WO2020218516A1 - Method of manufacturing three-layer laminate - Google Patents

Method of manufacturing three-layer laminate Download PDF

Info

Publication number
WO2020218516A1
WO2020218516A1 PCT/JP2020/017703 JP2020017703W WO2020218516A1 WO 2020218516 A1 WO2020218516 A1 WO 2020218516A1 JP 2020017703 W JP2020017703 W JP 2020017703W WO 2020218516 A1 WO2020218516 A1 WO 2020218516A1
Authority
WO
WIPO (PCT)
Prior art keywords
back surface
protective film
surface protective
laminating step
film forming
Prior art date
Application number
PCT/JP2020/017703
Other languages
French (fr)
Japanese (ja)
Inventor
康喜 中石
厚史 上道
拓 根本
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2021516264A priority Critical patent/JPWO2020218516A1/ja
Publication of WO2020218516A1 publication Critical patent/WO2020218516A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers

Definitions

  • the present invention relates to a method for producing a third laminated body. More specifically, the present invention relates to a method for manufacturing a third laminated body in which a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order.
  • a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order.
  • semiconductor devices to which a mounting method called a face down method has been applied have been manufactured.
  • a semiconductor chip having an electrode such as a bump on the circuit surface is used, and the electrode is bonded to the substrate. Therefore, the back surface of the semiconductor chip opposite to the circuit surface may be exposed.
  • a resin film containing an organic material is formed on the back surface of the exposed semiconductor chip as a back surface protective film, and may be incorporated into a semiconductor device as a semiconductor chip with a back surface protective film.
  • the back surface protective film is used to prevent cracks from occurring in the semiconductor chip after the dicing step or packaging (for example, Patent Documents 1 and 2).
  • Such a semiconductor chip with a back surface protective film is manufactured, for example, through the process shown in FIG. That is, the back surface protective film forming film 13 is laminated on the back surface 8b of the semiconductor wafer 8 having the circuit surface (FIG. 9A), and the back surface protective film forming film 13 is heat-cured or energy ray-cured to protect the back surface.
  • the film is 13'(FIG. 9 (B)), the back surface protective film 13'is laser-marked (FIG. 9 (C)), and the support sheet 10 is laminated on the back surface protective film 13'(FIG. 9 (D)).
  • the wafer 8 and the back surface protective film 13' are die to obtain the semiconductor chip 7 with the back surface protective film (FIGS.
  • FIG. 9 (G) A method is known.
  • the order of the curing step and the laser marking step is arbitrary, and the back surface protective film forming film 13 is laminated on the back surface 8b of the semiconductor wafer 8 having a circuit surface (FIG. 9A), and the back surface protective film forming film 13 is laminated.
  • the back surface protective film forming film 13 may be thermoset or energy ray cured to form a back surface protective film 13', and then the steps of FIGS. 9 (D) to 9 (G) may be performed.
  • FIG. 9 (D) to 9 (G) may be performed.
  • the second laminating step is performed by separate devices.
  • a protective film forming composite sheet in which the back surface protective film forming film 13 and the support sheet 10 are integrated is used for manufacturing a semiconductor chip with a back surface protective film (for example, Patent Document 2).
  • a method for manufacturing a semiconductor chip with a back surface protective film using a composite sheet for forming a protective film goes through, for example, the process shown in FIG. That is, the back surface protective film forming film 13 of the protective film forming composite sheet 1 in which the back surface protective film forming film 13 and the support sheet 10 are laminated is attached to the back surface 8b of the semiconductor wafer 8 having the circuit surface (FIG. 10 (A')), the circuit surface protection tape 17 is peeled off (FIG. 10 (B')), and the back surface protective film forming film 13 is heat-cured or energy ray-cured to obtain the back surface protective film 13'(FIG. 10). (C')), laser marking the back surface protective film 13'from the side of the support sheet 10 (FIG.
  • the first laminating step of laminating the back surface protective film forming film 13 on the back surface 8b of the semiconductor wafer 8 and in FIG. 9 (D), the back surface protective film 13' is supported.
  • the second laminating step of laminating the sheets 10 is performed by separate devices.
  • the laminate obtained in the first laminating step is housed in one cassette and transported by hand to an apparatus performing the second step, and the transport by this person is a back surface protective film. Reduces the production efficiency of semiconductor chips. Further, the laminated body obtained in the first laminating step may be contaminated or damaged while being housed in the cassette and transported.
  • the protective film forming composite sheet 1 in which the back surface protective film forming film 13 and the support sheet 10 are integrated since the protective film forming composite sheet 1 in which the back surface protective film forming film 13 and the support sheet 10 are integrated is used, the back surface is used.
  • the step of attaching the back surface protective film forming film 13 to the work to be protected (that is, the semiconductor wafer 8) of the protective film forming film 13 and the step of attaching the support sheet 10 can be made into one step.
  • the protective film forming composite sheet 1 when the protective film forming composite sheet 1 is used, the characteristics of the back surface protective film forming film 13 and the characteristics of the support sheet 10 must be combined in combination, and a method for manufacturing a semiconductor chip with a protective film that meets the purpose. Therefore, many kinds of composite sheets 1 for forming a protective film must be prepared.
  • the back surface protective film forming film 13 punched to a predetermined size is laminated on the support sheet 10, and the laminated body is punched to the size of a dicing jig to remove unnecessary portions. It can be manufactured by removing it.
  • the back surface protective film forming film 13 and the support sheet 10 are sequentially laminated on the hard semiconductor wafer 8 as in the method of FIG. 9, in the production of the protective film forming composite sheet 1, each has a soft back surface. Since the protective film forming film 13 and the support sheet 10 are bonded together, there is a problem that the difficulty level is high and the yield is deteriorated, so that the manufacturing cost is high.
  • the present invention has been made in view of the above circumstances, and the third laminated body in which a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order is efficiently and low.
  • An object of the present invention is to provide a method for producing a third laminate that can be produced at low cost.
  • the present invention provides the following method for producing a third laminate.
  • One side of the work is the circuit surface and the other side is the back surface.
  • the first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order. From the first laminating step to the second laminating step, the second laminated body in which the back surface protective film forming film is laminated on the work is conveyed one by one.
  • the process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device.
  • the first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
  • the transport distance of the work from the sticking start point of the first laminating step to the sticking completion point of the second laminating step is 7000 mm or less.
  • the process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device.
  • the first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
  • the transport time of the work from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is 400 s or less.
  • the process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device.
  • the third laminated body according to [3], wherein the transport time of the work from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is 150 s or less. Manufacturing method.
  • a third laminated body in which a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order can be efficiently manufactured at low cost. Manufacturing method is provided.
  • FIG. 1 is a schematic cross-sectional view schematically showing an example of an embodiment of a method for manufacturing a third laminated body.
  • the method for manufacturing the third laminated body of the present embodiment is a method for manufacturing the third laminated body 19 in which the work 14, the back surface protective film forming film 13, and the support sheet 10 are laminated in this order.
  • One surface of 14, one surface is a circuit surface 14a, the other surface is a back surface 14b (FIG. 1 (a)), and the back surface protective film forming film 13 is attached to the back surface 14b side of the work 14.
  • the laminating step (FIG. 1 (b)) and the second laminating step (FIG. 1 (d)) of attaching the support sheet 10 to the back surface protective film forming film 13 are included in this order (FIG. 1 (a)).
  • the device for attaching the back surface protective film forming film and the support sheet are attached between the first laminating step and the second laminating step (FIGS. 1B to 1d). It is performed by connecting the devices to be used, or in the same device. Therefore, in the present embodiment, the second laminated body in which the back surface protective film forming film 13 is laminated on the work 14 is housed in the cassette between the first laminating step and the second laminating step. Instead, they can be transported one by one to the second laminating step shown in FIG. 1 (d). By performing in the same device, the device space can be further reduced.
  • the step of connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet is the step of connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet, and the first step.
  • the back surface protective film forming film 13 used in the first laminating step may be processed into the shape of the work in advance, or may be processed in the same apparatus immediately before the first laminating step is performed. If the size of the work is constant on the production line used, the former that can be machined in advance is more efficient, and if the size of the work is likely to change, the latter For example, there is no waste of the film for forming the back surface protective film, and there is a cost merit.
  • the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be designed to be 7000 mm or less.
  • the device space can be reduced.
  • the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be 6500 mm or less, 6000 mm or less, or 4500 mm or less. It can be set to 3000 mm or less.
  • the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be 200 to 7000 mm or less, and 200 to 6000 mm.
  • the transport distance of the work 14 from the sticking start point of the first laminating process to the sticking completion point of the second laminating step is the transport distance from the sticking point of the first laminating process to the second laminating step. It means the distance actually moved by the work 14 to the pasting completion point of.
  • the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be set to 400 s or less. It can be set to 150 s or less, and the process time can be shortened.
  • the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be 130 s or less, 110 s or less, 90 s or less. It can be set to 70s or less.
  • the transport time of the work 14 from the start of pasting of the first laminating step to the completion of pasting of the second laminating step can be 15 to 400 s or 15 to 150 s. It can be 15 to 130 s, 15 to 110 s, 15 to 90 s, or 15 to 70 s.
  • the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is the time required for the first laminating step and the place where the first laminating step was performed. It is roughly divided into three, the transportation time from the to the place where the second laminating process is performed, and the time required for the second laminating process.
  • the time required for the first laminating step can be 40 s or less, 15 s or less, and the process time can be shortened.
  • the time required for the first laminating step can be 10 s or less, or 8 s or less. Further, the time required for the first laminating step can be 3 to 40 s, 3 to 15 s, 3 to 10 s, or 3 to 8 s.
  • the transport time from the place where the first laminating step is performed to the place where the second laminating step is performed can be 200 s or less, can be 75 s or less, and the process time can be shortened.
  • the transport time from the place where the first laminating step is performed to the place where the second laminating step is performed can be 60 s or less, or 37 s or less.
  • the transport time from the place where the first laminating step is performed to the place where the second laminating step is performed can be 3 to 200 s, 3 to 75 s, or 3 to 60 s. It can also be 3 to 37 s.
  • the time required for the second laminating step can be 160 s or less, 60 s or less, and the process time can be shortened.
  • the time required for the second laminating step can be 40 s or less, or 25 s or less. Further, the time required for the second laminating step can be set to 3 to 160 s, 3 to 60 s, 3 to 40 s, or 3 to 25 s.
  • the transport distance of the work from the sticking start point of the first laminating step of the present embodiment shown in FIG. 1 (b) to the sticking completion point of the second laminating step shown in FIG. 1 (d) is 7000 mm. It can be less than or equal to 6500 mm, less than or equal to 6000 mm, less than or equal to 4500 mm, and less than or equal to 3000 mm.
  • the transport time of the work from the start of sticking of the first laminating step of the present embodiment shown in FIG. 1 (b) to the completion of sticking of the second laminating step shown in FIG. 1 (d) is 400 s. It can be less than or equal to 150 s, less than 130 s, less than 110 s, less than 90 s, less than 70 s.
  • the method for producing the third laminated body of the present embodiment can be carried out by connecting an apparatus for attaching a film for forming a back surface protective film and an apparatus for attaching a support sheet, or can be carried out in the same apparatus.
  • the same device can be implemented by, for example, a device including a back surface protective film forming film sticking table, a support sheet sticking table, and a transport arm. Specifically, the work 14 put into the above device is conveyed to the back surface protective film forming film affixing table by the transfer arm, and is installed with the back surface 14b facing upward.
  • the back surface protective film forming film 13 processed in advance to the size of the work 14 outside the device or immediately before the work 14 is attached to the back surface 14b side of the work 14. It becomes a two-layered body.
  • the second laminated body is conveyed to the support sheet affixing table by a conveying arm, and is installed with the back surface protective film forming film side facing upward.
  • the support tape 10 is attached to the back surface protective film forming film 13 of the second laminate to form the third laminate.
  • the speed at which the protective film forming film 13 is attached to the back side of the work 14 in the first laminating step and the speed at which the support sheet 10 is attached to the protective film forming film 13 in the second laminating step are 100 mm / sec or less. It can also be 80 mm / sec or less, 60 mm / sec or less, or 40 mm / sec or less.
  • the sticking speed in the first laminating step and the sticking speed in the second laminating step are equal to or less than the upper limit value, the adhesion between the work 14 and the protective film forming film 13 and the protective film forming are formed.
  • the adhesion between the film 13 and the support sheet 10 can be improved.
  • the sticking speed in the first laminating step and the sticking speed in the second laminating step may be 2 mm / sec or more, 5 mm / sec or more, or 10 mm / sec or more. You can also do it.
  • the sticking speed in the first laminating step and the sticking speed in the second laminating step are equal to or higher than the lower limit, the production efficiency of the third laminated body 19 is improved and the first laminating step is performed.
  • the transport time of the work 14 from the start of sticking to the completion of sticking in the second laminating step can be 400 s or less.
  • the sticking speed in the first laminating step and the sticking speed in the second laminating step can be 2 to 100 mm / sec, 2 to 80 mm / sec, or 5 to 60 mm / sec. It can be set to seconds, or 10 to 40 mm / sec.
  • the device preferably includes 1 to 5 film sticking tables for forming a back surface protective film, and more preferably 1 to 3 tables.
  • the number of the back surface protective film forming film sticking tables in the apparatus is not less than the lower limit value of the above range, the production efficiency is increased, and when it is not more than the upper limit value, the space of the apparatus can be reduced.
  • the device preferably includes 1 to 5 support sheet attachment tables, and more preferably 1 to 3 tables.
  • the number of support sheet attachment tables in the apparatus is not less than the lower limit value of the above range, the production efficiency is increased, and when it is not more than the upper limit value, the space of the apparatus can be reduced.
  • the device is provided with a transfer arm according to each transfer path.
  • the ratio of the number of transport arms to the total number of tables is 1 or more, the production efficiency can be improved. Further, when two or more tables are provided, if the ratio of the number of transfer arms to the total number of tables is more than 0 and less than 1 (for example, the total number of transfer arms is 1 for two tables), the space of the device is reduced. Is possible.
  • Specific examples of connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet include a device having a mechanism for attaching the back surface protective film forming film and a mechanism for attaching the support sheet. Examples thereof include a method in which the devices are made continuous and the second laminated body in which the back surface protective film forming film 13 is attached to the work 14 is conveyed one by one by using a conveying arm between the mechanisms.
  • a semiconductor wafer is used as the work 14 shown in FIG. 1 (a).
  • One surface of the semiconductor wafer is the circuit surface 14a, on which bumps are formed.
  • the circuit surface 14a and bumps of the semiconductor wafer are protected from the circuit surface. It may be protected by a tape 17.
  • the circuit surface protection tape 17 is a back surface grinding tape, and the back surface of the semiconductor wafer, which is the work 14, (that is, the back surface 14b of the work) may be a ground surface.
  • the work 14 is not limited as long as it has a circuit surface 14a on one side and the other surface can be said to be the back surface.
  • a semiconductor wafer having a circuit surface on one side or individual electronic components are sealed with a sealing resin, and one side has a terminal forming surface (in other words, a circuit surface) of a semiconductor device with terminals.
  • An example includes a semiconductor device panel composed of a semiconductor device assembly with terminals.
  • the circuit surface protection tape 17 for example, the surface protection sheet disclosed in JP-A-2016-192488 and JP-A-2009-141265 can be used.
  • the circuit surface protection tape 17 includes an adhesive layer having an appropriate removability.
  • the pressure-sensitive adhesive layer may be formed of a general-purpose weak pressure-sensitive pressure-sensitive adhesive such as a rubber-based, acrylic resin, silicone resin, urethane resin, or vinyl ether resin. Further, the pressure-sensitive adhesive layer may be an energy ray-curable pressure-sensitive adhesive that is cured by irradiation with energy rays and becomes removable.
  • the circuit surface protection tape 17 has a double-sided tape shape, and the outer side of the circuit surface protection tape 17 may be fixed to a hard support, or the work 14 may be fixed to a hard support. ..
  • the term "energy beam” means an electromagnetic wave or a charged particle beam having an energy quantum.
  • energy rays include ultraviolet rays, radiation, electron beams and the like.
  • Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source.
  • the electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
  • energy ray curable means a property of being cured by irradiating with energy rays
  • non-energy ray curable is a property of not being cured by irradiating with energy rays.
  • the back surface protective film forming film 13 can be used as the first laminated body 5 shown in FIG.
  • the first laminated body 5 shown in FIG. 2 includes a first release film 151 on one surface of the back surface protective film forming film 13, and a second release film 152 on the other surface.
  • the exposed surface 13a from which the release film of the back surface protective film forming film 13 has been peeled off is attached to the back surface 14b of the work 14 facing each other (FIG. 1 (b)).
  • the back surface protective film forming film 13 at this time may be one that has been processed in advance according to the shape of the work 14, or may be processed and used in the apparatus immediately before.
  • the second release film 152 is peeled off to form a second laminated body (FIG. 1 (c)).
  • the back surface protective film forming film shown in FIG. 2 is prepared by, for example, applying a protective film forming composition containing a solvent on the peeling surface of a second release film 152 having a thickness of 10 to 100 ⁇ m with a knife coater. It is dried in an oven at 120 ° C. for 2 minutes to form a back surface protective film forming film. Next, the release surface of the first release film 151 having a thickness of 10 to 100 ⁇ m is overlapped with the back surface protective film forming film and the two are bonded to each other, and the first release film 151 and the back surface protective film forming film (back surface protection in FIG. 2) are laminated.
  • a first laminated body 5 composed of a film forming film 13) (thickness: 3 to 50 ⁇ m) and a second release film 152 can be obtained. Such a first laminated body 5 is suitable for storage as a roll, for example.
  • the support sheet 10 is laminated on the back surface protective film forming film 13 laminated on the back surface 14b of the work 14.
  • the support sheet 10 is, for example, a circular polyethylene terephthalate film having a thickness of 80 ⁇ m and a diameter of 270 mm, and may be provided with a jig adhesive layer 16 on the outer peripheral portion.
  • the work 14 may be fixed to the fixing jig 18 together with the back surface protective film forming film 13.
  • the support sheet 10 may be laminated on the back surface protective film forming film 13 and fixed to the fixing jig 18 via the jig adhesive layer 16 (FIG. 1 (e)).
  • the composition of the protective film forming composition for forming the back surface protective film forming film preferably contains a binder polymer component and a curable component.
  • Binder polymer component A binder polymer component is used to impart sufficient adhesiveness and film-forming property (sheet forming property) to the back surface protective film forming film.
  • the binder polymer component conventionally known acrylic resins, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber-based polymers and the like can be used.
  • the weight average molecular weight (Mw) of the binder polymer component is preferably 10,000 to 2 million, more preferably 100,000 to 1.2 million. If the weight average molecular weight of the binder polymer component is too low, the adhesive force between the back surface protective film forming film and the support sheet becomes high, and transfer failure of the back surface protective film forming film may occur. If it is too high, the back surface protective film is formed. The adhesiveness of the film for use may deteriorate and transfer to a chip or the like may not be possible, or the back surface protective film may peel off from the chip or the like after transfer.
  • the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
  • Acrylic resin is preferably used as the binder polymer component.
  • the glass transition temperature (Tg) of the acrylic resin is preferably in the range of ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 40 ° C., and particularly preferably ⁇ 40 to 30 ° C. If the glass transition temperature of the acrylic resin is too low, the peeling force between the back surface protective film forming film and the support sheet becomes large, and transfer failure of the back surface protective film forming film may occur. If it is too high, the back surface protective film forming film may occur. The adhesiveness of the film may be reduced and transfer to a chip or the like may not be possible, or the back surface protective film may be peeled off from the chip or the like after transfer.
  • the peeling force between the back surface protective film forming film and the support sheet does not become too large, and transfer failure of the back surface protective film forming film can be suppressed.
  • Tg is equal to or less than the upper limit of the above range.
  • the deterioration of the adhesiveness of the back surface protective film forming film is suppressed, and the occurrence of a problem that the back surface protective film cannot be transferred to the chip or the like or the back surface protective film is peeled off from the chip or the like after the transfer is suppressed.
  • the "glass transition temperature" is represented by the temperature of the inflection point of the obtained DSC curve obtained by measuring the DSC curve of the sample using a differential scanning calorimeter.
  • Examples of the monomer constituting the acrylic resin include a (meth) acrylic acid ester monomer or a derivative thereof.
  • a (meth) acrylic acid ester monomer or a derivative thereof for example, an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, specifically methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl.
  • Examples include (meth) acrylate.
  • a (meth) acrylate having a cyclic skeleton specifically, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, Examples thereof include dicyclopentenyloxyethyl (meth) acrylate and imide (meth) acrylate.
  • examples of the monomer having a functional group include hydroxymethyl (meth) acrylate having a hydroxyl group, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and the like; and glycidyl (meth) having an epoxy group.
  • examples include acrylate.
  • the acrylic resin an acrylic resin containing a monomer having a hydroxyl group is preferable because it has good compatibility with a curable component described later. Further, the acrylic resin may be copolymerized with acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene and the like.
  • (meth) acrylic acid is a concept including both “acrylic acid” and “methacrylic acid”.
  • (meth) acrylate is a concept that includes both “acrylate” and “methacrylate”, and is referred to as "(meth) acryloyl group”. Is a concept that includes both "acryloyl group” and "methacryloyl group”.
  • thermoplastic resin may be blended in order to maintain the flexibility of the protective film after curing.
  • a thermoplastic resin one having a weight average molecular weight of 1,000 to 100,000 is preferable, and one having a weight average molecular weight of 3,000 to 80,000 is more preferable.
  • the glass transition temperature of the thermoplastic resin is preferably ⁇ 30 to 120 ° C., more preferably ⁇ 20 to 120 ° C.
  • the thermoplastic resin include polyester resin, urethane resin, phenoxy resin, polybutene, polybutadiene, polystyrene and the like. These thermoplastic resins can be used alone or in admixture of two or more.
  • the back surface protective film forming film follows the transfer surface of the back surface protective film forming film, and the generation of voids and the like can be suppressed.
  • thermosetting component As the curable component, a thermosetting component and / or an energy ray curable component is used.
  • thermosetting component a thermosetting resin and a thermosetting agent are used.
  • thermosetting resin for example, an epoxy resin is preferable.
  • the epoxy resin a conventionally known epoxy resin can be used.
  • the epoxy resin include polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, and bisphenol.
  • examples thereof include epoxy compounds having bifunctionality or higher in the molecule, such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used alone or in combination of two or more.
  • the film for forming the back surface protective film contains 100 parts by mass of the binder polymer component, preferably 1 to 1000 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 20 to 200 parts by mass. Is done. If the content of the thermosetting resin is less than 1 part by mass, sufficient adhesiveness may not be obtained, and if it exceeds 1000 parts by mass, the peeling force between the back surface protective film forming film and the pressure-sensitive adhesive sheet or the base film becomes strong. It becomes high, and transfer failure of the back surface protective film forming film may occur. That is, when the content of the thermosetting resin is at least the lower limit of the above range, sufficient adhesiveness can be obtained.
  • thermosetting resin When the content of the thermosetting resin is not more than the upper limit of the above range, the peeling force between the back surface protective film forming film and the pressure-sensitive adhesive sheet or the base film does not become too high, and transfer failure of the back surface protective film forming film occurs. It is suppressed.
  • thermosetting agent functions as a curing agent for thermosetting resins, especially epoxy resins.
  • Preferred thermosetting agents include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule.
  • the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
  • phenolic curing agent examples include polyfunctional phenolic resin, biphenol, novolak type phenolic resin, dicyclopentadiene type phenolic resin, zylock type phenolic resin, and aralkylphenolic resin.
  • amine-based curing agent examples include DICY (dicyandiamide). These can be used alone or in combination of two or more.
  • the content of the thermosetting agent is preferably 0.1 to 500 parts by mass, and more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the thermosetting resin. If the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and if it is excessive, the hygroscopicity of the film for forming the back surface protective film may increase and the reliability of the semiconductor device may be lowered. That is, when the content of the thermosetting agent is not more than the lower limit value in the above range, insufficient curing is unlikely to occur and adhesiveness is easily obtained. When the content of the thermosetting agent is not more than the upper limit of the above range, the hygroscopicity of the back surface protective film forming film does not increase, and it is difficult to lower the reliability of the semiconductor device.
  • the energy ray-curable component a low molecular weight compound (energy ray-polymerizable compound) containing an energy ray-polymerizable group and polymerizing and curing when irradiated with energy rays such as ultraviolet rays and electron beams can be used.
  • energy ray-curable component trimethylolpropantriacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate or 1,4-butylene glycol.
  • Examples thereof include acrylate-based compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate-based oligomer, epoxy-modified acrylate, polyether acrylate and itaconic acid oligomer.
  • acrylate-based compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate-based oligomer, epoxy-modified acrylate, polyether acrylate and itaconic acid oligomer.
  • Such a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000.
  • the blending amount of the energy ray-polymerizable compound is preferably 1 to 1500 parts by mass, more preferably 10 to 500 parts by mass, and
  • an energy ray-curable polymer in which an energy ray-curable group is bonded to the main chain or side chain of the binder polymer component may be used.
  • Such an energy ray-curable polymer has both a function as a binder polymer component and a function as a curable component.
  • the main skeleton of the energy ray-curable polymer is not particularly limited, and may be an acrylic resin that is widely used as a binder polymer component, or a polyester resin, a polyether resin, or the like, but synthetic and physical properties. It is particularly preferable to use an acrylic resin as the main skeleton because it is easy to control.
  • the energy ray-polymerizable group bonded to the main chain or side chain of the energy ray-curable polymer is, for example, a group containing an energy ray-polymerizable carbon-carbon double bond, specifically, a (meth) acryloyl group or the like. Can be exemplified.
  • the energy ray-polymerizable group may be bonded to the energy ray-curable polymer via an alkylene group, an alkyleneoxy group, or a polyalkyleneoxy group.
  • the weight average molecular weight (Mw) of the energy ray-curable polymer to which the energy ray-polymerizable group is bonded is preferably 10,000 to 2 million, more preferably 100,000 to 1.5 million.
  • the glass transition temperature (Tg) of the energy ray-curable polymer is preferably in the range of ⁇ 60 to 50 ° C., more preferably ⁇ 50 to 40 ° C., and particularly preferably ⁇ 40 to 30 ° C.
  • the energy ray-curable polymer is, for example, an acrylic resin containing a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, or an epoxy group, and a substituent and an energy ray-polymerizable carbon that react with the functional group. It is obtained by reacting with a polymerizable group-containing compound having 1 to 5 carbon double bonds per molecule.
  • the substituent that reacts with the functional group include an isocyanate group, a glycidyl group, a carboxyl group and the like.
  • Examples of the polymerizable group-containing compound include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate; (meth) acrylic acid and the like. Can be mentioned.
  • the acrylic resin is a (meth) acrylic monomer having a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, or an epoxy group or a derivative thereof, and another (meth) acrylic acid ester monomer copolymerizable therewith.
  • a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, or an epoxy group or a derivative thereof
  • another (meth) acrylic acid ester monomer copolymerizable therewith is preferably a copolymer composed of a derivative thereof.
  • Examples of the (meth) acrylic monomer having a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group or a derivative thereof include 2-hydroxyethyl (meth) acrylate having a hydroxyl group and 2-hydroxy.
  • Propyl (meth) acrylate; acrylic acid having a carboxyl group, methacrylic acid, itaconic acid; glycidyl methacrylate having an epoxy group, glycidyl acrylate and the like can be mentioned.
  • an (meth) acrylic acid ester monomer or a derivative thereof that can be copolymerized with the above monomer for example, an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, specifically a methyl (meth) acrylate.
  • the above-mentioned energy ray-polymerizable compound may be used in combination, or a binder polymer component may be used in combination.
  • the energy ray-polymerizable compound is preferably used with respect to 100 parts by mass of the total mass of the energy ray-curable polymer and the binder polymer component. It is contained in an amount of 1 to 1500 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 20 to 200 parts by mass.
  • a protective film for a chip is generally formed of a thermosetting resin such as an epoxy resin, but since the curing temperature of the thermosetting resin exceeds 200 ° C. and the curing time is about 2 hours. It was an obstacle to improving production efficiency.
  • the energy ray-curable back surface protective film forming film is cured in a short time by energy ray irradiation, the protective film can be easily formed and can contribute to the improvement of production efficiency.
  • the back surface protective film forming film can contain the following components in addition to the above binder polymer component and curable component.
  • the back surface protective film forming film preferably contains a colorant.
  • a colorant in the back surface protective film forming film, it is possible to shield infrared rays and the like generated from surrounding devices when the semiconductor device is incorporated into a device, and prevent the semiconductor device from malfunctioning due to them. .. Further, the visibility of characters when a product number or the like is printed on the protective film obtained by curing the back surface protective film forming film is improved.
  • a product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light), but the protective film is By containing the colorant, a sufficient contrast difference between the portion scraped by the laser beam of the protective film and the portion not scraped can be obtained, and the visibility is improved.
  • the colorant organic or inorganic pigments and dyes are used. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties.
  • the black pigment carbon black, iron oxide, manganese dioxide, aniline black, activated carbon and the like are used, but the black pigment is not limited thereto. From the viewpoint of increasing the reliability of the semiconductor device, carbon black is particularly preferable.
  • the colorant one type may be used alone, or two or more types may be used in combination.
  • the high curability of the back surface protective film forming film in the present invention is particularly preferably exhibited when the transparency of ultraviolet rays is reduced by using a colorant that reduces the transparency of both visible light and / or infrared rays and ultraviolet rays. Will be done.
  • colorant that reduces the transparency of both visible light and / or infrared rays and ultraviolet rays, in addition to the above-mentioned black pigment, absorbability or reflectivity in both wavelength regions of visible light and / or infrared rays and ultraviolet rays is provided. It is not particularly limited as long as it has.
  • the blending amount of the colorant is preferably 0.1 to 35 parts by mass, more preferably 0.5 to 25 parts by mass, and particularly preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the total solid content constituting the back surface protective film forming film. It is 1 to 15 parts by mass.
  • the curing accelerator is used to adjust the curing rate of the back surface protective film forming film.
  • the curing accelerator is preferably used when the epoxy resin and the thermosetting agent are used in combination, especially in the curable component.
  • Preferred curing accelerators are tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine; Examples thereof include tetraphenylborone salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphine tetraphenylborate. These can be used alone or in combination of two or more.
  • the curing accelerator is contained in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the curable component.
  • the curing accelerator By containing the curing accelerator in an amount in the above range, it has excellent adhesive properties even when exposed to high temperature and high humidity, and achieves high reliability even when exposed to severe reflow conditions. can do. If the content of the curing accelerator is low, sufficient adhesive properties cannot be obtained due to insufficient curing, and if it is excessive, the curing accelerator having high polarity has an adhesive interface in the back surface protective film forming film under high temperature and high humidity. By moving to the side and segregating, the reliability of the semiconductor device is reduced.
  • the coupling agent may be used to improve the adhesiveness, adhesion and / or cohesiveness of the protective film to the chip of the back surface protective film forming film. Further, by using the coupling agent, the water resistance of the protective film obtained by curing the back surface protective film forming film can be improved without impairing the heat resistance of the protective film.
  • the coupling agent a compound having a group that reacts with a functional group of a binder polymer component, a curable component, or the like is preferably used.
  • a silane coupling agent is desirable. Examples of such a coupling agent include ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and ⁇ - (methacryloxypropyl).
  • the coupling agent is usually 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass, and more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the total of the binder polymer component and the curable component. Is included in the ratio of. If the content of the coupling agent is less than 0.1 parts by mass, the above effect may not be obtained, and if it exceeds 20 parts by mass, it may cause outgas. That is, when the content of the coupling agent is at least the lower limit value in the above range, the effect of the coupling agent is obtained, and when it is at least the upper limit value, outgassing is suppressed.
  • Inorganic filler By blending the inorganic filler into the film for forming the back surface protective film, it is possible to adjust the coefficient of thermal expansion of the protective film after curing, and the coefficient of thermal expansion of the protective film after curing is optimized for the semiconductor chip. By doing so, the reliability of the semiconductor device can be improved. It is also possible to reduce the hygroscopicity of the protective film after curing.
  • Preferred inorganic fillers include powders of silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride and the like, spherical beads, single crystal fibers and glass fibers.
  • silica filler and alumina filler are preferable.
  • the inorganic filler can be used alone or in combination of two or more.
  • the content of the inorganic filler can be usually adjusted in the range of 1 to 80 parts by mass with respect to 100 parts by mass of the total solid content constituting the back surface protective film forming film.
  • the back surface protective film forming film contains an energy ray-curable component as the above-mentioned curable component
  • the energy ray-curable component is cured by irradiating with energy rays such as ultraviolet rays when using the film.
  • energy rays such as ultraviolet rays
  • photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2, 4-Diethylthioxanthone, ⁇ -hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 1,2-diphenylmethane, 2-hydroxy-2-methyl-1 -[4- (1-Methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, ⁇ -chloranthraquinone and the like can be mentioned
  • the blending ratio of the photopolymerization initiator is preferably 0.1 to 10 parts by mass and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy ray-curable component. If it is less than 0.1 part by mass, satisfactory transferability may not be obtained due to insufficient photopolymerization, and if it exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated, and the back surface protective film forming film is formed. Curability may be insufficient.
  • the blending ratio of the photopolymerization initiator is at least the lower limit of the above range, photopolymerization proceeds sufficiently and satisfactory transferability is obtained, and when it is at least the upper limit, residues that do not contribute to photopolymerization The formation is suppressed, and the curability of the back surface protective film forming film becomes sufficient.
  • Cross-linking agent A cross-linking agent can also be added to adjust the initial adhesive force and cohesive force of the back surface protective film forming film.
  • examples of the cross-linking agent include an organic polyvalent isocyanate compound and an organic polyvalent imine compound.
  • organic polyvalent isocyanate compound examples include aromatic polyvalent isocyanate compounds, aliphatic polyhydric isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimerics of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds.
  • examples thereof include a terminal isocyanate urethane prepolymer obtained by reacting with a polyol compound.
  • organic polyvalent isocyanate compound examples include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and the like.
  • organic polyvalent imine compound examples include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylpropan-tri- ⁇ -aziridinyl propionate, and tetramethylolmethane-tri.
  • examples thereof include - ⁇ -aziridinyl propionate and N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine.
  • the cross-linking agent is usually 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer component and the energy ray-curable polymer. Used in proportions of parts.
  • additives may be added to the back surface protective film forming film, if necessary.
  • additives include leveling agents, plasticizers, antistatic agents, antioxidants, ion scavengers, gettering agents, chain transfer agents and the like.
  • the protective film-forming composition preferably further contains a solvent.
  • the protective film-forming composition containing a solvent has good handleability.
  • the solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
  • the solvent contained in the protective film forming composition may be only one type, may be two or more types, and when two or more types are used, the combination and ratio thereof can be arbitrarily selected.
  • the solvent contained in the protective film-forming composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the protective film-forming composition can be mixed more uniformly.
  • the back surface protective film forming film obtained by applying and drying the protective film forming composition composed of the above-mentioned components has adhesiveness and curability, and in an uncured state, the work (semiconductor wafer or It adheres easily by pressing against a chip, etc.).
  • the back surface protective film forming film may be heated. After curing, a protective film having high impact resistance can be finally provided, the adhesive strength is excellent, and a sufficient protective function can be maintained even under severe high temperature and high humidity conditions.
  • the back surface protective film forming film may have a single-layer structure, or may have a multi-layer structure as long as it contains one or more layers containing the above components.
  • normal temperature means a temperature which is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
  • the coating of the protective film forming composition may be carried out by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and a screen.
  • a known method for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and a screen.
  • Examples thereof include a method using various coaters such as a coater, a Meyer bar coater, and a knife coater.
  • the drying conditions of the protective film-forming composition are not particularly limited, but when the protective film-forming composition contains a solvent described later, it is preferable to heat-dry the protective film-forming composition.
  • the solvent-containing protective film-forming composition is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
  • the thickness of the back surface protective film forming film is not particularly limited, but is preferably 3 to 300 ⁇ m, more preferably 5 to 250 ⁇ m, and particularly preferably 7 to 200 ⁇ m.
  • the term "thickness” refers to the average of five randomly selected thicknesses measured with a contact thickness meter on a cut surface randomly cut in the thickness direction of an object. It is a value represented by.
  • Examples of the support sheet 10 used in one aspect of the present invention include a sheet composed of only the base material 11 and a pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer 12 on the base material 11.
  • the support sheet included in the third laminate of one aspect of the present invention is a release sheet for preventing dust or the like from adhering to the surface of the back surface protective film forming film, or the surface of the back surface protective film forming film in a dicing step or the like. It acts as a dicing sheet for protection.
  • the thickness of the support sheet is appropriately selected depending on the intended use, but is preferably 10 to 500 ⁇ m, more preferably 20 to 20 to 500 ⁇ m from the viewpoint of imparting sufficient flexibility and improving the adhesiveness to the silicon wafer. It is 350 ⁇ m, more preferably 30 to 200 ⁇ m.
  • the thickness of the support sheet includes not only the thickness of the base material constituting the support sheet but also the thickness of those layers and the film when the adhesive layer is provided.
  • a resin film is preferable as the base material 11 constituting the support sheet 10.
  • the resin film include polyethylene films such as low-density polyethylene (LDPE) films and linear low-density polyethylene (LLDPE) films, ethylene / propylene copolymer films, polypropylene films, polybutene films, polybutadiene films, and polymethylpentene.
  • LDPE low-density polyethylene
  • LLDPE linear low-density polyethylene
  • ethylene / propylene copolymer films polypropylene films
  • polybutene films polybutadiene films
  • polymethylpentene polymethylpentene
  • the base material used in one aspect of the present invention may be a single-layer film composed of one type of resin film, or may be a laminated film in which two or more types of resin films are laminated. Further, in one aspect of the present invention, a sheet obtained by subjecting the surface of a base material such as the above-mentioned resin film to a surface treatment may be used as a support sheet.
  • resin films may be crosslinked films. Further, colored resin films or printed ones can also be used. Further, the resin film may be a sheet obtained by extruding a thermoplastic resin or may be a stretched resin film, or a curable resin thinned and cured by a predetermined means to form a sheet. May be used.
  • a base material containing a polypropylene film is preferable from the viewpoint that it has excellent heat resistance, has expandability because it has appropriate flexibility, and easily maintains pickup suitability.
  • the base material containing the polypropylene film may have a single-layer structure composed of only the polypropylene film or a multi-layer structure composed of the polypropylene film and another resin film.
  • the film for forming the back surface protective film is thermosetting, the resin film constituting the base material has heat resistance, thereby suppressing damage due to heat of the base material and suppressing the occurrence of defects in the manufacturing process of the semiconductor device. it can.
  • the surface tension of the surface of the base material in contact with the surface of the back surface protective film forming film is preferable from the viewpoint of adjusting the peeling force within a certain range. Is 20 to 50 mN / m, more preferably 23 to 45 mN / m, still more preferably 25 to 40 mN / m.
  • the thickness of the base material constituting the support sheet is preferably 10 to 500 ⁇ m, more preferably 15 to 300 ⁇ m, and further preferably 20 to 200 ⁇ m.
  • FIG. 11 is a schematic cross-sectional view showing an example of a support sheet 10 in which the pressure-sensitive adhesive layer 12 is provided on the base material 11.
  • the support sheet 10 includes the pressure-sensitive adhesive layer 12, in the second laminating step, the pressure-sensitive adhesive layer 12 of the support sheet 10 is laminated on the back surface protective film forming film 13.
  • Examples of the pressure-sensitive adhesive which is a material for forming the pressure-sensitive adhesive layer include a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin, and the pressure-sensitive adhesive composition further contains a general-purpose additive such as the above-mentioned cross-linking agent and pressure-sensitive adhesive. You may.
  • examples of the adhesive resin include acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin, vinyl ether resin and the like, and acrylic resin is preferable.
  • examples thereof include an energy ray-curable pressure-sensitive adhesive, a heat-foaming type pressure-sensitive adhesive, and an energy ray-foaming type pressure-sensitive adhesive.
  • an energy ray-curable adhesive formed from an adhesive composition containing an energy ray-curable resin from the viewpoint of adjusting the peeling force within a certain range and improving the pick-up property.
  • a pressure-sensitive adhesive sheet having an agent layer or a pressure-sensitive adhesive sheet having a slightly adhesive pressure-sensitive adhesive layer is preferable.
  • the energy ray-curable resin may be a resin having a polymerizable group such as a (meth) acryloyl group or a vinyl group, but an adhesive resin having a polymerizable group is preferable.
  • the back surface protective film forming film is not attached to the entire surface of a work such as a semiconductor wafer, the back surface protective film forming film floats, and the back surface protective film forming film wrinkles occur.
  • the support sheet can also serve as a peeling sheet for the back surface protective film forming film when a poor attachment of the back surface protective film forming film occurs. Even if the back surface protective film forming film is poorly attached in the first laminating step, the third laminated body is produced as it is through the second laminating step. After that, the work such as the semiconductor wafer can be reworked by removing the film for forming the back surface protective film from the work such as the semiconductor wafer together with the support sheet.
  • the adhesive layer for the jig is preferably energy ray curable.
  • the support sheet is directly supported on a fixing jig such as a ring frame without using an adhesive layer for a jig.
  • the sheet can be fixed, and by irradiating with energy rays such as ultraviolet rays, the reworkability can be made excellent.
  • an adhesive containing an acrylic resin is preferable.
  • an acrylic resin an acrylic polymer having a structural unit (x1) derived from an alkyl (meth) acrylate is preferable, and the acrylic resin has a structural unit (x1) and a structural unit (x2) derived from a functional group-containing monomer.
  • Acrylic copolymers are more preferred.
  • the alkyl group of the alkyl (meth) acrylate has preferably 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms, and even more preferably 1 to 8 carbon atoms.
  • Examples of the alkyl (meth) acrylate include the same alkyl (meth) acrylates described in the above-mentioned binder polymer component section.
  • the alkyl (meth) acrylate may be used alone or in combination of two or more.
  • the content of the structural unit (x1) is usually 50 to 100% by mass, preferably 50 to 99.9% by mass, and more preferably 60 to 99% with respect to the total structural unit (100% by mass) of the acrylic polymer. It is by mass, more preferably 70 to 95% by mass.
  • Examples of the functional group-containing monomer include a hydroxy group-containing monomer, a carboxy group-containing monomer, an epoxy group-containing monomer, and the like, and specific examples of each monomer are the same as those exemplified in the binder polymer component portion. can give. In addition, these may be used alone or in combination of 2 or more types.
  • the content of the structural unit (x2) is usually 0 to 40% by mass, preferably 0.1 to 40% by mass, and more preferably 1 to 30 with respect to the total structural unit (100% by mass) of the acrylic polymer. It is by mass, more preferably 5 to 20% by mass.
  • the acrylic resin used in one aspect of the present invention is obtained by reacting an acrylic copolymer having the above-mentioned structural units (x1) and (x2) with a compound having an energy ray-polymerizable group.
  • Energy ray-curable acrylic resin may be used.
  • the compound having an energy ray-polymerizable group may be a compound having a polymerizable group such as a (meth) acryloyl group or a vinyl group.
  • a cross-linking agent When a pressure-sensitive adhesive containing an acrylic resin is used, it is preferable to contain a cross-linking agent together with the acrylic resin from the viewpoint of adjusting the peeling force within a certain range.
  • the cross-linking agent include isocyanate-based cross-linking agents, imine-based cross-linking agents, epoxy-based cross-linking agents, oxazoline-based cross-linking agents, carbodiimide-based cross-linking agents, and the like, from the viewpoint of adjusting the peeling force within a certain range. Isocyanate-based cross-linking agents are preferred.
  • the content of the cross-linking agent is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and further, based on the total mass (100 parts by mass) of the acrylic resin contained in the pressure-sensitive adhesive. It is preferably 0.5 to 10 parts by mass, and even more preferably 1 to 8 parts by mass.
  • the support sheet 10 may be composed of one layer (single layer) or may be composed of two or more layers.
  • the constituent materials and the thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
  • the support sheet may be transparent, opaque, or colored depending on the purpose.
  • the support sheet preferably allows energy rays to pass through.
  • the support sheet is preferably transparent.
  • the circuit surface 14a of the work 14 is protected by the circuit surface protection tape 17, and after the second laminating step, the circuit surface protection tape 17 is peeled off from the circuit surface 14a of the work 14.
  • the peeling step to be performed can be included.
  • the circuit surface protection tape 17 has an energy ray-curable pressure-sensitive adhesive layer on the side attached to the circuit surface 14a, which is cured by irradiation with energy rays and becomes removable.
  • the pressure-sensitive adhesive layer of the circuit surface protection tape 17 is irradiated with energy rays to cure the pressure-sensitive adhesive layer so that it can be peeled off again, thereby protecting the circuit surface from the circuit surface 14a of the work 14.
  • the tape 17 can be easily peeled off.
  • the method for producing the third laminated body of the present embodiment may include a step of irradiating the back surface protective film forming film 13 with a laser from the side of the support sheet 10 to perform laser marking.
  • the support sheet 10 is laminated on the back surface protective film forming film 13, so that when a laser is irradiated from the support sheet 10 side through the support sheet, the back surface protective film is formed. Laser marking can be performed on the surface of the film 13 in contact with the support sheet 10.
  • FIG. 3 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing the third laminated body.
  • the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
  • the work 14 is a semiconductor device panel composed of an aggregate in which at least one electronic component 62 is sealed with a sealing resin layer 64 and arranged in a plane.
  • the method for manufacturing the third laminated body of the present embodiment is a method for manufacturing the third laminated body 19 in which the semiconductor device panel which is the work 14, the back surface protective film forming film 13, and the support sheet 10 are laminated in this order.
  • One surface of the work 14 is the circuit surface 14a, the other surface is the back surface 14b (FIG. 3 (a')), and the back surface protective film forming film 13 is on the back surface 14b side of the work 14.
  • the first laminating step (FIG. 3 (b')) of attaching the support sheet 10 and the second laminating step (FIG.
  • FIG. 3 (c') of attaching the support sheet 10 to the back surface protective film forming film 13. Included in order (FIGS. 3 (a') (d')).
  • an apparatus and a support sheet for attaching a back surface protective film forming film between the first laminating step and the second laminating step (FIGS. 3 (a') to 3 (d')). It is performed by connecting the devices to which the above is applied, or in the same device. Therefore, in the present embodiment, the second laminated body in which the back surface protective film forming film 13 is laminated on the work 14 is housed in the cassette between the first laminating step and the second laminating step. Instead, they can be transported one by one to the second laminating step shown in FIG. 3 (d').
  • the device space can be further reduced.
  • the device for attaching the back surface protective film forming film and the device for attaching the support sheet it is possible to deal with it by modifying the conventional device without designing from scratch, and the initial cost can be reduced. Since the second laminated body is not housed in the cassette and transported to the outside of the apparatus, the production efficiency can be improved and the contamination and damage of the second laminated body can be suppressed.
  • the back surface protective film forming film 13 used in the first laminating step may be processed into the shape of the work in advance, or may be processed in the same apparatus immediately before the first laminating step is performed. If the size of the work is constant on the production line used, the former that can be machined in advance is more efficient, and if the size of the work is likely to change, the latter For example, there is no waste of the film for forming the back surface protective film, and there is a cost merit.
  • the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be designed to be 7000 mm or less.
  • the device space can be reduced.
  • the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be 6500 mm or less, 6000 mm or less, or 4500 mm or less. It can be set to 3000 mm or less.
  • the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be set to 400 s or less. It can be set to 150 s or less, and the process time can be shortened.
  • the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be 130 s or less, 110 s or less, 90 s or less. It can be set to 70s or less.
  • the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is the time required for the first laminating step, and the place where the first laminating step is performed.
  • the preferable range of each of the three times, that is, the transport time from the first to the place where the second laminating step is performed and the time required for the second laminating step, is the same as that described in the manufacturing method of FIG. ..
  • the method for producing the third laminated body of the present embodiment can be carried out by connecting an apparatus for attaching a film for forming a back surface protective film and an apparatus for attaching a support sheet, or can be carried out in the same apparatus.
  • an apparatus for attaching a film for forming a back surface protective film and an apparatus for attaching a support sheet or can be carried out in the same apparatus.
  • the semiconductor device panel may be formed by arranging individual semiconductor devices in a substantially circular region in a plane, and the individual semiconductor devices may be formed in a substantially rectangular region in a plane. It may be formed side by side.
  • the support sheet 10 is laminated on the back surface protective film forming film 13 as in the embodiment shown in FIG. 1, so that the laser is emitted from the side of the support sheet 10 through the support sheet.
  • the surface of the back surface protective film forming film 13 in contact with the support sheet 10 can be laser-marked.
  • the back surface protective film forming film 13 of the third laminated body 19 produced by the method for producing the third laminated body is cured to obtain the back surface protective film 13'.
  • FIG. 4 is a schematic cross-sectional view schematically showing an example of an embodiment of a method for manufacturing a fourth laminated body.
  • the method for manufacturing the fourth laminated body of the present embodiment includes a peeling step (FIG. 4 (e)) of peeling the circuit surface protection tape 17 from the circuit surface 14a of the work 14 after the second laminating step.
  • the curing step (FIG. 4 (g)) is included.
  • a thermosetting film for forming a back surface protective film is used, and in the curing step of this embodiment, the film is thermoset at 130 ° C. for 2 hours.
  • the curing conditions are as long as the degree of curing is such that the back surface protective film sufficiently exerts its function. It is not particularly limited, and may be appropriately selected depending on the type of the thermosetting film for forming the back surface protective film.
  • the heating temperature during thermosetting is preferably 100 to 200 ° C, more preferably 110 to 180 ° C, and particularly preferably 120 to 170 ° C.
  • the heating time at the time of thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours.
  • the order of the peeling steps is preferably before the curing step in consideration of the heat resistance of the circuit surface protection tape 17.
  • FIG. 5 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing the fourth laminated body.
  • the method for manufacturing the fourth laminated body of the present embodiment includes a peeling step (FIG. 5 (e)) of peeling the circuit surface protection tape 17 from the circuit surface 14a of the work 14 after the second laminating step.
  • a curing step (FIG. 5 (f')) in which the back surface protective film 13 is cured to form the back surface protective film 13', and the back surface protective film 13'is irradiated with a laser from the support sheet 10 side for laser marking. (FIG. 5 (g')) and the like.
  • FIG. 6 is a schematic cross-sectional view schematically showing an example of an embodiment of a method for manufacturing a semiconductor device with a back surface protective film.
  • the work 14 and the back surface protective film 13'of the fourth laminated body 19'manufactured by the method for manufacturing the fourth laminated body are diced to protect the back surface.
  • the step of forming the semiconductor device 21 with a film (FIGS. 6 (h) and 6 (i)) and the step of picking up the semiconductor device 21 with a back surface protective film from the support sheet 10 (FIG. 6 (j)) are included.
  • FIG. 7 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing a semiconductor device with a back surface protective film.
  • the back surface protective film forming film 13 and the work 14 of the third laminate 19 manufactured by the method for manufacturing the third laminate are diced to form the back surface.
  • a step of forming the semiconductor device 21'with a protective film forming film (FIGS. 7 (h') and 7 (i')) and a step of picking up the back surface protective film forming film-attached semiconductor device 21'from the support sheet 10.
  • FIG. 7 (j') and a curing step in which the back surface protective film forming film 13 is cured to obtain the back surface protective film 13'.
  • FIG. 8 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing a semiconductor device with a back surface protective film.
  • the back surface protective film forming film 13 and the work 14 of the third laminate 19 manufactured by the method for manufacturing the third laminate are diced to form the back surface.
  • the back surface protective film forming film 13 is thermosetting, and in the step of forming the back surface protective film of the present embodiment, for example, the back surface protective film forming film 13 Is thermoset at 130 ° C. for 2 hours.
  • the curing conditions for forming the back surface protective film by thermosetting the thermosetting film for forming the back surface protective film are as long as the degree of curing is such that the back surface protective film sufficiently exerts its function.
  • the method is not particularly limited, and may be appropriately selected depending on the type of the thermosetting film for forming the back surface protective film.
  • the back surface protective film forming film 13 is energy ray curable, and the step of forming the back surface protective film is to apply energy rays to the back surface protective film forming film 13. It may be a step of irradiating and curing the energy ray.
  • the curing conditions when the energy ray-curable back surface protective film forming film is energy-cured to form the protective film are not particularly limited as long as the degree of curing is such that the protective film sufficiently exerts its function.
  • the energy ray-curable back surface protective film may be appropriately selected according to the type of the film.
  • the illuminance of the energy ray at the time of energy ray curing of the energy ray curable back surface protective film forming film is preferably 4 to 280 mW / cm 2 .
  • the amount of light of the energy rays at the time of curing is preferably 3 to 1000 mJ / cm 2 .
  • the energy ray-curable back surface protective film forming film for example, those disclosed in International Publication No. 2017/188200 and International Publication No. 2017/188218 can also be used.
  • the method for manufacturing the third laminate of the present invention can be used for manufacturing a semiconductor device with a back surface protective film.

