WO2020217800A1 - 熱交換システム - Google Patents

熱交換システム Download PDF

Info

Publication number
WO2020217800A1
WO2020217800A1 PCT/JP2020/012293 JP2020012293W WO2020217800A1 WO 2020217800 A1 WO2020217800 A1 WO 2020217800A1 JP 2020012293 W JP2020012293 W JP 2020012293W WO 2020217800 A1 WO2020217800 A1 WO 2020217800A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
heat
temperature
heat exchange
heat storage
Prior art date
Application number
PCT/JP2020/012293
Other languages
English (en)
French (fr)
Inventor
伊藤 彰浩
隆弘 南谷
慎一 新田
Original Assignee
Ckd株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ckd株式会社 filed Critical Ckd株式会社
Priority to US17/440,812 priority Critical patent/US20220187027A1/en
Priority to KR1020217033928A priority patent/KR102547057B1/ko
Priority to CN202080030876.4A priority patent/CN113811833B/zh
Priority to JP2021515878A priority patent/JP7404354B2/ja
Publication of WO2020217800A1 publication Critical patent/WO2020217800A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/02Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating liquids, e.g. brine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/021Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material and the heat-exchanging means being enclosed in one container
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0029Heat sinks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat exchange system.
  • an etching process is performed in a state where a wafer mounted on a mounting table is chucked by an electrostatic chuck.
  • the electrostatic chuck is controlled to a specified set temperature by circulating a temperature control fluid adjusted to a predetermined temperature in the chiller device between the chiller device and the electrostatic chuck, and adjusts the wafer to a uniform temperature.
  • the conventional technology has the following problems. That is, in the prior art, since the temperature control fluid flowing through the electrostatic chuck is returned to the chiller device as it is, the temperature difference between the temperature control fluid returned to the chiller device and the temperature control fluid stored in the chiller device is large, and the chiller The load of the device adjusting the temperature of the temperature control fluid was heavy.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a heat exchange system that can reduce the load on the chiller device with energy saving.
  • the heat exchange system has the following configuration.
  • a heat exchange system disposed between a chiller device and a controlled object, which is a forward circuit for supplying a heat medium from the chiller device to the controlled object, and a chiller device from the controlled object to the controlled object.
  • a return circuit that returns the heat medium to, a bypass circuit that bypasses the forward circuit and the return circuit, and a chiller device side from the first connection point where the return circuit and the bypass circuit are connected among the return circuits.
  • a latent heat storage member that stores and dissipates heat, and a second connection point where the forward circuit and the bypass circuit are connected, or the control target side of the forward circuit from the second connection point. It is characterized by having a first flow rate distribution unit for distributing the heat medium on the control target side and the bypass circuit side.
  • the heat exchange system having the above configuration utilizes the heat energy of the latent heat storage member, or merges the heat medium supplied from the chiller device to the controlled object with the heat medium returned from the controlled object to the chiller device. Since the temperature difference between the heat medium returned from the controlled object to the chiller device and the heat medium stored in the chiller device is reduced, the load on the chiller device can be reduced. Further, in the heat exchange system having the above configuration, for example, the latent heat storage member can be regenerated by the heat of the heat medium by flowing the heat medium supplied from the chiller device only to the bypass circuit side by the first flow distribution unit. Therefore, it is possible to reduce the load on the chiller device with energy saving.
  • the return circuit is branched into a first branch circuit and a second branch circuit at a first branch point provided on the upstream side of the first connection point. It has a flow path switching unit which is arranged at the first branch point and supplies the heat medium input from the control object to the return circuit to the first branch circuit or the second branch circuit. That is, the first branch circuit includes the first connection point, is connected to the bypass circuit, communicates with the chiller device, and is further located at a position closer to the chiller device than the first connection point.
  • the latent heat storage member is arranged, and the second branch circuit is connected to the first branch circuit at a third connection point provided at a position on the chiller device side of the latent heat storage member. That is preferable.
  • the heat exchange system having the above configuration, only the heat medium supplied from the chiller device to the controlled object can be supplied to the latent heat storage member to regenerate the latent heat storage member, so that the regeneration efficiency of the latent heat storage member is good.
  • the return circuit is further formed at a second branch point where the first branch circuit is located on the chiller device side of the first connection point.
  • the heat medium that is branched into the branch circuit and the fourth branch circuit, is provided at the second branch point, and flows into the first branch circuit from the bypass circuit, is transferred to the third branch circuit and the fourth branch.
  • the third branch circuit has the third connection point, is connected to the second branch circuit, and communicates with the chiller device. It is preferable that the 4-branch circuit is connected to the second branch circuit and the latent heat storage member is arranged.
  • the heat exchange system having the above configuration can avoid unnecessary regeneration of the latent heat storage member and enhance the energy saving effect.
  • the heat medium is a low-temperature medium for cooling the controlled object
  • the latent heat storage member has a heat storage temperature different from that of the controlled object.
  • the control target is used.
  • the heat medium input to the return circuit is cooled by the heat storage energy and the flow path is switched so that the flow path switching unit supplies the heat medium to the second branch circuit, the first branch from the bypass circuit. It is preferably regenerated by the heat medium that has flowed into the circuit.
  • the heat exchange system having the above configuration, even when the temperature control member is cooled by the heat medium, it is possible to improve the regeneration efficiency of the latent heat storage member and reduce the load on the chiller device.
  • the heat medium is a high-temperature medium for heating the controlled object
  • the latent heat storage member has a heat storage temperature of the controlled object.
  • the heat exchange system having the above configuration, even when the temperature control member is heated by the heat medium, it is possible to improve the regeneration efficiency of the latent heat storage member and reduce the load on the chiller device.
  • the controlled object is a temperature control member installed in a reaction vessel of a semiconductor manufacturing apparatus and controlling the temperature of a wafer. It is preferable that there is.
  • the latent heat storage member brings the temperature of the heat medium returned from the temperature control member close to the temperature of the heat medium stored in the chiller device, and then returns the heat medium to the chiller device. Therefore, according to the heat exchange system having the above configuration, the effect of reducing the load on the chiller device can be further enhanced.
  • the latent heat storage member is filled with a piping member having a flow path through which the heat medium flows and a latent heat storage material. It is preferable that the heat storage unit has a heat exchange member arranged in surface contact with the piping member.
  • the heat exchange system having the above configuration exchanges heat with the heat exchange member when the heat medium flows through the piping member, the heat exchange efficiency between the heat medium and the heat exchange member can be improved.
  • the first metal fiber sheet is internally provided in the piping member in a state of being in contact with the inner wall of the flow path, and the heat medium is introduced into the metal fiber sheet. It is preferable to have a gap to be formed.
  • the heat medium flows through the gaps of the metal fiber sheet through the piping member and exchanges heat with the heat exchange member via the metal fiber sheet and the piping member, so that the heat medium flows through the heat storage unit. It is possible to improve the heat exchange efficiency between the heat medium and the heat exchange member while suppressing the pressure loss that occurs at that time.
  • the piping member and the heat exchange member have a thin rectangular parallelepiped shape and are laminated.
  • the heat exchange system having the above configuration can increase the heat exchange rate between the piping member and the heat exchange member while ensuring the flow rate of the heat medium.
  • the heat exchange member is arranged in the internal space and an accommodating body provided with an internal space filled with the latent heat storage material. It is preferable that the second metal fiber sheet is in contact with the container.
  • the heat energy of the latent heat storage material is easily transferred to the housing through the metal fiber sheet, and the heat medium and the latent heat storage material efficiently exchange heat, so that the latent heat storage member is made compact.
  • the load on the chiller device can be reduced.
  • the heat exchange system of another aspect of the present invention includes a first chiller device for storing a first heat medium, a second chiller device for storing a second heat medium having a temperature higher than that of the first heat medium, and a temperature control device.
  • a heat exchange system disposed between a controlled object whose temperature is controlled by using a fluid, and a main circulation circuit for circulating the temperature control fluid to the controlled object, which is a confluence.
  • a main circulation circuit including a divergence portion provided between the merging portion and the controlled object, and a first going circuit for supplying the first heat medium from the first chiller device to the merging portion.
  • a first return circuit that returns the temperature control fluid from the diversion section to the first chiller device, a first bypass circuit that bypasses the first going circuit and the first return circuit, and the first return circuit.
  • a first latent heat storage member which is arranged at a position on the first chiller device side from a low temperature side connection point where the first return circuit and the first bypass circuit are connected to store heat and dissipate heat
  • the second A second forward circuit that supplies the second heat medium from the chiller device to the merging portion, a second return circuit that returns the temperature control fluid from the chiller device to the second chiller device, the second forward circuit, and the above.
  • the second bypass circuit that bypasses the second return circuit and the position of the second return circuit that is closer to the second chiller device than the high temperature side connection point where the second return circuit and the second bypass circuit are connected.
  • a second latent heat storage member that is arranged to store and dissipate heat, and has a higher heat storage temperature than the first latent heat storage member, and the second latent heat storage member that is arranged at the confluence and is located on the control target side.
  • a flow rate distribution unit that distributes the temperature control fluid, the first heat medium, and the second heat medium on the first bypass circuit side and the second bypass circuit side, and a main circulation circuit side that is arranged on the diversion unit. It is characterized by having a flow dividing control unit for dividing the temperature control fluid on the first return circuit side and the second return circuit side.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. It is an enlarged view of part B of FIG.
  • It is an electric block diagram of a heat exchange system. It is a circuit diagram explaining the steady operation operation. It is a circuit diagram explaining a heat exchange operation. It is a table which shows the specific example of the switching condition, and is applied to the unit which regulates the temperature of a temperature control member by supplying a heat medium lower than the set temperature of a temperature control member to a temperature control member.
  • FIG. 1 is a diagram showing a schematic configuration of a heat exchange system 1 according to a first embodiment of the present invention.
  • a heat exchange system 1 is provided on a circulation path for circulating a refrigerant between a temperature control member 110 and a chiller apparatus 120.
  • the refrigerant is an example of a "heat medium”.
  • the chiller device 120 is a device that adjusts the refrigerant to a predetermined temperature and stores it.
  • the temperature control member 110 is an example of a “control object” whose temperature is controlled by the flow of the refrigerant supplied from the chiller device 120.
  • the chiller device 120 includes a tank 122 and a pump 124.
  • the tank 122 stores a refrigerant adjusted to a predetermined temperature.
  • the pump 124 sends the refrigerant stored in the tank 122 to the heat exchange system 1 at a predetermined flow rate.
  • the chiller device 120 of the present embodiment has a chiller ability to control the temperature of the refrigerant to be lower than the set temperature of the temperature control member 110.
  • the temperature control member 110 is, for example, internally installed in a reaction vessel (not shown) that performs an etching process to control the temperature of the wafer.
  • the temperature control member 110 includes a heater 112 and a temperature sensor 114.
  • the heater 112 heats the temperature control member 110.
  • the temperature sensor 114 measures the temperature of the temperature control member 110.
  • the temperature control member 110 is supplied with a refrigerant from the tank 122 of the chiller device 120 via the heat exchange system 1 according to the temperature measured by the temperature sensor 114, and is adjusted to a set temperature.
  • the refrigerant flowing through the temperature control member 110 is returned to the tank 122 of the chiller device 120 via the heat exchange system 1.
  • the heat exchange system 1 includes a forward circuit L1, a return circuit L2, and a bypass circuit L3. Further, the heat exchange system 1 includes a first temperature sensor 6, a second temperature sensor 7, a flow path switching unit 2, a flow rate distribution unit 3, a flow rate sensor 5, a heat storage unit 4, and a throttle valve 8. I have.
  • the flow rate distribution unit 3 is an example of the “first flow rate distribution unit”.
  • the heat storage unit 4 is an example of a “latent heat storage member”.
  • the forward circuit L1 communicates the output port 120b of the chiller device 120 with the input unit 110a of the temperature control member 110, and supplies the refrigerant from the chiller device 120 to the temperature control member 110.
  • the return circuit L2 is branched into the first branch circuit L21 and the second branch circuit L22 at the branch point P4.
  • the branch point P4 is an example of the "first branch point”.
  • the return circuit L2 communicates the output unit 110b of the temperature control member 110 with the input port 120a of the chiller device 120 via the first branch circuit L21, and returns the refrigerant supplied to the temperature control member 110 to the chiller device 120.
  • the second branch circuit L22 is connected to the first branch circuit L21 at the third connection point P3.
  • the bypass circuit L3 connects the outgoing circuit L1 and the first branch circuit L21 of the return circuit L2, and supplies the refrigerant from the outgoing circuit L1 to the first branch circuit L21 of the return circuit L2 without passing through the temperature control member 110. ..
  • the first temperature sensor 6 is arranged in the return circuit L2.
  • the first temperature sensor 6 measures the temperature (first temperature) of the refrigerant input from the temperature control member 110 to the return circuit L2.
  • the return circuit L2 is branched into the first branch circuit L21 and the second branch circuit L22 at the branch point P4 located on the chiller device side (downstream side) of the first temperature sensor 6.
  • the flow path switching portion 2 is arranged at the branch point P4.
  • the flow path switching unit 2 includes a first on-off valve 21 and a second on-off valve 22.
  • the first on-off valve 21 is arranged in the first branch circuit L21
  • the second on-off valve 22 is arranged in the second branch circuit L22.
  • the first branch circuit L21 communicates with the input port 120a of the chiller device 120.
  • the heat storage unit 4 is arranged between the first connection point P1 connected to the bypass circuit L3 and the third connection point P3 connected to the second branch circuit L22.
  • the throttle valve 8 is arranged on the chiller device 120 side (downstream side) from the third connection point P3.
  • the heat storage unit 4 stores heat energy during a phase change between a solid and a liquid.
  • the heat storage unit 4 heats the refrigerant by dissipating heat to the refrigerant by utilizing the heat storage energy according to the temperature of the refrigerant flowing through the first branch circuit L21.
  • the heat storage unit 4 regenerates the heat storage energy by absorbing heat from the refrigerant.
  • the specific configuration of the heat storage unit 4 will be described later.
  • the throttle valve 8 adjusts the pressure loss in the system for circulating the refrigerant between the temperature control member 110 and the chiller device 120. That is, the throttle valve 8 adjusts the pressure of the refrigerant input to the input port 120a of the chiller device 120.
  • the second branch circuit L22 is connected to a third connection point P3 provided on the downstream side of the heat storage unit 4 of the first branch circuit L21, and forms a flow path that bypasses the heat storage unit 4.
  • the bypass circuit L3 is connected to a second connection point P2 provided in the forward circuit L1 and a first connection point P1 provided on the temperature control member 110 side (upstream side) from the heat storage unit 4 of the first branch circuit L21. doing.
  • a flow rate distribution unit 3 is provided at the second connection point P2.
  • the flow rate distribution unit 3 may be provided at a position on the forward circuit L1 that is closer to the temperature control member 110 than the second connection point P2.
  • the flow rate distribution unit 3 includes a first opening proportional valve 31 and a second opening proportional valve 32.
  • the first opening proportional valve 31 is arranged in the forward circuit L1
  • the second opening proportional valve 32 is arranged in the bypass circuit L3.
  • the flow rate distribution unit 3 operates in conjunction with the first opening proportional valve 31 and the second opening proportional valve 32, so that the flow rate distribution unit 3 has the first opening proportional valve 31 and the second opening proportional valve 32.
  • the total opening degree of 32 being the same, that is, with the pressure loss of the refrigerant generated at the second connection point P2 being substantially constant, the ratio of distributing the refrigerant to the temperature control member 110 side and the bypass circuit L3 side is relatively high. Change.
  • the flow rate distribution unit 3 may be composed of one spool valve.
  • a flow rate sensor 5 and a second temperature sensor 7 are arranged on the temperature control member 110 side (downstream side) of the flow rate distribution unit 3.
  • the flow rate sensor 5 measures the flow rate of the refrigerant flowing from the flow rate distribution unit 3 to the temperature control member 110.
  • the flow rate sensor 5 measures the flow rate of the refrigerant circulating between the temperature control member 110 and the chiller device 120.
  • the second temperature sensor 7 measures the temperature (second temperature) of the refrigerant flowing from the flow rate distribution unit 3 to the temperature control member 110.
  • the arrangement of the flow rate sensor 5 and the second temperature sensor 7 may be reversed. Further, the flow rate sensor 5 may be omitted.
  • FIG. 2 is an external perspective view of the heat storage unit 4.
  • FIG. 3 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 4 is an enlarged view of part B of FIG.
  • the shape and dimensional ratio of the heat storage unit 4 and its constituent members are not limited to those shown in FIGS. 2 and 3.
  • FIG. 4 is schematically shown in order to make it easier to see the state in which the refrigerant has entered the voids 4123 of the metal fiber sheet 412, and the shapes and densities of the metal fibers 4121 and the voids 4123 are not limited thereto.
  • the heat storage unit 4 of this embodiment applies, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 2019-9433.
  • the heat storage unit 4 has, for example, a box-shaped appearance, and includes a flow path forming member 41, a heat exchange member 42, and a heat insulating material 43.
  • the flow path forming member 41 forms a flow path through which the refrigerant flows, and constitutes a part of the first branch circuit L21.
  • the heat exchange member 42 exchanges heat with the refrigerant via the flow path forming member 41.
  • the flow path forming member 41 and the heat exchange member 42 have a thin rectangular parallelepiped shape and have substantially the same external dimensions. Therefore, the flow path forming member 41 and the heat exchange member 42 can be stacked in a block shape.
  • the flow path forming member 41 and the heat exchange member 42 may have different dimensions in the thickness direction as long as the dimensions of the surfaces that come into contact with each other are the same.
  • the rectangular parallelepiped shape is not limited to a strict rectangular parallelepiped shape, and for example, the corners may be chamfered or the like.
  • the flow path forming member 41 and the heat exchange member 42 are alternately stacked and arranged so that the heat exchange members 42 are arranged at both ends in the stacking direction.
  • one flow path forming member 41 is arranged between the three heat exchange members 42, but the number of the heat exchange member 42 and the flow path forming member 41 is not limited to this.
  • the heat insulating material 43 is provided so as to cover the outer periphery of the stacked flow path forming member 41 and the heat exchange member 42.
  • the flow path forming member 41 and the heat exchange member 42 are shielded from external heat by the heat insulating material 43.
  • the flow path forming member 41, the heat exchange member 42, and the heat insulating material 43 will be described in detail.
  • the flow path forming member 41 includes a piping member 411 and a metal fiber sheet 412.
  • the piping member 411 has a rectangular parallelepiped shape in which the upper surface located on the upper side in the drawing and the lower surface located on the lower side in the drawing have a large area, and the upper surface and the lower surface are connected by a pair of opposite side surfaces. Eggplant.
  • a flow path through which the refrigerant flows is formed by a pair of side surfaces of the upper surface and the lower surface.
  • the flow path surface 4111 is formed so that the cross-sectional shape of the flow path when cut in a direction orthogonal to the flow path axial direction is a horizontally long square shape in order to increase the flow path cross-sectional area.
  • the piping member 411 is made of a material having high thermal conductivity, such as stainless steel, copper, and aluminum.
  • the piping member 411 may be formed of the same material, but may be formed of a different material.
  • the surfaces having a large area in contact with the heat exchange member 42 (upper surface and lower surface) may be formed of a material having high thermal conductivity, and the pair of opposing side surfaces may be formed of another material such as ceramic or resin.
  • the metal fiber sheet 412 is formed by forming the metal fiber 4121 into a sheet shape.
  • the metal fiber sheet 412 uses, for example, the technique disclosed in Japanese Patent Application Laid-Open No. 2019-9433.
  • the metal fiber sheet 412 may be composed of the metal fiber 4121 alone, or may be configured in combination with a fiber other than the metal fiber 4121.
  • the metal fiber 4121 is preferably formed of a material having high thermal conductivity, such as stainless steel, copper, and aluminum, in order to increase the heat exchange efficiency.
  • the metal fiber 4121 of the present embodiment is a copper fiber having an excellent balance between rigidity and plastic deformability.
  • the metal fibers 4121 are physically fixed to each other to form a binding portion C1, and the binding portion C1 forms a gap 4123 between the metal fibers 4121.
  • the metal fiber 4121 is sintered at the binding portion C1 in order to stabilize the thermal conductivity and homogeneity of the metal fiber sheet 412.
  • the piping member 411 is sintered in a manner that accommodates the metal fiber sheet 412, and includes a binding portion C2 that binds the metal fiber sheet 412 and the flow path surface 4111.
  • the metal fibers 4121 may be directly bonded to each other, or may be indirectly bonded to each other via another substance.
  • the binding portion C2 may be directly bound to the piping member 411 and the metal fiber 4121, or may be indirectly bound via another substance.
  • the flow path forming member 41 when the refrigerant flows into the opening 413 located on the left side in the drawing in FIG. 3, the refrigerant is introduced into the gap 4123 of the metal fiber sheet 412, and the opening 414 located on the right side in the drawing. Is discharged from.
  • innumerable voids 4123 are formed between the fine metal fibers 4121, so that the pressure loss when the refrigerant flows through the piping member 411 is small.
  • the refrigerant and the piping member 411 transfer heat not only through the flow path surface 4111 but also through the metal fibers 4121 arranged in the flow path. Therefore, the flow path forming member 41 has good heat exchange efficiency between the refrigerant and the heat exchange member 42, and the piping member 411 tends to quickly reach the same temperature as the refrigerant.
  • the heat exchange member 42 includes an accommodating body 421 and a latent heat storage material 422.
  • the accommodating body 421 has a thin rectangular parallelepiped shape in which a pair of large areas are connected by four side surfaces, and includes an internal space 4211 filled with a latent heat storage material 422.
  • the housing 421 may be formed of a material having good thermal conductivity such as metal. Further, for example, the housing body 421 may be a thinly molded ceramic resin or the like. Further, the housing 421 may be formed of metal and a material other than metal.
  • an injection port 4212 for injecting the latent heat storage material 422 into the internal space 4211 is sealed by a plug 4213. The position and shape of the injection port 4212 are not limited to this.
  • the heat storage temperature and heat storage energy of the heat exchange member 42 can be changed depending on the components and component ratios of the latent heat storage material 422.
  • the heat exchange member 42 can have a heat storage temperature of 9.9 ° C. and a heat storage amount of 163.8 kJ / kg.
  • the latent heat storage material 422 whose heat storage temperature is higher than the temperature of the refrigerant stored in the chiller device 120 and lower than the set temperature of the temperature control member 110 is used.
  • FIG. 5 is an electric block diagram of the heat exchange system 1.
  • the operation of the heat exchange system 1 is automatically controlled by the controller 11.
