.8870E+00 -1.7489E+01 5.1286E+01
S7 -1.4339E+01 -8.2075E-01 4.6538E+00 -2.2739E+01 7.1974E+01
S8 4.1850E+00 -1.8597E-01 8.3051E-01 -3.6199E+00 9.1042E+00
S9 -4.7797E+00 -3.9950E-01 7.3934E-01 -1.2915E+00 1.2630E+00
S10 5.8812E-02 -3.2001E-01 5.2135E-01 -7.4691E-01 6.7797E-01
面序号 A12 A14 A16 A18 A20
S1 -2.7128E-04 3.3440E-05 -1.5430E-06 0.0000E+00 0.0000E+00
S2 -2.5122E-01 8.0277E-02 -9.6137E-03 0.0000E+00 0.0000E+00
S3 -1.0269E+01 1.3666E+01 -1.0625E+01 4.4426E+00 -7.7048E-01
S4 -7.1087E+01 1.8615E+02 -2.5505E+02 1.6242E+02 -2.7607E+01
S5 -2.9055E+02 7.1566E+02 -1.0519E+03 8.4794E+02 -2.8811E+02
S6 -9.5623E+01 1.1116E+02 -7.6921E+01 2.8272E+01 -4.0169E+00
S7 -1.4886E+02 1.9910E+02 -1.6620E+02 7.8597E+01 -1.5998E+01
S8 -1.4438E+01 1.4765E+01 -9.4699E+00 3.4491E+00 -5.3514E-01
S9 -7.2072E-01 2.4679E-01 -4.7659E-02 4.1921E-03 -6.0018E-05
S10 -4.0107E-01 1.5413E-01 -3.7020E-02 5.0377E-03 -2.9596E-04
根据上述所提供的各参数信息,可推得以下数据:
FOV/FNO 98.777° V1+V3+V5 132.224
TTL/IMGH 1.339 CT23+CT34+CT45+CT2 1.252mm
SD11/IMGH 0.586 |(R11+R51)/BF| 1098.566
R21/IND2 2.105mm (R12+|R22|)/|R42| 2.550
另外,由图6中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第四实施例
请参见图7和图8,图7为第四实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、光阑STO、具有正屈折力的第二透镜L2、具有正屈折力的第三透镜L3、具有负屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图8由左至右依次为第四实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凹面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的物侧面S5于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表7给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表7
Figure PCTCN2021093870-appb-000008
Figure PCTCN2021093870-appb-000009
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表8给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表8
面序号 K A4 A6 A8 A10
S1 4.3849E+00 2.7474E-01 -2.2759E-01 1.4650E-01 -6.9682E-02
S2 1.0796E-01 4.3477E-01 -2.6365E-01 1.1313E+00 -5.3647E+00
S3 3.0310E+00 -6.8373E-02 -1.1308E+00 1.2736E+01 -1.0063E+02
S4 -1.3843E+00 -1.5713E-01 -6.5308E-01 9.6848E+00 -6.0424E+01
S5 -9.9000E+01 -9.4143E-02 -3.5034E+00 1.9104E+01 -5.3447E+01
S6 -4.2750E+01 7.4565E-01 -8.1207E+00 3.4795E+01 -9.5964E+01
S7 -3.2783E+00 1.5088E+00 -5.7763E+00 1.3496E+01 -2.1293E+01
S8 -9.9000E+01 4.9462E-01 -8.9599E-01 8.1949E-01 -4.4355E-01
S9 -1.0251E+00 -8.8546E-01 1.7529E+00 -2.7956E+00 2.8752E+00
S10 2.4586E+00 -3.4853E-01 7.8836E-01 -1.2799E+00 1.2680E+00
面序号 A12 A14 A16 A18 A20
S1 2.3677E-02 -5.5882E-03 8.6980E-04 -8.0009E-05 3.2872E-06
