WO2020217341A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2020217341A1
WO2020217341A1 PCT/JP2019/017437 JP2019017437W WO2020217341A1 WO 2020217341 A1 WO2020217341 A1 WO 2020217341A1 JP 2019017437 W JP2019017437 W JP 2019017437W WO 2020217341 A1 WO2020217341 A1 WO 2020217341A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
air
indoor
cooling
expansion valve
Prior art date
Application number
PCT/JP2019/017437
Other languages
English (en)
French (fr)
Inventor
伊藤 慎一
正樹 豊島
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/017437 priority Critical patent/WO2020217341A1/ja
Priority to ES19926632T priority patent/ES2983718T3/es
Priority to EP19926632.1A priority patent/EP3961112B1/en
Priority to US17/432,314 priority patent/US11828487B2/en
Priority to JP2021515375A priority patent/JP7126611B2/ja
Publication of WO2020217341A1 publication Critical patent/WO2020217341A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0438Cooling or heating systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0454Controlling adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0063Indoor units, e.g. fan coil units characterised by heat exchangers by the mounting or arrangement of the heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0083Indoor units, e.g. fan coil units with dehumidification means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/02System or Device comprising a heat pump as a subsystem, e.g. combined with humidification/dehumidification, heating, natural energy or with hybrid system
    • F24F2203/026Absorption - desorption cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioner that dehumidifies an indoor space.
  • an air conditioner having a rotary desiccant rotor having an adsorbent for adsorbing and desorbing water and using a heater as a regenerating heat source for the adsorbent of the desiccant rotor has been proposed (see, for example, Patent Document 1). ).
  • the outdoor air is dehumidified by adsorbing moisture at the desiccant rotor portion arranged in the adsorption portion, heated by a heater, compressed by a compressor, and heat exchanged. After being cooled by the vessel, it is supplied to the indoor space.
  • the indoor air is desorbed by desorbing moisture at the desiccant rotor portion arranged in the desorption portion, and is discharged to the outdoor space.
  • the desiccant rotor moves between the suction part and the desorption part, and the suction at the suction part and the desorption at the desorption part are repeated, so that the room The air supplied to the space is continuously dehumidified.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an air conditioner capable of obtaining a stable dehumidifying capacity with less power consumption.
  • the air conditioner according to the present invention has an outdoor unit having a compressor and an outdoor heat exchanger, an outdoor unit that takes in outdoor air from the outdoor space and discharges the outdoor air to the outdoor space, a first expansion valve, and a first chamber.
  • An air conditioner having a heat exchanger and a second indoor heat exchanger, an indoor unit that takes in indoor air from the indoor space and discharges the indoor air to the indoor space, and is an outdoor air conditioner.
  • a second expansion valve provided in the machine or the indoor unit, the compressor, the outdoor heat exchanger, the second expansion valve, the first indoor heat exchanger, the first expansion valve, and the second indoor heat.
  • the indoor unit is formed with an air passage through which the indoor air taken in is passed, and the first indoor heat exchanger, the suction / desorption device, and the second indoor heat exchanger are described.
  • the second chamber heat exchanger is arranged on the air passage, the second chamber heat exchanger is arranged on the downstream side of the first chamber heat exchanger, and the suction / desorption device is on the downstream side of the first chamber heat exchanger.
  • the controller controls the opening degree of the first expansion valve and the second expansion valve, and the suction / desorption device removes moisture in the room air. It is provided with a cooling adsorption mode for adsorbing and a cooling desorption mode for desorbing the adsorbed water, and dehumidification control is performed by switching between them.
  • the air conditioner according to the present invention includes an indoor unit that takes in indoor air from the indoor space and discharges the indoor air into the indoor space. That is, as the air supplied to the indoor space, indoor air with less fluctuation in humidity than outdoor air is used.
  • the controller has a cooling adsorption mode in which the opening degree of the first expansion valve and the second expansion valve is controlled and the moisture in the indoor air is adsorbed by the suction / desorption device, and a cooling / desorption mode in which the adsorbed moisture is desorbed.
  • Dehumidification control is performed by switching between them. That is, the heater is not used for the suction / desorption of the suction member of the suction / desorption device. As a result, a stable dehumidifying capacity can be obtained with less power consumption.
  • the air conditioner 100 according to the first embodiment includes an indoor unit 20 that dehumidifies the room.
  • FIG. 1 is a refrigerant circuit diagram showing an example of the configuration of the air conditioner 100 according to the first embodiment.
  • the air conditioner 100 takes in outdoor air from the outdoor space and discharges the outdoor air to the outdoor space, and takes in the indoor air from the indoor space to bring the indoor air into the indoor space. It includes an indoor unit 20 for discharging.
  • the outdoor unit 10 includes a compressor 11, a refrigerant flow path switching device 12, an outdoor heat exchanger 13, a second expansion valve 14, and an outdoor blower 15. Inside the outdoor unit 10, an air passage 10a is formed in which the outdoor air taken in from the outdoor space by the outdoor blower 15 passes through the outdoor heat exchanger 13 and is blown into the outdoor space.
  • the compressor 11 sucks in the low temperature and low pressure refrigerant, compresses the sucked refrigerant, and discharges the high temperature and high pressure refrigerant.
  • the compressor 11 is composed of, for example, an inverter compressor or the like in which the capacity, which is the amount of transmission per unit time, is controlled by changing the operating frequency.
  • the operating frequency of the compressor 11 is controlled by the controller 40 via the outdoor unit control board 19.
  • the present invention is not limited to this, and for example, two or more compressors 11 may be connected in parallel or in series.
  • the refrigerant flow path switching device 12 is, for example, a four-way valve, and switches between cooling operation and heating operation by switching the flow direction of the refrigerant.
  • the refrigerant flow path switching device 12 switches to the state shown by the solid line in FIG. 1, and the discharge side of the compressor 11 and the outdoor heat exchanger 13 are connected. Further, the refrigerant flow path switching device 12 switches to the state shown by the broken line in FIG. 1 during the heating operation, and the discharge side of the compressor 11 and the second chamber heat exchanger 24 are connected to each other.
  • the switching of the flow path in the refrigerant flow path switching device 12 is controlled by the controller 40 via the outdoor unit control board 19.
  • the outdoor heat exchanger 13 exchanges heat between the outdoor air and the refrigerant.
  • the outdoor heat exchanger 13 functions as a condenser that dissipates the heat of the refrigerant to the outdoor air and condenses the refrigerant during the cooling operation. Further, the outdoor heat exchanger 13 functions as an evaporator that evaporates the refrigerant during the heating operation and cools the outdoor air by the heat of vaporization at that time.
  • a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the second expansion valve 14 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and controls the pressure of the refrigerant flowing into the first chamber heat exchanger 23 by adjusting the opening degree.
  • the second expansion valve 14 is provided in the outdoor unit 10, but it may be provided in the indoor unit 20, and the installation location is not limited.
  • the outdoor blower 15 supplies outdoor air to the outdoor heat exchanger 13, and the amount of air blown to the outdoor heat exchanger 13 is adjusted by controlling the rotation speed.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC (Direct Current) fan motor or an AC (Alternating Current) fan motor is used.
  • DC fan motor is used as the drive source of the outdoor blower 15
  • AC fan motor is used as the drive source of the outdoor blower 15
  • the amount of blown air is adjusted by changing the power supply frequency by inverter control and controlling the rotation speed.
  • the outdoor unit 10 includes an outdoor unit control board 19.
  • the outdoor unit control board 19 is connected to the controller 40 by a transmission line 51, and based on the operation control signal from the controller 40, the compressor 11, the refrigerant flow path switching device 12, the second expansion valve 14, and the outdoor blower 15 are connected. Control.
  • the indoor unit 20 includes a first expansion valve 25, a first indoor heat exchanger 23, a second indoor heat exchanger 24, an suction / detachment device 22, and an indoor blower 21. Inside the indoor unit 20, indoor air taken in from the indoor space by the indoor blower 21 passes through the first indoor heat exchanger 23, the suction / desorption device 22, and the second indoor heat exchanger 24 and is blown into the indoor space.
  • the air passage 20a to be formed is formed.
  • the first expansion valve 25 is, for example, an electronic expansion valve capable of adjusting the opening degree of the throttle, and controls the pressure of the refrigerant flowing into the first chamber heat exchanger 23 by adjusting the opening degree.
  • the first chamber heat exchanger 23 is arranged on the air passage 20a.
  • the second chamber heat exchanger 24 is located on the air passage 20a and on the downstream side of the first chamber heat exchanger 23.
  • the first chamber heat exchanger 23 and the second chamber heat exchanger 24 are connected in series with each other in the refrigerant circuit, and both exchange heat between air and the refrigerant. As a result, heating air or cooling air supplied to the indoor space is generated.
  • the first chamber heat exchanger 23 functions as an evaporator or a condenser during the cooling operation to cool or heat the air flowing into the suction / desorption device 22.
  • the second indoor heat exchanger 24 functions as an evaporator during the cooling operation, and cools the air in the indoor space to perform cooling.
  • first chamber heat exchanger 23 and the second chamber heat exchanger 24 function as a condenser during the heating operation, and heat the air in the indoor space to heat the room.
  • first chamber heat exchanger 23 and the second chamber heat exchanger 24 for example, a cross-fin type fin-and-tube heat exchanger composed of a heat transfer tube and a large number of fins is used.
  • the suction / desorption device 22 is located on the downstream side of the first chamber heat exchanger 23 in the air passage 20a and on the upstream side of the second chamber heat exchanger 24. That is, the suction / desorption device 22 is on the same air passage 20a as the first chamber heat exchanger 23 and the second chamber heat exchanger 24, and the first chamber heat exchanger 23 and the second chamber heat exchanger 24 It is provided between.
  • the suction / desorption device 22 has an adsorption member that adsorbs moisture in the air, and adsorbs and desorbs moisture to the supplied air. Specifically, the suction / desorption device 22 adsorbs moisture from air having relatively high humidity, and desorbs moisture from air having relatively low humidity.
  • the indoor blower 21 supplies indoor air to the first chamber heat exchanger 23 and the second chamber heat exchanger 24, and by controlling the rotation speed, the first chamber heat exchanger 23 and the second chamber heat exchanger 23 are supplied.
  • the amount of air blown to the indoor heat exchanger 24 is adjusted.
  • a centrifugal fan or a multi-blade fan driven by a motor such as a DC fan motor or an AC fan motor is used.
  • a DC fan motor is used as the drive source of the indoor blower 21
  • the amount of blown air is adjusted by changing the current value and controlling the rotation speed.
  • an AC fan motor is used as the drive source of the indoor blower 21, the amount of blown air is adjusted by changing the power supply frequency by inverter control and controlling the rotation speed.
  • the flow velocity of the air passing through the suction / desorption device 22 also changes.
  • the adsorption speed and desorption speed of the adsorption member used in the adsorption / desorption device 22, that is, the water transfer rate between the air and the adsorption member during adsorption and desorption increase as the flow velocity of the air passing through the adsorption member increases. Therefore, by increasing the air volume of the indoor blower 21, it is possible to increase the suction / detachment ability of the suction member.
  • the indoor blower 21 is arranged at the uppermost stream of the air passage 20a, but the present invention is not limited to this.
  • the target air volume can be obtained in the air passage 20a, it may be arranged downstream from the position shown in FIG. Further, the number is not limited to one of the number of air passages 20a, and may be arranged upstream and downstream respectively. That is, the arrangement position and number of the indoor blowers 21 are not limited.
  • the outdoor unit 10 and the indoor unit 20 are connected to each other by piping.
  • the air conditioner 100 includes a compressor 11, a refrigerant flow path switching device 12, an outdoor heat exchanger 13, a second expansion valve 14, a first indoor heat exchanger 23, a first expansion valve 25, and a second indoor heat exchange.
  • the vessels 24 are sequentially connected by pipes and include a refrigerant circuit in which the refrigerant circulates.
  • the refrigerant used in the refrigerant circuit is not particularly limited.
  • natural refrigerants such as carbon dioxide, hydrocarbons or helium, chlorine-free refrigerants such as HFC-410A or HFC-407C, or chlorofluorocarbon refrigerants such as R22 or R134a used in existing products. Can be used.
  • the indoor unit 20 includes a plurality of temperature sensors including, for example, a thermistor.
  • a first inlet temperature sensor that detects the temperature of the refrigerant flowing into the first chamber heat exchanger 23 (hereinafter referred to as inlet temperature).
  • 28a On the inlet side of the first chamber heat exchanger 23 in the flow of refrigerant during cooling operation, a first inlet temperature sensor that detects the temperature of the refrigerant flowing into the first chamber heat exchanger 23 (hereinafter referred to as inlet temperature).
  • inlet temperature On the inlet side of the first chamber heat exchanger 23 in the flow of refrigerant during cooling operation, a first inlet temperature sensor that detects the temperature of the refrigerant flowing into the first chamber heat exchanger 23 (hereinafter referred to as inlet temperature).
  • outlet temperature A first outlet temperature sensor that detects the temperature of the refrigerant flowing out of the first chamber heat exchanger 23 (hereinafter referred to as outlet temperature) on the outlet side of the first chamber heat exchanger
  • a second outlet temperature sensor that detects the temperature of the refrigerant flowing out of the second chamber heat exchanger 24 (hereinafter referred to as the outlet temperature) on the outlet side of the second chamber heat exchanger 24 in the flow of the refrigerant during the cooling operation. 28d is provided.
  • the indoor unit 20 includes an indoor unit control board 27.
  • the indoor unit control board 27 is connected to the controller 40 by a transmission line 51, and controls the first expansion valve 25 and the indoor blower 21 based on the operation control signal from the controller 40.
  • the controller 40 transmits an operation control signal to the outdoor unit 10 and the indoor unit 20 to control the entire air conditioner 100. Further, in the controller 40, the first chamber heat exchanger 23 and the second chamber heat exchanger 24 are dehumidified in each mode during the cooling operation based on the temperature information detected by the temperature sensor provided in the indoor unit 20. The second expansion valve 14 and the first expansion valve 25 are controlled so as to have optimum heating and cooling temperatures for operation.
  • FIG. 2 is a block diagram showing an example of the connection relationship between the controller 40, the outdoor unit control board 19, and the indoor unit control board 27 of the air conditioner 100 according to the first embodiment.
  • the first inlet temperature sensor 28a, the first outlet temperature sensor 28b, the second inlet temperature sensor 28c, and the second outlet temperature sensor 28d are connected to the controller 40, respectively.
  • the outdoor unit control board 19 and the indoor unit control board 27 are connected to the controller 40 via a transmission line 51.
  • the compressor 11, the refrigerant flow path switching device 12, the second expansion valve 14, and the outdoor blower 15 are connected to the outdoor unit control board 19.
  • the first expansion valve 25 and the indoor blower 21 are connected to the indoor unit control board 27.
  • the controller 40 includes an information acquisition unit 41, an arithmetic processing unit 42, a device control unit 43, and a storage unit 44.
  • the controller 40 is composed of hardware such as a circuit device that realizes various functions by executing software on an arithmetic unit such as a microcomputer.
  • the information acquisition unit 41 acquires the temperature information detected by the first inlet temperature sensor 28a, the first outlet temperature sensor 28b, the second inlet temperature sensor 28c, and the second outlet temperature sensor 28d.
  • the arithmetic processing unit 42 performs various processes based on the temperature information acquired by the information acquisition unit 41.
  • the device control unit 43 generates an operation control signal for controlling each unit provided in the air conditioner 100 based on the processing result of the arithmetic processing unit 42, and transmits the operation control signal to the outdoor unit control board 19 and the indoor unit control board 27. To do.
  • the storage unit 44 stores various values used in each unit of the controller 40, and is, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM.
  • a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, or EEPROM.
  • FIG. 3 is a schematic view showing a porous flat plate forming the suction / detachment device 22 of the air conditioner 100 according to the first embodiment.
  • the broken line arrow in FIG. 3 indicates the ventilation direction.
  • the suction / detachment device 22 according to the first embodiment will be described.
  • the suction / detachment device 22 is stationary with respect to the air passage 20a and is fixedly attached to the air passage 20a.
  • the suction / desorption device 22 is formed by using the porous flat plate 22a shown in FIG.
  • the porous flat plate 22a has a polygonal shape along the pipe cross section of the air passage 20a where the suction / desorption device 22 is arranged so that the ventilation cross section can be increased.
  • the suction / desorption device 22 can be made equivalent to the cross-sectional area of the first chamber heat exchanger 23 and the second chamber heat exchanger 24.
  • the porous flat plate 22a is a ventilator in which a plurality of small through holes 22b through which air passes in the thickness direction of the porous flat plate 22a are formed.
  • an adsorption member having a property of adsorbing moisture from air having relatively high humidity and desorbing moisture to air having relatively low humidity is formed.
  • the suction / desorption device 22 of the first embodiment has a porous flat plate 22a and a suction member formed on the surface thereof.
  • the adsorbent member is formed in layers by applying an adsorbent to the surface of the porous flat plate 22a. Further, the adsorption member may be supported on the surface of the porous flat plate 22a by impregnation, or may be formed on the surface of the porous flat plate 22a by surface treatment.
  • FIG. 4 is a graph showing the variation of the saturated adsorption amount with respect to the relative humidity of the adsorption member used in the adsorption / desorption device 22 of the air conditioner 100 according to the first embodiment.
  • the horizontal axis represents the relative humidity [%] of air
  • the vertical axis represents the equilibrium adsorption amount [g / g] per unit mass of the adsorption member.
  • the curve a shown by the solid line in FIG. 4 represents an example of the hygroscopic property of the adsorption member which is particularly preferably used in the first embodiment.
  • the adsorption member particularly preferably used in the first embodiment include a crosslinked product of sodium polyacrylate in an organic system, and nanotube silicate (imogolite) and aluminum silicate (Husclay (registered trademark)) in an inorganic system. is there.
  • the curve b shown by the broken line represents an example of the hygroscopic characteristics of the suction member used in a general desiccant rotor.
  • the adsorption member used in a general desiccant rotor include silica gel and zeolite.
  • the equilibrium adsorption amount monotonously increases as the relative humidity increases, and the relative humidity is particularly in the range of 40 to 100%.
  • the relative humidity is particularly in the range of 40 to 100%.
  • this adsorption member has a characteristic that the equilibrium adsorption amount is particularly large in a high humidity region where the relative humidity is 80 to 100%.
  • the equilibrium adsorption amount of the adsorption member for the air passing through the suction / desorption device 22 in the cooling adsorption mode described later and the adsorption member for the air passing through the suction / desorption device 22 in the cooling attachment / detachment mode described later can be increased. Therefore, the suction ability and the attachment / detachment ability of the suction member can be further enhanced.
  • the equilibrium adsorption amount increases monotonically as the relative humidity increases, but the equilibrium adsorption amount increases slowly as the relative humidity increases.
  • the relative humidity is about 40 to 60%.
  • the equilibrium adsorption amount of the adsorption member for the air passing through the suction / desorption device 22 in the cooling adsorption mode and the equilibrium adsorption amount of the adsorption member for the air passing through the suction / desorption device 22 in the cooling adsorption mode It is desirable to increase the difference between. Therefore, it may be necessary to heat the air before passing through the suction / desorption device 22 in the cooling / desorption mode by a heating device or the like to reduce the relative humidity of the air to about 20%.
