WO2020218170A1 - 鉄鉱石ペレットの製造方法 - Google Patents

鉄鉱石ペレットの製造方法 Download PDF

Info

Publication number
WO2020218170A1
WO2020218170A1 PCT/JP2020/016785 JP2020016785W WO2020218170A1 WO 2020218170 A1 WO2020218170 A1 WO 2020218170A1 JP 2020016785 W JP2020016785 W JP 2020016785W WO 2020218170 A1 WO2020218170 A1 WO 2020218170A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
pellets
organic binder
raw material
raw
Prior art date
Application number
PCT/JP2020/016785
Other languages
English (en)
French (fr)
Inventor
嗣憲 加藤
人志 豊田
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020072579A external-priority patent/JP7366832B2/ja
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to BR112021018309-4A priority Critical patent/BR112021018309B1/pt
Publication of WO2020218170A1 publication Critical patent/WO2020218170A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic

Definitions

  • the present invention relates to a method for producing iron ore pellets.
  • Iron ore pellets are made from iron ore fine powder of several tens of ⁇ m with improved quality to properties suitable for blast furnaces (for example, size, strength, reducibility, etc.).
  • the iron ore pellets are produced by three consecutive steps in this order: a granulation step, a firing step, and a cooling step.
  • an iron ore raw material whose water content and particle size are adjusted is put into a granulator (for example, a pan pelletizer) and rolled to granulate raw pellets having a diameter of more than 10 mm and in the form of mud dumplings. To do.
  • a granulator for example, a pan pelletizer
  • the raw pellets immediately after granulation are placed on a metal pallet to prepare a packed layer, and the raw pellets are dried by transporting the raw pellets and allowing hot air to pass through the packed layer.
  • the raw pellets are preheated and fired until they have a strength that does not pulverize when firing while rolling.
  • the pellets preheated and fired are baked and hardened at about 1200 ° C.
  • the pellets baked in the firing step are placed on a metal pallet and cooled by allowing cold air to pass through to produce iron ore pellets.
  • Patent Document 1 describes a method of producing pellets having stable operation and stable quality while using existing Great Kiln equipment using high water of crystallization ore. Specifically, in the preheating firing, the preheating chamber temperature and / and the preheating time are increased by a predetermined amount according to the strength of the preheat pellets to be reduced by containing water of crystallization.
  • Patent Document 2 describes a method for producing pellets, which prevents bursting and improves the yield and productivity of calcined pellets. Specifically, a predetermined amount of organic fibers, clayey substances, and organic adhesives are dissolved in water to form a slurry, which is added to a mixed raw material for pellets, mixed, granulated, and fired by a conventional method.
  • Patent Document 3 describes a pretreatment method effective for increasing the layer thickness of the sinter raw material bed and achieving an improvement in sinter production while using a large amount of malamamba iron ore as the sinter compounding raw material. ing. Specifically, both water and a binder are added to a sintered raw material containing Malamamba iron ore for granulation, and the obtained granulated sintered raw material is dried by heating and drying at the same time as or after granulation. Pretreatment is performed as a raw material for grain sintering.
  • Patent Document 4 describes a method for granulating a sintering raw material that produces uniform pseudo-particles and improves pseudo-granulation. Specifically, when water is added to the sintered compound raw material for granulation, an additive for granulation that lowers the surface tension of water is added to form uniform pseudo-particles, and the viscosity of water is further increased. Pseudo-granulation property is improved by adding an additive for granulation to be increased.
  • the pellets are pulverized, and the pellet powder blocks the pellet filling layer and deteriorates the air permeability.
  • the air permeability deteriorates, the amount of air passing through the pellet packing layer decreases, drying is delayed, and the productivity of iron ore pellets decreases. Therefore, in order to improve the productivity of iron ore pellets, it is required to suppress the occurrence of bursting.
  • Patent Documents 1 to 3 do not describe or suggest specific production conditions for raw pellets for suppressing bursting. Further, also in Patent Document 4, no description or suggestion is made regarding specific conditions for use of the water of crystallization-containing ore and the binder.
  • the present invention can produce raw pellets that suppress the occurrence of bursting when a raw material containing iron ore and an auxiliary raw material is charged into a granulator, and the productivity of iron ore pellets can be produced. It is an object of the present invention to provide a method for producing iron ore pellets which can improve.
  • the method for producing iron ore pellets comprises a step of putting a raw material containing iron ore and an auxiliary raw material and an organic binder into a granulator and rolling them to granulate raw pellets.
  • the blending amount of the organic binder when the raw material and the organic binder are put into the granulator satisfies the following formula 1.
  • X [mPa ⁇ s] is the viscosity of the aqueous solution developed when the organic binder in the raw pellet is dissolved in water.
  • Y [mass%] is a blending ratio of the water of crystallization ore having a water of crystallization content of 5% by mass or more in the raw material, and is an amount represented by the following formula 2. Whether or not the water of crystallization-containing ore "has a water of crystallization content of 5% by mass or more" shall be judged from the average content of water of crystallization for each brand of the iron ore. When the brand is applicable, "the mass of iron ore having a water of crystallization content of 5% by mass or more" is the total.
  • the amount of an organic binder charged is adjusted so as to satisfy the above formula 1 to suppress the occurrence of bursting.
  • Raw pellets can be produced, and the productivity of iron ore pellets can be improved.
  • FIG. 1 is a diagram schematically showing an outline of a vertical electric furnace.
  • FIG. 2 is a graph showing the relationship between the mixing ratio Y of the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more and the bursting rate.
  • FIG. 3 is a graph showing the relationship between the blending ratio of the organic binder and the bursting ratio.
  • FIG. 4 is a diagram schematically showing an outline of a process of drying raw pellets immediately after granulation.
  • FIG. 5 is a graph showing the relationship between the viscosity X of the aqueous solution in the raw pellet and the mixing ratio Y of the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more.
  • pellets granulated by rolling of a granulator such as a bread pelletizer, that is, pellets immediately after granulation are also referred to as "raw pellets”.
  • the dried raw pellets are also called “dried pellets”
  • the baked and hardened dried pellets are also called "iron ore pellets”.
  • Iron ore pellets are made from iron ore fine powder of several tens of ⁇ m with improved quality to properties suitable for blast furnaces (for example, size, strength, reducibility, etc.).
  • the iron ore pellets are produced by three consecutive steps in this order: a granulation step, a firing step, and a cooling step.
