WO2020217405A1 - Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation - Google Patents

Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation Download PDF

Info

Publication number
WO2020217405A1
WO2020217405A1 PCT/JP2019/017715 JP2019017715W WO2020217405A1 WO 2020217405 A1 WO2020217405 A1 WO 2020217405A1 JP 2019017715 W JP2019017715 W JP 2019017715W WO 2020217405 A1 WO2020217405 A1 WO 2020217405A1
Authority
WO
WIPO (PCT)
Prior art keywords
support piece
chip
film
substrate
support
Prior art date
Application number
PCT/JP2019/017715
Other languages
French (fr)
Japanese (ja)
Inventor
慎太郎 橋本
紘平 谷口
達也 矢羽田
義信 尾崎
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2019/017715 priority Critical patent/WO2020217405A1/en
Priority to SG11202110100WA priority patent/SG11202110100WA/en
Priority to JP2021515424A priority patent/JPWO2020217405A1/ja
Priority to KR1020217029673A priority patent/KR20210146908A/en
Priority to CN201980094133.0A priority patent/CN113614916A/en
Priority to TW109113047A priority patent/TW202107665A/en
Publication of WO2020217405A1 publication Critical patent/WO2020217405A1/en
Priority to JP2023096871A priority patent/JP2023112009A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present disclosure is supported and first by a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and a plurality of support pieces.
  • the present invention relates to a method for manufacturing a semiconductor device having a dolmen structure including a second chip arranged so as to cover the chip.
  • the present disclosure also relates to a method for producing a support piece and a laminated film for forming a support piece.
  • a dolmen (dolmen) is a kind of stone tomb, and has a plurality of pillar stones and a plate-shaped rock placed on the pillar stone.
  • a support piece corresponds to a "dolmen"
  • a second chip corresponds to a "plate-shaped rock".
  • Patent Document 1 discloses a semiconductor die assembly including a controller die and a memory die supported by a support member on the controller die. It can be said that the semiconductor assembly 100 illustrated in FIG. 1A of Patent Document 1 has a dolmen structure.
  • the semiconductor assembly 100 includes the package substrate 102, the controller dies 103 arranged on the surface of the package substrate 102, the memory dies 106a and 106b arranged above the controller dies 103, and the support members 130a and 130b for supporting the memory dies 106a. To be equipped.
  • Patent Document 1 discloses that a semiconductor material such as silicon can be used as a support member (support piece), and more specifically, a fragment of the semiconductor material obtained by dicing a semiconductor wafer can be used (Patent Document 1). 1 [0012], [0014] and FIG. 2). In order to manufacture a support piece for a dolmen structure using a semiconductor chip, for example, the following steps are required as in the case of manufacturing a normal semiconductor chip.
  • Step of attaching back grind tape to semiconductor wafer (2) Step of back grinding semiconductor wafer (3) Adhesive layer and adhesive layer for dicing ring and semiconductor wafer after back grind placed in it Step of pasting a film (dicing / die bonding integrated film) with and (4) Step of peeling back grind tape from semiconductor wafer (5) Step of fragmenting semiconductor wafer (6) Semiconductor chip and adhesive piece A process of picking up a support piece made of a laminated body from an adhesive layer
  • the present disclosure provides a method for manufacturing a semiconductor device, which can simplify the step of manufacturing a support piece in the manufacturing process of a semiconductor device having a dolmen structure, and further can stably support a laminated semiconductor chip. ..
  • the present disclosure also provides a method for producing a support piece and a laminated film for forming a support piece.
  • One aspect of the present disclosure is supported by a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and a plurality of support pieces.
  • the present invention relates to a method for manufacturing a semiconductor device having a dolmen structure including a second chip arranged so as to cover the first chip.
  • the method for manufacturing a semiconductor device includes the following steps.
  • Step of preparing a laminated film including a base film, an adhesive layer, and a support piece forming film in this order (B) By individualizing the support piece forming film on the surface of the adhesive layer (C) Step of picking up the support piece from the adhesive layer (D) Step of arranging the first chip on the substrate (E) On the substrate and around the first chip Step of arranging a plurality of support pieces (F) Step of preparing a chip with an adhesive piece provided with a second chip and an adhesive piece provided on one surface of the second chip (G) Multiple supports The process of constructing a dolmen structure by placing a chip with an adhesive piece on the surface of the piece
  • a support piece forming film can be made into individual pieces to obtain a support piece.
  • the step of manufacturing the support piece can be simplified as compared with the conventional manufacturing method in which a fragment of the semiconductor material obtained by dicing a semiconductor wafer is used as the support piece. That is, while the above-mentioned steps (1) to (6) have been conventionally required, since the support piece forming film does not include the semiconductor wafer, the back grind of the semiconductor wafer (1), (2) and The step (4) can be omitted. In addition, since a semiconductor wafer, which is more expensive than a resin material, is not used, the cost can be reduced.
  • the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa ⁇ s or more.
  • the support piece forming film may include a thermosetting resin layer.
  • the adhesive layer of the laminated film prepared in the step (A) may be a pressure-sensitive type or an ultraviolet curable type. That is, the adhesive layer may or may not be cured by ultraviolet irradiation, in other words, it may or may not contain a resin having a carbon-carbon double bond having photoreactivity. It does not have to be.
  • the pressure-sensitive adhesive layer may contain a resin having a carbon-carbon double bond having photoreactivity.
  • the adhesive layer may be one in which the adhesiveness of the predetermined region is lowered by irradiating the predetermined region with ultraviolet rays, and for example, a resin having a carbon-carbon double bond having photoreactivity may be used. It may remain.
  • the adhesive layer is an ultraviolet curable type, the adhesiveness of the adhesive layer can be reduced by carrying out a step of irradiating the adhesive layer with ultraviolet rays between the steps (B) and (C).
  • the step of heating the support piece forming film or the support piece to cure the thermosetting resin layer or the adhesive piece may be carried out at an appropriate timing. For example, it may be carried out before the step (G).
  • the thermosetting resin layer is already cured to prevent the support pieces from being deformed with the arrangement of the chips with adhesive pieces. it can. Since the thermosetting resin layer has adhesiveness to other members (for example, a substrate), it is not necessary to separately provide an adhesive layer or the like on the support piece.
  • the thickness of the support piece forming film may be, for example, 5 to 180 ⁇ m or 20 to 120 ⁇ m. When the thickness of the support piece forming film is in this range, a dolmen structure having an appropriate height with respect to the first chip (for example, a controller chip) can be constructed.
  • the support piece forming film may include a thermosetting resin layer.
  • the thermosetting resin layer contains, for example, an epoxy resin and preferably contains an elastomer. Since the thermosetting resin layer constituting the support piece contains an elastomer, the stress in the semiconductor device can be relaxed.
  • One aspect of the present disclosure relates to a method of manufacturing a support piece used in a manufacturing process of a semiconductor device having a dolmen structure.
  • the method for manufacturing the support piece includes the following steps.
  • C Step of picking up support pieces from the adhesive layer
  • the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa ⁇ s or more.
  • One aspect of the present disclosure is supported by a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and a plurality of support pieces.
  • a laminated film for forming a support piece used in a manufacturing process of a semiconductor device having a dolmen structure including a second chip arranged so as to cover the first chip, the base film and an adhesive layer.
  • the present invention relates to a support piece forming laminated film, which comprises the support piece forming film in this order and has a shear viscosity of the support piece forming film at 120 ° C. of 4000 Pa ⁇ s or more.
  • the support piece forming film may include a thermosetting resin layer.
  • a method for manufacturing a semiconductor device capable of simplifying the step of manufacturing a support piece and stably supporting a laminated semiconductor chip is provided.
  • a method for manufacturing a support piece and a laminated film for forming a support piece are provided.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device.
  • 2 (a), 2 (b), and 2 (c) are plan views schematically showing an example of the positional relationship between the first chip and the plurality of support pieces.
  • FIG. 3A is a plan view schematically showing an embodiment of a laminated film for forming a support piece
  • FIG. 3B is a cross-sectional view taken along the line bb of FIG. 3A.
  • FIG. 4 is a cross-sectional view schematically showing a step of bonding the adhesive layer and the support piece forming film.
  • 5 (a), 5 (b), 5 (c), and 5 (d) are cross-sectional views schematically showing the manufacturing process of the support piece.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device.
  • 2 (a), 2 (b), and 2 (c) are plan views schematically showing an example of the positional relationship between the first chip and the plurality of support pieces
  • FIG. 6 is a cross-sectional view schematically showing a state in which a plurality of support pieces are arranged on the substrate and around the first chip.
  • FIG. 7 is a cross-sectional view schematically showing an example of a chip with an adhesive piece.
  • FIG. 8 is a cross-sectional view schematically showing a dolmen structure formed on the substrate.
  • FIG. 9 is a cross-sectional view schematically showing a second embodiment of the semiconductor device.
  • 10 (a) is a top view showing an example of a substrate with a support piece used in the embodiment
  • FIG. 10 (b) is a cross-sectional view taken along the line bb of FIG. 10 (a).
  • (C) is a cross-sectional view showing an example of the laminated body used in the examples.
  • (meth) acrylic acid means acrylic acid or methacrylic acid
  • (meth) acrylate means acrylate or the corresponding methacrylate
  • a or B may include either A or B, or both.
  • the term “layer” includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view.
  • the term “process” is used not only as an independent process but also as a term as long as the desired action of the process is achieved even when it cannot be clearly distinguished from other processes. included.
  • the numerical range indicated by using "-” indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
  • the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition.
  • the exemplary materials may be used alone or in combination of two or more unless otherwise specified.
  • the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device.
  • the semiconductor device 100 shown in FIG. 1 includes a substrate 10, a chip T1 (first chip) arranged on the surface of the substrate 10, and a plurality of chips T1 arranged on the surface of the substrate 10 and around the chip T1.
  • the support piece Dc, the chip T2 (second chip) arranged above the chip T1, the adhesive piece Tc sandwiched between the chip T2 and the plurality of support pieces Dc, and the chip T2 are laminated.
  • a stopper 50 is provided.
  • a dolmen structure is formed on the substrate 10 by a plurality of support pieces Dc, a chip T2, and an adhesive piece Tc located between the support piece Dc and the chip T2.
  • the chip T1 is separated from the adhesive piece Tc.
  • the substrate 10 may be an organic substrate or a metal substrate such as a lead frame. From the viewpoint of suppressing the warp of the semiconductor device 100, the thickness of the substrate 10 is, for example, 90 to 300 ⁇ m, and may be 90 to 210 ⁇ m.
  • the chip T1 is, for example, a controller chip, which is adhered to the substrate 10 by an adhesive piece Tc and electrically connected to the substrate 10 by a wire w.
  • the shape of the chip T1 in a plan view is, for example, a rectangle (square or rectangle).
  • the length of one side of the chip T1 is, for example, 5 mm or less, and may be 2 to 5 mm or 1 to 5 mm.
  • the thickness of the chip T1 is, for example, 10 to 150 ⁇ m, and may be 20 to 100 ⁇ m.
  • the chip T2 is, for example, a memory chip, and is adhered onto the support piece Dc via the adhesive piece Tc. In plan view, the chip T2 has a larger size than the chip T1.
  • the shape of the chip T2 in a plan view is, for example, a rectangle (square or rectangle).
  • the length of one side of the chip T2 is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm.
  • the thickness of the chip T2 is, for example, 10 to 170 ⁇ m, and may be 20 to 120 ⁇ m.
  • the chips T3 and T4 are also memory chips, for example, and are adhered onto the chip T2 via an adhesive piece Tc.
  • the length of one side of the chips T3 and T4 may be the same as that of the chip T2, and the thickness of the chips T3 and T4 may be the same as that of the chip T2.
  • the support piece Dc acts as a spacer that forms a space around the chip T1.
  • the support piece Dc contains a cured product of a film for forming a support piece (a cured product of a thermosetting resin composition).
  • the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa ⁇ s or more as described later.
  • two support pieces Dc shape: rectangle
  • One support piece Dc shape: square, 4 in total
  • One support piece Dc (shape: rectangle, total of 4 pieces) may be arranged in each.
  • the length of one side of the support piece Dc in a plan view is, for example, 20 mm or less, and may be 1 to 20 mm or 1 to 12 mm.
  • the thickness (height) of the support piece Dc is, for example, 10 to 180 ⁇ m, and may be 20 to 120 ⁇ m.
  • the manufacturing method according to the present embodiment includes the following steps (A) to (C).
  • a step of preparing a support piece forming laminated film 20 (hereinafter, sometimes referred to as "laminated film 20") including a base film 1, an adhesive layer 2, and a support piece forming film D in this order.
  • laminated film 20 (hereinafter, sometimes referred to as "laminated film 20")
  • B A step of forming a plurality of support pieces Da on the surface of the adhesive layer 2 by individualizing the support piece forming film D (see FIG. 5B).
  • C A step of picking up the support piece Da from the adhesive layer 2 (see FIG. 5D).
  • the support piece Dc shown in FIG. 1 is after the adhesive piece (thermosetting tree composition) contained therein has been cured.
  • the support piece Da is in a state before the adhesive piece (thermosetting tree composition) contained therein is completely cured (see, for example, FIG. 5B).
  • steps (A) to (C) are processes for manufacturing a plurality of support pieces Da.
  • steps (A) to (C) will be described with reference to FIGS. 3 to 5.
  • the step (A) is a step of preparing the laminated film 20.
  • the laminated film 20 includes a base film 1, an adhesive layer 2, and a support piece forming film D.
  • the base film 1 is, for example, a polyethylene terephthalate film (PET film).
  • PET film polyethylene terephthalate film
  • the adhesive layer 2 is formed in a circular shape by punching or the like (see FIG. 3A).
  • the pressure-sensitive adhesive layer 2 may be made of a pressure-sensitive pressure-sensitive adhesive or an ultraviolet-curable pressure-sensitive adhesive. When the adhesive layer 2 is made of an ultraviolet curable adhesive, the adhesive layer 2 has a property that the adhesiveness is lowered by being irradiated with ultraviolet rays.
  • the support piece forming film D is formed in a circular shape by punching or the like, and has a diameter smaller than that of the adhesive layer 2 (see FIG. 3A).
  • the support piece forming film D may include a thermosetting resin layer 5 made of a thermosetting resin composition.
  • thermosetting resin composition constituting the thermosetting resin layer 5 in the support piece forming film D can be in a completely cured product (C stage) state by a semi-curing (B stage) state and then a curing treatment. Is. Since the thermosetting resin composition can easily adjust the shear viscosity within a predetermined range, it contains an epoxy resin, a curing agent, and an elastomer (for example, an acrylic resin), and if necessary, an inorganic filler and curing acceleration. It may further contain an agent or the like. Details of the thermosetting resin composition constituting the thermosetting resin layer 5 in the support piece forming film D will be described later.
  • the thickness of the support piece forming film D may be, for example, 5 to 180 ⁇ m or 20 to 120 ⁇ m.
  • a dolmen structure having an appropriate height with respect to the first chip (for example, a controller chip) can be constructed.
  • the shear viscosity of the support piece forming film D at 120 ° C. is 4000 Pa ⁇ s or more.
  • the shear viscosity of the support piece forming film D at 120 ° C. is 4500 Pa ⁇ s or more, 5000 Pa ⁇ s or more, 7000 Pa ⁇ s or more, 10000 Pa ⁇ s or more, 15000 Pa ⁇ s or more, 18000 Pa ⁇ s or more, 20000 Pa ⁇ s or more, or It may be 23000 Pa ⁇ s or more.
  • the upper limit of the shear viscosity of the support piece forming film D at 120 ° C. is not particularly limited, but may be 100,000 Pa ⁇ s or less, 70,000 Pa ⁇ s or less, or 50,000 Pa ⁇ s or less.
  • the shear viscosity of the support piece forming film D at 120 ° C. can be adjusted, for example, by appropriately adjusting the type and content of the components contained in the thermosetting resin composition described later.
  • the laminated film 20 is, for example, a second laminated film having a base film 1 and an adhesive layer 2 on the surface thereof, and a cover film 3 and a support piece forming film D on the surface thereof. It can be produced by laminating with a film (see FIG. 4).