  • the adsorption member having the moisture absorption characteristic of the curve a has a particularly large amount of equilibrium adsorption in a high humidity region where the relative humidity is 80 to 100%. Therefore, it is not necessary to heat the air to reduce the relative humidity, and the equilibrium adsorption amount for air in a general indoor space having a relative humidity of about 40 to 60% and the equilibrium adsorption amount for air having a relative humidity of about 80 to 100%. The difference between and can be made large enough. Therefore, by using the suction member having the moisture absorption characteristic of the curve a in the suction / desorption device 22, continuous dehumidification operation becomes possible even if the air passage 20a is not provided with the desorption heat source.
  • the adsorption member has the property that the water transfer rate decreases as the temperature decreases.
  • the air flowing into the suction / desorption device 22 in the cooling adsorption mode is lower in temperature than the air flowing into the suction / desorption device 22 in the cooling / desorption mode. Therefore, in the cooling adsorption mode, the amount of dehumidification is reduced due to the decrease in the water transfer rate in the adsorption member.
  • the equilibrium adsorption amount in a high humidity area is medium by taking advantage of the characteristic that the air flowing into the suction / desorption device 22 in the cooling adsorption mode has a high humidity of about 80 to 100% relative humidity. It is necessary to use an adsorption member that is sufficiently larger than the equilibrium adsorption amount in the wet area.
  • the high humidity range is a range of 80 to 100% relative humidity
  • the medium humidity range is a range of 40 to 60% relative humidity, which is the humidity of a general indoor space.
  • the equilibrium adsorption amount x per unit mass for air having a relative humidity of 60% and the equilibrium adsorption amount y per unit mass for air having a relative humidity of 80% are “y / x ⁇ 1.2”. If the relationship is satisfied, the decrease in dehumidifying capacity due to the decrease in the inflow air temperature can be suppressed.
  • the adsorption member having the hygroscopic property of the curve a satisfies the relationship of “y / x ⁇ 1.2”.
  • the air conditioner 100 dehumidifies the indoor space by alternately executing the cooling adsorption mode and the cooling desorption mode during the cooling operation. Further, the air conditioner 100 executes a high-capacity cooling adsorption mode in addition to the cooling adsorption mode and the cooling desorption mode during the cooling operation.
  • the cooling suction mode, the cooling desorption mode, and the high-capacity cooling suction mode can be switched by changing the opening degree of the second expansion valve 14 and the first expansion valve 25.
  • the operations in the cooling adsorption mode, the cooling desorption mode, and the high-capacity cooling adsorption mode during the cooling operation of the air conditioner 100 according to the first embodiment will be described.
  • the description of the operation during the heating operation will be omitted.
  • FIG. 5 is a schematic view for explaining the operation of the air conditioner 100 according to the first embodiment in the cooling adsorption mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 15 and condenses while radiating heat, and becomes a high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 13. ..
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 is decompressed by the second expansion valve 14 set to a relatively low opening to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and becomes the first indoor heat exchanger 23. Inflow to.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the first indoor heat exchanger 23 exchanges heat with the indoor air taken in by the indoor blower 21 and evaporates while absorbing heat, cooling the indoor air and lower-pressure gas. It becomes a refrigerant and flows out from the first chamber heat exchanger 23.
  • the low-pressure gas refrigerant flowing out of the first chamber heat exchanger 23 is depressurized by the first expansion valve 25 set to a relatively high opening degree, and then flows into the second chamber heat exchanger 24.
  • the low-pressure gas refrigerant that has flowed into the second indoor heat exchanger 24 exchanges heat with the indoor air that has passed through the first indoor heat exchanger 23 and the suction / desorption device 22, and evaporates while absorbing heat, and exchanges apparent heat with the indoor air. Is performed to further cool the room air.
  • the low-pressure gas refrigerant flowing out of the second indoor heat exchanger 24 flows out from the indoor unit 20.
  • the low-pressure gas refrigerant flowing out of the indoor unit 20 is sucked into the compressor 11.
  • FIG. 6 is a psychrometric chart showing a change of state of air in the cooling adsorption mode of the air conditioner 100 according to the first embodiment.
  • the horizontal axis of FIG. 6 indicates the temperature [° C.], and the vertical axis indicates the absolute humidity [kg / kg'].
  • the points A1, B1, C1, and D1 in FIG. 6 correspond to the positions (A1), (B1), (C1), and (D1) in FIG. 5, respectively.
  • the second expansion valve 14 is set to a relatively low opening degree
  • the first expansion valve 25 is set to a relatively high opening degree.
  • FIG. 6 is a diagram showing a change of state of air in a state in which the suction / desorption device 22 retains a small amount of water, for example, in a state of being saturated with ambient air.
  • the room air before flowing into the first room heat exchanger 23 is in the state of point A1.
  • the air that has passed through the first chamber heat exchanger 23 is cooled and dehumidified by heat exchange with the refrigerant, becomes a state of low temperature and high relative humidity (point B1), and flows into the suction / desorption device 22. Since air having a high relative humidity passes through the suction / desorption device 22, the adsorption member of the suction / desorption device 22 causes an adsorption reaction that adsorbs moisture in the air and dissipates the heat of adsorption.
  • the air that has passed through the suction / desorption device 22 is dehumidified and heated by the adsorption reaction, and the absolute humidity is lowered (point C1), and the air flows into the second chamber heat exchanger 24.
  • the air that has passed through the second indoor heat exchanger 24 is cooled by sensible heat exchange with the refrigerant (point D1) and is supplied to the indoor space.
  • the indoor air sucked into the indoor unit 20 is dehumidified by the cooling by the first indoor heat exchanger 23 and the adsorption reaction by the suction / desorption device 22, and further, the second indoor heat exchanger 24 It is cooled by. As a result, air with low temperature and low absolute humidity is supplied to the indoor space.
  • FIG. 7 is a schematic view for explaining the operation of the air conditioner 100 according to the first embodiment in the cooling / detaching mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 15 and condenses while radiating heat, and becomes a high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 13. .
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 is decompressed by the second expansion valve 14 set to a relatively high opening degree, and flows into the first indoor heat exchanger 23.
  • the liquid refrigerant flowing into the first chamber heat exchanger 23 exchanges heat with the indoor air taken in by the indoor blower 21 and condenses while radiating heat, heats the indoor air and flows out from the first chamber heat exchanger 23. ..
  • the liquid refrigerant flowing out of the first chamber heat exchanger 23 is depressurized by the first expansion valve 25 set to a relatively low opening degree to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. Inflow to.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the second room heat exchanger 24 exchanges heat with the room air that has passed through the first room heat exchanger 23 and the suction / desorption device 22, and evaporates while absorbing heat, and evaporates. As well as cooling, it becomes a low-pressure gas refrigerant and flows out from the second chamber heat exchanger 24.
  • the low-pressure gas refrigerant flowing out of the second indoor heat exchanger 24 flows out from the indoor unit 20.
  • the low-pressure gas refrigerant flowing out of the indoor unit 20 is sucked into the compressor 11.
  • FIG. 8 is a psychrometric chart showing a change in the state of air in the cooling / desorption mode of the air conditioner 100 according to the first embodiment.
  • the horizontal axis of FIG. 8 indicates the temperature [° C.], and the vertical axis indicates the absolute humidity [kg / kg'].
  • the points A2, B2, C2, and D2 in FIG. 8 correspond to the positions (A2), (B2), (C2), and (D2) in FIG. 7, respectively.
  • the second expansion valve 14 is set to a relatively high opening degree
  • the first expansion valve 25 is set to a relatively low opening degree.
  • FIG. 8 is a diagram showing a change of state of air in a state in which the suction / desorption device 22 retains a large amount of water, for example, in a state of being saturated in the cooling adsorption mode.
  • the room air before flowing into the first room heat exchanger 23 is in the state of point A2.
  • the air that has passed through the first chamber heat exchanger 23 is heated by heat exchange with the refrigerant, becomes in a state of low relative humidity (point B2), and flows into the suction / desorption device 22. Since air having a low relative humidity passes through the suction / desorption device 22 and the amount of water retained in the suction member of the suction / desorption device 22 is large, the suction member releases water into the air to absorb the heat of desorption. A desorption reaction occurs. As a result, the amount of water retained in the adsorbing member is reduced, and the adsorbing member is regenerated.
  • the air that has passed through the suction / desorption device 22 is humidified and cooled by the desorption reaction, becomes low-temperature and high-humidity air (point C2), and flows into the second chamber heat exchanger 24.
  • the air that has passed through the second indoor heat exchanger 24 is cooled and dehumidified by heat exchange with the refrigerant (point D2), and is supplied to the indoor space as air supply that is low in temperature and has a low absolute humidity.
  • the indoor air sucked into the indoor unit 20 is humidified by the desorption reaction in the suction / desorption device 22, but is dehumidified by the cooling in the second indoor heat exchanger 24.
  • air with low temperature and low absolute humidity is supplied to the indoor space.
  • FIG. 9 is a schematic view for explaining the operation of the air conditioner 100 according to the first embodiment in the high-capacity cooling adsorption mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 15 and condenses while radiating heat, and becomes a high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 13. ..
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 is decompressed by the second expansion valve 14 set to a relatively low opening to become a low-temperature low-pressure gas-liquid two-phase refrigerant, and becomes the first indoor heat exchanger 23. Inflow to.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the first chamber heat exchanger 23 exchanges heat with the indoor air taken in by the indoor blower 21 and evaporates while absorbing heat to cool the indoor air and heat the first chamber. It flows out of the exchanger 23.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out of the first chamber heat exchanger 23 is decompressed by the first expansion valve 25 set to a relatively high opening degree, and then flows into the second chamber heat exchanger 24. To do.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the second room heat exchanger 24 exchanges heat with the room air that has passed through the first room heat exchanger 23 and the suction / desorption device 22, and evaporates while absorbing heat, and evaporates. And latent heat exchange is performed, the room air is further cooled, and it becomes a low-pressure gas refrigerant and flows out from the second room heat exchanger 24.
  • the low-pressure gas refrigerant flowing out of the second indoor heat exchanger 24 flows out from the indoor unit 20.
  • the low-pressure gas refrigerant flowing out of the indoor unit 20 is sucked into the compressor 11.
  • FIG. 10 is a psychrometric chart showing a change of state of air in the high-capacity cooling adsorption mode of the air conditioner 100 according to the first embodiment.
  • the horizontal axis of FIG. 10 indicates the temperature [° C.], and the vertical axis indicates the absolute humidity [kg / kg'].
  • the points A1, B1, C1, and D1 in FIG. 10 correspond to the positions (A1), (B1), (C1), and (D1) in FIG. 9, respectively.
  • the second expansion valve 14 is set to a relatively low opening degree
  • the first expansion valve 25 is set to a relatively high opening degree.
  • FIG. 10 is a diagram showing a change of state of air in a state in which the suction / desorption device 22 retains a small amount of water, for example, in a state of being saturated with ambient air.
  • the room air before flowing into the first room heat exchanger 23 is in the state of point A1.
  • the air that has passed through the first chamber heat exchanger 23 is cooled and dehumidified by heat exchange with the refrigerant, becomes a state of low temperature and high relative humidity (point B1), and flows into the suction / desorption device 22. Since air having a high relative humidity passes through the suction / desorption device 22, the adsorption member of the suction / desorption device 22 causes an adsorption reaction that adsorbs moisture in the air and dissipates the heat of adsorption.
  • the air that has passed through the suction / desorption device 22 is dehumidified and heated by the adsorption reaction, and the absolute humidity is lowered (point C1), and the air flows into the second chamber heat exchanger 24.
  • the air that has passed through the second indoor heat exchanger 24 is cooled by latent heat exchange with the refrigerant (point D1) and is supplied to the indoor space.
  • the indoor air sucked into the indoor unit 20 is dehumidified by the cooling by the first indoor heat exchanger 23 and the adsorption reaction by the suction / desorption device 22, and further, the second indoor heat exchange. It is cooled by the vessel 24. As a result, air with low temperature and low absolute humidity is supplied to the indoor space.
  • the position where the temperature is measured when calculating the superheat degree (SH) in the second chamber heat exchanger 24 is different from that in the cooling adsorption mode, and in the high-capacity cooling adsorption mode, the second The opening degree of the expansion valve 14 and the operating frequency of the compressor 11 are changed to the cooling suction mode. Therefore, in the cooling adsorption mode, the latent heat is exchanged between the refrigerant and the indoor air in the second indoor heat exchanger 24, but in the high-capacity cooling adsorption mode, the refrigerant and the indoor air in the second indoor heat exchanger 24 exchange heat. Latent heat exchange will be performed, and the air can be further cooled by the second chamber heat exchanger 24. That is, the high-capacity cooling adsorption mode has a higher cooling capacity than the cooling adsorption mode.
  • the controller 40 has the inlet temperature of the first chamber heat exchanger 23 detected by the first inlet temperature sensor 28a and the outlet temperature of the first chamber heat exchanger 23 detected by the first outlet temperature sensor 28b.
  • the second expansion valve 14 is controlled so that the degree of superheat (SH) calculated from the difference becomes a predetermined value.
  • the controller 40 controls the operating frequency of the compressor 11 to secure a predetermined capacity.
  • the first chamber heat exchanger 23 functions as a condenser
  • the second chamber heat exchanger 24 functions as an evaporator. Therefore, the heating capacity of the first indoor heat exchanger 23 is determined by the air volume of the indoor blower 21.
  • the controller 40 has the inlet temperature of the second chamber heat exchanger 24 detected by the second inlet temperature sensor 28c and the outlet temperature of the second chamber heat exchanger 24 detected by the second outlet temperature sensor 28d.
  • the first expansion valve 25 is controlled so that the degree of superheat (SH) calculated from the difference becomes a predetermined value. Further, regarding the evaporation temperature, the controller 40 controls the operating frequency of the compressor 11 to secure a predetermined capacity.
  • the first chamber heat exchanger 23 functions as an evaporator
  • the second chamber heat exchanger 24 also functions as an evaporator, thereby increasing the cooling capacity of the second chamber heat exchanger 24.
  • the purpose is to increase the sensible heat ratio (SHF) of the air conditioning capacity.
  • the purpose is to maximize the air conditioning capacity. Therefore, the controller 40 has the inlet temperature of the first chamber heat exchanger 23 detected by the first inlet temperature sensor 28a and the outlet temperature of the second chamber heat exchanger 24 detected by the second outlet temperature sensor 28d.
  • the second expansion valve 14 is controlled so that the degree of superheat (SH) calculated from the difference becomes a predetermined value.
  • the controller 40 controls the operating frequency of the compressor 11 to secure a predetermined capacity.
  • the timing for switching between the cooling adsorption mode and the cooling desorption mode is determined based on the time from the start of each mode and the like. For example, the cooling adsorption mode and the cooling desorption mode are switched every 10 minutes. The switching between the cooling adsorption mode and the cooling desorption mode is performed by changing the opening degree of the second expansion valve 14 and the first expansion valve 25.
  • the moisture in the adsorption member is not the air in the space where the environmental change is large such as the outdoor space, but the air in the space where the environmental change is small such as the indoor space. Is adsorbed and desorbed. Therefore, it becomes easy to predict the condition in which the suction member is in an equilibrium state.
  • the adsorption capacity of the adsorption member can be fully exerted in the cooling adsorption mode, and the adsorption member is attached / detached in the cooling attachment / detachment mode. You can fully demonstrate your abilities. This enables continuous dehumidifying operation while maintaining the dehumidifying capacity.
  • the switching time setting may be changed by an external operation. Further, the timing for switching between the cooling adsorption mode and the cooling desorption mode may be determined based on the temperatures at the points C1 and C2.
  • the mode in the cooling adsorption mode, when the temperature in the state of point C1 stops decreasing, the mode is switched to the cooling desorption mode, and in the cooling adsorption mode, when the temperature in the state of point C2 stops increasing, the mode is switched to the cooling adsorption mode. Is switched.
  • the temperature of the air flowing into the suction / desorption device 22 in the cooling adsorption mode is lower than the temperature of the air flowing into the suction / desorption device 22 in the cooling / desorption mode. Further, the water transfer rate in the adsorption member decreases as the temperature becomes lower. Therefore, assuming that the amount of water transferred between the air and the adsorption member is the same in the cooling adsorption mode and the cooling desorption mode, the cooling adsorption mode tends to take longer to reach the saturated state.
  • the suction member and the suction / desorption device 22 can be made smaller or thinner while maintaining the dehumidifying capacity, so that the pressure loss of air in the suction / desorption device 22 can be reduced.
  • the timing for switching between the cooling adsorption mode and the high-capacity cooling / desorption mode may be, for example, at the time of startup or when the sensible heat load is large.
  • the air conditioner 100 has an outdoor unit 10 having a compressor 11 and an outdoor heat exchanger 13 and taking in outdoor air from the outdoor space and discharging the outdoor air to the outdoor space, and a first expansion. Air harmony including a valve 25, a first indoor heat exchanger 23, and an indoor unit 20 having a second indoor heat exchanger 24 and taking indoor air from the indoor space and discharging the indoor air to the indoor space.
  • the second expansion valve 14 provided in the outdoor unit 10 or the indoor unit 20, the compressor 11, the outdoor heat exchanger 13, the second expansion valve 14, the first indoor heat exchanger 23, the first An expansion valve 25 and a second chamber heat exchanger 24 are sequentially connected by a refrigerant circuit, an suction / detachment device 22 having an adsorption member for adsorbing moisture in the air, a first expansion valve 25 and a second expansion valve.
  • a controller 40 for controlling the opening degree of 14 is provided, and the indoor unit 20 is formed with an air passage 20a through which indoor air taken in is passed, and the first indoor heat exchanger 23, the suction / detachment device 22,
  • the second chamber heat exchanger 24 is arranged on the air passage 20a, the second chamber heat exchanger 24 is arranged on the downstream side of the first chamber heat exchanger 23, and the suction / desorption device 22 is the first. It is located on the downstream side of the one-chamber heat exchanger 23 and on the upstream side of the second chamber heat exchanger 24, and the controller 40 controls the opening degrees of the first expansion valve 25 and the second expansion valve 14.
  • the suction / desorption device 22 includes a cooling adsorption mode for adsorbing moisture in the room air and a cooling desorption mode for desorbing the adsorbed moisture, and dehumidification control is performed by switching between them.
  • the indoor unit 20 is provided by taking in the indoor air from the indoor space and discharging the indoor air into the indoor space. That is, as the air supplied to the indoor space, indoor air with less fluctuation in humidity than outdoor air is used. Further, the controller 40 controls the opening degree of the first expansion valve 25 and the second expansion valve 14, and has a cooling adsorption mode in which the moisture in the indoor air is adsorbed by the suction / desorption device 22, and a cooling desorption mode in which the adsorbed moisture is desorbed. It has modes and dehumidification control is performed by switching between them. That is, the heater is not used for the suction / desorption of the suction member of the suction / desorption device 22. As a result, a stable dehumidifying capacity can be obtained with less power consumption.
  • the air passage 20a is the same path in the cooling adsorption mode and the cooling desorption mode.
  • the air conditioner 100 such as an air passage switching device for switching an air passage between the first indoor heat exchanger 23 and the second indoor heat exchanger 24 in the indoor unit 20. Since no object is required, the indoor unit 20 can be made smaller or thinner.