  • the controller 11 is connected to the temperature sensor 114, the flow rate sensor 5, the first temperature sensor 6, and the second temperature sensor 7, and acquires information such as the flow rate and the temperature of the refrigerant. Further, the controller 11 is connected to the first on-off valve 21 and the second on-off valve 22 of the flow path switching unit 2 to supply a voltage to perform the valve opening operation, while stopping the voltage supply to perform the valve closing operation. To do.
  • the controller 11 causes the first on-off valve 21 and the second on-off valve 22 to perform opening / closing operations relatively, and communicates the return circuit L2 with either the first branch circuit L21 or the second branch circuit L22.
  • controller 11 connects to the first opening proportional valve 31 and the second opening proportional valve 32 of the flow rate distribution unit 3 and the throttle valve 8 and outputs a command signal for controlling the valve opening. Further, the controller 11 is connected to the communication interface (communication IF) 12.
  • the host controller 130 is communicably connected to the controller 11 via the communication IF 12, and includes information on changes in the set temperature of the temperature control member 110, information on the temperature of the temperature control member 110, information on heat input by plasma, and the like. Is transmitted to the controller 11.
  • the host controller 130 may have all the functions of the controller 11 and the controller 11 may be omitted. Further, the host controller 130 may have a part of the functions of the controller 11. Further, for example, when the first on-off valve 21 and the second on-off valve 22 are operated by air pressure or the like, the controller 11 does not always supply a voltage to the first on-off valve 21 and the second on-off valve 22.
  • the command signal may be a command voltage, a command current, or a signal output by serial communication.
  • the heat exchange system 1 performs a steady operation operation and a heat exchange operation.
  • the "steady operation operation” means that the heat exchange system 1 controls the flow of the refrigerant so that the latent heat storage material 422 of the heat storage unit 4 absorbs the heat of the refrigerant and is regenerated (stores heat).
  • the “heat exchange operation” refers to an operation in which the heat exchange system 1 controls the flow of the refrigerant so that the latent heat storage material 422 of the heat storage unit 4 dissipates heat to the refrigerant.
  • the controller 11 closes the first on-off valve 21 of the flow path switching unit 2 and opens the second on-off valve 22. Then, for example, the controller 11 acquires the difference between the temperature of the temperature control member 110 and the set temperature from the host controller 130, and according to the difference, the first opening proportional valve 31 and the second opening of the flow rate distribution unit 3 are opened. The valve opening degree of the degree proportional valve 32 is changed in conjunction with it.
  • the controller 11 outputs a command signal for setting the valve opening degree to 25% to the first opening degree proportional valve 31 so as to cool the temperature control member 110 by the amount heated by the heater 112, and the second opening degree.
  • a command signal with a valve opening of 75% is output to the proportional valve 32.
  • the refrigerant output from the output port 120b of the chiller device 120 is 25% distributed to the temperature control member 110 side and 75% to the bypass circuit L3 side.
  • the heat exchange system 1 has, for example, the first opening proportional valve 31 and the second temperature according to the difference between the first temperature measured by the first temperature sensor 6 and the second temperature measured by the second temperature sensor 7.
  • the valve opening degree of the opening degree proportional valve 32 may be adjusted.
  • the refrigerant distributed from the flow rate distribution unit 3 to the temperature control member 110 side exchanges heat with the temperature control member 110 when flowing through the temperature control member 110 heated by the heater 112, so that the refrigerant is sent to the input unit 110a of the temperature control member 110.
  • the temperature is higher when the temperature is output from the output unit 110b of the temperature control member 110 than when the temperature is input.
  • the refrigerant output from the output unit 110b is input to the return circuit L2. Since the first on-off valve 21 is closed and the second on-off valve 22 is opened, the flow path switching unit 2 arranged in the return circuit L2 flows to the second branch circuit L22 side and the heat storage unit 4 It is returned to the chiller device 120 without passing through.
  • the refrigerant distributed from the flow rate distribution unit 3 to the bypass circuit L3 side flows into the first branch circuit L21 via the first connection point P1 and is returned to the chiller device 120 through the heat storage unit 4. ..
  • the refrigerant passes through the heat storage unit 4 through the void 4123 of the metal fiber sheet 412 provided internally in the piping member 411.
  • the heat of the refrigerant is transmitted to the piping member 411 via the flow path surface 4111, is transmitted to the metal fiber 4121 of the metal fiber sheet 412, and is transferred to the piping member 411 via the binding portions C1 and C2. Therefore, the temperature of the piping member 411 and the metal fiber sheet 412 quickly reaches the same temperature as that of the refrigerant.
  • the heat exchange member 42 and the piping member 411 are in contact with each other having a large area.
  • the latent heat storage material 422 filled in the heat exchange member 42 has a large area for heat exchange with the piping member 411 via the accommodating body 421, and absorbs the heat of the refrigerant through the piping member 411 and the metal fiber sheet 412. , Will be played. Since the heat storage unit 4 is covered with the heat insulating material 43, heat dissipation loss is unlikely to occur.
  • the heat storage unit 4 is arranged between the first connection point P1 and the third connection point P3. Therefore, during the steady operation operation, the refrigerant output from the chiller device 120 can flow through the heat storage unit 4 more than the refrigerant heated by the temperature control member 110. Therefore, in the heat storage unit 4, the latent heat storage material 422 of the heat exchange member 42 absorbs heat from the cold refrigerant stored in the tank 122 of the chiller device 120 and is efficiently regenerated. Further, since the heat storage unit 4 is regenerated by using the refrigerant stored in the chiller device 120, it is regenerated with energy saving.
  • the refrigerant flowing through the second branch circuit L22 merges with the refrigerant flowing through the heat storage unit 4 at the third connection point P3, the temperature is lowered, and then the refrigerant is returned to the chiller device 120. Therefore, even if the refrigerant flowing from the temperature control member 110 into the return circuit L2 is returned to the chiller device 120 without passing through the heat storage unit 4, the load of cooling the refrigerant input by the chiller device 120 to the input port 120a is small. I'm done.
  • the controller 11 opens the first on-off valve 21 of the flow path switching unit 2 and closes the second on-off valve 22 of the flow path switching unit 2. Then, the controller 11 acquires the difference between the temperature of the temperature control member 110 and the set temperature from the host controller 130, and the first opening proportional valve 31 and the second opening proportional to the flow rate distribution unit 3 according to the difference.
  • the valve opening degree of the valve 32 is changed in conjunction with it. In this case, since it is necessary to quickly lower the temperature of the temperature control member 110, the controller 11 transmits, for example, a command signal for setting the valve opening to 95% to the first opening proportional valve 31, and the second opening. A command signal with a valve opening of 5% is transmitted to the proportional valve 32. In this case, the refrigerant output from the output port 120b of the chiller device 120 is distributed 95% to the temperature control member 110 side and 5% to the bypass circuit L3 side.
  • the refrigerant distributed from the flow rate distribution unit 3 to the temperature control member 110 side flows into the return circuit L2 in the same manner as during the steady operation operation.
  • the refrigerant flowing into the return circuit L2 has a larger flow rate and a larger amount of heat than during steady operation. Since the first on-off valve 21 of the flow path switching unit 2 is opened and the second on-off valve 22 of the flow path switching unit 2 is closed, the refrigerant flowing into the return circuit L2 is on the first branch circuit L21 side. And returned to the chiller device 120 via the heat storage unit 4.
  • the flow rate distribution unit 3 distributes the refrigerant to the return circuit L2 side, it is distributed to the first branch circuit L21 to the first connection point P1 on the upstream side of the heat storage unit 4 and from the flow rate distribution unit 3 to the bypass circuit L3 side. Refrigerant flows in. Therefore, the refrigerant flowing from the bypass circuit L3 into the first branch circuit L21 merges with the cold refrigerant flowing from the bypass circuit L3 into the first connection point P1 before flowing into the heat storage unit 4, and the temperature can be lowered.
  • the refrigerant flows through the flow path forming member 41 of the heat storage unit 4 and flows into the input port 120a of the chiller device 120.
  • the refrigerant flows through the void 4123 of the metal fiber sheet 412 installed in the piping member 411, and when passing through the heat storage unit 4, heat exchanges with the heat exchange member 42 via the metal fiber 4121 and the piping member 411.
  • the heat of the refrigerant is transferred from the metal fibers 4121 to the piping member 411 via the binding portions C1 and C2, and the temperature quickly reaches the same level as that of the refrigerant.
  • the heat exchange member 42 transfers the heat of the latent heat storage material 422 to the piping member 411 via the housing 421, and cools the refrigerant through the piping member 411 and the metal fiber sheet 412. In this way, the refrigerant can efficiently exchange heat with the latent heat storage material 422 via the piping member 411 and the metal fiber 4121, so that the refrigerant is quickly cooled to a temperature similar to that of the latent heat storage material 422.
  • the heat storage temperature rises in response to applying heat to the refrigerant during the heat exchange operation.
  • the chiller device 120 the refrigerant whose temperature is lower than the temperature when it flows into the return circuit L2 from the temperature control member 110 flows into the input port 120a. Therefore, even when the chiller device 120 circulates the refrigerant with the temperature control member 110, the load of cooling the refrigerant input to the input port 120a is reduced.
  • the controller 11 of the heat exchange system 1 has, for example, a steady operation operation and a heat exchange operation according to the amount of heat of the refrigerant returned to the chiller device 120, that is, a value obtained by multiplying the temperature and the flow rate of the refrigerant returned to the chiller device 120. Automatically switches.
  • FIG. 8 shows a specific example of the condition for switching the operation (hereinafter referred to as “switching condition”).
  • the heat exchange system 1 of this embodiment is used in a unit that regulates the temperature of the temperature control member 110 by supplying a refrigerant having a temperature lower than the set temperature of the temperature control member 110 to the temperature control member 110. Therefore, the controller 11 automatically switches the operation of the heat exchange system 1 by using, for example, the switching condition shown in FIG. 8A.
  • the controller 11 provides the set temperature drop information for lowering the set temperature of the temperature control member 110 from the current value from the host controller 130. May be received. Further, for example, the controller 11 may detect that the temperature control member 110 has generated a steep temperature rise based on the temperature measurement value received from the temperature sensor 114. Further, for example, there is a case where the controller 11 receives heat input on information indicating that the temperature control member 110 is heated by plasma or the like from the host controller 130. Further, for example, the controller 11 may set the flow rate distribution rate for distributing the refrigerant output from the chiller device 120 to the temperature control member 110 side in the flow rate distribution unit 3 to a predetermined value or more.
  • the temperature of the temperature control member 110 is stable at the set temperature based on the temperature measurement value received by the controller 11 from the temperature sensor 114. It may have been detected. Further, for example, the controller 11 may have a built-in timer for measuring the time, and the set time may have elapsed since the heat exchange operation was started. Further, for example, the controller 11 may set the flow rate distribution rate for distributing the refrigerant output from the chiller device 120 to the temperature control member 110 side in the flow rate distribution unit 3 to be less than a predetermined value.
  • the set temperature decrease information may be received before the set temperature is lowered, or may be received after the set temperature is lowered.
  • the heat input on information may be received before heat input or after heat input.
  • the controller 11 may switch the steady operation operation to the heat exchange operation by the upper controller 130 detecting a steep temperature rise and receiving the detection result from the upper controller 130.
  • the embodiment is configured in the same manner as the heat exchange system 1 of the present embodiment.
  • the comparative example has the same configuration as the heat exchange system 1 of the present embodiment except that the second branch circuit L22, the flow path switching unit 2, and the heat storage unit 4 are not provided.
  • the chiller device 120 stores the refrigerant at ⁇ 20 ° C. in the tank 122, and uses the pump 124 to send the refrigerant from the tank 122 to the outgoing circuit L1 at a flow rate of 35 L / min.
  • the heat storage unit 4 of the embodiment uses a heat exchange member 42 filled with a latent heat storage material 422 having a heat storage temperature of ⁇ 10 ° C.
  • the set temperature of the temperature control member 110 is set to 60 ° C. or 0 ° C., and the temperature of the temperature control member 110 is adjusted to the set temperature by the heater 112 and the refrigerant distributed by the flow rate distribution unit 3 to the temperature control member 110 side. did.
  • FIG. 9 shows an example of the operation of the comparative example and the change in the refrigerant temperature. An example of the operation of the embodiment and the change in the refrigerant temperature are shown in FIG.
  • the flow rate distribution ratio to the temperature control member 110 side is stable, that is, the temperature of the temperature control member 110 is stable, and the first opening proportional valve 31
  • the output value of the command signal output to is stable (Y21, Y44, Y64, Y75, Y85, Y104), as shown in Z2, Z4, Z6, Z10 in the figure, from the output port 120b of the chiller device 120.
  • the temperature of the output refrigerant is stable at -20 ° C.
  • the flow rate distribution ratio to the temperature control member 110 side sharply decreases, that is, in order to raise the temperature of the temperature control member 110, the output value of the command signal to the first opening proportional valve 31 is set. Even when the temperature is rapidly reduced (Y74, Y84, Y114), the temperature of the refrigerant output from the output port 120b of the chiller device 120 is stable at ⁇ 20 ° C., as shown in Z6 and Z10 in the figure.
  • the refrigerant distributed to the bypass circuit L3 side has a larger flow rate than the refrigerant distributed to the temperature control member 110 side, so that the amount of heat of the refrigerant input to the input port 120a of the chiller device 120 is small, and the chiller This is considered to be because the load applied to the device 120 is small.
  • the temperature control member 110 changes the set temperature from 60 ° C. to 0 ° C., that is, when the host controller receives information for changing the set temperature of the temperature control member 110 from 60 ° C. to 0 ° C. (X3), or when the temperature control member 110 causes a steep temperature rise due to the plasma being turned on, that is, when heat input information is received from the host controller (X5, X9), the temperature control member 110 moves to the temperature control member 110 side.
  • the flow rate distribution ratio of is rapidly increased (Y34, Y54, Y94). That is, the output value of the command signal to the first opening proportional valve 31 suddenly increases. In this case, the temperature of the refrigerant output from the output port 120b of the chiller device 120 rises sharply as shown in Z3, Z5, and Z9 in the figure.
  • the chiller device 120 can cope with the increase in the amount of heat of the refrigerant. Probably because it does not have the ability.
  • the next process is performed after waiting for the temperature of the refrigerant output from the output port 120b of the chiller apparatus 120 to stabilize at ⁇ 20 ° C. Therefore, when the peak value is large as in the comparative example, the takt time of the semiconductor manufacturing apparatus becomes long. If the chiller capacity of the chiller device 120 is increased, the tact time can be shortened, but the chiller device 120 becomes larger. Since the semiconductor manufacturing apparatus is required to be compact, it is not preferable to increase the size of the chiller apparatus 120. Even when the plasma energy becomes large, the chiller capacity of the chiller device 120 is insufficient, and the same problem as described above may occur.
  • the flow rate distribution ratio to the temperature control member 110 side is stable (Y21, Y44, Y64, Y75, Y85, Y104) or the temperature control.
  • the first on-off valve 21 is closed and the second on-off valve 22 is opened to perform a steady operation operation (Y74, Y84, Y114).
  • the latent heat storage material 422 is regenerated by the refrigerant output from the output port 120b of the chiller device 120 during the steady operation operation (Y28, Y48, Y68, Y108).
  • the temperature of the refrigerant output from the output port 120b is stable at ⁇ 20 ° C. during steady operation (Z2, Z4, Z6, S10).
  • the temperature is higher than when it is output from the output port 120b of the chiller device 120.
  • the heat storage temperature of the latent heat storage material 422 is ⁇ 10 ° C.
  • the temperature difference between the refrigerant flowing through the heat storage unit 4 and the refrigerant output from the output port 120b is smaller than that of the refrigerant flowing through the temperature control member 110. Therefore, the chiller device 120 can sufficiently regenerate the heat storage unit 4 with the chiller capacity required to cool the refrigerant flowing through the temperature control member 110.
  • the first step is made. 1
  • the on-off valve 21 is switched from the valve closed state to the valve open state, and the second on-off valve 22 is switched from the valve open state to the valve closed state, so that the steady operation operation is automatically switched to the heat exchange operation (Y32, Y33, Y52, Y53, Y92, Y93).
  • the flow rate distribution unit 3 operates so as to increase the flow rate of the refrigerant supplied to the temperature control member 110 side in order to lower the temperature of the temperature control member 110 (Y34, Y54, Y94).
  • the temperature of the refrigerant output from the output port 120b of the chiller device 120 rises, but the peak value thereof is smaller than that of the comparative example.
  • the flow rate of the refrigerant input from the temperature control member 110 to the return circuit L2 increases from the steady operation operation, and the amount of heat increases, as in the comparative example.
  • the refrigerant is returned to the chiller device 120 after the temperature is lowered by exchanging heat with the latent heat storage material 422 of the heat storage unit 4. Therefore, in the chiller device 120, the amount of heat of the refrigerant input to the input port 120a is smaller than in the comparative example. Therefore, in the embodiment, the refrigerant input to the input port 120a by the chiller device 120 can be easily cooled to near ⁇ 20 ° C., and the peak value of the temperature of the refrigerant output from the output port 120b can be suppressed as compared with the comparative example.
  • the time required to stabilize the temperature of the refrigerant when the peak value is generated (t3x, t5x, t9x in the figure) is shorter than the time in the comparative example (t3, t5, t9).
  • the semiconductor manufacturing apparatus used can have a shorter takt time than the semiconductor manufacturing apparatus using the comparative example. Further, since it is not necessary to increase the size of the chiller device 120 to change the chiller capacity, the size of the semiconductor manufacturing device can be maintained. Further, even when the plasma energy becomes large, if the latent heat storage material 422 of the heat storage unit 4 is changed, it is not necessary to replace the chiller device 120.
  • the heat storage unit 4 Since the heat exchange system 1 is automatically switched to the steady operation operation after the heat exchange operation, the heat storage unit 4 utilizes the heat of the refrigerant by the steady operation operation for the heat storage energy lost during the heat exchange operation. Will be recovered automatically. Therefore, the heat exchange system 1 can continuously reduce the load on the chiller device 120 with energy saving.
  • the heat exchange system 1 of the present embodiment utilizes the thermal energy of the heat storage unit 4 and returns the refrigerant supplied from the chiller device 120 to the temperature control member 110 from the temperature control member 110 to the chiller device 120.
  • the temperature difference between the refrigerant returned from the temperature control member 110 to the chiller device 120 and the refrigerant stored in the chiller device 120 is reduced by merging with the refrigerant, so that the load on the chiller device 120 is reduced. can do.
  • the chiller device 120 since the load is reduced, the chiller device 120 may have a chiller capacity lower than the temperature of the refrigerant output from the temperature control member 110, and a miniaturized one can be used.
  • the flow distribution unit 3 allows the refrigerant supplied from the chiller device 120 to flow to the bypass circuit L3 side, so that the heat storage unit 4 can be regenerated by the heat of the refrigerant, thus saving energy.
  • the load on the chiller device 120 can be reduced.
  • the heat storage unit 4 when the return circuit L2 is branched into the first branch circuit L21 and the second branch circuit L22 and the heat storage unit 4 is regenerated, the fluid returned from the temperature control member 110 is stored in the heat storage unit. Since it is possible to return the heat storage unit 4 to the chiller device 120 without passing through the heat storage unit 4, the heat storage unit 4 can be efficiently regenerated.
  • the heat exchange system 1 exchanges heat with the heat exchange member 42 when the refrigerant flows through the piping member 411, the heat exchange efficiency between the refrigerant and the heat exchange member 42 can be improved.
  • the refrigerant flows through the piping member 411 through the gap 4123 of the metal fiber sheet 412 and exchanges heat with the heat exchange member 42 via the metal fiber sheet 412 and the piping member 411. Therefore, when the refrigerant flows through the heat storage unit 4.
  • the heat exchange efficiency between the refrigerant and the heat exchange member 42 can be improved while suppressing the pressure loss that occurs.
  • the heat exchange efficiency between the piping member 411 and the heat exchange member 42 can be improved while ensuring the flow rate of the heat medium. ..
  • the chiller device 120 stores a high temperature medium having a temperature higher than the set temperature of the temperature control member 110 instead of the refrigerant, and circulates the high temperature medium to the temperature control member 110 to heat the temperature control member 110. You can do it.
  • the heat exchange system 1 does not change the circuit configuration, and the heat exchange member 42 of the heat storage unit 4 is compatible with high temperature, for example, when the temperature of the high temperature medium is 90 ° C, the heat storage temperature is 80 ° C. You can replace it with.
  • the heat exchange system 1 can efficiently regenerate the heat storage unit 4 by dissipating heat from the high temperature medium by performing a steady operation operation in the same manner as the above-mentioned refrigerant.
  • the heat storage unit 4 absorbs heat from the high-temperature medium to raise the heat storage temperature.
  • the high temperature medium loses heat to the heat storage unit 4 and lowers the temperature.
  • the heat exchange system 1 performs the heat exchange operation in the same manner as described above to heat the high temperature medium whose temperature has been lowered by heat dissipation of the temperature control member 110 and the piping portion by the heat storage unit 4 and then to the chiller device 120. Since it can be returned, the load on the chiller device 120 can be reduced. That is, the heat storage unit 4 applies heat to the high-temperature medium to lower the heat storage temperature. On the other hand, the high temperature medium is given heat from the heat storage unit 4 to raise the temperature.
  • the controller 11 is used as a unit that supplies a high temperature medium having a temperature higher than the set temperature of the temperature control member 110 to the temperature control member 110 to adjust the temperature of the temperature control member 110. Therefore, the controller 11 automatically switches the operation of the heat exchange system 1 by using, for example, the switching condition shown in FIG. 8B.
  • the controller 11 provides the set temperature rise information for raising the set temperature of the temperature control member 110 from the current value from the host controller 130. May be received. Further, for example, the controller 11 may detect that the temperature control member 110 has caused a steep temperature drop based on the temperature measurement value received from the temperature sensor 114. Further, for example, the controller 11 may receive the heat input off information from the host controller 130. Further, for example, the controller 11 may set the flow rate distribution rate for distributing the refrigerant output from the chiller device 120 to the temperature control member 110 side in the flow rate distribution unit 3 to be less than a predetermined value.
  • the temperature of the temperature control member 110 is stable at the set temperature based on the temperature measurement value received by the controller 11 from the temperature sensor 114. It may have been detected. Further, for example, the controller 11 may have a built-in timer for measuring the time, and the set time may have elapsed since the heat exchange operation was started. Further, for example, the controller 11 may set the flow rate distribution rate for distributing the refrigerant output from the chiller device 120 to the temperature control member 110 side in the flow rate distribution unit 3 to a predetermined value or more.
  • set temperature rise information may be received before raising the set temperature, or may be received after raising the set temperature.
  • the heat input off information may be received before the heat input is stopped, or may be received after the heat input is stopped.
  • FIG. 11 is a schematic configuration diagram of the heat exchange system 1001 according to the second embodiment of the present invention.
  • the heat exchange system 1001 of the second embodiment is different from the first embodiment in that the first branch circuit L21 is further branched and the flow path can be switched by the flow path switching unit 1200.
  • the points different from those of the first embodiment will be described, and the same reference numerals as those of the first embodiment will be added to the drawings for the configurations common to the first embodiment, and the description thereof will be omitted as appropriate.