  • an iron ore raw material whose moisture and particle size are adjusted is put into a granulator (for example, a pan pelletizer) and rolled to produce a mud dumpling-shaped raw pellet having a diameter of a dozen mm.
  • a granulator for example, a pan pelletizer
  • the raw pellets immediately after granulation are placed on a metal pallet to prepare a packed layer, and the raw pellets are dried by conveying this and allowing hot air to pass through the packed layer.
  • the raw pellets are preheated and fired until they have a strength that does not pulverize when firing while rolling. Further, in a kiln furnace, the pellets preheated and fired are baked and hardened at about 1200 ° C.
  • the pellets baked in the firing step are placed on a metal pallet and cooled by allowing cold air to pass through to produce iron ore pellets.
  • Crystal water is contained in iron ore, which is a natural product.
  • Water of crystallization is water contained in iron ore in combination with water of crystallization, and exists as FeO ⁇ OH.
  • the water of crystallization content in the iron ore can be measured by a method such as JIS-M8211: 1995 (iron ore-combined water quantification method).
  • the amount of water of crystallization in iron ore varies depending on the place of origin and brand. For example, according to "Japan Steel Association, Steel Property Value Handbook, Ironmaking, p.40", the water of crystallization content in the high-grade ore Carajás ore produced in Hakusan is as low as 3% by mass or less, but it is a poor quality ore. A certain Australian lobe river ore has a high water of crystallization content of 5% by mass or more.
  • This water of crystallization is known to induce bursting. That is, if iron ore having a high water of crystallization content is used, the production of iron ore pellets may be hindered.
  • "The Iron and Steel Institute of Japan, Steel Handbook (5th Edition) p.72" states that "it is necessary to pay attention to the content of water of crystallization that causes bursting.”
  • the iron ore containing water of crystallization used in the present invention includes a water of crystallization-containing ore having a water of crystallization content of at least 5% by mass or more.
  • water of crystallization-containing ore includes a water of crystallization-containing ore having a water of crystallization content of at least 5% by mass or more.
  • inferior raw materials are specified. That is, the iron ore used in the present invention contains inferior raw materials.
  • the upper limit of the water of crystallization content is not particularly limited, but is 10.13% by mass as the theoretical maximum value (theoretical limit value).
  • FeO ⁇ OH 1 / 2Fe 2 O 3 -1 / 2H 2 O Therefore, 1/2 molecule of water can be fixed per Fe atom.
  • Y indicates the mixing ratio of iron ore having a water of crystallization content of 5% by mass or more, and can be specified by the following formula 2.
  • the auxiliary raw materials include generated products and the like. The mass of the auxiliary raw material is based on the dry weight of the adhering water dried.
  • the raw pellets produced by increasing the mixing ratio Y of the water of crystallization-containing ore will increase the bursting rate.
  • a granulation experiment and an evaluation test of the bursting rate were conducted.
  • Table 1 shows the components of the raw materials used in this experiment.
  • Table 2 shows the raw material composition No. of this experiment. 1 to No. The raw material compounding condition of 3 is shown.
  • Table 3 shows the raw material formulation numbers for this experiment. 4-No. The raw material compounding conditions of 9 are shown.
  • Table 4 shows the raw material composition No. of this experiment. 10-No. The raw material compounding conditions of 13 are shown.
  • each raw material composition includes ore D (high-grade ore having a water of crystallization content of less than 5% by mass) and ore E (water of crystallization content of 5% by mass or more).
  • the mixing ratio Y of the water of crystallization-containing ore was adjusted by distributing the mixing ratio of.
  • the ores A to C are iron ores having a water of crystallization content of less than 5% by mass.
  • auxiliary raw material A is dolomite
  • auxiliary raw material B is limestone
  • auxiliary raw material C is silica stone.
  • the water content was 7% by mass or more and 10% by mass or less.
  • the granulation test was carried out using a dish-type granulator (pan pelletizer). Table 5 shows the experimental conditions of the granulation test.
  • FIG. 1 schematically shows an outline of the vertical electric furnace 1.
  • the raw pellets produced in the granulation test (immediately after granulation) were sized so as to have a diameter of 11.2 mm or more and 13.2 mm or less, and as shown in FIG. was installed in the Amikago 2 and charged into the electric furnace 1 at a constant speed using the elevating device 3 and rapidly heated to generate bursting (steam burst phenomenon).
  • the material of Amikago 2 is SUS304, and it has a cylindrical shape with a diameter of 55 mm.
  • the moving speed of Amikago 2 at the time of insertion was set to 34 mm / min.
  • the inner diameter of the core tube is 70 mm and the length is 1000 mm
  • the average tropical temperature in the furnace is 1000 ° C.
  • the average tropical width is 60 mm.
  • the temperature inside the electric furnace 1 was controlled as shown in the graph shown in FIG.
  • Table 6 shows the raw material formulation No. 1 to No. The number of pellets having a diameter of 11.2 mm or more and 13.2 mm or less before and after this experiment of No. 3 is shown.
  • the bursting rate was determined by using the following formula 3 as the number ratio of pellets having a diameter of 11.2 mm or more and 13.2 mm or less on the Amikago 2 after the test.
  • FIG. 2 shows the relationship between the mixing ratio Y of the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more and the bursting rate.
  • bursting is a phenomenon that occurs when water vapor generated inside the raw pellet during drying causes a pressure loss when passing through the pores in the raw pellet, that is, by increasing the internal pressure of the raw pellet. is there. Therefore, in order to suppress the occurrence of bursting, it is considered effective to increase the porosity in the raw pellets and reduce the water vapor emission load.
  • the porosity in the raw pellets the pore size distribution of the dried raw pellets (hereinafter, also referred to as "dried pellets") was measured.
  • An automatic porosimeter manufactured by Shimadzu Corporation: Autopore III 9400 was used to measure the pore size distribution.
  • the method for measuring the pore size distribution was based on JIS-R1655: 2003 (a method for testing the pore size distribution of a molded body by a mercury press-fitting method for fine ceramics).
  • the present inventors in order to suppress the occurrence of bursting while increasing the blending ratio Y of the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more, the dry pellets are +0. It was considered important to increase the 2 ⁇ m open porosity. Therefore, as a result of intensive research, the present inventors have added an organic binder to the raw material containing iron ore and an auxiliary material for the +0.2 ⁇ m open porosity of the dry pellet, which is important for suppressing the occurrence of bursting. , Found to be controllable. That is, it was found that there is an appropriate range of conditions capable of suppressing the occurrence of bursting according to the above-mentioned compounding ratio Y. The details will be described below.