  • the suction / desorption device 22 is composed of the porous flat plate 22a.
  • the suction / desorption device 22 is composed of the porous flat plate 22a, the suction / desorption device 22 is used as the first chamber heat exchanger 23 and the second chamber heat exchange. It can be equal to the cross-sectional area of the vessel 24.
  • the controller 40 reduces the opening degree of the second expansion valve 14 to a lower opening degree than the opening degree of the first expansion valve 25 in the cooling suction mode.
  • the opening degree of the second expansion valve 14 is set to be higher than the opening degree of the first expansion valve 25.
  • the cooling suction mode and the cooling desorption mode can be switched by controlling the opening degree of the first expansion valve 25 and the second expansion valve 14.
  • the controller 40 switches between the cooling adsorption mode and the cooling desorption mode so that the execution time of the cooling adsorption mode is longer than the execution time of the cooling desorption mode. Is.
  • the air conditioner 100 since the execution time of the cooling adsorption mode is longer than the execution time of the cooling desorption mode, the volume of the adsorption member in each of the cooling adsorption mode and the cooling desorption mode. The amount of water transfer per hit can be increased. Therefore, the suction capacity and the desorption ability of the suction member can be sufficiently exhibited, and the dehumidification capacity per volume of the suction member can be improved. As a result, the suction member and the suction / desorption device 22 can be made smaller or thinner while maintaining the dehumidifying capacity, so that the pressure loss of air in the suction / desorption device 22 can be reduced.
  • the controller 40 has a difference between the inlet temperature detected by the first inlet temperature sensor 28a and the outlet temperature detected by the second outlet temperature sensor 28d. It is provided with a high-capacity cooling suction mode that controls the second expansion valve 14 so as to have a preset value.
  • the difference between the inlet temperature detected by the first inlet temperature sensor 28a and the outlet temperature detected by the first outlet temperature sensor 28b is set in advance. It is provided with a high-capacity cooling suction mode in which the cooling capacity can be increased as compared with the cooling suction mode in which the second expansion valve 14 is controlled so as to have a value. That is, in the high-capacity cooling adsorption mode, the position where the temperature is measured when calculating the degree of superheat (SH) is different from that in the cooling adsorption mode in order to secure the cooling capacity in the second chamber heat exchanger 24, which is high.
  • SH degree of superheat
  • the opening degree of the second expansion valve 14 and the operating frequency of the compressor 11 are changed from the cooling suction mode. Therefore, in the cooling adsorption mode, the latent heat is exchanged between the refrigerant and the indoor air in the second indoor heat exchanger 24, but in the high-capacity cooling adsorption mode, the refrigerant and the indoor air in the second indoor heat exchanger 24 exchange heat. Latent heat exchange will be performed, and the air can be further cooled by the second chamber heat exchanger 24. Then, even at a high load such as at the time of startup or when the sensible heat load is large, the high-capacity cooling adsorption mode can be used.
  • the adsorption amount per unit mass of the adsorption member with respect to air having a relative humidity of 40 to 100% increases linearly with the increase in the relative humidity. It is a thing.
  • the equilibrium adsorption amount per unit mass for air having a relative humidity of 40 to 100% increases linearly with increasing relative humidity. .. Therefore, it is possible to increase the difference between the equilibrium adsorption amount of the adsorption member for the air passing through the suction / desorption device 22 in the cooling adsorption mode and the equilibrium adsorption amount of the adsorption member for the air passing through the suction / desorption device 22 in the cooling adsorption mode. it can. Therefore, the suction ability and the attachment / detachment ability of the suction member can be further enhanced.
  • the adsorption member has an equilibrium adsorption amount per unit mass with respect to air having a relative humidity of 80 to 100%, and the equilibrium with respect to air having a relative humidity of 40 to 60%. It is 1.2 times or more the amount of adsorption.
  • the adsorption member has an equilibrium adsorption amount per unit mass for air having a relative humidity of 80 to 100%, and the equilibrium for air having a relative humidity of 40 to 60%. It is 1.2 times or more the amount of adsorption. Therefore, it is possible to suppress a decrease in the dehumidifying capacity due to a decrease in the inflow air temperature.
  • Embodiment 2 Hereinafter, the second embodiment will be described, but the description of the parts overlapping with the first embodiment will be omitted, and the same parts or the corresponding parts as those of the first embodiment will be designated by the same reference numerals.
  • the suction / desorption device 22 has a heat capacity, in the first embodiment, heat loss occurs when switching between the cooling adsorption mode, which is the adsorption operation, and the cooling / desorption mode, which is the desorption operation. Further, in the first embodiment, since the suction / desorption device 22 is arranged between the first chamber heat exchanger 23 and the second chamber heat exchanger 24, the indoor unit 20 may become large.
  • the first chamber heat exchanger 23 and the suction member are not provided with the suction / desorption device 22 which is separate from both the first chamber heat exchanger 23 and the second chamber heat exchanger 24.
  • An adsorption heat exchanger 26 integrated with is provided.
  • FIG. 11 is a refrigerant circuit diagram showing an example of the configuration of the air conditioner 100 according to the second embodiment. As shown in FIG. 11, in the second embodiment, the suction / desorption device 22 according to the first embodiment is removed, and the suction heat exchanger 26 in which the first chamber heat exchanger 23 and the suction member are integrated is provided. Has been done.
  • the adsorption heat exchanger 26 is connected in series with the second indoor heat exchanger 24 and is arranged at the uppermost stream of the air passage 20a in the indoor unit 20.
  • an adsorption member is formed on the surface of the first chamber heat exchanger 23.
  • the suction member is formed by being applied or supported on the surface of the first chamber heat exchanger 23.
  • the heat of vaporization of the refrigerant evaporated in the first chamber heat exchanger 23 can be directly used for the adsorption reaction of the adsorption member without using air.
  • FIG. 12 is a schematic view for explaining the operation of the air conditioner 100 according to the second embodiment in the cooling adsorption mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 15 and condenses while radiating heat, and becomes a high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 13. ..
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 is depressurized by the second expansion valve 14 set to a relatively low opening, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the adsorption heat exchanger 26.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the adsorption heat exchanger 26 exchanges heat with the indoor air taken in by the indoor blower 21 and evaporates while absorbing heat, cooling the indoor air and combining with the low-pressure gas refrigerant. Then, it flows out from the adsorption heat exchanger 26.
  • the low-pressure gas refrigerant flowing out of the adsorption heat exchanger 26 is depressurized by the first expansion valve 25 set to a relatively high opening degree, and then flows into the second chamber heat exchanger 24.
  • the low-pressure gas refrigerant that has flowed into the second indoor heat exchanger 24 exchanges heat with the indoor air that has passed through the adsorption heat exchanger 26 and evaporates while absorbing heat, and sensible heat exchange is performed with the indoor air to exchange the indoor air with the indoor air. Further cool.
  • the low-pressure gas refrigerant flowing out of the second indoor heat exchanger 24 flows out from the indoor unit 20.
  • the low-pressure gas refrigerant flowing out of the indoor unit 20 is sucked into the compressor 11.
  • FIG. 13 is a psychrometric chart showing a change of state of air in the cooling adsorption mode of the air conditioner 100 according to the second embodiment.
  • the horizontal axis of FIG. 13 indicates the temperature [° C.], and the vertical axis indicates the absolute humidity [kg / kg'].
  • Points A1, B1, and C1 in FIG. 13 correspond to the positions (A1), (B1), and (C1) in FIG. 12, respectively.
  • the second expansion valve 14 is set to a relatively low opening degree
  • the first expansion valve 25 is set to a relatively high opening degree.
  • FIG. 13 is a diagram showing a change of state of air in a state where the adsorption heat exchanger 26 retains a small amount of water, for example, in a state where it is saturated with ambient air.
  • FIG. 13 the change of state of air of the first embodiment shown in FIG. 6 is shown by a broken line.
  • the state of air at point A1 shown in FIG. 13 is similar to the state of air at point A1 shown in FIG.
  • the air states of points B1 and C1 shown in FIG. 15 are the same as the air states of points C1 and D1 shown in FIG. 6, respectively.
  • the heat of vaporization of the refrigerant in the first chamber heat exchanger 23 is transferred to the adsorption member of the suction / desorption device 22 via the air flowing through the air passage 20a. Therefore, heat loss may occur in which the heat of vaporization of the refrigerant is dissipated to a member other than the adsorption member.
  • the heat of vaporization of the refrigerant is directly transferred to the adsorption member without passing through air, the above-mentioned heat loss can be prevented and the adsorption member is cooled with high efficiency. be able to. Therefore, since the evaporation temperature can be set high in the cooling adsorption mode, the energy saving property of the air conditioner 100 can be improved.
  • FIG. 14 is a schematic view for explaining the operation of the air conditioner 100 according to the second embodiment in the cooling / detaching mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 15 and condenses while radiating heat, and becomes a high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 13. ..
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 is decompressed by the second expansion valve 14 set to a relatively high opening degree, and flows into the adsorption heat exchanger 26.
  • the liquid refrigerant flowing into the adsorption heat exchanger 26 exchanges heat with the indoor air taken in by the indoor blower 21 and condenses while radiating heat, heating the indoor air and flowing out from the adsorption heat exchanger 26.
  • the liquid refrigerant flowing out of the adsorption heat exchanger 26 is depressurized by the first expansion valve 25 set to a relatively low opening degree, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the second chamber heat exchanger 24. To do.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the second indoor heat exchanger 24 exchanges heat with the indoor air that has passed through the adsorption heat exchanger 26 and evaporates while absorbing heat, cooling the indoor air and lowering the pressure. It becomes a gas refrigerant and flows out from the second chamber heat exchanger 24.
  • the low-pressure gas refrigerant flowing out of the second indoor heat exchanger 24 flows out from the indoor unit 20.
  • the low-pressure gas refrigerant flowing out of the indoor unit 20 is sucked into the compressor 11.
  • FIG. 15 is a psychrometric chart showing a change in the state of air in the cooling / desorption mode of the air conditioner 100 according to the second embodiment.
  • the horizontal axis of FIG. 15 indicates the temperature [° C.], and the vertical axis indicates the absolute humidity [kg / kg'].
  • the points A2, B2, and C2 in FIG. 15 correspond to the positions (A2), (B2), and (C2) in FIG. 14, respectively.
  • the second expansion valve 14 is set to a relatively high opening degree
  • the first expansion valve 25 is set to a relatively low opening degree.
  • FIG. 15 is a diagram showing a change of state of air in a state in which the adsorption heat exchanger 26 retains a large amount of water, for example, in a state of being saturated in the cooling adsorption mode.
  • FIG. 15 the change of state of air of the first embodiment shown in FIG. 8 is shown by a broken line.
  • the state of air at point A2 shown in FIG. 15 is similar to the state of air at point A2 shown in FIG.
  • the air states of points B2 and C2 shown in FIG. 15 are the same as the air states of points C2 and D2 shown in FIG. 8, respectively.
  • FIG. 16 is a schematic view for explaining the operation of the air conditioner 100 according to the second embodiment in the high-capacity cooling adsorption mode.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 11 flows into the outdoor heat exchanger 13 via the refrigerant flow path switching device 12.
  • the high-temperature and high-pressure gas refrigerant that has flowed into the outdoor heat exchanger 13 exchanges heat with the outdoor air taken in by the outdoor blower 15 and condenses while radiating heat, and becomes a high-pressure liquid refrigerant that flows out of the outdoor heat exchanger 13. ..
  • the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 13 is depressurized by the second expansion valve 14 set to a relatively low opening, becomes a low-temperature low-pressure gas-liquid two-phase refrigerant, and flows into the adsorption heat exchanger 26.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the adsorption heat exchanger 26 exchanges heat with the indoor air taken in by the indoor blower 21 and evaporates while absorbing heat, cooling the indoor air, and from the adsorption heat exchanger 26. leak.
  • the low-temperature low-pressure gas-liquid two-phase refrigerant flowing out of the adsorption heat exchanger 26 is depressurized by the first expansion valve 25 set to a relatively high opening degree, and then flows into the second chamber heat exchanger 24.
  • the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the second indoor heat exchanger 24 exchanges heat with the indoor air that has passed through the adsorption heat exchanger 26 and evaporates while absorbing heat, and latent heat exchange is performed with the indoor air.
  • the indoor air is further cooled to become a low-pressure gas refrigerant, which flows out from the second indoor heat exchanger 24.
  • the low-pressure gas refrigerant flowing out of the second indoor heat exchanger 24 flows out from the indoor unit 20.
  • the low-pressure gas refrigerant flowing out of the indoor unit 20 is sucked into the compressor 11.
  • FIG. 17 is a psychrometric chart showing a change of state of air in the high-capacity cooling adsorption mode of the air conditioner 100 according to the second embodiment.
  • the horizontal axis of FIG. 17 indicates the temperature [° C.], and the vertical axis indicates the absolute humidity [kg / kg'].
  • Points A1, B1, and C1 in FIG. 17 correspond to the positions (A1), (B1), and (C1) in FIG. 16, respectively.
  • the second expansion valve 14 is set to a relatively low opening degree
  • the first expansion valve 25 is set to a relatively high opening degree.
  • FIG. 17 is a diagram showing a change of state of air in a state where the adsorption heat exchanger 26 retains a small amount of water, for example, in a state where it is saturated with ambient air.
  • FIG. 17 the change of state of air of the first embodiment shown in FIG. 10 is shown by a broken line.
  • the state of air at point A1 shown in FIG. 17 is similar to the state of air at point A1 shown in FIG.
  • the air states of points B1 and C1 shown in FIG. 17 are the same as the air states of points C1 and D1 shown in FIG. 10, respectively.
  • the heat of vaporization of the refrigerant in the first chamber heat exchanger 23 is transferred to the adsorption member of the suction / desorption device 22 via the air flowing through the air passage 20a. Therefore, heat loss may occur in which the heat of vaporization of the refrigerant is dissipated to a member other than the adsorption member.
  • the heat of vaporization of the refrigerant is directly transferred to the adsorption member without passing through air, the above-mentioned heat loss can be prevented and the adsorption member is cooled with high efficiency. be able to. Therefore, since the evaporation temperature can be set high in the high-capacity cooling adsorption mode, the energy saving of the air conditioner 100 can be improved.
  • the timing for switching between the cooling adsorption mode and the cooling desorption mode is determined based on the time from the start of each mode and the like. For example, the cooling adsorption mode and the cooling desorption mode are switched every 10 minutes. The switching between the cooling adsorption mode and the cooling desorption mode is performed by changing the opening degree of the second expansion valve 14 and the first expansion valve 25.
  • the adsorption capacity of the adsorption member can be fully exerted in the cooling adsorption mode, and the adsorption member is attached / detached in the cooling attachment / detachment mode. You can fully demonstrate your abilities. This enables continuous dehumidifying operation while maintaining the dehumidifying capacity.
  • the switching time setting may be changed by an external operation. Further, the timing for switching between the cooling adsorption mode and the cooling desorption mode may be determined based on the temperature at the points B1 and B2.
  • the mode in the cooling adsorption mode, when the temperature in the state of point B1 stops decreasing, the mode is switched to the cooling desorption mode, and in the cooling adsorption mode, when the temperature in the state of point B2 stops increasing, the mode is switched to the cooling adsorption mode. Is switched.
  • the desorption speed can be changed depending on the amount of heating from the refrigerant.
  • the actual amount of drainage generated is zero, and when the cooling desorption mode is longer than the cooling adsorption mode, the dehumidification amount tends to increase.
  • the execution time of the cooling desorption mode is set to be longer than the execution time of the cooling adsorption mode, it is possible to increase the amount of water transfer per volume of the adsorption member in each of the cooling adsorption mode and the cooling adsorption mode. Therefore, the suction capacity and the desorption ability of the suction member can be sufficiently exhibited, and the dehumidification capacity per volume of the suction member can be improved. As a result, the suction / desorption device 22 can be removed while maintaining the dehumidifying capacity, so that the indoor unit 20 can be made smaller or thinner.
  • the heat of vaporization of the refrigerant is directly transferred to the adsorption member without passing through air, the above-mentioned heat loss can be prevented and the adsorption member can be cooled with high efficiency. Therefore, since the evaporation temperature can be set high in the cooling adsorption mode, the energy saving property of the air conditioner 100 can be improved.
  • switching control between cooling adsorption mode and high-performance cooling adsorption mode When high cooling capacity is required, it is necessary to switch from the cooling adsorption mode to the high capacity cooling adsorption mode.
  • the timing for switching between the cooling adsorption mode and the high-performance cooling / desorption mode may be, for example, at the time of startup or when the sensible heat load is large.
  • the air conditioner 100 includes an outdoor unit 10 having a compressor 11 and an outdoor heat exchanger 13, taking in outdoor air from the outdoor space and discharging the outdoor air to the outdoor space, and first expansion.
  • Air harmonization including a valve 25, a first indoor heat exchanger 23, and an indoor unit 20 having a second indoor heat exchanger 24 and taking in indoor air from the indoor space and discharging the indoor air into the indoor space.
  • the second expansion valve 14 provided in the outdoor unit 10 or the indoor unit 20, the compressor 11, the outdoor heat exchanger 13, the second expansion valve 14, the first indoor heat exchanger 23, the first
  • the first chamber includes a refrigerant circuit in which the expansion valve 25 and the second chamber heat exchanger 24 are sequentially connected by piping, and a controller 40 that controls the opening degree of the first expansion valve 25 and the second expansion valve 14.
  • an adsorption member for adsorbing the moisture in the air is formed, and in the indoor unit 20, an air passage 20a through which the indoor air taken in is passed is formed, and the first chamber is formed.
  • the heat exchanger 23 and the second chamber heat exchanger 24 are arranged on the air passage 20a, and the second chamber heat exchanger 24 is arranged on the downstream side of the first chamber heat exchanger 23.
  • the controller 40 controls the opening degree of the first expansion valve 25 and the second expansion valve 14, and has a cooling adsorption mode in which the moisture in the room air is adsorbed by the first chamber heat exchanger 23 and a cooling in which the adsorbed moisture is desorbed. It is equipped with a desorption mode, and dehumidification control is performed by switching between them.
  • the indoor unit 20 is provided by taking in the indoor air from the indoor space and discharging the indoor air into the indoor space. That is, as the air supplied to the indoor space, indoor air with less fluctuation in humidity than outdoor air is used.
  • the controller 40 controls the opening degree of the first expansion valve 25 and the second expansion valve 14, and has a cooling adsorption mode in which the moisture in the room air is adsorbed by the first chamber heat exchanger 23 and the adsorbed moisture is desorbed. It is equipped with a cooling / desorption mode, and dehumidification control is performed by switching between them. That is, no heater is used for suction / detachment of the suction member of the first chamber heat exchanger 23. As a result, a stable dehumidifying capacity can be obtained with less power consumption.
  • the heat of vaporization of the refrigerant is directly transmitted to the adsorption member without passing through air, it is possible to prevent the heat loss of heat dissipation of the heat of vaporization of the refrigerant to the members other than the adsorption member, and the adsorption member is highly efficient. Can be cooled with. Therefore, since the evaporation temperature can be set high in the cooling adsorption mode, the energy saving property of the air conditioner 100 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Central Air Conditioning (AREA)
  • Air Conditioning Control Device (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Drying Of Gases (AREA)