  • the first branch circuit L21 of the heat exchange system 1001 branches into the third branch circuit L211 and the fourth branch circuit L212 at the branch point P5 provided on the chiller device 120 side (downstream side) from the first connection point P1. There is.
  • the third branch circuit L211 communicates with the chiller device 120 and is provided with a throttle valve 8.
  • the fourth branch circuit L212 is connected to the second branch circuit L22, and the heat storage unit 4 is arranged.
  • a flow path switching unit 1200 is provided at the branch point P5.
  • the flow path switching unit 1200 includes a first on-off valve 1202 and a second on-off valve 1204.
  • the first on-off valve 1202 is arranged in the third branch circuit L211 and the second on-off valve 1204 is arranged in the fourth branch circuit L212.
  • the flow path switching unit 1200 switches the flow path of the refrigerant that has flowed from the chiller device 120 into the first branch circuit L21 via the flow rate distribution unit 3.
  • the flow path switching unit 1200 is an example of the “second flow rate distribution unit”.
  • the heat exchange system 1001 performs the regeneration operation shown in FIG. 12, the unused operation shown in FIG. 13, and the heat exchange operation shown in FIG.
  • the “regeneration operation” refers to an operation of regenerating the latent heat storage material 422 of the heat storage unit 4 using the refrigerant output from the chiller device 120.
  • the “unused operation” means an operation in which the heat storage unit 4 is not used.
  • the controller 11 of the heat exchange system 1001 opens the second on-off valve 22 of the flow path switching unit 2 and the second on-off valve 1204 of the flow path switching unit 1200 when performing the regeneration operation.
  • the first on-off valve 21 of the flow path switching unit 2 and the first on-off valve 1202 of the flow path switching unit 1200 are closed.
  • the controller 11 operates the flow rate distribution unit 3 so as to stabilize the temperature of the temperature control member 110 to the set temperature.
  • the refrigerant distributed from the flow rate distribution unit 3 to the temperature control member 110 side is the temperature control member 110. After exchanging heat with, it flows to the return circuit L2 and the second branch circuit L22, and is returned to the chiller device 120 without passing through the heat storage unit 4.
  • the refrigerant distributed from the flow rate distribution unit 3 to the bypass circuit L3 side has the first on-off valve 1202 of the flow path switching unit 1200 closed and the second on-off valve 1204 opened, so that the fourth branch circuit L212 Flow to. Therefore, the refrigerant is returned to the chiller device 120 through the heat storage unit 4. At this time, the heat exchange member 42 of the heat storage unit 4 exchanges heat with the refrigerant flowing through the flow path forming member 41 and is regenerated.
  • the controller 11 of the heat exchange system 1001 opens the second on-off valve 22 of the flow path switching unit 2 and the first on-off valve 1202 of the flow path switching unit 1200 when performing an unused operation.
  • the first on-off valve 21 of the flow path switching unit 2 and the second on-off valve 1204 of the flow path switching unit 1200 are closed.
  • the heat exchange system 1001 adjusts the flow rate of the refrigerant distributed by the flow rate distribution unit 3 to the temperature control member 110 side and the bypass circuit L3 side so as to stabilize the temperature of the temperature control member 110.
  • the refrigerant supplied from the flow rate distribution unit 3 to the temperature control member 110 side is returned to the chiller device 120 in the same manner as in the regeneration operation.
  • the second on-off valve 1204 of the flow path switching unit 1200 is closed and the first on-off valve 1202 is opened, so that the third branch circuit L211 Flow to. Therefore, the refrigerant does not exchange heat with the heat exchange member 42 of the heat storage unit 4, but is returned to the chiller device 120 while maintaining the temperature output from the chiller device 120.
  • the heat exchange system 1001 when performing the heat exchange operation, valves the first on-off valve 21 of the flow path switching unit 2 and the second on-off valve 1204 of the flow path switching unit 1200. It is opened, and the second on-off valve 22 of the flow path switching unit 2 and the first on-off valve 1202 of the flow path switching unit 1200 are closed.
  • the flow rate distribution unit 3 operates so as to increase the flow rate of the refrigerant supplied to the temperature control member 110 side.
  • the refrigerant supplied from the flow rate distribution unit 3 to the temperature control member 110 side is the temperature control member 110. After cooling, it flows to the return circuit L2 and the first branch circuit L21. Then, since the first on-off valve 1202 of the flow path switching unit 1200 is closed and the second on-off valve 1204 is opened, the refrigerant flows into the fourth branch circuit L212 and passes through the heat storage unit 4 to the chiller. Returned to device 120.
  • the refrigerant flowing through the heat storage unit 4 exchanges heat with the heat exchange member 42 when flowing through the flow path forming member 41. Therefore, the refrigerant cooled to the same temperature as the heat exchange member 42 is returned to the chiller device 120, so that the load of cooling the refrigerant in the chiller device 120 is reduced.
  • the controller 11 switches the operation of the heat exchange system 1001 according to the following switching conditions. That is, the controller 11 automatically switches the heat exchange operation to the regeneration operation or the unused operation according to any switching condition for switching the heat exchange operation to the steady operation operation in FIG. 8A. Further, the controller 11 automatically switches the regeneration operation or the unused operation to the heat exchange operation according to any switching condition for switching the steady operation operation of FIG. 8A to the heat exchange operation.
  • the controller 11 executes a regeneration operation when the heat amount of the heat storage unit 4 is less than a predetermined heat amount, and executes an unused operation when the heat amount of the heat storage unit 4 is equal to or more than the predetermined heat amount. Further, for example, the controller 11 switches between an unused operation and a reproduction operation according to the time.
  • the heat exchange system 1001 of the present embodiment can switch the flow path by using the flow path switching unit 1200 as needed to regenerate the heat storage unit 4, so that the heat storage unit 4 is useless. Regeneration can be avoided and the energy saving effect can be enhanced.
  • the flow path switching unit 1200 bypasses the first branch circuit L21 to either the third branch circuit L211 or the fourth branch circuit L212 by using the first on-off valve 1202 and the second on-off valve 1204. All the refrigerant that flowed from the circuit L3 to the first branch circuit L21 was supplied.
  • the flow path switching unit 1200 may be a flow rate distribution unit configured in the same manner as the flow rate distribution unit 3. That is, by arranging the first opening proportional valve in the third branch circuit L211 and arranging the second opening proportional valve in the fourth branch circuit L212, the refrigerant flowing into the first branch circuit L21 from the bypass circuit L3 is transferred. , The third branch circuit L211 and the fourth branch circuit L212 may be distributed. In this case, the heat exchange system 1001 can perform the regeneration operation by flowing the refrigerant through the heat storage unit 4 at a flow rate corresponding to the heat storage amount of the heat storage unit 4, and can suppress unnecessary regeneration operation.
  • FIG. 15 is a schematic configuration diagram of the heat exchange system 2001 according to the third embodiment of the present invention.
  • the heat exchange system 2001 is provided on a circulation path for circulating a temperature control fluid between the temperature control member 110, the low temperature chiller device 2120A, and the high temperature chiller device 2120B.
  • the temperature control fluid is an example of a "heat medium”.
  • the heat exchange system 2001 is different from the first embodiment in that it includes two types of low-temperature heat storage units 4A and high-temperature heat storage units 4B having different heat storage temperatures.
  • the low temperature chiller device 2120A is an example of the "first chiller device”.
  • the high temperature chiller device 2120B is an example of a "second chiller device”.
  • the temperature of the temperature control member 110 is adjusted by the heater 112 and the temperature control fluid.
  • the heater 112 may not be provided.
  • the low temperature chiller device 2120A stores a low temperature fluid lower than the temperature control fluid circulating in the temperature control member 110 in the low temperature tank 2122A, and sends the low temperature fluid to the temperature control member 110 side by using the low temperature pump 2124A. ..
  • the high temperature chiller device 2120B stores a high temperature fluid having a higher temperature than the low temperature fluid and the temperature control fluid circulating in the temperature control member 110 in the high temperature tank 2122B, and uses the high temperature pump 2124B to store the low temperature fluid in the temperature control member 110. I am sending it to the side.
  • the low temperature chiller device 2120A adjusts the temperature of the low temperature fluid to ⁇ 20 ° C.
  • the high temperature chiller device 2120B adjusts the temperature of the high temperature fluid to 90 ° C.
  • the low temperature fluid and the high temperature fluid are examples of "heat medium”.
  • the low temperature fluid is an example of a "first heat medium”.
  • the high temperature fluid is an example of a "second heat medium”.
  • the heat exchange system 2001 includes an output circuit L51, an input circuit L52, a connection circuit L53, a low temperature fluid forward circuit L61, a low temperature fluid return circuit L62, a low temperature fluid bypass circuit L63, and a high temperature fluid forward circuit. It is provided with L71, a return circuit L72 for high temperature fluid, and a bypass circuit L73 for high temperature fluid.
  • the low temperature fluid forward circuit L61 is an example of a forward circuit and a first forward circuit
  • the low temperature fluid return circuit L62 is an example of a return circuit and a first return circuit
  • the low temperature fluid bypass circuit L63 is a bypass circuit.
  • the high temperature fluid forward circuit L71 is an example of a forward circuit and a second forward circuit
  • the high temperature fluid return circuit L72 is an example of a return circuit and a second return circuit
  • the high temperature fluid bypass circuit L73 is a bypass circuit.
  • the output circuit L51, the input circuit L52, and the connection circuit L53 are examples of the main circulation circuit.
  • the output circuit L51 supplies the temperature control fluid to the temperature control member 110.
  • the input circuit L52 inputs the temperature control fluid from the temperature control member 110.
  • the connection circuit L53 connects the output circuit L51 and the input circuit L52.
  • a circulation pump 2002 is provided in the input circuit L52.
  • the temperature control fluid can be circulated at a constant flow rate between the temperature control member 110 and the heat exchange system 2001 via the output circuit L51, the input circuit L52, and the connection circuit L53 by the pump operation of the circulation pump 2002. it can.
  • the circulation pump 2002 may be provided outside the heat exchange system 2001.
  • the low temperature fluid forward circuit L61 connects the low temperature chiller device 2120A and the output circuit L51, and supplies the low temperature fluid from the low temperature chiller device 2120A to the temperature control member 110.
  • the return circuit L62 for low temperature fluid connects the input circuit L52 and the low temperature chiller device 2120A, and returns the temperature control fluid to the low temperature chiller device 2120A.
  • the return circuit L62 for low temperature fluid is branched into a first branch circuit L621 for low temperature fluid and a second branch circuit L622 for low temperature fluid at the branch point P4A as in the first embodiment. Similar to the first embodiment, the branch point P4A is provided with a low temperature flow path switching portion 2A.
  • the low-temperature fluid forward circuit L61 and the low-temperature fluid first branch circuit L621 are connected via the low-temperature fluid bypass circuit L63 as in the first embodiment.
  • the low temperature heat storage unit 4A is arranged on the low temperature chiller device 2120A side from the connection point P1A connected to the low temperature fluid bypass circuit L63.
  • a heat exchange member 42 having a heat storage temperature of ⁇ 10 ° C. is used in the low temperature heat storage unit 4A of this embodiment.
  • the high temperature fluid forward circuit L71 connects the high temperature chiller device 2120B and the output circuit L51, and supplies the high temperature fluid from the high temperature chiller device 2120B to the temperature control member 110.
  • the return circuit L72 for high temperature fluid connects the input circuit L52 and the high temperature chiller device 2120B, and returns the temperature control fluid to the high temperature chiller device 2120B. Similar to the first embodiment, the high temperature fluid return circuit L72 is branched into the high temperature fluid first branch circuit L721 and the high temperature fluid second branch circuit L722 at the branch point P4B. Similar to the first embodiment, the branch point P4B is provided with a high temperature flow path switching portion 2B.
  • the high-temperature fluid forward circuit L71 and the high-temperature fluid first branch circuit L721 are connected via the high-temperature fluid bypass circuit L73 as in the first embodiment.
  • the high temperature heat storage unit 4B is arranged on the high temperature chiller device 2120B side from the connection point P1B connected to the high temperature fluid bypass circuit L73.
  • a heat exchange member 42 having a heat storage temperature of 80 ° C. is used in the high temperature heat storage unit 4B of this embodiment.
  • the branch points P4A and P4B are examples of the first branch point, respectively, and the low temperature flow path switching unit 2A and the high temperature flow path switching unit 2B are examples of the flow path switching units, respectively.
  • the first branch circuit L621 for low temperature fluid and the first branch circuit L721 for high temperature fluid are examples of the first branch circuit, respectively, and the second branch circuit L622 for low temperature fluid and the second branch circuit L722 for high temperature fluid are the first, respectively.
  • This is an example of a two-branch circuit.
  • the low temperature heat storage unit 4A is an example of a latent heat storage member and a first latent heat storage member
  • the high temperature heat storage unit 4B is an example of a latent heat storage member and a second latent heat storage member.
  • the connection point P1A is an example of the first connection point and the low temperature side connection point
  • the connection point P1B is an example of the first connection point and the high temperature side connection point.
  • the heat exchange system 2001 is provided with a flow rate distribution unit 2003 at a confluence point P6 where the connection circuit L53, the low temperature fluid forward circuit L61, and the high temperature fluid forward circuit L71 meet.
  • the merging point P6 and the flow rate distribution unit 2003 are from the connection point P2A between the low temperature fluid forward circuit L61 and the low temperature fluid bypass circuit L63, and the connection point P2B between the high temperature fluid forward circuit L71 and the high temperature fluid bypass circuit L73. , Is provided on the temperature control member 110 side.
  • the flow rate distribution unit 2003 is, for example, a spool valve, which is a communication between the first opening proportional unit V1 for adjusting the communication state between the connection circuit L53 and the output circuit L51, and the low temperature fluid forward circuit L61 and the output circuit L51.
  • a second opening proportional portion V2 for adjusting the state and a third opening proportional portion V3 for adjusting the communication state between the high temperature fluid forward circuit L71 and the output circuit L51 are provided.
  • the flow rate distribution unit 2003 is used for temperature control by operating the first opening proportional section V1 to the third opening proportional section V3 in conjunction with each other in a state where the flow rate of the temperature control fluid output to the output circuit L51 is stabilized.
  • the mixing ratio of the fluid, the low temperature fluid, and the high temperature fluid is adjusted, and the temperature of the temperature control fluid output from the output circuit L51 to the temperature control member 110 is controlled. That is, the low temperature fluid is distributed to the temperature control member 110 side and the low temperature fluid bypass circuit L63 side according to the distribution ratio of the flow rate distribution unit 2003, and the high temperature fluid is distributed to the temperature control member 110 side and the high temperature fluid bypass circuit L73. Distributed to the side.
  • the flow rate distribution unit 2003 is an example of the first flow rate distribution unit and the flow rate distribution unit
  • the confluence point P6 is an example of the confluence unit.
  • the connection points P2A and P2B are examples of the second connection points, respectively.
  • Check valves CV1, CV2, and CV3 are arranged at the branch point P7 where the connection circuit L53, the return circuit L62 for low temperature fluid, and the return circuit L72 for high temperature fluid branch.
  • the branch point P7 is an example of a flow dividing unit
  • the check valves CV1, CV2, and CV3 are examples of a flow dividing control unit.
  • the check valve CV1 is arranged in the connection circuit L53
  • the check valve CV2 is arranged in the low temperature fluid return circuit L62
  • the check valve CV3 is arranged in the high temperature fluid return circuit L72
  • the temperature control fluid flows to the connection circuit L53, the low temperature fluid return circuit L62, and the high temperature fluid return circuit L72 according to the distribution ratio.
  • the controller 11 of such a heat exchange system 2001 switches between the heat exchange operation and the steady operation operation on the low temperature chiller device 2120A side according to any of the switching conditions shown in FIG. 8A, and heat exchange on the high temperature chiller device 2120B side.
  • the operation and the steady operation operation are switched according to any of the switching conditions shown in FIG. 8B.
  • the controller 11 closes the first on-off valves 21A and 21B of the low temperature flow path switching unit 2A and the high temperature flow path switching unit 2B. , The second on-off valves 22A and 22B are opened.
  • the controller 11 operates the flow rate distribution unit 2003 so that the low temperature fluid is merged with the temperature control fluid so as to cool the temperature control member 110 by the amount of heating of the heater 112, and the high temperature fluid is not merged.
  • both the low temperature chiller device 2120A side and the high temperature chiller device 2120B side perform the steady operation operation as in the first embodiment, and the low temperature heat storage unit 4A and the high temperature heat storage unit 4B are regenerated.
  • the controller 11 when the controller 11 receives the set temperature drop information when the temperature of the temperature control member 110 is stable, the controller 11 opens the first on-off valve 21A of the low temperature flow path switching unit 2A to open the first on-off valve 21A. 2 The on-off valve 22A is closed. The controller 11 operates the flow rate distribution unit 2003 so that the low temperature fluid is merged with the temperature control fluid and the high flow fluid is not merged. As a result, on the low temperature chiller device 2120A side, the heat exchange operation is performed as in the first embodiment, and the load on the low temperature chiller device 2120A is reduced. On the other hand, on the high temperature chiller device 2120B side, the steady operation operation is performed as in the first embodiment, and the high temperature heat storage unit 4B is regenerated.
  • the controller 11 when the controller 11 receives the set temperature rise information when the temperature of the temperature control member 110 is stable, the controller 11 opens the first on-off valve 21B of the high temperature flow path switching unit 2B to open the valve. 2 The on-off valve 22B is closed. The controller 11 operates the flow rate distribution unit 2003 so that the high temperature fluid is merged with the temperature control fluid and the low temperature fluid is not merged. As a result, on the high temperature chiller device 2120B side, the heat exchange operation is performed as in the first embodiment, and the load on the high temperature chiller device 2120B is reduced. On the other hand, on the low temperature chiller device 2120A side, the steady operation operation is performed as in the first embodiment, and the low temperature heat storage unit 4A is regenerated.
  • the low temperature heat storage unit 4A having a low heat storage temperature is provided in the low temperature fluid first branch circuit L621 of the low temperature fluid return circuit L62 for returning the temperature control fluid to the low temperature chiller device 2120A, and the temperature control fluid is provided. Since the high temperature heat storage unit 4B having a high heat storage temperature is provided in the high temperature fluid first branch circuit L721 of the high temperature fluid return circuit L72, the temperature control fluid is the temperature of the low temperature fluid or the high temperature fluid. The load can be returned to the low temperature chiller device 2120A or the high temperature chiller device 2120B after approaching the temperature of the above, and the load on the low temperature chiller device 2120A and the high temperature chiller device 2120B can be reduced.
  • the low temperature heat storage unit 4A and the high temperature heat storage unit 4B can be regenerated by utilizing the heat of the low temperature fluid and the high temperature fluid, the load on the low temperature chiller device 2120A and the high temperature chiller device 2120B can be reduced with energy saving.
  • the present invention is not limited to the above embodiment, and various applications are possible.
  • the heat exchange systems 1, 1001, 2001 are used for the semiconductor manufacturing apparatus, but they may be applied to the chiller apparatus and other apparatus for circulating the heat medium to the controlled object.
  • the return circuit L2 does not have to be branched. However, when the return circuit L2 is branched into the first branch circuit L21 and the second branch circuit L22 as in the above embodiment, the refrigerant supplied from the chiller device 120 does not pass through the temperature control member 110 but is a heat storage unit.
  • the heat exchange member 42 of the heat storage unit 4 can be efficiently regenerated by flowing the heat exchange member 42 through the heat storage unit 4.
  • the first branch circuit L21 does not have to be branched into the third branch circuit L211 and the fourth branch circuit L212. However, by branching the first branch circuit L21 to the third branch circuit L211 and the fourth branch circuit L212 as in the above embodiment, for example, when the heat storage unit 4 does not need to be regenerated, the heat storage unit 4 is bypassed. It becomes possible to circulate the refrigerant, and the energy saving effect is enhanced.
  • the flow path forming member 41 does not have to include the metal fiber sheet 412. Further, the flow path forming member 41 may not include the binding portions C1 and C2, and the metal fiber sheet 412 may be internally provided in the piping member 411 in a state of being in contact with the flow path surface 4111 by pressure welding or the like. However, as in the above embodiment, when the flow path forming member 41 is provided with the binding portions C1 and C2, the thermal conductivity between the metal fiber sheet 412 and the piping member 411 is improved, and the heat medium and the heat exchange member are provided. Heat exchange with 42 can be promoted.
  • a metal fiber sheet 423 (an example of a second metal fiber sheet) similar to the metal fiber sheet 412 may be provided in the internal space 4211 of the heat exchange member 42 so as to be in contact with the accommodating body 421.
  • the housing body 421 may bind the metal fiber sheet 423 to the inner surface of the internal space 4211 by, for example, performing a sintering process in a state where the metal fiber sheet 423 is housed.
  • the latent heat storage material 422 is introduced into the gap of the metal fiber sheet 423 and can exchange heat with the accommodating body 421 via the metal fiber sheet 423, so that the heat exchange efficiency of the heat exchange member 42 is improved. Can be made to.
  • the metal fiber sheet may be provided on both the flow path forming member 41 and the heat exchange member 42, or may be provided on either one of the flow path forming member 41 and the heat exchange member 42, or the flow path. It may not be provided on both the forming member 41 and the heat exchange member 42.
  • the flow path forming member 41 and the heat exchange member 42 do not have to have a rectangular parallelepiped shape.
  • the flow path forming member 41 and the heat exchange member 42 may be provided in cylindrical shapes having different sizes and arranged in a nested state. In this case, it is preferable to arrange the flow path forming member on the innermost side in the radial direction, arrange the heat exchange member 42 on the outermost side, and cover the outer peripheral surface with the heat insulating material.
  • the outer shapes of the flow path forming member 41 and the heat exchange member 42 by making the outer shapes of the flow path forming member 41 and the heat exchange member 42 the same rectangular parallelepiped shape, the stock of the flow path forming member 41 and the heat exchange member 42 is reduced, and the flow rate of the heat medium is increased.
  • the structure and heat storage capacity of the heat storage unit 4 can be easily changed according to the above.
  • the heat storage unit 4 does not have to be provided with the heat insulating material 43. Further, for example, the unit may be vacuum-insulated by sealing the entire unit composed of the flow path forming member 41 and the heat exchange member 42 and creating a vacuum.
  • the temperature of the heat medium may be adjusted only by the temperature sensor 114, omitting the first temperature sensor 6 and the second temperature sensor 7. However, it is more likely that the temperature of the heat medium can be controlled more accurately if the first temperature sensor 6 and the second temperature sensor 7 are provided.
  • the piping member 411 and the accommodating body 421 of the heat exchange member 42 are independent, but the piping member 411 is omitted, and a flow path through which the heat medium flows is formed in the accommodating body. It may function as a piping member 411.
  • the metal fiber sheet may be installed internally in the flow path of the accommodating body as in the piping member 411.
  • the piping member 411, the metal fiber sheet 412, and the housing 421 may be formed of a low-cost material such as resin, and a metal film having high thermal conductivity may be formed on their surfaces. Further, the flow path surface 4111 of the piping member 411 and the surface of the metal fiber sheet 412 may be coated with a material having corrosion resistance and chemical resistance (for example, nickel plating).
  • Heat exchange system 1 Heat exchange system 2 Flow path switching unit 3 Flow rate distribution unit 110 Temperature control member (example of controlled object) 120 Chiller device L1 Forward circuit L2 Return circuit L3 Bypass circuit L21 First branch circuit L22 Second branch circuit P1 First connection point P2 Second connection point P4 Branch point