Abstract

The present invention relates to a method of manufacturing a three-layer laminate including a work (14), one surface of which being a circuit surface (14a) and the other surface being a back side (14b), the method including: a first laminating step for attaching a back side protective-coating formation film (13) on the back side (14b) of the work (14); and a second laminating step for attaching a support sheet (10) on the back side protective-coating formation film (13), these steps being performed in this order, wherein during the processing from the first laminating step to the second laminating step, a two-layer laminate including the work (14) and the back side protective-coating formation film (13) laminated thereon is transferred one by one and the first and second laminating steps are performed by a device for attaching a back side protective-coating formation film and a device for attaching a support sheet coupled with each other or performed in the same device.

Description

第三積層体の製造方法Method for manufacturing the third laminate
 本発明は、第三積層体の製造方法に関する。詳しくは、半導体ウエハ等のワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法に関する。
 本願は、2019年4月26日に、日本に出願された特願2019-086303号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for producing a third laminated body. More specifically, the present invention relates to a method for manufacturing a third laminated body in which a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order.
The present application claims priority based on Japanese Patent Application No. 2019-086303 filed in Japan on April 26, 2019, the contents of which are incorporated herein by reference.
 近年、いわゆるフェースダウン(face down)方式と呼ばれる実装法を適用した半導体装置の製造が行われている。フェースダウン方式においては、回路面上にバンプ等の電極を有する半導体チップが用いられ、前記電極が基板と接合される。このため、半導体チップの回路面とは反対側の裏面は剥き出しとなることがある。 In recent years, semiconductor devices to which a mounting method called a face down method has been applied have been manufactured. In the face-down method, a semiconductor chip having an electrode such as a bump on the circuit surface is used, and the electrode is bonded to the substrate. Therefore, the back surface of the semiconductor chip opposite to the circuit surface may be exposed.
 この剥き出しとなった半導体チップの裏面には、裏面保護膜として、有機材料を含有する樹脂膜が形成され、裏面保護膜付き半導体チップとして半導体装置に取り込まれることがある。裏面保護膜は、ダイシング工程やパッケージングの後に、半導体チップにおいてクラックが発生するのを防止するために利用される(例えば、特許文献1,2)。 A resin film containing an organic material is formed on the back surface of the exposed semiconductor chip as a back surface protective film, and may be incorporated into a semiconductor device as a semiconductor chip with a back surface protective film. The back surface protective film is used to prevent cracks from occurring in the semiconductor chip after the dicing step or packaging (for example, Patent Documents 1 and 2).
 このような裏面保護膜付き半導体チップは、例えば、図9に示される工程を経て製造される。すなわち、回路面を有する半導体ウエハ8の裏面8bに、裏面保護膜形成用フィルム13を積層し(図9(A))、裏面保護膜形成用フィルム13を熱硬化又はエネルギー線硬化させて裏面保護膜13’とし(図9(B))、裏面保護膜13’にレーザーマーキングし(図9(C))、裏面保護膜13’に支持シート10を積層し(図9(D))、半導体ウエハ8及び裏面保護膜13’をダイシングして、裏面保護膜付き半導体チップ7とし(図9(E)及び図9(F))、裏面保護膜付き半導体チップ7を、支持シート10からピックアップする(図9(G))方法が知られている。硬化工程及びレーザーマーキング工程の順番は任意であり、回路面を有する半導体ウエハ8の裏面8bに、裏面保護膜形成用フィルム13を積層し(図9(A))、裏面保護膜形成用フィルム13にレーザーマーキングした後、裏面保護膜形成用フィルム13を熱硬化又はエネルギー線硬化させて裏面保護膜13’とし、その後、図9(D)~図9(G)の工程を経てもよい。図9(A)で、半導体ウエハ8の裏面8bに、裏面保護膜形成用フィルム13を積層する第一の積層工程と、図9(D)で、裏面保護膜13’に支持シート10を積層する第二の積層工程とは、従来、別々の装置で行われている。 Such a semiconductor chip with a back surface protective film is manufactured, for example, through the process shown in FIG. That is, the back surface protective film forming film 13 is laminated on the back surface 8b of the semiconductor wafer 8 having the circuit surface (FIG. 9A), and the back surface protective film forming film 13 is heat-cured or energy ray-cured to protect the back surface. The film is 13'(FIG. 9 (B)), the back surface protective film 13'is laser-marked (FIG. 9 (C)), and the support sheet 10 is laminated on the back surface protective film 13'(FIG. 9 (D)). The wafer 8 and the back surface protective film 13'are die to obtain the semiconductor chip 7 with the back surface protective film (FIGS. 9 (E) and 9 (F)), and the semiconductor chip 7 with the back surface protective film is picked up from the support sheet 10. (Fig. 9 (G)) A method is known. The order of the curing step and the laser marking step is arbitrary, and the back surface protective film forming film 13 is laminated on the back surface 8b of the semiconductor wafer 8 having a circuit surface (FIG. 9A), and the back surface protective film forming film 13 is laminated. After laser marking, the back surface protective film forming film 13 may be thermoset or energy ray cured to form a back surface protective film 13', and then the steps of FIGS. 9 (D) to 9 (G) may be performed. In FIG. 9A, the first laminating step of laminating the back surface protective film forming film 13 on the back surface 8b of the semiconductor wafer 8 and in FIG. 9D, the support sheet 10 is laminated on the back surface protective film 13'. Conventionally, the second laminating step is performed by separate devices.
 また、裏面保護膜形成用フィルム13及び支持シート10が一体化された、保護膜形成用複合シートが、裏面保護膜付き半導体チップの製造に使用されている(例えば、特許文献2)。 Further, a protective film forming composite sheet in which the back surface protective film forming film 13 and the support sheet 10 are integrated is used for manufacturing a semiconductor chip with a back surface protective film (for example, Patent Document 2).
 保護膜形成用複合シートを用いる、裏面保護膜付き半導体チップの製造方法は、例えば、図10に示される工程を経る。すなわち、回路面を有する半導体ウエハ8の裏面8bに、裏面保護膜形成用フィルム13及び支持シート10が積層されてなる保護膜形成用複合シート1の裏面保護膜形成用フィルム13を貼付し(図10(A’))、回路面保護用テープ17を剥離し(図10(B’))、裏面保護膜形成用フィルム13を熱硬化又はエネルギー線硬化させて裏面保護膜13’とし(図10(C’))、支持シート10の側から、裏面保護膜13’にレーザーマーキングし(図10(D’))、半導体ウエハ8及び裏面保護膜13’をダイシングして、裏面保護膜付き半導体チップ7とし(図10(E’)及び図10(F’))、裏面保護膜付き半導体チップ7を、支持シート10からピックアップする(図10(G’))方法が知られている。この場合も、硬化工程及びレーザーマーキング工程の順番は任意である。 A method for manufacturing a semiconductor chip with a back surface protective film using a composite sheet for forming a protective film goes through, for example, the process shown in FIG. That is, the back surface protective film forming film 13 of the protective film forming composite sheet 1 in which the back surface protective film forming film 13 and the support sheet 10 are laminated is attached to the back surface 8b of the semiconductor wafer 8 having the circuit surface (FIG. 10 (A')), the circuit surface protection tape 17 is peeled off (FIG. 10 (B')), and the back surface protective film forming film 13 is heat-cured or energy ray-cured to obtain the back surface protective film 13'(FIG. 10). (C')), laser marking the back surface protective film 13'from the side of the support sheet 10 (FIG. 10 (D')), dying the semiconductor wafer 8 and the back surface protective film 13', and semiconductor with the back surface protective film. A method is known in which the chip 7 is used (FIGS. 10 (E') and 10 (F')), and the semiconductor chip 7 with the back surface protective film is picked up from the support sheet 10 (FIG. 10 (G')). In this case as well, the order of the curing step and the laser marking step is arbitrary.
日本国特許第4271597号公報Japanese Patent No. 4271597 日本国特許第5363662号公報Japanese Patent No. 5363662
 上述した通り、図9(A)で、半導体ウエハ8の裏面8bに、裏面保護膜形成用フィルム13を積層する第一の積層工程と、図9(D)で、裏面保護膜13’に支持シート10を積層する第二の積層工程とは、従来、別々の装置で行われている。前記第一の積層工程で得られた積層体は、一のカセットに収容されて、第二の工程を行う装置に人の手によって搬送されており、この人の手による搬送は、裏面保護膜付き半導体チップの生産効率を低下させる。
 さらに、前記第一の積層工程で得られた積層体がカセットに収容されて搬送される間に汚染、破損したりする恐れがある。
As described above, in FIG. 9 (A), the first laminating step of laminating the back surface protective film forming film 13 on the back surface 8b of the semiconductor wafer 8 and in FIG. 9 (D), the back surface protective film 13'is supported. Conventionally, the second laminating step of laminating the sheets 10 is performed by separate devices. The laminate obtained in the first laminating step is housed in one cassette and transported by hand to an apparatus performing the second step, and the transport by this person is a back surface protective film. Reduces the production efficiency of semiconductor chips.
Further, the laminated body obtained in the first laminating step may be contaminated or damaged while being housed in the cassette and transported.
 また、図10に示される従来の保護膜付き半導体チップの製造方法では、裏面保護膜形成用フィルム13及び支持シート10が一体化された、保護膜形成用複合シート1を用いているので、裏面保護膜形成用フィルム13の保護対象となるワーク(すなわち、半導体ウエハ8)に裏面保護膜形成用フィルム13を貼付する工程と、支持シート10を貼付する工程を、一工程にすることができる。しかし、保護膜形成用複合シート1を用いた場合、裏面保護膜形成用フィルム13の特性及び支持シート10の特性を合わせて組み合せなければならず、目的に叶った保護膜付き半導体チップの製造方法のために、多種類の保護膜形成用複合シート1を準備しなければならない。 Further, in the conventional method for manufacturing a semiconductor chip with a protective film shown in FIG. 10, since the protective film forming composite sheet 1 in which the back surface protective film forming film 13 and the support sheet 10 are integrated is used, the back surface is used. The step of attaching the back surface protective film forming film 13 to the work to be protected (that is, the semiconductor wafer 8) of the protective film forming film 13 and the step of attaching the support sheet 10 can be made into one step. However, when the protective film forming composite sheet 1 is used, the characteristics of the back surface protective film forming film 13 and the characteristics of the support sheet 10 must be combined in combination, and a method for manufacturing a semiconductor chip with a protective film that meets the purpose. Therefore, many kinds of composite sheets 1 for forming a protective film must be prepared.
 また、通常、保護膜形成用複合シート1は所定の大きさに抜き加工した裏面保護膜形成用フィルム13を支持シート10に積層し、この積層体をダイシング冶具サイズに抜き加工し、不要部分を除去することにより製造することができる。図9の方法のように硬質な半導体ウエハ8上に裏面保護膜形成用フィルム13、支持シート10を順次積層する場合と異なり、上記保護膜形成用複合シート1の製造においては、それぞれ軟質な裏面保護膜形成用フィルム13と支持シート10の貼り合わせであるため、難易度が高く、歩留まりが悪化するため、製造コストが高くなるという問題がある。 Further, usually, in the protective film forming composite sheet 1, the back surface protective film forming film 13 punched to a predetermined size is laminated on the support sheet 10, and the laminated body is punched to the size of a dicing jig to remove unnecessary portions. It can be manufactured by removing it. Unlike the case where the back surface protective film forming film 13 and the support sheet 10 are sequentially laminated on the hard semiconductor wafer 8 as in the method of FIG. 9, in the production of the protective film forming composite sheet 1, each has a soft back surface. Since the protective film forming film 13 and the support sheet 10 are bonded together, there is a problem that the difficulty level is high and the yield is deteriorated, so that the manufacturing cost is high.
 本発明は、上記事情に鑑みてなされたものであり、半導体ウエハ等のワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体を効率よく、かつ低コストで製造可能な第三積層体の製造方法を提供することを課題とする。 The present invention has been made in view of the above circumstances, and the third laminated body in which a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order is efficiently and low. An object of the present invention is to provide a method for producing a third laminate that can be produced at low cost.
 本発明は、以下の第三積層体の製造方法を提供する。 The present invention provides the following method for producing a third laminate.
[1] ワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法であって、
 前記ワークの、一方の面が回路面であり、他方の面が裏面であり、
 前記ワークの前記裏面側に、前記裏面保護膜形成用フィルムを貼付する第一の積層工程と、
 前記裏面保護膜形成用フィルムに、前記支持シートを貼付する第二の積層工程とを、この順に含み、
 前記第一の積層工程から前記第二の積層工程までの間において、前記ワークに前記裏面保護膜形成用フィルムが積層された第二積層体を一枚ずつ搬送し、
 前記第一の積層工程から前記第二の積層工程までの間を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う、第三積層体の製造方法。
[2] ワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法であって、
 前記ワークの、一方の面が回路面であり、他方の面が裏面であり、
 前記ワークの前記裏面側に、前記裏面保護膜形成用フィルムを貼付する第一の積層工程と、
 前記裏面保護膜形成用フィルムに、前記支持シートを貼付する第二の積層工程とを、この順に含み、
 前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間の前記ワークの搬送距離が、7000mm以下であり、
 前記第一の積層工程から前記第二の積層工程までの間を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う、第三積層体の製造方法。
[3] ワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法であって、
 前記ワークの、一方の面が回路面であり、他方の面が裏面であり、
 前記ワークの前記裏面側に、前記裏面保護膜形成用フィルムを貼付する第一の積層工程と、
 前記裏面保護膜形成用フィルムに、前記支持シートを貼付する第二の積層工程とを、この順に含み、
 前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間の前記ワークの搬送時間が、400s以下であり、
 前記第一の積層工程から前記第二の積層工程までの間を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う、第三積層体の製造方法。
[4] 前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間の前記ワークの搬送時間が、150s以下である、[3]に記載の第三積層体の製造方法。
[1] A method for manufacturing a third laminated body in which a work, a film for forming a back surface protective film, and a support sheet are laminated in this order.
One side of the work is the circuit surface and the other side is the back surface.
The first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and
The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
From the first laminating step to the second laminating step, the second laminated body in which the back surface protective film forming film is laminated on the work is conveyed one by one.
The process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device. (3) Method for manufacturing a laminated body.
[2] A method for manufacturing a third laminated body in which a work, a film for forming a back surface protective film, and a support sheet are laminated in this order.
One side of the work is the circuit surface and the other side is the back surface.
The first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and
The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
The transport distance of the work from the sticking start point of the first laminating step to the sticking completion point of the second laminating step is 7000 mm or less.
The process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device. (3) Method for manufacturing a laminated body.
[3] A method for manufacturing a third laminated body in which a work, a film for forming a back surface protective film, and a support sheet are laminated in this order.
One side of the work is the circuit surface and the other side is the back surface.
The first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and
The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
The transport time of the work from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is 400 s or less.
The process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device. (3) Method for manufacturing a laminated body.
[4] The third laminated body according to [3], wherein the transport time of the work from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is 150 s or less. Manufacturing method.
 本発明によれば、半導体ウエハ等のワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体を効率よく、かつ低コストで製造可能な第三積層体の製造方法が提供される。 According to the present invention, a third laminated body in which a work such as a semiconductor wafer, a film for forming a back surface protective film, and a support sheet are laminated in this order can be efficiently manufactured at low cost. Manufacturing method is provided.
第三積層体の製造方法の実施形態の一例を模式的に示す概略断面図である。It is the schematic sectional drawing which shows an example of embodiment of the manufacturing method of the 3rd laminated body schematically. 裏面保護膜形成用フィルムの一例を示す概略断面図である。It is the schematic sectional drawing which shows an example of the back surface protective film forming film. 第三積層体の製造方法の実施形態の他の一例を模式的に示す概略断面図である。It is the schematic sectional drawing which shows another example of the embodiment of the manufacturing method of the 3rd laminated body schematically. 第四積層体の製造方法の実施形態の一例を模式的に示す概略断面図である。It is the schematic sectional drawing which shows an example of embodiment of the manufacturing method of 4th laminated body schematically. 第四積層体の製造方法の実施形態の他の一例を模式的に示す概略断面図である。It is the schematic sectional drawing which shows another example of the embodiment of the manufacturing method of the 4th laminated body schematically. 裏面保護膜付き半導体装置の製造方法の実施形態の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows an example of embodiment of the manufacturing method of the semiconductor device with a back surface protective film schematically. 裏面保護膜付き半導体装置の製造方法の実施形態の他の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows another example of the embodiment of the manufacturing method of the semiconductor device with a back surface protective film schematically. 裏面保護膜付き半導体装置の製造方法の実施形態の他の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows another example of the embodiment of the manufacturing method of the semiconductor device with the back surface protective film schematically. 従来の裏面保護膜付き半導体チップの製造方法の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows typically an example of the manufacturing method of the conventional semiconductor chip with a back surface protective film. 従来の裏面保護膜付き半導体チップの製造方法の他の一例を模式的に示す概略断面図である。It is schematic cross-sectional view which shows another example of the conventional manufacturing method of the semiconductor chip with the back surface protective film schematically. 基材11上に粘着剤層12が設けられた支持シート10の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the support sheet 10 which provided the pressure-sensitive adhesive layer 12 on the base material 11.
 以下、本発明を適用した実施形態である第三積層体の製造方法について詳細に説明する。なお、以下の説明で用いる図面は、特徴をわかりやすくするために、便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などが実際と同じであるとは限らない。 Hereinafter, a method for producing a third laminate, which is an embodiment to which the present invention is applied, will be described in detail. In the drawings used in the following description, in order to make the features easier to understand, the featured parts may be enlarged for convenience, and the dimensional ratios of each component may not be the same as the actual ones. Absent.
<<第三積層体の製造方法>>
 図1は、第三積層体の製造方法の実施形態の一例を模式的に示す概略断面図である。本実施形態の第三積層体の製造方法は、ワーク14と、裏面保護膜形成用フィルム13と、支持シート10とが、この順に積層された第三積層体19の製造方法であって、ワーク14の、一方の面が回路面14aであり、他方の面が裏面14bであり(図1(a))、ワーク14の裏面14b側に、裏面保護膜形成用フィルム13を貼付する第一の積層工程(図1(b))と、裏面保護膜形成用フィルム13に、支持シート10を貼付する第二の積層工程(図1(d))とを、この順に含む(図1(a)~図1(e))。
<< Manufacturing method of the third laminate >>
FIG. 1 is a schematic cross-sectional view schematically showing an example of an embodiment of a method for manufacturing a third laminated body. The method for manufacturing the third laminated body of the present embodiment is a method for manufacturing the third laminated body 19 in which the work 14, the back surface protective film forming film 13, and the support sheet 10 are laminated in this order. One surface of 14, one surface is a circuit surface 14a, the other surface is a back surface 14b (FIG. 1 (a)), and the back surface protective film forming film 13 is attached to the back surface 14b side of the work 14. The laminating step (FIG. 1 (b)) and the second laminating step (FIG. 1 (d)) of attaching the support sheet 10 to the back surface protective film forming film 13 are included in this order (FIG. 1 (a)). ~ FIG. 1 (e)).
 本実施形態においては、前記第一の積層工程から前記第二の積層工程までの間(図1(b)~(d))を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う。
 したがって、本実施形態においては、前記第一の積層工程から前記第二の積層工程までの間において、ワーク14に裏面保護膜形成用フィルム13が積層された第二積層体を、カセットに収容することなく、図1(d)に示される第二の積層工程に、一枚ずつ搬送することができる。同一装置内で行うことにより、装置スペースをより低減できる。裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行うことにより、一から設計せずとも従来の装置を改造することで対応ができ、初期費用の低減ができる。そして、第二積層体がカセットに収容されて装置外に搬送されることがないため、生産効率が向上し、かつ第二積層体の汚染、破損を抑制することができる。
 裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行うとは、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させる工程と、前記第一の積層工程から前記第二の積層工程を行う工程を実施する、又は裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置が連結された装置により前記第一の積層工程から前記第二の積層工程を実施するということを意味する。
In the present embodiment, the device for attaching the back surface protective film forming film and the support sheet are attached between the first laminating step and the second laminating step (FIGS. 1B to 1d). It is performed by connecting the devices to be used, or in the same device.
Therefore, in the present embodiment, the second laminated body in which the back surface protective film forming film 13 is laminated on the work 14 is housed in the cassette between the first laminating step and the second laminating step. Instead, they can be transported one by one to the second laminating step shown in FIG. 1 (d). By performing in the same device, the device space can be further reduced. By connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet, it is possible to deal with it by modifying the conventional device without designing from scratch, and the initial cost can be reduced. Since the second laminated body is not housed in the cassette and transported to the outside of the apparatus, the production efficiency can be improved and the contamination and damage of the second laminated body can be suppressed.
The step of connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet is the step of connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet, and the first step. From the first laminating step to the step of performing the second laminating step from one laminating step, or by a device in which a device for attaching a back surface protective film forming film and a device for attaching a support sheet are connected. It means that the second laminating step is carried out.
 第一の積層工程に用いる裏面保護膜形成用フィルム13は、事前にワークの形状に加工されていてもよいし、第一の積層工程を行う直前に同一装置内で加工されてもよい。使用される製造ラインでワークの大きさが一定である場合には事前に加工できる前者の方が効率的であるし、ワークの大きさが変更される可能性がある場合には、後者であれば裏面保護膜形成用フィルムの無駄が出ず、コストメリットがある。 The back surface protective film forming film 13 used in the first laminating step may be processed into the shape of the work in advance, or may be processed in the same apparatus immediately before the first laminating step is performed. If the size of the work is constant on the production line used, the former that can be machined in advance is more efficient, and if the size of the work is likely to change, the latter For example, there is no waste of the film for forming the back surface protective film, and there is a cost merit.
 また、他の実施形態においては、前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間のワーク14の搬送距離を、7000mm以下に設計することができ、装置スペースを低減させることができる。前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間のワーク14の搬送距離は、6500mm以下にすることもでき、6000mm以下にすることもでき、4500mm以下にすることもでき、3000mm以下にすることもできる。
 また、前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間のワーク14の搬送距離は、200~7000mm以下にすることもでき、200~6000mmにすることもでき、200~4500mmにすることもでき、200~3000mmにすることもできる。
 本明細書において、第一の積層工程の貼付開始地点から第二の積層工程の貼付完了地点までの間のワーク14の搬送距離とは、第一の積層工程の貼付地点から第二の積層工程の貼付完了地点までワーク14が実際に移動した距離を意味する。
Further, in another embodiment, the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be designed to be 7000 mm or less. The device space can be reduced. The transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be 6500 mm or less, 6000 mm or less, or 4500 mm or less. It can be set to 3000 mm or less.
Further, the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be 200 to 7000 mm or less, and 200 to 6000 mm. It can also be 200 to 4500 mm, and can be 200 to 3000 mm.
In the present specification, the transport distance of the work 14 from the sticking start point of the first laminating process to the sticking completion point of the second laminating step is the transport distance from the sticking point of the first laminating process to the second laminating step. It means the distance actually moved by the work 14 to the pasting completion point of.
 また、さらに他の実施形態においては、前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間を、400s以下にすることができ、150s以下にすることもでき、工程時間を短縮することができる。前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間は、130s以下にすることもでき、110s以下にすることもでき、90s以下にすることもでき、70s以下にすることもできる。
 前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間は、15~400sにすることもでき、15~150sにすることもでき、15~130sにすることもでき、15~110sにすることもでき、15~90sにすることもでき、15~70sにすることもできる。
Further, in still another embodiment, the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be set to 400 s or less. It can be set to 150 s or less, and the process time can be shortened. The transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be 130 s or less, 110 s or less, 90 s or less. It can be set to 70s or less.
The transport time of the work 14 from the start of pasting of the first laminating step to the completion of pasting of the second laminating step can be 15 to 400 s or 15 to 150 s. It can be 15 to 130 s, 15 to 110 s, 15 to 90 s, or 15 to 70 s.
 前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間は、第一の積層工程にかかる時間、第一の積層工程を行った場所から第二の積層工程を行う場所への搬送時間、第二の積層工程にかかる時間の3つに大分される。 The transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is the time required for the first laminating step and the place where the first laminating step was performed. It is roughly divided into three, the transportation time from the to the place where the second laminating process is performed, and the time required for the second laminating process.
