WO2020217314A1 - 駆動装置、触覚提示装置及びアクチュエータの駆動方法 - Google Patents

駆動装置、触覚提示装置及びアクチュエータの駆動方法 Download PDF

Info

Publication number
WO2020217314A1
WO2020217314A1 PCT/JP2019/017230 JP2019017230W WO2020217314A1 WO 2020217314 A1 WO2020217314 A1 WO 2020217314A1 JP 2019017230 W JP2019017230 W JP 2019017230W WO 2020217314 A1 WO2020217314 A1 WO 2020217314A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive waveform
actuator
partial drive
partial
waveform
Prior art date
Application number
PCT/JP2019/017230
Other languages
English (en)
French (fr)
Inventor
田中 康治
陽介 由井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/017230 priority Critical patent/WO2020217314A1/ja
Priority to JP2020526655A priority patent/JPWO2020217314A1/ja
Publication of WO2020217314A1 publication Critical patent/WO2020217314A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism

Definitions

  • the present invention relates to a driving device, a tactile presentation device, and a driving method of an actuator.
  • Patent Document 1 discloses a system that generates a vibration-tactile haptic effect.
  • a first actuator signal having a resonance frequency of the actuator is applied to the actuator to generate a vibration-tactile haptic effect on the actuator.
  • a second actuator signal having a phase different from that of the first actuator signal by 180 degrees is applied to the actuator to shorten the time required to brake the actuator.
  • Patent Document 2 discloses an electronic device that presents a tactile stimulus to a user who operates a touch panel.
  • This electronic device includes a touch panel and an actuator that vibrates the touch panel.
  • the actuator has a resonance frequency of f 0 .
  • a drive signal corresponding to a sine wave having a frequency of f 1 given by m / n ⁇ f 0 (m and n are natural numbers and m ⁇ n) is applied to the actuator to shorten the residual vibration time of the actuator. There is.
  • Patent Document 1 cannot sufficiently shorten the time of residual vibration of the actuator. Further, in the electronic device disclosed in Patent Document 2, the actuator is driven at a frequency f 1 different from the resonance frequency f 0 . The vibration acceleration of the actuator cannot be increased sufficiently.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a mechanical vibration system with almost no reduction in the maximum amplitude of the vibration acceleration of the mechanical vibration system during a period in which a drive signal is applied. It is an object of the present invention to provide a driving device, a tactile presentation device, and a driving method of an actuator capable of further shortening the time of residual vibration.
  • the drive device of the first aspect of the present invention includes a storage unit in which data of the drive waveform is stored, and a drive signal generation unit configured to output a drive signal corresponding to the drive waveform to the actuator.
  • the drive waveform includes a first partial drive waveform and a second partial drive waveform following the first partial drive waveform.
  • the first partial drive waveform and the second partial drive waveform each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system vibrated by the actuator.
  • the mechanical vibration system includes an actuator and a touch panel vibrated by the actuator.
  • the second partial drive waveform has a second amplitude that is ⁇ times the first amplitude of the first partial drive waveform. ⁇ satisfies the following equation (1), and ⁇ is the damping ratio of the mechanical vibration system.
  • the drive device of the second aspect of the present invention includes a storage unit in which data of the drive waveform is stored, and a drive signal generation unit configured to output a drive signal corresponding to the drive waveform to the actuator.
  • the drive waveform includes a first partial drive waveform, a second partial drive waveform following the first partial drive waveform, and a third partial drive waveform following the second partial drive waveform.
  • the first partial drive waveform, the second partial drive waveform, and the third partial drive waveform each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system vibrated by the actuator.
  • the mechanical vibration system includes an actuator and a touch panel vibrated by the actuator.
  • the first partial drive waveform has a first amplitude that is ⁇ times the second amplitude of the second partial drive waveform.
  • the third partial drive waveform has a third amplitude that is -1 times the second amplitude. ⁇ satisfies the following equation (2), and ⁇ is the damping ratio of the mechanical vibration system.
  • the tactile presentation device of the present invention includes a touch panel, an actuator configured to vibrate the touch panel, and a first-phase or second-phase drive device configured to output a drive signal to the actuator. ..
  • the actuator driving method of the first aspect of the present invention includes reading the driving waveform data from the storage unit and outputting the driving signal corresponding to the driving waveform to the actuator.
  • the drive waveform includes a first partial drive waveform and a second partial drive waveform following the first partial drive waveform.
  • the first partial drive waveform and the second partial drive waveform each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system vibrated by the actuator.
  • the mechanical vibration system includes an actuator and a touch panel vibrated by the actuator.
  • the second partial drive waveform has a second amplitude that is ⁇ times the first amplitude of the first partial drive waveform. ⁇ satisfies the above equation (1), and ⁇ is the damping ratio of the mechanical vibration system.
  • the actuator driving method of the second aspect of the present invention includes reading the driving waveform data from the storage unit and outputting the driving signal corresponding to the driving waveform to the actuator.
  • the drive waveform includes a first partial drive waveform, a second partial drive waveform following the first partial drive waveform, and a third partial drive waveform following the second partial drive waveform.
  • the first partial drive waveform, the second partial drive waveform, and the third partial drive waveform each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system vibrated by the actuator.
  • the mechanical vibration system includes an actuator and a touch panel vibrated by the actuator.
  • the first partial drive waveform has a first amplitude that is ⁇ times the second amplitude of the second partial drive waveform.
  • the third partial drive waveform has a third amplitude that is -1 times the second amplitude. ⁇ satisfies the above equation (2), and ⁇ is the damping ratio of the mechanical vibration system.
  • the actuator is a drive signal corresponding to the first partial drive waveform and the second partial drive waveform. Driven by. Therefore, the drive device can further shorten the time of residual vibration of the mechanical vibration system. Further, since the first partial drive waveform and the second partial drive waveform each have a time length of 1 / f 0 , the drive signal applied to the actuator is a component of the resonance frequency f 0 of the mechanical vibration system. Is included a lot. The drive device drives the mechanical vibration system at its resonance frequency f 0 . The drive device hardly reduces the maximum amplitude of the vibration acceleration of the mechanical vibration system during the period when the drive signal is applied.
  • the actuator has a first partial drive waveform, a second partial drive waveform, and a third partial drive. It is driven by the drive signal corresponding to the waveform. Therefore, the drive device can further shorten the time of residual vibration of the mechanical vibration system. Further, since the first partial drive waveform, the second partial drive waveform, and the third partial drive waveform each have a time length of 1 / f 0 , the drive signal applied to the actuator has a mechanical vibration system. It contains many components with a resonance frequency of f 0 . The drive device drives the mechanical vibration system at its resonance frequency f 0 . The drive device hardly reduces the maximum amplitude of the vibration acceleration of the mechanical vibration system during the period when the drive signal is applied.
  • FIG. 6A is a diagram showing a waveform of a drive signal applied to the actuator in the first embodiment.
  • FIG. 6B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of the first embodiment.
  • FIG. 7A is a diagram showing a waveform of a drive signal applied to the actuator in Comparative Example 1.
  • FIG. 7B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of Comparative Example 1.
  • FIG. 8A is a diagram showing a waveform of a drive signal applied to the actuator in the second embodiment.
  • FIG. 8B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of the second embodiment.
  • FIG. 9A is a diagram showing a waveform of a drive signal applied to the actuator in Comparative Example 2.
  • FIG. 9B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of Comparative Example 2.
  • FIG. 10A is a diagram showing a waveform of a drive signal applied to the actuator in Comparative Example 3.
  • FIG. 10B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of Comparative Example 3.
  • FIG. 11A is a diagram showing a waveform of a drive signal applied to the actuator in Comparative Example 4.
  • FIG. 11B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of Comparative Example 4.
  • FIG. 12A is a diagram showing a waveform of a drive signal applied to the actuator in the third embodiment.
  • FIG. 12B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of the third embodiment.
  • FIG. 13A is a diagram showing a waveform of a drive signal applied to the actuator in the fourth embodiment.
  • FIG. 13B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of the fourth embodiment.
  • FIG. 14A is a diagram showing a waveform of a drive signal applied to the actuator in the fifth embodiment.
  • FIG. 14B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of the fifth embodiment.
  • FIG. 15A is a diagram showing a waveform of a drive signal applied to the actuator in the sixth embodiment.
  • FIG. 15B is a diagram showing the time change of the vibration acceleration of the actuator and the mechanical vibration system of the sixth embodiment.
  • the tactile presentation device 1 of the first embodiment will be described with reference to FIGS. 1 to 4.
  • the tactile presentation device 1 mainly includes a touch panel 12, an actuator 14, and a drive device 20.
  • the tactile presentation device 1 may further include a housing 11.
  • the housing 11 is made of, for example, metal or resin.
  • the housing 11 is, for example, a housing of a display device such as a liquid crystal display device or an organic EL display device.
  • the touch panel 12 is arranged on the user side with respect to the housing 11. The touch panel 12 is configured so that the user touches a finger to perform an operation.
  • the actuator 14 is configured to vibrate the touch panel 12. Specifically, as shown in FIG. 1, the actuator 14 may be attached to the touch panel 12 and the housing 11. As shown in FIG. 2, in the first modification of the present embodiment, the actuator 14 may be attached to the touch panel 12 and may be separated from the housing 11. In the present embodiment and the first modification thereof, when the actuator 14 vibrates, the touch panel 12 also vibrates. In the present embodiment and the first modification thereof, the mechanical vibration system 10 vibrated by the actuator 14 includes the actuator 14 and the touch panel 12.
  • the actuator 14 may be attached to the touch panel 12 and the housing 11, and the touch panel 12 is attached to the housing 11 by the connecting member 13. It may be connected.
  • the touch panel 12 vibrates.
  • the touch panel 12, the housing 11, and the connecting member 13 bend and act as a part of the spring and the damper of the mechanical vibration system 10.
  • the mechanical vibration system 10 vibrated by the actuator 14 includes the actuator 14, the touch panel 12, the housing 11, and the connecting member 13.
  • the connecting member 13 may be, for example, double-sided tape or a spacer.
  • the touch panel 12 may be connected to the housing 11 by the connecting member 13, and the actuator 14 may be attached to the housing 11. Moreover, it may be separated from the touch panel 12.
  • the actuator 14 vibrates
  • the housing 11 vibrates
  • the touch panel 12 connected to the housing 11 via the connecting member 13 also vibrates.
  • the mechanical vibration system 10 vibrated by the actuator 14 includes the actuator 14, the touch panel 12, the housing 11, and the connecting member 13.
  • the actuator 14 is not particularly limited, but is, for example, a voice coil type linear resonance actuator (LRA). As shown in FIG. 1, the actuator 14 may include a fixing member 15, a vibrating member 16, and a spring 17 connected to the fixing member 15 and the vibrating member 16.
  • the fixing member 15 may be attached to the housing 11, and the vibrating member 16 may be attached to the touch panel 12.
  • the vibrating member 16 is movably connected to the fixing member 15 by a spring 17.
  • the mass, spring constant, and damping coefficient of the mechanical vibration system 10 are m (kg), k (N / m), and c (N (m / s)), respectively.
  • the mass m (kg) is the mass of the mechanical vibration system 10 including a part of the actuator 14 and the touch panel 12.
  • the spring constant k is given by the spring constant of the spring 17 and the spring constant corresponding to the bending of the members (for example, the touch panel 12, the housing 11, and the connecting member 13) that bend when the actuator 14 vibrates.
  • the damping coefficient c is the damping coefficient of the spring 17, the damping coefficient corresponding to the bending of the member (for example, the touch panel 12, the housing 11 and the connecting member 13) that bends when the actuator 14 vibrates, and the inverse that occurs in the actuator 14. It is given by the damping coefficient corresponding to the electromagnetic braking by the electromotive force.
  • the mass is 0.1 (kg)
  • the spring constant k is 1.5785 ⁇ 10 5 (N / m )
  • the damping coefficient c is 5.0255 (N / (m / s)) may be used.
  • the resonance frequency f 0 and the attenuation ratio ⁇ of the mechanical vibration system 10 are given by Eqs. (3) and (4), respectively.
  • the resonance frequency f 0 may be 200 (Hz) and the attenuation ratio ⁇ may be 0.02.
  • the drive device 20 is configured to output a drive signal to the actuator 14.
  • the drive device 20 is communicably connected to the actuator 14.
  • the drive device 20 includes a drive signal generation unit 21 and a storage unit 25.
  • the drive signal generation unit 21 is configured to output a drive signal corresponding to the drive waveform 40 stored as data in the storage unit 25 to the actuator 14.
  • the drive signal generation unit 21 may include, for example, a trigger signal reception circuit 22, a signal transfer circuit 23, and a drive circuit 24.
  • the trigger signal receiving circuit 22 is configured to receive the trigger signal.
  • the trigger signal indicates the timing of starting the vibration of the actuator 14 and the mechanical vibration system 10.
  • the trigger signal may be generated by the touch panel 12, for example.
  • the touch panel 12 includes a touch sensor 12s.
  • the touch sensor 12s is configured to detect that the user touches it with a finger and transmit a trigger signal to the trigger signal receiving circuit 22.
  • the touch panel 12 transmits a trigger signal to the trigger signal receiving circuit 22.
  • the trigger signal may be generated, for example, by a computer (not shown) communicatively connected to a camera (not shown) arranged to capture the touch panel 12.
  • the camera is configured to capture the movement of the user's finger.
  • the computer is configured to transmit a trigger signal to the trigger signal receiving circuit 22 based on the captured movement of the user's finger.
  • the user touches the touch panel 12 with a finger.
  • the image of the user's finger movement captured by the camera is transmitted to the computer.
  • the computer transmits a trigger signal to the trigger signal receiving circuit 22 based on the image of the movement of the user's finger.
  • the trigger signal receiving circuit 22 may include an A / D converter (not shown).
  • the A / D converter is configured to convert an analog trigger signal transmitted from the touch panel 12 (touch sensor 12s) into a digital trigger signal.
  • the trigger signal receiving circuit 22 may include a digital interface (not shown). The digital interface is configured to transmit a digital trigger signal transmitted from the touch panel 12 (touch sensor 12s) to the signal transfer circuit 23.
  • the signal transfer circuit 23 is configured to receive the trigger signal from the trigger signal receiving circuit 22 and read the drive waveform data from the storage unit 25.
  • the signal transfer circuit 23 is configured to transmit the drive waveform data read from the storage unit 25 to the drive circuit 24.
  • the storage unit 25 may be, for example, a non-volatile storage device such as a flash memory or a hard disk drive (HDD).
  • the data of the drive waveform 40 is stored in the storage unit 25.
  • the drive waveform 40 includes a first partial drive waveform 41 and a second partial drive waveform 42 following the first partial drive waveform 41.
  • the first partial drive waveform 41 and the second partial drive waveform 42 each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system 10 vibrated by the actuator 14.