  • organic binder applicable to the present invention examples include natural substances such as starch and chemical synthesis systems such as CMC (Carboxymethyl Cellulose).
  • CMC Carboxymethyl Cellulose
  • organic binder A is a mixture of cornstarch in an amount of 60% by mass, tapioca in an amount of 30% by mass, and potatoes in an amount of 10% by mass, and bentonite added in an external number of 10% by mass.
  • the raw material of the organic binder B is 100% by mass of cornstarch, to which 20% by mass of bentonite is added.
  • the raw material of the organic binder C is a mixture of 80% by mass of starch and 20% by mass of bentonite.
  • a binder obtained by drying these raw materials, pregelatinizing them, and pulverizing them to about 200 ⁇ m is called an organic binder.
  • the organic binders A, B, and C used in the present invention are examples.
  • the viscosity of the aqueous solution was increased by dissolving the organic binder A, the organic binder B or the organic binder C in water.
  • a viscometer manufactured by Toki Sangyo Co., Ltd .: TVB15 type viscometer
  • the method for measuring the viscosity of the aqueous solution was based on JIS-Z8803: 2011. Table 7 shows the results of measuring the viscosities of the aqueous solutions dissolved in water for the organic binder A, the organic binder B and the organic binder C.
  • the viscosity of the aqueous solution can be adjusted by the organic binder.
  • the viscosity X of the aqueous solution in the raw pellet produced by blending the organic binders A, B, and C was determined by the following formula 4 using the result of the above-mentioned viscosity test (measured value of the viscosity of the aqueous solution).
  • the unit of the viscosity X of the aqueous solution in the raw pellet is mPa ⁇ s.
  • the molecule is equal to the blending ratio (1.0% by mass) of the organic binder in the viscosity test, and the following formula 5 is established.
  • the blending ratio of organic binders A, B, and C is calculated as an outside number of raw material blends.
  • the viscosity of the aqueous solution in the raw pellets when the organic binder was not blended was 1.0 mPa ⁇ s.
  • the organic binder A was blended with the raw material (including iron ore and auxiliary raw material) which is the source of the raw pellet, and the raw pellet was produced by a granulation test.
  • water was added to the raw material and an organic binder was added (added) to the raw material containing the water before charging the pelletizer.
  • FIG. 3 shows the relationship between the blending ratio of the organic binder and the bursting ratio.
  • the present inventors have stated that when an organic binder is blended, the occurrence of bursting can be suppressed even when a water of crystallization-containing ore having a water of crystallization content of 5% by mass or more is used. Found.
  • the +0.2 ⁇ m open porosity of the dried pellets was high. It was confirmed that the occurrence of bursting could be suppressed by this increase in the +0.2 ⁇ m open porosity.
  • the bursting rate can be suppressed below the standard value by setting the +0.2 ⁇ m open porosity of the dried pellets to 14% or more.
  • the pores of the pellet are formed in the region where water and fine ore (fine particles) are present in the raw pellet immediately after granulation.
  • the water evaporates and the fine ore moves to the contact points between the coarse ores and aggregates, thereby forming pores. That is, it is considered that the water content in the raw pellets and the fine ore greatly act on the formation of the pores.
  • the organic binder in the raw pellets increases the viscosity of the aqueous solution, and is thought to promote the movement of fine ore during drying.
  • an appropriate mixing ratio of the organic binder according to the mixing ratio Y of the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more was determined by a granulation test and a bursting test.
  • FIG. 5 shows a summary of the above experimental results, that is, the relationship between the viscosity X [mPa ⁇ s] of the aqueous solution in the raw pellet and the mixing ratio Y [mass%] of the water of crystallization-containing ore.
  • the bursting rate of raw pellets granulated under the condition that the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more and an organic binder is not blended is set as a reference value (marked with ⁇ in FIG. 5), and the reference value is used.
  • the bursting rate was higher than the value, it was worsened (x mark in FIG. 5), and when the bursting rate was lower than the reference value, it was improved ( ⁇ mark in FIG. 5). From this experimental result, the condition range in which the occurrence of bursting can be suppressed to the reference value or less while increasing the mixing ratio Y of the water of crystallization-containing ore having a water of crystallization content of 5% by mass or more was determined. The following equation 1 was obtained.
  • Table 8 shows examples and comparative examples carried out according to the method for producing iron ore pellets of the present invention.
  • Example 1 (raw material compounding No. 1) is a reference value for evaluating the effect of the present invention.
  • Examples 5, 7, 8, 11, 12 (raw material compounding Nos. 5, 7, 8, 11, 12) satisfy the above formula 1 (“A” is added to “appropriateness” in Table 8) and compared.
  • Examples 2, 3, 4, 6, 9, 10 and 13 (raw material compounding No. 2, 3, 4, 6, 9, 10, 13) do not satisfy the above formula 1 (see “Appropriateness” in Table 8). (Attached with “B”).
  • the "evaluation” of the bursting rate the one having a bursting rate lower than that of Example 1 as a reference was "A", and the one having a bursting rate of Example 1 or higher was “B". The lower the bursting rate, the better.
  • Raw material formulations 1 to 3 do not contain organic binders.
  • the raw material formulations 4 to 9 contain an organic binder A
  • the raw material formulations 10 and 11 contain an organic binder B
  • the raw material formulations 12 and 13 contain an organic binder C, respectively.
  • organic binders such as natural substances such as starch and chemical synthesis systems such as CMC, so the effect of improving the viscosity of the aqueous solution differs depending on the properties and compounding ratio.
  • the crystal water-containing ore is used by adjusting the blending amount of the organic binder so as to satisfy the above formula 1. It can be seen that the occurrence of bursting can be suppressed and the productivity of the raw pellets, which are the source of the iron ore pellets, can be maintained and improved.
  • raw pellets are granulated by charging and rolling a raw material containing iron ore and an auxiliary raw material and an organic binder into a granulator. It is characterized in that, in the granulation step, the blending amount of the organic binder when the raw material and the organic binder are put into the granulator satisfies the following formula 1.
  • X [mPa ⁇ s] is the viscosity of the aqueous solution developed when the organic binder in the raw pellet is dissolved in water.
  • Y [mass%] is a blending ratio of the water of crystallization ore having a water of crystallization content of 5% by mass or more in the raw material, and is an amount represented by the following formula 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本発明の鉄鉱石ペレットの製造方法は、鉄鉱石及び副原料を含む原料と有機バインダとを造粒機に投入及び転動させて生ペレットを造粒する工程を備え、上記造粒工程で、上記原料及び上記有機バインダを造粒機に投入する際の上記有機バインダの配合量が下記式1を満たすことを特徴とする。ここで、X[mPa・s]は、上記生ペレット中の有機バインダを水に溶解させたときに発現する水溶液の粘度である。Y[質量%]は、上記原料における結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合であり、下記式2で表される量である。