 前記第一の積層工程にかかる時間は、40s以下にすることができ、15s以下にすることもでき、工程時間を短縮することができる。前記第一の積層工程にかかる時間は、10s以下にすることもでき、8s以下にすることもできる。
 また、前記第一の積層工程にかかる時間は、3~40sにすることもでき、3~15sにすることもでき、3~10sにすることもでき、3~8sにすることもできる。
The time required for the first laminating step can be 40 s or less, 15 s or less, and the process time can be shortened. The time required for the first laminating step can be 10 s or less, or 8 s or less.
Further, the time required for the first laminating step can be 3 to 40 s, 3 to 15 s, 3 to 10 s, or 3 to 8 s.
 前記第一の積層工程を行った場所から第二の積層工程を行う場所への搬送時間は、200s以下にすることができ、75s以下にすることもでき、工程時間を短縮することができる。前記第一の積層工程を行った場所から第二の積層工程を行う場所への搬送時間は、60s以下にすることもでき、37s以下にすることもできる。
 また、前記第一の積層工程を行った場所から第二の積層工程を行う場所への搬送時間は、3~200sにすることもでき、3~75sにすることもでき、3~60sにすることもでき、3~37sにすることもできる。
The transport time from the place where the first laminating step is performed to the place where the second laminating step is performed can be 200 s or less, can be 75 s or less, and the process time can be shortened. The transport time from the place where the first laminating step is performed to the place where the second laminating step is performed can be 60 s or less, or 37 s or less.
Further, the transport time from the place where the first laminating step is performed to the place where the second laminating step is performed can be 3 to 200 s, 3 to 75 s, or 3 to 60 s. It can also be 3 to 37 s.
 前記第二の積層工程にかかる時間は、160s以下にすることができ、60s以下にすることもでき、工程時間を短縮することができる。前記第二の積層工程にかかる時間は、40s以下にすることもでき、25s以下にすることもできる。
 また、前記第二の積層工程にかかる時間は、3~160sにすることもでき、3~60sにすることもでき、3~40sにすることもでき、3~25sにすることもできる。
The time required for the second laminating step can be 160 s or less, 60 s or less, and the process time can be shortened. The time required for the second laminating step can be 40 s or less, or 25 s or less.
Further, the time required for the second laminating step can be set to 3 to 160 s, 3 to 60 s, 3 to 40 s, or 3 to 25 s.
 図1(b)に示される本実施形態の第一の積層工程の貼付開始地点から、図1(d)に示される第二の積層工程の貼付完了地点までの前記ワークの搬送距離は、7000mm以下とすることができ、6500mm以下とすることもでき、6000mm以下とすることもでき、4500mm以下にすることもでき、3000mm以下にすることもできる。図1(b)に示される本実施形態の第一の積層工程の貼付開始時から、図1(d)に示される第二の積層工程の貼付完了時までの前記ワークの搬送時間は、400s以下とすることができ、150s以下とすることもでき、130s以下とすることもでき、110s以下とすることもでき、90s以下にすることもでき、70s以下にすることもできる。 The transport distance of the work from the sticking start point of the first laminating step of the present embodiment shown in FIG. 1 (b) to the sticking completion point of the second laminating step shown in FIG. 1 (d) is 7000 mm. It can be less than or equal to 6500 mm, less than or equal to 6000 mm, less than or equal to 4500 mm, and less than or equal to 3000 mm. The transport time of the work from the start of sticking of the first laminating step of the present embodiment shown in FIG. 1 (b) to the completion of sticking of the second laminating step shown in FIG. 1 (d) is 400 s. It can be less than or equal to 150 s, less than 130 s, less than 110 s, less than 90 s, less than 70 s.
 本実施形態の第三積層体の製造方法は、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行うことができる。
 同一の装置としては例えば、裏面保護膜形成用フィルム貼付テーブル、支持シート貼付テーブル及び搬送アームを備える装置により実施することができる。
 具体的には、上記装置に投入されたワーク14は、搬送アームにより、裏面保護膜形成用フィルム貼付テーブルへ搬送され、裏面14bを上に向けて設置される。裏面保護膜形成用フィルム貼付テーブルにおいて、前記ワーク14の裏面14b側に事前に装置外又は直前に装置内でワーク14に合わせたサイズに加工された裏面保護膜形成用フィルム13が貼付され、第二積層体となる。第二積層体は、搬送アームにより、前記支持シート貼付テーブルへ搬送され、裏面保護膜形成用フィルム側を上に向けて設置される。支持シート貼付テーブルにおいて、前記第二積層体の裏面保護膜形成用フィルム13に支持テープ10が貼付され、第三積層体となる。
The method for producing the third laminated body of the present embodiment can be carried out by connecting an apparatus for attaching a film for forming a back surface protective film and an apparatus for attaching a support sheet, or can be carried out in the same apparatus.
The same device can be implemented by, for example, a device including a back surface protective film forming film sticking table, a support sheet sticking table, and a transport arm.
Specifically, the work 14 put into the above device is conveyed to the back surface protective film forming film affixing table by the transfer arm, and is installed with the back surface 14b facing upward. On the back surface protective film forming film attachment table, the back surface protective film forming film 13 processed in advance to the size of the work 14 outside the device or immediately before the work 14 is attached to the back surface 14b side of the work 14. It becomes a two-layered body. The second laminated body is conveyed to the support sheet affixing table by a conveying arm, and is installed with the back surface protective film forming film side facing upward. In the support sheet attachment table, the support tape 10 is attached to the back surface protective film forming film 13 of the second laminate to form the third laminate.
 第一の積層工程においてワーク14の裏側に、保護膜形成フィルム13を貼付する速度、及び第二の積層工程において保護膜形成フィルム13に支持シート10を貼付する速度は、100mm/秒以下とすることもでき、80mm/秒以下とすることもでき、60mm/秒以下とすることもでき、40mm/秒以下とすることもできる。第一の積層工程における前記貼付する速度、及び第二の積層工程における前記貼付する速度が前記上限値以下であることにより、ワーク14と保護膜形成フィルム13との間の密着性、保護膜形成フィルム13と支持シート10との間の密着性を良好なものとすることができる。
 第一の積層工程における前記貼付する速度、及び第二の積層工程における前記貼付する速度は、2mm/秒以上とすることもでき、5mm/秒以上とすることもでき、10mm/秒以上とすることもできる。第一の積層工程における前記貼付する速度、及び第二の積層工程における前記貼付する速度が前記下限値以上であることにより、第三積層体19の生産効率を向上させるとともに、第一の積層工程の貼付開始時から第二の積層工程の貼付完了時までの間のワーク14の搬送時間を、400s以下とすることができる。
 第一の積層工程における前記貼付する速度、及び第二の積層工程における前記貼付する速度は、2~100mm/秒とすることもでき、2~80mm/秒とすることもでき、5~60mm/秒とすることもでき、10~40mm/秒とすることもできる。
The speed at which the protective film forming film 13 is attached to the back side of the work 14 in the first laminating step and the speed at which the support sheet 10 is attached to the protective film forming film 13 in the second laminating step are 100 mm / sec or less. It can also be 80 mm / sec or less, 60 mm / sec or less, or 40 mm / sec or less. When the sticking speed in the first laminating step and the sticking speed in the second laminating step are equal to or less than the upper limit value, the adhesion between the work 14 and the protective film forming film 13 and the protective film forming are formed. The adhesion between the film 13 and the support sheet 10 can be improved.
The sticking speed in the first laminating step and the sticking speed in the second laminating step may be 2 mm / sec or more, 5 mm / sec or more, or 10 mm / sec or more. You can also do it. When the sticking speed in the first laminating step and the sticking speed in the second laminating step are equal to or higher than the lower limit, the production efficiency of the third laminated body 19 is improved and the first laminating step is performed. The transport time of the work 14 from the start of sticking to the completion of sticking in the second laminating step can be 400 s or less.
The sticking speed in the first laminating step and the sticking speed in the second laminating step can be 2 to 100 mm / sec, 2 to 80 mm / sec, or 5 to 60 mm / sec. It can be set to seconds, or 10 to 40 mm / sec.
 前記装置は、裏面保護膜形成用フィルム貼付テーブルを1~5個備えることが好ましく、1~3個備えることがより好ましい。装置内の裏面保護膜形成用フィルム貼付テーブルの数が前記範囲の下限値以上であると、生産効率が高まり、上限値以下であると、装置のスペースを低減することができる。 The device preferably includes 1 to 5 film sticking tables for forming a back surface protective film, and more preferably 1 to 3 tables. When the number of the back surface protective film forming film sticking tables in the apparatus is not less than the lower limit value of the above range, the production efficiency is increased, and when it is not more than the upper limit value, the space of the apparatus can be reduced.
 前記装置は、支持シート貼付テーブルを1~5個備えることが好ましく、1~3個備えることがより好ましい。装置内の支持シート貼付テーブルの数が前記範囲の下限値以上であると、生産効率が高まり、上限値以下であると、装置のスペースを低減することができる。 The device preferably includes 1 to 5 support sheet attachment tables, and more preferably 1 to 3 tables. When the number of support sheet attachment tables in the apparatus is not less than the lower limit value of the above range, the production efficiency is increased, and when it is not more than the upper limit value, the space of the apparatus can be reduced.
 前記装置は、搬送アームを各搬送経路に合わせて備えることが好ましい。テーブルの総数に対する搬送アームの数の割合を1以上とすると、生産効率を高めることができる。また、テーブルを2個以上備える場合、テーブルの総数に対する搬送アームの数の割合を0超1未満(例えば、2個のテーブルに対して搬送アームの総数が1)とすると、装置のスペースの低減が可能となる。 It is preferable that the device is provided with a transfer arm according to each transfer path. When the ratio of the number of transport arms to the total number of tables is 1 or more, the production efficiency can be improved. Further, when two or more tables are provided, if the ratio of the number of transfer arms to the total number of tables is more than 0 and less than 1 (for example, the total number of transfer arms is 1 for two tables), the space of the device is reduced. Is possible.
 裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う具体例としては、裏面保護膜形成用フィルムを貼付する機構を有する装置と、支持シートを貼付する機構を有する装置を連続させ、各機構間において、ワーク14に裏面保護膜形成用フィルム13が貼付された第二積層体を、搬送アームを用いて、一枚ずつ搬送する方法が挙げられる。 Specific examples of connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet include a device having a mechanism for attaching the back surface protective film forming film and a mechanism for attaching the support sheet. Examples thereof include a method in which the devices are made continuous and the second laminated body in which the back surface protective film forming film 13 is attached to the work 14 is conveyed one by one by using a conveying arm between the mechanisms.
 本実施形態において、図1(a)に示されるワーク14として、半導体ウエハを用いている。半導体ウエハの一方の面は回路面14aであり、バンプが形成されている。また、半導体ウエハの回路面14a及びバンプが、半導体ウエハの裏面研削時に潰れたり、ウエハ裏面におけるディンプルやクラックが発生することを防止するために、半導体ウエハの回路面14a及びバンプは、回路面保護用テープ17によって保護されていてもよい。回路面保護用テープ17は裏面研削用テープであり、ワーク14である半導体ウエハの裏面(すなわち、ワークの裏面14b)は研削された面でもよい。 In this embodiment, a semiconductor wafer is used as the work 14 shown in FIG. 1 (a). One surface of the semiconductor wafer is the circuit surface 14a, on which bumps are formed. Further, in order to prevent the circuit surface 14a and bumps of the semiconductor wafer from being crushed during grinding of the back surface of the semiconductor wafer and dimples and cracks on the back surface of the wafer, the circuit surface 14a and bumps of the semiconductor wafer are protected from the circuit surface. It may be protected by a tape 17. The circuit surface protection tape 17 is a back surface grinding tape, and the back surface of the semiconductor wafer, which is the work 14, (that is, the back surface 14b of the work) may be a ground surface.
 ワーク14としては、一方に回路面14aを有し、他方の面が裏面と云えるものであれば限定されない。ワーク14として、一方に回路面を有する半導体ウエハや、個片化され個々の電子部品が封止樹脂で封止され、一方に、端子付き半導体装置の端子形成面(換言すると回路面)を有する端子付き半導体装置集合体からなる半導体装置パネル等を例示することができる。 The work 14 is not limited as long as it has a circuit surface 14a on one side and the other surface can be said to be the back surface. As the work 14, a semiconductor wafer having a circuit surface on one side or individual electronic components are sealed with a sealing resin, and one side has a terminal forming surface (in other words, a circuit surface) of a semiconductor device with terminals. An example includes a semiconductor device panel composed of a semiconductor device assembly with terminals.
 回路面保護用テープ17としては、例えば、特開2016-192488号公報、特開2009-141265号公報に開示された表面保護用シートを用いることができる。回路面保護用テープ17は、適度な再剥離性を有する粘着剤層を備えている。前記粘着剤層は、ゴム系、アクリル樹脂、シリコーン樹脂、ウレタン樹脂、ビニルエーテル樹脂など汎用の弱粘着タイプの粘着剤から形成されてもよい。また、前記粘着剤層は、エネルギー線の照射により硬化して再剥離性となるエネルギー線硬化型粘着剤であってもよい。回路面保護用テープ17が両面テープ形状となっており、回路面保護用テープ17のさらに外側が硬質支持体に固定されていてもよく、硬質の支持体にワーク14が固定されていてもよい。 As the circuit surface protection tape 17, for example, the surface protection sheet disclosed in JP-A-2016-192488 and JP-A-2009-141265 can be used. The circuit surface protection tape 17 includes an adhesive layer having an appropriate removability. The pressure-sensitive adhesive layer may be formed of a general-purpose weak pressure-sensitive pressure-sensitive adhesive such as a rubber-based, acrylic resin, silicone resin, urethane resin, or vinyl ether resin. Further, the pressure-sensitive adhesive layer may be an energy ray-curable pressure-sensitive adhesive that is cured by irradiation with energy rays and becomes removable. The circuit surface protection tape 17 has a double-sided tape shape, and the outer side of the circuit surface protection tape 17 may be fixed to a hard support, or the work 14 may be fixed to a hard support. ..
 本明細書において、「エネルギー線」とは、電磁波又は荷電粒子線の中でエネルギー量子を有するものを意味する。エネルギー線の例としては、紫外線、放射線、電子線等が挙げられる。紫外線は、例えば、紫外線源として高圧水銀ランプ、ヒュージョンランプ、キセノンランプ、ブラックライト又はLEDランプ等を用いることで照射できる。電子線は、電子線加速器等によって発生させたものを照射できる。
 また、本明細書において、「エネルギー線硬化性」とは、エネルギー線を照射することにより硬化する性質を意味し、「非エネルギー線硬化性」とは、エネルギー線を照射しても硬化しない性質を意味する。
As used herein, the term "energy beam" means an electromagnetic wave or a charged particle beam having an energy quantum. Examples of energy rays include ultraviolet rays, radiation, electron beams and the like. Ultraviolet rays can be irradiated by using, for example, a high-pressure mercury lamp, a fusion lamp, a xenon lamp, a black light, an LED lamp, or the like as an ultraviolet source. The electron beam can be irradiated with an electron beam generated by an electron beam accelerator or the like.
Further, in the present specification, "energy ray curable" means a property of being cured by irradiating with energy rays, and "non-energy ray curable" is a property of not being cured by irradiating with energy rays. Means.
 図1(b)に示される本実施形態の第一の積層工程において、裏面保護膜形成用フィルム13は、図2に示す第一積層体5として用いることができる。図2に示す第一積層体5は、裏面保護膜形成用フィルム13の一方の面上に第1剥離フィルム151を備え、他方の面上に第2剥離フィルム152を備える。第1剥離フィルム151を剥離してから、第一の積層工程において、ワーク14の裏面14bに、裏面保護膜形成用フィルム13の前記剥離フィルムを剥離した露出面13aを向い合せに貼付する(図1(b))。この時の裏面保護膜形成用フィルム13は、事前にワーク14の形状に合わせて加工されているものを用いてもよいし、直前に、装置内で加工して用いてもよい。次に、第2剥離フィルム152を剥離して、第二積層体とする(図1(c))ことが好ましい。 In the first laminating step of the present embodiment shown in FIG. 1 (b), the back surface protective film forming film 13 can be used as the first laminated body 5 shown in FIG. The first laminated body 5 shown in FIG. 2 includes a first release film 151 on one surface of the back surface protective film forming film 13, and a second release film 152 on the other surface. After the first release film 151 is peeled off, in the first laminating step, the exposed surface 13a from which the release film of the back surface protective film forming film 13 has been peeled off is attached to the back surface 14b of the work 14 facing each other (FIG. 1 (b)). The back surface protective film forming film 13 at this time may be one that has been processed in advance according to the shape of the work 14, or may be processed and used in the apparatus immediately before. Next, it is preferable that the second release film 152 is peeled off to form a second laminated body (FIG. 1 (c)).
 図2に示す裏面保護膜形成用フィルムは、例えば、厚さ10~100μmの第2剥離フィルム152の剥離面上に、溶媒を含有する保護膜形成組成物を、ナイフコーターにて塗布した後、オーブンにて120℃で2分間乾燥させて、裏面保護膜形成用フィルムを形成する。次いで、裏面保護膜形成用フィルムに厚さ10~100μmの第1剥離フィルム151の剥離面を重ねて両者を貼り合わせ、第1剥離フィルム151と、裏面保護膜形成用フィルム(図2における裏面保護膜形成用フィルム13)(厚さ:3~50μm)と、第2剥離フィルム152とからなる第一積層体5を得ることができる。このような第一積層体5は、例えば、ロール状として保管するのに好適である。 The back surface protective film forming film shown in FIG. 2 is prepared by, for example, applying a protective film forming composition containing a solvent on the peeling surface of a second release film 152 having a thickness of 10 to 100 μm with a knife coater. It is dried in an oven at 120 ° C. for 2 minutes to form a back surface protective film forming film. Next, the release surface of the first release film 151 having a thickness of 10 to 100 μm is overlapped with the back surface protective film forming film and the two are bonded to each other, and the first release film 151 and the back surface protective film forming film (back surface protection in FIG. 2) are laminated. A first laminated body 5 composed of a film forming film 13) (thickness: 3 to 50 μm) and a second release film 152 can be obtained. Such a first laminated body 5 is suitable for storage as a roll, for example.
 図1(d)に示される第二の積層工程において、ワーク14の裏面14bに積層された裏面保護膜形成用フィルム13に、支持シート10を積層する。支持シート10は、例えば、厚さ80μm、直径が270mmの円形のポリエチレンテレフタレートフィルムであり、外周部に、治具用接着剤層16を備えていてもよい。本実施形態では、ワーク14は、裏面保護膜形成用フィルム13とともに固定用治具18に固定されていてもよい。そして、裏面保護膜形成用フィルム13に、支持シート10を積層するとともに、治具用接着剤層16を介して、固定用治具18に固定されていてもよい(図1(e))。 In the second laminating step shown in FIG. 1D, the support sheet 10 is laminated on the back surface protective film forming film 13 laminated on the back surface 14b of the work 14. The support sheet 10 is, for example, a circular polyethylene terephthalate film having a thickness of 80 μm and a diameter of 270 mm, and may be provided with a jig adhesive layer 16 on the outer peripheral portion. In the present embodiment, the work 14 may be fixed to the fixing jig 18 together with the back surface protective film forming film 13. Then, the support sheet 10 may be laminated on the back surface protective film forming film 13 and fixed to the fixing jig 18 via the jig adhesive layer 16 (FIG. 1 (e)).
(保護膜形成組成物)
 裏面保護膜形成用フィルムを形成するための保護膜形成組成物の組成としては、バインダーポリマー成分及び硬化性成分を含有することが好ましい。
(Protective film forming composition)
The composition of the protective film forming composition for forming the back surface protective film forming film preferably contains a binder polymer component and a curable component.
(バインダーポリマー成分)
 裏面保護膜形成用フィルムに十分な接着性及び造膜性(シート形成性)を付与するためにバインダーポリマー成分が用いられる。バインダーポリマー成分としては、従来公知のアクリル樹脂、ポリエステル樹脂、ウレタン樹脂、アクリルウレタン樹脂、シリコーン樹脂、ゴム系ポリマー等を用いることができる。
(Binder polymer component)
A binder polymer component is used to impart sufficient adhesiveness and film-forming property (sheet forming property) to the back surface protective film forming film. As the binder polymer component, conventionally known acrylic resins, polyester resins, urethane resins, acrylic urethane resins, silicone resins, rubber-based polymers and the like can be used.
 バインダーポリマー成分の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~120万であることがより好ましい。バインダーポリマー成分の重量平均分子量が低過ぎると裏面保護膜形成用フィルムと支持シートとの粘着力が高くなり、裏面保護膜形成用フィルムの転写不良が起こることがあり、高過ぎると裏面保護膜形成用フィルムの接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から裏面保護膜が剥離することがある。
 すなわち、Mwが前記範囲の下限値以上であると、裏面保護膜形成用フィルムと支持シートとの粘着力が高くなりすぎず、裏面保護膜形成用フィルムの転写不良を抑制することができる。Mwが前記範囲の上限値以下であると、裏面保護膜形成用フィルムの接着性の低下が抑制され、チップ等に転写できなくなったり、あるいは転写後にチップ等から裏面保護膜が剥離するという不具合の発生が抑制される。
 なお、本実施形態において、重量平均分子量(Mw)とは、特に断りのない限り、ゲル・パーミエーション・クロマトグラフィー(GPC)法により測定されるポリスチレン換算値である。
The weight average molecular weight (Mw) of the binder polymer component is preferably 10,000 to 2 million, more preferably 100,000 to 1.2 million. If the weight average molecular weight of the binder polymer component is too low, the adhesive force between the back surface protective film forming film and the support sheet becomes high, and transfer failure of the back surface protective film forming film may occur. If it is too high, the back surface protective film is formed. The adhesiveness of the film for use may deteriorate and transfer to a chip or the like may not be possible, or the back surface protective film may peel off from the chip or the like after transfer.
That is, when Mw is at least the lower limit of the above range, the adhesive force between the back surface protective film forming film and the support sheet does not become too high, and transfer failure of the back surface protective film forming film can be suppressed. When Mw is not more than the upper limit of the above range, the deterioration of the adhesiveness of the back surface protective film forming film is suppressed and the film cannot be transferred to the chip or the like, or the back surface protective film is peeled off from the chip or the like after the transfer. Occurrence is suppressed.
In the present embodiment, the weight average molecular weight (Mw) is a polystyrene-equivalent value measured by a gel permeation chromatography (GPC) method unless otherwise specified.
 バインダーポリマー成分として、アクリル樹脂が好ましく用いられる。アクリル樹脂のガラス転移温度(Tg)は、好ましくは-60~50℃、さらに好ましくは-50~40℃、特に好ましくは-40~30℃の範囲にある。アクリル樹脂のガラス転移温度が低過ぎると裏面保護膜形成用フィルムと支持シートとの剥離力が大きくなって裏面保護膜形成用フィルムの転写不良が起こることがあり、高過ぎると裏面保護膜形成用フィルムの接着性が低下し、チップ等に転写できなくなったり、あるいは転写後にチップ等から裏面保護膜が剥離することがある。
 すなわち、Tgが前記範囲の下限値以上であると、裏面保護膜形成用フィルムと支持シートとの剥離力が大きくなりすぎず、裏面保護膜形成用フィルムの転写不良を抑制することができる。Tgが前記範囲の上限値以下であると。裏面保護膜形成用フィルムの接着性の低下が抑制され、チップ等に転写できなくなったり、あるいは転写後にチップ等から裏面保護膜が剥離するという不具合の発生が抑制される。
 本明細書において「ガラス転移温度」とは、示差走査熱量計を用いて、試料のDSC曲線を測定し、得られたDSC曲線の変曲点の温度で表される。
Acrylic resin is preferably used as the binder polymer component. The glass transition temperature (Tg) of the acrylic resin is preferably in the range of −60 to 50 ° C., more preferably −50 to 40 ° C., and particularly preferably −40 to 30 ° C. If the glass transition temperature of the acrylic resin is too low, the peeling force between the back surface protective film forming film and the support sheet becomes large, and transfer failure of the back surface protective film forming film may occur. If it is too high, the back surface protective film forming film may occur. The adhesiveness of the film may be reduced and transfer to a chip or the like may not be possible, or the back surface protective film may be peeled off from the chip or the like after transfer.
That is, when Tg is not more than the lower limit of the above range, the peeling force between the back surface protective film forming film and the support sheet does not become too large, and transfer failure of the back surface protective film forming film can be suppressed. When Tg is equal to or less than the upper limit of the above range. The deterioration of the adhesiveness of the back surface protective film forming film is suppressed, and the occurrence of a problem that the back surface protective film cannot be transferred to the chip or the like or the back surface protective film is peeled off from the chip or the like after the transfer is suppressed.
In the present specification, the "glass transition temperature" is represented by the temperature of the inflection point of the obtained DSC curve obtained by measuring the DSC curve of the sample using a differential scanning calorimeter.
 上記アクリル樹脂を構成するモノマーとしては、(メタ)アクリル酸エステルモノマー又はその誘導体が挙げられる。例えば、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、具体的にはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられる。また、環状骨格を有する(メタ)アクリレート、具体的にはシクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどが挙げられる。さらに官能基を有するモノマーとして、水酸基を有するヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどが挙げられ;その他、エポキシ基を有するグリシジル(メタ)アクリレートなどが挙げられる。アクリル樹脂としては、水酸基を有しているモノマーを含有しているアクリル樹脂が、後述する硬化性成分との相溶性が良いため好ましい。また、上記アクリル樹脂は、アクリル酸、メタクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレンなどが共重合されていてもよい。 Examples of the monomer constituting the acrylic resin include a (meth) acrylic acid ester monomer or a derivative thereof. For example, an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, specifically methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, and 2-ethylhexyl. Examples include (meth) acrylate. Further, a (meth) acrylate having a cyclic skeleton, specifically, cyclohexyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, Examples thereof include dicyclopentenyloxyethyl (meth) acrylate and imide (meth) acrylate. Further, examples of the monomer having a functional group include hydroxymethyl (meth) acrylate having a hydroxyl group, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate and the like; and glycidyl (meth) having an epoxy group. Examples include acrylate. As the acrylic resin, an acrylic resin containing a monomer having a hydroxyl group is preferable because it has good compatibility with a curable component described later. Further, the acrylic resin may be copolymerized with acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene and the like.
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の両方を包含する概念とする。(メタ)アクリル酸と類似の用語についても同様であり、例えば、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両方を包含する概念であり、「(メタ)アクリロイル基」とは、「アクリロイル基」及び「メタクリロイル基」の両方を包含する概念である。 In addition, in this specification, "(meth) acrylic acid" is a concept including both "acrylic acid" and "methacrylic acid". The same applies to terms similar to (meth) acrylic acid. For example, "(meth) acrylate" is a concept that includes both "acrylate" and "methacrylate", and is referred to as "(meth) acryloyl group". Is a concept that includes both "acryloyl group" and "methacryloyl group".