  • the first laminated film is obtained through a step of forming an adhesive layer on the surface of the base film 1 by coating and a step of processing the adhesive layer into a predetermined shape (for example, a circle) by punching or the like.
  • the second laminated film has a step of forming a support piece forming film on the surface of the cover film 3 (for example, PET film or polyethylene film) by coating, and a predetermined shape (for example, by punching the support piece forming film). For example, it is obtained through a process of processing into a circular shape.
  • the cover film 3 is peeled off at an appropriate timing.
  • the step (B) is a step of forming a plurality of support pieces Da on the surface of the adhesive layer 2 by individualizing the support piece forming film D.
  • the dicing ring DR is attached to the laminated film 20. That is, the dicing ring DR is attached to the adhesive layer 2 of the laminated film 20, and the support piece forming film D is arranged inside the dicing ring DR.
  • the support piece forming film D is individualized by dicing (see FIG. 5B). As a result, a large number of support pieces Da can be obtained from the support piece forming film D.
  • the step (C) is a step of picking up the support piece Da from the adhesive layer 2. As shown in FIG. 5C, the support pieces Da are separated from each other by expanding the base film 1. Next, as shown in FIG. 5D, the support piece Da is peeled off from the adhesive layer 2 by pushing up the support piece Da with the push-up jig 42, and the support piece Da is picked up by suction with the suction collet 44. ..
  • the manufacturing method according to the present embodiment includes the steps (A) to (C), and further includes the following steps (D) to (H).
  • (D) Step of arranging the first chip T1 on the substrate 10 (E) Support piece Da (at least metal piece 6p) obtained by a plurality of the above-mentioned manufacturing methods on the substrate 10 and around the first chip T1. Step of arranging the support piece Da) including (see FIG. 6)
  • (G) A step of constructing a dolmen structure by arranging a chip T2a with an adhesive piece on the surface of a plurality of support pieces Dc (see FIG. 8).
  • (H) A step of sealing the gap between the chip T1 and the chip T2 with the sealing material 50 (see FIG. 1).
  • the steps (D) to (H) are processes in which a dolmen structure is constructed on the substrate 10 by using a plurality of support pieces Da.
  • steps (D) to (H) will be described with reference to FIGS. 6 to 8.
  • the step (D) is a step of arranging the first chip T1 on the substrate 10. For example, first, the chip T1 is arranged at a predetermined position on the substrate 10 via the adhesive layer T1c. After that, the chip T1 is electrically connected to the substrate 10 by the wire w.
  • the step (E) is a step of arranging a plurality of support pieces Da on the substrate 10 around the first chip T1.
  • the structure 30 shown in FIG. 6 is produced.
  • the structure 30 includes a substrate 10, a chip T1 arranged on the surface thereof, and a plurality of support pieces Da.
  • the support piece Da may be arranged by crimping.
  • the crimping treatment is preferably carried out, for example, under the conditions of 80 to 180 ° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds.
  • the adhesive piece 5p contained therein may be completely cured at the time of the step (E) to become the support piece Dc, and may not be completely cured at this time. It is preferable that the adhesive piece 5p contained in the support piece Da is completely cured before the start of the step (G) to become the adhesive piece 5c.
  • the step (F) is a step of preparing the adhesive chip T2a shown in FIG. 7.
  • the adhesive piece T2a includes a chip T2 and an adhesive piece Ta provided on the surface of one of the chips T2.
  • the chip T2a with an adhesive piece can be obtained through a dicing step and a pick-up step using, for example, a semiconductor wafer and a dicing / die bonding integrated film.
  • the step (G) is a step of arranging the chip T2a with the adhesive piece above the chip T1 so that the adhesive piece Ta is in contact with the upper surface of the plurality of support pieces Dc.
  • the chip T2 is crimped to the upper surface of the support piece Dc via the adhesive piece Ta.
  • This crimping treatment is preferably carried out for 0.5 to 3.0 seconds under the conditions of, for example, 80 to 180 ° C. and 0.01 to 0.50 MPa.
  • the adhesive piece Ta is cured by heating. This curing treatment is preferably carried out for 5 minutes or more under the conditions of, for example, 60 to 175 ° C. and 0.01 to 1.0 MPa. As a result, the adhesive piece Ta is cured to become the adhesive piece Tc.
  • a dolmen structure is constructed on the substrate 10 (see FIG. 8).
  • the chip T3 is placed on the chip T2 via the adhesive piece, and further, the chip T4 is placed on the chip T3 via the adhesive piece.
  • the adhesive piece may be any thermosetting resin composition similar to the above-mentioned adhesive piece Ta, and becomes an adhesive piece Tc by heat curing (see FIG. 1).
  • the chips T2, T3 and T4 and the substrate 10 are electrically connected by wires w.
  • the number of chips stacked above the chip T1 is not limited to the three in this embodiment, and may be appropriately set.
  • Step (H) The step (H) is a step of sealing the gap between the chip T1 and the chip T2 with the sealing material 50. Through this step, the semiconductor device 100 shown in FIG. 1 is completed.
  • thermosetting resin composition As described above, the thermosetting resin composition constituting the thermosetting resin layer 5 in the support piece forming film D can easily adjust the shear viscosity within a predetermined range. Therefore, the epoxy resin, the curing agent, and the elastomer And, if necessary, an inorganic filler, a curing accelerator, and the like may be further contained. According to the studies by the present inventors, it is preferable that the support piece Da and the hardened support piece Dc further have the following characteristics.
  • -Characteristic 1 Positional deviation is unlikely to occur when the support piece Da is thermocompression-bonded to a predetermined position on the substrate 10.
  • -Characteristic 2 The adhesive piece 5c exhibits stress relaxation property in the semiconductor device 100 (thermosetting property).
  • the resin composition contains an elastomer (rubber component))
  • -Characteristic 3 Die shear strength of the adhesive piece Tc of the chip with the adhesive piece having a sufficiently high adhesive strength (the adhesive piece 5c with respect to the adhesive piece Tc (that is, a cured product of a film made of a thermosetting resin layer)).
  • Epoxy resin The epoxy resin is not particularly limited as long as it is cured and has an adhesive action.
  • Bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin, novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin can be used.
  • novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin
  • generally known ones such as a polyfunctional epoxy resin, a glycidylamine type epoxy resin, a heterocyclic epoxy resin, and an alicyclic epoxy resin can be applied. These may be used alone or in combination of two or more.
  • Examples of the curing agent include phenolic resins, ester compounds, aromatic amines, aliphatic amines, acid anhydrides and the like. Of these, phenolic resins are preferable from the viewpoint of achieving high die shear strength (share strength).
  • Commercially available phenolic resins include, for example, LF-4871 (trade name, BPA novolac type phenolic resin) manufactured by DIC Corporation and HE-100C-30 (trade name, phenylarakil type phenol) manufactured by Air Water Inc.
  • the blending amount of the epoxy resin and the phenol resin is preferably such that the equivalent ratio of the epoxy equivalent and the hydroxyl group equivalent is 0.6 to 1.5, and 0.7 to 0.7, respectively, from the viewpoint of achieving high die shear strength (share strength). It is more preferably 1.4, and even more preferably 0.8 to 1.3. When the compounding ratio is within the above range, both curability and fluidity can be easily achieved at a sufficiently high level.
  • Examples of the elastoma include acrylic resin, polyester resin, polyamide resin, polyimide resin, silicone resin, polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene and carboxy-modified acrylonitrile.
  • an acrylic resin is preferable as the elastoma, and an epoxy group-containing epoxy group obtained by polymerizing an epoxy group such as glycidyl acrylate or glycidyl methacrylate or a functional monomer having a glycidyl group as a crosslinkable functional group ( Acrylic resins such as meta) acrylic copolymers are more preferable.
  • Acrylic resins epoxy group-containing (meth) acrylic acid ester copolymers and epoxy group-containing acrylic rubbers are preferable, and epoxy group-containing acrylic rubbers are more preferable.
  • the epoxy group-containing acrylic rubber is a rubber having an epoxy group, which is mainly composed of an acrylic acid ester as a main component, a copolymer such as butyl acrylate and acrylonitrile, and a copolymer such as ethyl acrylate and acrylonitrile.
  • the acrylic resin may have not only an epoxy group but also a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group or a carboxyl group.
  • acrylic resin products include SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, SG-P3 solvent-changed products (trade name, acrylic rubber, weight average) manufactured by Nagase Chemtech Co., Ltd. Molecular weight: 800,000, Tg: 12 ° C, solvent: cyclohexanone), SG-P3 low molecular weight product (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 300,000, Tg: 12 ° C, solvent: cyclohexanone ) Etc. can be mentioned.
  • the glass transition temperature (Tg) of the acrylic resin is preferably ⁇ 50 to 50 ° C., more preferably ⁇ 30 to 30 ° C. from the viewpoint of film moldability.
  • the weight average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 3,000,000, more preferably 500,000 to 2,000,000, from the viewpoint of film moldability.
  • Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve using standard polystyrene.
  • the amount of acrylic resin contained in the thermosetting resin composition is 10 to 200 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the epoxy resin curing agent from the viewpoint of achieving high die shear strength (share strength). It is preferably 20 to 100 parts by mass, and more preferably 20 to 100 parts by mass.
  • the amount of the acrylic resin contained in the thermosetting resin composition is preferably 50 parts by mass or more with respect to 100 parts by mass in total of the epoxy resin and the epoxy resin curing agent from the viewpoint of achieving a high shear viscosity.
  • inorganic filler examples include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, and crystals. Examples thereof include sex silica and amorphous silica. These may be used alone or in combination of two or more.
  • the average particle size of the inorganic filler is preferably 0.005 ⁇ m to 1.0 ⁇ m, more preferably 0.05 to 0.5 ⁇ m, from the viewpoint of achieving high die shear strength (share strength).
  • the surface of the inorganic filler is preferably chemically modified from the viewpoint of achieving high die shear strength (share strength).
  • Examples of the material that chemically modifies the surface include a silane coupling agent and the like.
  • the functional group of the silane coupling agent include a vinyl group, an acryloyl group, an epoxy group, a mercapto group, an amino group, a diamino group, an alkoxy group, an ethoxy group and the like.
  • the content of the inorganic filler is preferably 20 to 200 parts by mass, preferably 30 to 100 parts by mass, based on 100 parts by mass of the resin component of the thermosetting resin composition. It is more preferable that it is a part.
  • curing accelerator examples include imidazoles and derivatives thereof, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like. From the viewpoint of achieving high die shear strength (share strength), imidazole-based compounds are preferable.
  • imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
  • the content of the curing accelerator in the thermosetting resin composition is 0.04 to 3 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the epoxy resin curing agent from the viewpoint of achieving high die shear strength (share strength). Is preferable, and 0.04 to 0.2 parts by mass is more preferable.
  • FIG. 9 is a cross-sectional view schematically showing a second embodiment of the semiconductor device.
  • the chip T1 is separated from the adhesive piece Tc, whereas in the semiconductor device 200 according to the present embodiment, the chip T1 is in contact with the adhesive piece Tc. That is, the adhesive piece Tc is in contact with the upper surface of the chip T1 and the upper surface of the support piece Dc.
  • the thickness of the support piece forming film D the position of the upper surface of the chip T1 and the position of the upper surface of the support piece Dc can be matched.
  • the chip T1 is connected to the substrate 10 by a flip chip instead of wire bonding. If the chip T2 is embedded in the adhesive piece Ta constituting the adhesive piece T2a together with the chip T2, the chip T1 is in contact with the adhesive piece Tc even in the mode in which the chip T1 is wire-bonded to the substrate 10. Can be in the state of
  • Example 1 ⁇ Making a film for forming a support piece> (Example 1) Varnish A was filtered through a 100 mesh filter and vacuum defoamed. As a base film, a polyethylene terephthalate (PET) film having been subjected to a mold release treatment having a thickness of 38 ⁇ m was prepared, and varnish A after vacuum defoaming was applied onto the PET film. The applied varnish A was heat-dried at 90 ° C. for 5 minutes and then at 130 ° C. for 5 minutes in two steps to obtain a support piece forming film of Example 1 in the B stage state. The amount of varnish A applied was adjusted so that the thickness was 50 ⁇ m.
  • PET polyethylene terephthalate
  • Example 2 A film for forming a support piece of Example 2 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish B.
  • Example 3 A film for forming a support piece of Example 3 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish C.
  • Comparative Example 1 A film for forming a support piece of Comparative Example 1 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish D.
  • Comparative Example 2 A film for forming a support piece of Comparative Example 2 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish E.
  • Adhesive films for forming support pieces of Examples 1 to 3 and Comparative Examples 1 and 2 each having a base film and an adhesive layer (adhesive layer thickness 10 ⁇ m, manufactured by Hitachi Chemical Co., Ltd.)
  • a laminated film was prepared by attaching to.
  • the obtained laminated film was individualized using a fully automatic dicer DFD-6361 (manufactured by Disco Corporation).
  • a dicing blade ZH05-SD4000-N1-xx-BB both manufactured by Disco Corporation was used.
  • the cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm / sec, and a size of 6 mm ⁇ 3 mm. Then, the support piece was picked up using the pick-up collet.
  • the two obtained support pieces were placed on a solder resist substrate (Taiyo Holdings Co., Ltd., trade name: AUS-308) and thermocompression-bonded to obtain Examples 1 to 3 and Comparative Examples 1 and 2.
  • a substrate with a support piece was obtained.
  • the thermocompression bonding conditions were a temperature of 120 ° C., a time of 1 second, and a pressure of 0.1 MPa.
  • 10 (a) is a top view showing an example of a substrate with a support piece used in the examples
  • FIG. 10 (b) is a cross-sectional view taken along the line bb of FIG. 10 (a).
  • the substrate 300 with a support piece includes a substrate 310 and two support pieces Da arranged on the substrate 310 so as to be in contact with both opposite sides of the substrate 310.
  • a dicing / die-bonding integrated adhesive film (film-like adhesive: thickness 50 ⁇ m, adhesive film: thickness 110 ⁇ m, manufactured by Hitachi Kasei Co., Ltd.) and a silicon wafer having a thickness of 400 ⁇ m, which include a film-like adhesive and an adhesive film. I prepared it.
  • a dicing sample was prepared by laminating a silicon wafer on a film-like adhesive of a dicing / die bonding integrated adhesive film at a stage temperature of 70 ° C.
  • the obtained dicing sample was cut using a fully automatic dicer DFD-6361 (manufactured by Disco Corporation).
  • the cutting was performed by a step cutting method using two blades, and dicing blades ZH05-SD3500-N1-xx-DD and ZH05-SD4000-N1-xx-BB (both manufactured by Disco Corporation) were used.
  • the cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm / sec, and a chip size of 6 mm ⁇ 12 mm.
  • the first step was cut so that the silicon wafer remained about 200 ⁇ m, and then the second step was cut so that the adhesive film had a notch of about 20 ⁇ m.
  • the tip was picked up using a pick-up collet to obtain a tip with an adhesive piece.
  • FIG. 10 (c) is a cross-sectional view showing an example of the laminated body used in the examples. As shown in FIG.
  • the laminate 400 is formed between a substrate 300 with a support piece, a chip T300a with an adhesive piece composed of an adhesive piece Ta and a chip T300, and a substrate 300 with a support piece and a chip T300a with an adhesive piece. It is provided with two support pieces Da arranged in. Subsequently, the laminate obtained by thermocompression bonding was placed in a dryer and heat-cured at 170 ° C. for 1 hour to obtain evaluation samples of Examples 1 to 3 and Comparative Examples 1 and 2.
  • the evaluation samples of Examples 1 to 3 using the support piece forming film having a shear viscosity at 120 ° C. of 4000 Pa ⁇ s or more are supports having a shear viscosity of less than 4000 Pa ⁇ s at 120 ° C.
  • the variation in the height of the support piece was suppressed. From the above, it has been confirmed that the method for manufacturing a semiconductor device of the present invention can manufacture a semiconductor device capable of stably supporting a laminated semiconductor chip.
  • a method for manufacturing a semiconductor device capable of simplifying the step of manufacturing a support piece and stably supporting a laminated semiconductor chip is provided.
  • a method for manufacturing a support piece and a laminated film for forming a support piece are provided.