S2 1.3092E+01 -1.7797E+01 1.3548E+01 -5.4245E+00 8.8959E-01
S3 5.1425E+02 -1.7089E+03 3.5220E+03 -4.0686E+03 2.0016E+03
S4 2.1060E+02 -4.4976E+02 5.7932E+02 -4.1233E+02 1.2445E+02
S5 6.5118E+01 2.9046E+01 -1.9807E+02 2.3083E+02 -9.0121E+01
S6 1.7710E+02 -2.1655E+02 1.6702E+02 -7.2998E+01 1.3743E+01
S7 2.2711E+01 -1.6081E+01 7.2168E+00 -1.8514E+00 2.0613E-01
S8 1.4259E-01 -4.0582E-02 1.9617E-02 -6.8879E-03 8.9784E-04
S9 -1.8960E+00 7.9999E-01 -2.0926E-01 3.1020E-02 -2.0007E-03
S10 -7.5541E-01 2.7385E-01 -5.9302E-02 7.0472E-03 -3.5253E-04
根据上述所提供的各参数信息,可推得以下数据:
FOV/FNO 107.629° V1+V3+V5 132.624
TTL/IMGH 1.367 CT23+CT34+CT45+CT2 1.472mm
SD11/IMGH 0.507 |(R11+R51)/BF| 5.601
R21/IND2 1.129mm (R12+|R22|)/|R42| 1.618
另外,由图8中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第五实施例
请参见图9和图10,图9为第五实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有正屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图10由左至右依次为第五实施例中光 学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凹面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凹面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的像侧面S8于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表9给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表9
Figure PCTCN2021093870-appb-000010
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表10给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表10
Figure PCTCN2021093870-appb-000011
Figure PCTCN2021093870-appb-000012
根据上述所提供的各参数信息,可推得以下数据:
FOV/FNO 110.916° V1+V3+V5 132.224
TTL/IMGH 1.500 CT23+CT34+CT45+CT2 1.389mm
SD11/IMGH 0.723 |(R11+R51)/BF| 37.188
R21/IND2 4.061mm (R12+|R22|)/|R42| 1.873
另外,由图10中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
第六实施例
请参见图11和图12,图11为第六实施例中的光学系统100的结构示意图,光学系统100由物侧至像侧依次包括具有负屈折力的第一透镜L1、具有负屈折力的第二透镜L2、光阑STO、具有正屈折力的第三透镜L3、具有正屈折力的第四透镜L4以及具有正屈折力的第五透镜L5。图12由左至右依次为第六实施例中光学系统100的纵向球差、像散及畸变的曲线图。
第一透镜L1的物侧面S1于近光轴110处为凹面,于圆周处为凸面;
第一透镜L1的像侧面S2于近光轴110处为凹面,于圆周处为凹面;
第二透镜L2的物侧面S3于近光轴110处为凸面,于圆周处为凸面;
第二透镜L2的像侧面S4于近光轴110处为凹面,于圆周处为凹面;
第三透镜L3的物侧面S5于近光轴110处为凸面,于圆周处为凸面;
第三透镜L3的像侧面S6于近光轴110处为凸面,于圆周处为凸面;
第四透镜L4的物侧面S7于近光轴110处为凸面,于圆周处为凹面;
第四透镜L4的像侧面S8于近光轴110处为凹面,于圆周处为凸面;
第五透镜L5的物侧面S9于近光轴110处为凸面,于圆周处为凹面;
第五透镜L5的像侧面S10于近光轴110处为凹面,于圆周处为凸面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的物侧面和像侧面均为非球面。
第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4以及第五透镜L5的材质均为塑料。
另外,光学系统100的各项参数由表11给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表11