Abstract

圧縮機および室外熱交換器を有し、室外空間から室外空気を取り込んで室外空間に室外空気を排出する室外機と、第一膨張弁、第一室内熱交換器、および、第二室内熱交換器を有し、室内空間から室内空気を取り込んで室内空間に室内空気を排出する室内機と、を備えた空気調和装置であって、室外機または室内機に設けられた第二膨張弁と、圧縮機、室外熱交換器、第二膨張弁、第一室内熱交換器、第一膨張弁、第二室内熱交換器、が順次配管で接続された冷媒回路と、空気中の水分を吸着する吸着部材を有する吸脱着装置と、第一膨張弁および第二膨張弁の開度を制御するコントローラと、を備え、室内機は、内部に取り込んだ室内空気が通過する風路が形成されており、第一室内熱交換器、吸脱着装置、および、第二室内熱交換器は風路上に配置されており、第二室内熱交換器は、第一室内熱交換器の下流側に配置され、吸脱着装置は、第一室内熱交換器の下流側であって第二室内熱交換器の上流側に配置されており、コントローラは、第一膨張弁および第二膨張弁の開度を制御し、吸脱着装置により室内空気中の水分を吸着する冷房吸着モードと、吸着した水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行うものである。

Description

空気調和装置
 本発明は、室内空間の除湿を行う空気調和装置に関するものである。
 従来、水分の吸着および脱着を行う吸着剤を有する回転式のデシカントロータを備え、このデシカントロータの吸着剤の再生熱源としてヒータを利用した空気調和装置が提案されている(例えば、特許文献1参照)。特許文献1に記載の空気調和装置では、室外空気は、吸着部に配置されたデシカントロータの部分で水分を吸着させることで除湿され、ヒータで加熱された後、圧縮機で圧縮され、熱交換器で冷却された後で、室内空間に供給される。また、室内空気は、熱交換器で加熱された後、脱着部に配置されたデシカントロータの部分で水分を脱着させることで放湿され、室外空間に排出される。そして、上記の空気調和装置では、デシカントロータを回転させることで、デシカントロータが吸着部と脱着部との間を移動し、吸着部での吸着と脱着部での脱着とを繰り返すことで、室内空間に供給される空気の除湿が連続的に行われる。
特開2000-257968号公報
 しかしながら、特許文献1に記載の空気調和装置では、室外空気を除湿して室内空間に供給しているが、時期によって室外空気は高湿になりやすく、その場合には除湿能力が安定しないという課題があった。また、デシカントロータの吸着剤の再生熱源としてヒータを利用しているため、消費電力が増大してしまうという課題があった。
 本発明は、以上のような課題を解決するためになされたもので、より少ない消費電力で安定した除湿能力を得ることができる空気調和装置を提供することを目的とする。
 本発明に係る空気調和装置は、圧縮機および室外熱交換器を有し、室外空間から室外空気を取り込んで前記室外空間に前記室外空気を排出する室外機と、第一膨張弁、第一室内熱交換器、および、第二室内熱交換器を有し、室内空間から室内空気を取り込んで前記室内空間に前記室内空気を排出する室内機と、を備えた空気調和装置であって、前記室外機または前記室内機に設けられた第二膨張弁と、前記圧縮機、前記室外熱交換器、前記第二膨張弁、前記第一室内熱交換器、前記第一膨張弁、前記第二室内熱交換器、が順次配管で接続された冷媒回路と、空気中の水分を吸着する吸着部材を有する吸脱着装置と、前記第一膨張弁および前記第二膨張弁の開度を制御するコントローラと、を備え、前記室内機は、内部に取り込んだ前記室内空気が通過する風路が形成されており、前記第一室内熱交換器、前記吸脱着装置、および、前記第二室内熱交換器は前記風路上に配置されており、前記第二室内熱交換器は、前記第一室内熱交換器の下流側に配置され、前記吸脱着装置は、前記第一室内熱交換器の下流側であって前記第二室内熱交換器の上流側に配置されており、前記コントローラは、前記第一膨張弁および前記第二膨張弁の開度を制御し、前記吸脱着装置により前記室内空気中の水分を吸着する冷房吸着モードと、吸着した前記水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行うものである。
 本発明に係る空気調和装置によれば、室内空間から室内空気を取り込んで室内空間に室内空気を排出する室内機を備えている。つまり、室内空間に供給する空気として、室外空気に比べて湿度の変動が少ない室内空気が用いられている。また、コントローラは、第一膨張弁および第二膨張弁の開度を制御し、吸脱着装置により室内空気中の水分を吸着する冷房吸着モードと、吸着した水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行っている。つまり、吸脱着装置の吸着部材の吸脱着にヒータが用いられていない。その結果、より少ない消費電力で安定した除湿能力を得ることができる。
本実施の形態1に係る空気調和装置の構成の一例を示す冷媒回路図である。 本実施の形態1に係る空気調和装置のコントローラ、室外機制御基板、および、室内機制御基板の接続関係の一例を示すブロック図である。 本実施の形態1に係る空気調和装置の吸脱着装置を形成する多孔質平板を示す模式図である。 本実施の形態1に係る空気調和装置の吸脱着装置に用いられる吸着部材の相対湿度に対する飽和吸着量の変動を示すグラフである。 本実施の形態1に係る空気調和装置の冷房吸着モード時における動作について説明するための概略図である。 本実施の形態1に係る空気調和装置の冷房吸着モード時における空気の状態変化を示す湿り空気線図である。 本実施の形態1に係る空気調和装置の冷房脱着モード時における動作について説明するための概略図である。 本実施の形態1に係る空気調和装置の冷房脱着モード時における空気の状態変化を示す湿り空気線図である。 本実施の形態1に係る空気調和装置の高能力冷房吸着モード時における動作について説明するための概略図である。 本実施の形態1に係る空気調和装置の高能力冷房吸着モード時における空気の状態変化を示す湿り空気線図である。 本実施の形態2に係る空気調和装置の構成の一例を示す冷媒回路図である。 本実施の形態2に係る空気調和装置の冷房吸着モード時における動作について説明するための概略図である。 本実施の形態2に係る空気調和装置の冷房吸着モード時における空気の状態変化を示す湿り空気線図である。 本実施の形態2に係る空気調和装置の冷房脱着モード時における動作について説明するための概略図である。 本実施の形態2に係る空気調和装置の冷房脱着モード時における空気の状態変化を示す湿り空気線図である。 本実施の形態2に係る空気調和装置の高能力冷房吸着モード時における動作について説明するための概略図である。 本実施の形態2に係る空気調和装置の高能力冷房吸着モード時における空気の状態変化を示す湿り空気線図である。
 以下、実施の形態を図面に基づいて説明する。なお、以下に説明する内容によって実施の形態が限定されるものではない。また、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 実施の形態1.
 以下、本実施の形態1に係る空気調和装置100について説明する。本実施の形態1に係る空気調和装置100は、室内の除湿を行う室内機20を備えるものである。
[空気調和装置100の構成]
 図1は、本実施の形態1に係る空気調和装置100の構成の一例を示す冷媒回路図である。図1に示すように、空気調和装置100は、室外空間から室外空気を取り込んで、室外空間に室外空気を排出する室外機10と、室内空間から室内空気を取り込んで、室内空間に室内空気を排出する室内機20と、を備えている。
(室外機10)
 図1に示すように、室外機10は、圧縮機11、冷媒流路切替装置12、室外熱交換器13、第二膨張弁14、および、室外送風機15を備えている。室外機10内には、室外送風機15によって室外空間から取り込まれた室外空気が室外熱交換器13を通過して室外空間に送風される風路10aが形成される。
 圧縮機11は、低温低圧の冷媒を吸入し、吸入した冷媒を圧縮し、高温高圧の冷媒を吐出する。圧縮機11は、例えば、運転周波数を変化させることにより、単位時間あたりの送出量である容量が制御されるインバータ圧縮機などからなる。圧縮機11の運転周波数は、室外機制御基板19を介してコントローラ40によって制御される。なお、この例では、1台の圧縮機11が用いられる場合を示すが、これに限られず、例えば2台以上の圧縮機11が並列または直列に接続されてもよい。
 冷媒流路切替装置12は、例えば四方弁であり、冷媒の流れる方向を切り替えることにより、冷房運転および暖房運転の切り替えを行う。冷媒流路切替装置12は、冷房運転時に、図1の実線で示す状態に切り替わり、圧縮機11の吐出側と室外熱交換器13とが接続される。また、冷媒流路切替装置12は、暖房運転時に、図1の破線で示す状態に切り替わり、圧縮機11の吐出側と第二室内熱交換器24とが接続される。冷媒流路切替装置12における流路の切替は、室外機制御基板19を介してコントローラ40によって制御される。
 室外熱交換器13は、室外空気と冷媒との間で熱交換を行う。室外熱交換器13は、冷房運転の際に、冷媒の熱を室外空気に放熱して冷媒を凝縮させる凝縮器として機能する。また、室外熱交換器13は、暖房運転の際に、冷媒を蒸発させ、その際の気化熱により室外空気を冷却する蒸発器として機能する。室外熱交換器13として、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。
 第二膨張弁14は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって第一室内熱交換器23に流入する冷媒の圧力を制御する。なお、本実施の形態1では、第二膨張弁14は室外機10に設けられているが、室内機20に設けられていてもよく、設置箇所は限定されない。
 室外送風機15は、室外熱交換器13に対して室外空気を供給するものであり、回転数が制御されることにより、室外熱交換器13に対する送風量が調整される。室外送風機15として、例えば、DC(Direct Current)ファンモータあるいはAC(Alternating Current)ファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。なお、室外送風機15の駆動源としてDCファンモータが用いられる場合は、電流値を変化させて回転数を制御することで送風量が調整される。また、室外送風機15の駆動源としてACファンモータが用いられる場合は、インバータ制御により電源周波数を変化させて回転数を制御することで送風量が調整される。
 さらに、室外機10は、室外機制御基板19を備えている。室外機制御基板19は、伝送線51によってコントローラ40と接続され、コントローラ40からの運転制御信号に基づき、圧縮機11、冷媒流路切替装置12、第二膨張弁14、および、室外送風機15を制御する。
(室内機20)
 室内機20は、第一膨張弁25、第一室内熱交換器23、第二室内熱交換器24、吸脱着装置22、および、室内送風機21を備えている。室内機20内には、室内送風機21によって室内空間から取り込まれた室内空気が第一室内熱交換器23、吸脱着装置22、および、第二室内熱交換器24を通過して室内空間に送風される風路20aが形成される。
 第一膨張弁25は、例えば絞りの開度を調整することができる電子式膨張弁であり、開度を調整することによって第一室内熱交換器23に流入する冷媒の圧力を制御する。
 第一室内熱交換器23は、風路20a上に配置されている。第二室内熱交換器24は、風路20a上であって第一室内熱交換器23の下流側に配置されている。第一室内熱交換器23および第二室内熱交換器24は、冷媒回路において互いに直列に接続され、いずれも空気と冷媒との間で熱交換を行う。これにより、室内空間に供給される暖房用空気または冷房用空気が生成される。第一室内熱交換器23は、冷房運転の際に蒸発器または凝縮器として機能し、吸脱着装置22に流入する空気を冷却または加熱する。第二室内熱交換器24は、冷房運転の際に蒸発器として機能し、室内空間の空気を冷却して冷房を行う。また、第一室内熱交換器23および第二室内熱交換器24は、暖房運転の際に凝縮器として機能し、室内空間の空気を加熱して暖房を行う。第一室内熱交換器23および第二室内熱交換器24として、例えば、伝熱管と多数のフィンとにより構成されたクロスフィン式のフィン・アンド・チューブ型熱交換器が用いられる。
 吸脱着装置22は、風路20aにおける第一室内熱交換器23の下流側であって、第二室内熱交換器24の上流側に配置されている。すなわち、吸脱着装置22は、第一室内熱交換器23および第二室内熱交換器24と同一の風路20a上であって、第一室内熱交換器23と第二室内熱交換器24との間に設けられている。吸脱着装置22は、空気中の水分を吸着する吸着部材を有し、供給される空気に対する水分の吸着および脱着を行う。具体的には、吸脱着装置22は、相対的に湿度の高い空気から水分を吸着し、相対的に湿度の低い空気に対して水分を脱着する。
 室内送風機21は、第一室内熱交換器23および第二室内熱交換器24に対して室内空気を供給するものであり、回転数が制御されることにより、第一室内熱交換器23および第二室内熱交換器24に対する送風量が調整される。室内送風機21として、例えば、DCファンモータあるいはACファンモータなどのモータによって駆動される遠心ファンまたは多翼ファンなどが用いられる。なお、室内送風機21の駆動源としてDCファンモータが用いられる場合は、電流値を変化させて回転数を制御することで送風量が調整される。また、室内送風機21の駆動源としてACファンモータが用いられる場合は、インバータ制御により電源周波数を変化させて回転数を制御することで送風量が調整される。
 また、室内送風機21の風量を制御することによって、吸脱着装置22を通過する空気の流速も変化する。吸脱着装置22に使用される吸着部材の吸着速度および脱着速度、つまり、吸着時および脱着時における空気と吸着部材間の水分移動速度は、吸着部材を通過する空気の流速が上がると増加する。そのため、室内送風機21の風量を増加させることで、吸着部材の吸脱着能力を上昇させることが可能となる。なお、本実施の形態1では、室内送風機21が、風路20aの最上流に配置されているが、それに限定されない。風路20aにおいて目標の風量が得られればよいので、図1に示す位置よりも下流に配置してもよい。また、風路20aの数の1つに限定されず、上流と下流にそれぞれ配置するなどしてもよい。つまり、室内送風機21の配置位置と数は限定されない。
 室外機10と室内機20とは、配管によって互いに接続されている。また、空気調和装置100は、圧縮機11、冷媒流路切替装置12、室外熱交換器13、第二膨張弁14、第一室内熱交換器23、第一膨張弁25、第二室内熱交換器24が、順次配管で接続され、冷媒が循環する冷媒回路を備えている。
 冷媒回路に使用される冷媒は、特に限定されない。例えば、二酸化炭素、炭化水素若しくはヘリウムのような自然冷媒、HFC-410A若しくはHFC-407Cなどの塩素を含まない冷媒、または既存の製品に使用されているR22若しくはR134aなどのフロン系冷媒などの冷媒を使用できる。
(温度センサ)
 室内機20は、例えばサーミスタなどで構成される複数の温度センサを備えている。冷房運転時の冷媒の流れにおいて第一室内熱交換器23の入口側には、第一室内熱交換器23に流入する冷媒の温度(以下、入口温度と称する)を検出する第一入口温度センサ28aが設けられている。冷房運転時の冷媒の流れにおいて第一室内熱交換器23の出口側には、第一室内熱交換器23から流出する冷媒の温度(以下、出口温度と称する)を検出する第一出口温度センサ28bが設けられている。冷房運転時の冷媒の流れにおいて第二室内熱交換器24の入口側には、第二室内熱交換器24に流入する冷媒の温度(以下、入口温度と称する)を検出する第二入口温度センサ28cが設けられている。冷房運転時の冷媒の流れにおいて第二室内熱交換器24の出口側には、第二室内熱交換器24から流出する冷媒の温度(以下、出口温度と称する)を検出する第二出口温度センサ28dが設けられている。