Abstract

This method is for manufacturing a support piece for use in a manufacturing process of a semiconductor device which has a dolmen structure and which includes a substrate, a first chip disposed on the substrate, a plurality of support pieces arranged on the substrate so as to surround the first chip, and a second chip supported by the support pieces and disposed so as to cover the first chip, the method including: (A) a step for preparing a laminate film provided with a base material film, an adhesive layer, and a support piece formation film in this order; (B) a step for forming a plurality of support pieces on the surface of the adhesive layer by dividing the support piece formation film into individual pieces; and (C) a step for picking up the support pieces from the adhesive layer, wherein the shear viscosity of the support piece formation film at 120°C is 4000 Pa·s or more.

Description

ドルメン構造を有する半導体装置の製造方法、支持片の製造方法、及び支持片形成用積層フィルムA method for manufacturing a semiconductor device having a dolmen structure, a method for manufacturing a support piece, and a laminated film for forming a support piece.
 本開示は、基板と、基板上に配置された第一のチップと、基板上であって第一のチップの周囲に配置された複数の支持片と、複数の支持片によって支持され且つ第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造方法に関する。また、本開示は、支持片の製造方法及び支持片形成用積層フィルムに関する。なお、ドルメン(dolmen、支石墓)は、石墳墓の一種であり、複数の支柱石と、その上に載せられた板状の岩とを備える。ドルメン構造を有する半導体装置において、支持片が「支柱石」に相当し、第二のチップが「板状の岩」に相当する。 The present disclosure is supported and first by a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and a plurality of support pieces. The present invention relates to a method for manufacturing a semiconductor device having a dolmen structure including a second chip arranged so as to cover the chip. The present disclosure also relates to a method for producing a support piece and a laminated film for forming a support piece. A dolmen (dolmen) is a kind of stone tomb, and has a plurality of pillar stones and a plate-shaped rock placed on the pillar stone. In a semiconductor device having a dolmen structure, a support piece corresponds to a "dolmen" and a second chip corresponds to a "plate-shaped rock".
 近年、半導体装置の分野において、高集積、小型化及び高速化が求められている。半導体装置の一態様として、基板上に配置されたコントローラーチップの上に半導体チップを積層させる構造が注目を集めている。例えば、特許文献1は、コントローラダイと、コントローラダイの上に支持部材によって支持されたメモリダイとを含む半導体ダイアセンブリを開示している。特許文献1の図1Aに図示された半導体アセンブリ100はドルメン構造を有するということができる。すなわち、半導体アセンブリ100は、パッケージ基板102と、その表面上に配置されたコントローラダイ103と、コントローラダイ103の上方に配置されたメモリダイ106a,106bと、メモリダイ106aを支持する支持部材130a,130bとを備える。 In recent years, in the field of semiconductor devices, high integration, miniaturization, and high speed have been required. As one aspect of a semiconductor device, a structure in which a semiconductor chip is laminated on a controller chip arranged on a substrate is attracting attention. For example, Patent Document 1 discloses a semiconductor die assembly including a controller die and a memory die supported by a support member on the controller die. It can be said that the semiconductor assembly 100 illustrated in FIG. 1A of Patent Document 1 has a dolmen structure. That is, the semiconductor assembly 100 includes the package substrate 102, the controller dies 103 arranged on the surface of the package substrate 102, the memory dies 106a and 106b arranged above the controller dies 103, and the support members 130a and 130b for supporting the memory dies 106a. To be equipped.
特表2017-515306号公報Special Table 2017-515306
 特許文献1は、支持部材(支持片)として、シリコン等の半導体材料を使用できること、より具体的には半導体ウェハをダイシングして得られる半導体材料の断片を使用できることを開示している(特許文献1の[0012]、[0014]及び図2参照)。半導体チップを使用してドルメン構造用の支持片を製造するには、通常の半導体チップの製造と同様、例えば、以下の各工程が必要である。
(1)半導体ウェハにバックグラインドテープを貼り付ける工程
(2)半導体ウェハをバックグラインドする工程
(3)ダイシングリングとその中に配置されたバックグラインド後の半導体ウェハに対し、粘着層と接着剤層とを有するフィルム(ダイシング・ダイボンディング一体型フィルム)を貼り付ける工程
(4)半導体ウェハからバックグラインドテープを剥がす工程
(5)半導体ウェハを個片化する工程
(6)半導体チップと接着剤片の積層体からなる支持片を粘着層からピックアップする工程
Patent Document 1 discloses that a semiconductor material such as silicon can be used as a support member (support piece), and more specifically, a fragment of the semiconductor material obtained by dicing a semiconductor wafer can be used (Patent Document 1). 1 [0012], [0014] and FIG. 2). In order to manufacture a support piece for a dolmen structure using a semiconductor chip, for example, the following steps are required as in the case of manufacturing a normal semiconductor chip.
(1) Step of attaching back grind tape to semiconductor wafer (2) Step of back grinding semiconductor wafer (3) Adhesive layer and adhesive layer for dicing ring and semiconductor wafer after back grind placed in it Step of pasting a film (dicing / die bonding integrated film) with and (4) Step of peeling back grind tape from semiconductor wafer (5) Step of fragmenting semiconductor wafer (6) Semiconductor chip and adhesive piece A process of picking up a support piece made of a laminated body from an adhesive layer
 本開示は、ドルメン構造を有する半導体装置の製造プロセスにおいて、支持片を作製する工程を簡略化でき、更には積層される半導体チップを安定的に支持することができる半導体装置の製造方法を提供する。また、本開示は、支持片の製造方法及び支持片形成用積層フィルムを提供する。 The present disclosure provides a method for manufacturing a semiconductor device, which can simplify the step of manufacturing a support piece in the manufacturing process of a semiconductor device having a dolmen structure, and further can stably support a laminated semiconductor chip. .. The present disclosure also provides a method for producing a support piece and a laminated film for forming a support piece.
 本開示の一側面は、基板と、基板上に配置された第一のチップと、基板上であって第一のチップの周囲に配置された複数の支持片と、複数の支持片によって支持され且つ第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造方法に関する。半導体装置の製造方法は以下の工程を含む。
(A)基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備える積層フィルムを準備する工程
(B)支持片形成用フィルムを個片化することによって、粘着層の表面上に複数の支持片を形成する工程
(C)粘着層から支持片をピックアップする工程
(D)基板上に第一のチップを配置する工程
(E)基板上であって第一のチップの周囲に複数の支持片を配置する工程
(F)第二のチップと、第二のチップの一方の面上に設けられた接着剤片とを備える接着剤片付きチップを準備する工程
(G)複数の支持片の表面上に接着剤片付きチップを配置することによってドルメン構造を構築する工程
One aspect of the present disclosure is supported by a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and a plurality of support pieces. The present invention relates to a method for manufacturing a semiconductor device having a dolmen structure including a second chip arranged so as to cover the first chip. The method for manufacturing a semiconductor device includes the following steps.
(A) Step of preparing a laminated film including a base film, an adhesive layer, and a support piece forming film in this order (B) By individualizing the support piece forming film on the surface of the adhesive layer (C) Step of picking up the support piece from the adhesive layer (D) Step of arranging the first chip on the substrate (E) On the substrate and around the first chip Step of arranging a plurality of support pieces (F) Step of preparing a chip with an adhesive piece provided with a second chip and an adhesive piece provided on one surface of the second chip (G) Multiple supports The process of constructing a dolmen structure by placing a chip with an adhesive piece on the surface of the piece
 本開示の一側面に係る半導体装置の製造方法によれば、支持片形成用フィルムを個片化して支持片を得ることができる。これによって、支持片として、半導体ウェハをダイシングして得られる半導体材料の断片を使用する従来の製造方法と比較すると、支持片を作製する工程を簡略化できる。すなわち、従来、上述の(1)~(6)の工程を必要としていたのに対し、支持片形成用フィルムは半導体ウェハを含まないため、半導体ウェハのバックグラインドに関する(1)、(2)及び(4)の工程を省略できる。また、樹脂材料と比較して高価な半導体ウェハを使用しないため、コストも削減できる。 According to the method for manufacturing a semiconductor device according to one aspect of the present disclosure, a support piece forming film can be made into individual pieces to obtain a support piece. As a result, the step of manufacturing the support piece can be simplified as compared with the conventional manufacturing method in which a fragment of the semiconductor material obtained by dicing a semiconductor wafer is used as the support piece. That is, while the above-mentioned steps (1) to (6) have been conventionally required, since the support piece forming film does not include the semiconductor wafer, the back grind of the semiconductor wafer (1), (2) and The step (4) can be omitted. In addition, since a semiconductor wafer, which is more expensive than a resin material, is not used, the cost can be reduced.
 また、支持片形成用フィルムの120℃におけるずり粘度は、4000Pa・s以上である。支持片形成用フィルムの120℃におけるずり粘度が4000Pa・s以上であると、支持片形成用フィルムの流動変形の度合いが低くなり、結果として、積層される半導体チップを安定的に支持することができる。支持片形成用フィルムは、熱硬化性樹脂層を含んでいてもよい。 Further, the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa · s or more. When the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa · s or more, the degree of flow deformation of the support piece forming film becomes low, and as a result, the laminated semiconductor chips can be stably supported. it can. The support piece forming film may include a thermosetting resin layer.
 (A)工程で準備する積層フィルムの粘着層は、感圧型であっても、紫外線硬化型であってもよい。すなわち、粘着層は、紫外線照射によって硬化するものであっても、そうでなくてもよく、換言すれば、光反応性を有する炭素-炭素二重結合を有する樹脂を含有しても、含有しなくてもよい。なお、感圧型の粘着層が光反応性を有する炭素-炭素二重結合を有する樹脂を含有してもよい。例えば、粘着層は、その所定の領域に紫外線を照射することによって当該領域の粘着性を低下させたものであってもよく、例えば、光反応性を有する炭素-炭素二重結合を有する樹脂が残存していてもよい。粘着層が紫外線硬化型である場合、(B)工程と(C)工程の間に、粘着層に紫外線を照射する工程を実施することで粘着層の粘着性を低下させることができる。 The adhesive layer of the laminated film prepared in the step (A) may be a pressure-sensitive type or an ultraviolet curable type. That is, the adhesive layer may or may not be cured by ultraviolet irradiation, in other words, it may or may not contain a resin having a carbon-carbon double bond having photoreactivity. It does not have to be. The pressure-sensitive adhesive layer may contain a resin having a carbon-carbon double bond having photoreactivity. For example, the adhesive layer may be one in which the adhesiveness of the predetermined region is lowered by irradiating the predetermined region with ultraviolet rays, and for example, a resin having a carbon-carbon double bond having photoreactivity may be used. It may remain. When the adhesive layer is an ultraviolet curable type, the adhesiveness of the adhesive layer can be reduced by carrying out a step of irradiating the adhesive layer with ultraviolet rays between the steps (B) and (C).
 支持片形成用フィルムが熱硬化性樹脂層を含む場合、支持片形成用フィルム又は支持片を加熱して熱硬化性樹脂層又は接着剤片を硬化させる工程は適切なタイミングで実施すればよく、例えば、(G)工程よりも前に実施すればよい。複数の支持片の表面に接するように接着剤片付きチップを配置する段階において、熱硬化性樹脂層が既に硬化していることで接着剤片付きチップの配置に伴って支持片が変形することを抑制できる。なお、熱硬化性樹脂層は他の部材(例えば、基板)に対して接着性を有するため、支持片に接着剤層等を別途設けなくてもよい。 When the support piece forming film contains a thermosetting resin layer, the step of heating the support piece forming film or the support piece to cure the thermosetting resin layer or the adhesive piece may be carried out at an appropriate timing. For example, it may be carried out before the step (G). At the stage of arranging the chips with adhesive pieces so as to be in contact with the surfaces of a plurality of support pieces, the thermosetting resin layer is already cured to prevent the support pieces from being deformed with the arrangement of the chips with adhesive pieces. it can. Since the thermosetting resin layer has adhesiveness to other members (for example, a substrate), it is not necessary to separately provide an adhesive layer or the like on the support piece.
 上記支持片形成用フィルムの厚さは、例えば、5~180μm又は20~120μmであってよい。支持片形成用フィルムの厚さがこの範囲であることで、第一のチップ(例えば、コントローラチップ)に対して適度な高さのドルメン構造を構築できる。支持片形成用フィルムは熱硬化性樹脂層を含んでもよい。熱硬化性樹脂層は、例えば、エポキシ樹脂を含み、エラストマを含むことが好ましい。支持片を構成する熱硬化性樹脂層がエラストマを含むことで半導体装置内における応力を緩和できる。 The thickness of the support piece forming film may be, for example, 5 to 180 μm or 20 to 120 μm. When the thickness of the support piece forming film is in this range, a dolmen structure having an appropriate height with respect to the first chip (for example, a controller chip) can be constructed. The support piece forming film may include a thermosetting resin layer. The thermosetting resin layer contains, for example, an epoxy resin and preferably contains an elastomer. Since the thermosetting resin layer constituting the support piece contains an elastomer, the stress in the semiconductor device can be relaxed.
 本開示の一側面は、ドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片の製造方法に関する。支持片の製造方法は以下の工程を含む。
(A)基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備える積層フィルムを準備する工程
(B)支持片形成用フィルムを個片化することによって、粘着層の表面上に複数の支持片を形成する工程
(C)粘着層から支持片をピックアップする工程
 なお、支持片形成用フィルムの120℃におけるずり粘度は、4000Pa・s以上である。
One aspect of the present disclosure relates to a method of manufacturing a support piece used in a manufacturing process of a semiconductor device having a dolmen structure. The method for manufacturing the support piece includes the following steps.
(A) Step of preparing a laminated film including a base film, an adhesive layer, and a support piece forming film in this order (B) By individualizing the support piece forming film on the surface of the adhesive layer Step of forming a plurality of support pieces (C) Step of picking up support pieces from the adhesive layer The shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa · s or more.
 本開示の一側面は、基板と、基板上に配置された第一のチップと、基板上であって第一のチップの周囲に配置された複数の支持片と、複数の支持片によって支持され且つ第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片形成用積層フィルムであって、基材フィルムと、粘着層と、支持片形成用フィルムと、をこの順序で備え、支持片形成用フィルムの120℃におけるずり粘度が、4000Pa・s以上である、支持片形成用積層フィルムに関する。支持片形成用フィルムは、熱硬化性樹脂層を含んでいてもよい。 One aspect of the present disclosure is supported by a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and a plurality of support pieces. A laminated film for forming a support piece used in a manufacturing process of a semiconductor device having a dolmen structure including a second chip arranged so as to cover the first chip, the base film and an adhesive layer. The present invention relates to a support piece forming laminated film, which comprises the support piece forming film in this order and has a shear viscosity of the support piece forming film at 120 ° C. of 4000 Pa · s or more. The support piece forming film may include a thermosetting resin layer.
 本開示によれば、ドルメン構造を有する半導体装置の製造プロセスにおいて、支持片を作製する工程を簡略化でき、更には積層される半導体チップを安定的に支持することができる半導体装置の製造方法が提供される。また、本開示によれば、支持片の製造方法及び支持片形成用積層フィルムが提供される。 According to the present disclosure, in the manufacturing process of a semiconductor device having a dolmen structure, a method for manufacturing a semiconductor device capable of simplifying the step of manufacturing a support piece and stably supporting a laminated semiconductor chip is provided. Provided. Further, according to the present disclosure, a method for manufacturing a support piece and a laminated film for forming a support piece are provided.
図1は、半導体装置の第一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device. 図2(a)、図2(b)、及び図2(c)は、第一のチップと複数の支持片との位置関係の例を模式的に示す平面図である。2 (a), 2 (b), and 2 (c) are plan views schematically showing an example of the positional relationship between the first chip and the plurality of support pieces. 図3(a)は、支持片形成用積層フィルムの一実施形態を模式的に示す平面図であり、図3(b)は、図3(a)のb-b線における断面図である。FIG. 3A is a plan view schematically showing an embodiment of a laminated film for forming a support piece, and FIG. 3B is a cross-sectional view taken along the line bb of FIG. 3A. 図4は、粘着層と支持片形成用フィルムとを貼り合わせる工程を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing a step of bonding the adhesive layer and the support piece forming film. 図5(a)、図5(b)、図5(c)、及び図5(d)は、支持片の作製過程を模式的に示す断面図である。5 (a), 5 (b), 5 (c), and 5 (d) are cross-sectional views schematically showing the manufacturing process of the support piece. 図6は、基板上であって第一のチップの周囲に複数の支持片を配置した状態を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a state in which a plurality of support pieces are arranged on the substrate and around the first chip. 図7は、接着剤片付きチップの一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view schematically showing an example of a chip with an adhesive piece. 図8は、基板上に形成されたドルメン構造を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing a dolmen structure formed on the substrate. 図9は、半導体装置の第二実施形態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a second embodiment of the semiconductor device. 図10(a)は、実施例で使用される支持片付き基板の一例を示す上面図であり、図10(b)は、図10(a)のb-b線における断面図であり、図10(c)は、実施例で使用される積層体の一例を示す断面図である。10 (a) is a top view showing an example of a substrate with a support piece used in the embodiment, and FIG. 10 (b) is a cross-sectional view taken along the line bb of FIG. 10 (a). (C) is a cross-sectional view showing an example of the laminated body used in the examples.
 以下、図面を参照しつつ、本開示の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In addition, in this specification, "(meth) acrylic acid" means acrylic acid or methacrylic acid, and "(meth) acrylate" means acrylate or the corresponding methacrylate. “A or B” may include either A or B, or both.