 さらに、バインダーポリマー成分として、硬化後の保護膜の可とう性を保持するために熱可塑性樹脂を配合してもよい。そのような熱可塑性樹脂としては、重量平均分子量が1000~10万のものが好ましく、3000~8万のものがさらに好ましい。熱可塑性樹脂のガラス転移温度は、好ましくは-30~120℃、さらに好ましくは-20~120℃のものが好ましい。熱可塑性樹脂としては、ポリエステル樹脂、ウレタン樹脂、フェノキシ樹脂、ポリブテン、ポリブタジエン、ポリスチレンなどが挙げられる。これらの熱可塑性樹脂は、1種単独で、又は2種以上混合して使用することができる。上記の熱可塑性樹脂を含有することにより、裏面保護膜形成用フィルムの転写面に裏面保護膜形成用フィルムが追従しボイドなどの発生を抑えることができる。 Further, as a binder polymer component, a thermoplastic resin may be blended in order to maintain the flexibility of the protective film after curing. As such a thermoplastic resin, one having a weight average molecular weight of 1,000 to 100,000 is preferable, and one having a weight average molecular weight of 3,000 to 80,000 is more preferable. The glass transition temperature of the thermoplastic resin is preferably −30 to 120 ° C., more preferably −20 to 120 ° C. Examples of the thermoplastic resin include polyester resin, urethane resin, phenoxy resin, polybutene, polybutadiene, polystyrene and the like. These thermoplastic resins can be used alone or in admixture of two or more. By containing the above-mentioned thermoplastic resin, the back surface protective film forming film follows the transfer surface of the back surface protective film forming film, and the generation of voids and the like can be suppressed.
(硬化性成分)
 硬化性成分は、熱硬化性成分及び/又はエネルギー線硬化性成分が用いられる。
(Curable component)
As the curable component, a thermosetting component and / or an energy ray curable component is used.
 熱硬化性成分としては、熱硬化樹脂及び熱硬化剤が用いられる。熱硬化樹脂としては、例えば、エポキシ樹脂が好ましい。 As the thermosetting component, a thermosetting resin and a thermosetting agent are used. As the thermosetting resin, for example, an epoxy resin is preferable.
 エポキシ樹脂としては、従来公知のエポキシ樹脂を用いることができる。エポキシ樹脂としては、具体的には、多官能系エポキシ樹脂や、ビフェニル化合物、ビスフェノールAジグリシジルエーテルやその水添物、オルソクレゾールノボラックエポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェニレン骨格型エポキシ樹脂など、分子中に2官能以上有するエポキシ化合物が挙げられる。これらは1種単独で、又は2種以上を組み合わせて用いることができる。 As the epoxy resin, a conventionally known epoxy resin can be used. Specific examples of the epoxy resin include polyfunctional epoxy resin, biphenyl compound, bisphenol A diglycidyl ether and its hydrogenated product, orthocresol novolac epoxy resin, dicyclopentadiene type epoxy resin, biphenyl type epoxy resin, and bisphenol. Examples thereof include epoxy compounds having bifunctionality or higher in the molecule, such as A-type epoxy resin, bisphenol F-type epoxy resin, and phenylene skeleton-type epoxy resin. These can be used alone or in combination of two or more.
 裏面保護膜形成用フィルムには、バインダーポリマー成分100質量部に対して、熱硬化樹脂が、好ましくは1~1000質量部、より好ましくは10~500質量部、特に好ましくは20~200質量部含まれる。熱硬化樹脂の含有量が1質量部未満であると十分な接着性が得られないことがあり、1000質量部を超えると裏面保護膜形成用フィルムと粘着シート又は基材フィルムとの剥離力が高くなり、裏面保護膜形成用フィルムの転写不良が起こることがある。
 すなわち、熱硬化樹脂の含有量が前記範囲の下限値以上であると、十分な接着性が得られる。熱硬化樹脂の含有量が前記範囲の上限値以下であると、裏面保護膜形成用フィルムと粘着シート又は基材フィルムとの剥離力が高くなりすぎず、裏面保護膜形成用フィルムの転写不良が抑制される。
The film for forming the back surface protective film contains 100 parts by mass of the binder polymer component, preferably 1 to 1000 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 20 to 200 parts by mass. Is done. If the content of the thermosetting resin is less than 1 part by mass, sufficient adhesiveness may not be obtained, and if it exceeds 1000 parts by mass, the peeling force between the back surface protective film forming film and the pressure-sensitive adhesive sheet or the base film becomes strong. It becomes high, and transfer failure of the back surface protective film forming film may occur.
That is, when the content of the thermosetting resin is at least the lower limit of the above range, sufficient adhesiveness can be obtained. When the content of the thermosetting resin is not more than the upper limit of the above range, the peeling force between the back surface protective film forming film and the pressure-sensitive adhesive sheet or the base film does not become too high, and transfer failure of the back surface protective film forming film occurs. It is suppressed.
 熱硬化剤は、熱硬化樹脂、特にエポキシ樹脂に対する硬化剤として機能する。好ましい熱硬化剤としては、1分子中にエポキシ基と反応しうる官能基を2個以上有する化合物が挙げられる。その官能基としてはフェノール性水酸基、アルコール性水酸基、アミノ基、カルボキシル基及び酸無水物などが挙げられる。これらのうち好ましくはフェノール性水酸基、アミノ基、酸無水物などが挙げられ、さらに好ましくはフェノール性水酸基、アミノ基が挙げられる。 The thermosetting agent functions as a curing agent for thermosetting resins, especially epoxy resins. Preferred thermosetting agents include compounds having two or more functional groups capable of reacting with epoxy groups in one molecule. Examples of the functional group include a phenolic hydroxyl group, an alcoholic hydroxyl group, an amino group, a carboxyl group and an acid anhydride. Of these, phenolic hydroxyl groups, amino groups, acid anhydrides and the like are preferable, and phenolic hydroxyl groups and amino groups are more preferable.
 フェノール系硬化剤の具体的な例としては、多官能系フェノール樹脂、ビフェノール、ノボラック型フェノール樹脂、ジシクロペンタジエン系フェノール樹脂、ザイロック型フェノール樹脂、アラルキルフェノール樹脂が挙げられる。アミン系硬化剤の具体的な例としては、DICY(ジシアンジアミド)が挙げられる。これらは、1種単独で、又は2種以上混合して使用することができる。 Specific examples of the phenolic curing agent include polyfunctional phenolic resin, biphenol, novolak type phenolic resin, dicyclopentadiene type phenolic resin, zylock type phenolic resin, and aralkylphenolic resin. Specific examples of the amine-based curing agent include DICY (dicyandiamide). These can be used alone or in combination of two or more.
 熱硬化剤の含有量は、熱硬化樹脂100質量部に対して、0.1~500質量部であることが好ましく、1~200質量部であることがより好ましい。熱硬化剤の含有量が少ないと硬化不足で接着性が得られないことがあり、過剰であると裏面保護膜形成用フィルムの吸湿率が高まり半導体装置の信頼性を低下させることがある。
 すなわち、熱硬化剤の含有量が前記範囲の下限値以上であると、硬化不足が起こりづらく、接着性が得られやすい。熱硬化剤の含有量が前記範囲の上限値以下であると、裏面保護膜形成用フィルムの吸湿率が高まらず、半導体装置の信頼性を低下させづらい。
The content of the thermosetting agent is preferably 0.1 to 500 parts by mass, and more preferably 1 to 200 parts by mass with respect to 100 parts by mass of the thermosetting resin. If the content of the thermosetting agent is small, the adhesiveness may not be obtained due to insufficient curing, and if it is excessive, the hygroscopicity of the film for forming the back surface protective film may increase and the reliability of the semiconductor device may be lowered.
That is, when the content of the thermosetting agent is not more than the lower limit value in the above range, insufficient curing is unlikely to occur and adhesiveness is easily obtained. When the content of the thermosetting agent is not more than the upper limit of the above range, the hygroscopicity of the back surface protective film forming film does not increase, and it is difficult to lower the reliability of the semiconductor device.
 エネルギー線硬化性成分としては、エネルギー線重合性基を含み、紫外線、電子線等のエネルギー線の照射を受けると重合硬化する低分子化合物(エネルギー線重合性化合物)を用いることができる。このようなエネルギー線硬化性成分として具体的には、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールモノヒドロキシペンタアクリレート、ジペンタエリスリトールヘキサアクリレートあるいは1,4-ブチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコールジアクリレート、オリゴエステルアクリレート、ウレタンアクリレート系オリゴマー、エポキシ変性アクリレート、ポリエーテルアクリレート及びイタコン酸オリゴマーなどのアクリレート系化合物が挙げられる。このような化合物は、分子内に少なくとも1つの重合性二重結合を有し、通常は、重量平均分子量が100~30000、好ましくは300~10000程度である。エネルギー線重合性化合物の配合量は、バインダーポリマー成分100質量部に対して、好ましくは1~1500質量部、より好ましくは10~500質量部、特に好ましくは20~200質量部である。 As the energy ray-curable component, a low molecular weight compound (energy ray-polymerizable compound) containing an energy ray-polymerizable group and polymerizing and curing when irradiated with energy rays such as ultraviolet rays and electron beams can be used. Specifically, as such an energy ray-curable component, trimethylolpropantriacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol monohydroxypentaacrylate, dipentaerythritol hexaacrylate or 1,4-butylene glycol. Examples thereof include acrylate-based compounds such as diacrylate, 1,6-hexanediol diacrylate, polyethylene glycol diacrylate, oligoester acrylate, urethane acrylate-based oligomer, epoxy-modified acrylate, polyether acrylate and itaconic acid oligomer. Such a compound has at least one polymerizable double bond in the molecule, and usually has a weight average molecular weight of about 100 to 30,000, preferably about 300 to 10,000. The blending amount of the energy ray-polymerizable compound is preferably 1 to 1500 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 20 to 200 parts by mass with respect to 100 parts by mass of the binder polymer component.
 また、エネルギー線硬化性成分として、バインダーポリマー成分の主鎖又は側鎖に、エネルギー線重合性基が結合されたエネルギー線硬化型重合体を用いてもよい。このようなエネルギー線硬化型重合体は、バインダーポリマー成分としての機能と、硬化性成分としての機能を兼ね備える。 Further, as the energy ray-curable component, an energy ray-curable polymer in which an energy ray-curable group is bonded to the main chain or side chain of the binder polymer component may be used. Such an energy ray-curable polymer has both a function as a binder polymer component and a function as a curable component.
 エネルギー線硬化型重合体の主骨格は特に限定はされず、バインダーポリマー成分として汎用されているアクリル樹脂であってもよく、またポリエステル樹脂、ポリエーテル樹脂等であっても良いが、合成及び物性の制御が容易であることから、アクリル樹脂を主骨格とすることが特に好ましい。 The main skeleton of the energy ray-curable polymer is not particularly limited, and may be an acrylic resin that is widely used as a binder polymer component, or a polyester resin, a polyether resin, or the like, but synthetic and physical properties. It is particularly preferable to use an acrylic resin as the main skeleton because it is easy to control.
 エネルギー線硬化型重合体の主鎖又は側鎖に結合するエネルギー線重合性基は、例えばエネルギー線重合性の炭素-炭素二重結合を含む基であり、具体的には(メタ)アクリロイル基等を例示することができる。エネルギー線重合性基は、アルキレン基、アルキレンオキシ基、ポリアルキレンオキシ基を介してエネルギー線硬化型重合体に結合していてもよい。 The energy ray-polymerizable group bonded to the main chain or side chain of the energy ray-curable polymer is, for example, a group containing an energy ray-polymerizable carbon-carbon double bond, specifically, a (meth) acryloyl group or the like. Can be exemplified. The energy ray-polymerizable group may be bonded to the energy ray-curable polymer via an alkylene group, an alkyleneoxy group, or a polyalkyleneoxy group.
 エネルギー線重合性基が結合されたエネルギー線硬化型重合体の重量平均分子量(Mw)は、1万~200万であることが好ましく、10万~150万であることがより好ましい。また、エネルギー線硬化型重合体のガラス転移温度(Tg)は、好ましくは-60~50℃、さらに好ましくは-50~40℃、特に好ましくは-40~30℃の範囲にある。 The weight average molecular weight (Mw) of the energy ray-curable polymer to which the energy ray-polymerizable group is bonded is preferably 10,000 to 2 million, more preferably 100,000 to 1.5 million. The glass transition temperature (Tg) of the energy ray-curable polymer is preferably in the range of −60 to 50 ° C., more preferably −50 to 40 ° C., and particularly preferably −40 to 30 ° C.
 エネルギー線硬化型重合体は、例えば、ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を含有するアクリル樹脂と、前記官能基と反応する置換基とエネルギー線重合性炭素-炭素二重結合を1分子毎に1~5個を有する重合性基含有化合物とを反応させて得られる。前記官能基と反応する置換基としては、イソシアネート基、グリシジル基、カルボキシル基等が挙げられる。 The energy ray-curable polymer is, for example, an acrylic resin containing a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, or an epoxy group, and a substituent and an energy ray-polymerizable carbon that react with the functional group. It is obtained by reacting with a polymerizable group-containing compound having 1 to 5 carbon double bonds per molecule. Examples of the substituent that reacts with the functional group include an isocyanate group, a glycidyl group, a carboxyl group and the like.
 重合性基含有化合物としては、(メタ)アクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、(メタ)アクリロイルイソシアネート、アリルイソシアネート、グリシジル(メタ)アクリレート;(メタ)アクリル酸等が挙げられる。 Examples of the polymerizable group-containing compound include (meth) acryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, (meth) acryloyl isocyanate, allyl isocyanate, glycidyl (meth) acrylate; (meth) acrylic acid and the like. Can be mentioned.
 アクリル樹脂は、ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を有する(メタ)アクリルモノマー又はその誘導体と、これと共重合可能な他の(メタ)アクリル酸エステルモノマー又はその誘導体とからなる共重合体であることが好ましい。 The acrylic resin is a (meth) acrylic monomer having a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, or an epoxy group or a derivative thereof, and another (meth) acrylic acid ester monomer copolymerizable therewith. Alternatively, it is preferably a copolymer composed of a derivative thereof.
 ヒドロキシル基、カルボキシル基、アミノ基、置換アミノ基、エポキシ基等の官能基を有する(メタ)アクリルモノマー又はその誘導体としては、例えば、ヒドロキシル基を有する2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート;カルボキシル基を有するアクリル酸、メタクリル酸、イタコン酸;エポキシ基を有するグリシジルメタクリレート、グリシジルアクリレートなどが挙げられる。 Examples of the (meth) acrylic monomer having a functional group such as a hydroxyl group, a carboxyl group, an amino group, a substituted amino group, and an epoxy group or a derivative thereof include 2-hydroxyethyl (meth) acrylate having a hydroxyl group and 2-hydroxy. Propyl (meth) acrylate; acrylic acid having a carboxyl group, methacrylic acid, itaconic acid; glycidyl methacrylate having an epoxy group, glycidyl acrylate and the like can be mentioned.
 上記モノマーと共重合可能な他の(メタ)アクリル酸エステルモノマー又はその誘導体としては、例えば、アルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、具体的にはメチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレートなどが挙げられ;環状骨格を有する(メタ)アクリレート、具体的にはシクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、イミドアクリレートなどが挙げられる。また、上記アクリル樹脂には、酢酸ビニル、アクリロニトリル、スチレンなどが共重合されていてもよい。 As another (meth) acrylic acid ester monomer or a derivative thereof that can be copolymerized with the above monomer, for example, an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, specifically a methyl (meth) acrylate. , Ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate and the like; (meth) acrylate having a cyclic skeleton, specifically cyclohexyl (meth) acrylate, Examples thereof include benzyl (meth) acrylate, isobornyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl acrylate, and imide acrylate. Further, vinyl acetate, acrylonitrile, styrene and the like may be copolymerized with the acrylic resin.
 エネルギー線硬化型重合体を使用する場合であっても、前記したエネルギー線重合性化合物を併用してもよく、またバインダーポリマー成分を併用してもよい。本発明における裏面保護膜形成用フィルム中のこれら三者の配合量の関係は、エネルギー線硬化型重合体及びバインダーポリマー成分の質量の和100質量部に対して、エネルギー線重合性化合物が好ましくは1~1500質量部、より好ましくは10~500質量部、特に好ましくは20~200質量部含まれる。 Even when an energy ray-curable polymer is used, the above-mentioned energy ray-polymerizable compound may be used in combination, or a binder polymer component may be used in combination. Regarding the relationship between the blending amounts of these three in the film for forming the back surface protective film in the present invention, the energy ray-polymerizable compound is preferably used with respect to 100 parts by mass of the total mass of the energy ray-curable polymer and the binder polymer component. It is contained in an amount of 1 to 1500 parts by mass, more preferably 10 to 500 parts by mass, and particularly preferably 20 to 200 parts by mass.
 裏面保護膜形成用フィルムにエネルギー線硬化性を付与することで、裏面保護膜形成用フィルムを簡便かつ短時間で硬化でき、保護膜付チップの生産効率が向上する。従来、チップ用の保護膜は、一般にエポキシ樹脂などの熱硬化樹脂により形成されていたが、熱硬化樹脂の硬化温度は200℃を超え、また硬化時間は2時間程度を要しているため、生産効率向上の障害となっていた。しかし、エネルギー線硬化性の裏面保護膜形成用フィルムは、エネルギー線照射により短時間で硬化するため、簡便に保護膜を形成でき、生産効率の向上に寄与しうる。 By imparting energy ray curability to the back surface protective film forming film, the back surface protective film forming film can be cured easily and in a short time, and the production efficiency of the chip with the protective film is improved. Conventionally, a protective film for a chip is generally formed of a thermosetting resin such as an epoxy resin, but since the curing temperature of the thermosetting resin exceeds 200 ° C. and the curing time is about 2 hours. It was an obstacle to improving production efficiency. However, since the energy ray-curable back surface protective film forming film is cured in a short time by energy ray irradiation, the protective film can be easily formed and can contribute to the improvement of production efficiency.
 裏面保護膜形成用フィルムは、上記バインダーポリマー成分及び硬化性成分に加えて下記成分を含むことができる。 The back surface protective film forming film can contain the following components in addition to the above binder polymer component and curable component.
(着色剤)
 裏面保護膜形成用フィルムは、着色剤を含有することが好ましい。裏面保護膜形成用フィルムに着色剤を配合することで、半導体装置を機器に組み込んだ際に、周囲の装置から発生する赤外線等を遮蔽し、それらによる半導体装置の誤作動を防止することができる。また裏面保護膜形成用フィルムを硬化して得た保護膜に、製品番号等を印字した際の文字の視認性が向上する。すなわち、保護膜を形成された半導体装置や半導体チップでは、保護膜の表面に品番等が通常レーザーマーキング法(レーザー光により保護膜表面を削り取り印字を行う方法)により印字されるが、保護膜が着色剤を含有することで、保護膜のレーザー光により削り取られた部分とそうでない部分のコントラスト差が充分に得られ、視認性が向上する。着色剤としては、有機又は無機の顔料及び染料が用いられる。これらの中でも電磁波や赤外線遮蔽性の点から黒色顔料が好ましい。黒色顔料としては、カーボンブラック、酸化鉄、二酸化マンガン、アニリンブラック、活性炭等が用いられるが、これらに限定されることはない。半導体装置の信頼性を高める観点からは、カーボンブラックが特に好ましい。着色剤は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。本発明における裏面保護膜形成用フィルムの高い硬化性は、可視光及び/又は赤外線と紫外線との両方の透過性を低下させる着色剤を用い、紫外線の透過性が低下した場合に、特に好ましく発揮される。可視光及び/又は赤外線と紫外線との両方の透過性を低下させる着色剤としては、上記の黒色顔料のほか、可視光及び/又は赤外線と紫外線との両方の波長領域で吸収性又は反射性を有するものであれば特に限定されない。
(Colorant)
The back surface protective film forming film preferably contains a colorant. By blending a colorant in the back surface protective film forming film, it is possible to shield infrared rays and the like generated from surrounding devices when the semiconductor device is incorporated into a device, and prevent the semiconductor device from malfunctioning due to them. .. Further, the visibility of characters when a product number or the like is printed on the protective film obtained by curing the back surface protective film forming film is improved. That is, in a semiconductor device or semiconductor chip on which a protective film is formed, a product number or the like is usually printed on the surface of the protective film by a laser marking method (a method in which the surface of the protective film is scraped off by laser light), but the protective film is By containing the colorant, a sufficient contrast difference between the portion scraped by the laser beam of the protective film and the portion not scraped can be obtained, and the visibility is improved. As the colorant, organic or inorganic pigments and dyes are used. Among these, black pigments are preferable from the viewpoint of electromagnetic wave and infrared shielding properties. As the black pigment, carbon black, iron oxide, manganese dioxide, aniline black, activated carbon and the like are used, but the black pigment is not limited thereto. From the viewpoint of increasing the reliability of the semiconductor device, carbon black is particularly preferable. As the colorant, one type may be used alone, or two or more types may be used in combination. The high curability of the back surface protective film forming film in the present invention is particularly preferably exhibited when the transparency of ultraviolet rays is reduced by using a colorant that reduces the transparency of both visible light and / or infrared rays and ultraviolet rays. Will be done. As a colorant that reduces the transparency of both visible light and / or infrared rays and ultraviolet rays, in addition to the above-mentioned black pigment, absorbability or reflectivity in both wavelength regions of visible light and / or infrared rays and ultraviolet rays is provided. It is not particularly limited as long as it has.
 着色剤の配合量は、裏面保護膜形成用フィルムを構成する全固形分100質量部に対して、好ましくは0.1~35質量部、さらに好ましくは0.5~25質量部、特に好ましくは1~15質量部である。 The blending amount of the colorant is preferably 0.1 to 35 parts by mass, more preferably 0.5 to 25 parts by mass, and particularly preferably 0.5 to 25 parts by mass with respect to 100 parts by mass of the total solid content constituting the back surface protective film forming film. It is 1 to 15 parts by mass.
(硬化促進剤)
 硬化促進剤は、裏面保護膜形成用フィルムの硬化速度を調整するために用いられる。硬化促進剤は、特に、硬化性成分において、エポキシ樹脂と熱硬化剤とを併用する場合に好ましく用いられる。
(Curing accelerator)
The curing accelerator is used to adjust the curing rate of the back surface protective film forming film. The curing accelerator is preferably used when the epoxy resin and the thermosetting agent are used in combination, especially in the curable component.
 好ましい硬化促進剤としては、トリエチレンジアミン、ベンジルジメチルアミン、トリエタノールアミン、ジメチルアミノエタノール、トリス(ジメチルアミノメチル)フェノールなどの3級アミン類;2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどのイミダゾール類;トリブチルホスフィン、ジフェニルホスフィン、トリフェニルホスフィンなどの有機ホスフィン類;テトラフェニルホスホニウムテトラフェニルボレート、トリフェニルホスフィンテトラフェニルボレートなどのテトラフェニルボロン塩などが挙げられる。これらは1種単独で、又は2種以上混合して使用することができる。 Preferred curing accelerators are tertiary amines such as triethylenediamine, benzyldimethylamine, triethanolamine, dimethylaminoethanol, tris (dimethylaminomethyl) phenol; 2-methylimidazole, 2-phenylimidazole, 2-phenyl- Imidazoles such as 4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole; organic phosphines such as tributylphosphine, diphenylphosphine, triphenylphosphine; Examples thereof include tetraphenylborone salts such as tetraphenylphosphonium tetraphenylborate and triphenylphosphine tetraphenylborate. These can be used alone or in combination of two or more.
 硬化促進剤は、硬化性成分100質量部に対して、好ましくは0.01~10質量部、さらに好ましくは0.1~1質量部の量で含まれる。硬化促進剤を上記範囲の量で含有することにより、高温度、高湿度下に曝されても優れた接着特性を有し、厳しいリフロー条件に曝された場合であっても高い信頼性を達成することができる。硬化促進剤の含有量が少ないと硬化不足で十分な接着特性が得られず、過剰であると高い極性をもつ硬化促進剤は高温度、高湿度下で裏面保護膜形成用フィルム中を接着界面側に移動し、偏析することにより半導体装置の信頼性を低下させる。 The curing accelerator is contained in an amount of preferably 0.01 to 10 parts by mass, more preferably 0.1 to 1 part by mass with respect to 100 parts by mass of the curable component. By containing the curing accelerator in an amount in the above range, it has excellent adhesive properties even when exposed to high temperature and high humidity, and achieves high reliability even when exposed to severe reflow conditions. can do. If the content of the curing accelerator is low, sufficient adhesive properties cannot be obtained due to insufficient curing, and if it is excessive, the curing accelerator having high polarity has an adhesive interface in the back surface protective film forming film under high temperature and high humidity. By moving to the side and segregating, the reliability of the semiconductor device is reduced.
(カップリング剤)
 カップリング剤は、裏面保護膜形成用フィルムのチップに対する接着性、密着性及び/又は保護膜の凝集性を向上させるために用いてもよい。また、カップリング剤を使用することで、裏面保護膜形成用フィルムを硬化して得られる保護膜の耐熱性を損なうことなく、その耐水性を向上することができる。
(Coupling agent)
The coupling agent may be used to improve the adhesiveness, adhesion and / or cohesiveness of the protective film to the chip of the back surface protective film forming film. Further, by using the coupling agent, the water resistance of the protective film obtained by curing the back surface protective film forming film can be improved without impairing the heat resistance of the protective film.
 カップリング剤としては、バインダーポリマー成分、硬化性成分などが有する官能基と反応する基を有する化合物が好ましく使用される。カップリング剤としては、シランカップリング剤が望ましい。このようなカップリング剤としてはγ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-(メタクリロキシプロピル)トリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-6-(アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビス(3-トリエトキシシリルプロピル)テトラスルファン、メチルトリメトキシシラン、メチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリアセトキシシラン、イミダゾールシランなどが挙げられる。これらは1種単独で、又は2種以上混合して使用することができる。 As the coupling agent, a compound having a group that reacts with a functional group of a binder polymer component, a curable component, or the like is preferably used. As the coupling agent, a silane coupling agent is desirable. Examples of such a coupling agent include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and γ- (methacryloxypropyl). ) Trimethoxysilane, γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-6- (aminoethyl) -γ-aminopropylmethyldiethoxysilane, N- Phenyl-γ-aminopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, bis (3-triethoxysilylpropyl) tetrasulfane, methyltrimethoxy Examples thereof include silane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriacetoxysilane, and imidazolesilane. These can be used alone or in combination of two or more.
 カップリング剤は、バインダーポリマー成分及び硬化性成分の合計100質量部に対して、通常0.1~20質量部、好ましくは0.2~10質量部、より好ましくは0.3~5質量部の割合で含まれる。カップリング剤の含有量が0.1質量部未満だと上記の効果が得られない可能性があり、20質量部を超えるとアウトガスの原因となる可能性がある。
 すなわち、カップリング剤の含有量が上記範囲の下限値以上であると、カップリング剤の効果が得られ、上限値以下であるとアウトガスが抑制される。
The coupling agent is usually 0.1 to 20 parts by mass, preferably 0.2 to 10 parts by mass, and more preferably 0.3 to 5 parts by mass with respect to 100 parts by mass of the total of the binder polymer component and the curable component. Is included in the ratio of. If the content of the coupling agent is less than 0.1 parts by mass, the above effect may not be obtained, and if it exceeds 20 parts by mass, it may cause outgas.
That is, when the content of the coupling agent is at least the lower limit value in the above range, the effect of the coupling agent is obtained, and when it is at least the upper limit value, outgassing is suppressed.
(無機充填材)
 無機充填材を裏面保護膜形成用フィルムに配合することにより、硬化後の保護膜における熱膨張係数を調整することが可能となり、半導体チップに対して硬化後の保護膜の熱膨張係数を最適化することで半導体装置の信頼性を向上させることができる。また、硬化後の保護膜の吸湿率を低減させることも可能となる。
(Inorganic filler)
By blending the inorganic filler into the film for forming the back surface protective film, it is possible to adjust the coefficient of thermal expansion of the protective film after curing, and the coefficient of thermal expansion of the protective film after curing is optimized for the semiconductor chip. By doing so, the reliability of the semiconductor device can be improved. It is also possible to reduce the hygroscopicity of the protective film after curing.