 さらに、室内機20は、室内機制御基板27を備えている。室内機制御基板27は、伝送線51によってコントローラ40と接続され、コントローラ40からの運転制御信号に基づき、第一膨張弁25および室内送風機21を制御する。
(コントローラ40)
 コントローラ40は、室外機10および室内機20に対して運転制御信号を送信し、空気調和装置100全体を制御する。また、コントローラ40は、室内機20に設けられた温度センサによって検出された温度情報に基づいて、冷房運転時の各モードにおいて、第一室内熱交換器23および第二室内熱交換器24が除湿運転に最適な加熱および冷却温度になるように第二膨張弁14および第一膨張弁25を制御する。
 図2は、本実施の形態1に係る空気調和装置100のコントローラ40、室外機制御基板19、および、室内機制御基板27の接続関係の一例を示すブロック図である。図2に示すように、コントローラ40には、第一入口温度センサ28a、第一出口温度センサ28b、第二入口温度センサ28c、および、第二出口温度センサ28dがそれぞれ接続されている。また、コントローラ40には、室外機制御基板19および室内機制御基板27が伝送線51を介して接続されている。
 室外機制御基板19には、圧縮機11、冷媒流路切替装置12、第二膨張弁14、および、室外送風機15が接続されている。室内機制御基板27には、第一膨張弁25および室内送風機21が接続されている。
 コントローラ40は、情報取得部41、演算処理部42、機器制御部43、および、記憶部44を備えている。コントローラ40は、マイクロコンピュータなどの演算装置上でソフトウェアを実行することにより各種機能が実現され、もしくは各種機能を実現する回路デバイスなどのハードウェアなどで構成されている。
 情報取得部41は、第一入口温度センサ28a、第一出口温度センサ28b、第二入口温度センサ28c、および、第二出口温度センサ28dで検出された温度情報を取得する。
 演算処理部42は、情報取得部41で取得された温度情報に基づき、各種処理を行う。
 機器制御部43は、演算処理部42による処理結果に基づき、空気調和装置100に設けられた各部を制御するための運転制御信号を生成し、室外機制御基板19および室内機制御基板27に送信する。
 記憶部44は、コントローラ40の各部で用いられる各種の値を記憶するものであり、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリである。
(吸脱着装置22)
 図3は、本実施の形態1に係る空気調和装置100の吸脱着装置22を形成する多孔質平板を示す模式図である。なお、図3中の破線矢印は、通風方向を示している。
 ここで、本実施の形態1における吸脱着装置22について説明する。吸脱着装置22は、風路20aに対して静止しており、風路20aに固定して取り付けられている。吸脱着装置22は、図3に示す多孔質平板22aを用いて形成されている。この多孔質平板22aは、通風断面積を大きくできるように、風路20aのうち吸脱着装置22が配置される箇所の管路断面に沿った多角形状の形状を有している。そのため、吸脱着装置22を、第一室内熱交換器23および第二室内熱交換器24の断面積と同等にすることができる。また、多孔質平板22aは、当該多孔質平板22aの厚さ方向に空気を通過させる複数の小透孔22bが形成された通風体である。多孔質平板22aの表面には、相対的に湿度の高い空気から水分を吸着し、相対的に湿度の低い空気に対して水分を脱着する特性を有する吸着部材が形成されている。
 すなわち、本実施の形態1の吸脱着装置22は、多孔質平板22aと、その表面に形成された吸着部材とを有している。吸着部材は、多孔質平板22aの表面に吸着剤が塗布されることによって層状に形成されている。また、吸着部材は、含浸により多孔質平板22aの表面に担持されていてもよいし、表面処理により多孔質平板22aの表面に形成されていてもよい。
 図4は、本実施の形態1に係る空気調和装置100の吸脱着装置22に用いられる吸着部材の相対湿度に対する飽和吸着量の変動を示すグラフである。図4において、横軸は空気の相対湿度[%]を示し、縦軸は吸着部材の単位質量当たりの平衡吸着量[g/g]を示す。
 図4において実線で示す曲線aは、本実施の形態1で特に好適に用いられる吸着部材の吸湿特性の例を表している。本実施の形態1で特に好適に用いられる吸着部材としては、例えば、有機系ではポリアクリル酸ナトリウム架橋体、無機系ではナノチューブ珪酸塩(イモゴライト)およびアルミニウム珪酸塩(ハスクレイ(登録商標))などがある。
 一方、破線で示す曲線bは、一般的なデシカントロータに用いられる吸着部材の吸湿特性の例を表している。一般的なデシカントロータに用いられる吸着部材としては、シリカゲルおよびゼオライトなどがある。
 図4の曲線aで示すように、本実施の形態1で特に好適に用いられる吸着部材は、相対湿度の上昇に伴って平衡吸着量が単調に増加し、特に相対湿度40~100%の範囲では相対湿度の上昇に伴って平衡吸着量が略直線的に増加する特性を有している。また、この吸着部材は、相対湿度80~100%の高湿域における平衡吸着量が特に多くなる特性を有している。
 このような吸着部材を用いることにより、後述する冷房吸着モードで吸脱着装置22を通過する空気に対する吸着部材の平衡吸着量と、後述する冷房脱着モードで吸脱着装置22を通過する空気に対する吸着部材の平衡吸着量との差を大きくすることができる。そのため、吸着部材の吸着能力および脱着能力をより高めることができる。
 曲線bの吸湿特性を有する吸着部材では、相対湿度の上昇に伴って平衡吸着量が単調に増加するものの、相対湿度の上昇に伴う平衡吸着量の増加が緩やかである。このような吸着部材を吸脱着装置22に用いた場合、相対湿度40~60%程度の夏期の一般的な室内空間の空気からの除湿量を多くするのが困難となる場合がある。
 除湿量を多くするためには、冷房吸着モードで吸脱着装置22を通過する空気に対する吸着部材の平衡吸着量と、冷房脱着モードで吸脱着装置22を通過する空気に対する吸着部材の平衡吸着量との差を大きくすることが望ましい。そのため、冷房脱着モードで吸脱着装置22を通過する前の空気を加熱装置などによって加熱し、空気の相対湿度を20%程度に低下させることが必要になる場合がある。
 これに対し、曲線aの吸湿特性を有する吸着部材は、相対湿度80~100%の高湿域における平衡吸着量が特に多くなっている。そのため、空気を加熱して相対湿度を低下させるまでもなく、相対湿度40~60%程度の一般的な室内空間の空気に対する平衡吸着量と、相対湿度80~100%程度の空気に対する平衡吸着量との差を十分に大きくすることができる。したがって、曲線aの吸湿特性を有する吸着部材を吸脱着装置22に用いることにより、風路20aに脱着熱源が設けられていなくても連続的な除湿運転が可能になる。
 吸着部材は、低温になるほど水分移動速度が低下する特性を有する。冷房吸着モードで吸脱着装置22に流入する空気は、冷房脱着モードで吸脱着装置22に流入する空気と比較して低温である。そのため、冷房吸着モード時には、吸着部材での水分移動速度の低下により除湿量が少なくなる。除湿量を増加させるためには、冷房吸着モードで吸脱着装置22に流入する空気が相対湿度80~100%程度の高湿であるという特性を生かして、高湿域での平衡吸着量が中湿域での平衡吸着量よりも十分に多くなる吸着部材を用いる必要がある。
 ここで、高湿域とは、相対湿度80~100%の範囲のことであり、中湿域とは、一般的な室内空間の湿度である相対湿度40~60%の範囲のことである。試験検証結果から、高湿域での平衡吸着量が中湿域での平衡吸着量の1.2倍以上である吸湿部材が用いられることにより、流入空気温度の低下による除湿能力の低下を抑制できることが分かっている。
 具体的には、相対湿度60%の空気に対する単位質量当たりの平衡吸着量xと、相対湿度80%の空気に対する単位質量当たりの平衡吸着量yとが、「y/x≧1.2」の関係を満たしていれば、流入空気温度の低下による除湿能力の低下を抑制できる。曲線aの吸湿特性を有する吸着部材は、「y/x≧1.2」の関係を満たしている。
 本実施の形態1に係る空気調和装置100は、冷房運転時に、冷房吸着モードと冷房脱着モードとを交互に実行することで、室内空間の除湿を行う。また、空気調和装置100は、冷房運転時に、冷房吸着モードおよび冷房脱着モードに加えて、高能力冷房吸着モードを実行する。冷房吸着モード、冷房脱着モード、および、高能力冷房吸着モードは、第二膨張弁14および第一膨張弁25の開度を変更することによって切り替えられる。
 以下、本実施の形態1に係る空気調和装置100の冷房運転時の冷房吸着モード、冷房脱着モード、および、高能力冷房吸着モードにおける動作について説明する。なお、本実施の形態1では、暖房運転時の動作については説明を省略する。
(冷房吸着モード)
 図5は、本実施の形態1に係る空気調和装置100の冷房吸着モード時における動作について説明するための概略図である。冷房吸着モード時において、圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機15によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、相対的に低開度に設定された第二膨張弁14によって減圧され、低温低圧の気液二相冷媒となり、第一室内熱交換器23に流入する。
 第一室内熱交換器23に流入した低温低圧の気液二相冷媒は、室内送風機21によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに、低圧のガス冷媒となって第一室内熱交換器23から流出する。第一室内熱交換器23から流出した低圧のガス冷媒は、相対的に高開度に設定された第一膨張弁25によって減圧された後、第二室内熱交換器24に流入する。第二室内熱交換器24に流入した低圧のガス冷媒は、第一室内熱交換器23および吸脱着装置22を通過した室内空気と熱交換して吸熱しながら蒸発し、室内空気と顕熱交換が行われ、室内空気をさらに冷却する。第二室内熱交換器24から流出した低圧のガス冷媒は、室内機20から流出する。室内機20から流出した低圧のガス冷媒は、圧縮機11へ吸入される。
 図6は、本実施の形態1に係る空気調和装置100の冷房吸着モード時における空気の状態変化を示す湿り空気線図である。図6の横軸は温度[℃]を示し、縦軸は絶対湿度[kg/kg’]を示す。図6中の点A1、点B1、点C1、および、点D1は、図5中の(A1)、(B1)、(C1)、および、(D1)の位置にそれぞれ対応している。また、冷房吸着モード時は、第二膨張弁14が相対的に低開度に設定されており、第一膨張弁25が相対的に高開度に設定されている。なお、図6は、吸脱着装置22が水分の保持量が少ない状態、例えば周囲空気で飽和した状態での空気の状態変化を示す図であるものとする。
 第一室内熱交換器23に流入する前の室内空気は、点A1の状態にある。第一室内熱交換器23を通過した空気は、冷媒との熱交換により冷却除湿され、低温かつ相対湿度の高い状態となって(点B1)、吸脱着装置22に流入する。相対湿度の高い空気が吸脱着装置22を通過するため、吸脱着装置22の吸着部材では、空気中の水分を吸着して吸着熱を放熱する吸着反応が生じる。これにより、吸脱着装置22を通過した空気は、吸着反応により除湿されるとともに加熱され、絶対湿度が低下した状態となって(点C1)、第二室内熱交換器24に流入する。第二室内熱交換器24を通過した空気は、冷媒と顕熱交換することによって冷却され(点D1)、室内空間に供給される。
 すなわち、冷房吸着モードでは、室内機20に吸い込まれた室内空気が、第一室内熱交換器23での冷却と吸脱着装置22での吸着反応とにより除湿され、さらに第二室内熱交換器24で冷却される。これにより、室内空間には低温で絶対湿度の低い空気が供給される。
(冷房脱着モード)
 図7は、本実施の形態1に係る空気調和装置100の冷房脱着モード時における動作について説明するための概略図である。冷房脱着モード時において、圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機15によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、相対的に高開度に設定された第二膨張弁14によって減圧され、第一室内熱交換器23に流入する。
 第一室内熱交換器23に流入した液冷媒は、室内送風機21によって取り込まれた室内空気と熱交換して放熱しながら凝縮し、室内空気を加熱して第一室内熱交換器23から流出する。第一室内熱交換器23から流出した液冷媒は、相対的に低開度に設定された第一膨張弁25によって減圧され、低温低圧の気液二相冷媒となり、第二室内熱交換器24に流入する。第二室内熱交換器24に流入した低温低圧の気液二相冷媒は、第一室内熱交換器23および吸脱着装置22を通過した室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに、低圧のガス冷媒となって第二室内熱交換器24から流出する。第二室内熱交換器24から流出した低圧のガス冷媒は、室内機20から流出する。室内機20から流出した低圧のガス冷媒は、圧縮機11へ吸入される。
 図8は、本実施の形態1に係る空気調和装置100の冷房脱着モード時における空気の状態変化を示す湿り空気線図である。図8の横軸は温度[℃]を示し、縦軸は絶対湿度[kg/kg’]を示す。図8中の点A2、点B2、点C2、および、点D2は、図7中の(A2)、(B2)、(C2)、および、(D2)の位置にそれぞれ対応している。また、冷房脱着モード時は、第二膨張弁14が相対的に高開度に設定されており、第一膨張弁25が相対的に低開度に設定されている。なお、図8は、吸脱着装置22が水分の保持量が多い状態、例えば冷房吸着モードで飽和した状態での空気の状態変化を示す図であるものとする。
 第一室内熱交換器23に流入する前の室内空気は、点A2の状態にある。第一室内熱交換器23を通過した空気は、冷媒との熱交換により加熱され、相対湿度の低い状態となって(点B2)、吸脱着装置22に流入する。相対湿度が低い空気が吸脱着装置22を通過し、かつ吸脱着装置22の吸着部材の水分保持量が多くなっているため、吸着部材では、空気中に水分を放出して脱着熱を吸熱する脱着反応が生じる。これにより、吸着部材の水分保持量が減少し、吸着部材が再生される。また、吸脱着装置22を通過した空気は、脱着反応により加湿されるとともに冷却され、低温かつ高湿の空気となって(点C2)、第二室内熱交換器24に流入する。第二室内熱交換器24を通過した空気は、冷媒との熱交換により冷却除湿され(点D2)、低温でかつ絶対湿度が低下した給気として室内空間に供給される。
 すなわち、冷房脱着モードでは、室内機20に吸い込まれた室内空気が、吸脱着装置22での脱着反応により加湿されるものの、第二室内熱交換器24での冷却により除湿される。これにより、室内空間には低温で絶対湿度の低い空気が供給される。
(高能力冷房吸着モード)
 図9は、本実施の形態1に係る空気調和装置100の高能力冷房吸着モード時における動作について説明するための概略図である。高能力冷房吸着モード時において、圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機15によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、相対的に低開度に設定された第二膨張弁14によって減圧され、低温低圧の気液二相冷媒となり、第一室内熱交換器23に流入する。
 第一室内熱交換器23に流入した低温低圧の気液二相冷媒は、室内送風機21によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却し、第一室内熱交換器23から流出する。第一室内熱交換器23から流出した低温低圧の気液二相冷媒は、相対的に高開度に設定された第一膨張弁25によって減圧された後、第二室内熱交換器24に流入する。第二室内熱交換器24に流入した低温低圧の気液二相冷媒は、第一室内熱交換器23および吸脱着装置22を通過した室内空気と熱交換して吸熱しながら蒸発し、室内空気と潜熱交換が行われ、室内空気をさらに冷却し、低圧のガス冷媒となって第二室内熱交換器24から流出する。第二室内熱交換器24から流出した低圧のガス冷媒は、室内機20から流出する。室内機20から流出した低圧のガス冷媒は、圧縮機11へ吸入される。