 本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。 In the present specification, the term "layer" includes not only a structure having a shape formed on the entire surface but also a structure having a shape partially formed when observed as a plan view. Further, in the present specification, the term "process" is used not only as an independent process but also as a term as long as the desired action of the process is achieved even when it cannot be clearly distinguished from other processes. included. In addition, the numerical range indicated by using "-" indicates a range including the numerical values before and after "-" as the minimum value and the maximum value, respectively.
 本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。 In the present specification, the content of each component in the composition is the total amount of the plurality of substances present in the composition unless otherwise specified, when a plurality of substances corresponding to each component are present in the composition. means. Further, the exemplary materials may be used alone or in combination of two or more unless otherwise specified. Further, in the numerical range described stepwise in the present specification, the upper limit value or the lower limit value of the numerical range of one step may be replaced with the upper limit value or the lower limit value of the numerical range of another step. Further, in the numerical range described in the present specification, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
<第一実施形態>
(半導体装置)
 図1は、半導体装置の第一実施形態を模式的に示す断面図である。図1に示す半導体装置100は、基板10と、基板10の表面上に配置されたチップT1(第一のチップ)と、基板10の表面上であってチップT1の周囲に配置された複数の支持片Dcと、チップT1の上方に配置されたチップT2(第二のチップ)と、チップT2と複数の支持片Dcとによって挟まれている接着剤片Tcと、チップT2上に積層されたチップT3,T4と、基板10の表面上の電極(不図示)とチップT1~T4とをそれぞれ電気的に接続する複数のワイヤwと、チップT1とチップT2との隙間等に充填された封止材50とを備える。
<First Embodiment>
(Semiconductor device)
FIG. 1 is a cross-sectional view schematically showing a first embodiment of a semiconductor device. The semiconductor device 100 shown in FIG. 1 includes a substrate 10, a chip T1 (first chip) arranged on the surface of the substrate 10, and a plurality of chips T1 arranged on the surface of the substrate 10 and around the chip T1. The support piece Dc, the chip T2 (second chip) arranged above the chip T1, the adhesive piece Tc sandwiched between the chip T2 and the plurality of support pieces Dc, and the chip T2 are laminated. A plurality of wires w that electrically connect the chips T3 and T4, electrodes (not shown) on the surface of the substrate 10 and the chips T1 to T4, respectively, and a seal filled in a gap between the chips T1 and the chips T2 and the like. A stopper 50 is provided.
 本実施形態においては、複数の支持片Dcと、チップT2と、支持片DcとチップT2との間に位置する接着剤片Tcとによって基板10上にドルメン構造が構成されている。チップT1は、接着剤片Tcと離間している。支持片Dcの厚さを適宜設定することで、チップT1の上面と基板10とを接続するワイヤwのためのスペースを確保することができる。 In the present embodiment, a dolmen structure is formed on the substrate 10 by a plurality of support pieces Dc, a chip T2, and an adhesive piece Tc located between the support piece Dc and the chip T2. The chip T1 is separated from the adhesive piece Tc. By appropriately setting the thickness of the support piece Dc, it is possible to secure a space for the wire w connecting the upper surface of the chip T1 and the substrate 10.
 基板10は、有機基板であってもよく、リードフレーム等の金属基板であってもよい。基板10は、半導体装置100の反りを抑制する観点から、基板10の厚さは、例えば、90~300μmであり、90~210μmであってもよい。 The substrate 10 may be an organic substrate or a metal substrate such as a lead frame. From the viewpoint of suppressing the warp of the semiconductor device 100, the thickness of the substrate 10 is, for example, 90 to 300 μm, and may be 90 to 210 μm.
 チップT1は、例えば、コントローラーチップであり、接着剤片Tcによって基板10に接着され且つワイヤwによって基板10と電気的に接続されている。平面視におけるチップT1の形状は、例えば矩形(正方形又は長方形)である。チップT1の一辺の長さは、例えば、5mm以下であり、2~5mm又は1~5mmであってもよい。チップT1の厚さは、例えば、10~150μmであり、20~100μmであってもよい。 The chip T1 is, for example, a controller chip, which is adhered to the substrate 10 by an adhesive piece Tc and electrically connected to the substrate 10 by a wire w. The shape of the chip T1 in a plan view is, for example, a rectangle (square or rectangle). The length of one side of the chip T1 is, for example, 5 mm or less, and may be 2 to 5 mm or 1 to 5 mm. The thickness of the chip T1 is, for example, 10 to 150 μm, and may be 20 to 100 μm.
 チップT2は、例えば、メモリチップであり、接着剤片Tcを介して支持片Dcの上に接着されている。平面視でチップT2は、チップT1よりも大きいサイズを有する。平面視におけるチップT2の形状は、例えば、矩形(正方形又は長方形)である。チップT2の一辺の長さは、例えば、20mm以下であり、4~20mm又は4~12mmであってもよい。チップT2の厚さは、例えば、10~170μmであり、20~120μmであってもよい。なお、チップT3,T4も、例えば、メモリチップであり、接着剤片Tcを介してチップT2の上に接着されている。チップT3,T4の一辺の長さは、チップT2と同様であればよく、チップT3,T4の厚さもチップT2と同様であればよい。 The chip T2 is, for example, a memory chip, and is adhered onto the support piece Dc via the adhesive piece Tc. In plan view, the chip T2 has a larger size than the chip T1. The shape of the chip T2 in a plan view is, for example, a rectangle (square or rectangle). The length of one side of the chip T2 is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm. The thickness of the chip T2 is, for example, 10 to 170 μm, and may be 20 to 120 μm. The chips T3 and T4 are also memory chips, for example, and are adhered onto the chip T2 via an adhesive piece Tc. The length of one side of the chips T3 and T4 may be the same as that of the chip T2, and the thickness of the chips T3 and T4 may be the same as that of the chip T2.
 支持片Dcは、チップT1の周囲に空間を形成するスペーサーの役割を果たす。支持片Dcは、支持片形成用フィルムの硬化物(熱硬化性樹脂組成物の硬化物)を含む。支持片形成用フィルムの120℃におけるずり粘度は、後述のとおり、4000Pa・s以上である。なお、図2(a)に示すように、チップT1の両側の離れた位置に、二つの支持片Dc(形状:長方形)を配置してもよいし、図2(b)に示すように、チップT1の角に対応する位置にそれぞれ一つの支持片Dc(形状:正方形、計4個)を配置してもよいし、図2(c)に示すように、チップT1の辺に対応する位置にそれぞれ一つの支持片Dc(形状:長方形、計4個)を配置してもよい。平面視における支持片Dcの一辺の長さは、例えば、20mm以下であり、1~20mm又は1~12mmであってもよい。支持片Dcの厚さ(高さ)は、例えば、10~180μmであり、20~120μmであってもよい。 The support piece Dc acts as a spacer that forms a space around the chip T1. The support piece Dc contains a cured product of a film for forming a support piece (a cured product of a thermosetting resin composition). The shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa · s or more as described later. As shown in FIG. 2A, two support pieces Dc (shape: rectangle) may be arranged at positions separated from each other on both sides of the chip T1, or as shown in FIG. 2B. One support piece Dc (shape: square, 4 in total) may be arranged at a position corresponding to the corner of the chip T1, or as shown in FIG. 2C, a position corresponding to the side of the chip T1. One support piece Dc (shape: rectangle, total of 4 pieces) may be arranged in each. The length of one side of the support piece Dc in a plan view is, for example, 20 mm or less, and may be 1 to 20 mm or 1 to 12 mm. The thickness (height) of the support piece Dc is, for example, 10 to 180 μm, and may be 20 to 120 μm.
(支持片の製造方法)
 支持片の製造方法の一例について説明する。本実施形態に係る製造方法は、以下の(A)~(C)の工程を含む。
(A)基材フィルム1と、粘着層2と、支持片形成用フィルムDとをこの順序で備える支持片形成用積層フィルム20(以下、場合により「積層フィルム20」という。)を準備する工程(図3、図4参照)
(B)支持片形成用フィルムDを個片化することによって、粘着層2の表面上に複数の支持片Daを形成する工程(図5(b)参照)
(C)粘着層2から支持片Daをピックアップする工程(図5(d)参照)
(Manufacturing method of support piece)
An example of a method for manufacturing a support piece will be described. The manufacturing method according to the present embodiment includes the following steps (A) to (C).
(A) A step of preparing a support piece forming laminated film 20 (hereinafter, sometimes referred to as "laminated film 20") including a base film 1, an adhesive layer 2, and a support piece forming film D in this order. (See Fig. 3 and Fig. 4)
(B) A step of forming a plurality of support pieces Da on the surface of the adhesive layer 2 by individualizing the support piece forming film D (see FIG. 5B).
(C) A step of picking up the support piece Da from the adhesive layer 2 (see FIG. 5D).
 なお、図1に示す支持片Dcは、これに含まれる接着剤片(熱硬化性樹組成物)が硬化した後のものである。一方、支持片Daは、これに含まれる接着剤片(熱硬化性樹組成物)が完全に硬化する前の状態のものである(例えば、図5(b)参照)。 The support piece Dc shown in FIG. 1 is after the adhesive piece (thermosetting tree composition) contained therein has been cured. On the other hand, the support piece Da is in a state before the adhesive piece (thermosetting tree composition) contained therein is completely cured (see, for example, FIG. 5B).
 (A)~(C)の工程は、複数の支持片Daを製造するプロセスである。以下、図3~5を参照しながら、(A)~(C)工程について説明する。 The steps (A) to (C) are processes for manufacturing a plurality of support pieces Da. Hereinafter, steps (A) to (C) will be described with reference to FIGS. 3 to 5.
[(A)工程]
 (A)工程は、積層フィルム20を準備する工程である。積層フィルム20は、基材フィルム1と、粘着層2と、支持片形成用フィルムDとを備える。基材フィルム1は、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)である。粘着層2は、パンチング等によって円形に形成されている(図3(a)参照)。粘着層2は、感圧型の粘着剤からなるものであっても、紫外線硬化型の粘着剤からなるものであってもよい。粘着層2が紫外線硬化型の粘着剤からなるものである場合、粘着層2は紫外線が照射されることによって粘着性が低下する性質を有する。支持片形成用フィルムDは、パンチング等によって円形に形成されており、粘着層2よりも小さい直径を有する(図3(a)参照)。支持片形成用フィルムDは、熱硬化性樹脂組成物からなる熱硬化性樹脂層5を含んでいてもよい。
[Step (A)]
The step (A) is a step of preparing the laminated film 20. The laminated film 20 includes a base film 1, an adhesive layer 2, and a support piece forming film D. The base film 1 is, for example, a polyethylene terephthalate film (PET film). The adhesive layer 2 is formed in a circular shape by punching or the like (see FIG. 3A). The pressure-sensitive adhesive layer 2 may be made of a pressure-sensitive pressure-sensitive adhesive or an ultraviolet-curable pressure-sensitive adhesive. When the adhesive layer 2 is made of an ultraviolet curable adhesive, the adhesive layer 2 has a property that the adhesiveness is lowered by being irradiated with ultraviolet rays. The support piece forming film D is formed in a circular shape by punching or the like, and has a diameter smaller than that of the adhesive layer 2 (see FIG. 3A). The support piece forming film D may include a thermosetting resin layer 5 made of a thermosetting resin composition.
 支持片形成用フィルムDにおける熱硬化性樹脂層5を構成する熱硬化性樹脂組成物は、半硬化(Bステージ)状態を経て、その後の硬化処理によって完全硬化物(Cステージ)状態となり得るものである。熱硬化性樹脂組成物は、ずり粘度を所定の範囲に調整し易いことから、エポキシ樹脂と、硬化剤と、エラストマ(例えば、アクリル樹脂)とを含み、必要に応じて、無機フィラー及び硬化促進剤等を更に含むものであってよい。支持片形成用フィルムDにおける熱硬化性樹脂層5を構成する熱硬化性樹脂組成物の詳細については後述する。 The thermosetting resin composition constituting the thermosetting resin layer 5 in the support piece forming film D can be in a completely cured product (C stage) state by a semi-curing (B stage) state and then a curing treatment. Is. Since the thermosetting resin composition can easily adjust the shear viscosity within a predetermined range, it contains an epoxy resin, a curing agent, and an elastomer (for example, an acrylic resin), and if necessary, an inorganic filler and curing acceleration. It may further contain an agent or the like. Details of the thermosetting resin composition constituting the thermosetting resin layer 5 in the support piece forming film D will be described later.
 支持片形成用フィルムDの厚さは、例えば、5~180μm又は20~120μmであってよい。支持片形成用フィルムの厚さがこの範囲であることで、第一のチップ(例えば、コントローラチップ)に対して適度な高さのドルメン構造を構築できる。 The thickness of the support piece forming film D may be, for example, 5 to 180 μm or 20 to 120 μm. When the thickness of the support piece forming film is in this range, a dolmen structure having an appropriate height with respect to the first chip (for example, a controller chip) can be constructed.
 支持片形成用フィルムDの120℃におけるずり粘度は、4000Pa・s以上である。支持片形成用フィルムDの120℃におけるずり粘度は、4500Pa・s以上、5000Pa・s以上、7000Pa・s以上、10000Pa・s以上、15000Pa・s以上、18000Pa・s以上、20000Pa・s以上、又は23000Pa・s以上であってもよい。支持片形成用フィルムDの120℃におけるずり粘度が4000Pa・s以上であると、支持片形成用フィルムの流動変形の度合いが低くなり、結果として、半導体チップの支持安定性を向上させることができる。支持片形成用フィルムDの120℃におけるずり粘度の上限は、特に制限されないが、100000Pa・s以下、70000Pa・s以下、又は50000Pa・s以下であってもよい。支持片形成用フィルムDの120℃におけるずり粘度は、例えば、後述の熱硬化性樹脂組成物の含有成分の種類、含有量等を適宜調整することによって、調整することができる。 The shear viscosity of the support piece forming film D at 120 ° C. is 4000 Pa · s or more. The shear viscosity of the support piece forming film D at 120 ° C. is 4500 Pa · s or more, 5000 Pa · s or more, 7000 Pa · s or more, 10000 Pa · s or more, 15000 Pa · s or more, 18000 Pa · s or more, 20000 Pa · s or more, or It may be 23000 Pa · s or more. When the shear viscosity of the support piece forming film D at 120 ° C. is 4000 Pa · s or more, the degree of flow deformation of the support piece forming film is low, and as a result, the support stability of the semiconductor chip can be improved. .. The upper limit of the shear viscosity of the support piece forming film D at 120 ° C. is not particularly limited, but may be 100,000 Pa · s or less, 70,000 Pa · s or less, or 50,000 Pa · s or less. The shear viscosity of the support piece forming film D at 120 ° C. can be adjusted, for example, by appropriately adjusting the type and content of the components contained in the thermosetting resin composition described later.
 積層フィルム20は、例えば、基材フィルム1とその表面上に粘着層2とを有する第1の積層フィルムと、カバーフィルム3とその表面上に支持片形成用フィルムDとを有する第2の積層フィルムとを貼り合わせることによって作製することができる(図4参照)。第1の積層フィルムは、基材フィルム1の表面上に粘着層を塗工によって形成する工程と、粘着層をパンチング等によって所定の形状(例えば、円形)に加工する工程を経て得られる。第2の積層フィルムは、カバーフィルム3(例えば、PETフィルム又はポリエチレンフィルム)の表面上に支持片形成用フィルムを塗工によって形成する工程と、支持片形成用フィルムをパンチング等によって所定の形状(例えば、円形)に加工する工程を経て得られる。積層フィルム20を使用するに際し、カバーフィルム3は適当なタイミングで剥がされる。 The laminated film 20 is, for example, a second laminated film having a base film 1 and an adhesive layer 2 on the surface thereof, and a cover film 3 and a support piece forming film D on the surface thereof. It can be produced by laminating with a film (see FIG. 4). The first laminated film is obtained through a step of forming an adhesive layer on the surface of the base film 1 by coating and a step of processing the adhesive layer into a predetermined shape (for example, a circle) by punching or the like. The second laminated film has a step of forming a support piece forming film on the surface of the cover film 3 (for example, PET film or polyethylene film) by coating, and a predetermined shape (for example, by punching the support piece forming film). For example, it is obtained through a process of processing into a circular shape. When using the laminated film 20, the cover film 3 is peeled off at an appropriate timing.
[(B)工程]
 (B)工程は、支持片形成用フィルムDを個片化することによって、粘着層2の表面上に複数の支持片Daを形成する工程である。図5(a)に示されるように、積層フィルム20にダイシングリングDRを貼り付ける。すなわち、積層フィルム20の粘着層2にダイシングリングDRを貼り付け、ダイシングリングDRの内側に支持片形成用フィルムDが配置された状態にする。支持片形成用フィルムDをダイシングによって個片化する(図5(b)参照)。これによって、支持片形成用フィルムDから多数の支持片Daが得られる。
[Step (B)]
The step (B) is a step of forming a plurality of support pieces Da on the surface of the adhesive layer 2 by individualizing the support piece forming film D. As shown in FIG. 5A, the dicing ring DR is attached to the laminated film 20. That is, the dicing ring DR is attached to the adhesive layer 2 of the laminated film 20, and the support piece forming film D is arranged inside the dicing ring DR. The support piece forming film D is individualized by dicing (see FIG. 5B). As a result, a large number of support pieces Da can be obtained from the support piece forming film D.
[(C)工程]
 (C)工程は、粘着層2から支持片Daをピックアップする工程である。図5(c)に示されるように、基材フィルム1をエキスパンドすることで、支持片Daを互いに離間させる。次いで、図5(d)に示されるように、支持片Daを突き上げ治具42で突き上げることによって粘着層2から支持片Daを剥離させるとともに、吸引コレット44で吸引して支持片Daをピックアップする。
[Step (C)]
The step (C) is a step of picking up the support piece Da from the adhesive layer 2. As shown in FIG. 5C, the support pieces Da are separated from each other by expanding the base film 1. Next, as shown in FIG. 5D, the support piece Da is peeled off from the adhesive layer 2 by pushing up the support piece Da with the push-up jig 42, and the support piece Da is picked up by suction with the suction collet 44. ..
(半導体装置の製造方法)
 半導体装置100の製造方法について説明する。本実施形態に係る製造方法は、(A)~(C)の工程を含み、更に以下の(D)~(H)の工程を含む。
(D)基板10上に第一のチップT1を配置する工程
(E)基板10上であって第一のチップT1の周囲に複数の上記の製造方法によって得られる支持片Da(少なくとも金属片6pを含む支持片Da)を配置する工程(図6参照)
(F)第二のチップT2と、第二のチップT2の一方の面上に設けられた接着剤片Taとを備える接着剤片付きチップT2aを準備する工程(図7参照)
(G)複数の支持片Dcの表面上に接着剤片付きチップT2aを配置することによってドルメン構造を構築する工程(図8参照)
(H)チップT1とチップT2との隙間等を封止材50で封止する工程(図1参照)
(Manufacturing method of semiconductor device)
A method of manufacturing the semiconductor device 100 will be described. The manufacturing method according to the present embodiment includes the steps (A) to (C), and further includes the following steps (D) to (H).
(D) Step of arranging the first chip T1 on the substrate 10 (E) Support piece Da (at least metal piece 6p) obtained by a plurality of the above-mentioned manufacturing methods on the substrate 10 and around the first chip T1. Step of arranging the support piece Da) including (see FIG. 6)
(F) A step of preparing a chip T2a with an adhesive piece, which includes a second chip T2 and an adhesive piece Ta provided on one surface of the second chip T2 (see FIG. 7).