Figure PCTCN2021093870-appb-000013
Figure PCTCN2021093870-appb-000014
进一步地,光学系统100各透镜像侧面或物侧面的非球面系数由表12给出,且其中各参数的定义可由第一实施例得出,此处不加以赘述。
表12
面序号 K A4 A6 A8 A10
S1 4.9937E+00 7.9596E-02 -3.0680E-02 8.1405E-03 -1.3852E-03
S2 -3.5519E-01 6.2986E-02 5.5449E-02 -8.6712E-02 5.4562E-02
S3 1.3029E+01 4.8875E-04 9.6579E-02 -1.9633E-02 -1.1589E-01
S4 4.1160E+00 1.0163E-01 3.1917E-01 -7.0459E-01 2.5810E+00
S5 2.5935E+00 -2.0765E-02 4.7183E-01 -2.7198E+00 9.2201E+00
S6 4.1132E+00 -3.1830E-01 6.8387E-01 -1.4386E+00 2.2435E+00
S7 -5.2114E+00 -1.8502E-01 4.2202E-01 -6.6944E-01 6.5877E-01
S8 -6.9007E+01 -4.2950E-01 5.4313E-01 -5.8876E-01 4.3707E-01
S9 -2.8118E+00 -1.7296E-01 1.3080E-01 -3.6209E-01 2.6266E-01
S10 1.7563E-01 1.7094E-01 -4.5250E-01 3.4443E-01 -1.4765E-01
面序号 A12 A14 A16 A18 A20
S1 1.4184E-04 -7.9063E-06 1.8736E-07 0.0000E+00 0.0000E+00
S2 -1.8535E-02 2.3295E-03 -3.4901E-05 0.0000E+00 0.0000E+00
S3 1.8151E-01 -1.2525E-01 2.9844E-02 0.0000E+00 0.0000E+00
S4 -5.6881E+00 6.8424E+00 -3.1545E+00 0.0000E+00 0.0000E+00
S5 -1.7360E+01 1.7176E+01 -6.9559E+00 0.0000E+00 0.0000E+00
S6 -2.2282E+00 1.2745E+00 -3.0643E-01 0.0000E+00 0.0000E+00
S7 -3.9642E-01 1.3111E-01 -1.7983E-02 0.0000E+00 0.0000E+00
S8 -2.0282E-01 5.1635E-02 -5.3467E-03 0.0000E+00 0.0000E+00
S9 -7.7424E-02 9.7839E-03 -3.9603E-04 0.0000E+00 0.0000E+00
S10 3.5673E-02 -4.4930E-03 2.2390E-04 0.0000E+00 0.0000E+00
根据上述所提供的各参数信息,可推得以下数据:
FOV/FNO 116.218° V1+V3+V5 132.224
TTL/IMGH 1.500 CT23+CT34+CT45+CT2 1.147mm
SD11/IMGH 0.707 |(R11+R51)/BF| 47.003
R21/IND2 3.212mm (R12+|R22|)/|R42| 0.773
另外,由图12中的像差图可知,光学系统100的纵向球差、场曲和畸变均得到良好的控制,从而该实施例的光学系统100拥有良好的成像品质。
请参见图13,在一些实施例中,光学系统100可与感光元件210组装形成取像模组200。此时,感光 元件210的感光面可视为光学系统100的像面S13。取像模组200还可设置有红外带通滤光片L6,红外带通滤光片L6设置于第五透镜L5的像侧面S10与像面S13之间。具体地,感光元件210可以为电荷耦合元件(Charge Coupled Device,CCD)或互补金属氧化物半导体器件(Complementary Metal-Oxide Semiconductor Sensor,CMOS Sensor)。在取像模组200中采用上述光学系统100,有利于实现大视角与大光圈特性,从而有利于获取更多的场景信息,满足大范围探测的需求。
请参见图13和图14,在一些实施例中,取像模组200可应用于电子设备300中,电子设备300还包括发射模组310,发射模组310能够朝待测物发射红外线,当发射模组310发射的红外线被待测物反射后,能够被取像模组200接收,从而获取待测物的深度信息。具体地,电子设备300可以为但不限于便携电话机、视频电话、智能手机、电子书籍阅读器、行车记录仪、智能手表、红外探测设备等能够获取待测物深度信息的装置。举例而言,当电子设备300为智能手机时,电子设备300可以采用TOF探测技术,取像模组200作为电子设备300中的接收模块。在电子设备300中采用上述取像模组200,有利于实现大视角与大光圈特性,从而有利于获取更多的场景信息,满足大范围探测的需求。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种光学系统,沿光轴由物侧至像侧依次包括:
    具有负屈折力的第一透镜,所述第一透镜的像侧面于近光轴处为凹面;
    具有屈折力的第二透镜,所述第二透镜的物侧面于近光轴处为凸面;
    具有屈折力的第三透镜;