  • the second partial drive waveform 42 has a second amplitude that is ⁇ times the first amplitude of the first partial drive waveform 41.
  • satisfies the following equation (5), and ⁇ is the damping ratio of the mechanical vibration system 10.
  • the drive circuit 24 may include a D / A converter 24a.
  • the D / A converter 24a is configured to convert the data of the digital drive waveform 40 into the data of the analog drive waveform 40.
  • the drive circuit 24 may include an amplifier 24b.
  • the amplifier 24b is configured to convert the data of the drive waveform 40 into a voltage signal (drive signal) that can drive the actuator 14.
  • the voice coil type LRA has a small impedance.
  • an amplifier in the form of an integrated circuit (IC) can be used.
  • the output voltage range of the drive circuit 24 may be from -4V to + 4V, and the maximum amplitude of the drive waveform 40 may be 4V.
  • the drive device 20 (drive signal generation unit 21, drive circuit 24) is configured to output a drive signal corresponding to the drive waveform 40 to the actuator 14.
  • the output terminal of the amplifier 24b of the drive circuit 24 may be electrically connected to the voice coil of the actuator 14.
  • the electric circuit constituting the drive device 20 may be composed of, for example, a dedicated logic circuit or a general-purpose digital signal processor (DSP).
  • DSP digital signal processor
  • the function of the electric circuit constituting the drive device 20 is to combine hardware such as a DSP, a memory, a hard disk drive (HDD) or an integrated circuit (IC) with software stored in the memory and controlling the hardware. Can be realized by.
  • the driving method of the actuator 14 of the present embodiment and the operation of the present embodiment will be described while comparing the first embodiment and the first comparative example.
  • the driving method of the actuator 14 of the present embodiment may include receiving a trigger signal (S1). Specifically, when the user touches the touch panel 12 with a finger, the drive device 20 (drive signal generation unit 21, trigger signal reception circuit 22) receives the trigger signal.
  • the trigger signal may be transmitted from the touch panel 12 (touch sensor 12s).
  • the trigger signal may be transmitted from a computer communicatively connected to a camera (not shown) that captures the touch panel 12.
  • the trigger signal receiving circuit 22 transmits the trigger signal to the signal transfer circuit 23.
  • the driving method of the actuator 14 of the present embodiment includes reading the data of the driving waveform 40 from the storage unit 25 (S2). Specifically, when the signal transfer circuit 23 receives the trigger signal from the trigger signal receiving circuit 22, the signal transfer circuit 23 reads the data of the drive waveform 40 from the storage unit 25 and transmits the data of the drive waveform 40 to the drive circuit 24.
  • the driving method of the actuator 14 of the present embodiment includes outputting a driving signal corresponding to the driving waveform 40 to the actuator 14 (S3).
  • the drive circuit 24 receives the data of the drive waveform 40 from the signal transfer circuit 23.
  • the drive circuit 24 may include a D / A converter 24a and an amplifier 24b.
  • the D / A converter 24a performs D / A conversion of the data of the drive waveform 40 read from the storage unit 25.
  • the amplifier 24b converts the D / A-converted drive waveform 40 data into a voltage signal (drive signal) that can drive the actuator 14.
  • the drive device 20 (drive circuit 24) outputs a drive signal corresponding to the drive waveform 40 to the actuator 14.
  • the drive signal corresponding to the drive waveform 40 is input to the actuator 14.
  • the actuator 14 is driven and vibrates by a drive signal corresponding to the drive waveform 40.
  • the touch panel 12 also vibrates.
  • a driving signal corresponding to the first partial drive waveform 41 is input to the actuator 14.
  • the first partial drive waveform 41 has a time length of 1 / f 0 .
  • the drive signal (for example, the drive signal corresponding to the second partial drive waveform 42) is not input to the actuator 14 after the drive signal corresponding to the first partial drive waveform 41.
  • the actuator 14 vibrates, and the mechanical vibration system 10 also vibrates.
  • the mechanical vibration system 10 performs damping free vibration at the resonance frequency f 0 of the mechanical vibration system 10 and the damping ratio ⁇ . Therefore, in Comparative Example 1, the time waveform Y 0 (t) of the vibration acceleration of the residual vibration of the mechanical vibration system 10 caused by the first partial drive waveform 41 is given by the following equation (6).
  • Y 0 (t) A ⁇ exp (-2 ⁇ f 0 ⁇ t) ⁇ sin (2 ⁇ f 0 t + ⁇ ) (6)
  • the residual vibration time of the actuator 14 and the mechanical vibration system 10 is very long.
  • the residual vibration of the actuator 14 and the mechanical vibration system 10 means the time when the input of the drive signal to the actuator 14 is completed and the vibration of the actuator 14 and the mechanical vibration system after the time.
  • the residual vibration time of the actuator 14 and the mechanical vibration system 10 is the time when the input of the drive signal to the actuator 14 is completed and the amplitude of the acceleration of the actuator 14 and the mechanical vibration system 10 is 0.02 G (0.2 m / m /).
  • s 2 Defined as the time between the following times.
  • the vibration acceleration of 0.02 G (0.2 m / s 2 ) is the lower limit acceleration at which the human finger can detect the vibration.
  • the actuator 14 has a drive signal corresponding to the drive waveform 40 including the first partial drive waveform 41 and the second partial drive waveform 42. Entered.
  • the first partial drive waveform 41 and the second partial drive waveform 42 each have a time length of 1 / f 0 .
  • the time waveform Y 1 (t) of the vibration acceleration of the residual vibration of the mechanical vibration system 10 caused by the first partial drive waveform 41 is given by the following equation (7) which is the same as the equation (6).
  • the second amplitude of the second partial drive waveform 42 is ⁇ times the first amplitude of the first partial drive waveform 41. Further, the second partial drive waveform 42 is delayed by (1 / f 0 ) seconds from the first partial drive waveform 41. Therefore, the time waveform Y 2 (t) of the vibration acceleration of the residual vibration of the mechanical vibration system 10 caused by the second partial drive waveform 42 is given by the following equation (8).
  • Equation (12) is derived from equation (11).
  • the vibration acceleration of 0.02 G (0.2 m / s 2 ) is the lower limit acceleration at which the human finger can detect the vibration. Therefore, in the present embodiment, the residual vibration can be suppressed to the extent that the difference in tactile sensation can be perceived as compared with Comparative Example 1 and Patent Document 1.
  • may be set so that the maximum amplitude of the vibration acceleration of the residual vibration of the mechanical vibration system 10 and the actuator 14 is 0.02 G (0.2 m / s 2 ) or less. Therefore, it is possible to prevent the residual vibration from being detected by the human finger. More specifically, as shown in FIG. 6 (A), ⁇ is -exp (-2 ⁇ ). At this time, the value on the right side of the equation (9) becomes zero. As shown in FIG. 6B, the maximum amplitude of the vibration acceleration of the residual vibration of the actuator 14 and the mechanical vibration system 10 becomes zero. The residual vibration of the actuator 14 and the mechanical vibration system 10 disappears.
  • the drive device 20 of the present embodiment has a storage unit 25 in which data of the drive waveform 40 is stored, and a drive signal generation unit 21 configured to output a drive signal corresponding to the drive waveform 40 to the actuator 14.
  • the drive waveform 40 includes a first partial drive waveform 41 and a second partial drive waveform 42 following the first partial drive waveform 41.
  • the first partial drive waveform 41 and the second partial drive waveform 42 each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system 10 vibrated by the actuator 14.
  • the mechanical vibration system 10 includes an actuator 14 and a touch panel 12 vibrated by the actuator 14.
  • the second partial drive waveform 42 has a second amplitude that is ⁇ times the first amplitude of the first partial drive waveform 41. ⁇ satisfies the above equation (5), and ⁇ is the damping ratio of the mechanical vibration system 10.
  • the actuator 14 is driven by a drive signal corresponding to the first partial drive waveform 41 and the second partial drive waveform 42. Therefore, the drive device 20 can further shorten the time of the residual vibration of the mechanical vibration system 10. Further, since the first partial drive waveform 41 and the second partial drive waveform 42 each have a time length of 1 / f 0 , the drive signal applied to the actuator 14 resonates with the mechanical vibration system 10. It contains many components with a frequency of f 0 . The drive device 20 drives the mechanical vibration system 10 at its resonance frequency f 0 . The drive device 20 hardly reduces the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period when the drive signal is applied. In this way, the drive device 20 makes it possible to provide the user with a click feeling such as the feeling when a mechanical button is pressed.
  • may be ⁇ exp (-2 ⁇ ). Therefore, the time of residual vibration of the mechanical vibration system 10 can be further shortened.
  • the tactile presentation device 1 of the present embodiment includes a touch panel 12, an actuator 14 configured to vibrate the touch panel 12, and a drive device 20 configured to output a drive signal to the actuator 14. .. Therefore, the tactile presentation device 1 can further shorten the residual vibration time of the mechanical vibration system 10 without reducing the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied. it can. In this way, the tactile presentation device 1 makes it possible to present the user with a click feeling such as the feeling when a mechanical button is pressed.
  • the driving method of the actuator 14 of the present embodiment includes reading the data of the driving waveform 40 from the storage unit 25 (S2) and outputting the driving signal corresponding to the driving waveform 40 to the actuator 14 (S3). ..
  • the drive waveform 40 includes a first partial drive waveform 41 and a second partial drive waveform 42 following the first partial drive waveform 41.
  • the first partial drive waveform 41 and the second partial drive waveform 42 each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system 10 vibrated by the actuator 14.
  • the mechanical vibration system 10 includes an actuator 14 and a touch panel 12 vibrated by the actuator 14.
  • the second partial drive waveform 42 has a second amplitude that is ⁇ times the first amplitude of the first partial drive waveform 41. ⁇ satisfies the above equation (5), and ⁇ is the damping ratio of the mechanical vibration system 10.
  • the actuator 14 is driven by a drive signal corresponding to the first partial drive waveform 41 and the second partial drive waveform 42. Therefore, the time of residual vibration of the mechanical vibration system 10 can be further shortened. Further, since the first partial drive waveform 41 and the second partial drive waveform 42 each have a time length of 1 / f 0 , the drive signal applied to the actuator 14 resonates with the mechanical vibration system 10. It contains many components with a frequency of f 0 . The mechanical vibration system 10 is driven at its resonance frequency f 0 .
  • the driving method of the actuator 14 of the present embodiment hardly reduces the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the driving signal is applied. In this way, the driving method of the actuator 14 of the present embodiment makes it possible to present the user with a click feeling such as the feeling when a mechanical button is pressed.
  • may be ⁇ exp (-2 ⁇ ). Therefore, the time of residual vibration of the mechanical vibration system 10 can be further shortened.
  • Embodiment 2 A method of driving the drive device 20, the tactile presentation device 1, and the actuator 14 according to the second embodiment will be described with reference to FIGS. 1 to 4 and 8.
  • the drive device 20 and the tactile presentation device 1 of the present embodiment have the same configurations as the drive device 20 and the tactile presentation device 1 of the first embodiment, and the driving method of the actuator 14 of the present embodiment is the embodiment. It includes the same steps as the driving method of the actuator 14 of No. 1, but is different from the first embodiment mainly in the following points.
  • the drive waveform 45 includes a first partial drive waveform 46 and a second partial drive waveform 47 following the first partial drive waveform 46.
  • the first partial drive waveform 46 and the second partial drive waveform 47 are waveforms of one cycle of a sine wave having a frequency of f 0 , respectively. Therefore, the drive signal applied to the actuator 14 contains more components of the resonance frequency f 0 of the mechanical vibration system 10.
  • the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the present embodiment during the period in which the drive signal is applied is larger than the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the first embodiment.
  • Comparative Example 2 As in Comparative Example 1, as shown in FIG. 9A, a drive signal corresponding to the first partial drive waveform 46 is input to the actuator 14. Therefore, as shown in FIG. 9B, the residual vibration time of the actuator 14 and the mechanical vibration system 10 is very long.
  • Comparative Example 3 As shown in FIG. 10A, a drive signal corresponding to the drive waveform 45b including the first partial drive waveform 46 and the second partial drive waveform 47b is input to the actuator 14.
  • the residual vibration time of the actuator 14 and the mechanical vibration system 10 is shorter than that in Comparative Example 2.
  • the residual vibration time of the actuator 14 and the mechanical vibration system 10 is further shortened as compared with Comparative Example 3.
  • FIG. 11B in Comparative Example 4, the residual vibration time of the actuator 14 and the mechanical vibration system 10 is shorter than that of Comparative Example 2 and Comparative Example.
  • the maximum amplitude of the vibration acceleration of the actuator 14 and the mechanical vibration system 10 during the period in which the drive signal is applied is smaller than that of Comparative Example 2 and Comparative Example 3.
  • FIG. 11 (A) m / n ⁇ f 0 (m, n are natural numbers and m ⁇ n.
  • m 2 and n.
  • FIG. 11B in Comparative
  • the maximum amplitude of the vibration acceleration of the actuator 14 and the mechanical vibration system 10 during the period in which the drive signal is applied is higher than that of Comparative Example 4. Can be increased. Compared with Comparative Example 2 and Comparative Example 3, in the present embodiment, the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied is hardly reduced.
  • the effects of the driving method of the driving device 20, the tactile presentation device 1, and the actuator 14 of the present embodiment will be described.
  • the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the present embodiment is in addition to the effect of the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the present embodiment of the first embodiment. , Has the following effects.
  • the first partial drive waveform 46 and the second partial drive waveform 47 are waveforms of one cycle of a sine wave having a frequency of f 0 , respectively.
  • the drive signal applied to the actuator 14 contains more components of the resonance frequency f 0 of the mechanical vibration system 10. Therefore, the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied can be further increased.
  • Embodiment 3 A method of driving the drive device 20, the tactile presentation device 1, and the actuator 14 according to the third embodiment will be described with reference to FIGS. 1 to 4 and 12.
  • the drive device 20 and the tactile presentation device 1 of the present embodiment have the same configurations as the drive device 20 and the tactile presentation device 1 of the second embodiment, and the driving method of the actuator 14 of the present embodiment is the embodiment. It includes the same steps as the driving method of the actuator 14 of No. 2, but is different from the second embodiment mainly in the following points.
  • the drive waveform 50 includes a first partial drive waveform 51 and a second partial drive waveform 52.
  • the first partial drive waveform 51 and the second partial drive waveform 52 are waveforms of one cycle of a rectangular wave having a period of 1 / f 0 , respectively. Therefore, the drive signal applied to the actuator 14 contains more components of the resonance frequency f 0 of the mechanical vibration system 10.
  • the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the present embodiment during the period in which the drive signal is applied is larger than the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the first embodiment.
  • the effect of the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the present embodiment is the same as the effect of the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the second embodiment.
  • the actuator 14 and the mechanical vibration system 10 remain more than in Comparative Example 2 (FIG. 9 (B)) and Comparative Example 3 (FIG. 10 (B)).
  • the vibration time is further reduced.