Abstract

チラー装置(120)と温度制御部材(110)との間に配設される熱交換システム(1)に、チラー装置(120)から温度制御部材(110)へ冷媒を供給する往き回路(L1)と、温度制御部材(110)からチラー装置(120)へ冷媒を戻す戻り回路(L2)と、往き回路(L1)と戻り回路(L2)とをバイパスするバイパス回路(L3)と、戻り回路(L2)のバイパス回路(L3)と接続する第1接続点(P1)よりチラー装置(120)側に配設された潜熱蓄熱部材(4)と、往き回路(L1)とバイパス回路(L3)が接続する第2接続点(P2)に設けられ、温度制御部材側とバイパス回路側に冷媒を分配する割合を調整する流量分配部(3)と、を設ける。

Description

熱交換システム
 本発明は、熱交換システムに関する。
 例えば、半導体製造装置は、載置台に載置されたウエハを静電チャックによりチャックした状態で、エッチング処理を施す。静電チャックは、チラー装置において所定温度に調整された温調用流体がチラー装置と静電チャックとの間で循環されることにより、指定された設定温度に制御され、ウエハを均一な温度に調節する(例えば特許文献1参照)。
特許第5912439号公報
 しかしながら、従来技術には次のような課題があった。すなわち、従来技術は、静電チャックを流れた温調用流体をそのままチラー装置に戻していたため、チラー装置に戻される温調用流体とチラー装置に貯蔵される温調用流体との温度差が大きく、チラー装置が温調用流体の温度を調整する負荷が大きかった。
 本発明は、上記問題点を解決するためになされたものであり、省エネルギーでチラー装置にかかる負荷を軽減できる熱交換システムを提供することを目的とする。
 本発明の一態様における熱交換システムは、次のような構成を有している。(1)チラー装置と制御対象物との間に配設される熱交換システムであって、前記チラー装置から前記制御対象物へ熱媒体を供給する往き回路と、前記制御対象物から前記チラー装置へ前記熱媒体を戻す戻り回路と、前記往き回路と前記戻り回路とをバイパスするバイパス回路と、前記戻り回路のうち前記戻り回路と前記バイパス回路とが接続する第1接続点よりチラー装置側となる位置に配設され、蓄熱及び放熱を行う潜熱蓄熱部材と、前記往き回路と前記バイパス回路が接続する第2接続点、又は、前記往き回路のうち前記第2接続点より制御対象物側となる位置に設けられ、制御対象物側とバイパス回路側に前記熱媒体を分配する第1流量分配部と、を有すること、を特徴とする。
 上記構成の熱交換システムは、潜熱蓄熱部材の熱エネルギーを利用したり、チラー装置から制御対象物に供給する熱媒体を制御対象物からチラー装置に戻される熱媒体に合流させたりすることにより、制御対象物からチラー装置に戻す熱媒体とチラー装置に貯蔵されている熱媒体との温度差を小さくしているので、チラー装置にかかる負荷を軽減することができる。また、上記構成の熱交換システムは、例えば、第1流量分配部により、チラー装置から供給される熱媒体をバイパス回路側だけに流すことにより、熱媒体の熱により潜熱蓄熱部材を再生させることができるので、省エネルギーでチラー装置にかかる負荷を軽減することができる。
 (2)(1)に記載する熱交換システムにおいて、前記戻り回路は、前記第1接続点より上流側に設けられた第1分岐点にて、第1分岐回路と第2分岐回路とに分岐していること、前記第1分岐点に配設され、前記制御対象物から前記戻り回路に入力した前記熱媒体を前記第1分岐回路又は前記第2分岐回路に供給する流路切替部を有すること、前記第1分岐回路は、前記第1接続点を備え、前記バイパス回路に接続すると共に、前記チラー装置に連通しており、更に、前記第1接続点よりチラー装置側となる位置に前記潜熱蓄熱部材が配設されていること、前記第2分岐回路は、前記第1分岐回路に対して、前記潜熱蓄熱部材よりチラー装置側の位置に設けられた第3接続点に接続されていること、が好ましい。
 上記構成の熱交換システムによれば、チラー装置から制御対象物に供給する熱媒体だけを潜熱蓄熱部材に供給して潜熱蓄熱部材を再生させることができるので、潜熱蓄熱部材の再生効率が良い。
 (3)(2)に記載される熱交換システムにおいて、前記戻り回路は、更に、前記第1分岐回路が前記第1接続点よりチラー装置側の位置にある第2分岐点にて、第3分岐回路と第4分岐回路に分岐していること、前記第2分岐点に設けられ、前記バイパス回路から前記第1分岐回路に流入した前記熱媒体を、前記第3分岐回路と前記第4分岐回路に分配する第2流量分配部を有すること、前記第3分岐回路は、前記第3接続点を備え、前記第2分岐回路に接続すると共に、前記チラー装置に連通していること、前記第4分岐回路は、前記第2分岐回路に接続され、前記潜熱蓄熱部材が配設されていること、が好ましい。
 上記構成の熱交換システムは、潜熱蓄熱部材の無用な再生を回避し、省エネ効果を高めることができる。
 (4)(2)又は(3)に記載する熱交換システムにおいて、前記熱媒体が前記制御対象物を冷却する低温媒体であること、前記潜熱蓄熱部材は、蓄熱温度が、前記制御対象物から前記戻り回路に入力する前記熱媒体の温度より低く設定されており、前記流路切替部が前記熱媒体を前記第1分岐回路に供給するように流路を切り替えた場合、前記制御対象物から前記戻り回路に入力した熱媒体を蓄熱エネルギーにより冷却し、前記流路切替部が前記熱媒体を前記第2分岐回路に供給するように流路を切り替えた場合、前記バイパス回路から前記第1分岐回路に流入した前記熱媒体によって再生されること、が好ましい。
 上記構成の熱交換システムによれば、温度制御部材を熱媒体により冷却する場合でも、潜熱蓄熱部材の再生効率向上とチラー装置の負荷軽減とを実現できる。
 (5)(2)又は(3)に記載する熱交換システムにおいて、前記熱媒体が前記制御対象物を加熱する高温媒体であること、前記潜熱蓄熱部材は、蓄熱温度が、前記制御対象物から前記戻り回路に入力する前記熱媒体の温度より高く設定されており、前記流路切替部が前記熱媒体を前記第1分岐回路に供給するように流路を切り替えた場合、前記制御対象物から前記戻り回路に入力した熱媒体を蓄熱エネルギーにより加熱し、前記流路切替部が前記熱媒体を前記第2分岐回路に供給するように流路を切り替えた場合、前記バイパス回路から前記第1分岐回路に流入した前記熱媒体によって再生されること、が好ましい。
 上記構成の熱交換システムによれば、温度制御部材を熱媒体により加熱する場合でも、潜熱蓄熱部材の再生効率向上とチラー装置の負荷軽減とを実現できる。
 (6)(1)乃至(5)の何れか1つに記載する熱交換システムにおいて、前記制御対象物は、半導体製造装置の反応容器内に設置され、ウエハの温度を制御する温度制御部材であること、が好ましい。
 上記構成の熱交換システムでは、チラー装置が調整する熱媒体の温度と、温度制御部材の温度との差が大きい。しかし、潜熱蓄熱部材が、温度制御部材から戻される熱媒体の温度を、チラー装置に貯蔵される熱媒体の温度に近づけてから、熱媒体をチラー装置に戻す。よって、上記構成の熱交換システムによれば、チラー装置の負荷を軽減する効果をより一層高めることができる。
 (7)(1)乃至(6)の何れか1つに記載する熱交換システムにおいて、前記潜熱蓄熱部材は、前記熱媒体が流れる流路を備える配管部材と、潜熱蓄熱材が充填され、前記配管部材に面接触した状態で配置される熱交換部材と、を有する蓄熱ユニットであること、が好ましい。
 上記構成の熱交換システムは、熱媒体が配管部材を流れる際に熱交換部材と熱交換を行うので、熱媒体と熱交換部材との熱交換効率を良好にすることができる。
 (8)(7)に記載する熱交換システムにおいて、前記配管部材は、前記流路の内壁に接した状態で第1金属繊維シートが内設され、前記金属繊維シートは、前記熱媒体が導入される空隙を有すること、が好ましい。
 上記構成の熱交換システムは、熱媒体が金属繊維シートの空隙を通って配管部材を流れ、金属繊維シートと配管部材を介して熱交換部材と熱交換を行うので、熱媒体が蓄熱ユニットを流れる際に生じる圧損を抑制しつつ、熱媒体と熱交換部材との熱交換効率を良好にすることができる。
 (9)(7)又は(8)に記載する熱交換システムにおいて、前記配管部材と前記熱交換部材は、薄い直方体形状をなし、積層されていること、が好ましい。
 上記構成の熱交換システムは、熱媒体の流量を確保しつつ、配管部材と熱交換部材の熱交換率を高めることができる。
 (10)(7)乃至(9)の何れか1つに記載する熱交換システムにおいて、前記熱交換部材は、前記潜熱蓄熱材が充填される内部空間を備える収容体と、前記内部空間に配置される第2金属繊維シートと、を有し、前記第2金属繊維シートが、前記収容体に接していること、が好ましい。
 上記構成の熱交換システムによれば、潜熱蓄熱材の熱エネルギーが金属繊維シートを介して収容体に伝わりやすく、熱媒体と潜熱蓄熱材とが効率良く熱交換するので、潜熱蓄熱部材をコンパクトにしても、チラー装置にかかる負荷を軽減できる。
 更に、本発明の他の態様の熱交換システムは、第1熱媒体を貯蔵する第1チラー装置と、前記第1熱媒体より高温の第2熱媒体を貯蔵する第2チラー装置と、温調用流体を用いて温度を制御される制御対象物と、の間に配設される熱交換システムであって、前記制御対象物に前記温調用流体を循環させるメイン循環回路であって、合流部と、前記合流部と前記制御対象物との間に設けられた分流部と、を備える前記メイン循環回路と、前記第1チラー装置から前記合流部へ前記第1熱媒体を供給する第1往き回路と、前記分流部から前記第1チラー装置へ前記温調用流体を戻す第1戻り回路と、前記第1往き回路と前記第1戻り回路とをバイパスする第1バイパス回路と、前記第1戻り回路のうち前記第1戻り回路と前記第1バイパス回路とが接続する低温側接続点より第1チラー装置側となる位置に配設され、蓄熱及び放熱を行う第1潜熱蓄熱部材と、前記第2チラー装置から前記合流部へ前記第2熱媒体を供給する第2往き回路と、前記分流部から前記第2チラー装置へ前記温調用流体を戻す第2戻り回路と、前記第2往き回路と前記第2戻り回路とをバイパスする第2バイパス回路と、前記第2戻り回路のうち前記第2戻り回路と前記第2バイパス回路とが接続する高温側接続点より第2チラー装置側となる位置に配設され、蓄熱及び放熱を行う第2潜熱蓄熱部材であって、前記第1潜熱蓄熱部材より蓄熱温度が高い前記第2潜熱蓄熱部材と、前記合流部に配設され、制御対象物側と第1バイパス回路側と前記第2バイパス回路側に前記温調用流体と前記第1熱媒体と前記第2熱媒体を分配する流量分配部と、前記分流部に配設され、メイン循環回路側と第1戻り回路側と第2戻り回路側に前記温調用流体を分流させる分流制御部と、を有すること、を特徴とする。
 本発明によれば、省エネルギーでチラー装置の負荷を軽減できる熱交換システムを提供することができる。
本発明の第1実施形態に係る熱交換システムの概略構成図である。 潜熱蓄熱部材の外観斜視図である。 図2のA-A断面図である。 図3のB部拡大図である。 熱交換システムの電気ブロック図である。 定常運転動作を説明する回路図である。 熱交換動作を説明する回路図である。 切替条件の具体例を示す表であり、温度制御部材の設定温度より低温の熱媒体を温度制御部材に供給して温度制御部材の温度を調節するユニットに適用される。 切替条件の具体例を示す表であり、温度制御部材の設定温度より高温の熱媒体を温度制御部材に供給して温度制御部材の温度を調節するユニットに適用される。 比較例の動作の一例と冷媒温度変化を示すタイムチャートである。 実施例の動作の一例と冷媒温度変化を示すタイムチャートである。 本発明の第2実施形態に係る熱交換システムの概略構成図である。 再生動作を説明する図である。 未使用動作を説明する図である。 熱交換動作を説明する図である。 本発明の第3実施形態に係る熱交換システムの概略構成図である。 蓄熱ユニットの変形例を示す図である。
 以下に、本発明に係る熱交換システムの実施形態について図面に基づいて説明する。
 (第1実施形態)
 図1は、本発明の第1実施形態に係る熱交換システム1の概略構成を示す図である。例えば、半導体製造装置は、温度制御部材110とチラー装置120との間で冷媒を循環させる循環経路上に、熱交換システム1が設けられている。冷媒は、「熱媒体」の一例である。チラー装置120は冷媒を所定温度に調整して貯蔵する装置である。温度制御部材110は、チラー装置120から供給される冷媒が流れることによって温度が制御される対象である「制御対象物」の一例である。
 チラー装置120は、タンク122とポンプ124を備えている。タンク122は、所定温度に調整された冷媒を貯蔵している。ポンプ124は、タンク122に貯蔵された冷媒を所定流量で熱交換システム1に送り出す。本形態のチラー装置120は、冷媒の温度を、温度制御部材110の設定温度より低く制御するチラー能力を有する。
 温度制御部材110は、例えば、エッチング処理を行う図示しない反応容器に内設され、ウエハの温度を制御するものである。温度制御部材110は、ヒータ112と温度センサ114を備える。ヒータ112は、温度制御部材110を加熱する。温度センサ114は、温度制御部材110の温度を測定する。温度制御部材110は、温度センサ114が測定する温度に応じて、チラー装置120のタンク122から熱交換システム1を介して冷媒を供給され、設定温度に調整される。温度制御部材110を流れた冷媒は、熱交換システム1を介してチラー装置120のタンク122に戻される。
 熱交換システム1は、往き回路L1と、戻り回路L2と、バイパス回路L3を備える。また、熱交換システム1は、第1温度センサ6と、第2温度センサ7と、流路切替部2と、流量分配部3と、流量センサ5と、蓄熱ユニット4と、絞り弁8とを備えている。流量分配部3は、「第1流量分配部」の一例である。蓄熱ユニット4は、「潜熱蓄熱部材」の一例である。
 往き回路L1は、チラー装置120の出力ポート120bを温度制御部材110の入力部110aに連通させ、チラー装置120から温度制御部材110に冷媒を供給する。戻り回路L2は、分岐点P4において第1分岐回路L21と第2分岐回路L22に分岐している。分岐点P4は「第1分岐点」の一例である。戻り回路L2は、第1分岐回路L21を介して、温度制御部材110の出力部110bをチラー装置120の入力ポート120aに連通させ、温度制御部材110に供給された冷媒をチラー装置120に戻す。第2分岐回路L22は、第3接続点P3において、第1分岐回路L21に接続している。バイパス回路L3は、往き回路L1と戻り回路L2の第1分岐回路L21とを接続し、温度制御部材110を経由せずに冷媒を往き回路L1から戻り回路L2の第1分岐回路L21に供給する。
 第1温度センサ6は、戻り回路L2に配設されている。第1温度センサ6は、温度制御部材110から戻り回路L2に入力した冷媒の温度(第1温度)を測定する。戻り回路L2は、第1温度センサ6よりチラー装置側(下流側)に位置する分岐点P4において、第1分岐回路L21と第2分岐回路L22に分岐している。
 流路切替部2は、分岐点P4に配設されている。流路切替部2は、第1開閉弁21と第2開閉弁22とを備える。第1開閉弁21は、第1分岐回路L21に配置され、第2開閉弁22は、第2分岐回路L22に配置されている。
 第1分岐回路L21は、チラー装置120の入力ポート120aに連通している。第1分岐回路L21は、バイパス回路L3と接続する第1接続点P1と、第2分岐回路L22が接続する第3接続点P3との間に蓄熱ユニット4が配設されている。そして、第1分岐回路L21は、第3接続点P3よりチラー装置120側(下流側)に、絞り弁8が配設されている。蓄熱ユニット4は、固体と液体との間で相変化する際の熱エネルギーを蓄えるものである。蓄熱ユニット4は、第1分岐回路L21を流れる冷媒の温度に応じて、蓄熱エネルギーを利用して冷媒に放熱することによって冷媒を加熱する。また、蓄熱ユニット4は、冷媒から吸熱することによって蓄熱エネルギーが再生される。蓄熱ユニット4の具体的な構成は、後述する。絞り弁8は、温度制御部材110とチラー装置120との間で冷媒を循環させる系の中の圧損を調整する。つまり、絞り弁8によって、チラー装置120の入力ポート120aに入力する冷媒の圧力が調整される。
 第2分岐回路L22は、第1分岐回路L21の蓄熱ユニット4より下流側に設けられた第3接続点P3に接続され、蓄熱ユニット4を迂回する流路を形成している。
 バイパス回路L3は、往き回路L1に設けられた第2接続点P2と、第1分岐回路L21の蓄熱ユニット4より温度制御部材110側(上流側)に設けられた第1接続点P1に、接続している。第2接続点P2には、流量分配部3が設けられている。なお、流量分配部3は、往き回路L1のうち第2接続点P2より温度制御部材110側となる位置に設けられても良い。
 流量分配部3は、第1開度比例弁31と第2開度比例弁32を備える。第1開度比例弁31は、往き回路L1に配設され、第2開度比例弁32は、バイパス回路L3に配設されている。流量分配部3は、第1開度比例弁31と第2開度比例弁32が連動して動作することにより、流量分配部3は、第1開度比例弁31と第2開度比例弁32の合計開度が同じ状態、つまり、第2接続点P2にて生じる冷媒の圧損をほぼ一定にした状態で、温度制御部材110側とバイパス回路L3側に冷媒を分配する比率を相対的に変化させる。なお、流量分配部3は、1個のスプール弁により構成しても良い。