    具有屈折力的第四透镜,所述第四透镜的物侧面于近光轴处为凸面;
    具有屈折力的第五透镜,所述第五透镜的物侧面于近光轴处为凸面,像侧面于近光轴处为凹面;
    且所述光学系统满足以下条件式:
    95°≤FOV/FNO≤120°;
    其中,FOV为所述光学系统的最大视场角,FNO为所述光学系统的光圈数。
  2. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    130°≤FOV≤160.0°。
  3. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1.3≤FNO≤1.5。
  4. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1.25≤TTL/IMGH≤1.55;
    其中,TTL为所述第一透镜的物侧面至所述光学系统的成像面于光轴上的距离,IMGH为所述光学系统的最大视场角所对应的像高。
  5. 根据权利要求4所述的光学系统,其特征在于,满足以下条件式:
    5.5mm≤TTL≤6.5mm。
  6. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.45≤SD11/IMGH≤0.75;
    其中,SD11为所述第一透镜的物侧面的最大有效半口径,IMGH为所述光学系统的最大视场角所对应的像高。
  7. 根据权利要求1所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第一透镜及所述第二透镜之间,或设置于所述第二透镜及所述第三透镜之间,且所述光学系统满足以下条件式:
    1.09mm≤R21/IND2≤4.1mm;
    其中,R21为所述第二透镜的物侧面于光轴处的曲率半径,IND2为所述第二透镜在940nm波长处的有效折射率。
  8. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    130≤V1+V3+V5≤135;
    其中,V1为所述第一透镜在940nm波长处的阿贝数,V3为所述第三透镜在940nm波长处的阿贝数,V5为所述第五透镜在940nm波长处的阿贝数。
  9. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    1.1mm≤CT23+CT34+CT45+CT2≤1.5mm;
    其中,CT23为所述第二透镜的像侧面至所述第三透镜的物侧面于光轴上的距离,CT34为所述第三透镜的像侧面至所述第四透镜的物侧面于光轴上的距离,CT45为所述第四透镜的像侧面至所述第五透镜的物侧面于光轴上的距离,CT2为所述第二透镜于光轴上的厚度。
  10. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    5.0≤|(R11+R51)/BF|≤1100;
    其中,R11为所述第一透镜的物侧面于光轴处的曲率半径,R51为所述第五透镜的物侧面于光轴处的曲率半径,BF为所述第五透镜的像侧面至所述光学系统的成像面于光轴方向上的最短距离。
  11. 根据权利要求1所述的光学系统,其特征在于,满足以下条件式:
    0.1≤(R12+|R22|)/|R42|≤2.6;
    其中,R12为所述第一透镜的像侧面于光轴处的曲率半径,R22为所述第二透镜的像侧面于光轴处的曲率半径,R42为所述第四透镜的像侧面于光轴处的曲率半径。
  12. 根据权利要求1-11任一项所述的光学系统,其特征在于,还包括光阑,所述光阑设置于所述第一透镜与所述第二透镜之间,或者设置于所述第二透镜与所述第三透镜之间。
  13. 根据权利要求1-11任一项所述的光学系统,其特征在于,还包括红外带通滤光片,所述红外带通滤光片设置于所述第五透镜的像侧。
  14. 根据权利要求13所述的光学系统,其特征在于,所述红外带通滤光片能够透过930nm-950nm的红外光。
  15. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜的物侧面和像侧面为非球面。
  16. 根据权利要求1-8任一项所述的光学系统,其特征在于,所述第一透镜、所述第二透镜、所述第三透镜、所述第四透镜以及所述第五透镜的材质为塑料。
  17. 一种取像模组,包括感光元件以及权利要求1-16任一项所述的光学系统,所述感光元件设置于所述光学系统的像侧。
  18. 根据权利要求17所述的取像模组,其特征在于,所述感光元件为电荷耦合元件或互补金属氧化物半导体器件。
  19. 一种电子设备,包括发射模组以及权利要求17所述的取像模组,所述发射模组发射的红外线能够经待测物反射后被所述取像模组接收。
  20. 根据权利要求19所述的电子设备,其特征在于,所述电子设备采用基于飞行时间的技术。
PCT/CN2021/093870 2021-05-14 2021-05-14 光学系统、取像模组及电子设备 WO2022236817A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093870 WO2022236817A1 (zh) 2021-05-14 2021-05-14 光学系统、取像模组及电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/093870 WO2022236817A1 (zh) 2021-05-14 2021-05-14 光学系统、取像模组及电子设备