  • the vibration acceleration of the actuator 14 and the mechanical vibration system 10 during the period in which the drive signal is applied is higher than that of Comparative Example 4 (FIG. 11 (B)).
  • the maximum amplitude of can be increased.
  • the maximum vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied is maximum. The amplitude has hardly decreased.
  • Embodiment 4 A method of driving the drive device 20, the tactile presentation device 1, and the actuator 14 according to the fourth embodiment will be described with reference to FIGS. 1 to 4 and 13.
  • the drive device 20 and the tactile presentation device 1 of the present embodiment have the same configurations as the drive device 20 and the tactile presentation device 1 of the first embodiment, and the driving method of the actuator 14 of the present embodiment is the embodiment. It includes the same steps as the driving method of the actuator 14 of No. 1, but is different from the first embodiment mainly in the following points.
  • the drive waveform 60 includes a first partial drive waveform 61, a second partial drive waveform 62 following the first partial drive waveform 61, and a second partial drive.
  • the third partial drive waveform 63 following the waveform 62 is included.
  • the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system 10 vibrated by the actuator 14.
  • the second partial drive waveform 62 of the present embodiment is the same as the first partial drive waveform 41 of the first embodiment.
  • the first partial drive waveform 61 has a first amplitude that is ⁇ times the second amplitude of the second partial drive waveform 62.
  • the third partial drive waveform 63 has a third amplitude that is -1 times the second amplitude. ⁇ satisfies the following equation (14), and ⁇ is the damping ratio of the mechanical vibration system 10.
  • the actuator 14 includes a first partial drive waveform 61, a second partial drive waveform 62, and a third partial drive waveform 63.
  • the drive signal corresponding to 60 is input.
  • the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 each have a time length of 1 / f 0 .
  • the second partial drive waveform 62 of the present embodiment is the same as the first partial drive waveform 41 of the first embodiment.
  • the first partial drive waveform 61 has a first amplitude that is ⁇ times the second amplitude of the second partial drive waveform 62. Therefore, the time waveform Y 1 (t) of the vibration acceleration of the residual vibration of the mechanical vibration system 10 caused by the first partial drive waveform 61 is given by the following equation (15).
  • the second partial drive waveform 62 of the present embodiment is the same as the first partial drive waveform 41 of the first embodiment.
  • the second partial drive waveform 62 of the present embodiment is delayed by (1 / f 0 ) seconds from the first partial drive waveform 41 of the first embodiment. Therefore, the time waveform Y 2 (t) of the vibration acceleration of the residual vibration of the mechanical vibration system 10 caused by the second partial drive waveform 62 is given by the following equation (16).
  • the third partial drive waveform 63 has a third amplitude that is -1 times the second amplitude of the second partial drive waveform 62.
  • the third partial drive waveform 63 is delayed by (1 / f 0 ) seconds from the second partial drive waveform 62. Therefore, the time waveform Y 3 (t) of the residual vibration of the vibration acceleration of the mechanical vibration system 10 caused by the third partial drive waveform 63 is given by the following equation (17).
  • the time waveform Y (t) of the vibration acceleration of the residual vibration of the mechanical vibration system 10 caused by the drive waveform 60 including the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 is expressed by the following equation. It is given in (18).
  • Equation (21) is derived from equation (20).
  • Equation (22) is derived as a condition of ⁇ in order to hardly reduce the maximum amplitude of the vibration acceleration of the mechanical vibration system 10.
  • the drive waveform 60 including the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 satisfies the equation (14) (that is, the equation (21) and the equation (22)). At that time, the time of residual vibration of the actuator 14 and the mechanical vibration system 10 can be shortened.
  • the vibration acceleration of 0.02 G (0.2 m / s 2 ) is the lower limit acceleration at which the human finger can detect the vibration. Therefore, in the present embodiment, the residual vibration can be suppressed to the extent that the difference in tactile sensation can be perceived as compared with Patent Document 1.
  • ⁇ and ⁇ may be set so that the maximum amplitude of the vibration acceleration of the residual vibration of the mechanical vibration system 10 and the actuator 14 is 0.02 G (0.2 m / s 2 ) or less. Therefore, it is possible to prevent the residual vibration from being detected by the human finger. More specifically, as shown in FIG. 13A, in the drive device 20 of the present embodiment, ⁇ satisfies the following equation (23) and ⁇ satisfies the following equation (24). You may.
  • Equation (27) is derived.
  • Equation (24) is derived from Equation (26) and Equation (27).
  • the drive device 20 of the present embodiment has a storage unit 25 in which data of the drive waveform 60 is stored, and a drive signal generation unit 21 configured to output a drive signal corresponding to the drive waveform 60 to the actuator 14.
  • the drive waveform 60 includes a first partial drive waveform 61, a second partial drive waveform 62 following the first partial drive waveform 61, and a third partial drive waveform 63 following the second partial drive waveform 62.
  • the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system 10 vibrated by the actuator 14.
  • the mechanical vibration system 10 includes an actuator 14 and a touch panel 12 vibrated by the actuator 14.
  • the first partial drive waveform 61 has a first amplitude that is ⁇ times the second amplitude of the second partial drive waveform 62.
  • the third partial drive waveform 63 has a third amplitude that is -1 times the second amplitude. ⁇ satisfies the above equation (14), and ⁇ is the damping ratio of the mechanical vibration system 10.
  • the actuator 14 is driven by a drive signal corresponding to the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63. Therefore, the drive device 20 can further shorten the time of the residual vibration of the mechanical vibration system 10. Further, since the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 each have a time length of 1 / f 0 , the drive signal applied to the actuator 14 , The component of the resonance frequency f 0 of the mechanical vibration system 10 is included in a large amount. The drive device 20 drives the mechanical vibration system 10 at its resonance frequency f 0 .
  • the drive device 20 hardly reduces the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period when the drive signal is applied. In this way, the drive device 20 makes it possible to provide the user with a click feeling such as the feeling when a mechanical button is pressed.
  • is exp (2 ⁇ ) ⁇ (exp (2 ⁇ ) -1), and ⁇ may satisfy the above equation (24). Therefore, the time of residual vibration of the mechanical vibration system 10 can be further shortened.
  • the tactile presentation device 1 of the present embodiment includes a touch panel 12, an actuator 14 configured to vibrate the touch panel 12, and a drive device 20 configured to output a drive signal to the actuator 14. .. Therefore, the tactile presentation device 1 can further shorten the residual vibration time of the mechanical vibration system 10 without reducing the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied. it can. In this way, the tactile presentation device 1 makes it possible to present the user with a click feeling such as the feeling when a mechanical button is pressed.
  • the driving method of the actuator 14 of the present embodiment includes reading the data of the driving waveform 60 from the storage unit 25 (S2) and outputting the driving signal corresponding to the driving waveform 60 to the actuator 14 (S3). ..
  • the drive waveform 60 includes a first partial drive waveform 61, a second partial drive waveform 62 following the first partial drive waveform 61, and a third partial drive waveform 63 following the second partial drive waveform 62.
  • the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 each have a time length of 1 / f 0 .
  • f 0 is the resonance frequency of the mechanical vibration system 10 vibrated by the actuator 14.
  • the mechanical vibration system 10 includes an actuator 14 and a touch panel 12 vibrated by the actuator 14.
  • the first partial drive waveform 61 has a first amplitude that is ⁇ times the second amplitude of the second partial drive waveform 62.
  • the third partial drive waveform 63 has a third amplitude that is -1 times the second amplitude. ⁇ satisfies the above equation (14), and ⁇ is the damping ratio of the mechanical vibration system 10.
  • the actuator 14 is driven by a drive signal corresponding to the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63. Therefore, the driving method of the actuator 14 of the present embodiment can further shorten the time of residual vibration of the mechanical vibration system 10. Further, since the first partial drive waveform 61, the second partial drive waveform 62, and the third partial drive waveform 63 each have a time length of 1 / f 0 , the drive signal applied to the actuator 14 , The component of the resonance frequency f 0 of the mechanical vibration system 10 is included in a large amount. The mechanical vibration system 10 is driven at its resonance frequency f 0 .
  • the driving method of the actuator 14 of the present embodiment hardly reduces the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the driving signal is applied. In this way, the driving method of the actuator 14 of the present embodiment makes it possible to present the user with a click feeling such as the feeling when a mechanical button is pressed.
  • may be exp (2 ⁇ ) ⁇ (exp (2 ⁇ ) -1), and ⁇ may satisfy the above equation (24). Therefore, the time of residual vibration of the mechanical vibration system 10 can be further shortened.
  • Embodiment 5 A method of driving the drive device 20, the tactile presentation device 1, and the actuator 14 according to the fifth embodiment will be described with reference to FIGS. 1 to 4 and 14.
  • the drive device 20 and the tactile presentation device 1 of the present embodiment have the same configurations as the drive device 20 and the tactile presentation device 1 of the fourth embodiment, and the driving method of the actuator 14 of the present embodiment is the embodiment. It includes the same steps as the driving method of the actuator 14 of No. 4, but is different from the fourth embodiment mainly in the following points.
  • the drive waveform 65 includes a first partial drive waveform 66, a second partial drive waveform 67 following the first partial drive waveform 66, and a third drive waveform 67 following the second partial drive waveform 67.
  • the second partial drive waveform 67 of the present embodiment is the same as the first partial drive waveform 46 of the second embodiment.
  • the first partial drive waveform 66, the second partial drive waveform 67, and the third partial drive waveform 68 are waveforms of one cycle of a sinusoidal wave having a frequency of f 0 , respectively. Therefore, the drive signal applied to the actuator 14 contains more components of the resonance frequency f 0 of the mechanical vibration system 10.
  • the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the present embodiment during the period in which the drive signal is applied is larger than the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the fourth embodiment.
  • Comparative Example 3 As shown in FIG. 10A, a drive signal corresponding to the drive waveform 65b including the second partial drive waveform 67 and the third partial drive waveform 68 is input to the actuator 14.
  • FIG. 10B in Comparative Example 3, the residual vibration time of the actuator 14 and the mechanical vibration system 10 is shorter than that in Comparative Example 2.
  • the residual vibration time of the actuator 14 and the mechanical vibration system 10 is further shortened as compared with Comparative Example 3.
  • FIG. 11B in Comparative Example 4, the residual vibration time of the actuator 14 and the mechanical vibration system 10 is shorter than that of Comparative Example 2 and Comparative Example.
  • the maximum amplitude of the vibration acceleration of the actuator 14 and the mechanical vibration system 10 during the period in which the drive signal is applied is smaller than that of Comparative Example 2 and Comparative Example 3.
  • the maximum amplitude of the vibration acceleration of the actuator 14 and the mechanical vibration system 10 during the period in which the drive signal is applied is higher than that of Comparative Example 4. Can be increased. Compared with Comparative Example 2 and Comparative Example 3, in the present embodiment, the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied is hardly reduced. Compared with Comparative Example 2 and Comparative Example 3, in the present embodiment, the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied is rather large.
  • the effects of the driving method of the driving device 20, the tactile presentation device 1, and the actuator 14 of the present embodiment will be described.
  • the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the present embodiment is in addition to the effect of the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the present embodiment of the fourth embodiment. , Has the following effects.
  • the first partial drive waveform 66, the second partial drive waveform 67, and the third partial drive waveform 68 are waveforms of one cycle of a sinusoidal wave having a frequency of f 0 , respectively.
  • the drive signal applied to the actuator 14 contains more components of the resonance frequency f 0 of the mechanical vibration system 10. Therefore, the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied can be further increased.
  • Embodiment 6 A method of driving the drive device 20, the tactile presentation device 1, and the actuator 14 according to the sixth embodiment will be described with reference to FIGS. 1 to 4 and 15.
  • the drive device 20 and the tactile presentation device 1 of the present embodiment have the same configurations as the drive device 20 and the tactile presentation device 1 of the fifth embodiment, and the driving method of the actuator 14 of the present embodiment is the embodiment. It is provided with the same steps as the driving method of the actuator 14 of 5, but is different from the fifth embodiment mainly in the following points.
  • the drive waveform 70 includes a first partial drive waveform 71, a second partial drive waveform 72 following the first partial drive waveform 71, and a second partial drive.
  • a third partial drive waveform 73 following the waveform 72 is included.
  • the second partial drive waveform 72 of the present embodiment is the same as the first partial drive waveform 51 of the third embodiment.
  • the first partial drive waveform 71, the second partial drive waveform 72, and the third partial drive waveform 73 are waveforms of one cycle of a rectangular wave having a period of 1 / f 0 , respectively. Therefore, the drive signal applied to the actuator 14 contains more components of the resonance frequency f 0 of the mechanical vibration system 10.
  • the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the present embodiment during the period in which the drive signal is applied is larger than the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 of the fourth embodiment.
  • the effect of the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the present embodiment is the same as the effect of the driving method of the driving device 20, the tactile presentation device 1 and the actuator 14 of the second embodiment.
  • may be exp (2 ⁇ ) ⁇ (exp (2 ⁇ ) -1), and ⁇ may satisfy the above equation (24). At this time, the value on the right side of the equation (18) becomes zero. As shown in FIG. 15B, the maximum amplitude of the vibration acceleration of the residual vibration of the actuator 14 and the mechanical vibration system 10 becomes zero. The residual vibration of the actuator 14 and the mechanical vibration system 10 disappears.
  • the actuator 14 and the mechanical vibration system 10 remain more than in Comparative Example 2 (FIG. 9 (B)) and Comparative Example 3 (FIG. 10 (B)).
  • the vibration time is further reduced.
  • the vibration acceleration of the actuator 14 and the mechanical vibration system 10 during the period in which the drive signal is applied is higher than that of Comparative Example 4 (FIG. 11 (B)).
  • the maximum amplitude of can be increased.
  • the maximum vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied is maximum.
  • the amplitude has hardly decreased.
  • the maximum amplitude of the vibration acceleration of the mechanical vibration system 10 during the period in which the drive signal is applied is rather large.
  • 1 tactile presentation device 10 mechanical vibration system, 11 housing, 12 touch panel, 12s touch sensor, 13 connection member, 14 actuator, 15 fixing member, 16 vibration member, 17 spring, 20 drive device, 21 drive signal generator, 22 Trigger signal receiving circuit, 23 signal transfer circuit, 24 drive circuit, 24a D / A converter, 24b amplifier, 25 storage unit, 40, 45, 45b, 45c, 50, 60, 65, 65b, 65c, 70 drive waveform, 41,46,51,61,66,71 1st partial drive waveform, 42,47,47b, 52,62,67,72 2nd partial drive waveform, 63,68,73 3rd partial drive waveform.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