 好ましい無機充填材としては、シリカ、アルミナ、タルク、炭酸カルシウム、酸化チタン、酸化鉄、炭化珪素、窒化ホウ素等の粉末、これらを球形化したビーズ、単結晶繊維及びガラス繊維等が挙げられる。これらのなかでも、シリカフィラー及びアルミナフィラーが好ましい。上記無機充填材は単独で又は2種以上を混合して使用することができる。無機充填材の含有量は、裏面保護膜形成用フィルムを構成する全固形分100質量部に対して、通常1~80質量部の範囲で調整が可能である。 Preferred inorganic fillers include powders of silica, alumina, talc, calcium carbonate, titanium oxide, iron oxide, silicon carbide, boron nitride and the like, spherical beads, single crystal fibers and glass fibers. Among these, silica filler and alumina filler are preferable. The inorganic filler can be used alone or in combination of two or more. The content of the inorganic filler can be usually adjusted in the range of 1 to 80 parts by mass with respect to 100 parts by mass of the total solid content constituting the back surface protective film forming film.
(光重合開始剤)
 裏面保護膜形成用フィルムが、前述した硬化性成分としてエネルギー線硬化性成分を含有する場合には、その使用に際して、紫外線等のエネルギー線を照射して、エネルギー線硬化性成分を硬化させる。この際、前記組成物中に光重合開始剤を含有させることで、重合硬化時間並びに光線照射量を少なくすることができる。
(Photopolymerization initiator)
When the back surface protective film forming film contains an energy ray-curable component as the above-mentioned curable component, the energy ray-curable component is cured by irradiating with energy rays such as ultraviolet rays when using the film. At this time, by incorporating the photopolymerization initiator in the composition, the polymerization curing time and the amount of light irradiation can be reduced.
 このような光重合開始剤として具体的には、ベンゾフェノン、アセトフェノン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、ベンゾイン安息香酸、ベンゾイン安息香酸メチル、ベンゾインジメチルケタール、2,4-ジエチルチオキサントン、α-ヒドロキシシクロヘキシルフェニルケトン、ベンジルジフェニルサルファイド、テトラメチルチウラムモノサルファイド、アゾビスイソブチロニトリル、ベンジル、ジベンジル、ジアセチル、1,2-ジフェニルメタン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド及びβ-クロールアンスラキノンなどが挙げられる。光重合開始剤は1種類単独で、又は2種類以上を組み合わせて用いることができる。 Specific examples of such photopolymerization initiators include benzophenone, acetophenone, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, benzoin benzoic acid, methyl benzoin benzoate, benzoin dimethyl ketal, 2, 4-Diethylthioxanthone, α-hydroxycyclohexylphenylketone, benzyldiphenylsulfide, tetramethylthiuram monosulfide, azobisisobutyronitrile, benzyl, dibenzyl, diacetyl, 1,2-diphenylmethane, 2-hydroxy-2-methyl-1 -[4- (1-Methylvinyl) phenyl] propanone, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, β-chloranthraquinone and the like can be mentioned. The photopolymerization initiator may be used alone or in combination of two or more.
 光重合開始剤の配合割合は、エネルギー線硬化性成分100質量部に対して0.1~10質量部含まれることが好ましく、1~5質量部含まれることがより好ましい。0.1質量部未満であると光重合の不足で満足な転写性が得られないことがあり、10質量部を超えると光重合に寄与しない残留物が生成し、裏面保護膜形成用フィルムの硬化性が不十分となることがある。
 すなわち、光重合開始剤の配合割合が前記範囲の下限値以上であると、光重合が十分進行し、満足な転写性が得られ、上限値以下であると、光重合に寄与しない残留物の生成が抑制され、裏面保護膜形成用フィルムの硬化性が十分となる。
The blending ratio of the photopolymerization initiator is preferably 0.1 to 10 parts by mass and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the energy ray-curable component. If it is less than 0.1 part by mass, satisfactory transferability may not be obtained due to insufficient photopolymerization, and if it exceeds 10 parts by mass, a residue that does not contribute to photopolymerization is generated, and the back surface protective film forming film is formed. Curability may be insufficient.
That is, when the blending ratio of the photopolymerization initiator is at least the lower limit of the above range, photopolymerization proceeds sufficiently and satisfactory transferability is obtained, and when it is at least the upper limit, residues that do not contribute to photopolymerization The formation is suppressed, and the curability of the back surface protective film forming film becomes sufficient.
(架橋剤)
 裏面保護膜形成用フィルムの初期接着力及び凝集力を調節するために、架橋剤を添加することもできる。架橋剤としては有機多価イソシアネート化合物、有機多価イミン化合物などが挙げられる。
(Crosslinking agent)
A cross-linking agent can also be added to adjust the initial adhesive force and cohesive force of the back surface protective film forming film. Examples of the cross-linking agent include an organic polyvalent isocyanate compound and an organic polyvalent imine compound.
 上記有機多価イソシアネート化合物としては、芳香族多価イソシアネート化合物、脂肪族多価イソシアネート化合物、脂環族多価イソシアネート化合物及びこれらの有機多価イソシアネート化合物の三量体、並びにこれら有機多価イソシアネート化合物とポリオール化合物とを反応させて得られる末端イソシアネートウレタンプレポリマー等を挙げることができる。 Examples of the organic polyvalent isocyanate compound include aromatic polyvalent isocyanate compounds, aliphatic polyhydric isocyanate compounds, alicyclic polyvalent isocyanate compounds, trimerics of these organic polyvalent isocyanate compounds, and these organic polyvalent isocyanate compounds. Examples thereof include a terminal isocyanate urethane prepolymer obtained by reacting with a polyol compound.
 有機多価イソシアネート化合物としては、例えば2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、トリメチロールプロパンアダクトトリレンジイソシアネート及びリジンイソシアネートが挙げられる。 Examples of the organic polyvalent isocyanate compound include 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 1,3-xylylene diisocyanate, 1,4-xylylene diisocyanate, diphenylmethane-4,4'-diisocyanate, and the like. Diphenylmethane-2,4'-diisocyanate, 3-methyldiphenylmethane diisocyanate, hexamethylene diisocyanate, isophorone diisocyanate, dicyclohexylmethane-4,4'-diisocyanate, dicyclohexylmethane-2,4'-diisocyanate, trimethylpropane adduct tolylene diisocyanate and Examples include lysine isocyanate.
 上記有機多価イミン化合物としては、N,N’-ジフェニルメタン-4,4’-ビス(1-アジリジンカルボキシアミド)、トリメチロールプロパン-トリ-β-アジリジニルプロピオネート、テトラメチロールメタン-トリ-β-アジリジニルプロピオネート及びN,N’-トルエン-2,4-ビス(1-アジリジンカルボキシアミド)トリエチレンメラミン等を挙げることができる。 Examples of the organic polyvalent imine compound include N, N'-diphenylmethane-4,4'-bis (1-aziridinecarboxyamide), trimethylpropan-tri-β-aziridinyl propionate, and tetramethylolmethane-tri. Examples thereof include -β-aziridinyl propionate and N, N'-toluene-2,4-bis (1-aziridinecarboxyamide) triethylene melamine.
 架橋剤はバインダーポリマー成分及びエネルギー線硬化型重合体の合計量100質量部に対して通常0.01~20質量部、好ましくは0.1~10質量部、より好ましくは0.5~5質量部の比率で用いられる。 The cross-linking agent is usually 0.01 to 20 parts by mass, preferably 0.1 to 10 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the total amount of the binder polymer component and the energy ray-curable polymer. Used in proportions of parts.
(汎用添加剤)
 裏面保護膜形成用フィルムには、上記の他に、必要に応じて各種添加剤が配合されてもよい。各種添加剤としては、レベリング剤、可塑剤、帯電防止剤、酸化防止剤、イオン捕捉剤、ゲッタリング剤、連鎖移動剤などが挙げられる。
(General-purpose additive)
In addition to the above, various additives may be added to the back surface protective film forming film, if necessary. Examples of various additives include leveling agents, plasticizers, antistatic agents, antioxidants, ion scavengers, gettering agents, chain transfer agents and the like.
(溶媒)
 保護膜形成組成物は、さらに溶媒を含有することが好ましい。溶媒を含有する保護膜形成組成物は、取り扱い性が良好となる。
 前記溶媒は特に限定されないが、好ましいものとしては、例えば、トルエン、キシレン等の炭化水素;メタノール、エタノール、2-プロパノール、イソブチルアルコール(2-メチルプロパン-1-オール)、1-ブタノール等のアルコール;酢酸エチル等のエステル;アセトン、メチルエチルケトン等のケトン;テトラヒドロフラン等のエーテル;ジメチルホルムアミド、N-メチルピロリドン等のアミド(アミド結合を有する化合物)等が挙げられる。
 保護膜形成組成物が含有する溶媒は、1種のみでもよいし、2種以上でもよく、2種以上である場合、それらの組み合わせ及び比率は任意に選択できる。
(solvent)
The protective film-forming composition preferably further contains a solvent. The protective film-forming composition containing a solvent has good handleability.
The solvent is not particularly limited, but preferred ones are, for example, hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, 2-propanol, isobutyl alcohol (2-methylpropan-1-ol) and 1-butanol. Examples thereof include esters such as ethyl acetate; ketones such as acetone and methyl ethyl ketone; ethers such as tetrahydrofuran; amides such as dimethylformamide and N-methylpyrrolidone (compounds having an amide bond).
The solvent contained in the protective film forming composition may be only one type, may be two or more types, and when two or more types are used, the combination and ratio thereof can be arbitrarily selected.
 保護膜形成組成物が含有する溶媒は、保護膜形成組成物中の含有成分をより均一に混合できる点から、メチルエチルケトン等であることが好ましい。 The solvent contained in the protective film-forming composition is preferably methyl ethyl ketone or the like from the viewpoint that the components contained in the protective film-forming composition can be mixed more uniformly.
 上記のような各成分からなる保護膜形成組成物を、塗布し、乾燥させて得られる裏面保護膜形成用フィルムは、接着性と硬化性とを有し、未硬化状態ではワーク(半導体ウエハやチップ等)に押圧することで容易に接着する。押圧する際に、裏面保護膜形成用フィルムを加熱してもよい。そして硬化を経て最終的には耐衝撃性の高い保護膜を与えることができ、接着強度にも優れ、厳しい高温度、高湿度条件下においても十分な保護機能を保持し得る。なお、裏面保護膜形成用フィルムは単層構造であってもよく、また上記成分を含む層を1層以上含む限りにおいて多層構造であってもよい。
 裏面保護膜形成用フィルムの、常温で気化しない成分同士の含有量の比率は、保護膜形成組成物中の前記成分同士の含有量の比率と同じとなる。なお、本明細書において、「常温」とは、特に冷やしたり、熱したりしない温度、すなわち平常の温度を意味し、例えば、15~25℃の温度が挙げられる。
The back surface protective film forming film obtained by applying and drying the protective film forming composition composed of the above-mentioned components has adhesiveness and curability, and in an uncured state, the work (semiconductor wafer or It adheres easily by pressing against a chip, etc.). When pressing, the back surface protective film forming film may be heated. After curing, a protective film having high impact resistance can be finally provided, the adhesive strength is excellent, and a sufficient protective function can be maintained even under severe high temperature and high humidity conditions. The back surface protective film forming film may have a single-layer structure, or may have a multi-layer structure as long as it contains one or more layers containing the above components.
The ratio of the contents of the components that do not vaporize at room temperature in the back surface protective film forming film is the same as the ratio of the contents of the components in the protective film forming composition. In addition, in this specification, "normal temperature" means a temperature which is not particularly cooled or heated, that is, a normal temperature, and examples thereof include a temperature of 15 to 25 ° C.
 保護膜形成組成物の塗工は、公知の方法で行えばよく、例えば、エアーナイフコーター、ブレードコーター、バーコーター、グラビアコーター、ロールコーター、ロールナイフコーター、カーテンコーター、ダイコーター、ナイフコーター、スクリーンコーター、マイヤーバーコーター、キスコーター等の各種コーターを用いる方法が挙げられる。 The coating of the protective film forming composition may be carried out by a known method, for example, an air knife coater, a blade coater, a bar coater, a gravure coater, a roll coater, a roll knife coater, a curtain coater, a die coater, a knife coater, and a screen. Examples thereof include a method using various coaters such as a coater, a Meyer bar coater, and a knife coater.
 保護膜形成組成物の乾燥条件は、特に限定されないが、保護膜形成組成物は、後述する溶媒を含有している場合、加熱乾燥させることが好ましい。溶媒を含有する保護膜形成組成物は、例えば、70~130℃で10秒間~5分間の条件で乾燥させることが好ましい。 The drying conditions of the protective film-forming composition are not particularly limited, but when the protective film-forming composition contains a solvent described later, it is preferable to heat-dry the protective film-forming composition. The solvent-containing protective film-forming composition is preferably dried at 70 to 130 ° C. for 10 seconds to 5 minutes, for example.
 裏面保護膜形成用フィルムの厚さは特に限定されないが、好ましくは3~300μm、さらに好ましくは5~250μm、特に好ましくは7~200μmである。
 本明細書において、「厚さ」とは、対象物の厚さ方向に無作為に切断した切断面において、無作為に選択した5か所の厚さを接触式厚み計で測定し、その平均で表される値である。
The thickness of the back surface protective film forming film is not particularly limited, but is preferably 3 to 300 μm, more preferably 5 to 250 μm, and particularly preferably 7 to 200 μm.
As used herein, the term "thickness" refers to the average of five randomly selected thicknesses measured with a contact thickness meter on a cut surface randomly cut in the thickness direction of an object. It is a value represented by.
<支持シート>
 本発明の一態様で用いる支持シート10としては、基材11のみから構成されたシートや、基材11上に粘着剤層12を有する粘着シートが挙げられる。
 本発明の一態様の第三積層体が有する支持シートは、裏面保護膜形成用フィルムの表面にホコリ等の付着を防止する剥離シート、若しくは、ダイシング工程等で裏面保護膜形成用フィルムの面を保護するためのダイシングシート等の役割を果たす。
<Support sheet>
Examples of the support sheet 10 used in one aspect of the present invention include a sheet composed of only the base material 11 and a pressure-sensitive adhesive sheet having the pressure-sensitive adhesive layer 12 on the base material 11.
The support sheet included in the third laminate of one aspect of the present invention is a release sheet for preventing dust or the like from adhering to the surface of the back surface protective film forming film, or the surface of the back surface protective film forming film in a dicing step or the like. It acts as a dicing sheet for protection.
 支持シートの厚さとしては、用途に応じて適宜選択されるが、十分な可とう性を付与し、シリコンウエハに対する貼付性を良好とする観点から、好ましくは10~500μm、より好ましくは20~350μm、更に好ましくは30~200μmである。
 なお、上記の支持シートの厚さには、支持シートを構成する基材の厚さだけでなく、粘着剤層を有する場合には、それらの層や膜の厚さも含む。
The thickness of the support sheet is appropriately selected depending on the intended use, but is preferably 10 to 500 μm, more preferably 20 to 20 to 500 μm from the viewpoint of imparting sufficient flexibility and improving the adhesiveness to the silicon wafer. It is 350 μm, more preferably 30 to 200 μm.
The thickness of the support sheet includes not only the thickness of the base material constituting the support sheet but also the thickness of those layers and the film when the adhesive layer is provided.
(基材)
 支持シート10を構成する基材11としては、樹脂フィルムが好ましい。
 前記樹脂フィルムとしては、例えば、低密度ポリエチレン(LDPE)フィルムや直鎖低密度ポリエチレン(LLDPE)フィルム等のポリエチレンフィルム、エチレン・プロピレン共重合体フィルム、ポリプロピレンフィルム、ポリブテンフィルム、ポリブタジエンフィルム、ポリメチルペンテンフィルム、ポリ塩化ビニルフィルム、塩化ビニル共重合体フィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリウレタンフィルム、エチレン・酢酸ビニル共重合体フィルム、アイオノマー樹脂フィルム、エチレン・(メタ)アクリル酸共重合体フィルム、エチレン・(メタ)アクリル酸エステル共重合体フィルム、ポリスチレンフィルム、ポリカーボネートフィルム、ポリイミドフィルム、フッ素樹脂フィルム等が挙げられる。
 本発明の一態様で用いる基材は、1種類の樹脂フィルムからなる単層フィルムであってもよく、2種類以上の樹脂フィルムを積層した積層フィルムであってもよい。
 また、本発明の一態様においては、上述の樹脂フィルム等の基材の表面に、表面処理を施したシートを支持シートとして用いてもよい。
(Base material)
A resin film is preferable as the base material 11 constituting the support sheet 10.
Examples of the resin film include polyethylene films such as low-density polyethylene (LDPE) films and linear low-density polyethylene (LLDPE) films, ethylene / propylene copolymer films, polypropylene films, polybutene films, polybutadiene films, and polymethylpentene. Film, polyvinyl chloride film, vinyl chloride copolymer film, polyethylene terephthalate film, polyethylene naphthalate film, polybutylene terephthalate film, polyurethane film, ethylene / vinyl acetate copolymer film, ionomer resin film, ethylene / (meth) acrylic Examples thereof include acid copolymer films, ethylene / (meth) acrylic acid ester copolymer films, polystyrene films, polycarbonate films, polyimide films, and fluororesin films.
The base material used in one aspect of the present invention may be a single-layer film composed of one type of resin film, or may be a laminated film in which two or more types of resin films are laminated.
Further, in one aspect of the present invention, a sheet obtained by subjecting the surface of a base material such as the above-mentioned resin film to a surface treatment may be used as a support sheet.
 これらの樹脂フィルムは、架橋フィルムであってもよい。
 また、これらの樹脂フィルムを着色したもの、又は印刷を施したもの等も使用できる。
 さらに、樹脂フィルムは、熱可塑性樹脂を押出形成によりシート化したものであってもよく、延伸されたものであってもよく、硬化性樹脂を所定手段により薄膜化及び硬化してシート化したものが使われてもよい。
These resin films may be crosslinked films.
Further, colored resin films or printed ones can also be used.
Further, the resin film may be a sheet obtained by extruding a thermoplastic resin or may be a stretched resin film, or a curable resin thinned and cured by a predetermined means to form a sheet. May be used.
 これらの樹脂フィルムの中でも、耐熱性に優れ、且つ、適度な柔軟性を有するためにエキスパンド適性を有し、ピックアップ適性も維持されやすいとの観点から、ポリプロピレンフィルムを含む基材が好ましい。
 なお、ポリプロピレンフィルムを含む基材の構成としては、ポリプロピレンフィルムのみからなる単層構造であってもよく、ポリプロピレンフィルムと他の樹脂フィルムとからなる複層構造であってもよい。
 裏面保護膜形成用フィルムが熱硬化性である場合、基材を構成する樹脂フィルムが耐熱性を有することで、基材の熱によるダメージを抑制し、半導体装置の製造プロセスにおける不具合の発生を抑制できる。
Among these resin films, a base material containing a polypropylene film is preferable from the viewpoint that it has excellent heat resistance, has expandability because it has appropriate flexibility, and easily maintains pickup suitability.
The base material containing the polypropylene film may have a single-layer structure composed of only the polypropylene film or a multi-layer structure composed of the polypropylene film and another resin film.
When the film for forming the back surface protective film is thermosetting, the resin film constituting the base material has heat resistance, thereby suppressing damage due to heat of the base material and suppressing the occurrence of defects in the manufacturing process of the semiconductor device. it can.
 支持シートとして、基材のみから構成されたシートを用いる場合、前記基材の裏面保護膜形成用フィルムの表面と接する面の表面張力としては、剥離力を一定の範囲に調節する観点から、好ましくは20~50mN/m、より好ましくは23~45mN/m、更に好ましくは25~40mN/mである。 When a sheet composed of only a base material is used as the support sheet, the surface tension of the surface of the base material in contact with the surface of the back surface protective film forming film is preferable from the viewpoint of adjusting the peeling force within a certain range. Is 20 to 50 mN / m, more preferably 23 to 45 mN / m, still more preferably 25 to 40 mN / m.
 支持シートを構成する基材の厚さとしては、好ましくは10~500μm、より好ましくは15~300μm、更に好ましくは20~200μmである。 The thickness of the base material constituting the support sheet is preferably 10 to 500 μm, more preferably 15 to 300 μm, and further preferably 20 to 200 μm.
(粘着シート)
 本発明の一態様で支持シート10として用いる粘着シートとしては、上述の樹脂フィルム等の基材11上に、粘着剤から形成した粘着剤層12を有するものが挙げられる。
 図11は、基材11上に粘着剤層12が設けられた支持シート10の一例を示す概略断面図である。
 支持シート10が粘着剤層12を備えるときは、第二の積層工程において、裏面保護膜形成用フィルム13に、支持シート10の粘着剤層12を積層する。
(Adhesive sheet)
Examples of the pressure-sensitive adhesive sheet used as the support sheet 10 in one aspect of the present invention include those having a pressure-sensitive adhesive layer 12 formed from a pressure-sensitive adhesive on a base material 11 such as the resin film described above.
FIG. 11 is a schematic cross-sectional view showing an example of a support sheet 10 in which the pressure-sensitive adhesive layer 12 is provided on the base material 11.
When the support sheet 10 includes the pressure-sensitive adhesive layer 12, in the second laminating step, the pressure-sensitive adhesive layer 12 of the support sheet 10 is laminated on the back surface protective film forming film 13.
 粘着剤層の形成材料である粘着剤としては、粘着性樹脂を含む粘着剤組成物が挙げられ、前記粘着剤組成物は、さらに上述の架橋剤や粘着付与剤等の汎用添加剤を含有してもよい。
 前記粘着性樹脂としては、その樹脂の構造に着目した場合、例えば、アクリル樹脂、ウレタン樹脂、フェノキシ樹脂、シリコーン樹脂、飽和ポリエステル樹脂、ビニルエーテル樹脂等が挙げられ、アクリル樹脂が好ましい。また、その樹脂の機能に着目した場合、例えば、エネルギー線硬化型粘着剤や、加熱発泡型粘着剤、エネルギー線発泡型粘着剤等が挙げられる。
 本発明の一態様において、剥離力を一定の範囲に調整する観点、並びに、ピックアップ性を良好とする観点から、エネルギー線硬化型樹脂を含む粘着剤組成物から形成されたエネルギー線硬化性の粘着剤層を有する粘着シート又は、微粘着性の粘着剤層を有する粘着シートが好ましい。
 エネルギー線硬化型樹脂としては、(メタ)アクリロイル基、ビニル基等の重合性基を有する樹脂であればよいが、重合性基を有する粘着性樹脂であることが好ましい。
Examples of the pressure-sensitive adhesive which is a material for forming the pressure-sensitive adhesive layer include a pressure-sensitive adhesive composition containing a pressure-sensitive adhesive resin, and the pressure-sensitive adhesive composition further contains a general-purpose additive such as the above-mentioned cross-linking agent and pressure-sensitive adhesive. You may.
When paying attention to the structure of the resin, examples of the adhesive resin include acrylic resin, urethane resin, phenoxy resin, silicone resin, saturated polyester resin, vinyl ether resin and the like, and acrylic resin is preferable. Further, when focusing on the function of the resin, examples thereof include an energy ray-curable pressure-sensitive adhesive, a heat-foaming type pressure-sensitive adhesive, and an energy ray-foaming type pressure-sensitive adhesive.
In one aspect of the present invention, an energy ray-curable adhesive formed from an adhesive composition containing an energy ray-curable resin from the viewpoint of adjusting the peeling force within a certain range and improving the pick-up property. A pressure-sensitive adhesive sheet having an agent layer or a pressure-sensitive adhesive sheet having a slightly adhesive pressure-sensitive adhesive layer is preferable.
The energy ray-curable resin may be a resin having a polymerizable group such as a (meth) acryloyl group or a vinyl group, but an adhesive resin having a polymerizable group is preferable.
 第一の積層工程において、半導体ウエハ等のワークに対して裏面保護膜形成用フィルムが全面に貼れていない、裏面保護膜形成用フィルムの浮きが発生する、裏面保護膜形成用フィルムのシワが発生するなどの裏面保護膜形成用フィルムの貼付不良が起こった場合に、支持シートは、裏面保護膜形成用フィルムの剥がし用シートも兼ねることができる。第一の積層工程において、裏面保護膜形成用フィルムの貼付不良が起こった場合であっても、そのまま、第二の積層工程を経て、第三積層体を製造する。その後、半導体ウエハ等のワークから、裏面保護膜形成用フィルムを支持シートと共に、脱離させることで、半導体ウエハ等のワークをリワークすることができる。このとき、生産タクトを考慮すると、固定用治具(すなわち、リングフレーム)から速やかに支持シートを剥がす必要があり、治具用接着剤層は、エネルギー線硬化性であることが好ましい。また、基材上に、エネルギー線硬化性の粘着剤層が設けられた支持シートを用いることで、治具用接着剤層を介さずに、リングフレームなどの固定用治具に、直接、支持シートを固定することができ、且つ、紫外線などのエネルギー線を照射することで、リワーク性に優れるものとすることができる。 In the first laminating step, the back surface protective film forming film is not attached to the entire surface of a work such as a semiconductor wafer, the back surface protective film forming film floats, and the back surface protective film forming film wrinkles occur. The support sheet can also serve as a peeling sheet for the back surface protective film forming film when a poor attachment of the back surface protective film forming film occurs. Even if the back surface protective film forming film is poorly attached in the first laminating step, the third laminated body is produced as it is through the second laminating step. After that, the work such as the semiconductor wafer can be reworked by removing the film for forming the back surface protective film from the work such as the semiconductor wafer together with the support sheet. At this time, in consideration of the production tact, it is necessary to quickly peel off the support sheet from the fixing jig (that is, the ring frame), and the adhesive layer for the jig is preferably energy ray curable. Further, by using a support sheet provided with an energy ray-curable adhesive layer on the base material, the support sheet is directly supported on a fixing jig such as a ring frame without using an adhesive layer for a jig. The sheet can be fixed, and by irradiating with energy rays such as ultraviolet rays, the reworkability can be made excellent.
 また、剥離力を一定の範囲に調整する観点から、アクリル樹脂を含む粘着剤が好ましい。
 前記アクリル樹脂としては、アルキル(メタ)アクリレートに由来する構成単位(x1)を有するアクリル系重合体が好ましく、構成単位(x1)と、官能基含有モノマーに由来する構成単位(x2)とを有するアクリル系共重合体がより好ましい。
Further, from the viewpoint of adjusting the peeling force within a certain range, an adhesive containing an acrylic resin is preferable.
As the acrylic resin, an acrylic polymer having a structural unit (x1) derived from an alkyl (meth) acrylate is preferable, and the acrylic resin has a structural unit (x1) and a structural unit (x2) derived from a functional group-containing monomer. Acrylic copolymers are more preferred.
 上記アルキル(メタ)アクリレートが有するアルキル基の炭素数としては、好ましくは1~18、より好ましくは1~12、更に好ましくは1~8である。
 前記アルキル(メタ)アクリレートとしては、上述のバインダーポリマー成分の部分で説明したアルキル(メタ)アクリレートと同じものが挙げられる。
 なお、アルキル(メタ)アクリレートは、単独で又は2種以上を併用してもよい。
 構成単位(x1)の含有量は、アクリル系重合体の全構成単位(100質量%)に対して、通常50~100質量%、好ましくは50~99.9質量%、より好ましくは60~99質量%、更に好ましくは70~95質量%である。
The alkyl group of the alkyl (meth) acrylate has preferably 1 to 18 carbon atoms, more preferably 1 to 12 carbon atoms, and even more preferably 1 to 8 carbon atoms.
Examples of the alkyl (meth) acrylate include the same alkyl (meth) acrylates described in the above-mentioned binder polymer component section.
The alkyl (meth) acrylate may be used alone or in combination of two or more.
The content of the structural unit (x1) is usually 50 to 100% by mass, preferably 50 to 99.9% by mass, and more preferably 60 to 99% with respect to the total structural unit (100% by mass) of the acrylic polymer. It is by mass, more preferably 70 to 95% by mass.
 上記官能基含有モノマーとしては、例えば、ヒドロキシ基含有モノマー、カルボキシ基含有モノマー、エポキシ基含有モノマー等が挙げられ、それぞれのモノマーの具体例は、バインダーポリマー成分の部分で例示したものと同じものがあげられる。
 なお、これらは、単独で又は2種以上を併用してもよい。
 構成単位(x2)の含有量は、アクリル系重合体の全構成単位(100質量%)に対して、通常0~40質量%、好ましくは0.1~40質量%、より好ましくは1~30質量%、更に好ましくは5~20質量%である。
Examples of the functional group-containing monomer include a hydroxy group-containing monomer, a carboxy group-containing monomer, an epoxy group-containing monomer, and the like, and specific examples of each monomer are the same as those exemplified in the binder polymer component portion. can give.
In addition, these may be used alone or in combination of 2 or more types.
The content of the structural unit (x2) is usually 0 to 40% by mass, preferably 0.1 to 40% by mass, and more preferably 1 to 30 with respect to the total structural unit (100% by mass) of the acrylic polymer. It is by mass, more preferably 5 to 20% by mass.
 また、本発明の一態様で用いるアクリル樹脂としては、上記構成単位(x1)及び(x2)を有するアクリル系共重合体に対して、さらにエネルギー線重合性基を有する化合物と反応して得られる、エネルギー線硬化型アクリル樹脂であってもよい。
 エネルギー線重合性基を有する化合物としては、(メタ)アクリロイル基、ビニル基等の重合性基を有する化合物であればよい。
Further, the acrylic resin used in one aspect of the present invention is obtained by reacting an acrylic copolymer having the above-mentioned structural units (x1) and (x2) with a compound having an energy ray-polymerizable group. , Energy ray-curable acrylic resin may be used.
The compound having an energy ray-polymerizable group may be a compound having a polymerizable group such as a (meth) acryloyl group or a vinyl group.