Publications (1)

Publication Number Publication Date
WO2022236817A1 true WO2022236817A1 (zh) 2022-11-17

Family

ID=84028700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093870 WO2022236817A1 (zh) 2021-05-14 2021-05-14 光学系统、取像模组及电子设备

Country Status (1)

Country Link
WO (1) WO2022236817A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449545A (zh) * 2023-06-15 2023-07-18 江西欧菲光学有限公司 光学镜头、摄像模组及终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777317A (zh) * 2012-10-23 2014-05-07 信泰光学(深圳)有限公司 薄型镜头
CN105074529A (zh) * 2013-02-28 2015-11-18 富士胶片株式会社 摄像透镜及摄像装置
CN105572847A (zh) * 2016-03-02 2016-05-11 浙江舜宇光学有限公司 超广角摄像镜头
US20170097498A1 (en) * 2015-10-01 2017-04-06 Olympus Corporation Wide-angle optical system and image pickup apparatus using the same
CN107272165A (zh) * 2017-08-15 2017-10-20 浙江舜宇光学有限公司 摄像透镜组
CN111258034A (zh) * 2020-03-27 2020-06-09 天津欧菲光电有限公司 透镜系统、取像模组、电子装置及驾驶装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777317A (zh) * 2012-10-23 2014-05-07 信泰光学(深圳)有限公司 薄型镜头
CN105074529A (zh) * 2013-02-28 2015-11-18 富士胶片株式会社 摄像透镜及摄像装置
US20170097498A1 (en) * 2015-10-01 2017-04-06 Olympus Corporation Wide-angle optical system and image pickup apparatus using the same
CN105572847A (zh) * 2016-03-02 2016-05-11 浙江舜宇光学有限公司 超广角摄像镜头
CN107272165A (zh) * 2017-08-15 2017-10-20 浙江舜宇光学有限公司 摄像透镜组
CN111258034A (zh) * 2020-03-27 2020-06-09 天津欧菲光电有限公司 透镜系统、取像模组、电子装置及驾驶装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116449545A (zh) * 2023-06-15 2023-07-18 江西欧菲光学有限公司 光学镜头、摄像模组及终端设备
CN116449545B (zh) * 2023-06-15 2023-09-19 江西欧菲光学有限公司 光学镜头、摄像模组及终端设备

Similar Documents

Publication Publication Date Title
US10324271B2 (en) Optical image capturing system
US20170227737A1 (en) Optical Image Capturing System
US9964737B2 (en) Optical image capturing system
WO2021184165A1 (zh) 光学系统、摄像模组及电子装置
CN112987252B (zh) 光学系统、红外接收模组及电子设备
WO2021223598A1 (zh) 光学镜头及成像设备
CN114114654B (zh) 光学系统、取像模组及电子设备
CN113296237B (zh) 光学系统、取像模组及电子设备
CN113900222B (zh) 光学系统、取像模组及电子设备
WO2022236817A1 (zh) 光学系统、取像模组及电子设备
CN210775999U (zh) 光学系统、镜头模组和电子设备
WO2022183473A1 (zh) 光学系统、红外接收模组及电子设备
EP3896510A1 (en) Optical system, image capturing device and electronic device
CN114675407B (zh) 光学系统、镜头模组及电子设备
CN114740599B (zh) 光学系统、摄像模组和电子设备
CN114326019B (zh) 光学系统、取像模组及电子设备
CN114019655B (zh) 光学镜头、摄像模组及电子设备
WO2022120678A1 (zh) 光学系统、取像模组及电子设备
CN115480365A (zh) 光学系统、取像模组及电子设备
CN113391429B (zh) 光学系统、摄像头模组及电子设备
CN113296236B (zh) 红外光学系统、红外接收模组及电子设备
WO2022151157A1 (zh) 光学系统、取像模组及电子设备
WO2022236732A1 (zh) 红外光学系统、红外接收模组及电子设备
CN113568143A (zh) 光学系统、取像模组及电子设备
CN114637094A (zh) 光学镜头、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21941387

Country of ref document: EP

Kind code of ref document: A1