駆動波形(40)に対応する駆動信号がアクチュエータ(14)に出力される。駆動波形(40)は、第1部分駆動波形(41)と、第1部分駆動波形(41)に続く第2部分駆動波形(42)とを含む。第1部分駆動波形(41)及び第2部分駆動波形(42)は、各々、1/f0の時間長さを有している。f0は、アクチュエータ(14)によって振動する機械振動系(10)の共振周波数である。第2部分駆動波形(42)は、第1部分駆動波形(41)の第1振幅のα倍の第2振幅を有している。αは以下の式を満たし、ζは機械振動系(10)の減衰比である。 -1<α<(1-2・exp(-2πζ))、かつ、α<0

Description

駆動装置、触覚提示装置及びアクチュエータの駆動方法
 本発明は、駆動装置、触覚提示装置及びアクチュエータの駆動方法に関する。
 特開2012-20284号公報(特許文献1)は、振動触覚ハプティック効果を発生させるシステムを開示している。このシステムでは、アクチュエータの共振周波数を有する第1アクチュエータ信号をアクチュエータに印加して、アクチュエータに振動触覚ハプティック効果を発生させる。さらに、第1アクチュエータ信号と180度異なる位相を有する第2アクチュエータ信号をアクチュエータに印加して、アクチュエータを制動させるのに必要な時間を短くしている。
 国際公開第2013/186850号(特許文献2)は、タッチパネルを操作するユーザに触覚刺激を提示する電子機器を開示している。この電子機器は、タッチパネルと、このタッチパネルを振動させるアクチュエータとを備えている。アクチュエータは、f0の共振周波数を有している。m/n×f(m,nは自然数かつm≠n)で与えられるfの周波数を有する正弦波に対応する駆動信号をアクチュエータに印加して、アクチュエータの残留振動の時間を短くしている。
特開2012-20284号公報 国際公開第2013/186850号
 しかし、特許文献1に開示されたシステムは、アクチュエータの残留振動の時間を十分に短縮することができない。また、特許文献2に開示された電子機器では、アクチュエータは、共振周波数f0とは異なる周波数fで駆動されている。アクチュエータの振動加速度を十分に大きくすることができない。本発明は、上記の課題を鑑みてなされたものであり、その目的は、駆動信号が印加されている期間中の機械振動系の振動加速度の最大振幅をほとんど減少させることなく、機械振動系の残留振動の時間をさらに短縮することができる駆動装置、触覚提示装置及びアクチュエータの駆動方法を提供することである。
 本発明の第一局面の駆動装置は、駆動波形のデータが格納されている記憶部と、駆動波形に対応する駆動信号をアクチュエータに出力するように構成されている駆動信号生成部とを備える。駆動波形は、第1部分駆動波形と、第1部分駆動波形に続く第2部分駆動波形とを含む。第1部分駆動波形及び第2部分駆動波形は、各々、1/f0の時間長さを有している。f0は、アクチュエータによって振動する機械振動系の共振周波数である。機械振動系は、アクチュエータと、アクチュエータによって振動させられるタッチパネルとを含む。第2部分駆動波形は、第1部分駆動波形の第1振幅のα倍の第2振幅を有している。αは以下の式(1)を満たし、ζは機械振動系の減衰比である。
 -1<α<(1-2・exp(-2πζ))、かつ、α<0 (1)
 本発明の第二局面の駆動装置は、駆動波形のデータが格納されている記憶部と、駆動波形に対応する駆動信号をアクチュエータに出力するように構成されている駆動信号生成部とを備える。駆動波形は、第1部分駆動波形と、第1部分駆動波形に続く第2部分駆動波形と、第2部分駆動波形に続く第3部分駆動波形とを含む。第1部分駆動波形、第2部分駆動波形及び第3部分駆動波形は、各々、1/f0の時間長さを有している。f0はアクチュエータによって振動する機械振動系の共振周波数である。機械振動系は、アクチュエータと、アクチュエータによって振動させられるタッチパネルとを含む。第1部分駆動波形は、第2部分駆動波形の第2振幅のα倍の第1振幅を有している。第3部分駆動波形は、第2振幅の-1倍の第3振幅を有している。αは以下の式(2)を満たし、ζは機械振動系の減衰比である。
 0<α<(2・exp(2πζ)・(exp(2πζ)-1))、かつ、α<1 (2)
 本発明の触覚提示装置は、タッチパネルと、タッチパネルを振動させるように構成されているアクチュエータと、アクチュエータに駆動信号を出力するように構成されている第一局面または第二局面の駆動装置とを備える。
 本発明の第一局面のアクチュエータの駆動方法は、記憶部から駆動波形のデータを読み出すことと、駆動波形に対応する駆動信号をアクチュエータに出力することとを備える。駆動波形は、第1部分駆動波形と、第1部分駆動波形に続く第2部分駆動波形とを含む。第1部分駆動波形及び第2部分駆動波形は、各々、1/f0の時間長さを有している。f0は、アクチュエータによって振動する機械振動系の共振周波数である。機械振動系は、アクチュエータと、アクチュエータによって振動させられるタッチパネルとを含む。第2部分駆動波形は、第1部分駆動波形の第1振幅のα倍の第2振幅を有している。αは、上記式(1)を満たし、ζは機械振動系の減衰比である。
 本発明の第二局面のアクチュエータの駆動方法は、記憶部から駆動波形のデータを読み出すことと、駆動波形に対応する駆動信号をアクチュエータに出力することとを備える。駆動波形は、第1部分駆動波形と、第1部分駆動波形に続く第2部分駆動波形と、第2部分駆動波形に続く第3部分駆動波形とを含む。第1部分駆動波形、第2部分駆動波形及び第3部分駆動波形は、各々、1/f0の時間長さを有している。f0はアクチュエータによって振動する機械振動系の共振周波数である。機械振動系は、アクチュエータと、アクチュエータによって振動させられるタッチパネルとを含む。第1部分駆動波形は、第2部分駆動波形の第2振幅のα倍の第1振幅を有している。第3部分駆動波形は、第2振幅の-1倍の第3振幅を有している。αは、上記式(2)を満たし、ζは機械振動系の減衰比である。
 本発明の第一局面の駆動装置及びアクチュエータの駆動方法並びに本発明の第一局面の駆動装置を備える触覚提示装置では、アクチュエータは、第1部分駆動波形及び第2部分駆動波形に対応する駆動信号によって駆動される。そのため、駆動装置は、機械振動系の残留振動の時間をさらに短縮することができる。また、第1部分駆動波形及び第2部分駆動波形は、各々、1/f0の時間長さを有しているため、アクチュエータに印加される駆動信号に機械振動系の共振周波数f0の成分が多く含まれている。駆動装置は、機械振動系をその共振周波数f0で駆動する。駆動装置は、駆動信号が印加されている期間中の機械振動系の振動加速度の最大振幅をほとんど減少させない。
 本発明の第二局面の駆動装置及びアクチュエータの駆動方法並びに本発明の第二局面の駆動装置を備える触覚提示装置では、アクチュエータは、第1部分駆動波形、第2部分駆動波形及び第3部分駆動波形に対応する駆動信号によって駆動される。そのため、駆動装置は、機械振動系の残留振動の時間をさらに短縮することができる。また、第1部分駆動波形、第2部分駆動波形及び第3部分駆動波形は、各々、1/f0の時間長さを有しているため、アクチュエータに印加される駆動信号に機械振動系の共振周波数f0の成分が多く含まれている。駆動装置は、機械振動系をその共振周波数f0で駆動する。駆動装置は、駆動信号が印加されている期間中の機械振動系の振動加速度の最大振幅をほとんど減少させない。
実施の形態1から実施の形態6の触覚提示装置の概略図である。 実施の形態1から実施の形態6の第1変形例の触覚提示装置の概略図である。 実施の形態1から実施の形態6の第2変形例の触覚提示装置の概略図である。 実施の形態1から実施の形態6の第3変形例の触覚提示装置の概略図である。 実施の形態1のアクチュエータの駆動方法のフローチャートを示す図である。 図6(A)は、実施の形態1においてアクチュエータに印加される駆動信号の波形を示す図である。図6(B)は、実施の形態1のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図7(A)は、比較例1においてアクチュエータに印加される駆動信号の波形を示す図である。図7(B)は、比較例1のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図8(A)は、実施の形態2においてアクチュエータに印加される駆動信号の波形を示す図である。図8(B)は、実施の形態2のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図9(A)は、比較例2においてアクチュエータに印加される駆動信号の波形を示す図である。図9(B)は、比較例2のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図10(A)は、比較例3においてアクチュエータに印加される駆動信号の波形を示す図である。図10(B)は、比較例3のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図11(A)は、比較例4においてアクチュエータに印加される駆動信号の波形を示す図である。図11(B)は、比較例4のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図12(A)は、実施の形態3においてアクチュエータに印加される駆動信号の波形を示す図である。図12(B)は、実施の形態3のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図13(A)は、実施の形態4においてアクチュエータに印加される駆動信号の波形を示す図である。図13(B)は、実施の形態4のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図14(A)は、実施の形態5においてアクチュエータに印加される駆動信号の波形を示す図である。図14(B)は、実施の形態5のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。 図15(A)は、実施の形態6においてアクチュエータに印加される駆動信号の波形を示す図である。図15(B)は、実施の形態6のアクチュエータ及び機械振動系の振動加速度の時間変化を示す図である。
 以下、本発明の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 実施の形態1.
 図1から図4を参照して、実施の形態1の触覚提示装置1を説明する。触覚提示装置1は、タッチパネル12と、アクチュエータ14と、駆動装置20とを主に備える。触覚提示装置1は、筐体11をさらに備えてもよい。
 筐体11は、例えば、金属または樹脂で形成されている。筐体11は、例えば、液晶表示装置または有機EL表示装置のような表示装置の筐体である。タッチパネル12は、筐体11に対してユーザ側に配置されている。タッチパネル12は、ユーザが指を触れて操作を行うように構成されている。
 アクチュエータ14は、タッチパネル12を振動させるように構成されている。具体的には、図1に示されるように、アクチュエータ14は、タッチパネル12と筐体11とに取り付けられてもよい。図2に示されるように、本実施の形態の第1変形例では、アクチュエータ14は、タッチパネル12に取り付けられてもよく、かつ、筐体11から離間されてもよい。本実施の形態及びその第1変形例では、アクチュエータ14が振動すると、タッチパネル12も振動する。本実施の形態及びその第1変形例では、アクチュエータ14によって振動する機械振動系10は、アクチュエータ14と、タッチパネル12とを含む。
 図3に示されるように、本実施の形態の第2変形例では、アクチュエータ14は、タッチパネル12と筐体11とに取り付けられてもよく、かつ、タッチパネル12は接続部材13によって筐体11に接続されていてもよい。本実施の形態の第2変形例では、アクチュエータ14が振動すると、タッチパネル12が振動する。アクチュエータ14が振動するとき、タッチパネル12と筐体11と接続部材13とは、撓んで、機械振動系10のバネおよびダンパーの一部として作用する。本実施の形態の第2変形例では、アクチュエータ14によって振動する機械振動系10は、アクチュエータ14と、タッチパネル12と、筐体11と、接続部材13を含む。接続部材13は、例えば、両面テープまたはスペーサであってもよい。
 図4に示されるように、本実施の形態の第3変形例では、タッチパネル12は接続部材13によって筐体11に接続されてもよく、アクチュエータ14は、筐体11に取り付けられてもよく、かつ、タッチパネル12から離間されてもよい。本実施の形態の第3変形例では、アクチュエータ14が振動すると、筐体11が振動し、さらに、接続部材13を介して筐体11に接続されているタッチパネル12も振動する。アクチュエータ14が振動するとき、タッチパネル12と筐体11と接続部材13とは、撓んで、機械振動系10のバネおよびダンパーの一部として作用する。本実施の形態の第3変形例では、アクチュエータ14によって振動する機械振動系10は、アクチュエータ14と、タッチパネル12と、筐体11と、接続部材13とを含む。
 アクチュエータ14は、特に限定されないが、例えば、ボイスコイル型のリニア共振アクチュエータ(LRA)である。図1に示されるように、アクチュエータ14は、固定部材15と、振動部材16と、固定部材15と振動部材16とに接続されているバネ17とを含んでもよい。固定部材15が筐体11に取り付けられており、かつ、振動部材16がタッチパネル12に取り付けられてもよい。振動部材16は、バネ17によって、固定部材15に対して移動可能に接続されている。
 機械振動系10の質量、ばね定数、減衰係数を、それぞれ、m(kg)、k(N/m)、c(N(m/s))とする。質量m(kg)は、アクチュエータ14とタッチパネル12の一部を含む機械振動系10の質量である。ばね定数kは、バネ17のばね定数と、アクチュエータ14の振動の際に撓む部材(例えば、タッチパネル12、筐体11及び接続部材13)の撓みに対応するばね定数とによって与えられる。減衰係数cは、バネ17の減衰係数と、アクチュエータ14の振動の際に撓む部材(例えば、タッチパネル12、筐体11及び接続部材13)の撓みに対応する減衰係数と、アクチュエータ14で生じる逆起電力による電磁制動に対応する減衰係数とによって与えられる。本実施の形態の一例では、質量は0.1(kg)であり、ばね定数kは1.5785×105(N/m)であり、減衰係数cは5.0255(N/(m/s))であってもよい。