 アクリル樹脂を含む粘着剤を用いる場合、剥離力を一定の範囲に調整する観点から、アクリル樹脂と共に、架橋剤を含有することが好ましい。
 前記架橋剤としては、例えば、イソシアネート系架橋剤、イミン系架橋剤、エポキシ系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤等が挙げられるが、剥離力を一定の範囲に調整する観点から、イソシアネート系架橋剤が好ましい。
 架橋剤の含有量は、上記粘着剤中に含まれるアクリル樹脂の全質量(100質量部)に対して、好ましくは0.01~20質量部、より好ましくは0.1~15質量部、更に好ましくは0.5~10質量部、より更に好ましくは1~8質量部である。
When a pressure-sensitive adhesive containing an acrylic resin is used, it is preferable to contain a cross-linking agent together with the acrylic resin from the viewpoint of adjusting the peeling force within a certain range.
Examples of the cross-linking agent include isocyanate-based cross-linking agents, imine-based cross-linking agents, epoxy-based cross-linking agents, oxazoline-based cross-linking agents, carbodiimide-based cross-linking agents, and the like, from the viewpoint of adjusting the peeling force within a certain range. Isocyanate-based cross-linking agents are preferred.
The content of the cross-linking agent is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 15 parts by mass, and further, based on the total mass (100 parts by mass) of the acrylic resin contained in the pressure-sensitive adhesive. It is preferably 0.5 to 10 parts by mass, and even more preferably 1 to 8 parts by mass.
 支持シート10は、1層(単層)からなるものであってもよいし、2層以上の複数層からなるものであってもよい。支持シートが複数層からなる場合、これら複数層の構成材料及び厚さは、互いに同一でも異なっていてもよく、これら複数層の組み合わせは、本発明の効果を損なわない限り、特に限定されない。 The support sheet 10 may be composed of one layer (single layer) or may be composed of two or more layers. When the support sheet is composed of a plurality of layers, the constituent materials and the thicknesses of the plurality of layers may be the same or different from each other, and the combination of the plurality of layers is not particularly limited as long as the effects of the present invention are not impaired.
 なお、本明細書においては、支持シートの場合に限らず、「複数層が互いに同一でも異なっていてもよい」とは、「すべての層が同一であってもよいし、すべての層が異なっていてもよく、一部の層のみが同一であってもよい」ことを意味し、さらに「複数層が互いに異なる」とは、「各層の構成材料及び厚さの少なくとも一方が互いに異なる」ことを意味する。 In the present specification, not only in the case of the support sheet, "a plurality of layers may be the same or different from each other" means "all layers may be the same or all layers are different". It means that only a part of the layers may be the same, and further, "a plurality of layers are different from each other" means that "at least one of the constituent materials and the thickness of each layer is different from each other". Means.
 支持シートは、透明であってもよいし、不透明であってもよく、目的に応じて着色されていてもよい。
 例えば、裏面保護膜形成用フィルムがエネルギー線硬化性を有する場合には、支持シートはエネルギー線を透過させるものが好ましい。
 例えば、裏面保護膜形成用フィルムを、支持シートを介して光学的に検査するためには、支持シートは透明であることが好ましい。
The support sheet may be transparent, opaque, or colored depending on the purpose.
For example, when the back surface protective film forming film has energy ray curability, the support sheet preferably allows energy rays to pass through.
For example, in order to optically inspect the back surface protective film forming film via the support sheet, the support sheet is preferably transparent.
 本実施形態において、ワーク14の回路面14aは、回路面保護用テープ17に保護されており、前記第二の積層工程の後に、ワーク14の回路面14aから、回路面保護用テープ17を剥離する剥離工程を含むことができる。本実施形態において、回路面保護用テープ17は、回路面14aに貼着されている側に、エネルギー線の照射により硬化して再剥離性となるエネルギー線硬化性の粘着剤層を有する。前記剥離工程においては、回路面保護用テープ17の粘着剤層にエネルギー線を照射して、粘着剤層を硬化して再剥離性にさせることで、ワーク14の回路面14aから、回路面保護用テープ17を容易に剥離させることができる。 In the present embodiment, the circuit surface 14a of the work 14 is protected by the circuit surface protection tape 17, and after the second laminating step, the circuit surface protection tape 17 is peeled off from the circuit surface 14a of the work 14. The peeling step to be performed can be included. In the present embodiment, the circuit surface protection tape 17 has an energy ray-curable pressure-sensitive adhesive layer on the side attached to the circuit surface 14a, which is cured by irradiation with energy rays and becomes removable. In the peeling step, the pressure-sensitive adhesive layer of the circuit surface protection tape 17 is irradiated with energy rays to cure the pressure-sensitive adhesive layer so that it can be peeled off again, thereby protecting the circuit surface from the circuit surface 14a of the work 14. The tape 17 can be easily peeled off.
 本実施形態の第三積層体の製造方法は、裏面保護膜形成用フィルム13に、支持シート10の側からレーザーを照射してレーザーマーキングする工程を含むものであってもよい。本実施形態の第三積層体の製造方法は、裏面保護膜形成用フィルム13に、支持シート10を積層するので、支持シート10の側から支持シート越しにレーザーを照射すると、裏面保護膜形成用フィルム13の支持シート10と接している面にレーザーマーキングすることができる。 The method for producing the third laminated body of the present embodiment may include a step of irradiating the back surface protective film forming film 13 with a laser from the side of the support sheet 10 to perform laser marking. In the method for producing the third laminated body of the present embodiment, the support sheet 10 is laminated on the back surface protective film forming film 13, so that when a laser is irradiated from the support sheet 10 side through the support sheet, the back surface protective film is formed. Laser marking can be performed on the surface of the film 13 in contact with the support sheet 10.
 図3は、第三積層体の製造方法の実施形態の他の一例を模式的に示す概略断面図である。なお、図3以降の図において、既に説明済みの図に示すものと同じ構成要素には、その説明済みの図の場合と同じ符号を付し、その詳細な説明は省略する。 FIG. 3 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing the third laminated body. In the drawings after FIG. 3, the same components as those shown in the already explained figures are designated by the same reference numerals as in the case of the already explained figures, and detailed description thereof will be omitted.
 本実施形態において、ワーク14は、少なくとも一個の電子部品62が封止樹脂層64で封止された半導体装置が、平面的に並んで配置された集合体からなる半導体装置パネルである。本実施形態の第三積層体の製造方法は、ワーク14である半導体装置パネルと、裏面保護膜形成用フィルム13と、支持シート10とが、この順に積層された第三積層体19の製造方法であって、ワーク14の、一方の面が回路面14aであり、他方の面が裏面14bであり(図3(a’))、ワーク14の裏面14b側に、裏面保護膜形成用フィルム13を貼付する第一の積層工程(図3(b’))と、裏面保護膜形成用フィルム13に、支持シート10を貼付する第二の積層工程(図3(c’))とを、この順に含む(図3(a’)(d’))。
 本実施形態においては、前記第一の積層工程から前記第二の積層工程までの間(図3(a’)~(d’))を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う。
 したがって、本実施形態においては、前記第一の積層工程から前記第二の積層工程までの間において、ワーク14に裏面保護膜形成用フィルム13が積層された第二積層体をカセットに収容することなく、図3(d’)に示される第二の積層工程に、一枚ずつ搬送することができる。同一装置内で行うことにより、装置スペースをより低減できる。裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行うことにより、一から設計せずとも従来の装置を改造することで対応ができ、初期費用の低減ができる。そして、第二積層体が、カセットに収容されて装置外に搬送されることがないため、生産効率が向上し、かつ第二積層体の汚染、破損を抑制することができる。
In the present embodiment, the work 14 is a semiconductor device panel composed of an aggregate in which at least one electronic component 62 is sealed with a sealing resin layer 64 and arranged in a plane. The method for manufacturing the third laminated body of the present embodiment is a method for manufacturing the third laminated body 19 in which the semiconductor device panel which is the work 14, the back surface protective film forming film 13, and the support sheet 10 are laminated in this order. One surface of the work 14 is the circuit surface 14a, the other surface is the back surface 14b (FIG. 3 (a')), and the back surface protective film forming film 13 is on the back surface 14b side of the work 14. The first laminating step (FIG. 3 (b')) of attaching the support sheet 10 and the second laminating step (FIG. 3 (c')) of attaching the support sheet 10 to the back surface protective film forming film 13. Included in order (FIGS. 3 (a') (d')).
In the present embodiment, an apparatus and a support sheet for attaching a back surface protective film forming film between the first laminating step and the second laminating step (FIGS. 3 (a') to 3 (d')). It is performed by connecting the devices to which the above is applied, or in the same device.
Therefore, in the present embodiment, the second laminated body in which the back surface protective film forming film 13 is laminated on the work 14 is housed in the cassette between the first laminating step and the second laminating step. Instead, they can be transported one by one to the second laminating step shown in FIG. 3 (d'). By performing in the same device, the device space can be further reduced. By connecting the device for attaching the back surface protective film forming film and the device for attaching the support sheet, it is possible to deal with it by modifying the conventional device without designing from scratch, and the initial cost can be reduced. Since the second laminated body is not housed in the cassette and transported to the outside of the apparatus, the production efficiency can be improved and the contamination and damage of the second laminated body can be suppressed.
 第一の積層工程に用いる裏面保護膜形成用フィルム13は、事前にワークの形状に加工されていてもよいし、第一の積層工程を行う直前に同一装置内で加工されてもよい。使用される製造ラインでワークの大きさが一定である場合には事前に加工できる前者の方が効率的であるし、ワークの大きさが変更される可能性がある場合には、後者であれば裏面保護膜形成用フィルムの無駄が出ず、コストメリットがある。 The back surface protective film forming film 13 used in the first laminating step may be processed into the shape of the work in advance, or may be processed in the same apparatus immediately before the first laminating step is performed. If the size of the work is constant on the production line used, the former that can be machined in advance is more efficient, and if the size of the work is likely to change, the latter For example, there is no waste of the film for forming the back surface protective film, and there is a cost merit.
 また、他の実施形態においては、前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間のワーク14の搬送距離を、7000mm以下に設計することができ、装置スペースを低減させることができる。前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間のワーク14の搬送距離は、6500mm以下にすることもでき、6000mm以下にすることもでき、4500mm以下にすることもでき、3000mm以下にすることもできる。 Further, in another embodiment, the transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be designed to be 7000 mm or less. The device space can be reduced. The transport distance of the work 14 from the sticking start point of the first laminating step to the sticking completion point of the second laminating step can be 6500 mm or less, 6000 mm or less, or 4500 mm or less. It can be set to 3000 mm or less.
 また、さらに他の実施形態においては、前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間を、400s以下にすることができ、150s以下にすることもでき、工程時間を短縮することができる。前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間は、130s以下にすることもでき、110s以下にすることもでき、90s以下にすることもでき、70s以下にすることもできる。 Further, in still another embodiment, the transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be set to 400 s or less. It can be set to 150 s or less, and the process time can be shortened. The transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step can be 130 s or less, 110 s or less, 90 s or less. It can be set to 70s or less.
 前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間のワーク14の搬送時間を、第一の積層工程にかかる時間、第一の積層工程を行った場所から第二の積層工程を行う場所への搬送時間、第二の積層工程にかかる時間の3つに大分した場合のそれぞれの時間の好ましい範囲は図1の製造方法で説明したものと同様である。 The transport time of the work 14 from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is the time required for the first laminating step, and the place where the first laminating step is performed. The preferable range of each of the three times, that is, the transport time from the first to the place where the second laminating step is performed and the time required for the second laminating step, is the same as that described in the manufacturing method of FIG. ..
 本実施形態の第三積層体の製造方法は、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行うことができる。
 同一装置としては、図1の製造方法で説明した装置を使用することが好ましい。
The method for producing the third laminated body of the present embodiment can be carried out by connecting an apparatus for attaching a film for forming a back surface protective film and an apparatus for attaching a support sheet, or can be carried out in the same apparatus.
As the same device, it is preferable to use the device described in the manufacturing method of FIG.
 本実施形態において、半導体装置パネルは、個々の半導体装置が略円形の領域内に平面的に並んで形成されたものであってもよく、個々の半導体装置が略矩形の領域内に平面的に並んで形成されたものであってもよい。 In the present embodiment, the semiconductor device panel may be formed by arranging individual semiconductor devices in a substantially circular region in a plane, and the individual semiconductor devices may be formed in a substantially rectangular region in a plane. It may be formed side by side.
 図3に示される本実施形態においても、図1に示される実施形態と同様、裏面保護膜形成用フィルム13に、支持シート10を積層するので、支持シート10の側から支持シート越しにレーザーを照射すると、裏面保護膜形成用フィルム13の支持シート10と接している面にレーザーマーキングすることができる。 Also in the present embodiment shown in FIG. 3, the support sheet 10 is laminated on the back surface protective film forming film 13 as in the embodiment shown in FIG. 1, so that the laser is emitted from the side of the support sheet 10 through the support sheet. When irradiated, the surface of the back surface protective film forming film 13 in contact with the support sheet 10 can be laser-marked.
<<第四積層体の製造方法>>
 本実施形態の第四積層体の製造方法は、前記第三積層体の製造方法で製造された第三積層体19の、裏面保護膜形成用フィルム13を硬化させて裏面保護膜13’とする硬化工程を含む、ワーク14と、裏面保護膜13’と、支持シート10とが、この順に積層された第四積層体19’の製造方法である。
<< Manufacturing method of the fourth laminated body >>
In the method for producing the fourth laminated body of the present embodiment, the back surface protective film forming film 13 of the third laminated body 19 produced by the method for producing the third laminated body is cured to obtain the back surface protective film 13'. This is a method for manufacturing a fourth laminated body 19'in which the work 14, the back surface protective film 13', and the support sheet 10 are laminated in this order, which includes a curing step.
 図4は、第四積層体の製造方法の実施形態の一例を模式的に示す概略断面図である。本実施形態の第四積層体の製造方法は、前記第二の積層工程の後に、ワーク14の回路面14aから、回路面保護用テープ17を剥離する剥離工程(図4(e))と、裏面保護膜形成用フィルム13に、支持シート10の側からレーザーを照射してレーザーマーキングする工程(図4(f))と、裏面保護膜形成用フィルム13を硬化させて裏面保護膜13’とする硬化工程(図4(g))と、を含む。本実施形態では熱硬化性の裏面保護膜形成用フィルムを用いており、本実施形態の硬化工程では、130℃、2hの条件で熱硬化させている。 FIG. 4 is a schematic cross-sectional view schematically showing an example of an embodiment of a method for manufacturing a fourth laminated body. The method for manufacturing the fourth laminated body of the present embodiment includes a peeling step (FIG. 4 (e)) of peeling the circuit surface protection tape 17 from the circuit surface 14a of the work 14 after the second laminating step. A step of irradiating the back surface protective film forming film 13 with a laser from the side of the support sheet 10 to perform laser marking (FIG. 4 (f)), and curing the back surface protective film 13 to form the back surface protective film 13'. The curing step (FIG. 4 (g)) is included. In this embodiment, a thermosetting film for forming a back surface protective film is used, and in the curing step of this embodiment, the film is thermoset at 130 ° C. for 2 hours.
 熱硬化性の裏面保護膜形成用フィルムを熱処理して熱硬化させて、裏面保護膜を形成するときの硬化条件は、裏面保護膜が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、熱硬化性の裏面保護膜形成用フィルムの種類に応じて、適宜選択すればよい。 When the thermosetting film for forming a back surface protective film is heat-treated and heat-cured to form a back surface protective film, the curing conditions are as long as the degree of curing is such that the back surface protective film sufficiently exerts its function. It is not particularly limited, and may be appropriately selected depending on the type of the thermosetting film for forming the back surface protective film.
 例えば、熱硬化時の加熱温度は、100~200℃であることが好ましく、110~180℃であることがより好ましく、120~170℃であることが特に好ましい。そして、前記熱硬化時の加熱時間は、0.5~5時間であることが好ましく、0.5~3時間であることがより好ましく、1~2時間であることが特に好ましい。硬化工程において、熱硬化させる場合、前記剥離工程の順番は、回路面保護用テープ17の耐熱性を考慮して、硬化工程よりも前であることが好ましい。 For example, the heating temperature during thermosetting is preferably 100 to 200 ° C, more preferably 110 to 180 ° C, and particularly preferably 120 to 170 ° C. The heating time at the time of thermosetting is preferably 0.5 to 5 hours, more preferably 0.5 to 3 hours, and particularly preferably 1 to 2 hours. In the case of thermosetting in the curing step, the order of the peeling steps is preferably before the curing step in consideration of the heat resistance of the circuit surface protection tape 17.
 図5は、第四積層体の製造方法の実施形態の他の一例を模式的に示す概略断面図である。本実施形態の第四積層体の製造方法は、前記第二の積層工程の後に、ワーク14の回路面14aから、回路面保護用テープ17を剥離する剥離工程(図5(e))と、裏面保護膜形成用フィルム13を硬化させて裏面保護膜13’とする硬化工程(図5(f’))と、裏面保護膜13’に、支持シート10の側からレーザーを照射してレーザーマーキングする工程(図5(g’))と、を含む。 FIG. 5 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing the fourth laminated body. The method for manufacturing the fourth laminated body of the present embodiment includes a peeling step (FIG. 5 (e)) of peeling the circuit surface protection tape 17 from the circuit surface 14a of the work 14 after the second laminating step. A curing step (FIG. 5 (f')) in which the back surface protective film 13 is cured to form the back surface protective film 13', and the back surface protective film 13'is irradiated with a laser from the support sheet 10 side for laser marking. (FIG. 5 (g')) and the like.
<<裏面保護膜付き半導体装置の製造方法>>
 図6は、裏面保護膜付き半導体装置の製造方法の実施形態の一例を模式的に示す概略断面図である。本実施形態の裏面保護膜付き半導体装置の製造方法は、前記第四積層体の製造方法で製造された第四積層体19’の、ワーク14及び裏面保護膜13’をダイシングして、裏面保護膜付き半導体装置21とする工程(図6(h)及び図6(i))と、裏面保護膜付き半導体装置21を、支持シート10からピックアップする工程(図6(j))とを含む。
<< Manufacturing method of semiconductor device with back surface protective film >>
FIG. 6 is a schematic cross-sectional view schematically showing an example of an embodiment of a method for manufacturing a semiconductor device with a back surface protective film. In the method for manufacturing a semiconductor device with a back surface protective film according to the present embodiment, the work 14 and the back surface protective film 13'of the fourth laminated body 19'manufactured by the method for manufacturing the fourth laminated body are diced to protect the back surface. The step of forming the semiconductor device 21 with a film (FIGS. 6 (h) and 6 (i)) and the step of picking up the semiconductor device 21 with a back surface protective film from the support sheet 10 (FIG. 6 (j)) are included.
 図7は、裏面保護膜付き半導体装置の製造方法の実施形態の他の一例を模式的に示す概略断面図である。本実施形態の裏面保護膜付き半導体装置の製造方法は、前記第三積層体の製造方法で製造された第三積層体19の、裏面保護膜形成用フィルム13及びワーク14をダイシングして、裏面保護膜形成用フィルム付き半導体装置21’とする工程(図7(h’)及び図7(i’))と、裏面保護膜形成用フィルム付き半導体装置21’を、支持シート10からピックアップする工程(図7(j’))と、裏面保護膜形成用フィルム13を硬化させて裏面保護膜13’とする硬化工程(図7(k’))と、を含む。 FIG. 7 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing a semiconductor device with a back surface protective film. In the method for manufacturing the semiconductor device with the back surface protective film of the present embodiment, the back surface protective film forming film 13 and the work 14 of the third laminate 19 manufactured by the method for manufacturing the third laminate are diced to form the back surface. A step of forming the semiconductor device 21'with a protective film forming film (FIGS. 7 (h') and 7 (i')) and a step of picking up the back surface protective film forming film-attached semiconductor device 21'from the support sheet 10. (FIG. 7 (j')) and a curing step (FIG. 7 (k')) in which the back surface protective film forming film 13 is cured to obtain the back surface protective film 13'.
 図8は、裏面保護膜付き半導体装置の製造方法の実施形態の他の一例を模式的に示す概略断面図である。本実施形態の裏面保護膜付き半導体装置の製造方法は、前記第三積層体の製造方法で製造された第三積層体19の、裏面保護膜形成用フィルム13及びワーク14をダイシングして、裏面保護膜形成用フィルム付き半導体装置21’とする工程(図8(h)及び図8(i))と、裏面保護膜形成用フィルム13を硬化させて裏面保護膜13’とする硬化工程(図8(j’))と、裏面保護膜付き半導体装置21を、支持シート10からピックアップする工程とを含む。 FIG. 8 is a schematic cross-sectional view schematically showing another example of the embodiment of the method for manufacturing a semiconductor device with a back surface protective film. In the method for manufacturing the semiconductor device with the back surface protective film of the present embodiment, the back surface protective film forming film 13 and the work 14 of the third laminate 19 manufactured by the method for manufacturing the third laminate are diced to form the back surface. A step of forming a semiconductor device 21'with a protective film forming film (FIGS. 8 (h) and 8 (i)) and a curing step of curing the back surface protective film 13 to form a back surface protective film 13'(FIG. 8). 8 (j')) and the step of picking up the semiconductor device 21 with the back surface protective film from the support sheet 10.
 本実施形態の裏面保護膜付き半導体装置の製造方法は、裏面保護膜形成用フィルム13が熱硬化性であり、本実施形態の裏面保護膜とする工程では、例えば、裏面保護膜形成用フィルム13を、130℃、2hの条件で熱硬化させている。 In the method for manufacturing a semiconductor device with a back surface protective film of the present embodiment, the back surface protective film forming film 13 is thermosetting, and in the step of forming the back surface protective film of the present embodiment, for example, the back surface protective film forming film 13 Is thermoset at 130 ° C. for 2 hours.
 熱硬化性の裏面保護膜形成用フィルムを熱硬化させて、裏面保護膜を形成するときの硬化条件は、上述の通り、裏面保護膜が十分にその機能を発揮する程度の硬化度となる限り、特に限定されず、熱硬化性の裏面保護膜形成用フィルムの種類に応じて、適宜選択すればよい。 As described above, the curing conditions for forming the back surface protective film by thermosetting the thermosetting film for forming the back surface protective film are as long as the degree of curing is such that the back surface protective film sufficiently exerts its function. The method is not particularly limited, and may be appropriately selected depending on the type of the thermosetting film for forming the back surface protective film.
 本実施形態の裏面保護膜付き半導体装置の製造方法は、裏面保護膜形成用フィルム13がエネルギー線硬化性であり、前記裏面保護膜とする工程が、裏面保護膜形成用フィルム13にエネルギー線を照射してエネルギー線硬化させる工程であってもよい。 In the method for manufacturing a semiconductor device with a back surface protective film of the present embodiment, the back surface protective film forming film 13 is energy ray curable, and the step of forming the back surface protective film is to apply energy rays to the back surface protective film forming film 13. It may be a step of irradiating and curing the energy ray.
 エネルギー線硬化性の裏面保護膜形成用フィルムをエネルギー線硬化させて、保護膜を形成するときの硬化条件は、保護膜が十分にその機能を発揮する程度の硬化度となる限り特に限定されず、エネルギー線硬化性裏面保護膜形成用フィルムの種類に応じて、適宜選択すればよい。
 例えば、エネルギー線硬化性裏面保護膜形成用フィルムのエネルギー線硬化時における、エネルギー線の照度は、4~280mW/cmであることが好ましい。そして、前記硬化時における、エネルギー線の光量は、3~1000mJ/cmであることが好ましい。
The curing conditions when the energy ray-curable back surface protective film forming film is energy-cured to form the protective film are not particularly limited as long as the degree of curing is such that the protective film sufficiently exerts its function. , The energy ray-curable back surface protective film may be appropriately selected according to the type of the film.
For example, the illuminance of the energy ray at the time of energy ray curing of the energy ray curable back surface protective film forming film is preferably 4 to 280 mW / cm 2 . The amount of light of the energy rays at the time of curing is preferably 3 to 1000 mJ / cm 2 .
 エネルギー線硬化性の裏面保護膜形成用フィルムとしては、例えば、国際公開第2017/188200号、国際公開第2017/188218号に開示されたものを用いることもできる。 As the energy ray-curable back surface protective film forming film, for example, those disclosed in International Publication No. 2017/188200 and International Publication No. 2017/188218 can also be used.
 本発明の第三積層体の製造方法は、裏面保護膜付き半導体装置の製造に用いることができる。 The method for manufacturing the third laminate of the present invention can be used for manufacturing a semiconductor device with a back surface protective film.
1・・・保護膜形成用複合シート、5・・・第一積層体、6・・・第二積層体、7・・・裏面保護膜付き半導体チップ、8・・・半導体ウエハ、8b・・・半導体ウエハの裏面、9・・・半導体チップ、10・・・支持シート、11・・・基材、12・・・粘着剤層、13・・・裏面保護膜形成用フィルム、13’・・・裏面保護膜、13a・・・裏面保護膜形成用フィルムの剥離フィルム151を剥離した露出面、13b・・・裏面保護膜形成用フィルムの剥離フィルム152を剥離した露出面、14・・・ワーク、14a・・・ワークの回路面、14b・・・ワークの裏面、151・・・第1剥離フィルム、152・・・第2剥離フィルム、16・・・治具用接着剤層、17・・・回路面保護用テープ、18・・・固定用治具、19・・・第三積層体、19’・・・第四積層体、20・・・半導体装置、21・・・裏面保護膜付き半導体装置、21’・・・裏面保護膜形成用フィルム付き半導体装置、62・・・電子部品、63・・・回路基板、63a・・・端子形成面、64・・・封止樹脂層 1 ... Composite sheet for forming a protective film, 5 ... First laminate, 6 ... Second laminate, 7 ... Semiconductor chip with backside protective film, 8 ... Semiconductor wafer, 8b ...・ Back surface of semiconductor wafer, 9 ... Semiconductor chip, 10 ... Support sheet, 11 ... Base material, 12 ... Adhesive layer, 13 ... Back surface protective film forming film, 13'... Backside protective film, 13a ... Exposed surface from which the release film 151 of the back surface protective film forming film has been peeled off, 13b ... Exposed surface from which the release film 152 of the backside protective film forming film has been peeled off, 14 ... Work , 14a ... Circuit surface of the work, 14b ... Back surface of the work, 151 ... 1st release film, 152 ... 2nd release film, 16 ... Adhesive layer for jig, 17 ... -Circuit surface protection tape, 18 ... fixing jig, 19 ... third laminate, 19'... fourth laminate, 20 ... semiconductor device, 21 ... with backside protective film Semiconductor device, 21'... Semiconductor device with a film for forming a back surface protective film, 62 ... Electronic parts, 63 ... Circuit board, 63a ... Terminal forming surface, 64 ... Sealing resin layer