 往き回路L1は、流量分配部3より温度制御部材110側(下流側)に、流量センサ5と第2温度センサ7が配設されている。流量センサ5は、流量分配部3から温度制御部材110に流れる冷媒の流量を測定する。換言すると、流量センサ5は、温度制御部材110とチラー装置120との間を循環する冷媒の流量を測定する。第2温度センサ7は、流量分配部3から温度制御部材110に流れる冷媒の温度(第2温度)を測定する。尚、流量センサ5と第2温度センサ7の配置は逆でも良い。また、流量センサ5は省略されても良い。
 上述した蓄熱ユニット4の構成について、図2~図4を参照して説明する。図2は、蓄熱ユニット4の外観斜視図である。図3は、図2のA-A断面図である。図4は、図3のB部拡大図である。尚、蓄熱ユニット4及びその構成部材は、形状や寸法割合などが図2、図3の記載に限定されない。図4は、金属繊維シート412の空隙4123に冷媒が入り込んでいる状態を見やすくするめに模式化して記載したものであり、金属繊維4121や空隙4123の形状や密度などはこれに限定されない。本形態の蓄熱ユニット4は、例えば、特開2019-9433号公報に開示される技術を応用するものである。
 図2に示すように、蓄熱ユニット4は、例えば、箱形の外観をなし、流路形成部材41と、熱交換部材42と、断熱材43を備える。流路形成部材41は、冷媒が流れる流路を形成するものであり、第1分岐回路L21の一部を構成する。熱交換部材42は、流路形成部材41を介して冷媒と熱交換を行うものである。流路形成部材41と熱交換部材42は、薄い直方体形状をなし、外形寸法がほぼ同じにされている。そのため、流路形成部材41と熱交換部材42は、ブロック状に積み重ねることができる。尚、流路形成部材41と熱交換部材42は、当接する面の寸法が同じであれば、例えば、厚み方向の寸法が異なっていても良い。また、直方体形状は厳密な直方体形状に限らず、例えば、角部に面取り等が施されていてもよい。
 流路形成部材41と熱交換部材42は、その積層方向において、熱交換部材42が両端に配置されるように、交互に積み重ねて配置されている。本形態では、3個の熱交換部材42の間に流路形成部材41を1個ずつ配置しているが、熱交換部材42と流路形成部材41の数はこれに限定されない。断熱材43は、積み重ねられた流路形成部材41と熱交換部材42の外周を覆うように設けられている。流路形成部材41と熱交換部材42は、断熱材43によって外部の熱から遮断されている。以下、流路形成部材41、熱交換部材42、断熱材43について、詳細に説明する。
 図3に示すように、流路形成部材41は、配管部材411と、金属繊維シート412とを備えている。配管部材411は、図中上側に位置する上面と図中下側に位置する下面の面積が広く、上面と下面が一対の対向する側面により接続されたものであり、外観形状が薄い直方体形状をなす。配管部材411は、上面と下面と一対の側面によって、冷媒が流れる流路を形成されている。配管部材411は、流路断面積を大きくするために、流路軸線方向に対して直交する方向に切断したときの流路の断面形状を横長の四角形状とするように、流路面4111が形成されている。配管部材411は、ステンレス、銅、アルミ等、熱伝導性が高い材料により形成されている。尚、配管部材411は、全てを同一材料で形成しても良いが、別材料で形成してもよい。例えば、熱交換部材42と接触する面積の広い面(上面と下面)を熱伝導性が高い材料により形成し、一対の対向する側面をセラミックや樹脂などの別の材料により形成しても良い。
 図4に示すように、金属繊維シート412は、金属繊維4121をシート形状に形成したものである。金属繊維シート412は、例えば、特開2019-9433号公報に開示される技術を用いたものである。金属繊維シート412は、金属繊維4121単独で構成されていてもよいし、金属繊維4121以外の繊維と併用して構成されていても良い。金属繊維4121は、熱交換効率を高めるため、ステンレス、銅、アルミ等、熱伝導性が高い材料により形成されていることが好ましい。本形態の金属繊維4121は、剛直性と塑性変形性とのバランスに優れた銅繊維とする。金属繊維シート412では、金属繊維4121同士が物理的に固定されて結着部C1が構成されており、この結着部C1によって金属繊維4121の間に空隙4123が形成されている。金属繊維シート412では、金属繊維シート412の熱伝導性、均質性を安定させるために、結着部C1において金属繊維4121が焼結されている。また、配管部材411は、金属繊維シート412を収容した態様で焼結加工を施され、金属繊維シート412と流路面4111とが結着する結着部C2を備えている。尚、結着部C1は、金属繊維4121同士が直接結着されていてもよいし、他の物質を介して間接的に結着されていてもよい。また、結着部C2は、配管部材411と金属繊維4121が直接結着されていてもよいし、他の物質を介して間接的に結着されていてもよい。
 例えば、流路形成部材41は、図3において図中左側に位置する開口部413に冷媒が流入すると、その冷媒が金属繊維シート412の空隙4123に導入され、図中右側に位置する開口部414から排出される。金属繊維シート412は、細い金属繊維4121の間に無数の空隙4123が形成されているので、冷媒が配管部材411を流れる際の圧損が小さい。冷媒と配管部材411は、流路面4111だけでなく、流路内に配置された金属繊維4121を介して熱伝達する。よって、流路形成部材41は、冷媒と熱交換部材42との間の熱交換効率が良く、配管部材411が速やかに冷媒と同程度の温度になりやすい。
 図3に示すように、熱交換部材42は、収容体421と潜熱蓄熱材422を備える。収容体421は、一対の面積の広い面を4つの側面により接続した薄い直方体形状をなし、潜熱蓄熱材422が充填される内部空間4211を備えている。収容体421は、金属などの熱伝導性が良い材料で形成してもよい。また例えば、収容体421は、セラミック樹脂等を薄く成形したものでもよい。更に、金属と金属以外の材料で収容体421を形成してもよい。図2に示すように、収容体421は、内部空間4211に潜熱蓄熱材422を注入するための注入口4212が栓4213により密閉されている。尚、注入口4212の位置や形状はこれに限定されない。
 熱交換部材42の蓄熱温度や蓄熱エネルギーは、潜熱蓄熱材422の成分や成分割合によって変えることができる。例えば、n-パラフィン系潜熱蓄熱材のn-ペンタデカンを潜熱蓄熱材422として使用する場合、熱交換部材42は、蓄熱温度9.9℃、蓄熱量163.8kJ/kgとすることができる。本形態では、蓄熱温度がチラー装置120に貯蔵される冷媒の温度より高く、温度制御部材110の設定温度より低い潜熱蓄熱材422を使用している。
 図5は、熱交換システム1の電気ブロック図である。熱交換システム1は、コントローラ11によって動作を自動制御される。コントローラ11は、温度センサ114と、流量センサ5と、第1温度センサ6と、第2温度センサ7に接続し、流量や冷媒の温度などの情報を取得する。また、コントローラ11は、流路切替部2の第1開閉弁21及び第2開閉弁22に接続し、電圧を供給して弁開動作を行わせる一方、電圧の供給を停止して弁閉動作を行わせる。コントローラ11は、第1開閉弁21と第2開閉弁22に開閉動作を相対的に行わせ、戻り回路L2を第1分岐回路L21と第2分岐回路L22の何れかに連通させる。また、コントローラ11は、流量分配部3の第1開度比例弁31及び第2開度比例弁32と、絞り弁8に接続し、弁開度を制御するための指令信号を出力する。更に、コントローラ11は、通信インタフェース(通信IF)12に接続している。上位コントローラ130は、通信IF12を介してコントローラ11と通信可能に接続し、温度制御部材110の設定温度の変化に関する情報や、温度制御部材110の温度に関する情報や、プラズマ等による入熱に関する情報などを、コントローラ11に送信する。
 尚、コントローラ11が有する全機能を上位コントローラ130に持たせ、コントローラ11を省略してもよい。また、コントローラ11が有する機能の一部を上位コントローラ130が有してもよい。また、例えば、第1開閉弁21及び第2開閉弁22が空気圧等によって作動する場合、コントローラ11は、第1開閉弁21と第2開閉弁22に電圧を供給するとは限らない。指令信号は、指令電圧でも、指令電流でも、シリアル通信によって出力される信号でもよい。
 続いて、本形態の熱交換システム1の動作を説明する。熱交換システム1は、定常運転動作と熱交換動作とを行う。本明細書において、「定常運転動作」とは、蓄熱ユニット4の潜熱蓄熱材422が冷媒の熱を吸熱して再生される(蓄熱する)ように、熱交換システム1が冷媒の流れを制御する動作をいう。本明細書において、「熱交換動作」とは、蓄熱ユニット4の潜熱蓄熱材422が冷媒に放熱するように、熱交換システム1が冷媒の流れを制御する動作をいう。
 図6を用いて、定常運転動作を説明する。コントローラ11は、流路切替部2の第1開閉弁21を弁閉させ、第2開閉弁22を弁開させる。そして、コントローラ11は、例えば、上位コントローラ130から温度制御部材110の温度と設定温度との差分を取得し、その差分に応じて、流量分配部3の第1開度比例弁31と第2開度比例弁32の弁開度を連動して変化させる。
 例えば、コントローラ11は、ヒータ112によって加熱される分だけ温度制御部材110を冷却するように、第1開度比例弁31に弁開度を25%とする指令信号を出力し、第2開度比例弁32に弁開度を75%とする指令信号を出力する。この場合、チラー装置120の出力ポート120bから出力された冷媒は、温度制御部材110側に25%分配され、バイパス回路L3側に75%分配される。
 尚、熱交換システム1は、例えば、第1温度センサ6が測定する第1温度と第2温度センサ7が測定する第2温度との差分に応じて、第1開度比例弁31と第2開度比例弁32の弁開度を調整しても良い。
 流量分配部3から温度制御部材110側に分配された冷媒は、ヒータ112によって加熱された温度制御部材110を流れる際に温度制御部材110と熱交換するため、温度制御部材110の入力部110aに入力されるときより、温度制御部材110の出力部110bから出力されるときの方が、温度が高くなる。出力部110bから出力された冷媒は、戻り回路L2に入力する。戻り回路L2に配設された流路切替部2は、第1開閉弁21が弁閉され、第2開閉弁22が弁開されているため、第2分岐回路L22側へ流れ、蓄熱ユニット4を通らずにチラー装置120に戻される。
 これに対して、流量分配部3からバイパス回路L3側に分配された冷媒は、第1接続点P1を介して第1分岐回路L21に流入し、蓄熱ユニット4を通ってチラー装置120に戻される。
 このとき、冷媒は、配管部材411に内設された金属繊維シート412の空隙4123を通って蓄熱ユニット4を通過する。冷媒の熱は、流路面4111を介して配管部材411に伝達されると共に、金属繊維シート412の金属繊維4121に伝達され、結着部C1、C2を介して配管部材411に伝達される。そのため、配管部材411と金属繊維シート412は、速やかに、冷媒と同程度の温度になる。熱交換部材42と配管部材411は、面積の広い面同士を接触させている。そのため、熱交換部材42に充填された潜熱蓄熱材422は、収容体421を介して配管部材411と熱交換する面積が広く、配管部材411と金属繊維シート412を介して冷媒の熱を吸収し、再生される。尚、蓄熱ユニット4は、断熱材43により覆われているため、放熱損が生じ難い。
 第1分岐回路L21には、第1接続点P1と第3接続点P3の間に蓄熱ユニット4が配置されている。そのため、定常運転動作の時、蓄熱ユニット4には、チラー装置120から出力される冷媒を、温度制御部材110によって加熱された冷媒より多く流すことが可能である。よって、蓄熱ユニット4において、熱交換部材42の潜熱蓄熱材422が、チラー装置120のタンク122に貯蔵される冷たい冷媒から吸熱し、効率良く再生される。また、蓄熱ユニット4は、チラー装置120に貯蔵される冷媒を利用して再生されるので、省エネルギーで再生される。
 なお、第2分岐回路L22を流れる冷媒は、第3接続点P3にて、蓄熱ユニット4を流れた冷媒と合流し、温度を下げられてから、チラー装置120に戻される。よって、温度制御部材110から戻り回路L2に流入した冷媒を、蓄熱ユニット4を介さずにチラー装置120に戻しても、チラー装置120が入力ポート120aに入力した冷媒を冷却する負荷は、小さくて済む。
 図7を用いて、熱交換動作を説明する。コントローラ11は、流路切替部2の第1開閉弁21を弁開させ、流路切替部2の第2開閉弁22を弁閉させる。そして、コントローラ11は、上位コントローラ130から温度制御部材110の温度と設定温度との差分を取得し、その差分に応じて、流量分配部3の第1開度比例弁31と第2開度比例弁32の弁開度を連動して変化させる。この場合、温度制御部材110の温度を早く低下させる必要があるので、コントローラ11は、例えば、第1開度比例弁31に弁開度を95%とする指令信号を送信し、第2開度比例弁32に弁開度を5%とする指令信号を送信する。この場合、チラー装置120の出力ポート120bから出力された冷媒は、温度制御部材110側に95%分配され、バイパス回路L3側に5%分配される。
 流量分配部3から温度制御部材110側に分配された冷媒は、定常運転動作時と同様にして、戻り回路L2に流入する。戻り回路L2に流入する冷媒は、定常運転動作時より流量が多く、熱量が大きくなる。流路切替部2の第1開閉弁21が弁開され、流路切替部2の第2開閉弁22が弁閉されているため、戻り回路L2に流入した冷媒は、第1分岐回路L21側に流れ、蓄熱ユニット4を介してチラー装置120に戻される。
 流量分配部3が戻り回路L2側に冷媒を分配する場合、第1分岐回路L21には、蓄熱ユニット4より上流側の第1接続点P1に、流量分配部3からバイパス回路L3側に分配された冷媒が流入する。そのため、バイパス回路L3から第1分岐回路L21に流入する冷媒は、蓄熱ユニット4に流れ込む前に、バイパス回路L3から第1接続点P1に流入した冷たい冷媒と合流して、温度を下げられる。
 冷媒は、蓄熱ユニット4の流路形成部材41を流れ、チラー装置120の入力ポート120aに流入する。冷媒は、配管部材411に内設された金属繊維シート412の空隙4123を流れて、蓄熱ユニット4を通過する際に、金属繊維4121と配管部材411を介して熱交換部材42と熱交換する。配管部材411は、結着部C1、C2を介して金属繊維4121から冷媒の熱を伝達され、速やかに冷媒と同程度の温度になる。熱交換部材42は、収容体421を介して潜熱蓄熱材422の熱を配管部材411に伝達し、配管部材411と金属繊維シート412を介して冷媒を冷却する。このように、冷媒は、配管部材411と金属繊維4121を介して、潜熱蓄熱材422と効率良く熱交換することができるので、潜熱蓄熱材422と同程度の温度まで速やかに冷却される。なお、蓄熱ユニット4は、熱交換動作時、冷媒に熱を与えるのに応じて、蓄熱温度が上昇する。
 よって、チラー装置120は、温度制御部材110から戻り回路L2に流入したときの温度より低温にされた冷媒が、入力ポート120aに流入する。そのため、チラー装置120は、温度制御部材110との間で冷媒を循環させる場合でも、入力ポート120aに入力した冷媒を冷却する負荷が軽減される。
 熱交換システム1のコントローラ11は、例えば、チラー装置120に戻される冷媒の熱量、つまり、チラー装置120に戻される冷媒の温度と流量をかけ合わせた値に応じて、定常運転動作と熱交換動作を自動的に切り替える。動作を切り替える条件(以下「切替条件」とする)の具体例を、図8に示す。本形態の熱交換システム1は、温度制御部材110の設定温度より低温の冷媒を温度制御部材110に供給して温度制御部材110の温度を調節するユニットに用いられている。そのため、コントローラ11は、例えば図8Aに示す切替条件を用いて、熱交換システム1の動作を自動的に切り替える。
 図8Aにおいて、コントローラ11が定常運転動作を熱交換動作に切り替える切替条件としては、例えば、コントローラ11が、温度制御部材110の設定温度を現在の値から下げる設定温度低下情報を、上位コントローラ130から受信する場合がある。また例えば、コントローラ11が、温度センサ114から受信する温度測定値に基づいて、温度制御部材110が急峻な温度上昇を発生したことを検知した場合がある。また例えば、コントローラ11が、プラズマ等により温度制御部材110に熱を与えることを示す入熱オン情報を、上位コントローラ130から受信した場合がある。更に例えば、コントローラ11が、流量分配部3において、チラー装置120から出力された冷媒を温度制御部材110側に分配する流量分配率を、所定値以上とする場合がある。
 コントローラ11が熱交換動作を定常運転動作に切り替える切替条件としては、例えば、コントローラ11が、温度センサ114から受信する温度測定値に基づいて、温度制御部材110の温度が設定温度に安定していることを検知した場合がある。また例えば、コントローラ11が、時間を計測するタイマを内蔵し、熱交換動作を開始してから設定時間が経過した場合がある。更に例えば、コントローラ11が、流量分配部3において、チラー装置120から出力された冷媒を温度制御部材110側に分配する流量分配率を、所定値未満とする場合がある。