Description

鉄鉱石ペレットの製造方法
 本発明は、鉄鉱石ペレットの製造方法に関する。
 鉄鉱石ペレットとは、数十μmの鉄鉱石微粉を原料とし、高炉用に適した性状(例えばサイズ、強度、被還元性など)に、品質を向上させて作り込んだものである。この鉄鉱石ペレットは、造粒工程、焼成工程及び冷却工程というこの順に連続した3つの工程によって製造される。
 上記造粒工程では、水分と粒度を調整した鉄鉱石原料を造粒機(例えばパンペレタイザーなど)に投入して転動させて、直径が十数mmで、泥団子状の生ペレットを造粒する。
 上記焼成工程では、グレート炉及びキルン炉が用いられる。グレート炉では、まず金属パレット上に造粒直後の生ペレットを載せて充填層を作成し、これを搬送して充填層に熱風を通風させることで生ペレットを乾燥させる。次に、上記生ペレットを、転動させつつ焼成する際に粉化しない程度の強度となるまで、予熱焼成する。さらに、キルン炉で、予熱焼成したペレットを1200℃程度で焼き固める。
 上記冷却工程では、上記焼成工程で焼き固めたペレットを金属パレットに載せて、冷風を通風させて冷却し、鉄鉱石ペレットを製造する。
 この鉄鉱石ペレットを製造する技術としては、例えば特許文献1~4に開示されているものがある。
 特許文献1には、高結晶水含有鉱石を使って、既存のグレートキルン設備を用いつつ操業を安定に維持し、かつ品質の安定したペレットを製造する方法が記載されている。具体的には、上記予熱焼成に際して、予熱ペレットが結晶水を含むことによって低下する強度に応じて予熱室温度又は/及び予熱時間を所定量増加して処理している。
 特許文献2には、バースティングを防止し、焼成ペレットの歩留りと生産性とを向上させるペレットの製造方法が記載されている。具体的には、所定量の有機繊維、粘土質物質、有機粘着材を水に溶いてスラリー状にしたものをペレット用混合原料に添加混合して造粒し、常法により焼成している。
 特許文献3には、焼結配合原料として多量のマラマンバ鉄鉱石を使いながら、焼結原料ベッドの層厚を増大させ、焼結鉱生産の向上を達成するのに有効な予備処理方法が記載されている。具体的には、マラマンバ鉄鉱石を含む焼結原料に水とバインダの両方を加えて造粒し、得られた造粒焼結原料を造粒と同時に、又はその後に、加熱乾燥させて乾燥造粒焼結原料とする予備処理を行っている。
 特許文献4は、均一な擬似粒子を造るとともに、擬似粒化性を向上させる焼結原料の造粒方法が記載されている。具体的には、焼結配合原料に水を添加して造粒する際に、水分の表面張力を低下させる造粒用添加剤を添加して均一な擬似粒子を造り、さらにさらに水分の粘性を増加させる造粒用添加剤を添加して擬似粒化性を向上している。
特開2000-087150号公報 特開2002-212646号公報 特開2010-138445号公報 特開平11-181531号公報
 鉄鉱石ペレットの生産性を向上させるためには、焼成工程のグレート炉において、造粒直後の生ペレットの乾燥を速やかに行うことが重要となってくる。しかしながら、水分を含んだ生ペレットの乾燥を急速に行うと、ペレット内部で水分が水蒸気となる量が短時間で急激に増加するため、ペレット内部の圧力が高まり、水蒸気が破裂する現象(バースティング)が発生してしまう。
 このようなバースティングが発生すると、ペレットが粉化し、そのペレット粉がペレット充填層を閉塞して通気性を悪化させる。通気性が悪化すると、ペレット充填層を通過する風量が低下してしまい、乾燥が遅延し、鉄鉱石ペレットの生産性が低くなってしまう。従って、鉄鉱石ペレットの生産性を向上させるため、バースティングの発生を抑制することが求められている。
 これに対し、特許文献1から特許文献3には、バースティングを抑制するための具体的な生ペレットの製造条件は記載も示唆も全くされていない。また、特許文献4についても、結晶水含有鉱石やバインダの具体的な使用条件について記載も示唆も全くされていない。
 本発明は、上記問題点に鑑み、鉄鉱石と副原料を含む原料を造粒機に装入する際、バースティングの発生を抑制する生ペレットを製造することができ、鉄鉱石ペレットの生産性を向上させることができる鉄鉱石ペレットの製造方法を提供することを目的とする。
 本発明の一実施形態にかかる鉄鉱石ペレットの製造方法は、鉄鉱石及び副原料を含む原料と有機バインダとを造粒機に投入及び転動させて生ペレットを造粒する工程を備え、上記造粒工程で、上記原料及び上記有機バインダを造粒機に投入する際の上記有機バインダの配合量が下記式1を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000003
 ここで、X[mPa・s]は、上記生ペレット中の有機バインダを水に溶解させたときに発現する水溶液の粘度である。Y[質量%]は、上記原料における結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合であり、下記式2で表される量である。なお、結晶水含有鉱石の「結晶水含有率が5質量%以上である」か否かは、その鉄鉱石の銘柄ごとにその結晶水の平均含有率から判断するものとし、複数の鉄鉱石の銘柄が該当する場合、「結晶水含有率が5質量%以上である鉄鉱石質量」は、その総和となる。
Figure JPOXMLDOC01-appb-M000004
 本発明によれば、鉄鉱石と副原料を含む原料を造粒機に装入する際、上記式1を満たすように有機バインダの装入量を調整することで、バースティングの発生を抑制する生ペレットを製造することができ、鉄鉱石ペレットの生産性を向上させることができる。
図1は、縦型電気炉の概略を模式的に示した図である。 図2は、結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yと、バースティング率との関係を示したグラフである。 図3は、有機バインダの配合割合とバースティング率との関係を示したグラフである。 図4は、造粒直後の生ペレットを乾燥させる過程の概略を模式的に示した図である。 図5は、生ペレット中の水溶液粘度Xと結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yの関係を示したグラフである。