 図10は、本実施の形態1に係る空気調和装置100の高能力冷房吸着モード時における空気の状態変化を示す湿り空気線図である。図10の横軸は温度[℃]を示し、縦軸は絶対湿度[kg/kg’]を示す。図10中の点A1、点B1、点C1、および、点D1は、図9中の(A1)、(B1)、(C1)、および、(D1)の位置にそれぞれ対応している。また、高能力冷房吸着モード時は、第二膨張弁14が相対的に低開度に設定されており、第一膨張弁25が相対的に高開度に設定されている。なお、図10は、吸脱着装置22が水分の保持量が少ない状態、例えば周囲空気で飽和した状態での空気の状態変化を示す図であるものとする。
 第一室内熱交換器23に流入する前の室内空気は、点A1の状態にある。第一室内熱交換器23を通過した空気は、冷媒との熱交換により冷却除湿され、低温かつ相対湿度の高い状態となって(点B1)、吸脱着装置22に流入する。相対湿度の高い空気が吸脱着装置22を通過するため、吸脱着装置22の吸着部材では、空気中の水分を吸着して吸着熱を放熱する吸着反応が生じる。これにより、吸脱着装置22を通過した空気は、吸着反応により除湿されるとともに加熱され、絶対湿度が低下した状態となって(点C1)、第二室内熱交換器24に流入する。第二室内熱交換器24を通過した空気は、冷媒と潜熱交換することによって冷却され(点D1)、室内空間に供給される。
 すなわち、高能力冷房吸着モードでは、室内機20に吸い込まれた室内空気が、第一室内熱交換器23での冷却と吸脱着装置22での吸着反応とにより除湿され、さらに第二室内熱交換器24で冷却される。これにより、室内空間には低温で絶対湿度の低い空気が供給される。また、高能力冷房吸着モードでは、第二室内熱交換器24での過熱度(SH)を算出する際に温度測定する位置が冷房吸着モードと異なっており、高能力冷房吸着モードでは、第二膨張弁14の開度および圧縮機11の運転周波数を、冷房吸着モードと変えている。そのため、冷房吸着モードでは、第二室内熱交換器24において冷媒と室内空気とで顕熱交換が行われるが、高能力冷房吸着モードでは、第二室内熱交換器24において冷媒と室内空気とで潜熱交換が行われることになり、第二室内熱交換器24で空気をより冷却することができる。つまり、高能力冷房吸着モードでは、冷房吸着モードに比べて冷房能力が高くなっている。
 次に、本実施の形態1に係る空気調和装置100の冷房運転時の冷房吸着モード、冷房脱着モード、および、高能力冷房吸着モードにおける、第二膨張弁14および第一膨張弁25の制御について説明する。
(冷房吸着モード)
 冷房吸着モードでは、第一室内熱交換器23が蒸発器として機能し、第二室内熱交換器24も蒸発器として機能するが、第二室内熱交換器24の冷房能力を抑制することで、空調能力の顕熱比(SHF)を低下させる。そして、空調能力を抑制することが目的となる。そのため、コントローラ40は、第一入口温度センサ28aによって検出される第一室内熱交換器23の入口温度と、第一出口温度センサ28bによって検出される第一室内熱交換器23の出口温度との差から算出される過熱度(SH)が、所定の値となるように第二膨張弁14を制御する。そうすることで、第二室内熱交換器24では冷媒と室内空気とで顕熱交換が行われることになるため、第二室内熱交換器24の冷房能力が抑制される。また、蒸発温度については、コントローラ40が圧縮機11の運転周波数を制御することで、所定の能力を確保する。
(冷房脱着モード)
 冷房脱着モードでは、第一室内熱交換器23が凝縮器として機能し、第二室内熱交換器24が蒸発器として機能する。そのため、第一室内熱交換器23の加熱能力は、室内送風機21の風量によって決まる。また、コントローラ40は、第二入口温度センサ28cによって検出される第二室内熱交換器24の入口温度と、第二出口温度センサ28dによって検出される第二室内熱交換器24の出口温度との差から算出される過熱度(SH)が、所定の値となるように第一膨張弁25を制御する。また、蒸発温度については、コントローラ40が圧縮機11の運転周波数を制御することで、所定の能力を確保する。
(高能力冷房吸着モード)
 高能力冷房吸着モードでは、第一室内熱交換器23が蒸発器として機能し、第二室内熱交換器24も蒸発器として機能させることで、第二室内熱交換器24の冷房能力を上げ、空調能力の顕熱比(SHF)を上げることが目的となる。そして、空調能力を最大限に発揮させることが目的となる。そのため、コントローラ40は、第一入口温度センサ28aによって検出される第一室内熱交換器23の入口温度と、第二出口温度センサ28dによって検出される第二室内熱交換器24の出口温度との差から算出される過熱度(SH)が、所定の値となるように第二膨張弁14を制御する。そうすることで、第二室内熱交換器24では冷媒と室内空気とで潜熱交換が行われることになるため、第二室内熱交換器24の冷房能力が上がる。また、蒸発温度については、コントローラ40が圧縮機11の運転周波数を制御することで、所定の能力を確保する。
 次に、本実施の形態1に係る空気調和装置100の冷房運転時の冷房吸着モード、冷房脱着モード、および、高能力冷房吸着モードの切り替え制御について説明する。
(冷房吸着モードと冷房脱着モードとの切替制御)
 本実施の形態1では、冷房運転時に除湿を行う際に、冷房吸着モードと冷房脱着モードとを交互に実行する必要がある。冷房吸着モードと冷房脱着モードとを切り替えるタイミングは、各モードが開始されてからの時間などに基づいて判断される。例えば、冷房吸着モードと冷房脱着モードとは10分毎に切り替えられる。なお、冷房吸着モードと冷房脱着モードとの切り替えは、第二膨張弁14および第一膨張弁25の開度を変更することによって行われる。本実施の形態1に係る冷房吸着モードおよび冷房脱着モードでは、室外空間のように環境変化が大きい空間の空気ではなく、室内空間などの環境変化が小さい空間の空気を用いて、吸着部材に対する水分の吸着および脱着が行われる。このため、吸着部材が平衡状態となる条件を予測しやすくなる。
 したがって、あらかじめ設定された切替時間で冷房吸着モードと冷房脱着モードとが切り替えられたとしても、冷房吸着モードでは吸着部材の吸着能力を十分に発揮させることができ、冷房脱着モードでは吸着部材の脱着能力を十分に発揮させることができる。これにより、除湿能力を維持した連続的な除湿運転が可能となる。除湿能力を最適化するために、切替時間の設定が、外部からの操作により変更できるようになっていてもよい。また、冷房吸着モードと冷房脱着モードとを切り替えるタイミングは、点C1、および、点C2の状態における温度に基づいて判断されるようにしてもよい。その場合は、冷房吸着モード時において、点C1の状態における温度が下げ止まったら冷房脱着モードへの切り替えが行われ、冷房脱着モード時において、点C2の状態における温度が上げ止まったら冷房吸着モードへの切り替えが行われる。
 上述したように、冷房吸着モードで吸脱着装置22に流入する空気の温度は、冷房脱着モードで吸脱着装置22に流入する空気の温度よりも低い。また、吸着部材での水分移動速度は、低温になるほど低下する。そのため、空気と吸着部材との間での水分移動量が冷房吸着モードおよび冷房脱着モードで同量であるとすると、冷房吸着モードの方が飽和状態までの時間が長くなる傾向にある。
 したがって、冷房吸着モードの実行時間を冷房脱着モードの実行時間よりも長く設定することにより、冷房吸着モードおよび冷房脱着モードのそれぞれにおいて吸着部材の体積当たりの水分移動量を増加させることができる。よって、吸着部材の吸着能力および脱着能力を十分に発揮させることができ、吸着部材の体積当たりの除湿能力を向上させることができる。これにより、除湿能力を維持しつつ、吸着部材および吸脱着装置22を小型化または薄型化することができるため、吸脱着装置22での空気の圧力損失を低減させることができる。
(冷房吸着モードと高能力冷房吸着モードとの切替制御)
 高い冷房能力が必要な場合では、冷房吸着モードから高能力冷房吸着モードに切り替える必要がある。冷房吸着モードと高能力冷房脱着モードとを切り替えるタイミングは、例えば起動時あるいは顕熱負荷が大きい時などが挙げられる。
 本実施の形態1に係る空気調和装置100は、圧縮機11および室外熱交換器13を有し、室外空間から室外空気を取り込んで室外空間に室外空気を排出する室外機10と、第一膨張弁25、第一室内熱交換器23、および、第二室内熱交換器24を有し、室内空間から室内空気を取り込んで室内空間に室内空気を排出する室内機20と、を備えた空気調和装置100であって、室外機10または室内機20に設けられた第二膨張弁14と、圧縮機11、室外熱交換器13、第二膨張弁14、第一室内熱交換器23、第一膨張弁25、第二室内熱交換器24、が順次配管で接続された冷媒回路と、空気中の水分を吸着する吸着部材を有する吸脱着装置22と、第一膨張弁25および第二膨張弁14の開度を制御するコントローラ40と、を備え、室内機20は、内部に取り込んだ室内空気が通過する風路20aが形成されており、第一室内熱交換器23、吸脱着装置22、および、第二室内熱交換器24は風路20a上に配置されており、第二室内熱交換器24は、第一室内熱交換器23の下流側に配置され、吸脱着装置22は、第一室内熱交換器23の下流側であって第二室内熱交換器24の上流側に配置されており、コントローラ40は、第一膨張弁25および第二膨張弁14の開度を制御し、吸脱着装置22により室内空気中の水分を吸着する冷房吸着モードと、吸着した水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行うものである。
 本実施の形態1に係る空気調和装置100によれば、室内空間から室内空気を取り込んで室内空間に室内空気を排出する室内機20を備えている。つまり、室内空間に供給する空気として、室外空気に比べて湿度の変動が少ない室内空気が用いられている。また、コントローラ40は、第一膨張弁25および第二膨張弁14の開度を制御し、吸脱着装置22により室内空気中の水分を吸着する冷房吸着モードと、吸着した水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行っている。つまり、吸脱着装置22の吸着部材の吸脱着にヒータが用いられていない。その結果、より少ない消費電力で安定した除湿能力を得ることができる。
 また、本実施の形態1に係る空気調和装置100において、風路20aは、冷房吸着モードと冷房脱着モードとで同一経路である。
 本実施の形態1に係る空気調和装置100によれば、室内機20内の第一室内熱交換器23と第二室内熱交換器24との間に風路を切り替える風路切替装置のようなものが不要であるため、室内機20を小型化または薄型化することができる。
 また、本実施の形態1に係る空気調和装置100において、吸脱着装置22は、多孔質平板22aで構成されているものである。
 本実施の形態1に係る空気調和装置100によれば、吸脱着装置22が多孔質平板22aで構成されているため、吸脱着装置22を、第一室内熱交換器23および第二室内熱交換器24の断面積と同等にすることができる。
 また、本実施の形態1に係る空気調和装置100において、コントローラ40は、冷房吸着モード時は、第二膨張弁14の開度を第一膨張弁25の開度と比較して低開度に設定し、冷房脱着モード時は、第二膨張弁14の開度を第一膨張弁25の開度と比較して高開度に設定するものである。
 本実施の形態1に係る空気調和装置100によれば、第一膨張弁25および第二膨張弁14の開度を制御することで、冷房吸着モードと冷房脱着モードとを切り替えることができる。
 また、本実施の形態1に係る空気調和装置100において、コントローラ40は、冷房吸着モードの実行時間が冷房脱着モードの実行時間よりも長くなるように、冷房吸着モードと冷房脱着モードとを切り替えるものである。
 本実施の形態1に係る空気調和装置100によれば、冷房吸着モードの実行時間を冷房脱着モードの実行時間よりも長くしているため、冷房吸着モードおよび冷房脱着モードのそれぞれにおいて吸着部材の体積当たりの水分移動量を増加させることができる。よって、吸着部材の吸着能力および脱着能力を十分に発揮させることができ、吸着部材の体積当たりの除湿能力を向上させることができる。これにより、除湿能力を維持しつつ、吸着部材および吸脱着装置22を小型化または薄型化することができるため、吸脱着装置22での空気の圧力損失を低減させることができる。
 また、本実施の形態1に係る空気調和装置100において、コントローラ40は、第一入口温度センサ28aによって検出された入口温度と、第二出口温度センサ28dによって検出された出口温度との差が、あらかじめ設定された値となるように第二膨張弁14を制御する高能力冷房吸着モードを備えたものである。
 本実施の形態1に係る空気調和装置100によれば、第一入口温度センサ28aによって検出された入口温度と、第一出口温度センサ28bによって検出された出口温度との差が、あらかじめ設定された値となるように第二膨張弁14を制御する冷房吸着モードに比べて、冷房能力が高くすることができる高能力冷房吸着モードを備えている。つまり、高能力冷房吸着モードでは、第二室内熱交換器24での冷却能力を確保するために、過熱度(SH)を算出する際に温度測定する位置が冷房吸着モードと異なっており、高能力冷房吸着モードでは、第二膨張弁14の開度および圧縮機11の運転周波数を、冷房吸着モードと変えている。そのため、冷房吸着モードでは、第二室内熱交換器24において冷媒と室内空気とで顕熱交換が行われるが、高能力冷房吸着モードでは、第二室内熱交換器24において冷媒と室内空気とで潜熱交換が行われることになり、第二室内熱交換器24で空気をより冷却することができる。そして、例えば起動時あるいは顕熱負荷が大きい時などの高負荷時でも高能力冷房吸着モードで対応することができる。
 また、本実施の形態1に係る空気調和装置100において、吸着部材は、相対湿度が40~100%の空気に対する単位質量あたりの平衡吸着量が、相対湿度の上昇に対して直線的に増加するものである。
 本実施の形態1に係る空気調和装置100によれば、吸着部材は、相対湿度が40~100%の空気に対する単位質量あたりの平衡吸着量が、相対湿度の上昇に対して直線的に増加する。そのため、冷房吸着モードで吸脱着装置22を通過する空気に対する吸着部材の平衡吸着量と、冷房脱着モードで吸脱着装置22を通過する空気に対する吸着部材の平衡吸着量との差を大きくすることができる。そのため、吸着部材の吸着能力および脱着能力をより高めることができる。
 また、本実施の形態1に係る空気調和装置100において、吸着部材は、相対湿度が80~100%の空気に対する単位質量あたりの平衡吸着量が、相対湿度が40~60%の空気に対する前記平衡吸着量に対して1.2倍以上である。
 本実施の形態1に係る空気調和装置100によれば、吸着部材は、相対湿度が80~100%の空気に対する単位質量あたりの平衡吸着量が、相対湿度が40~60%の空気に対する前記平衡吸着量に対して1.2倍以上である。そのため、流入空気温度の低下による除湿能力の低下を抑制できる。
 実施の形態2.
 以下、本実施の形態2について説明するが、実施の形態1と重複するものについては説明を省略し、実施の形態1と同じ部分または相当する部分には同じ符号を付す。
 吸脱着装置22は熱容量を持っているため、実施の形態1では、吸着運転である冷房吸着モードと、脱着運転である冷房脱着モードとの切替えが行われる時に熱損失が発生してしまう。また、実施の形態1では、第一室内熱交換器23と第二室内熱交換器24との間に吸脱着装置22が配置されているため、室内機20が大型化してしまう場合がある。