 機械振動系10の共振周波数f0及び減衰比ζは、それぞれ、式(3)及び式(4)によって与えられる。本実施の形態の一例では、共振周波数f0は200(Hz)であり、減衰比ζは0.02であってもよい。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 駆動装置20は、アクチュエータ14に駆動信号を出力するように構成されている。駆動装置20は、アクチュエータ14に通信可能に接続されている。駆動装置20は、駆動信号生成部21と、記憶部25とを含む。駆動信号生成部21は、記憶部25にデータとして格納されている駆動波形40に対応する駆動信号をアクチュエータ14に出力するように構成されている。駆動信号生成部21は、例えば、トリガー信号受信回路22と、信号転送回路23と、駆動回路24とを含んでもよい。
 トリガー信号受信回路22は、トリガー信号を受信するように構成されている。トリガー信号は、アクチュエータ14及び機械振動系10の振動の開始のタイミングを示す。トリガー信号は、例えば、タッチパネル12で生成されてもよい。具体的には、タッチパネル12は、タッチセンサ12sを含んでいる。タッチセンサ12sは、ユーザが指で触れたことを感知して、トリガー信号をトリガー信号受信回路22に送信するように構成されている。ユーザが指でタッチパネル12に触れると、タッチパネル12(タッチセンサ12s)は、トリガー信号を、トリガー信号受信回路22に送信する。
 あるいは、トリガー信号は、例えば、タッチパネル12を撮像するように配置されたカメラ(図示せず)に通信可能に接続されたコンピュータ(図示せず)で生成されてもよい。具体的には、カメラは、ユーザの指の動きを撮像するように構成されている。コンピュータは、撮像されたユーザの指の動きに基づいて、トリガー信号をトリガー信号受信回路22に送信するように構成されている。ユーザが指でタッチパネル12に触れる。カメラで撮像されたユーザの指の動きの像は、コンピュータに送信される。コンピュータは、ユーザの指の動きの像に基づいて、トリガー信号をトリガー信号受信回路22に送信する。
 トリガー信号受信回路22は、A/D変換器(図示せず)を含んでもよい。A/D変換器は、タッチパネル12(タッチセンサ12s)から送信されたアナログのトリガー信号を、デジタルのトリガー信号に変換するように構成されている。トリガー信号受信回路22は、デジタルインターフェース(図示せず)を含んでもよい。デジタルインターフェースは、タッチパネル12(タッチセンサ12s)から送信されたデジタルのトリガー信号を、信号転送回路23に送信するように構成されている。
 信号転送回路23は、トリガー信号受信回路22からトリガー信号を受信して、記憶部25から駆動波形のデータを読み出すように構成されている。信号転送回路23は、記憶部25から読み出された駆動波形のデータを駆動回路24に送信するように構成されている。
 記憶部25は、例えば、フラッシュメモリーまたはハードディスクドライブ(HDD)のような不揮発性記憶デバイスであってもよい。記憶部25には、駆動波形40のデータが格納されている。図6(A)に示されるように、駆動波形40は、第1部分駆動波形41と、第1部分駆動波形41に続く第2部分駆動波形42とを含む。第1部分駆動波形41及び第2部分駆動波形42は、各々、1/f0の時間長さを有している。f0は、アクチュエータ14によって振動する機械振動系10の共振周波数である。第2部分駆動波形42は、第1部分駆動波形41の第1振幅のα倍の第2振幅を有している。αは以下の式(5)を満たし、ζは機械振動系10の減衰比である。
 -1<α<(1-2・exp(-2πζ))、かつ、α<0 (5)
 駆動回路24は、D/A変換器24aを含んでもよい。D/A変換器24aは、デジタルの駆動波形40のデータを、アナログの駆動波形40のデータに変換するように構成されている。駆動回路24は、増幅器24bを含んでもよい。増幅器24bは、駆動波形40のデータを、アクチュエータ14を駆動可能な電圧信号(駆動信号)に変換するように構成されている。一般的に、ボイスコイル型のLRAは、小さなインピーダンスを有している。アクチュエータ14がボイスコイル型のLRAである場合には、増幅器24bとして、充分な電流駆動能力を有する増幅器を用いる必要がある。このような駆動用パワー増幅器として、集積回路(IC)の形態の増幅器が利用可能である。本実施の形態の一例では、駆動回路24の出力可能な電圧範囲は、-4Vから+4Vまでであってもよく、かつ、駆動波形40の最大振幅は4Vであってもよい。
 駆動装置20(駆動信号生成部21、駆動回路24)は、駆動波形40に対応する駆動信号をアクチュエータ14に出力するように構成されている。例えば、駆動回路24の増幅器24bの出力端子は、アクチュエータ14のボイスコイルに電気的に接続されてもよい。駆動装置20を構成する電気回路は、例えば、専用のロジック回路で構成されてもよいし、汎用のデジタル信号プロセッサ(DSP)で構成されてもよい。駆動装置20を構成する電気回路の機能は、DSP、メモリ、ハードディスクドライブ(HDD)または集積回路(IC)などのハードウェアと、メモリに格納されておりかつハードウェアを制御するソフトウェアとを組み合わせることによって、実現され得る。
 実施の形態1と比較例1とを比べながら、本実施の形態のアクチュエータ14の駆動方法と本実施の形態の作用とを説明する。
 図5に示されるように、本実施の形態のアクチュエータ14の駆動方法は、トリガー信号を受信すること(S1)を備えてもよい。具体的には、ユーザが指でタッチパネル12に触れると、駆動装置20(駆動信号生成部21、トリガー信号受信回路22)は、トリガー信号を受信する。トリガー信号は、タッチパネル12(タッチセンサ12s)から送信されてもよい。トリガー信号は、タッチパネル12を撮像するカメラ(図示せず)に通信可能に接続されているコンピュータから送信されてもよい。トリガー信号受信回路22は、トリガー信号を信号転送回路23に送信する。
 図5に示されるように、本実施の形態のアクチュエータ14の駆動方法は、記憶部25から駆動波形40のデータを読み出すこと(S2)を備える。具体的には、信号転送回路23は、トリガー信号受信回路22からトリガー信号を受信すると、記憶部25から駆動波形40のデータを読み出して、駆動波形40のデータを駆動回路24に送信する。
 図5に示されるように、本実施の形態のアクチュエータ14の駆動方法は、駆動波形40に対応する駆動信号をアクチュエータ14に出力すること(S3)を備える。具体的には、駆動回路24は、信号転送回路23から駆動波形40のデータを受信する。駆動回路24は、D/A変換器24aと、増幅器24bとを含んでもよい。D/A変換器24aは、記憶部25から読み出された駆動波形40のデータをD/A変換する。増幅器24bは、D/A変換された駆動波形40のデータを、アクチュエータ14を駆動可能な電圧信号(駆動信号)に変換する。駆動装置20(駆動回路24)は、駆動波形40に対応する駆動信号をアクチュエータ14に出力する。
 こうして、駆動波形40に対応する駆動信号は、アクチュエータ14に入力される。アクチュエータ14は、駆動波形40に対応する駆動信号によって、駆動されて、振動する。アクチュエータ14が振動すると、タッチパネル12も振動する。
 比較例1のアクチュエータ14の駆動方法では、図7(A)に示されるように、アクチュエータ14に、第1部分駆動波形41に対応する駆動信号が入力される。第1部分駆動波形41は、1/f0の時間長さを有している。比較例1では、第1部分駆動波形41に対応する駆動信号の後に、アクチュエータ14に、駆動信号(例えば、第2部分駆動波形42に対応する駆動信号)は入力されない。
 図7(B)に示されるように、アクチュエータ14は振動し、機械振動系10も振動する。機械振動系10は、機械振動系10の共振周波数f0と減衰比ζとで、減衰自由振動を行う。そのため、比較例1では、第1部分駆動波形41に起因する機械振動系10の残留振動の振動加速度の時間波形Y0(t)は、以下の式(6)で与えられる。
 Y0(t)=A・exp(-2πf0ζt)・sin(2πf0t+δ) (6)
 式(6)において、時刻t=0は、第1部分駆動波形41に対応する駆動信号がアクチュエータ14へ入力され終わった時刻に対応している。式(6)において、Aは、時刻t=0における機械振動系10の振動加速度の振幅を表し、δは、時刻t=0における機械振動系10の振動の初期位相を表す。
 図7(B)に示されるように、比較例1では、アクチュエータ14及び機械振動系10の残留振動の時間が非常に長い。本明細書において、アクチュエータ14及び機械振動系10の残留振動は、アクチュエータ14への駆動信号の入力が終了した時刻及び当該時刻以降のアクチュエータ14及び機械振動系の振動を意味する。また、アクチュエータ14及び機械振動系10の残留振動の時間は、アクチュエータ14への駆動信号の入力が終了した時刻と、アクチュエータ14及び機械振動系10の加速度の振幅が0.02G(0.2m/s2)以下となる時刻との間の時間として定義される。0.02G(0.2m/s2)の振動加速度は、人間の指が振動を感知することができる下限の加速度である。
 これに対し、本実施の形態では、図6(A)に示されるように、アクチュエータ14に、第1部分駆動波形41と第2部分駆動波形42とを含む駆動波形40に対応する駆動信号が入力される。第1部分駆動波形41及び第2部分駆動波形42は、各々、1/f0の時間長さを有している。
 第1部分駆動波形41に起因する機械振動系10の残留振動の振動加速度の時間波形Y1(t)は、式(6)と同じ以下の式(7)で与えられる。
 Y1(t)=Y0(t)=A・exp(-2πf0ζt)・sin(2πf0t+δ) (7)
 第2部分駆動波形42の第2振幅は、第1部分駆動波形41の第1振幅のα倍である。また、第2部分駆動波形42は、第1部分駆動波形41よりも、(1/f0)秒だけ遅れている。そのため、第2部分駆動波形42に起因する機械振動系10の残留振動の振動加速度の時間波形Y2(t)は、以下の式(8)で与えられる。
 Y2(t)=αY0(t-1/f0)=α・exp(2πζ)・Y0(t) (8)
 第1部分駆動波形41及び第2部分駆動波形42を含む駆動波形40に起因する機械振動系10の残留振動の振動加速度の時間波形Y(t)は、以下の式(9)で与えられる。
 Y(t)=Y1(t)+Y2(t)=(1+α・exp(2πζ))・Y0(t) (9)
 特許文献1と同様に、第2部分駆動波形42の第2振幅が、第1部分駆動波形41の第1振幅の-1倍(すなわち、α=-1)であるとき、機械振動系10の残留振動の振動加速度の時間波形Y(t)は、以下の式(10)で与えられる。
 Y(t)=(1-exp(2πζ))・Y0(t) (10)
 式(9)及び式(10)より、本実施の形態によって、特許文献1よりもアクチュエータ14及び機械振動系10の残留振動の時間を短縮するためには、以下の式(11)が成り立つ必要がある。
 |1+α・exp(2πζ)|<|1-exp(2πζ)| (11)
 式(11)より、式(12)が導き出される。
 -1<α<1-2・exp(-2πζ) (12)
 さらに、アクチュエータ14及び機械振動系10の残留振動の時間を短縮するためには、第2部分駆動波形42に基づく機械振動系10の振動加速度の時間波形が、第1部分駆動波形41に基づく機械振動系10の振動加速度の時間波形を打ち消す必要がある。そのため、式(13)が導き出される。
 α<0  (13)
 以上より、第1部分駆動波形41と第2部分駆動波形42とを含む駆動波形40が、式(5)(すなわち、式(12)かつ式(13))を満たすとき、アクチュエータ14及び機械振動系10の残留振動の時間が短縮され得る。
 特定的には、本実施の形態の残留振動の振動加速度の最大振幅が、比較例1(α=0)の残留振動の振動加速度の最大振幅より0.02G(0.2m/s2)以上小さくなり、かつ、特許文献1(α=-1)の残留振動の振動加速度の最大振幅より0.02G(0.2m/s2)以上小さくなるように、αは設定されてもよい。0.02G(0.2m/s2)の振動加速度は、人間の指が振動を感知することができる下限の加速度である。そのため、本実施の形態では、比較例1および特許文献1と比べて触感の違いが感知され得る程度に、残留振動が抑制され得る。
 さらに特定的には、機械振動系10及びアクチュエータ14の残留振動の振動加速度の最大振幅が0.02G(0.2m/s2)以下となるように、αは設定されてもよい。そのため、人間の指で残留振動が感知されることが防止され得る。さらに特定的には、図6(A)に示されるように、αは、-exp(-2πζ)である。このとき式(9)の右辺の値はゼロとなる。図6(B)に示されるように、アクチュエータ14及び機械振動系10の残留振動の振動加速度の最大振幅がゼロとなる。アクチュエータ14及び機械振動系10の残留振動は消滅する。
 本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果を説明する。
 本実施の形態の駆動装置20は、駆動波形40のデータが格納されている記憶部25と、駆動波形40に対応する駆動信号をアクチュエータ14に出力するように構成されている駆動信号生成部21とを備える。駆動波形40は、第1部分駆動波形41と、第1部分駆動波形41に続く第2部分駆動波形42とを含む。第1部分駆動波形41及び第2部分駆動波形42は、各々、1/f0の時間長さを有している。f0は、アクチュエータ14によって振動する機械振動系10の共振周波数である。機械振動系10は、アクチュエータ14と、アクチュエータ14によって振動させられるタッチパネル12とを含む。第2部分駆動波形42は、第1部分駆動波形41の第1振幅のα倍の第2振幅を有している。αは、上記式(5)を満たし、ζは機械振動系10の減衰比である。
 アクチュエータ14は、第1部分駆動波形41及び第2部分駆動波形42に対応する駆動信号によって駆動される。そのため、駆動装置20は、機械振動系10の残留振動の時間をさらに短縮することができる。また、第1部分駆動波形41及び第2部分駆動波形42は、各々、1/f0の時間長さを有しているため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分が多く含まれている。駆動装置20は、機械振動系10をその共振周波数f0で駆動する。駆動装置20は、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をほとんど減少させない。こうして、駆動装置20は、ユーザに、機械式のボタンを押した時の感触のようなクリック感を提示することを可能にする。
 本実施の形態の駆動装置20では、αは、-exp(-2πζ)であってもよい。そのため、機械振動系10の残留振動の時間をさらに短縮することができる。