 尚、設定温度低下情報は、設定温度を下げる前に受信してもよいし、設定温度を下げた後に受信しても良い。入熱オン情報は、入熱前に受信しても良いし、入熱後に受信しても良い。コントローラ11は、上位コントローラ130が急峻な温度上昇を検知し、その検知結果を上位コントローラ130から受信することにより、定常運転動作を熱交換動作に切り替えてもよい。
 続いて、実施例と比較例の動作例を説明する。実施例は、本形態の熱交換システム1と同様に構成したものである。比較例は、第2分岐回路L22、流路切替部2、蓄熱ユニット4を備えない点を除き、本形態の熱交換システム1と同様に構成したものである。
 本動作例では、チラー装置120は、-20℃の冷媒をタンク122に貯蔵し、ポンプ124を用いてタンク122から往き回路L1に冷媒を35L/minの流量で送り出すこととした。実施例の蓄熱ユニット4は、蓄熱温度が-10℃の潜熱蓄熱材422を充填された熱交換部材42を使用するものとした。温度制御部材110の設定温度は、60℃又は0℃とし、ヒータ112と、流量分配部3が温度制御部材110側に分配する冷媒によって、温度制御部材110の温度を設定温度に調節するものとした。そして、温度制御部材110の温度が設定温度に安定しているときに、所定時間だけプラズマをONさせ、温度制御部材110に急峻な温度上昇を生じさせることにした。この条件において、チラー装置120の出力ポート120bから出力される冷媒の温度変化を、シミュレーションした。比較例の動作の一例と冷媒温度変化を図9に示す。実施例の動作の一例と冷媒温度変化を図10に示す。
 図9に示すように、比較例は、例えば、温度制御部材110側への流量分配比率が安定している、つまり、温度制御部材110の温度が安定しており、第1開度比例弁31に出力する指令信号の出力値が安定している場合(Y21、Y44、Y64、Y75、Y85、Y104)、図中Z2、Z4、Z6、Z10に示すように、チラー装置120の出力ポート120bから出力する冷媒の温度が-20℃に安定している。また、比較例は、温度制御部材110側への流量分配比率が急激に小さくなる、つまり、温度制御部材110の温度を上げるために、第1開度比例弁31への指令信号の出力値を急激に小さくした場合(Y74、Y84、Y114)も、図中Z6、Z10に示すように、チラー装置120の出力ポート120bから出力する冷媒の温度が-20℃に安定している。
 これは、温度制御部材110側に分配される冷媒より、バイパス回路L3側に分配される冷媒の方が、流量が多いため、チラー装置120の入力ポート120aに入力する冷媒の熱量が小さく、チラー装置120にかかる負荷が小さいためと考えられる。
 比較例は、例えば、温度制御部材110が設定温度を60℃から0℃に変更された、つまり、上位コントローラから温度制御部材110の設定温度を60℃から0℃に変更する情報を受信した場合(X3)、あるいは、プラズマがONされたことにより温度制御部材110が急峻な温度上昇を生じた、つまり、上位コントローラから入熱情報を受信した場合(X5、X9)、温度制御部材110側への流量分配比率が急激に大きくなる(Y34、Y54、Y94)。つまり、第1開度比例弁31への指令信号の出力値が急激に大きくなる。この場合、チラー装置120の出力ポート120bから出力する冷媒の温度は、図中Z3、Z5、Z9に示すように、急上昇する。
 これは、温度制御部材110と熱交換した冷媒の流量が増えると、チラー装置120の入力ポート120aに入力する冷媒の熱量が大きくなるが、チラー装置120は、その冷媒の熱量増加に対応できるチラー能力を備えていないためと考えられる。半導体製造装置では、チラー装置120の出力ポート120bから出力される冷媒の温度が-20℃に安定するのを待って、次の処理を行う。そのため、比較例のようにピーク値が大きいと、半導体製造装置はタクトタイム(takt time)が長くなる。チラー装置120のチラー能力を高くすれば、タクトタイムを短くできるが、チラー装置120が大型化する。半導体製造装置は、コンパクト化が要求されるため、チラー装置120を大型化するのは好ましない。なお、プラズマエネルギーが大きくなった場合も、チラー装置120のチラー能力が不足し、上記と同様の問題を生じうる。
 これに対して、図10に示すように、実施例は、温度制御部材110側への流量分配比率が安定している場合(Y21、Y44、Y64、Y75、Y85、Y104)、或いは、温度制御部材110側への流量分配比率が急激に小さくなる場合(Y74、Y84、Y114)、第1開閉弁21を弁閉させ、第2開閉弁22を弁開させることにより、定常運転動作を行う(Y22、Y23、Y42、Y43、Y62、Y63、Y102、Y103)。蓄熱ユニット4は、定常運転動作時に、チラー装置120の出力ポート120bから出力される冷媒によって、潜熱蓄熱材422が再生される(Y28、Y48、Y68、Y108)。チラー装置120は、定常運転動作時、出力ポート120bから出力される冷媒の温度が-20℃に安定している(Z2、Z4、Z6、S10)。
 蓄熱ユニット4を流れる冷媒は、潜熱蓄熱材422と熱交換するため、チラー装置120の出力ポート120bから出力されたときより温度が高い。しかし、潜熱蓄熱材422の蓄熱温度が-10℃であるため、蓄熱ユニット4を流れた冷媒は、温度制御部材110を流れた冷媒より、出力ポート120bから出力される冷媒に対する温度差が小さい。よって、チラー装置120は、温度制御部材110を流れた冷媒を冷却するのに必要なチラー能力で、蓄熱ユニット4を十分に再生させることができる。
 実施例は、温度制御部材110が設定温度を60℃から0℃に変更された場合(X3)、あるいは、プラズマがONされたことにより温度制御部材110が急峻な温度上昇を生じた場合、第1開閉弁21が弁閉状態から弁開状態に切り替えられ、第2開閉弁22が弁開状態から弁閉状態に切り替えられることにより、定常運転動作を熱交換動作に自動で切り替えられる(Y32、Y33、Y52、Y53、Y92、Y93)。流量分配部3は、温度制御部材110の温度を下げるために、温度制御部材110側に供給する冷媒の流量を増加させるように動作する(Y34、Y54、Y94)。これに伴い、図中Z3x、Z5x、Z9xに示すように、チラー装置120の出力ポート120bから出力する冷媒の温度が上昇するが、そのピーク値は比較例より小さい。
 温度制御部材110から戻り回路L2に入力する冷媒は、比較例と同様、定常運転動作時より流量が増加し、熱量を増加させる。しかし、冷媒は、蓄熱ユニット4の潜熱蓄熱材422と熱交換することによって温度を下げられてから、チラー装置120に戻される。そのため、チラー装置120は、比較例より、入力ポート120aに入力した冷媒の熱量が小さくなる。よって、実施例は、比較例よりも、チラー装置120が入力ポート120aに入力した冷媒を-20℃近くまで冷却しやすく、出力ポート120bから出力する冷媒の温度のピーク値を抑制することができる。そして、実施例は、ピーク値発生時に冷媒の温度を安定させるのに要する時間(図中t3x、t5x、t9x)が、比較例の時間(t3、t5、t9)より短くなるため、実施例を使用する半導体製造装置は、比較例を使用する半導体製造装置よりタクトタイムを短くできる。また、チラー装置120を大型にしてチラー能力を変える必要がないので、半導体製造装置の大きさを維持できる。また、プラズマエネルギーが大きくなった場合にも、蓄熱ユニット4の潜熱蓄熱材422を変えれば、チラー装置120を交換する必要がない。
 尚、熱交換システム1は、熱交換動作の後、定常運転動作に自動で切り替えられるため、蓄熱ユニット4は、熱交換動作時に失った蓄熱エネルギーが、定常運転動作により、冷媒の熱を利用して自動的に回復される。よって、熱交換システム1は、省エネルギーで継続的に、チラー装置120にかかる負荷を軽減できる。
 以上、説明したように、本形態の熱交換システム1は、蓄熱ユニット4の熱エネルギーを利用したり、チラー装置120から温度制御部材110に供給する冷媒を温度制御部材110からチラー装置120に戻される冷媒に合流させたりすることにより、温度制御部材110からチラー装置120に戻す冷媒とチラー装置120に貯蔵されている冷媒との温度差を小さくしているので、チラー装置120にかかる負荷を軽減することができる。付随的効果とし、チラー装置120は、負荷が軽減されるので、温度制御部材110から出力される冷媒の温度に対してチラー能力が低いものでよく、小型化のものを使用できる。
 また、熱交換システム1は、例えば、流量分配部3により、チラー装置120から供給される冷媒をバイパス回路L3側に流すことにより、冷媒の熱により蓄熱ユニット4を再生させることができるので、省エネルギーでチラー装置120にかかる負荷を軽減することができる。
 しかも、熱交換システム1は、戻り回路L2を第1分岐回路L21と第2分岐回路L22に分岐させ、蓄熱ユニット4の再生を行う場合に、温度制御部材110から戻ってきた流体を、蓄熱ユニット4を通さずにチラー装置120に戻せるようにしているので、蓄熱ユニット4を効率良く再生できる。
 また、熱交換システム1は、冷媒が配管部材411を流れる際に熱交換部材42と熱交換を行うので、冷媒と熱交換部材42との熱交換効率を良好にすることができる。冷媒は、金属繊維シート412の空隙4123を通って配管部材411を流れ、金属繊維シート412と配管部材411を介して熱交換部材42と熱交換を行うので、冷媒が蓄熱ユニット4を流れる際に生じる圧損を抑制しつつ、冷媒と熱交換部材42との熱交換効率を良好にすることができる。更に、配管部材411と熱交換部材42は、薄い直方体形状をなし、積層されているので、熱媒体の流量を確保しつつ、配管部材411と熱交換部材42の熱交換効率を高めることができる。
 尚、チラー装置120が、冷媒に変えて、例えば、温度制御部材110の設定温度より高温の高温媒体を貯蔵し、その高温媒体を温度制御部材110に循環させて温度制御部材110を加熱するようにしても良い。この場合、熱交換システム1は、回路構成を変えず、蓄熱ユニット4の熱交換部材42を高温対応のもの、例えば、高温媒体の温度が90℃の場合には、蓄熱温度が80℃のものに交換すれば良い。この場合も、熱交換システム1は、上記冷媒と同様に定常運転動作を行うことにより、蓄熱ユニット4を高温媒体の放熱により効率良く再生できる。つまり、蓄熱ユニット4は、高温媒体から温熱を吸収して蓄熱温度を上昇させる。一方、高温媒体は、蓄熱ユニット4に熱を奪われて、温度を低下させる。また、熱交換システム1は、上記と同様に熱交換動作を行うことにより、温度制御部材110及び配管部の放熱等によって温度を下げられた高温媒体を蓄熱ユニット4で温めてからチラー装置120に戻すことができるので、チラー装置120にかかる負荷を軽減できる。つまり、蓄熱ユニット4は、高温媒体に熱を与えて蓄熱温度を低下させる。一方、高温媒体は、蓄熱ユニット4から熱を与えられて、温度を上昇させる。
 この場合、コントローラ11は、温度制御部材110の設定温度より高温の高温媒体を温度制御部材110に供給して温度制御部材110の温度を調節するユニットに用いられている。そのため、コントローラ11は、例えば図8Bに示す切替条件を用いて、熱交換システム1の動作を自動的に切り替える。
 図8Bにおいて、コントローラ11が定常運転動作を熱交換動作に切り替える切替条件としては、例えば、コントローラ11が、温度制御部材110の設定温度を現在の値から上げる設定温度上昇情報を、上位コントローラ130から受信する場合がある。また例えば、コントローラ11が、温度センサ114から受信する温度測定値に基づいて、温度制御部材110が急峻な温度低下を発生したことを検知した場合がある。また例えば、コントローラ11が、入熱オフ情報を上位コントローラ130から受信した場合がある。更に例えば、コントローラ11が、流量分配部3において、チラー装置120から出力された冷媒を温度制御部材110側に分配する流量分配率を、所定値未満とする場合がある。
 コントローラ11が熱交換動作を定常運転動作に切り替える切替条件としては、例えば、コントローラ11が、温度センサ114から受信する温度測定値に基づいて、温度制御部材110の温度が設定温度に安定していることを検知した場合がある。また例えば、コントローラ11が、時間を計測するタイマを内蔵し、熱交換動作を開始してから設定時間が経過した場合がある。更に例えば、コントローラ11が、流量分配部3において、チラー装置120から出力された冷媒を温度制御部材110側に分配する流量分配率を、所定値以上とする場合がある。
 尚、設定温度上昇情報は、設定温度を上げる前に受信してもよいし、設定温度を上げた後に受信しても良い。入熱オフ情報は、入熱停止前に受信しても良いし、入熱停止後に受信しても良い。
 (第2実施形態)
 続いて、本発明の第2実施形態について説明する。図11は、本発明の第2実施形態に係る熱交換システム1001の概略構成図である。第2実施形態の熱交換システム1001は、第1分岐回路L21が更に分岐し、流路切替部1200によって流路を切り替えられる点が、第1実施形態と相違している。ここでは、第1実施形態と相違する点を説明し、第1実施形態と共通する構成については図面に第1実施形態と同一の符号を付し、適宜説明を省略する。
 熱交換システム1001の第1分岐回路L21は、第1接続点P1よりチラー装置120側(下流側)に設けられた分岐点P5において、第3分岐回路L211と第4分岐回路L212に分岐している。第3分岐回路L211は、チラー装置120に連通し、絞り弁8が配設されている。第4分岐回路L212は、第2分岐回路L22に接続し、蓄熱ユニット4が配設されている。
 分岐点P5には、流路切替部1200が設けられている。流路切替部1200は、第1開閉弁1202と第2開閉弁1204を備える。第1開閉弁1202は、第3分岐回路L211に配設され、第2開閉弁1204は、第4分岐回路L212に配設されている。流路切替部1200は、チラー装置120から流量分配部3を介して第1分岐回路L21に流入した冷媒の流路を切り換える。流路切替部1200は、「第2流量分配部」の一例である。
 続いて、熱交換システム1001の動作について図12~図14を参照して説明する。
 熱交換システム1001は、図12に示す再生動作と、図13に示す未使用動作と、図14に示す熱交換動作を行う。本明細書において、「再生動作」とは、チラー装置120から出力される冷媒を用いて蓄熱ユニット4の潜熱蓄熱材422を再生させる動作をいう。また、本明細書において、「未使用動作」とは、蓄熱ユニット4を使用しない動作をいう。
 図12に示すように、熱交換システム1001のコントローラ11は、再生動作を行う場合、流路切替部2の第2開閉弁22と流路切替部1200の第2開閉弁1204を弁開させ、流路切替部2の第1開閉弁21と流路切替部1200の第1開閉弁1202を弁閉させる。そして、コントローラ11は、温度制御部材110の温度を設定温度に安定させるように、流量分配部3を動作させる。
 流路切替部2の第1開閉弁21が弁閉され、第2開閉弁22が弁開されているため、流量分配部3から温度制御部材110側に分配された冷媒は、温度制御部材110と熱交換した後、戻り回路L2、第2分岐回路L22へと流れ、蓄熱ユニット4を通らずにチラー装置120に戻される。
 流量分配部3からバイパス回路L3側に分配された冷媒は、流路切替部1200の第1開閉弁1202が弁閉され、第2開閉弁1204が弁開されているため、第4分岐回路L212へ流れる。よって、冷媒は、蓄熱ユニット4を通ってチラー装置120に戻される。このとき、蓄熱ユニット4の熱交換部材42は、流路形成部材41を流れる冷媒と熱交換し、再生される。
 図13に示すように、熱交換システム1001のコントローラ11は、未使用動作を行う場合、流路切替部2の第2開閉弁22と流路切替部1200の第1開閉弁1202を弁開させ、流路切替部2の第1開閉弁21と流路切替部1200の第2開閉弁1204を弁閉させる。そして、熱交換システム1001は、温度制御部材110の温度を安定させるように、流量分配部3が温度制御部材110側とバイパス回路L3側に分配する冷媒の流量を調整する。流量分配部3から温度制御部材110側に供給された冷媒は、再生動作時と同様にして、チラー装置120に戻される。
 流量分配部3からバイパス回路L3側に供給された冷媒は、流路切替部1200の第2開閉弁1204が弁閉され、第1開閉弁1202が弁開されているため、第3分岐回路L211へ流れる。よって、冷媒は、蓄熱ユニット4の熱交換部材42と熱交換せず、チラー装置120から出力された温度を維持した状態でチラー装置120に戻される。
 上記に対して、図14に示すように、熱交換システム1001は、熱交換動作を行う場合、流路切替部2の第1開閉弁21と流路切替部1200の第2開閉弁1204を弁開させ、流路切替部2の第2開閉弁22と流路切替部1200の第1開閉弁1202を弁閉させる。流量分配部3は、温度制御部材110側へ供給する冷媒の流量を大きくするように、動作する。
 流路切替部2の第2開閉弁22が弁閉され、第1開閉弁21が弁開されているため、流量分配部3から温度制御部材110側に供給された冷媒は、温度制御部材110を冷却した後、戻り回路L2、第1分岐回路L21へと流れる。そして、流路切替部1200の第1開閉弁1202が弁閉され、第2開閉弁1204が弁開されているため、冷媒は、第4分岐回路L212へ流入し、蓄熱ユニット4を通ってチラー装置120に戻される。