 そこで、本実施の形態2では、第一室内熱交換器23および第二室内熱交換器24のいずれとも別体となる吸脱着装置22を設けずに、第一室内熱交換器23と吸着部材とが一体化した吸着熱交換器26を設ける。
[空気調和装置100の構成]
 図11は、本実施の形態2に係る空気調和装置100の構成の一例を示す冷媒回路図である。図11に示すように、本実施の形態2では、実施の形態1における吸脱着装置22が除かれるとともに、第一室内熱交換器23と吸着部材とが一体化した吸着熱交換器26が設けられている。
 吸着熱交換器26は、第二室内熱交換器24と直列に接続されるとともに、室内機20における風路20aの最上流に配置されている。吸着熱交換器26は、第一室内熱交換器23の表面に吸着部材が形成されている。吸着部材は、第一室内熱交換器23の表面に塗布または担持されることによって形成されている。吸着熱交換器26では、第一室内熱交換器23で蒸発した冷媒の蒸発熱を、空気を介さずに吸着部材の吸着反応に直接用いることができる。
 次に、本実施の形態2に係る空気調和装置100の冷房運転時の各モードにおける動作について説明するが、暖房運転における動作については説明を省略する。
(冷房吸着モード)
 図12は、本実施の形態2に係る空気調和装置100の冷房吸着モード時における動作について説明するための概略図である。冷房吸着モード時において、圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機15によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、相対的に低開度に設定された第二膨張弁14によって減圧され、低温低圧の気液二相冷媒となり、吸着熱交換器26に流入する。吸着熱交換器26に流入した低温低圧の気液二相冷媒は、室内送風機21によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに、低圧のガス冷媒となって吸着熱交換器26から流出する。吸着熱交換器26から流出した低圧のガス冷媒は、相対的に高開度に設定された第一膨張弁25によって減圧された後、第二室内熱交換器24に流入する。第二室内熱交換器24に流入した低圧のガス冷媒は、吸着熱交換器26を通過した室内空気と熱交換して吸熱しながら蒸発し、室内空気と顕熱交換が行われ、室内空気をさらに冷却する。第二室内熱交換器24から流出した低圧のガス冷媒は、室内機20から流出する。室内機20から流出した低圧のガス冷媒は、圧縮機11へ吸入される。
 図13は、本実施の形態2に係る空気調和装置100の冷房吸着モード時における空気の状態変化を示す湿り空気線図である。図13の横軸は温度[℃]を示し、縦軸は絶対湿度[kg/kg’]を示す。図13中の点A1、点B1、および、点C1は、図12中の(A1)、(B1)、および、(C1)の位置にそれぞれ対応している。また、冷房吸着モード時は、第二膨張弁14が相対的に低開度に設定されており、第一膨張弁25が相対的に高開度に設定されている。なお、図13は、吸着熱交換器26が水分の保持量が少ない状態、例えば周囲空気で飽和した状態での空気の状態変化を示す図であるものとする。
 図13では、図6に示した実施の形態1の空気の状態変化を破線で示している。図13に示す点A1の空気の状態は、図6に示した点A1の空気の状態と同様である。また、図15に示す点B1および点C1の空気の状態は、図6に示した点C1および点D1の空気の状態とそれぞれ同様である。
 実施の形態1では、第一室内熱交換器23での冷媒の蒸発熱が、風路20aを流れる空気を介して吸脱着装置22の吸着部材に伝達される。そのため、冷媒の蒸発熱が吸着部材以外の部材に放熱される熱損失が生じてしまう場合がある。
 これに対し、本実施の形態2では、冷媒の蒸発熱が空気を介さずに吸着部材に直接伝達されるため、上記の熱損失の発生を防ぐことができ、吸着部材を高効率で冷却することができる。したがって、冷房吸着モードにおいて蒸発温度を高く設定することができるため、空気調和装置100の省エネルギー性を向上させることができる。
(冷房脱着モード)
 図14は、本実施の形態2に係る空気調和装置100の冷房脱着モード時における動作について説明するための概略図である。冷房脱着モード時において、圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機15によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、相対的に高開度に設定された第二膨張弁14によって減圧され、吸着熱交換器26に流入する。吸着熱交換器26に流入した液冷媒は、室内送風機21によって取り込まれた室内空気と熱交換して放熱しながら凝縮し、室内空気を加熱して吸着熱交換器26から流出する。吸着熱交換器26から流出した液冷媒は、相対的に低開度に設定された第一膨張弁25によって減圧され、低温低圧の気液二相冷媒となり、第二室内熱交換器24に流入する。第二室内熱交換器24に流入した低温低圧の気液二相冷媒は、吸着熱交換器26を通過した室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却するとともに、低圧のガス冷媒となって第二室内熱交換器24から流出する。第二室内熱交換器24から流出した低圧のガス冷媒は、室内機20から流出する。室内機20から流出した低圧のガス冷媒は、圧縮機11へ吸入される。
 図15は、本実施の形態2に係る空気調和装置100の冷房脱着モード時における空気の状態変化を示す湿り空気線図である。図15の横軸は温度[℃]を示し、縦軸は絶対湿度[kg/kg’]を示す。図15中の点A2、点B2、および、点C2は、図14中の(A2)、(B2)、および、(C2)の位置にそれぞれ対応している。また、冷房脱着モード時は、第二膨張弁14が相対的に高開度に設定されており、第一膨張弁25が相対的に低開度に設定されている。なお、図15は、吸着熱交換器26が水分の保持量が多い状態、例えば冷房吸着モードで飽和した状態での空気の状態変化を示す図であるものとする。
 図15では、図8に示した実施の形態1の空気の状態変化を破線で示している。図15に示す点A2の空気の状態は、図8に示した点A2の空気の状態と同様である。また、図15に示す点B2および点C2の空気の状態は、図8に示した点C2および点D2の空気の状態とそれぞれ同様である。
(高能力冷房吸着モード)
 図16は、本実施の形態2に係る空気調和装置100の高能力冷房吸着モード時における動作について説明するための概略図である。高能力冷房吸着モード時において、圧縮機11から吐出された高温高圧のガス冷媒は、冷媒流路切替装置12を介して室外熱交換器13に流入する。室外熱交換器13に流入した高温高圧のガス冷媒は、室外送風機15によって取り込まれた室外空気と熱交換して放熱しながら凝縮し、高圧の液冷媒となって室外熱交換器13から流出する。室外熱交換器13から流出した高圧の液冷媒は、相対的に低開度に設定された第二膨張弁14によって減圧され、低温低圧の気液二相冷媒となり、吸着熱交換器26に流入する。吸着熱交換器26に流入した低温低圧の気液二相冷媒は、室内送風機21によって取り込まれた室内空気と熱交換して吸熱しながら蒸発し、室内空気を冷却し、吸着熱交換器26から流出する。吸着熱交換器26から流出した低温低圧の気液二相冷媒は、相対的に高開度に設定された第一膨張弁25によって減圧された後、第二室内熱交換器24に流入する。第二室内熱交換器24に流入した低温低圧の気液二相冷媒は、吸着熱交換器26を通過した室内空気と熱交換して吸熱しながら蒸発し、室内空気と潜熱交換が行われ、室内空気をさらに冷却し、低圧のガス冷媒となって第二室内熱交換器24から流出する。第二室内熱交換器24から流出した低圧のガス冷媒は、室内機20から流出する。室内機20から流出した低圧のガス冷媒は、圧縮機11へ吸入される。
 図17は、本実施の形態2に係る空気調和装置100の高能力冷房吸着モード時における空気の状態変化を示す湿り空気線図である。図17の横軸は温度[℃]を示し、縦軸は絶対湿度[kg/kg’]を示す。図17中の点A1、点B1、および、点C1は、図16中の(A1)、(B1)、および、(C1)の位置にそれぞれ対応している。また、高能力冷房吸着モード時は、第二膨張弁14が相対的に低開度に設定されており、第一膨張弁25が相対的に高開度に設定されている。なお、図17は、吸着熱交換器26が水分の保持量が少ない状態、例えば周囲空気で飽和した状態での空気の状態変化を示す図であるものとする。
 図17では、図10に示した実施の形態1の空気の状態変化を破線で示している。図17に示す点A1の空気の状態は、図10に示した点A1の空気の状態と同様である。また、図17に示す点B1および点C1の空気の状態は、図10に示した点C1および点D1の空気の状態とそれぞれ同様である。
 実施の形態1では、第一室内熱交換器23での冷媒の蒸発熱が、風路20aを流れる空気を介して吸脱着装置22の吸着部材に伝達される。そのため、冷媒の蒸発熱が吸着部材以外の部材に放熱される熱損失が生じてしまう場合がある。
 これに対し、本実施の形態2では、冷媒の蒸発熱が空気を介さずに吸着部材に直接伝達されるため、上記の熱損失の発生を防ぐことができ、吸着部材を高効率で冷却することができる。したがって、高能力冷房吸着モードにおいて蒸発温度を高く設定することができるため、空気調和装置100の省エネルギー性を向上させることができる。
 次に、本実施の形態2に係る空気調和装置100の冷房運転時の各モードの切替制御について説明する。
(冷房吸着モードと冷房脱着モードとの切替制御)
 本実施の形態2では、除湿を行う際に冷房吸着モードと冷房脱着モードとを交互に実行する必要がある。冷房吸着モードと冷房脱着モードとを切り替えるタイミングは、各モードが開始されてからの時間などに基づいて判断される。例えば、冷房吸着モードと冷房脱着モードとは10分毎に切り替えられる。なお、冷房吸着モードと冷房脱着モードとの切り替えは、第二膨張弁14および第一膨張弁25の開度を変更することによって行われる。本実施の形態2の冷房吸着モードおよび冷房脱着モードでは、室外のように環境変化が大きい空間の空気ではなく、室内などの環境変化が小さい空間の空気を用いて、吸着部材に対する水分の吸着および脱着が行われる。このため、吸着部材が平衡状態となる条件を予測しやすくなる。
 したがって、あらかじめ設定された切替時間で冷房吸着モードと冷房脱着モードとが切り替えられたとしても、冷房吸着モードでは吸着部材の吸着能力を十分に発揮させることができ、冷房脱着モードでは吸着部材の脱着能力を十分に発揮させることができる。これにより、除湿能力を維持した連続的な除湿運転が可能となる。除湿能力を最適化するために、切替時間の設定が、外部からの操作により変更できるようになっていてもよい。また、冷房吸着モードと冷房脱着モードとを切り替えるタイミングは、点B1および点B2の状態における温度に基づいて判断されるようにしてもよい。その場合は、冷房吸着モード時において、点B1の状態における温度が下げ止まったら冷房脱着モードへの切り替えが行われ、冷房脱着モード時において、点B2の状態における温度が上げ止まったら冷房吸着モードへの切り替えが行われる。
 また、冷房吸着モードにおいて、吸着熱交換器26の表面では、空気中の水分を吸着して吸着熱を放熱する吸着反応が生じるが、その際に、発生した吸着熱は冷媒の相変化で発生する潜熱によって同時処理されることになる。その結果、本実施の形態2では、実施の形態1に比べて吸着熱による通過空気の変化が小さくなり、吸着速度が速くなる傾向がある。
 一方、冷房脱着モードにおいて、冷媒からの加熱量次第では、脱着速度を変更することが可能となる。実際には、冷房吸着モードでは、ドレンが発生しないため、実ドレン発生量はゼロであり、冷房脱着モードが冷房吸着モードよりも長い方が、除湿量として上昇しやすい傾向にある。
 そこで、冷房脱着モードの実行時間を冷房吸着モードの実行時間よりも長く設定することにより、冷房吸着モードおよび冷房脱着モードのそれぞれにおいて吸着部材の体積当たりの水分移動量を増加させることができる。よって、吸着部材の吸着能力および脱着能力を十分に発揮させることができ、吸着部材の体積当たりの除湿能力を向上させることができる。これにより、除湿能力を維持しつつ、吸脱着装置22を除くことができるので、室内機20を小型化または薄型化することができる。
 また、冷媒の蒸発熱が空気を介さずに吸着部材に直接伝達されるため、上記の熱損失の発生を防ぐことができ、吸着部材を高効率で冷却することができる。したがって、冷房吸着モードにおいて蒸発温度を高く設定することができるため、空気調和装置100の省エネルギー性を向上させることができる。
(冷房吸着モードと高能力冷房吸着モードとの切替制御)
 高い冷房能力が必要な場合では、冷房吸着モードから高能力冷房吸着モードに切り替える必要がある。冷房吸着モードと高能力冷房脱着モードとを切り替えるタイミングは、例えば起動時あるいは顕熱負荷が大きい時などが挙げられる。
 本実施の形態2に係る空気調和装置100は、圧縮機11および室外熱交換器13を有し、室外空間から室外空気を取り込んで室外空間に室外空気を排出する室外機10と、第一膨張弁25、第一室内熱交換器23、および、第二室内熱交換器24を有し、室内空間から室内空気を取り込んで室内空間に室内空気を排出する室内機20と、を備えた空気調和装置100であって、室外機10または室内機20に設けられた第二膨張弁14と、圧縮機11、室外熱交換器13、第二膨張弁14、第一室内熱交換器23、第一膨張弁25、第二室内熱交換器24、が順次配管で接続された冷媒回路と、第一膨張弁25および第二膨張弁14の開度を制御するコントローラ40と、を備え、第一室内熱交換器23の表面には、空気中の水分を吸着する吸着部材が形成されており、室内機20は、内部に取り込んだ室内空気が通過する風路20aが形成されており、第一室内熱交換器23、および、第二室内熱交換器24は風路20a上に配置されており、第二室内熱交換器24は、第一室内熱交換器23の下流側に配置されており、コントローラ40は、第一膨張弁25および第二膨張弁14の開度を制御し、第一室内熱交換器23により室内空気中の水分を吸着する冷房吸着モードと、吸着した水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行うものである。
 本実施の形態2に係る空気調和装置100によれば、室内空間から室内空気を取り込んで室内空間に室内空気を排出する室内機20を備えている。つまり、室内空間に供給する空気として、室外空気に比べて湿度の変動が少ない室内空気が用いられている。また、コントローラ40は、第一膨張弁25および第二膨張弁14の開度を制御し、第一室内熱交換器23により室内空気中の水分を吸着する冷房吸着モードと、吸着した水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行っている。つまり、第一室内熱交換器23の吸着部材の吸脱着にヒータが用いられていない。その結果、より少ない消費電力で安定した除湿能力を得ることができる。
 また、冷媒の蒸発熱が空気を介さずに吸着部材に直接伝達されるため、冷媒の蒸発熱が吸着部材以外の部材に放熱される熱損失の発生を防ぐことができ、吸着部材を高効率で冷却することができる。したがって、冷房吸着モードにおいて蒸発温度を高く設定することができるため、空気調和装置100の省エネルギー性を向上させることができる。
 10 室外機、10a 風路、11 圧縮機、12 冷媒流路切替装置、13 室外熱交換器、14 第二膨張弁、15 室外送風機、19 室外機制御基板、20 室内機、20a 風路、21 室内送風機、22 吸脱着装置、22a 多孔質平板、22b 小透孔、23 第一室内熱交換器、24 第二室内熱交換器、25 第一膨張弁、26 吸着熱交換器、27 室内機制御基板、28a 第一入口温度センサ、28b 第一出口温度センサ、28c 第二入口温度センサ、28d 第二出口温度センサ、40 コントローラ、41 情報取得部、42 演算処理部、43 機器制御部、44 記憶部、51 伝送線、100 空気調和装置。