(G) A step of constructing a dolmen structure by arranging a chip T2a with an adhesive piece on the surface of a plurality of support pieces Dc (see FIG. 8).
(H) A step of sealing the gap between the chip T1 and the chip T2 with the sealing material 50 (see FIG. 1).
 (D)~(H)工程は、複数の支持片Daを使用してドルメン構造を基板10上に構築していくプロセスである。以下、図6~8を参照しながら、(D)~(H)工程について説明する。 The steps (D) to (H) are processes in which a dolmen structure is constructed on the substrate 10 by using a plurality of support pieces Da. Hereinafter, the steps (D) to (H) will be described with reference to FIGS. 6 to 8.
[(D)工程]
 (D)工程は、基板10上に第一のチップT1を配置する工程である。例えば、まず、基板10上の所定の位置に接着剤層T1cを介してチップT1を配置する。その後、チップT1はワイヤwで基板10と電気的に接続される。
[Step (D)]
The step (D) is a step of arranging the first chip T1 on the substrate 10. For example, first, the chip T1 is arranged at a predetermined position on the substrate 10 via the adhesive layer T1c. After that, the chip T1 is electrically connected to the substrate 10 by the wire w.
[(E)工程]
 (E)工程は、基板10上であって第一のチップT1の周囲に複数の支持片Daを配置する工程である。この工程を経て、図6に示す構造体30が作製される。構造体30は、基板10と、その表面上に配置されたチップT1と、複数の支持片Daとを備える。支持片Daの配置は圧着処理によって行えばよい。圧着処理は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒間にわたって実施することが好ましい。なお、支持片Daは、これに含まれる接着剤片5pが(E)工程の時点で完全に硬化して支持片Dcとなっていてもよく、この時点では完全硬化していなくてもよい。支持片Daに含まれる接着剤片5pは(G)工程の開始前の時点で完全硬化して接着剤片5cとなっていることが好ましい。
[Step (E)]
The step (E) is a step of arranging a plurality of support pieces Da on the substrate 10 around the first chip T1. Through this step, the structure 30 shown in FIG. 6 is produced. The structure 30 includes a substrate 10, a chip T1 arranged on the surface thereof, and a plurality of support pieces Da. The support piece Da may be arranged by crimping. The crimping treatment is preferably carried out, for example, under the conditions of 80 to 180 ° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds. In the support piece Da, the adhesive piece 5p contained therein may be completely cured at the time of the step (E) to become the support piece Dc, and may not be completely cured at this time. It is preferable that the adhesive piece 5p contained in the support piece Da is completely cured before the start of the step (G) to become the adhesive piece 5c.
[(F)工程]
 (F)工程は、図7に示す接着剤片付きチップT2aを準備する工程である。接着剤片付きチップT2aは、チップT2と、その一方の表面に設けられた接着剤片Taとを備える。接着剤片付きチップT2aは、例えば、半導体ウェハ及びダイシング・ダイボンディング一体型フィルムを使用し、ダイシング工程及びピックアップ工程を経て得ることができる。
[Step (F)]
The step (F) is a step of preparing the adhesive chip T2a shown in FIG. 7. The adhesive piece T2a includes a chip T2 and an adhesive piece Ta provided on the surface of one of the chips T2. The chip T2a with an adhesive piece can be obtained through a dicing step and a pick-up step using, for example, a semiconductor wafer and a dicing / die bonding integrated film.
[(G)工程]
 (G)工程は、複数の支持片Dcの上面に接着剤片Taが接するように、チップT1の上方に接着剤片付きチップT2aを配置する工程である。具体的には、支持片Dcの上面に接着剤片Taを介してチップT2を圧着する。この圧着処理は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒間にわたって実施することが好ましい。次に、加熱によって接着剤片Taを硬化させる。この硬化処理は、例えば、60~175℃、0.01~1.0MPaの条件で、5分間以上にわたって実施することが好ましい。これによって、接着剤片Taが硬化して接着剤片Tcとなる。この工程を経て、基板10上にドルメン構造が構築される(図8参照)。
[(G) step]
The step (G) is a step of arranging the chip T2a with the adhesive piece above the chip T1 so that the adhesive piece Ta is in contact with the upper surface of the plurality of support pieces Dc. Specifically, the chip T2 is crimped to the upper surface of the support piece Dc via the adhesive piece Ta. This crimping treatment is preferably carried out for 0.5 to 3.0 seconds under the conditions of, for example, 80 to 180 ° C. and 0.01 to 0.50 MPa. Next, the adhesive piece Ta is cured by heating. This curing treatment is preferably carried out for 5 minutes or more under the conditions of, for example, 60 to 175 ° C. and 0.01 to 1.0 MPa. As a result, the adhesive piece Ta is cured to become the adhesive piece Tc. Through this step, a dolmen structure is constructed on the substrate 10 (see FIG. 8).
 (G)工程後であって(H)工程前に、チップT2の上に接着剤片を介してチップT3を配置し、更に、チップT3の上に接着剤片を介してチップT4を配置する。接着剤片は上述の接着剤片Taと同様の熱硬化性樹脂組成物であればよく、加熱硬化によって接着剤片Tcとなる(図1参照)。他方、チップT2,T3,T4と基板10とをワイヤwで電気的にそれぞれ接続する。なお、チップT1の上方に積層するチップの数は本実施形態の三つに限定されず、適宜設定すればよい。 After the step (G) and before the step (H), the chip T3 is placed on the chip T2 via the adhesive piece, and further, the chip T4 is placed on the chip T3 via the adhesive piece. .. The adhesive piece may be any thermosetting resin composition similar to the above-mentioned adhesive piece Ta, and becomes an adhesive piece Tc by heat curing (see FIG. 1). On the other hand, the chips T2, T3 and T4 and the substrate 10 are electrically connected by wires w. The number of chips stacked above the chip T1 is not limited to the three in this embodiment, and may be appropriately set.
[(H)工程]
 (H)工程は、チップT1とチップT2との隙間等を封止材50で封止する工程である。この工程を経て図1に示す半導体装置100が完成する。
[Step (H)]
The step (H) is a step of sealing the gap between the chip T1 and the chip T2 with the sealing material 50. Through this step, the semiconductor device 100 shown in FIG. 1 is completed.
(熱硬化性樹脂組成物)
 支持片形成用フィルムDにおける熱硬化性樹脂層5を構成する熱硬化性樹脂組成物は、上述のとおり、ずり粘度を所定の範囲に調整し易いことから、エポキシ樹脂と、硬化剤と、エラストマとを含み、必要に応じて、無機フィラー及び硬化促進剤等を更に含むものであってよい。本発明者らの検討によると、支持片Da及び硬化後の支持片Dcは以下の特性を更に有することが好ましい。
・特性1:基板10の所定の位置に支持片Daを熱圧着したとき位置ずれが生じ難いこと
・特性2:半導体装置100内において接着剤片5cが応力緩和性を発揮すること(熱硬化性樹脂組成物がエラストマ(ゴム成分)を含むこと)
・特性3:接着剤片付きチップの接着剤片Tcとの接着強度が充分に高いこと(接着剤片Tcに対する接着剤片5c(すなわち、熱硬化性樹脂層からなるフィルムの硬化物)のダイシェア強度(シェア強度)が、例えば、2.0~7.0Mpa又は3.0~6.0Mpaであること)
・特性4:硬化に伴う収縮率が充分に小さいこと
・特性5:ピックアップ工程においてカメラによる支持片Daの視認性が良いこと(熱硬化性樹脂組成物が、例えば、着色料を含んでいること)
・特性6:接着剤片5cが充分な機械的強度を有すること
(Thermosetting resin composition)
As described above, the thermosetting resin composition constituting the thermosetting resin layer 5 in the support piece forming film D can easily adjust the shear viscosity within a predetermined range. Therefore, the epoxy resin, the curing agent, and the elastomer And, if necessary, an inorganic filler, a curing accelerator, and the like may be further contained. According to the studies by the present inventors, it is preferable that the support piece Da and the hardened support piece Dc further have the following characteristics.
-Characteristic 1: Positional deviation is unlikely to occur when the support piece Da is thermocompression-bonded to a predetermined position on the substrate 10.-Characteristic 2: The adhesive piece 5c exhibits stress relaxation property in the semiconductor device 100 (thermosetting property). The resin composition contains an elastomer (rubber component))
-Characteristic 3: Die shear strength of the adhesive piece Tc of the chip with the adhesive piece having a sufficiently high adhesive strength (the adhesive piece 5c with respect to the adhesive piece Tc (that is, a cured product of a film made of a thermosetting resin layer)). (Share strength) is, for example, 2.0 to 7.0 Mpa or 3.0 to 6.0 Mpa)
-Characteristic 4: The shrinkage rate due to curing is sufficiently small.-Characteristic 5: The visibility of the support piece Da by the camera in the pickup process is good (the thermosetting resin composition contains, for example, a colorant). )
-Characteristic 6: The adhesive piece 5c has sufficient mechanical strength.
[エポキシ樹脂]
 エポキシ樹脂は、硬化して接着作用を有するものであれば特に限定されない。ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などを使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂等、一般に知られているものを適用することができる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Epoxy resin]
The epoxy resin is not particularly limited as long as it is cured and has an adhesive action. Bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin, novolak type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin can be used. Further, generally known ones such as a polyfunctional epoxy resin, a glycidylamine type epoxy resin, a heterocyclic epoxy resin, and an alicyclic epoxy resin can be applied. These may be used alone or in combination of two or more.
[硬化剤]
 硬化剤としては、例えば、フェノール樹脂、エステル化合物、芳香族アミン、脂肪族アミン、酸無水物等が挙げられる。これらのうち、高いダイシェア強度(シェア強度)を達成する観点から、フェノール樹脂が好ましい。フェノール樹脂の市販品としては、例えば、DIC株式会社製のLF-4871(商品名、BPAノボラック型フェノール樹脂)、エア・ウォーター株式会社製のHE-100C-30(商品名、フェニルアラキル型フェノール樹脂)、DIC株式会社製のフェノライトKA及びTDシリーズ、三井化学株式会社製のミレックスXLC-シリーズとXLシリーズ(例えば、ミレックスXLC-LL)、エア・ウォーター株式会社製のHEシリーズ(例えば、HE100C-30)、明和化成株式会社製のMEHC-7800シリーズ(例えば、MEHC-7800-4S)、JEFケミカル株式会社製のJDPPシリーズ、群栄化学工業株式会社製のPSMシリーズ(例えば、PSM-4326)等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Hardener]
Examples of the curing agent include phenolic resins, ester compounds, aromatic amines, aliphatic amines, acid anhydrides and the like. Of these, phenolic resins are preferable from the viewpoint of achieving high die shear strength (share strength). Commercially available phenolic resins include, for example, LF-4871 (trade name, BPA novolac type phenolic resin) manufactured by DIC Corporation and HE-100C-30 (trade name, phenylarakil type phenol) manufactured by Air Water Inc. Resin), Phenolite KA and TD series manufactured by DIC Corporation, Millex XLC-series and XL series manufactured by Mitsui Chemical Corporation (eg, Millex XLC-LL), HE series manufactured by Air Water Inc. (eg HE100C) -30), MEHC-7800 series manufactured by Meiwa Kasei Co., Ltd. (for example, MEHC-7800-4S), JDPP series manufactured by JEF Chemical Co., Ltd., PSM series manufactured by Gunei Chemical Industry Co., Ltd. (for example, PSM-4326) And so on. These may be used alone or in combination of two or more.
 エポキシ樹脂とフェノール樹脂の配合量は、高いダイシェア強度(シェア強度)を達成する観点から、それぞれエポキシ当量と水酸基当量の当量比が0.6~1.5であることが好ましく、0.7~1.4であることがより好ましく、0.8~1.3であることが更に好ましい。配合比が上記範囲内であることで、硬化性及び流動性の両方を充分に高水準に達成し易い。 The blending amount of the epoxy resin and the phenol resin is preferably such that the equivalent ratio of the epoxy equivalent and the hydroxyl group equivalent is 0.6 to 1.5, and 0.7 to 0.7, respectively, from the viewpoint of achieving high die shear strength (share strength). It is more preferably 1.4, and even more preferably 0.8 to 1.3. When the compounding ratio is within the above range, both curability and fluidity can be easily achieved at a sufficiently high level.
[エラストマ]
 エラストマとして、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルが挙げられる。
[Elastomer]
Examples of the elastoma include acrylic resin, polyester resin, polyamide resin, polyimide resin, silicone resin, polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene and carboxy-modified acrylonitrile.
 フィルムの成形性の観点から、エラストマとしてアクリル系樹脂が好ましく、更に、グリシジルアクリレート又はグリシジルメタクリレート等のエポキシ基又はグリシジル基を架橋性官能基として有する官能性モノマーを重合して得たエポキシ基含有(メタ)アクリル共重合体等のアクリル系樹脂がより好ましい。アクリル系樹脂のなかでもエポキシ基含有(メタ)アクリル酸エステル共重合体及びエポキシ基含有アクリルゴムが好ましく、エポキシ基含有アクリルゴムがより好ましい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリル等の共重合体、エチルアクリレートとアクリロニトリル等の共重合体などからなる、エポキシ基を有するゴムである。なお、アクリル系樹脂は、エポキシ基だけでなく、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有していてもよい。 From the viewpoint of film moldability, an acrylic resin is preferable as the elastoma, and an epoxy group-containing epoxy group obtained by polymerizing an epoxy group such as glycidyl acrylate or glycidyl methacrylate or a functional monomer having a glycidyl group as a crosslinkable functional group ( Acrylic resins such as meta) acrylic copolymers are more preferable. Among the acrylic resins, epoxy group-containing (meth) acrylic acid ester copolymers and epoxy group-containing acrylic rubbers are preferable, and epoxy group-containing acrylic rubbers are more preferable. The epoxy group-containing acrylic rubber is a rubber having an epoxy group, which is mainly composed of an acrylic acid ester as a main component, a copolymer such as butyl acrylate and acrylonitrile, and a copolymer such as ethyl acrylate and acrylonitrile. The acrylic resin may have not only an epoxy group but also a crosslinkable functional group such as an alcoholic or phenolic hydroxyl group or a carboxyl group.
 アクリル樹脂の市販品としては、ナガセケムテック株式会社製のSG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、SG-P3溶剤変更品(商品名、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤:シクロヘキサノン)、SG-P3低分子量品(商品名、ナガセケムテックス株式会社製、アクリルゴム、重量平均分子量:30万、Tg:12℃、溶剤:シクロヘキサノン)等が挙げられる。 Commercially available acrylic resin products include SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, SG-P3 solvent-changed products (trade name, acrylic rubber, weight average) manufactured by Nagase Chemtech Co., Ltd. Molecular weight: 800,000, Tg: 12 ° C, solvent: cyclohexanone), SG-P3 low molecular weight product (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 300,000, Tg: 12 ° C, solvent: cyclohexanone ) Etc. can be mentioned.
 アクリル樹脂のガラス転移温度(Tg)は、フィルムの成形性の観点から、-50~50℃であることが好ましく、-30~30℃であることがより好ましい。アクリル樹脂の重量平均分子量(Mw)は、フィルムの成形性の観点から、10万~300万であることが好ましく、50万~200万であることがより好ましい。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。なお、分子量分布の狭いアクリル樹脂を用いることによって、高弾性の接着剤片を形成できる傾向にある。 The glass transition temperature (Tg) of the acrylic resin is preferably −50 to 50 ° C., more preferably −30 to 30 ° C. from the viewpoint of film moldability. The weight average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 3,000,000, more preferably 500,000 to 2,000,000, from the viewpoint of film moldability. Here, Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve using standard polystyrene. By using an acrylic resin having a narrow molecular weight distribution, a highly elastic adhesive piece tends to be formed.
 熱硬化性樹脂組成物に含まれるアクリル樹脂の量は、高いダイシェア強度(シェア強度)を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して10~200質量部であることが好ましく、20~100質量部であることがより好ましい。 The amount of acrylic resin contained in the thermosetting resin composition is 10 to 200 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the epoxy resin curing agent from the viewpoint of achieving high die shear strength (share strength). It is preferably 20 to 100 parts by mass, and more preferably 20 to 100 parts by mass.
 熱硬化性樹脂組成物に含まれるアクリル樹脂の量は、高いずり粘度を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して50質量部以上であることが好ましい。 The amount of the acrylic resin contained in the thermosetting resin composition is preferably 50 parts by mass or more with respect to 100 parts by mass in total of the epoxy resin and the epoxy resin curing agent from the viewpoint of achieving a high shear viscosity.
[無機フィラー]
 無機フィラーとしては、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素、結晶性シリカ、非晶性シリカ等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Inorganic filler]
Examples of the inorganic filler include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whisker, boron nitride, and crystals. Examples thereof include sex silica and amorphous silica. These may be used alone or in combination of two or more.
 無機フィラーの平均粒径は、高いダイシェア強度(シェア強度)を達成する観点から、0.005μm~1.0μmが好ましく、0.05~0.5μmがより好ましい。無機フィラーの表面は、高いダイシェア強度(シェア強度)を達成する観点から、化学修飾されていることが好ましい。表面を化学修飾する材料としては、例えば、シランカップリング剤等が挙げられる。シランカップリング剤の官能基の種類としては、例えば、ビニル基、アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基等が挙げられる。 The average particle size of the inorganic filler is preferably 0.005 μm to 1.0 μm, more preferably 0.05 to 0.5 μm, from the viewpoint of achieving high die shear strength (share strength). The surface of the inorganic filler is preferably chemically modified from the viewpoint of achieving high die shear strength (share strength). Examples of the material that chemically modifies the surface include a silane coupling agent and the like. Examples of the functional group of the silane coupling agent include a vinyl group, an acryloyl group, an epoxy group, a mercapto group, an amino group, a diamino group, an alkoxy group, an ethoxy group and the like.
 高いダイシェア強度(シェア強度)を達成する観点から、熱硬化性樹脂組成物の樹脂成分100質量部に対して、無機フィラーの含有量は20~200質量部であることが好ましく、30~100質量部であることがより好ましい。 From the viewpoint of achieving high die shear strength (share strength), the content of the inorganic filler is preferably 20 to 200 parts by mass, preferably 30 to 100 parts by mass, based on 100 parts by mass of the resin component of the thermosetting resin composition. It is more preferable that it is a part.
[硬化促進剤]
 硬化促進剤としては、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、第四級アンモニウム塩等が挙げられる。高いダイシェア強度(シェア強度)を達成する観点から、イミダゾール系の化合物が好ましい。イミダゾール類としては、例えば、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Curing accelerator]
Examples of the curing accelerator include imidazoles and derivatives thereof, organophosphorus compounds, secondary amines, tertiary amines, quaternary ammonium salts and the like. From the viewpoint of achieving high die shear strength (share strength), imidazole-based compounds are preferable. Examples of the imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-methylimidazole and the like. These may be used alone or in combination of two or more.