 以下、本発明に係る鉄鉱石ペレットの製造方法の実施形態を、図を参照して説明する。なお、以下に説明する実施形態は、本発明を具体化した一例であって、その具体例をもって本発明の構成を限定するものではない。また、以降の説明において、例えばパンペレタイザーなどの造粒機の転動により造粒されたペレット、すなわち造粒直後のペレットを、「生ペレット」とも呼ぶ。また、生ペレットを乾燥させたものを、「乾燥ペレット」とも呼び、乾燥ペレットを焼き固めたものを、「鉄鉱石ペレット」とも呼ぶ。
 まず、鉄鉱石ペレットの製造方法の概要について、述べる。
 鉄鉱石ペレットとは、数十μmの鉄鉱石微粉を原料とし、高炉用に適した性状(例えばサイズ、強度、被還元性など)に、品質を向上させて作り込んだものである。この鉄鉱石ペレットは、造粒工程、焼成工程及び冷却工程というこの順に連続した3つの工程によって製造される。
 上記造粒工程では、水分と粒度を調整した鉄鉱石原料を造粒機(例えばパンペレタイザーなど)に投入及び転動させて、直径が十数mmで、泥団子状の生ペレットを製造する。
 上記焼成工程では、グレート炉及びキルン炉が用いられる。グレート炉では、まず金属パレット上に造粒直後の生ペレットを載せて充填層を作成し、これを搬送して充填層に熱風を通風させることで生ペレットを乾燥させる。次に、上記生ペレットを、転動させつつ焼成する際に粉化しない程度の強度となるまで、予熱焼成する。さらに、キルン炉で、予熱焼成したペレットを1200℃程度で焼き固める。
 上記冷却工程では、上記焼成工程で焼き固めたペレットを金属パレットに載せて、冷風を通風させて冷却し、鉄鉱石ペレットを製造する。
 自然物である鉄鉱石中には、結晶水が含まれている。結晶水とは、鉄鉱石中に化合して含まれている水のことであり、FeO・OHとして存在している。その鉄鉱石中の結晶水含有量については、例えばJIS-M8211:1995(鉄鉱石-化合水定量方法)などの方法で測定することができる。
 鉄鉱石中の結晶水は、産地や銘柄によってその存在量が異なっている。例えば、「日本鉄鋼協会、鉄鋼物性値便覧製銑編p.40」によると、高品位鉱石である伯産カラジャス鉱石中の結晶水含有量は3質量%以下と低いのに対し、劣質鉱石である豪州産ローブリバー鉱石は結晶水含有量が5質量%以上と高い。
 この結晶水は、バースティングを誘発することが知られている。すなわち、結晶水含有率が高い鉄鉱石を使用すると、鉄鉱石ペレットの生産に支障をきたすおそれがある。例えば、「日本鉄鋼協会編、鉄鋼便覧(第5版)p.72」には、「バースティングの原因となる結晶水の含有量などを注意する必要がある」と記載されている。
 しかし、近年では、良質原料の枯渇に伴い、結晶水含有率が高い鉄鉱石についても、ペレットの原料として使用することが求められている。
 本発明で用いる結晶水を含有する鉄鉱石(以降、「結晶水含有鉱石」とも呼ぶ)としては、少なくとも結晶水含有量が5質量%以上の結晶水含有鉱石を含む。この結晶水含有量の下限値については、劣質原料を規定している。つまり、本発明で用いる鉄鉱石は劣質原料を含む。なお、結晶水含有量の上限値については、特に限定されないが、理論上の最大値(理論限界値)として10.13質量%である。より詳細に説明すると、
 FeO・OH=1/2Fe-1/2H
であるので、Fe1原子当たり1/2分子の水が固着可能である。この場合、このFeO・OH1分子当たりの結晶水含有量は、62.86/55.85×1/2×(2+16)=10.13質量%となる。全てのFe原子が結晶水を含有している場合に結晶水含有量が最大となるから、結晶水含有量の理論上の最大値は、10.13質量%となる。
 ここで、パラメータYについて、述べる。Y[質量%]は、結晶水の含有率が5質量%以上である鉄鉱石の配合割合を示し、下記式2で規定できる。ここで、副原料には、発生品なども含まれる。また、副原料の質量は、付着水を乾燥させた乾燥重量を基準としている。
Figure JPOXMLDOC01-appb-M000005
 このように、結晶水含有鉱石の配合割合Yを高めて製造した生ペレットは、バースティング率が増加することとなる。これを確認する目的で、造粒実験とバースティング率の評価試験を行った。
 表1に、本実験に用いた原料の成分を示す。
Figure JPOXMLDOC01-appb-T000006
 表2に、本実験の原料配合No.1~No.3の原料配合条件を示す。
Figure JPOXMLDOC01-appb-T000007
 表3に、本実験の原料配合No.4~No.9の原料配合条件を示す。
Figure JPOXMLDOC01-appb-T000008
 表4に、本実験の原料配合No.10~No.13の原料配合条件を示す。
Figure JPOXMLDOC01-appb-T000009
 表2~表4で、各原料配合は、鉱石D(結晶水の含有率が5質量%未満の高品位鉱石)と鉱石E(結晶水の含有率が5質量%以上の結晶水含有鉱石)の配合割合を振り分けることで結晶水含有鉱石の配合割合Yを調整した。なお、鉱石A~Cは、結晶水の含有率が5質量%未満の鉄鉱石である。
 また、副原料Aはドロマイトであり、副原料Bは石灰石であり、副原料Cは珪石である。また、水分については、7質量%以上10質量%以下とした。
 造粒試験については、皿型造粒機(パンペレタイザー)を使用して実施した。表5に、造粒試験の実験条件を示す。
Figure JPOXMLDOC01-appb-T000010
 バースティング率の評価試験については、縦型の電気炉を用いた。図1に、縦型の電気炉1の概略を模式的に示す。バースティング率の評価試験では、造粒試験で製造した(造粒直後の)生ペレットを、直径が11.2mm以上13.2mm以下となるように整粒し、図1に示すように、それをアミカゴ2内に設置し、昇降装置3を用いて電気炉1内に一定速度で装入させて急加熱することで、バースティング(水蒸気破裂現象)を発生させた。
 なお、アミカゴ2は、材質がSUS304で、直径55mmの円筒状である。また挿入時のアミカゴ2の移動速度は34mm/minとした。電気炉1は、炉心管の内径が70mm、長さ1000mmであり、炉内均熱帯温度は1000℃、均熱帯幅は60mmである。なお、電気炉1の炉内温度は図1に示すグラフのように制御した。
 表6に原料配合No.1~No.3の本実験前と後における直径が11.2mm以上13.2mm以下であるペレットの個数を示す。