 蓄熱ユニット4を流れる冷媒は、流路形成部材41を流れる際に、熱交換部材42と熱交換する。そのため、チラー装置120には、熱交換部材42と同程度の温度に冷却された冷媒が戻される、よって、チラー装置120は、冷媒を冷却する負荷が軽減される。
 ここで、コントローラ11は、次のような切替条件に従って、熱交換システム1001の動作を切り替える。すなわち、コントローラ11は、図8Aの熱交換動作を定常運転動作に切り替える何れかの切替条件に従って、熱交換動作を、再生動作又は未使用動作に自動的に切り替える。また、コントローラ11は、図8Aの定常運転動作を熱交換動作に切り替える何れかの切替条件に従って、再生動作又は未使用動作を、熱交換動作に自動的に切り替える。
 更に、コントローラ11は、例えば、蓄熱ユニット4の熱量が所定熱量未満である場合に、再生動作を実行し、蓄熱ユニット4の熱量が所定熱量以上である場合に、未使用動作を実行する。また例えば、コントローラ11は、時間に応じて、未使用動作と再生動作を切り替える。
 以上説明したように、本形態の熱交換システム1001は、必要に応じて流路切替部1200を用いて流路を切り替え、蓄熱ユニット4の再生を行うことができるので、蓄熱ユニット4の無用な再生を回避し、省エネ効果を高めることができる。
 なお、上記説明では、流路切替部1200は、第1開閉弁1202と第2開閉弁1204を用いて第1分岐回路L21を第3分岐回路L211と第4分岐回路L212の何れかに、バイパス回路L3から第1分岐回路L21に流入した冷媒を全て供給した。これに対して、例えば、流路切替部1200を、流量分配部3と同様に構成した流量分配部としてもよい。すなわち、第3分岐回路L211に第1開度比例弁を配置し、第4分岐回路L212に第2開度比例弁を配置することにより、バイパス回路L3から第1分岐回路L21に流入した冷媒を、第3分岐回路L211と第4分岐回路L212に分配するようにしてもよい。この場合、熱交換システム1001は、蓄熱ユニット4の蓄熱量に応じた流量で蓄熱ユニット4に冷媒を流し、再生動作を行うことができ、無駄な再生動作を抑制できる。
(第3実施形態)
 続いて、本発明の第3実施形態に係る熱交換システムについて説明する。図15は、本発明の第3実施形態に係る熱交換システム2001の概略構成図である。熱交換システム2001は、温度制御部材110と低温用チラー装置2120Aと高温用チラー装置2120Bとの間で温調用流体を循環させる循環経路上に設けられている。温調用流体は「熱媒体」の一例である。熱交換システム2001は、蓄熱温度が異なる2種類の低温用蓄熱ユニット4Aと高温用蓄熱ユニット4Bを備える点が、第1実施形態と相違している。低温用チラー装置2120Aは「第1チラー装置」の一例である。高温用チラー装置2120Bは「第2チラー装置」の一例である。
 温度制御部材110は、ヒータ112と温調用流体によって温度を調整される。なお、ヒータ112はなくても良い。
 低温用チラー装置2120Aは、温度制御部材110を循環する温調用流体より低温である低温流体を低温タンク2122Aに貯蔵し、低温用ポンプ2124Aを用いて低温流体を温度制御部材110側に送り出している。高温用チラー装置2120Bは、低温流体並びに温度制御部材110を循環する温調用流体より、高温である高温流体を、高温タンク2122Bに貯蔵し、高温用ポンプ2124Bを用いて低温流体を温度制御部材110側に送り出している。本形態では、低温用チラー装置2120Aは、低温流体の温度を-20℃に調整し、高温用チラー装置2120Bは、高温流体の温度を90℃に調整するものとする。尚、低温流体と高温流体は「熱媒体」の一例である。低温流体は「第1熱媒体」の一例である。高温流体は「第2熱媒体」の一例である。
 熱交換システム2001は、出力回路L51と、入力回路L52と、接続回路L53と、低温流体用往き回路L61と、低温流体用戻り回路L62と、低温流体用バイパス回路L63と、高温流体用往き回路L71と、高温流体用戻り回路L72と、高温流体用バイパス回路L73とを備えている。低温流体用往き回路L61は、往き回路、第1往き回路の一例であり、低温流体用戻り回路L62は、戻り回路、第1戻り回路の一例であり、低温流体用バイパス回路L63は、バイパス回路、第1バイパス回路の一例である。高温流体用往き回路L71は、往き回路、第2往き回路の一例であり、高温流体用戻り回路L72は、戻り回路、第2戻り回路の一例であり、高温流体用バイパス回路L73は、バイパス回路、第2バイパス回路の一例である。出力回路L51と、入力回路L52と、接続回路L53は、メイン循環回路の一例である。
 出力回路L51は、温度制御部材110に温調用流体を供給する。入力回路L52は、温度制御部材110から温調用流体を入力する。接続回路L53は、出力回路L51と入力回路L52とを接続する。入力回路L52には、循環ポンプ2002が配設されている。温調用流体は、循環ポンプ2002のポンプ動作により、温度制御部材110と熱交換システム2001との間を出力回路L51と、入力回路L52と、接続回路L53とを介して一定流量で循環することができる。尚、循環ポンプ2002は、熱交換システム2001の外部に設けても良い。
 低温流体用往き回路L61は、低温用チラー装置2120Aと出力回路L51とを接続し、低温用チラー装置2120Aから温度制御部材110に低温流体を供給する。低温流体用戻り回路L62は、入力回路L52と低温用チラー装置2120Aを接続し、温調用流体を低温用チラー装置2120Aに戻す。低温流体用戻り回路L62は、第1実施形態と同様、分岐点P4Aにおいて、低温流体用第1分岐回路L621と、低温流体用第2分岐回路L622に分岐している。分岐点P4Aには、第1実施形態と同様、低温用流路切替部2Aが設けられている。低温流体用往き回路L61と低温流体用第1分岐回路L621は、第1実施形態と同様、低温流体用バイパス回路L63を介して接続されている。低温流体用第1分岐回路L621は、低温流体用バイパス回路L63と接続する接続点P1Aより低温用チラー装置2120A側に、低温用蓄熱ユニット4Aが配設されている。本形態の低温用蓄熱ユニット4Aには、蓄熱温度が-10℃の熱交換部材42が使用されている。
 高温流体用往き回路L71は、高温用チラー装置2120Bと出力回路L51とを接続し、高温用チラー装置2120Bから温度制御部材110に高温流体を供給する。高温流体用戻り回路L72は、入力回路L52と高温用チラー装置2120Bを接続し、温調用流体を高温用チラー装置2120Bに戻す。高温流体用戻り回路L72は、第1実施形態と同様、分岐点P4Bにおいて、高温流体用第1分岐回路L721と、高温流体用第2分岐回路L722に分岐している。分岐点P4Bには、第1実施形態と同様、高温用流路切替部2Bが設けられている。高温流体用往き回路L71と高温流体用第1分岐回路L721は、第1実施形態と同様、高温流体用バイパス回路L73を介して接続されている。高温流体用第1分岐回路L721には、高温流体用バイパス回路L73と接続する接続点P1Bより高温用チラー装置2120B側に、高温用蓄熱ユニット4Bが配設されている。本形態の高温用蓄熱ユニット4Bには、蓄熱温度が80℃の熱交換部材42が使用されている。
 なお、分岐点P4A,P4Bは、それぞれ第1分岐点の一例であり、低温用流路切替部2Aと高温用流路切替部2Bは、それぞれ流路切替部の一例である。低温流体用第1分岐回路L621と高温流体用第1分岐回路L721は、それぞれ第1分岐回路の一例であり、低温流体用第2分岐回路L622と高温流体用第2分岐回路L722は、それぞれ第2分岐回路の一例である。低温用蓄熱ユニット4Aは、潜熱蓄熱部材、第1潜熱蓄熱部材の一例であり、高温用蓄熱ユニット4Bは、潜熱蓄熱部材、第2潜熱蓄熱部材の一例である。接続点P1Aは、第1接続点、低温側接続点の一例であり、接続点P1Bは、第1接続点、高温側接続点の一例である。
 熱交換システム2001は、接続回路L53と低温流体用往き回路L61と高温流体用往き回路L71が合流する合流点P6に、流量分配部2003が設けられている。合流点P6及び流量分配部2003は、低温流体用往き回路L61と低温流体用バイパス回路L63との接続点P2A、及び、高温流体用往き回路L71と高温流体用バイパス回路L73との接続点P2Bより、温度制御部材110側に設けられている。
 流量分配部2003は、例えば、スプール弁であって、接続回路L53と出力回路L51との連通状態を調整する第1開度比例部V1と、低温流体用往き回路L61と出力回路L51との連通状態を調整する第2開度比例部V2と、高温流体用往き回路L71と出力回路L51との連通状態を調整する第3開度比例部V3を備える。流量分配部2003は、出力回路L51に出力する温調用流体の流量を安定させた状態で、第1開度比例部V1~第3開度比例部V3を連動して動作させることにより、温調用流体と低温流体と高温流体の混合比を調整し、出力回路L51から温度制御部材110に出力する温調用流体の温度を制御する。つまり、流量分配部2003の分配割合に応じて、低温流体は、温度制御部材110側と低温流体用バイパス回路L63側に分配され、高温流体は、温度制御部材110側と高温流体用バイパス回路L73側に分配される。尚、流量分配部2003は、第1流量分配部、流量分配部の一例であり、合流点P6は、合流部の一例である。接続点P2A,P2Bは、それぞれ第2接続点の一例である。
 そして、接続回路L53と低温流体用戻り回路L62と高温流体用戻り回路L72が分岐する分岐点P7には、チェック弁CV1、CV2、CV3が配設されている。分岐点P7は、分流部の一例であり、チェック弁CV1、CV2、CV3は、分流制御部の一例である。チェック弁CV1は、接続回路L53に配設され、チェック弁CV2は、低温流体用戻り回路L62に配設され、チェック弁CV3は、高温流体用戻り回路L72に配設され、流量分配部2003の分配割合に応じて温調用流体が接続回路L53と低温流体用戻り回路L62と高温流体用戻り回路L72に流れるようになっている。
 このような熱交換システム2001のコントローラ11は、低温用チラー装置2120A側の熱交換動作と定常運転動作を、例えば、図8Aの何れかの切替条件に従って切り替え、高温用チラー装置2120B側の熱交換動作と定常運転動作を、図8Bの何れかの切替条件に従って切り替える。
 具体的に、例えば、温度制御部材110の温度が安定している場合、コントローラ11は、低温用流路切替部2A及び高温用流路切替部2Bの第1開閉弁21A、21Bを弁閉させ、第2開閉弁22A、22Bを弁開させる。コントローラ11は、例えば、ヒータ112の加熱分だけ温度制御部材110を冷却するように、温調用流体に低温流体を合流させ、高温流体を合流させないように、流量分配部2003を動作させる。これにより、低温用チラー装置2120A側でも高温用チラー装置2120B側でも、第1実施形態と同様に定常運転動作が行われ、低温用蓄熱ユニット4A及び高温用蓄熱ユニット4Bが再生される。
 一方、例えば、コントローラ11は、温度制御部材110の温度が安定しているときに、設定温度低下情報を受信した場合、低温用流路切替部2Aの第1開閉弁21Aを弁開させ、第2開閉弁22Aを弁閉させる。コントローラ11は、温調用流体に低温流体を合流させ、高流流体を合流させないように、流量分配部2003を動作させる。これにより、低温用チラー装置2120A側では、第1実施形態と同様に熱交換動作が行われ、低温用チラー装置2120Aの負荷が軽減される。一方、高温用チラー装置2120B側では、第1実施形態と同様に定常運転動作が行われ、高温用蓄熱ユニット4Bが再生される。
 また、例えば、コントローラ11は、温度制御部材110の温度が安定しているときに、設定温度上昇情報を受信した場合、高温用流路切替部2Bの第1開閉弁21Bを弁開させ、第2開閉弁22Bを弁閉させる。コントローラ11は、温調用流体に高温流体を合流させ、低温流体を合流させないように、流量分配部2003を動作させる。これにより、高温用チラー装置2120B側では、第1実施形態と同様に熱交換動作が行われ、高温用チラー装置2120Bの負荷が軽減される。一方、低温用チラー装置2120A側では、第1実施形態と同様に定常運転動作が行われ、低温用蓄熱ユニット4Aが再生される。
 よって、本形態によれば、温調用流体を低温用チラー装置2120Aに戻す低温流体用戻り回路L62の低温流体用第1分岐回路L621に蓄熱温度の低い低温用蓄熱ユニット4Aを設け、温調用流体を高温用チラー装置2120Bに戻す高温流体用戻り回路L72の高温流体用第1分岐回路L721に蓄熱温度の高い高温用蓄熱ユニット4Bを設けているので、温調用流体を低温流体の温度又は高温流体の温度に近づけてから低温用チラー装置2120A又は高温用チラー装置2120Bに戻すことができ、低温用チラー装置2120Aと高温用チラー装置2120Bの負荷を軽減できる。また、低温流体と高温流体の熱を利用して低温用蓄熱ユニット4A及び高温用蓄熱ユニット4Bを再生できるので、省エネルギーで低温用チラー装置2120Aと高温用チラー装置2120Bの負荷を軽減できる。
 尚、本発明は、上記実施形態に限定されることなく、色々な応用が可能である。例えば、上記実施形態では、熱交換システム1、1001、2001を半導体製造装置に使用したが、チラー装置と制御対象物に熱媒体を循環させる他の装置に適用しても良い。
 戻り回路L2は、分岐させなくても良い。ただし、上記形態のように、戻り回路L2を第1分岐回路L21と第2分岐回路L22に分岐させた場合、チラー装置120から供給される冷媒を、温度制御部材110を経由せずに蓄熱ユニット4に流すことによって、蓄熱ユニット4の熱交換部材42を効率良く再生できる。
 第1分岐回路L21は、第3分岐回路L211と第4分岐回路L212に分岐させなくても良い。ただし、上記形態のように、第1分岐回路L21を第3分岐回路L211と第4分岐回路L212に分岐させることにより、例えば、蓄熱ユニット4の再生が不要な場合に、蓄熱ユニット4を迂回して冷媒を循環させることが可能になり、省エネ効果が高くなる。
 流路形成部材41は、金属繊維シート412を備えなくてもよい。また、流路形成部材41は、結着部C1、C2を備えず、圧接等により流路面4111に接した状態で金属繊維シート412が配管部材411に内設されても良い。但し、上記形態のように、流路形成部材41が結着部C1、C2を備えることにより、金属繊維シート412と配管部材411との間の熱伝導性が向上し、熱媒体と熱交換部材42との間の熱交換を促進させることができる。
 図16に示すように、熱交換部材42の内部空間4211に、金属繊維シート412と同様の金属繊維シート423(第2金属繊維シートの一例)を収容体421に接するように設けても良い。この場合、収容体421は、例えば、金属繊維シート423を収容した状態で焼結加工を施されることによって、内部空間4211の内側面に金属繊維シート423を結着させてもよい。これによれば、潜熱蓄熱材422が、金属繊維シート423の空隙に導入され、金属繊維シート423を介して収容体421と熱交換することができるので、熱交換部材42の熱交換効率を向上させることができる。
 金属繊維シートは、流路形成部材41と熱交換部材42の両方に設けられていてもよいし、流路形成部材41と熱交換部材42の何れか一方に設けられてもよいし、流路形成部材41と熱交換部材42の両方に設けられていなくてもよい。
 流路形成部材41と熱交換部材42は、直方体形状でなくても良い。例えば、流路形成部材41と熱交換部材42を大きさの異なる円筒形状に設け、入れ子状態で配置するようにしてもよい。この場合、径方向において最も内側に流路形成部材を配置し、最も外側に熱交換部材42を配置し、外周面を断熱材で覆うようにすると良い。但し、上記形態のように、流路形成部材41と熱交換部材42の外形を同じ直方体形状にすることで、流路形成部材41と熱交換部材42のストックを減らしつつ、熱媒体の流量などに応じて蓄熱ユニット4の構造や蓄熱能力を簡単に変更することができる。
 蓄熱ユニット4が断熱材43を備えなくても良い。また例えば、流路形成部材41と熱交換部材42とにより構成するユニット全体を密閉し、真空にすることによって、ユニットを真空断熱してもよい。
 第1温度センサ6と第2温度センサ7を省略し、温度センサ114のみで熱媒体の温度を調整してもよい。但し、第1温度センサ6と第2温度センサ7を設けた方が、熱媒体の温度を精度良く制御できる可能性が高い。
 上記形態の蓄熱ユニット4は、配管部材411と熱交換部材42の収容体421が独立しているが、配管部材411を省略し、収容体に熱媒体が流れる流路を形成し、収容体が配管部材411として機能するようにしてもよい。この場合、配管部材411と同様、収容体の流路に金属繊維シートを内設してもよい。
 例えば、配管部材411と金属繊維シート412と収容体421を、樹脂などのコストの安い材料で形成し、それらの表面に熱伝導率が高い金属膜を形成してもよい。また、配管部材411の流路面4111と金属繊維シート412の表面を、耐食性や耐薬品性を有する材料(例えばニッケルメッキ)でコーティングしてもよい。
1 熱交換システム
2 流路切替部
3 流量分配部
110 温度制御部材(制御対象物の一例)
120 チラー装置
L1 往き回路
L2 戻り回路
L3 バイパス回路
L21 第1分岐回路
L22 第2分岐回路
P1 第1接続点
P2 第2接続点
P4 分岐点