 本実施の形態の触覚提示装置1は、タッチパネル12と、タッチパネル12を振動させるように構成されているアクチュエータ14と、アクチュエータ14に駆動信号を出力するように構成されている駆動装置20とを備える。そのため、触覚提示装置1は、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をほとんど減少させることなく、機械振動系10の残留振動の時間をさらに短縮することができる。こうして、触覚提示装置1は、ユーザに、機械式のボタンを押した時の感触のようなクリック感を提示することを可能にする。
 本実施の形態のアクチュエータ14の駆動方法は、記憶部25から駆動波形40のデータを読み出すこと(S2)と、駆動波形40に対応する駆動信号をアクチュエータ14に出力すること(S3)とを備える。駆動波形40は、第1部分駆動波形41と、第1部分駆動波形41に続く第2部分駆動波形42とを含む。第1部分駆動波形41及び第2部分駆動波形42は、各々、1/f0の時間長さを有している。f0は、アクチュエータ14によって振動する機械振動系10の共振周波数である。機械振動系10は、アクチュエータ14と、アクチュエータ14によって振動させられるタッチパネル12とを含む。第2部分駆動波形42は、第1部分駆動波形41の第1振幅のα倍の第2振幅を有している。αは、上記式(5)を満たし、ζは機械振動系10の減衰比である。
 アクチュエータ14は、第1部分駆動波形41及び第2部分駆動波形42に対応する駆動信号によって駆動される。そのため、機械振動系10の残留振動の時間をさらに短縮することができる。また、第1部分駆動波形41及び第2部分駆動波形42は、各々、1/f0の時間長さを有しているため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分が多く含まれている。機械振動系10はその共振周波数f0で駆動される。本実施の形態のアクチュエータ14の駆動方法は、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をほとんど減少させない。こうして、本実施の形態のアクチュエータ14の駆動方法は、ユーザに、機械式のボタンを押した時の感触のようなクリック感を提示することを可能にする。
 本実施の形態のアクチュエータ14の駆動方法では、αは、-exp(-2πζ)であってもよい。そのため、機械振動系10の残留振動の時間をさらに短縮することができる。
 実施の形態2.
 図1から図4及び図8を参照して、実施の形態2の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法を説明する。本実施の形態の駆動装置20及び触覚提示装置1は、実施の形態1の駆動装置20及び触覚提示装置1と同様の構成を備え、本実施の形態のアクチュエータ14の駆動方法は、実施の形態1のアクチュエータ14の駆動方法と同様の工程を備えるが、主に以下の点で、実施の形態1と異なっている。
 図8(A)に示されるように、駆動波形45は、第1部分駆動波形46と、第1部分駆動波形46に続く第2部分駆動波形47とを含む。第1部分駆動波形46及び第2部分駆動波形47は、各々、f0の周波数を有する正弦波の一周期の波形である。そのため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分がより多く含まれる。駆動信号が印加されている期間中の本実施の形態の機械振動系10の振動加速度の最大振幅は、実施の形態1の機械振動系10の振動加速度の最大振幅よりも大きくなる。
 本実施の形態と比較例2から比較例4とを比べながら、本実施の形態の作用を説明する。
 比較例2では、比較例1の同様に、図9(A)に示されるように、アクチュエータ14に、第1部分駆動波形46に対応する駆動信号が入力される。そのため、図9(B)に示されるように、アクチュエータ14及び機械振動系10の残留振動の時間が非常に長い。
 比較例3では、図10(A)に示されるように、アクチュエータ14に、第1部分駆動波形46と第2部分駆動波形47bとを含む駆動波形45bに対応する駆動信号が入力される。比較例3では、特許文献1と同様に、第2部分駆動波形47bの第2振幅は、第1部分駆動波形46の第1振幅の-1倍(すなわち、α=-1)である。図10(B)に示されるように、比較例3では、比較例2よりも、アクチュエータ14及び機械振動系10の残留振動の時間が短縮されている。しかし、図8(B)に示されるように、本実施の形態では、比較例3よりも、アクチュエータ14及び機械振動系10の残留振動の時間がさらに短縮されている。
 比較例4では、図11(A)に示されるように、特許文献2と同様に、m/n×f(m,nは自然数かつm≠n。比較例4では、m=2かつn=1)で与えられる周波数を有する正弦波の駆動波形45cに対応する駆動信号が、アクチュエータ14に印加される。図11(B)に示されるように、比較例4では、比較例2及び比較例よりも、アクチュエータ14及び機械振動系10の残留振動の時間が短縮されている。しかし、比較例4では、比較例2及び比較例3よりも、駆動信号が印加されている期間中のアクチュエータ14及び機械振動系10の振動加速度の最大振幅が小さい。これに対し、図8(B)に示されるように、本実施の形態では、比較例4よりも、駆動信号が印加されている期間中のアクチュエータ14及び機械振動系10の振動加速度の最大振幅を大きくすることができる。比較例2及び比較例3と比べて、本実施の形態では、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅は、ほとんど減少していない。
 本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果を説明する。本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法は、実施の形態1の本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果に加えて、以下の効果を奏する。
 本実施の形態では、第1部分駆動波形46及び第2部分駆動波形47は、各々、f0の周波数を有する正弦波の一周期の波形である。アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分がより多く含まれる。そのため、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をさらに大きくすることができる。
 実施の形態3.
 図1から図4及び図12を参照して、実施の形態3の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法を説明する。本実施の形態の駆動装置20及び触覚提示装置1は、実施の形態2の駆動装置20及び触覚提示装置1と同様の構成を備え、本実施の形態のアクチュエータ14の駆動方法は、実施の形態2のアクチュエータ14の駆動方法と同様の工程を備えるが、主に以下の点で、実施の形態2と異なっている。
 本実施の形態では、図12(A)に示されるように、駆動波形50は、第1部分駆動波形51と、第2部分駆動波形52とを含む。第1部分駆動波形51及び第2部分駆動波形52は、各々、1/f0の周期を有する矩形波の一周期の波形である。そのため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分がより多く含まれる。駆動信号が印加されている期間中の本実施の形態の機械振動系10の振動加速度の最大振幅は、実施の形態1の機械振動系10の振動加速度の最大振幅よりも大きくなる。
 本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果は、実施の形態2の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果と同様である。
 具体的には、図12(A)に示されるように、αは、-exp(-2πζ)である。このとき式(9)の右辺の値はゼロとなる。図12(B)に示されるように、アクチュエータ14及び機械振動系10の残留振動の振動加速度の最大振幅がゼロとなる。アクチュエータ14及び機械振動系10の残留振動は消滅する。
 図12(B)に示されるように、本実施の形態では、比較例2(図9(B))及び比較例3(図10(B))よりも、アクチュエータ14及び機械振動系10の残留振動の時間がさらに短縮されている。図12(B)に示されるように、本実施の形態では、比較例4(図11(B))よりも、駆動信号が印加されている期間中のアクチュエータ14及び機械振動系10の振動加速度の最大振幅を大きくすることができる。比較例2(図9(B))及び比較例3(図10(B))と比べて、本実施の形態では、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅は、ほとんど減少していない。
 実施の形態4.
 図1から図4及び図13を参照して、実施の形態4の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法を説明する。本実施の形態の駆動装置20及び触覚提示装置1は、実施の形態1の駆動装置20及び触覚提示装置1と同様の構成を備え、本実施の形態のアクチュエータ14の駆動方法は、実施の形態1のアクチュエータ14の駆動方法と同様の工程を備えるが、主に以下の点で、実施の形態1と異なっている。
 本実施の形態では、図13(A)に示されるように、駆動波形60は、第1部分駆動波形61と、第1部分駆動波形61に続く第2部分駆動波形62と、第2部分駆動波形62に続く第3部分駆動波形63とを含む。第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63は、各々、1/f0の時間長さを有している。f0はアクチュエータ14によって振動する機械振動系10の共振周波数である。本実施の形態の第2部分駆動波形62は、実施の形態1の第1部分駆動波形41と同じである。第1部分駆動波形61は、第2部分駆動波形62の第2振幅のα倍の第1振幅を有している。第3部分駆動波形63は、第2振幅の-1倍の第3振幅を有している。αは以下の式(14)を満たし、ζは機械振動系10の減衰比である。
 0<α<(2・exp(2πζ)・(exp(2πζ)-1))、かつ、α<1 (14)
 本実施の形態と比較例1とを比べながら、本実施の形態の作用を説明する。
 既に記載したように、比較例1では、第2部分駆動波形62(図7(A)を参照)に起因する機械振動系10の残留振動の振動加速度の時間波形Y0(t)は、上記式(6)で与えられる。そのため、図7(B)に示されるように、比較例1では、アクチュエータ14及び機械振動系10の残留振動の時間が非常に長い。
 これに対し、本実施の形態では、図13(A)に示されるように、アクチュエータ14に、第1部分駆動波形61と第2部分駆動波形62と第3部分駆動波形63とを含む駆動波形60に対応する駆動信号が入力される。第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63は、各々、1/f0の時間長さを有している。
 本実施の形態の第2部分駆動波形62は、実施の形態1の第1部分駆動波形41と同じである。本実施の形態では、第1部分駆動波形61は、第2部分駆動波形62の第2振幅のα倍の第1振幅を有している。そのため、第1部分駆動波形61に起因する機械振動系10の残留振動の振動加速度の時間波形Y1(t)は、以下の式(15)で与えられる。
 Y1(t)=αY0(t) (15)
 本実施の形態の第2部分駆動波形62は、実施の形態1の第1部分駆動波形41と同じである。本実施の形態の第2部分駆動波形62は、実施の形態1の第1部分駆動波形41よりも、(1/f0)秒だけ遅れている。そのため、第2部分駆動波形62に起因する機械振動系10の残留振動の振動加速度の時間波形Y2(t)は、以下の式(16)で与えられる。
 Y2(t)=Y0(t-1/f0)=exp(2πζ)・Y0(t) (16)
 第3部分駆動波形63は、第2部分駆動波形62の第2振幅の-1倍の第3振幅を有している。第3部分駆動波形63は、第2部分駆動波形62よりも、(1/f0)秒だけ遅れている。そのため、第3部分駆動波形63に起因する機械振動系10の振動加速度の残留振動の時間波形Y3(t)は、以下の式(17)で与えられる。
 Y3(t)=-Y2(t-1/f0)=-Y0(t-2/f0)=-exp(4πζ)・Y0(t) (17)
 第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63を含む駆動波形60に起因する機械振動系10の残留振動の振動加速度の時間波形Y(t)は、以下の式(18)で与えられる。
 Y(t)=Y1(t)+Y2(t)+Y3(t)=(α+exp(2πζ)-exp(4πζ))・Y0(t) (18)
 本実施の形態においてα=0のとき、アクチュエータ14に、特許文献1と同様の駆動信号が入力される。α=0であるとき、機械振動系10の残留振動の振動加速度の時間波形Y(t)は、以下の式(19)で与えられる。
 Y(t)=(exp(2πζ)-exp(4πζ))・Y0(t) (19)
 式(18)及び式(19)より、本実施の形態によって、特許文献1よりもアクチュエータ14及び機械振動系10の残留振動の時間を短縮するためには、以下の式(20)が成り立つ必要がある。
 |α+exp(2πζ)-exp(4πζ)|<|exp(2πζ)-exp(4πζ)| (20)
 式(20)より、式(21)が導き出される。
 0<α<2・exp(2πζ)・(exp(2πζ)-1) (21)
 さらに、本実施の形態において、αが1より大きい場合には、第1部分駆動波形61の振幅が、第2部分駆動波形62および第3部分駆動波形63よりも大きくなる。つまり、第1部分駆動波形61の振幅が駆動回路24から出力可能な最大電圧によって限定され、相対的に、第2部分駆動波形62および第3部分駆動波形63の振幅を大きくすることができない。そのため、αが1より大きい場合は、機械振動系10の振動加速度の最大振幅が小さくなる。機械振動系10の振動加速度の最大振幅をほとんど減少させないために、αの条件として、式(22)が導き出される。
 α<1 (22)
 以上より、第1部分駆動波形61と第2部分駆動波形62と第3部分駆動波形63とを含む駆動波形60が、式(14)(すなわち、式(21)かつ式(22))を満たすとき、アクチュエータ14及び機械振動系10の残留振動の時間が短縮され得る。
 特定的には、本実施の形態の残留振動の振動加速度の最大振幅が、特許文献1(α=0)の残留振動の振動加速度の最大振幅より0.02G(0.2m/s2)以上小さくなるように、αは設定されてもよい。0.02G(0.2m/s2)の振動加速度は、人間の指が振動を感知することができる下限の加速度である。そのため、本実施の形態では、特許文献1と比べて触感の違いが感知され得る程度に、残留振動が抑制され得る。