Figure JPOXMLDOC01-appb-T000011
 バースティング率は、試験後にアミカゴ2上の直径が11.2mm以上13.2mm以下であるのペレットの個数割合として、下記式3を用いて求めた。図2に、結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yと、バースティング率との関係を示す。
Figure JPOXMLDOC01-appb-M000012
 図2から、結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yを高めると、バースティング率が増加する、すなわち生産性が悪化することが分かる。以上述べた本試験により、鉄鉱石ペレットの製造工程において、上記配合割合Yを増加させた場合、バースティングの発生が課題となることを確認した。
 ここで、バースティングとは、乾燥させる時に生ペレット内部で発生した水蒸気が、その生ペレット内の気孔を通過する際、圧力損失を生じさせる、すなわち生ペレットの内圧を高めることで発生する現象である。そのため、バースティングの発生を抑制するには、生ペレット内の気孔率を高め、水蒸気の放散負荷を低減することが効果的であると考えられる。
 そこで、生ペレット内の気孔率について、生ペレットを乾燥させたもの(以下、「乾燥ペレット」とも呼ぶ)の気孔径分布を測定した。この気孔径分布の測定については、自動ポロシメータ(株式会社島津製作所製:オートポアIII9400)を使用した。また、気孔径分布の測定方法については、JIS-R1655:2003(ファインセラミックスの水銀圧入法による成形体気孔径分布試験方法)に準拠した。
 その結果、上記配合割合Yを高くすると、乾燥ペレットの気孔径分布が小さくなり、バースティングが発生しやすい気孔構造となっていることが分かった。特に、水蒸気のガス拡散速度が遅いヌッセン拡散と、ガス拡散速度が速い分子拡散の遷移域である0.2μm以上の気孔率(+0.2μm開気孔率)に注目すると、+0.2μm開気孔率も、上記配合割合Yの増加に伴って、低くなっていた。
 このことから、本発明者らは、結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yを増加させつつ、バースティングの発生を抑制するためには、乾燥ペレットの+0.2μm開気孔率を増加させることが重要であると考えた。そこで、本発明者らは、鋭意研究を重ねた結果、バースティング発生の抑制に重要な乾燥ペレットの+0.2μm開気孔率について、鉄鉱石と副原料を含む原料に有機バインダを配合することで、制御可能であることを見出した。すなわち、上記配合割合Yに応じて、バースティングの発生を抑制することが可能な適正条件範囲が存在することを知得した。以下に、その詳細について説明する。
 本発明に適用可能な有機バインダとしては、例えば、でんぷんなどの自然物や、CMC(Carboxymethyl Cellulose)などの化学合成系などが挙げられる。本発明においては、でんぷん系の有機バインダを主に使用して実験した。
 具体的には、表3及び表4に示すように3種類の有機バインダ(有機バインダA、有機バインダB及び有機バインダC)を準備した。有機バインダAの原料は、コーンスターチを60質量%、タピオカを30質量%、馬鈴薯を10質量%となるよう混合し、これにベントナイトを外数で10質量%加えたものである。有機バインダBの原料は、コーンスターチ100質量%であり、これにベントナイトを外数で20質量%加えたものである。有機バインダCの原料はでんぷん80質量%にベントナイトを20質量%混合したものである。これら原料を乾燥し、α化処理し、200μm程度まで粉砕したものを有機バインダと呼称する。なお、本発明で用いた有機バインダA、B、Cについては、一例である。
 有機バインダA、有機バインダB又は有機バインダCを水中に溶解させることで、水溶液の粘度を高くした。水溶液の粘度を測定する装置としては、粘度計(東機産業株式会社製:TVB15形粘度計)を使用した。また、水溶液の粘度を測定する方法は、JIS-Z8803:2011に準拠した。表7に、有機バインダA、有機バインダB及び有機バインダCについて、水に溶解させた水溶液の粘度を測定した結果を示す。
Figure JPOXMLDOC01-appb-T000013
 本発明者らは、上述の有機バインダA、B、Cの粘度試験の結果、水溶液の粘度については、有機バインダによって調整することができることを知見した。例えば、有機バインダA、B、Cを配合して製造した生ペレット中の水溶液の粘度Xについて、上述の粘度試験の結果(水溶液の粘度測定値)を用いて、下記式4によって求めた。なお、生ペレット中の水溶液の粘度Xの単位は、mPa・sである。
Figure JPOXMLDOC01-appb-M000014
 ここで、分子は粘度試験での有機バインダの配合割合(1.0質量%)に等しく下記式5が成立する。
Figure JPOXMLDOC01-appb-M000015
 なお、有機バインダA、B、Cの配合割合については、原料配合の外数として計算して求めている。また、有機バインダを配合しない場合の生ペレット中の水溶液の粘度については、生ペレット中の水溶液の粘度を1.0mPa・sとした。
 本実施形態においては、生ペレットの元となる原料(鉄鉱石と副原料とを含む)に、有機バインダAを配合し、生ペレットを造粒試験により製造した。なお、本実施形態においては、ペレタイザに装入する前に、原料に対して水を添加し、その水分を含んだ原料に有機バインダを配合(添加)した。
 この生ペレットのバースティング率及び乾燥ペレットの気孔径分布を測定した。図3に、有機バインダの配合割合とバースティング率との関係を示す。
 図3に示すように、有機バインダを配合すると、結晶水含有率が5質量%以上である結晶水含有鉱石を使用した場合においても、バースティングの発生を抑制することができることを本発明者らは知見した。また、有機バインダを配合すると、乾燥ペレットの+0.2μm開気孔率が高くなっていた。この+0.2μm開気孔率の増加によって、バースティングの発生を抑制することができることを確認した。特に、乾燥ペレットの+0.2μm開気孔率を14%以上にすることで、バースティング率を基準値以下に抑制することができることを知見した。