Claims (4)

  1.  ワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法であって、
     前記ワークの、一方の面が回路面であり、他方の面が裏面であり、
     前記ワークの前記裏面側に、前記裏面保護膜形成用フィルムを貼付する第一の積層工程と、
     前記裏面保護膜形成用フィルムに、前記支持シートを貼付する第二の積層工程とを、この順に含み、
     前記第一の積層工程から前記第二の積層工程までの間において、前記ワークに前記裏面保護膜形成用フィルムが積層された第二積層体を一枚ずつ搬送し、
     前記第一の積層工程から前記第二の積層工程までの間を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う、第三積層体の製造方法。
    A method for manufacturing a third laminated body in which a work, a film for forming a back surface protective film, and a support sheet are laminated in this order.
    One side of the work is the circuit surface and the other side is the back surface.
    The first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and
    The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
    From the first laminating step to the second laminating step, the second laminated body in which the back surface protective film forming film is laminated on the work is conveyed one by one.
    The process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device. (3) Method for manufacturing a laminated body.
  2.  ワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法であって、
     前記ワークの、一方の面が回路面であり、他方の面が裏面であり、
     前記ワークの前記裏面側に、前記裏面保護膜形成用フィルムを貼付する第一の積層工程と、
     前記裏面保護膜形成用フィルムに、前記支持シートを貼付する第二の積層工程とを、この順に含み、
     前記第一の積層工程の貼付開始地点から前記第二の積層工程の貼付完了地点までの間の前記ワークの搬送距離が、7000mm以下であり、
     前記第一の積層工程から前記第二の積層工程までの間を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う、第三積層体の製造方法。
    A method for manufacturing a third laminated body in which a work, a film for forming a back surface protective film, and a support sheet are laminated in this order.
    One side of the work is the circuit surface and the other side is the back surface.
    The first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and
    The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
    The transport distance of the work from the sticking start point of the first laminating step to the sticking completion point of the second laminating step is 7000 mm or less.
    The process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device. (3) Method for manufacturing a laminated body.
  3.  ワークと、裏面保護膜形成用フィルムと、支持シートとが、この順に積層された第三積層体の製造方法であって、
     前記ワークの、一方の面が回路面であり、他方の面が裏面であり、
     前記ワークの前記裏面側に、前記裏面保護膜形成用フィルムを貼付する第一の積層工程と、
     前記裏面保護膜形成用フィルムに、前記支持シートを貼付する第二の積層工程とを、この順に含み、
     前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間の前記ワークの搬送時間が、400s以下であり、
     前記第一の積層工程から前記第二の積層工程までの間を、裏面保護膜形成用フィルムを貼付する装置と支持シートを貼付する装置を連結させて行う、又は同一の装置内で行う、第三積層体の製造方法。
    A method for manufacturing a third laminated body in which a work, a film for forming a back surface protective film, and a support sheet are laminated in this order.
    One side of the work is the circuit surface and the other side is the back surface.
    The first laminating step of attaching the back surface protective film forming film to the back surface side of the work, and
    The second laminating step of attaching the support sheet to the back surface protective film forming film is included in this order.
    The transport time of the work from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is 400 s or less.
    The process from the first laminating step to the second laminating step is performed by connecting a device for attaching the back surface protective film forming film and an device for attaching the support sheet, or in the same device. (3) Method for manufacturing a laminated body.
  4.  前記第一の積層工程の貼付開始時から前記第二の積層工程の貼付完了時までの間の前記ワークの搬送時間が、150s以下である、請求項3に記載の第三積層体の製造方法。 The method for producing a third laminated body according to claim 3, wherein the transport time of the work from the start of sticking of the first laminating step to the completion of sticking of the second laminating step is 150 s or less. ..
PCT/JP2020/017703 2019-04-26 2020-04-24 Method of manufacturing three-layer laminate WO2020218516A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021516264A JPWO2020218516A1 (en) 2019-04-26 2020-04-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-086303 2019-04-26
JP2019086303 2019-04-26