 熱硬化性樹脂組成物における硬化促進剤の含有量は、高いダイシェア強度(シェア強度)を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して0.04~3質量部が好ましく、0.04~0.2質量部がより好ましい。 The content of the curing accelerator in the thermosetting resin composition is 0.04 to 3 parts by mass with respect to 100 parts by mass of the total of the epoxy resin and the epoxy resin curing agent from the viewpoint of achieving high die shear strength (share strength). Is preferable, and 0.04 to 0.2 parts by mass is more preferable.
<第二実施形態>
 図9は、半導体装置の第二実施形態を模式的に示す断面図である。第一実施形態に係る半導体装置100はチップT1が接着剤片Tcと離間している態様であるのに対し、本実施形態に係る半導体装置200はチップT1が接着剤片Tcと接している。つまり、接着剤片Tcは、チップT1の上面及び支持片Dcの上面に接している。例えば、支持片形成用フィルムDの厚さを適宜設定することで、チップT1の上面の位置と支持片Dcの上面の位置を一致させることができる。
<Second embodiment>
FIG. 9 is a cross-sectional view schematically showing a second embodiment of the semiconductor device. In the semiconductor device 100 according to the first embodiment, the chip T1 is separated from the adhesive piece Tc, whereas in the semiconductor device 200 according to the present embodiment, the chip T1 is in contact with the adhesive piece Tc. That is, the adhesive piece Tc is in contact with the upper surface of the chip T1 and the upper surface of the support piece Dc. For example, by appropriately setting the thickness of the support piece forming film D, the position of the upper surface of the chip T1 and the position of the upper surface of the support piece Dc can be matched.
 半導体装置200においては、チップT1が基板10に対し、ワイヤボンディングではなく、フリップチップ接続されている。なお、チップT2とともに接着剤片付きチップT2aを構成する接着剤片Taに埋め込まれる構成とすれば、基板10にチップT1がワイヤボンディングされた態様であっても、チップT1が接着剤片Tcと接した状態とすることができる。 In the semiconductor device 200, the chip T1 is connected to the substrate 10 by a flip chip instead of wire bonding. If the chip T2 is embedded in the adhesive piece Ta constituting the adhesive piece T2a together with the chip T2, the chip T1 is in contact with the adhesive piece Tc even in the mode in which the chip T1 is wire-bonded to the substrate 10. Can be in the state of
 以下、実施例により本開示について説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present disclosure will be described with reference to Examples, but the present invention is not limited to these Examples.
[支持片形成用フィルムの作製]
<ワニスの調製>
 表1に示す材料を表1に示す組成比(単位:質量部)で使用した。エポキシ樹脂、フェノール樹脂、及び無機フィラーに対して、シクロヘキサノンを加え、撹拌混合した。シクロヘキサノンの含有量は、最終的に得られるワニスにおいて、固形分割合が40質量%となるように調整した。これに、エラストマを加え、更に、カップリング剤及び硬化促進剤を加えて、各成分が均一になるまで撹拌してワニスA~Eを調製した。
[Preparation of film for forming support pieces]
<Preparation of varnish>
The materials shown in Table 1 were used in the composition ratio (unit: parts by mass) shown in Table 1. Cyclohexanone was added to the epoxy resin, phenol resin, and inorganic filler, and the mixture was stirred and mixed. The content of cyclohexanone was adjusted so that the solid content ratio of the finally obtained varnish was 40% by mass. Elastomer was added thereto, and a coupling agent and a curing accelerator were further added, and varnishes A to E were prepared by stirring until each component became uniform.
 表1に示す各成分の詳細は、以下のとおりである。
・エポキシ樹脂:YDCN-700-10(商品名、新日鉄住金化学株式会社製、o-クレゾールノボラック型エポキシ樹脂、エポキシ当量:209g/eq)
・EXA-830CRP(商品名、DIC株式会社製、ビスフェノールF型エポキシ樹脂、エポキシ当量:159g/eq)
・フェノール樹脂(硬化剤):HE-100C-30(商品名、エア・ウォーター株式会社製、フェノールノアラルキル型フェノール樹脂、水酸基当量:170g/eq)
・フェノール樹脂(硬化剤):PSM-4326(商品名、群栄化学工業株式会社製、フェノールノボラック型フェノール樹脂、水酸基当量:105g/eq)
・無機フィラー:アエロジルR972(商品名、日本アエロジル株式会社製、シリカ、平均粒径0.016μm)
・無機フィラー:SC2050-HLG(商品名、株式会社アドマテックス製、シリカフィラー分散液、平均粒径0.50μm)
・エラストマ:SG-P3溶剤変更品(商品名、ナガセケムテックス株式会社製、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤:シクロヘキサノン)
・エラストマ:SG-P3低分子量品(商品名、ナガセケムテックス株式会社製、アクリルゴム、重量平均分子量:30万、Tg:12℃、溶剤:シクロヘキサノン)
・カップリング剤:A-189(商品名、GE東芝株式会社製、γ-メルカプトプロピルトリメトキシシラン)
・カップリング剤:A-1160(商品名、GE東芝株式会社製、γ-ウレイドプロピルトリエトキシシラン)
・硬化促進剤:キュアゾール2PZ-CN(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
Details of each component shown in Table 1 are as follows.
-Epoxy resin: YDCN-700-10 (trade name, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd., o-cresol novolac type epoxy resin, epoxy equivalent: 209 g / eq)
-EXA-830CRP (trade name, manufactured by DIC Corporation, bisphenol F type epoxy resin, epoxy equivalent: 159 g / eq)
-Phenolic resin (hardener): HE-100C-30 (trade name, manufactured by Air Water Inc., phenol noaralkyl type phenol resin, hydroxyl group equivalent: 170 g / eq)
-Phenolic resin (hardener): PSM-4326 (trade name, manufactured by Gunei Chemical Industry Co., Ltd., phenol novolac type phenol resin, hydroxyl group equivalent: 105 g / eq)
-Inorganic filler: Aerosil R972 (trade name, manufactured by Nippon Aerosil Co., Ltd., silica, average particle size 0.016 μm)
-Inorganic filler: SC2050-HLG (trade name, manufactured by Admatex Co., Ltd., silica filler dispersion, average particle size 0.50 μm)
-Elastomer: SG-P3 solvent modified product (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 800,000, Tg: 12 ° C, solvent: cyclohexanone)
-Elastomer: SG-P3 low molecular weight product (trade name, manufactured by Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 300,000, Tg: 12 ° C, solvent: cyclohexanone)
-Coupling agent: A-189 (trade name, manufactured by GE Toshiba Corporation, γ-mercaptopropyltrimethoxysilane)
-Coupling agent: A-1160 (trade name, manufactured by GE Toshiba Corporation, γ-ureidopropyltriethoxysilane)
-Curing accelerator: Curesol 2PZ-CN (trade name, manufactured by Shikoku Chemicals Corporation, 1-cyanoethyl-2-phenylimidazole)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<支持片形成用フィルムの作製>
(実施例1)
 ワニスAを100メッシュのフィルターでろ過するとともに真空脱泡した。基材フィルムとして、厚さ38μmの離型処理を施したポリエチレンテレフタレート(PET)フィルムを用意し、真空脱泡後のワニスAをPETフィルム上に塗布した。塗布したワニスAを、90℃で5分間、続いて130℃で5分間の2段階で加熱乾燥し、Bステージ状態にある実施例1の支持片形成用フィルムを得た。ワニスAの塗布量は、厚さ50μmになるよう調整した。
<Making a film for forming a support piece>
(Example 1)
Varnish A was filtered through a 100 mesh filter and vacuum defoamed. As a base film, a polyethylene terephthalate (PET) film having been subjected to a mold release treatment having a thickness of 38 μm was prepared, and varnish A after vacuum defoaming was applied onto the PET film. The applied varnish A was heat-dried at 90 ° C. for 5 minutes and then at 130 ° C. for 5 minutes in two steps to obtain a support piece forming film of Example 1 in the B stage state. The amount of varnish A applied was adjusted so that the thickness was 50 μm.
(実施例2)
 ワニスAをワニスBに変更した以外は、実施例1と同様にして、実施例2の支持片形成用フィルムを得た。
(Example 2)
A film for forming a support piece of Example 2 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish B.
(実施例3)
 ワニスAをワニスCに変更した以外は、実施例1と同様にして、実施例3の支持片形成用フィルムを得た。
(Example 3)
A film for forming a support piece of Example 3 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish C.
(比較例1)
 ワニスAをワニスDに変更した以外は、実施例1と同様にして、比較例1の支持片形成用フィルムを得た。
(Comparative Example 1)
A film for forming a support piece of Comparative Example 1 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish D.
(比較例2)
 ワニスAをワニスEに変更した以外は、実施例1と同様にして、比較例2の支持片形成用フィルムを得た。
(Comparative Example 2)
A film for forming a support piece of Comparative Example 2 was obtained in the same manner as in Example 1 except that the varnish A was changed to varnish E.
[支持片形成用フィルムの評価]
<ずり粘度の測定>
 実施例1~3及び比較例1、2の支持片形成用フィルムをそれぞれ(厚さ50μm)を所定のサイズに切断し、四枚のフィルム片を準備した。四枚のフィルム片を60℃のホットプレート上でゴムロールを使用してラミネートすることによって、厚さ200μmの試料を作製した。得られた試料をφ9mmのポンチで打ち抜き、ずり粘度計(ティー・エイ・インスツルメント・ジャパン株式会社製、商品名:ARES-G2)を使用し、以下の条件において、各支持片形成用フィルムの測定温度120℃におけるずり粘度を測定した。結果を表1に示す。
・測定周波数:1Hz
・昇温速度:5℃/分
・測定温度:35~130℃
・アキシャルフォース:100gf(0.98N)
[Evaluation of film for forming support pieces]
<Measurement of shear viscosity>
Each of the support piece forming films (thickness 50 μm) of Examples 1 to 3 and Comparative Examples 1 and 2 was cut into a predetermined size to prepare four film pieces. A sample having a thickness of 200 μm was prepared by laminating four film pieces on a hot plate at 60 ° C. using a rubber roll. The obtained sample is punched with a punch of φ9 mm, and a shear viscometer (manufactured by TA Instruments Japan Co., Ltd., trade name: ARES-G2) is used, and under the following conditions, a film for forming each support piece. The shear viscosity at the measurement temperature of 120 ° C. was measured. The results are shown in Table 1.
・ Measurement frequency: 1Hz
・ Temperature rise rate: 5 ℃ / min ・ Measurement temperature: 35-130 ℃
・ Axial force: 100gf (0.98N)
<支持安定性の評価>
(支持片付き基板の作製)
 実施例1~3及び比較例1、2の支持片形成用フィルム(厚さ50μm)をそれぞれ、基材フィルムと粘着層とを有する粘着フィルム(粘着層の厚さ10μm、日立化成株式会社製)に貼り付けて、積層フィルムを作製した。得られた積層フィルムをフルオートダイサーDFD-6361(株式会社ディスコ製)を用いて個片化した。ダイシングブレードZH05-SD4000-N1-xx-BB(いずれも株式会社ディスコ製)を用いた。切断条件は、ブレード回転数4000rpm、切断速度50mm/秒、サイズ6mm×3mmとした。次いで、ピックアップ用コレットを用いて、支持片をピックアップした。
<Evaluation of support stability>
(Manufacturing of substrate with support piece)
Adhesive films (thickness 50 μm) for forming support pieces of Examples 1 to 3 and Comparative Examples 1 and 2 each having a base film and an adhesive layer (adhesive layer thickness 10 μm, manufactured by Hitachi Chemical Co., Ltd.) A laminated film was prepared by attaching to. The obtained laminated film was individualized using a fully automatic dicer DFD-6361 (manufactured by Disco Corporation). A dicing blade ZH05-SD4000-N1-xx-BB (both manufactured by Disco Corporation) was used. The cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm / sec, and a size of 6 mm × 3 mm. Then, the support piece was picked up using the pick-up collet.
 続いて、得られた二つの支持片をソルダーレジスト基板(太陽ホールディングス株式会社、商品名:AUS-308)上に配置し、熱圧着することによって、実施例1~3及び比較例1、2の支持片付き基板を得た。熱圧着条件は、温度120℃、時間1秒、圧力0.1MPaとした。図10(a)は、実施例で使用される支持片付き基板の一例を示す上面図であり、図10(b)は、図10(a)のb-b線における断面図である。図10に示すように、支持片付き基板300は、基板310と、基板310の対向する両辺に接するように基板310上に配置された二つの支持片Daとを備えている。 Subsequently, the two obtained support pieces were placed on a solder resist substrate (Taiyo Holdings Co., Ltd., trade name: AUS-308) and thermocompression-bonded to obtain Examples 1 to 3 and Comparative Examples 1 and 2. A substrate with a support piece was obtained. The thermocompression bonding conditions were a temperature of 120 ° C., a time of 1 second, and a pressure of 0.1 MPa. 10 (a) is a top view showing an example of a substrate with a support piece used in the examples, and FIG. 10 (b) is a cross-sectional view taken along the line bb of FIG. 10 (a). As shown in FIG. 10, the substrate 300 with a support piece includes a substrate 310 and two support pieces Da arranged on the substrate 310 so as to be in contact with both opposite sides of the substrate 310.
(接着剤片付きチップの作製)
 フィルム状接着剤及び粘着フィルムを備えるダイシング・ダイボンディング一体型接着フィルム(フィルム状接着剤:厚さ50μm、粘着フィルム:厚さ110μm、日立化成株式会社製)及び厚さが400μmであるシリコンウェハを用意した。ダイシング・ダイボンディング一体型接着フィルムのフィルム状接着剤に、シリコンウェハを、ステージ温度70℃でラミネートすることによって、ダイシングサンプルを作製した。
(Making chips with adhesive pieces)
A dicing / die-bonding integrated adhesive film (film-like adhesive: thickness 50 μm, adhesive film: thickness 110 μm, manufactured by Hitachi Kasei Co., Ltd.) and a silicon wafer having a thickness of 400 μm, which include a film-like adhesive and an adhesive film. I prepared it. A dicing sample was prepared by laminating a silicon wafer on a film-like adhesive of a dicing / die bonding integrated adhesive film at a stage temperature of 70 ° C.
 フルオートダイサーDFD-6361(株式会社ディスコ製)を用いて、得られたダイシングサンプルを切断した。切断には、2枚のブレードを用いるステップカット方式で行い、ダイシングブレードZH05-SD3500-N1-xx-DD及びZH05-SD4000-N1-xx-BB(いずれも株式会社ディスコ製)を用いた。切断条件は、ブレード回転数4000rpm、切断速度50mm/秒、チップサイズ6mm×12mmとした。切断は、シリコンウェハが200μm程度残るように1段階目の切断を行い、次いで、粘着フィルムに20μm程度の切り込みが入るように2段階目の切断を行った。次いで、ピックアップ用コレットを用いて、チップをピックアップすることによって、接着剤片付きチップを得た。 The obtained dicing sample was cut using a fully automatic dicer DFD-6361 (manufactured by Disco Corporation). The cutting was performed by a step cutting method using two blades, and dicing blades ZH05-SD3500-N1-xx-DD and ZH05-SD4000-N1-xx-BB (both manufactured by Disco Corporation) were used. The cutting conditions were a blade rotation speed of 4000 rpm, a cutting speed of 50 mm / sec, and a chip size of 6 mm × 12 mm. For cutting, the first step was cut so that the silicon wafer remained about 200 μm, and then the second step was cut so that the adhesive film had a notch of about 20 μm. Then, the tip was picked up using a pick-up collet to obtain a tip with an adhesive piece.
(評価サンプルの作製)
 実施例1~3及び比較例1、2の支持片付き基板の支持片上にそれぞれ接着剤片付きチップの接着剤片を、支持片付き基板の基板と接着剤片付きチップのチップとが重なるように配置して、熱圧着した。熱圧着条件は、温度120℃、時間1秒、圧力0.1MPaとした。図10(c)は、実施例で使用される積層体の一例を示す断面図である。図10(c)に示すように、積層体400は、支持片付き基板300と、接着剤片Ta及びチップT300からなる接着剤片付きチップT300aと、支持片付き基板300と接着剤片付きチップT300aとの間に配置される二つの支持片Daとを備えている。続いて、熱圧着によって得られた積層体を乾燥機に入れ、170℃で、1時間加熱硬化させることによって、実施例1~3及び比較例1、2の評価サンプルを得た。
(Preparation of evaluation sample)
An adhesive piece of a chip with an adhesive piece is arranged on a support piece of a substrate with a support piece of Examples 1 to 3 and Comparative Examples 1 and 2 so that the substrate of the substrate with a support piece and the chip of the chip with an adhesive piece overlap each other. , Thermocompression bonded. The thermocompression bonding conditions were a temperature of 120 ° C., a time of 1 second, and a pressure of 0.1 MPa. FIG. 10 (c) is a cross-sectional view showing an example of the laminated body used in the examples. As shown in FIG. 10 (c), the laminate 400 is formed between a substrate 300 with a support piece, a chip T300a with an adhesive piece composed of an adhesive piece Ta and a chip T300, and a substrate 300 with a support piece and a chip T300a with an adhesive piece. It is provided with two support pieces Da arranged in. Subsequently, the laminate obtained by thermocompression bonding was placed in a dryer and heat-cured at 170 ° C. for 1 hour to obtain evaluation samples of Examples 1 to 3 and Comparative Examples 1 and 2.
(顕微鏡による断面観察)
 作製した実施例1~3及び比較例1、2の評価サンプルの断面を顕微鏡で観察し、支持片の高さのばらつきを評価した。支持片が変形又は収縮せずに、基板とチップとが平行のまま維持されていたものを「A」と評価し、支持片が変形又は収縮して、基板とチップとが平行でなくなったものを「B」と評価した。結果を表2に示す。
(Cross-section observation with a microscope)
The cross sections of the evaluation samples of Examples 1 to 3 and Comparative Examples 1 and 2 prepared were observed with a microscope to evaluate the variation in the height of the support pieces. The one in which the substrate and the chip are kept parallel without being deformed or contracted is evaluated as "A", and the one in which the support piece is deformed or contracted and the substrate and the chip are no longer parallel. Was evaluated as "B". The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、120℃におけるずり粘度が4000Pa・s以上である支持片形成用フィルムを用いた実施例1~3の評価サンプルは、120℃におけるずり粘度が4000Pa・s未満である支持片形成用フィルムを用いた比較例1、2の評価サンプルに比べて、支持片の高さのばらつきが抑制されていた。以上より、本発明の半導体装置の製造方法が、積層される半導体チップを安定的に支持することができる半導体装置を製造可能であることが確認された。 As shown in Table 2, the evaluation samples of Examples 1 to 3 using the support piece forming film having a shear viscosity at 120 ° C. of 4000 Pa · s or more are supports having a shear viscosity of less than 4000 Pa · s at 120 ° C. Compared with the evaluation samples of Comparative Examples 1 and 2 using the piece-forming film, the variation in the height of the support piece was suppressed. From the above, it has been confirmed that the method for manufacturing a semiconductor device of the present invention can manufacture a semiconductor device capable of stably supporting a laminated semiconductor chip.
 本開示によれば、ドルメン構造を有する半導体装置の製造プロセスにおいて、支持片を作製する工程を簡略化でき、更には積層される半導体チップを安定的に支持することができる半導体装置の製造方法が提供される。また、本開示によれば、支持片の製造方法及び支持片形成用積層フィルムが提供される。 According to the present disclosure, in the manufacturing process of a semiconductor device having a dolmen structure, a method for manufacturing a semiconductor device capable of simplifying the step of manufacturing a support piece and stably supporting a laminated semiconductor chip is provided. Provided. Further, according to the present disclosure, a method for manufacturing a support piece and a laminated film for forming a support piece are provided.
1…基材フィルム、2…粘着層、5…熱硬化性樹脂層、10,310…基板、20…支持片形成用積層フィルム、50…封止材、100,200…半導体装置、300…支持片付き基板、400…積層体、D…支持片形成用フィルム、Da…支持片、Dc…支持片(硬化物)、T1…第一のチップ、T2…第二のチップ、T300…チップ、T2a,T300a…接着剤片付きチップ、Ta…接着剤片、Tc…接着剤片(硬化物)。 1 ... Base film, 2 ... Adhesive layer, 5 ... Thermosetting resin layer, 10,310 ... Substrate, 20 ... Laminated film for forming support pieces, 50 ... Encapsulant, 100, 200 ... Semiconductor device, 300 ... Support Clean-up substrate, 400 ... Laminated body, D ... Support piece forming film, Da ... Support piece, Dc ... Support piece (cured product), T1 ... First chip, T2 ... Second chip, T300 ... Chip, T2a, T300a ... Chip with adhesive piece, Ta ... Adhesive piece, Tc ... Adhesive piece (cured product).