 造粒直後の生ペレットを乾燥させる過程の概略を図4の模式図を用いて説明する。図4に示すように、ペレットの気孔は、造粒直後の生ペレット中において、水と微粉鉱石(微粒子)が存在する領域に形成される。生ペレットを乾燥させると、水が蒸発しつつ、微粉鉱石が粗大鉱石の間の接点部へ移動して凝集することにより、気孔が形成される。すなわち、気孔の形成には、生ペレット中の水分と微粉鉱石が大きく作用するものとなると考えられる。また、生ペレット中の有機バインダは、水溶液の粘度を高めるため、乾燥時の微粉鉱石の移動を促進させるものと考えられる。
 その結果として、生ペレット造粒時に有機バインダを配合すると、乾燥後において気孔率が高い乾燥ペレットとなり、バースティングの発生を抑制することが可能となる。ところで、有機バインダは高価であるため、実際の操業から見れば、有機バインダの使用量をできる限り少なくすることが、製造コストの観点から好ましい。そこで、本発明においては、結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yに応じた有機バインダの適正な配合割合を、造粒試験とバースティング試験によって求めた。
 なおここでは、バースティングの抑制効果に影響を及ぼす有機バインダの種類や配合割合の効果を合わせて指標化するため、有機バインダA、B、Cを使用し、その水溶液の粘度Xによって、実験結果を整理した。図5に、上記実験結果を整理したもの、すなわち生ペレット中の水溶液粘度X[mPa・s]と上記結晶水含有鉱石の配合割合Y[質量%]との関係を示す。
 図5では、結晶水含有率が5質量%以上である結晶水含有鉱石及び有機バインダを配合しない条件で造粒した生ペレットのバースティング率を基準値(図5の■印)とし、その基準値よりバースティング率が高くなった場合を悪化したもの(図5の×印)とし、基準値よりバースティング率が低くなった場合を改善したもの(図5の○印)として、まとめた。この実験結果より、結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合Yを高めつつも、バースティングの発生を基準値以下に抑制することができる条件範囲を求めたところ、下記式1が得られた。
Figure JPOXMLDOC01-appb-M000016
 表8に本発明の鉄鉱石ペレットの製造方法に従って実施した実施例及び比較例を示す。
Figure JPOXMLDOC01-appb-T000017
 実施例1(原料配合No.1)は、本発明の効果を評価するための基準値である。実施例5、7、8、11、12(原料配合No.5、7、8、11、12)については上記式1を満たし(表8の「適否」に「A」と付した)、比較例2、3、4、6,9、10、13(原料配合No.2、3、4、6、9、10、13)については上記式1を満たさないもの(表8の「適否」に「B」と付した)である。また、バースティング率の「評価」は、基準となる実施例1のバースティング率より低いものを「A」、実施例1のバースティング率以上であるものを「B」とした。なお、バースティング率は低いほどよい。
 原料配合1~3は有機バインダを含まない。原料配合4~9は有機バインダAを含み、原料配合10、11は有機バインダBを、原料配合12、13は有機バインダCをそれぞれ含む。
 表8から上記式1を満たさない比較例では生ペレット中の水溶液粘度が低く、粗大開気孔率の低いペレットとなるため、バースティング率は基準の条件より悪化することとなったと考えられる。
 有機バインダは、上述したように、でんぷんなどの自然物や、CMCなどの化学合成系など様々な種類が挙げられるので、その性状や配合比によって水溶液粘度の向上効果は異なるものとなる。しかし、表8から、様々な種類のうち、いずれかのものを有機バインダとして採用しても、上記式1を満たすように、有機バインダの配合量を調整することで、結晶水含有鉱石を使用する場合においてもバースティングの発生を抑制することができ、鉄鉱石ペレットの元となる生ペレットの生産性を維持及び向上させることができることが分かる。
 以上のように、本発明の一実施形態にかかる鉄鉱石ペレットの製造方法は、鉄鉱石及び副原料を含む原料と有機バインダとを造粒機に投入及び転動させて生ペレットを造粒する工程を備え、上記造粒工程で、上記原料及び上記有機バインダを造粒機に投入する際の上記有機バインダの配合量が下記式1を満たすことを特徴とする。
Figure JPOXMLDOC01-appb-M000018
 ここで、X[mPa・s]は、上記生ペレット中の有機バインダを水に溶解させたときに発現する水溶液の粘度である。Y[質量%]は、上記原料における結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合であり、下記式2で表される量である。
Figure JPOXMLDOC01-appb-M000019
 一般に結晶水含有率が5質量%以上である結晶水含有鉱石を使用すると、バースティングの発生が増加し、生ペレットの生産性が低下する。しかし、本発明によれば、結晶水含有率が5質量%以上である結晶水含有鉱石を配合する場合においても、生ペレットの水溶液粘度X[mPa・s]と上記結晶水含有鉱石の配合比Y[質量%]とを、上記式1を満たすようにすることで、上記結晶水含有鉱石を使用しない操業条件以下まで、バースティングの発生を抑制することができる。
 これにより、劣質原料である結晶水含有鉱石を使用しつつ、鉄鉱石ペレットの生産性を維持することができる。本発明によれば、鉄鉱石と副原料を含む原料を造粒機に装入する際、規定された配合量の有機バインダを装入することで、上記結晶水含有鉱石を用いた場合でも、バースティング特性に優れた生ペレットを製造することができ、鉄鉱石ペレットの生産性を向上させることができる。
 なお、今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。特に、今回開示された実施形態において、明示されていない事項、例えば、運転条件や操業条件、各種パラメータ、構成物の寸法、重量、体積などは、当業者が通常実施する範囲を逸脱するものではなく、通常の当業者であれば、容易に想定することが可能な値を採用している。
1 電気炉
2 アミカゴ
3 昇降装置