Claims (11)

  1.  チラー装置と制御対象物との間に配設される熱交換システムであって、
     前記チラー装置から前記制御対象物へ熱媒体を供給する往き回路と、
     前記制御対象物から前記チラー装置へ前記熱媒体を戻す戻り回路と、
     前記往き回路と前記戻り回路とをバイパスするバイパス回路と、
     前記戻り回路のうち前記戻り回路と前記バイパス回路とが接続する第1接続点よりチラー装置側となる位置に配設され、蓄熱及び放熱を行う潜熱蓄熱部材と、
     前記往き回路と前記バイパス回路が接続する第2接続点、又は、前記往き回路のうち前記第2接続点より制御対象物側となる位置に設けられ、制御対象物側とバイパス回路側に前記熱媒体を分配する第1流量分配部と、を有すること、
    を特徴とする熱交換システム。
  2.  請求項1に記載する熱交換システムにおいて、
     前記戻り回路は、前記第1接続点より上流側に設けられた第1分岐点にて、第1分岐回路と第2分岐回路とに分岐していること、
     前記第1分岐点に配設され、前記制御対象物から前記戻り回路に入力した前記熱媒体を前記第1分岐回路又は前記第2分岐回路に供給する流路切替部を有すること、
     前記第1分岐回路は、前記第1接続点を備え、前記バイパス回路に接続すると共に、前記チラー装置に連通しており、更に、前記第1接続点よりチラー装置側となる位置に前記潜熱蓄熱部材が配設されていること、
     前記第2分岐回路は、前記第1分岐回路に対して、前記潜熱蓄熱部材よりチラー装置側の位置に設けられた第3接続点に接続されていること、
    を特徴とする熱交換システム。
  3.  請求項2に記載される熱交換システムにおいて、
     前記戻り回路は、更に、前記第1分岐回路が前記第1接続点よりチラー装置側の位置にある第2分岐点にて、第3分岐回路と第4分岐回路に分岐していること、
     前記第2分岐点に設けられ、前記バイパス回路から前記第1分岐回路に流入した前記熱媒体を、前記第3分岐回路と前記第4分岐回路に分配する第2流量分配部を有すること、
     前記第3分岐回路は、前記第3接続点を備え、前記第2分岐回路に接続すると共に、前記チラー装置に連通していること、
     前記第4分岐回路は、前記第2分岐回路に接続され、前記潜熱蓄熱部材が配設されていること、
    を特徴とする熱交換システム。
  4.  請求項2又は請求項3に記載する熱交換システムにおいて、
     前記熱媒体が前記制御対象物を冷却する低温媒体であること、
     前記潜熱蓄熱部材は、
      蓄熱温度が、前記制御対象物から前記戻り回路に入力する前記熱媒体の温度より低く設定されており、
      前記流路切替部が前記熱媒体を前記第1分岐回路に供給するように流路を切り替えた場合、前記制御対象物から前記戻り回路に入力した熱媒体を蓄熱エネルギーにより冷却し、
      前記流路切替部が前記熱媒体を前記第2分岐回路に供給するように流路を切り替えた場合、前記バイパス回路から前記第1分岐回路に流入した前記熱媒体によって再生されること、
    を特徴とする熱交換システム。
  5.  請求項2又は請求項3に記載する熱交換システムにおいて、
     前記熱媒体が前記制御対象物を加熱する高温媒体であること、
     前記潜熱蓄熱部材は、
      蓄熱温度が、前記制御対象物から前記戻り回路に入力する前記熱媒体の温度より高く設定されており、
      前記流路切替部が前記熱媒体を前記第1分岐回路に供給するように流路を切り替えた場合、前記制御対象物から前記戻り回路に入力した熱媒体を蓄熱エネルギーにより加熱し、
      前記流路切替部が前記熱媒体を前記第2分岐回路に供給するように流路を切り替えた場合、前記バイパス回路から前記第1分岐回路に流入した前記熱媒体によって再生されること、
    を特徴とする熱交換システム。
  6.  請求項1乃至請求項5の何れか1つに記載する熱交換システムにおいて、
     前記制御対象物は、半導体製造装置の反応容器内に設置され、ウエハの温度を制御する温度制御部材であること、
    を特徴とする熱交換システム。
  7.  請求項1乃至請求項6の何れか1つに記載する熱交換システムにおいて、
     前記潜熱蓄熱部材は、
      前記熱媒体が流れる流路を備える配管部材と、
      潜熱蓄熱材が充填され、前記配管部材に面接触した状態で配置される熱交換部材と、
     を有する蓄熱ユニットであること、
    を特徴とする熱交換システム。
  8.  請求項7に記載する熱交換システムにおいて、
     前記配管部材は、前記流路の内壁に接した状態で第1金属繊維シートが内設され、
     前記金属繊維シートは、前記熱媒体が導入される空隙を有すること、
    と特徴とする熱交換システム。
  9.  請求項7又は請求項8に記載する熱交換システムにおいて、
     前記配管部材と前記熱交換部材は、薄い直方体形状をなし、積層されていること、
    を特徴とする熱交換システム。
  10.  請求項7乃至請求項9の何れか1つに記載する熱交換システムにおいて、
     前記熱交換部材は、
      前記潜熱蓄熱材が充填される内部空間を備える収容体と、
      前記内部空間に配置される第2金属繊維シートと、を有し、
      前記第2金属繊維シートが、前記収容体に接していること、
    を特徴とする熱交換システム。
  11.  第1熱媒体を貯蔵する第1チラー装置と、前記第1熱媒体より高温の第2熱媒体を貯蔵する第2チラー装置と、温調用流体を用いて温度を制御される制御対象物と、の間に配設される熱交換システムであって、
     前記制御対象物に前記温調用流体を循環させるメイン循環回路であって、合流部と、前記合流部と前記制御対象物との間に設けられた分流部と、を備える前記メイン循環回路と、
     前記第1チラー装置から前記合流部へ前記第1熱媒体を供給する第1往き回路と、
     前記分流部から前記第1チラー装置へ前記温調用流体を戻す第1戻り回路と、
     前記第1往き回路と前記第1戻り回路とをバイパスする第1バイパス回路と、
     前記第1戻り回路のうち前記第1戻り回路と前記第1バイパス回路とが接続する低温側接続点より第1チラー装置側となる位置に配設され、蓄熱及び放熱を行う第1潜熱蓄熱部材と、
     前記第2チラー装置から前記合流部へ前記第2熱媒体を供給する第2往き回路と、
     前記分流部から前記第2チラー装置へ前記温調用流体を戻す第2戻り回路と、
     前記第2往き回路と前記第2戻り回路とをバイパスする第2バイパス回路と、
     前記第2戻り回路のうち前記第2戻り回路と前記第2バイパス回路とが接続する高温側接続点より第2チラー装置側となる位置に配設され、蓄熱及び放熱を行う第2潜熱蓄熱部材であって、前記第1潜熱蓄熱部材より蓄熱温度が高い前記第2潜熱蓄熱部材と、
     前記合流部に配設され、制御対象物側と第1バイパス回路側と前記第2バイパス回路側に前記温調用流体と前記第1熱媒体と前記第2熱媒体を分配する流量分配部と、 前記分流部に配設され、メイン循環回路側と第1戻り回路側と第2戻り回路側に前記温調用流体を分流させる分流制御部と、を有すること、
    を特徴とする熱交換システム。
PCT/JP2020/012293 2019-04-23 2020-03-19 熱交換システム WO2020217800A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/440,812 US20220187027A1 (en) 2019-04-23 2020-03-19 Heat exchange system
KR1020217033928A KR102547057B1 (ko) 2019-04-23 2020-03-19 열교환 시스템
CN202080030876.4A CN113811833B (zh) 2019-04-23 2020-03-19 热交换系统
JP2021515878A JP7404354B2 (ja) 2019-04-23 2020-03-19 熱交換システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-081863 2019-04-23
JP2019081863 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020217800A1 true WO2020217800A1 (ja) 2020-10-29

Family

ID=72942477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/012293 WO2020217800A1 (ja) 2019-04-23 2020-03-19 熱交換システム

Country Status (6)

Country Link
US (1) US20220187027A1 (ja)
JP (1) JP7404354B2 (ja)
KR (1) KR102547057B1 (ja)
CN (1) CN113811833B (ja)
TW (1) TWI742579B (ja)
WO (1) WO2020217800A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786621B (zh) * 2021-05-04 2022-12-11 緯創資通股份有限公司 熱循環裝置、檢測裝置及溫度控制方法
WO2023021884A1 (ja) * 2021-08-20 2023-02-23 Ckd株式会社 温度制御システム
WO2023189974A1 (ja) * 2022-03-30 2023-10-05 株式会社巴川製紙所 温度均一化ユニット

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038266A (ja) * 2004-07-22 2006-02-09 Univ Of Tokushima 蓄熱装置
JP2019009433A (ja) * 2017-06-26 2019-01-17 株式会社巴川製紙所 冷却部材

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912439U (ja) 1982-07-13 1984-01-25 株式会社戸上電機製作所 開閉器の消弧装置
JPS61128043A (ja) * 1984-11-28 1986-06-16 Shinryo Air Conditioning Co Ltd 蓄熱回路を有する空気調和装置
JPH0331666A (ja) * 1989-06-28 1991-02-12 Matsushita Electric Ind Co Ltd ヒートポンプ式空気調和機
JPH1038401A (ja) * 1996-07-24 1998-02-13 Daikin Ind Ltd 蓄熱式冷凍装置
JP4875714B2 (ja) * 2006-12-27 2012-02-15 オリオン機械株式会社 精密温度調整装置
WO2009049096A1 (en) * 2007-10-09 2009-04-16 Advanced Thermal Sciences Corp. Thermal control system and method
KR100925236B1 (ko) 2007-10-18 2009-11-05 주식회사 글로벌스탠다드테크놀로지 반도체 제조 장비의 온도 조절 시스템
JP2009250810A (ja) 2008-04-07 2009-10-29 Seiko Epson Corp 電子部品の温度制御装置およびハンドラ装置
JP5983187B2 (ja) * 2012-08-28 2016-08-31 株式会社デンソー 車両用熱管理システム
JP6014513B2 (ja) 2012-08-29 2016-10-25 東京エレクトロン株式会社 プラズマエッチング装置及び制御方法
KR102010687B1 (ko) * 2015-05-26 2019-08-13 미쓰비시덴키 가부시키가이샤 히트펌프 급탕 시스템
JP6520802B2 (ja) 2016-04-19 2019-05-29 三菱電機株式会社 蓄熱システム
US11837479B2 (en) * 2016-05-05 2023-12-05 Applied Materials, Inc. Advanced temperature control for wafer carrier in plasma processing chamber
KR101750410B1 (ko) 2016-11-30 2017-06-23 주식회사 티이애플리케이션 빙축열 시스템
CN108375248A (zh) * 2017-12-29 2018-08-07 青岛海尔空调器有限总公司 空调器系统
KR101936425B1 (ko) 2018-04-23 2019-01-08 주식회사 셀빛 급가열 및 급냉각을 위한 칠러 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038266A (ja) * 2004-07-22 2006-02-09 Univ Of Tokushima 蓄熱装置
JP2019009433A (ja) * 2017-06-26 2019-01-17 株式会社巴川製紙所 冷却部材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI786621B (zh) * 2021-05-04 2022-12-11 緯創資通股份有限公司 熱循環裝置、檢測裝置及溫度控制方法
WO2023021884A1 (ja) * 2021-08-20 2023-02-23 Ckd株式会社 温度制御システム
WO2023189974A1 (ja) * 2022-03-30 2023-10-05 株式会社巴川製紙所 温度均一化ユニット

Also Published As

Publication number Publication date
TWI742579B (zh) 2021-10-11
KR20210143834A (ko) 2021-11-29
JP7404354B2 (ja) 2023-12-25
CN113811833B (zh) 2022-10-04
KR102547057B1 (ko) 2023-06-26
CN113811833A (zh) 2021-12-17
TW202043694A (zh) 2020-12-01
JPWO2020217800A1 (ja) 2020-10-29
US20220187027A1 (en) 2022-06-16

Similar Documents

Publication Publication Date Title
WO2020217800A1 (ja) 熱交換システム
US9019704B2 (en) Heat storage by phase-change material
JP5218864B2 (ja) 冷却システム及びその使用方法
CN110691490A (zh) 用于数据中心的浸入式冷却系统
US7954331B2 (en) Thermally-balanced solid state cooling
JPWO2020217800A5 (ja)
US6675852B2 (en) Platen for use in laminating press
JP7453593B2 (ja) 固体冷却モジュール
CN109075411A (zh) 用于电池组件的冷却装置以及包括电池组件和冷却装置的单元
US6629426B2 (en) Device used in superconductor technology
CN108397933B (zh) 吸附制冷机、控制吸附制冷机的方法和冷却系统
JP2018173261A (ja) 暖房システムおよび暖房方法
US20180063989A1 (en) Vehicle Power Module Assembly With Cooling
US11031535B2 (en) Thermoelectric power generation system
US9562706B2 (en) Magnetic cooling apparatus
CN111347832B (zh) 车辆换热系统和具有其的车辆
TW202100715A (zh) 蓄熱單元
CN111795599B (zh) 冷液换热系统和液冷系统
JP2005257372A (ja) 温度試験装置
JP7371463B2 (ja) 電池温調装置
WO2021182441A1 (ja) 固体冷媒による冷却モジュール及び固体冷媒による冷却システム
KR20220080757A (ko) 연료전지-배터리 시스템 및 그 제어방법
JP2016539307A (ja) 冷凍方法ならびにそれに対応するコールドボックスおよび極低温機器
JP2021044135A (ja) 電池温調装置
JPH10238979A (ja) 蓄熱型熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20793943

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515878

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217033928

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20793943

Country of ref document: EP

Kind code of ref document: A1