 さらに特定的には、機械振動系10及びアクチュエータ14の残留振動の振動加速度の最大振幅が0.02G(0.2m/s2)以下となるように、α及びζは設定されてもよい。そのため、人間の指で残留振動が感知されることが防止され得る。さらに特定的には、図13(A)に示されるように、本実施の形態の駆動装置20では、αは以下の式(23)を満たし、かつ、ζは以下の式(24)を満たしてもよい。
 α=exp(2πζ)・(exp(2πζ)-1) (23)
Figure JPOXMLDOC01-appb-M000005
 式(23)が成り立つとき、式(18)の右辺の値はゼロとなる。図13(B)に示されるように、アクチュエータ14及び機械振動系10の残留振動の振動加速度の最大振幅がゼロとなる。アクチュエータ14及び機械振動系10の残留振動は消滅する。
 式(22)と式(23)とから、以下の式(25)が成り立つ。
 exp(2πζ)・(exp(2πζ)-1)<1 (25)
 式(25)から、以下の式(26)が導き出される。
Figure JPOXMLDOC01-appb-M000006
 また、現実の機械振動系10の振動は、多少なりとも減衰する。そのため、減衰比ζは、0より大きい。式(27)が導き出される。
 ζ>0 (27)
 式(26)と式(27)とから、式(24)が導き出される。
 本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果を説明する。
 本実施の形態の駆動装置20は、駆動波形60のデータが格納されている記憶部25と、駆動波形60に対応する駆動信号をアクチュエータ14に出力するように構成されている駆動信号生成部21とを備える。駆動波形60は、第1部分駆動波形61と、第1部分駆動波形61に続く第2部分駆動波形62と、第2部分駆動波形62に続く第3部分駆動波形63とを含む。第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63は、各々、1/f0の時間長さを有している。f0はアクチュエータ14によって振動する機械振動系10の共振周波数である。機械振動系10は、アクチュエータ14と、アクチュエータ14によって振動させられるタッチパネル12とを含む。第1部分駆動波形61は、第2部分駆動波形62の第2振幅のα倍の第1振幅を有している。第3部分駆動波形63は、第2振幅の-1倍の第3振幅を有している。αは、上記式(14)を満たし、ζは機械振動系10の減衰比である。
 アクチュエータ14は、第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63に対応する駆動信号によって駆動される。そのため、駆動装置20は、機械振動系10の残留振動の時間をさらに短縮することができる。また、第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63は、各々、1/f0の時間長さを有しているため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分が多く含まれている。駆動装置20は、機械振動系10をその共振周波数f0で駆動する。駆動装置20は、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をほとんど減少させない。こうして、駆動装置20は、ユーザに、機械式のボタンを押した時の感触のようなクリック感を提示することを可能にする。
 本実施の形態の駆動装置20では、αはexp(2πζ)・(exp(2πζ)-1)であり、かつ、ζが上記式(24)を満たしてもよい。そのため、機械振動系10の残留振動の時間をさらに短縮することができる。
 本実施の形態の触覚提示装置1は、タッチパネル12と、タッチパネル12を振動させるように構成されているアクチュエータ14と、アクチュエータ14に駆動信号を出力するように構成されている駆動装置20とを備える。そのため、触覚提示装置1は、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をほとんど減少させることなく、機械振動系10の残留振動の時間をさらに短縮することができる。こうして、触覚提示装置1は、ユーザに、機械式のボタンを押した時の感触のようなクリック感を提示することを可能にする。
 本実施の形態のアクチュエータ14の駆動方法は、記憶部25から駆動波形60のデータを読み出すこと(S2)と、駆動波形60に対応する駆動信号をアクチュエータ14に出力すること(S3)とを備える。駆動波形60は、第1部分駆動波形61と、第1部分駆動波形61に続く第2部分駆動波形62と、第2部分駆動波形62に続く第3部分駆動波形63とを含む。第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63は、各々、1/f0の時間長さを有している。f0はアクチュエータ14によって振動する機械振動系10の共振周波数である。機械振動系10は、アクチュエータ14と、アクチュエータ14によって振動させられるタッチパネル12とを含む。第1部分駆動波形61は、第2部分駆動波形62の第2振幅のα倍の第1振幅を有している。第3部分駆動波形63は、第2振幅の-1倍の第3振幅を有している。αは、上記式(14)を満たし、ζは機械振動系10の減衰比である。
 アクチュエータ14は、第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63に対応する駆動信号によって駆動される。そのため、本実施の形態のアクチュエータ14の駆動方法は、機械振動系10の残留振動の時間をさらに短縮することができる。また、第1部分駆動波形61、第2部分駆動波形62及び第3部分駆動波形63は、各々、1/f0の時間長さを有しているため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分が多く含まれている。機械振動系10はその共振周波数f0で駆動される。本実施の形態のアクチュエータ14の駆動方法は、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をほとんど減少させない。こうして、本実施の形態のアクチュエータ14の駆動方法は、ユーザに、機械式のボタンを押した時の感触のようなクリック感を提示することを可能にする。
 本実施の形態のアクチュエータ14の駆動方法では、αはexp(2πζ)・(exp(2πζ)-1)であり、かつ、ζが上記式(24)を満たしてもよい。そのため、機械振動系10の残留振動の時間をさらに短縮することができる。
 実施の形態5.
 図1から図4及び図14を参照して、実施の形態5の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法を説明する。本実施の形態の駆動装置20及び触覚提示装置1は、実施の形態4の駆動装置20及び触覚提示装置1と同様の構成を備え、本実施の形態のアクチュエータ14の駆動方法は、実施の形態4のアクチュエータ14の駆動方法と同様の工程を備えるが、主に以下の点で、実施の形態4と異なっている。
 図14(A)に示されるように、駆動波形65は、第1部分駆動波形66と、第1部分駆動波形66に続く第2部分駆動波形67と、第2部分駆動波形67に続く第3部分駆動波形68とを含む。本実施の形態の第2部分駆動波形67は、実施の形態2の第1部分駆動波形46と同じである。第1部分駆動波形66、第2部分駆動波形67及び第3部分駆動波形68は、各々、f0の周波数を有する正弦波の一周期の波形である。そのため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分がより多く含まれる。駆動信号が印加されている期間中の本実施の形態の機械振動系10の振動加速度の最大振幅は、実施の形態4の機械振動系10の振動加速度の最大振幅よりも大きくなる。
 本実施の形態と比較例2から比較例4とを比べながら、本実施の形態の作用を説明する。
 比較例2では、図9(A)に示されるように、アクチュエータ14に、第2部分駆動波形67に対応する駆動信号が入力される。そのため、図9(B)に示されるように、アクチュエータ14及び機械振動系10の残留振動の時間が非常に長い。
 比較例3では、図10(A)に示されるように、アクチュエータ14に、第2部分駆動波形67と第3部分駆動波形68とを含む駆動波形65bに対応する駆動信号が入力される。比較例3では、特許文献1と同様に、第3部分駆動波形68の第3振幅が、第2部分駆動波形67の第2振幅の-1倍(すなわち、α=0)である。図10(B)に示されるように、比較例3では、比較例2よりも、アクチュエータ14及び機械振動系10の残留振動の時間が短縮されている。しかし、図14(B)に示されるように、本実施の形態では、比較例3よりも、アクチュエータ14及び機械振動系10の残留振動の時間がさらに短縮されている。
 比較例4では、図11(A)に示されるように、特許文献2と同様に、m/n×f(m,nは自然数かつm≠n。比較例4では、m=2かつn=1)で与えられる周波数を有する正弦波の駆動波形65cに対応する駆動信号が、アクチュエータ14に印加される。図11(B)に示されるように、比較例4では、比較例2及び比較例よりも、アクチュエータ14及び機械振動系10の残留振動の時間が短縮されている。しかし、比較例4では、比較例2及び比較例3よりも、駆動信号が印加されている期間中のアクチュエータ14及び機械振動系10の振動加速度の最大振幅が小さい。
 これに対し、図14(B)に示されるように、本実施の形態では、比較例4よりも、駆動信号が印加されている期間中のアクチュエータ14及び機械振動系10の振動加速度の最大振幅を大きくすることができる。比較例2及び比較例3と比べて、本実施の形態では、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅は、ほとんど減少していない。比較例2及び比較例3と比べて、本実施の形態では、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅は、むしろ大きくなっている。
 本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果を説明する。本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法は、実施の形態4の本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果に加えて、以下の効果を奏する。
 本実施の形態では、第1部分駆動波形66、第2部分駆動波形67及び第3部分駆動波形68は、各々、f0の周波数を有する正弦波の一周期の波形である。アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分がより多く含まれる。そのため、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅をさらに大きくすることができる。
 実施の形態6.
 図1から図4及び図15を参照して、実施の形態6の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法を説明する。本実施の形態の駆動装置20及び触覚提示装置1は、実施の形態5の駆動装置20及び触覚提示装置1と同様の構成を備え、本実施の形態のアクチュエータ14の駆動方法は、実施の形態5のアクチュエータ14の駆動方法と同様の工程を備えるが、主に以下の点で、実施の形態5と異なっている。
 本実施の形態では、図15(A)に示されるように、駆動波形70は、第1部分駆動波形71と、第1部分駆動波形71に続く第2部分駆動波形72と、第2部分駆動波形72に続く第3部分駆動波形73とを含む。本実施の形態の第2部分駆動波形72は、実施の形態3の第1部分駆動波形51と同じである。第1部分駆動波形71、第2部分駆動波形72及び第3部分駆動波形73は、各々、1/f0の周期を有する矩形波の一周期の波形である。そのため、アクチュエータ14に印加される駆動信号に、機械振動系10の共振周波数f0の成分がより多く含まれる。駆動信号が印加されている期間中の本実施の形態の機械振動系10の振動加速度の最大振幅は、実施の形態4の機械振動系10の振動加速度の最大振幅よりも大きくなる。
 本実施の形態の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果は、実施の形態2の駆動装置20、触覚提示装置1及びアクチュエータ14の駆動方法の効果と同様である。
 具体的には、図15(A)に示されるように、αはexp(2πζ)・(exp(2πζ)-1)であり、かつ、ζが上記式(24)を満たしてもよい。このとき式(18)の右辺の値はゼロとなる。図15(B)に示されるように、アクチュエータ14及び機械振動系10の残留振動の振動加速度の最大振幅がゼロとなる。アクチュエータ14及び機械振動系10の残留振動は消滅する。
 図15(B)に示されるように、本実施の形態では、比較例2(図9(B))及び比較例3(図10(B))よりも、アクチュエータ14及び機械振動系10の残留振動の時間がさらに短縮されている。図15(B)に示されるように、本実施の形態では、比較例4(図11(B))よりも、駆動信号が印加されている期間中のアクチュエータ14及び機械振動系10の振動加速度の最大振幅を大きくすることができる。比較例2(図9(B))及び比較例3(図10(B))と比べて、本実施の形態では、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅は、ほとんど減少していない。比較例2及び比較例3と比べて、本実施の形態では、駆動信号が印加されている期間中の機械振動系10の振動加速度の最大振幅は、むしろ大きくなっている。
 今回開示された実施の形態1-6はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1 触覚提示装置、10 機械振動系、11 筐体、12 タッチパネル、12s タッチセンサ、13 接続部材、14 アクチュエータ、15 固定部材、16 振動部材、17 バネ、20 駆動装置、21 駆動信号生成部、22 トリガー信号受信回路、23 信号転送回路、24 駆動回路、24a D/A変換器、24b 増幅器、25 記憶部、40,45,45b,45c,50,60,65,65b,65c,70 駆動波形、41,46,51,61,66,71 第1部分駆動波形、42,47,47b,52,62,67,72 第2部分駆動波形、63,68,73 第3部分駆動波形。