Claims (6)

  1.  基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造方法であって、
    (A)基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備える積層フィルムを準備する工程と、
    (B)前記支持片形成用フィルムを個片化することによって、前記粘着層の表面上に複数の支持片を形成する工程と、
    (C)前記粘着層から前記支持片をピックアップする工程と、
    (D)基板上に第一のチップを配置する工程と、
    (E)前記基板上であって前記第一のチップの周囲に複数の前記支持片を配置する工程と、
    (F)第二のチップと、前記第二のチップの一方の面上に設けられた接着剤片とを備える接着剤片付きチップを準備する工程と、
    (G)複数の前記支持片の表面上に前記接着剤片付きチップを配置することによってドルメン構造を構築する工程と、
    を含み、
     前記支持片形成用フィルムの120℃におけるずり粘度が、4000Pa・s以上である、半導体装置の製造方法。
    A substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and the first support piece supported by the plurality of support pieces. A method for manufacturing a semiconductor device having a dolmen structure including a second chip arranged so as to cover one chip.
    (A) A step of preparing a laminated film including a base film, an adhesive layer, and a support piece forming film in this order.
    (B) A step of forming a plurality of support pieces on the surface of the adhesive layer by individualizing the support piece forming film.
    (C) A step of picking up the support piece from the adhesive layer and
    (D) The process of arranging the first chip on the substrate and
    (E) A step of arranging a plurality of the support pieces on the substrate and around the first chip.
    (F) A step of preparing a chip with an adhesive piece, which comprises a second chip and an adhesive piece provided on one surface of the second chip.
    (G) A step of constructing a dolmen structure by arranging the chips with adhesive pieces on the surfaces of a plurality of the support pieces, and
    Including
    A method for manufacturing a semiconductor device, wherein the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa · s or more.
  2.  前記支持片形成用フィルムが、熱硬化性樹脂層を含み、
     (G)工程よりも前に、前記支持片形成用フィルム又は前記支持片を加熱する工程を含む、請求項1に記載の半導体装置の製造方法。
    The support piece forming film contains a thermosetting resin layer and contains.
    The method for manufacturing a semiconductor device according to claim 1, further comprising a step of heating the support piece forming film or the support piece before the step (G).
  3.  基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片の製造方法であって、
    (A)基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備える積層フィルムを準備する工程と、
    (B)前記支持片形成用フィルムを個片化することによって、前記粘着層の表面上に複数の支持片を形成する工程と、
    (C)前記粘着層から前記支持片をピックアップする工程と、
    を含み、
     前記支持片形成用フィルムの120℃におけるずり粘度が、4000Pa・s以上である、支持片の製造方法。
    A substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and the first support piece supported by the plurality of support pieces. A method for manufacturing a support piece used in a manufacturing process of a semiconductor device having a dolmen structure including a second chip arranged so as to cover one chip.
    (A) A step of preparing a laminated film including a base film, an adhesive layer, and a support piece forming film in this order.
    (B) A step of forming a plurality of support pieces on the surface of the adhesive layer by individualizing the support piece forming film.
    (C) A step of picking up the support piece from the adhesive layer and
    Including
    A method for producing a support piece, wherein the shear viscosity of the support piece forming film at 120 ° C. is 4000 Pa · s or more.
  4.  前記支持片形成用フィルムが、熱硬化性樹脂層を含む、請求項3に記載の支持片の製造方法。 The method for producing a support piece according to claim 3, wherein the support piece forming film includes a thermosetting resin layer.
  5.  基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片形成用積層フィルムであって、
     基材フィルムと、
     粘着層と、
     支持片形成用フィルムと、
    をこの順序で備え、
     前記支持片形成用フィルムの120℃におけるずり粘度が、4000Pa・s以上である、支持片形成用積層フィルム。
    A substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate and around the first chip, and the first support piece supported by the plurality of support pieces. A laminated film for forming a support piece used in a manufacturing process of a semiconductor device having a dolmen structure including a second chip arranged so as to cover one chip.
    Base film and
    Adhesive layer and
    A film for forming support pieces and
    In this order,
    A laminated film for forming a support piece, wherein the shear viscosity of the film for forming a support piece at 120 ° C. is 4000 Pa · s or more.
  6.  前記支持片形成用フィルムが、熱硬化性樹脂層を含む、請求項5に記載の支持片形成用積層フィルム。 The laminated film for forming a support piece according to claim 5, wherein the film for forming a support piece includes a thermosetting resin layer.
PCT/JP2019/017715 2019-04-25 2019-04-25 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation WO2020217405A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2019/017715 WO2020217405A1 (en) 2019-04-25 2019-04-25 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation
SG11202110100WA SG11202110100WA (en) 2019-04-25 2019-04-25 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation
JP2021515424A JPWO2020217405A1 (en) 2019-04-25 2019-04-25
KR1020217029673A KR20210146908A (en) 2019-04-25 2019-04-25 Manufacturing method of semiconductor device having dolmen structure, manufacturing method of support piece, and laminated film for forming support piece
CN201980094133.0A CN113614916A (en) 2019-04-25 2019-04-25 Method for manufacturing semiconductor device having stone support structure, method for manufacturing support sheet, and laminated film for forming support sheet
TW109113047A TW202107665A (en) 2019-04-25 2020-04-17 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation
JP2023096871A JP2023112009A (en) 2019-04-25 2023-06-13 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for forming support piece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017715 WO2020217405A1 (en) 2019-04-25 2019-04-25 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation

Publications (1)

Publication Number Publication Date
WO2020217405A1 true WO2020217405A1 (en) 2020-10-29

Family

ID=72941149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017715 WO2020217405A1 (en) 2019-04-25 2019-04-25 Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation

Country Status (6)

Country Link
JP (2) JPWO2020217405A1 (en)
KR (1) KR20210146908A (en)
CN (1) CN113614916A (en)
SG (1) SG11202110100WA (en)
TW (1) TW202107665A (en)
WO (1) WO2020217405A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222889A (en) * 2001-01-24 2002-08-09 Nec Kyushu Ltd Semiconductor device and method of manufacturing the same
JP2003124433A (en) * 2001-08-27 2003-04-25 Samsung Electronics Co Ltd Multichip package
JP2006005333A (en) * 2004-05-20 2006-01-05 Toshiba Corp Stacked electronic component and manufacturing method of same
US20070181990A1 (en) * 2006-02-03 2007-08-09 Siliconware Precision Industries Co., Ltd. Stacked semiconductor structure and fabrication method thereof
US20080029885A1 (en) * 2006-08-07 2008-02-07 Sandisk Il Ltd. Inverted Pyramid Multi-Die Package Reducing Wire Sweep And Weakening Torques
US7859119B1 (en) * 2003-11-10 2010-12-28 Amkor Technology, Inc. Stacked flip chip die assembly
JP2012180442A (en) * 2011-03-01 2012-09-20 Hitachi Chemical Co Ltd Adhesive film and semiconductor apparatus having the same
JP2013131557A (en) * 2011-12-20 2013-07-04 Toshiba Corp Semiconductor device and method of manufacturing the same
US20130270717A1 (en) * 2012-04-17 2013-10-17 Samsung Electronics Co., Ltd. Semiconductor package and method of fabricating the same
JP2015176906A (en) * 2014-03-13 2015-10-05 株式会社東芝 Semiconductor device and method of manufacturing the same
JP2017515306A (en) * 2014-04-29 2017-06-08 マイクロン テクノロジー, インク. Stacked semiconductor die assembly having support members and associated systems and methods
JP2017203139A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Electronic component supporting member

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222889A (en) * 2001-01-24 2002-08-09 Nec Kyushu Ltd Semiconductor device and method of manufacturing the same
JP2003124433A (en) * 2001-08-27 2003-04-25 Samsung Electronics Co Ltd Multichip package
US7859119B1 (en) * 2003-11-10 2010-12-28 Amkor Technology, Inc. Stacked flip chip die assembly
JP2006005333A (en) * 2004-05-20 2006-01-05 Toshiba Corp Stacked electronic component and manufacturing method of same
US20070181990A1 (en) * 2006-02-03 2007-08-09 Siliconware Precision Industries Co., Ltd. Stacked semiconductor structure and fabrication method thereof
US20080029885A1 (en) * 2006-08-07 2008-02-07 Sandisk Il Ltd. Inverted Pyramid Multi-Die Package Reducing Wire Sweep And Weakening Torques
JP2012180442A (en) * 2011-03-01 2012-09-20 Hitachi Chemical Co Ltd Adhesive film and semiconductor apparatus having the same
JP2013131557A (en) * 2011-12-20 2013-07-04 Toshiba Corp Semiconductor device and method of manufacturing the same
US20130270717A1 (en) * 2012-04-17 2013-10-17 Samsung Electronics Co., Ltd. Semiconductor package and method of fabricating the same
JP2015176906A (en) * 2014-03-13 2015-10-05 株式会社東芝 Semiconductor device and method of manufacturing the same
JP2017515306A (en) * 2014-04-29 2017-06-08 マイクロン テクノロジー, インク. Stacked semiconductor die assembly having support members and associated systems and methods
JP2017203139A (en) * 2016-05-13 2017-11-16 日立化成株式会社 Electronic component supporting member

Also Published As

Publication number Publication date
JP2023112009A (en) 2023-08-10
JPWO2020217405A1 (en) 2020-10-29
CN113614916A (en) 2021-11-05
TW202107665A (en) 2021-02-16
KR20210146908A (en) 2021-12-06
SG11202110100WA (en) 2021-11-29

Similar Documents

Publication Publication Date Title
WO2020100998A1 (en) Semiconductor device and manufacturing method thereof, and structure used in manufacture of semiconductor device
JP7247733B2 (en) Manufacturing method of semiconductor device having dolmen structure
WO2020218526A1 (en) Semiconductor device having dolmen structure and manufacturing method therefor, and support piece formation laminate film and manufacturing method therefor
JP7452545B2 (en) Method for manufacturing a support piece, method for manufacturing a semiconductor device, and laminated film for forming a support piece
WO2020218523A1 (en) Semiconductor device having dolmen structure and manufacturing method therefor, and support piece formation laminate film and manufacturing method therefor
WO2020218531A1 (en) Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminated film
WO2020217405A1 (en) Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support piece, and laminate film for support piece formation
JP7294410B2 (en) Semiconductor device having dolmen structure and manufacturing method thereof
TWI830901B (en) Semiconductor device manufacturing method
TWI833985B (en) Method for manufacturing support sheet, method for manufacturing semiconductor device, and laminated film for forming support sheet
JP7351335B2 (en) Semiconductor device having dolmen structure, method for manufacturing the same, method for manufacturing support piece, and laminated film for forming support piece
WO2020218530A1 (en) Method for manufacturing semiconductor device having dolmen structure, and method for manufacturing support piece
WO2020218524A1 (en) Semiconductor device having dolmen structure and method for manufacturing same, and laminated film for forming support piece and method for manufacturing same
TWI830905B (en) Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for supporting sheet formation and its manufacturing method
WO2020218532A1 (en) Method for producing semiconductor device having dolmen structure and method for producing supporting pieces
TWI830906B (en) Method for manufacturing semiconductor device with dolmen structure and method for manufacturing support sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515424

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926720

Country of ref document: EP

Kind code of ref document: A1