 

Claims (1)

  1.  鉄鉱石及び副原料を含む原料と有機バインダとを造粒機に投入及び転動させて生ペレットを造粒する工程を備え、
     上記造粒工程で、上記原料及び上記有機バインダを造粒機に投入する際の上記有機バインダの配合量が下記式1を満たすことを特徴とする鉄鉱石ペレットの製造方法。
    Figure JPOXMLDOC01-appb-M000001
     ここで、X[mPa・s]は、上記生ペレット中の有機バインダを水に溶解させたときに発現する水溶液の粘度である。Y[質量%]は、上記原料における結晶水含有率が5質量%以上である結晶水含有鉱石の配合割合であり、下記式2で表される量である。
    Figure JPOXMLDOC01-appb-M000002
PCT/JP2020/016785 2019-04-23 2020-04-16 鉄鉱石ペレットの製造方法 WO2020218170A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112021018309-4A BR112021018309B1 (pt) 2019-04-23 2020-04-16 Método para produzir pelotas de minérios de ferro

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019081932 2019-04-23
JP2019-081932 2019-04-23
JP2020072579A JP7366832B2 (ja) 2019-04-23 2020-04-14 鉄鉱石ペレットの製造方法
JP2020-072579 2020-04-14

Publications (1)

Publication Number Publication Date
WO2020218170A1 true WO2020218170A1 (ja) 2020-10-29

Family

ID=72942603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016785 WO2020218170A1 (ja) 2019-04-23 2020-04-16 鉄鉱石ペレットの製造方法

Country Status (1)

Country Link
WO (1) WO2020218170A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310026A (ja) * 1989-06-07 1991-01-17 Nippon Yakin Kogyo Co Ltd 粘土質Ni鉱石の団鉱方法
JP2007077484A (ja) * 2005-09-16 2007-03-29 Kobe Steel Ltd 炭材内装塊成化物の製造方法
JP2007138244A (ja) * 2005-11-17 2007-06-07 Nippon Steel Corp 焼結鉱の製造方法
JP2008189994A (ja) * 2007-02-05 2008-08-21 Jfe Steel Kk 造粒焼結原料の製造方法
JP2008261016A (ja) * 2007-04-12 2008-10-30 Nippon Steel Corp 焼結鉱の製造方法
JP2010138445A (ja) * 2008-12-11 2010-06-24 Jfe Steel Corp 造粒焼結原料の予備処理方法
JP2010236081A (ja) * 2009-03-12 2010-10-21 Kobe Steel Ltd 炭材内装塊成化物の製造方法
JP2013082972A (ja) * 2011-10-11 2013-05-09 Nippon Steel & Sumitomo Metal Corp 非焼成含炭塊成鉱の製造方法
WO2017150428A1 (ja) * 2016-03-04 2017-09-08 Jfeスチール株式会社 焼結鉱の製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0310026A (ja) * 1989-06-07 1991-01-17 Nippon Yakin Kogyo Co Ltd 粘土質Ni鉱石の団鉱方法
JP2007077484A (ja) * 2005-09-16 2007-03-29 Kobe Steel Ltd 炭材内装塊成化物の製造方法
JP2007138244A (ja) * 2005-11-17 2007-06-07 Nippon Steel Corp 焼結鉱の製造方法
JP2008189994A (ja) * 2007-02-05 2008-08-21 Jfe Steel Kk 造粒焼結原料の製造方法
JP2008261016A (ja) * 2007-04-12 2008-10-30 Nippon Steel Corp 焼結鉱の製造方法
JP2010138445A (ja) * 2008-12-11 2010-06-24 Jfe Steel Corp 造粒焼結原料の予備処理方法
JP2010236081A (ja) * 2009-03-12 2010-10-21 Kobe Steel Ltd 炭材内装塊成化物の製造方法
JP2013082972A (ja) * 2011-10-11 2013-05-09 Nippon Steel & Sumitomo Metal Corp 非焼成含炭塊成鉱の製造方法
WO2017150428A1 (ja) * 2016-03-04 2017-09-08 Jfeスチール株式会社 焼結鉱の製造方法

Also Published As

Publication number Publication date
BR112021018309A2 (pt) 2021-11-23

Similar Documents

Publication Publication Date Title
EP2239344B1 (en) Self-fluxing pellets for use in a blast furnace and process for the production of the same
JP4887728B2 (ja) 焼結原料の造粒方法
US9988695B2 (en) Method for producing an agglomerate made of fine material containing metal oxide for use as a blast furnace feed material
EP3892744B1 (en) Sintered ore manufacturing method
WO2020218170A1 (ja) 鉄鉱石ペレットの製造方法
JP4935133B2 (ja) フェロコークスおよび焼結鉱の製造方法
JP4630304B2 (ja) 高炉用自溶性ペレットおよびその製造方法
JP7366832B2 (ja) 鉄鉱石ペレットの製造方法
JP2007113088A (ja) 焼結原料の造粒用バインダー及び造粒方法
JP5935979B2 (ja) 焼結鉱製造用擬似粒子の製造方法および焼結鉱の製造方法
JP2008189994A (ja) 造粒焼結原料の製造方法
JP2003096521A (ja) 高アルミナ鉄鉱石配合の焼結鉱及びその製造方法
JPS63219534A (ja) 自溶性ペレットの製造方法
JP2000178660A (ja) 高品質低SiO2 焼結鉱の製造方法
JP4725230B2 (ja) 焼結鉱の製造方法
JP4767388B2 (ja) 高温性状の優れた焼結鉱の製造方法
KR102233326B1 (ko) 탄재 내장 소결광의 제조 방법
JP6887717B2 (ja) 焼結鉱製造用の炭材内装造粒粒子およびそれを用いた焼結鉱の製造方法
JP5126580B2 (ja) 焼結鉱の製造方法
JP7529186B1 (ja) ペレットの製造方法
JP3952988B2 (ja) 低SiO2焼結鉱の製造方法
JP2003277838A (ja) 高炉用焼結原料に用いる高結晶水鉱石、高炉用焼結原料及びその製造方法
JP3709001B2 (ja) 製鉄用非焼成塊成鉱及びその使用方法
JP4501656B2 (ja) 焼結鉱の製造方法
JP2001348622A (ja) 高炉用高品質低SiO2焼結鉱の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20795324

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018309

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021018309

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210915

122 Ep: pct application non-entry in european phase

Ref document number: 20795324

Country of ref document: EP

Kind code of ref document: A1