Publications (1)

Publication Number Publication Date
WO2020218516A1 true WO2020218516A1 (en) 2020-10-29

Family

ID=72942814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017703 WO2020218516A1 (en) 2019-04-26 2020-04-24 Method of manufacturing three-layer laminate

Country Status (3)

Country Link
JP (1) JPWO2020218516A1 (en)
TW (1) TW202110652A (en)
WO (1) WO2020218516A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210701A1 (en) * 2021-03-31 2022-10-06 リンテック株式会社 Method for manufacturing individual processed workpiece with resin film, and apparatus for manufacturing individual processed workpiece with resin film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317712A (en) * 2004-04-28 2005-11-10 Lintec Corp Wafer processor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317712A (en) * 2004-04-28 2005-11-10 Lintec Corp Wafer processor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210701A1 (en) * 2021-03-31 2022-10-06 リンテック株式会社 Method for manufacturing individual processed workpiece with resin film, and apparatus for manufacturing individual processed workpiece with resin film
KR20230161991A (en) 2021-03-31 2023-11-28 린텍 가부시키가이샤 Method for manufacturing a piece-piece workpiece with a resin film formed thereon, and a manufacturing apparatus for a piece-piece workpiece with a resin film formed thereon
KR20230163418A (en) 2021-03-31 2023-11-30 린텍 가부시키가이샤 Method for manufacturing a piece-piece workpiece with a resin film formed thereon, and a manufacturing apparatus for a piece-piece workpiece with a resin film formed thereon

Also Published As

Publication number Publication date
TW202110652A (en) 2021-03-16
JPWO2020218516A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
JP6274588B2 (en) Dicing sheet with protective film forming layer and chip manufacturing method
KR101939636B1 (en) Dicing Sheet With Protective Film Forming Layer and Chip Fabrication Method
JP5865045B2 (en) Dicing sheet with protective film forming layer and chip manufacturing method
WO2013099869A1 (en) Dicing sheet with protective film-forming layer, and method for producing chip
JP5865044B2 (en) Dicing sheet with protective film forming layer and chip manufacturing method
JP5023179B2 (en) Resin film forming sheet for chip and manufacturing method of semiconductor chip
JP6630956B2 (en) Method for manufacturing composite sheet for forming protective film and semiconductor chip with protective film
JP6006936B2 (en) Dicing sheet with protective film forming layer and chip manufacturing method
JP5785420B2 (en) Protective film forming sheet and semiconductor chip manufacturing method
WO2020218516A1 (en) Method of manufacturing three-layer laminate
WO2014142151A1 (en) Composite sheet for protective film formation, method for producing composite sheet for protective film formation, and method for producing chip with protective film
JP7290989B2 (en) Composite sheet for protective film formation
JP6854983B1 (en) A method for manufacturing a third laminated body, a method for manufacturing a fourth laminated body, a method for manufacturing a semiconductor device with a back surface protective film, and a third laminated body.
JP6686241B1 (en) Protective film forming film, protective film forming composite sheet, inspection method and identification method
WO2021166991A1 (en) Back-surface-protection-film forming composite, method for manufacturing first laminated body, method for manufacturing third laminated body, and method for manufacturing semiconductor device equipped with back surface protection film
TWI839508B (en) Method for manufacturing a third laminate, method for manufacturing a fourth laminate, method for manufacturing a semiconductor device with an inner surface protective film, and method for manufacturing a third laminate
JP2022092286A (en) Manufacturing method of workpiece with protective film and manufacturing method of workpiece with protective film-forming film
JP2021082768A (en) Kit, and method for manufacturing third laminate by use thereof
JP2021082767A (en) Kit, and method for manufacturing third laminate by use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795345

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021516264

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20795345

Country of ref document: EP

Kind code of ref document: A1