Claims (12)

  1.  圧縮機および室外熱交換器を有し、室外空間から室外空気を取り込んで前記室外空間に前記室外空気を排出する室外機と、第一膨張弁、第一室内熱交換器、および、第二室内熱交換器を有し、室内空間から室内空気を取り込んで前記室内空間に前記室内空気を排出する室内機と、を備えた空気調和装置であって、
     前記室外機または前記室内機に設けられた第二膨張弁と、
     前記圧縮機、前記室外熱交換器、前記第二膨張弁、前記第一室内熱交換器、前記第一膨張弁、前記第二室内熱交換器、が順次配管で接続された冷媒回路と、
     空気中の水分を吸着する吸着部材を有する吸脱着装置と、
     前記第一膨張弁および前記第二膨張弁の開度を制御するコントローラと、を備え、
     前記室内機は、内部に取り込んだ前記室内空気が通過する風路が形成されており、
     前記第一室内熱交換器、前記吸脱着装置、および、前記第二室内熱交換器は前記風路上に配置されており、
     前記第二室内熱交換器は、前記第一室内熱交換器の下流側に配置され、前記吸脱着装置は、前記第一室内熱交換器の下流側であって前記第二室内熱交換器の上流側に配置されており、
     前記コントローラは、前記第一膨張弁および前記第二膨張弁の開度を制御し、前記吸脱着装置により前記室内空気中の水分を吸着する冷房吸着モードと、吸着した前記水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行う
     空気調和装置。
  2.  前記吸脱着装置は、多孔質平板で構成されている
     請求項1に記載の空気調和装置。
  3.  前記多孔質平板は、該多孔質平板の厚さ方向に空気を通過させる複数の小透孔が形成された通風体である
     請求項2に記載の空気調和装置。
  4.  圧縮機および室外熱交換器を有し、室外空間から室外空気を取り込んで前記室外空間に前記室外空気を排出する室外機と、第一膨張弁、第一室内熱交換器、および、第二室内熱交換器を有し、室内空間から室内空気を取り込んで前記室内空間に前記室内空気を排出する室内機と、を備えた空気調和装置であって、
     前記室外機または前記室内機に設けられた第二膨張弁と、
     前記圧縮機、前記室外熱交換器、前記第二膨張弁、前記第一室内熱交換器、前記第一膨張弁、前記第二室内熱交換器、が順次配管で接続された冷媒回路と、
     前記第一膨張弁および前記第二膨張弁の開度を制御するコントローラと、を備え、
     前記第一室内熱交換器の表面には、空気中の水分を吸着する吸着部材が形成されており、
     前記室内機は、内部に取り込んだ前記室内空気が通過する風路が形成されており、
     前記第一室内熱交換器、および、前記第二室内熱交換器は前記風路上に配置されており、
     前記第二室内熱交換器は、前記第一室内熱交換器の下流側に配置されており、
     前記コントローラは、前記第一膨張弁および前記第二膨張弁の開度を制御し、前記第一室内熱交換器により前記室内空気中の水分を吸着する冷房吸着モード、と、吸着した前記水分を脱着する冷房脱着モードとを備え、それらを切り替えることにより除湿制御を行う
     空気調和装置。
  5.  前記コントローラは、
     前記冷房吸着モード時は、前記第二膨張弁の開度を前記第一膨張弁の開度と比較して低開度に設定し、
     前記冷房脱着モード時は、前記第二膨張弁の開度を前記第一膨張弁の開度と比較して高開度に設定する
     請求項1~4のいずれか一項に記載の空気調和装置。
  6.  前記コントローラは、
     前記冷房吸着モードの実行時間が前記冷房脱着モードの実行時間よりも長くなるように、前記冷房吸着モードと前記冷房脱着モードとを切り替える
     請求項1~5のいずれか一項に記載の空気調和装置。
  7.  前記風路は、前記冷房吸着モードと前記冷房脱着モードとで同一経路である
     請求項1~6のいずれか一項に記載の空気調和装置。
  8.  前記コントローラは、
     前記冷房吸着モードと前記冷房脱着モードとを切り替えるタイミングを、各モードが開始されてからの時間に基づいて判断する
     請求項1~7のいずれか一項に記載の空気調和装置。
  9.  前記第一室内熱交換器の入口温度を検出する第一入口温度センサと、
     前記第一室内熱交換器の出口温度を検出する第一出口温度センサと、
     前記第二室内熱交換器の入口温度を検出する第二入口温度センサと、
     前記第二室内熱交換器の出口温度を検出する第二出口温度センサと、を備え、
     前記コントローラは、
     前記冷房吸着モードにおいて、
     前記第一入口温度センサによって検出された前記入口温度と、前記第一出口温度センサによって検出された前記出口温度との差が、あらかじめ設定された値となるように前記第二膨張弁を制御し、
     前記冷房脱着モードにおいて、
     前記第二入口温度センサによって検出された前記入口温度と、前記第二出口温度センサによって検出された前記出口温度との差が、あらかじめ設定された値となるように前記第一膨張弁を制御する
     請求項1~8のいずれか一項に記載の空気調和装置。
  10.  前記コントローラは、
     前記第一入口温度センサによって検出された前記入口温度と、前記第二出口温度センサによって検出された前記出口温度との差が、あらかじめ設定された値となるように前記第二膨張弁を制御する高能力冷房吸着モードを備えた
     請求項9に記載の空気調和装置。
  11.  前記吸着部材は、
     相対湿度が40~100%の空気に対する単位質量あたりの平衡吸着量が、相対湿度の上昇に対して直線的に増加する
     請求項1~10のいずれか一項に記載の空気調和装置。
  12.  前記吸着部材は、
     相対湿度が80~100%の空気に対する単位質量あたりの平衡吸着量が、相対湿度が40~60%の空気に対する前記平衡吸着量に対して1.2倍以上である
     請求項1~11のいずれか一項に記載の空気調和装置。
PCT/JP2019/017437 2019-04-24 2019-04-24 空気調和装置 WO2020217341A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/017437 WO2020217341A1 (ja) 2019-04-24 2019-04-24 空気調和装置
ES19926632T ES2983718T3 (es) 2019-04-24 2019-04-24 Dispositivo de aire acondicionado
EP19926632.1A EP3961112B1 (en) 2019-04-24 2019-04-24 Air-conditioning device
US17/432,314 US11828487B2 (en) 2019-04-24 2019-04-24 Air-conditioning apparatus
JP2021515375A JP7126611B2 (ja) 2019-04-24 2019-04-24 空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017437 WO2020217341A1 (ja) 2019-04-24 2019-04-24 空気調和装置

Publications (1)

Publication Number Publication Date
WO2020217341A1 true WO2020217341A1 (ja) 2020-10-29

Family

ID=72940631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017437 WO2020217341A1 (ja) 2019-04-24 2019-04-24 空気調和装置

Country Status (5)

Country Link
US (1) US11828487B2 (ja)
EP (1) EP3961112B1 (ja)
JP (1) JP7126611B2 (ja)
ES (1) ES2983718T3 (ja)
WO (1) WO2020217341A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210396404A1 (en) * 2020-06-22 2021-12-23 Micah Laughmiller Innovative System for Providing Hyper Efficient HVAC

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257968A (ja) 1999-03-05 2000-09-22 Daikin Ind Ltd 空気調和装置
JP2007240128A (ja) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp 熱交換器用フィン、熱交換器及び空気調和装置
WO2014118871A1 (ja) * 2013-01-29 2014-08-07 三菱電機株式会社 除湿装置
JP2014208320A (ja) * 2013-04-16 2014-11-06 三菱電機株式会社 空気調和装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100592954B1 (ko) * 2004-06-01 2006-06-26 삼성전자주식회사 공기조화기
JP4593689B1 (ja) * 2010-03-30 2010-12-08 株式会社アピステ 精密空調機
JP6223262B2 (ja) * 2014-04-04 2017-11-01 三菱電機株式会社 空気調和機の室外機
JP6485833B2 (ja) 2015-04-15 2019-03-20 一般財団法人電力中央研究所 ヒートポンプシステム
JP6494765B2 (ja) 2015-08-20 2019-04-03 三菱電機株式会社 空気調和システム
JP6622631B2 (ja) 2016-03-11 2019-12-18 東プレ株式会社 外気処理装置
JP6659853B2 (ja) 2016-08-25 2020-03-04 三菱電機株式会社 空気調和装置、空気調和方法及びプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000257968A (ja) 1999-03-05 2000-09-22 Daikin Ind Ltd 空気調和装置
JP2007240128A (ja) * 2006-03-13 2007-09-20 Mitsubishi Electric Corp 熱交換器用フィン、熱交換器及び空気調和装置
WO2014118871A1 (ja) * 2013-01-29 2014-08-07 三菱電機株式会社 除湿装置
JP2014208320A (ja) * 2013-04-16 2014-11-06 三菱電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3961112A4

Also Published As

Publication number Publication date
EP3961112A1 (en) 2022-03-02
JP7126611B2 (ja) 2022-08-26
US20220341604A1 (en) 2022-10-27
US11828487B2 (en) 2023-11-28
EP3961112B1 (en) 2024-05-15
EP3961112A4 (en) 2022-04-13
JPWO2020217341A1 (ja) 2021-10-21
ES2983718T3 (es) 2024-10-24

Similar Documents

Publication Publication Date Title
JP5822931B2 (ja) 調湿装置、空気調和システム及び調湿装置の制御方法
JP4169747B2 (ja) 空気調和機
JP5068235B2 (ja) 冷凍空調装置
TWI532957B (zh) Dehumidification device
JP4835688B2 (ja) 空気調和装置、空調システム
WO2014118871A1 (ja) 除湿装置
WO2012073386A1 (ja) 除湿装置
JP7113659B2 (ja) 空気調和装置
JP5631415B2 (ja) 空気調和システム及び調湿装置
JP5068293B2 (ja) 空気調和装置
JP5868416B2 (ja) 冷凍空調装置及び調湿装置
US10393393B2 (en) Dehumidifier
JP6138336B2 (ja) 空気調和装置、及び、空気調和装置の制御方法
JP5542777B2 (ja) 空気調和装置
JP5594030B2 (ja) コントローラ、調湿用制御部および空調処理システム
JP2013130389A (ja) 空気熱源ヒートポンプ装置
JP6141508B2 (ja) 空気調和装置、及び、空気調和装置の制御方法
WO2020217341A1 (ja) 空気調和装置
JP7233538B2 (ja) 空気調和装置
JP2020012603A (ja) 空気調和システム
JP2007192436A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926632

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021515375

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019926632

Country of ref document: EP

Effective date: 20211124