Claims (17)

  1.  駆動波形のデータが格納されている記憶部と、
     前記駆動波形に対応する駆動信号をアクチュエータに出力するように構成されている駆動信号生成部とを備え、
     前記駆動波形は、第1部分駆動波形と、前記第1部分駆動波形に続く第2部分駆動波形とを含み、
     前記第1部分駆動波形及び前記第2部分駆動波形は、各々、1/f0の時間長さを有しており、前記f0は、前記アクチュエータによって振動する機械振動系の共振周波数であり、前記機械振動系は、前記アクチュエータと、前記アクチュエータによって振動させられるタッチパネルとを含み、
     前記第2部分駆動波形は、前記第1部分駆動波形の第1振幅のα倍の第2振幅を有しており、
     前記αは以下の式(1)を満たし、ζは前記機械振動系の減衰比である、駆動装置。
     -1<α<(1-2・exp(-2πζ))、かつ、α<0 (1)
  2.  前記αは、-exp(-2πζ)である、請求項1に記載の駆動装置。
  3.  前記第1部分駆動波形及び前記第2部分駆動波形は、各々、前記f0の周波数を有する正弦波の一周期の波形である、請求項1または請求項2に記載の駆動装置。
  4.  前記第1部分駆動波形及び前記第2部分駆動波形は、各々、前記1/f0の周期を有する矩形波の一周期の波形である、請求項1または請求項2に記載の駆動装置。
  5.  駆動波形のデータが格納されている記憶部と、
     前記駆動波形に対応する駆動信号をアクチュエータに出力するように構成されている駆動信号生成部とを備え、
     前記駆動波形は、第1部分駆動波形と、前記第1部分駆動波形に続く第2部分駆動波形と、前記第2部分駆動波形に続く第3部分駆動波形とを含み、
     前記第1部分駆動波形、前記第2部分駆動波形及び前記第3部分駆動波形は、各々、1/f0の時間長さを有しており、前記f0は前記アクチュエータによって振動する機械振動系の共振周波数であり、前記機械振動系は、前記アクチュエータと、前記アクチュエータによって振動させられるタッチパネルとを含み、
     前記第1部分駆動波形は、前記第2部分駆動波形の第2振幅のα倍の第1振幅を有しており、
     前記第3部分駆動波形は、前記第2振幅の-1倍の第3振幅を有しており、
     前記αは以下の式(2)を満たし、ζは前記機械振動系の減衰比である、駆動装置。
     0<α<(2・exp(2πζ)・(exp(2πζ)-1))、かつ、α<1 (2)
  6.  前記αは、exp(2πζ)・(exp(2πζ)-1)であり、
     前記ζは以下の式(3)を満たす、請求項5に記載の駆動装置。
    Figure JPOXMLDOC01-appb-M000001
  7.  前記第1部分駆動波形、前記第2部分駆動波形及び前記第3部分駆動波形は、各々、前記f0の周波数を有する正弦波の一周期の波形である、請求項5または請求項6に記載の駆動装置。
  8.  前記第1部分駆動波形、前記第2部分駆動波形及び前記第3部分駆動波形は、各々、前記1/f0の周期を有する矩形波の一周期の波形である、請求項5または請求項6に記載の駆動装置。
  9.  タッチパネルと、
     前記タッチパネルを振動させるように構成されているアクチュエータと、
     前記アクチュエータに前記駆動信号を出力するように構成されている請求項1から請求項8のいずれか一項に記載の前記駆動装置とを備える、触覚提示装置。
  10.  記憶部から駆動波形のデータを読み出すことと、
     前記駆動波形に対応する駆動信号をアクチュエータに出力することとを備え、
     前記駆動波形は、第1部分駆動波形と、前記第1部分駆動波形に続く第2部分駆動波形とを含み、
     前記第1部分駆動波形及び前記第2部分駆動波形は、各々、1/f0の時間長さを有しており、前記f0は、前記アクチュエータによって振動する機械振動系の共振周波数であり、前記機械振動系は、前記アクチュエータと、前記アクチュエータによって振動させられるタッチパネルとを含み、
     前記第2部分駆動波形は、前記第1部分駆動波形の第1振幅のα倍の第2振幅を有しており、
     前記αは以下の式(4)を満たし、ζは前記機械振動系の減衰比である、アクチュエータの駆動方法。
     -1<α<(1-2・exp(-2πζ))、かつ、α<0 (4)
  11.  前記αは、-exp(-2πζ)である、請求項10に記載のアクチュエータの駆動方法。
  12.  前記第1部分駆動波形及び前記第2部分駆動波形は、各々、前記f0の周波数を有する正弦波の一周期の波形である、請求項10または請求項11に記載のアクチュエータの駆動方法。
  13.  前記第1部分駆動波形及び前記第2部分駆動波形は、各々、前記1/f0の周期を有する矩形波の一周期の波形である、請求項10または請求項11に記載のアクチュエータの駆動方法。
  14.  記憶部から駆動波形のデータを読み出すことと、
     前記駆動波形に対応する駆動信号をアクチュエータに出力することとを備え、
     前記駆動波形は、第1部分駆動波形と、前記第1部分駆動波形に続く第2部分駆動波形と、前記第2部分駆動波形に続く第3部分駆動波形とを含み、
     前記第1部分駆動波形、前記第2部分駆動波形及び前記第3部分駆動波形は、各々、1/f0の時間長さを有しており、前記f0は前記アクチュエータによって振動する機械振動系の共振周波数であり、前記機械振動系は、前記アクチュエータと、前記アクチュエータによって振動させられるタッチパネルとを含み、
     前記第1部分駆動波形は、前記第2部分駆動波形の第2振幅のα倍の第1振幅を有しており、
     前記第3部分駆動波形は、前記第2振幅の-1倍の第3振幅を有しており、
     前記αは以下の式(5)を満たし、ζは前記機械振動系の減衰比である、アクチュエータの駆動方法。
     0<α<(2・exp(2πζ)・(exp(2πζ)-1))、かつ、α<1 (5)
  15.  前記αは、exp(2πζ)・(exp(2πζ)-1)であり、
     前記ζは以下の式(6)を満たす、請求項14に記載のアクチュエータの駆動方法。
    Figure JPOXMLDOC01-appb-M000002
  16.  前記第1部分駆動波形、前記第2部分駆動波形及び前記第3部分駆動波形は、各々、前記f0の周波数を有する正弦波の一周期の波形である、請求項14または請求項15に記載のアクチュエータの駆動方法。
  17.  前記第1部分駆動波形、前記第2部分駆動波形及び前記第3部分駆動波形は、各々、前記1/f0の周期を有する矩形波の一周期の波形である、請求項14または請求項15に記載のアクチュエータの駆動方法。
PCT/JP2019/017230 2019-04-23 2019-04-23 駆動装置、触覚提示装置及びアクチュエータの駆動方法 WO2020217314A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/017230 WO2020217314A1 (ja) 2019-04-23 2019-04-23 駆動装置、触覚提示装置及びアクチュエータの駆動方法
JP2020526655A JPWO2020217314A1 (ja) 2019-04-23 2019-04-23 駆動装置、触覚提示装置及びアクチュエータの駆動方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/017230 WO2020217314A1 (ja) 2019-04-23 2019-04-23 駆動装置、触覚提示装置及びアクチュエータの駆動方法

Publications (1)

Publication Number Publication Date
WO2020217314A1 true WO2020217314A1 (ja) 2020-10-29

Family

ID=72940639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017230 WO2020217314A1 (ja) 2019-04-23 2019-04-23 駆動装置、触覚提示装置及びアクチュエータの駆動方法

Country Status (2)

Country Link
JP (1) JPWO2020217314A1 (ja)
WO (1) WO2020217314A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547747A (ja) * 2019-11-13 2022-11-15 イマージョン コーポレーション ブレーキングを実行するために触覚アクチュエータを制御するためのシステム及び方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3140600U (ja) * 2007-12-20 2008-04-03 炳 台 尹 セルフチューニング機能を有する高速精密移送装置の制御装置
JP2008521597A (ja) * 2004-11-30 2008-06-26 イマージョン コーポレイション 振動触覚ハプティック効果を発生させるための共振装置を制御するためのシステムおよび方法
WO2013186845A1 (ja) * 2012-06-11 2013-12-19 富士通株式会社 電子機器、振動発生プログラム、及び振動パターン利用システム
JP2017024296A (ja) * 2015-07-23 2017-02-02 株式会社リコー 液滴吐出装置、画像形成装置、及び液滴吐出装置の吐出異常検知方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008521597A (ja) * 2004-11-30 2008-06-26 イマージョン コーポレイション 振動触覚ハプティック効果を発生させるための共振装置を制御するためのシステムおよび方法
JP3140600U (ja) * 2007-12-20 2008-04-03 炳 台 尹 セルフチューニング機能を有する高速精密移送装置の制御装置
WO2013186845A1 (ja) * 2012-06-11 2013-12-19 富士通株式会社 電子機器、振動発生プログラム、及び振動パターン利用システム
JP2017024296A (ja) * 2015-07-23 2017-02-02 株式会社リコー 液滴吐出装置、画像形成装置、及び液滴吐出装置の吐出異常検知方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022547747A (ja) * 2019-11-13 2022-11-15 イマージョン コーポレーション ブレーキングを実行するために触覚アクチュエータを制御するためのシステム及び方法

Also Published As

Publication number Publication date
JPWO2020217314A1 (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6096092B2 (ja) 記憶された効果を有する触覚フィードバックシステム
JP5962757B2 (ja) プログラム及び電子機器
JP6142928B2 (ja) 駆動装置、電子機器、駆動制御プログラム、及び駆動信号の生成方法
JP6498863B2 (ja) 増加したlra帯域幅を有するハプティックシステム
KR101790880B1 (ko) 촉각 액추에이터 및 그 제어 방법
JP6032364B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
CN113785261A (zh) 用于控制振动输出系统的操作和/或输入传感器系统的操作的方法和设备
JP6032362B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
JPWO2014083751A1 (ja) 触感呈示装置および触感呈示方法
JP2012523603A (ja) タッチセンスデバイス
JP2022514994A (ja) 電子装置およびその制御方法、装置、読み取り可能な記憶媒体
JP2015028766A (ja) 触感呈示装置および触感呈示方法
US20150054769A1 (en) Driving device, electronic device, and drive control program
WO2020217314A1 (ja) 駆動装置、触覚提示装置及びアクチュエータの駆動方法
JP5907260B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
WO2014197791A1 (en) Haptic effect handshake unlocking
JP5910741B2 (ja) プログラム及び電子機器
JP2018128742A (ja) 制御装置、入力システムおよび制御方法
JP5962756B2 (ja) 電子機器及び振動提供方法
JP5907261B2 (ja) 駆動装置、電子機器及び駆動制御プログラム
CN109428974B (zh) 通过使用对输入信号的控制来实现按钮点击的方法
WO2020255215A1 (ja) 入出力装置
JP2020201749A (ja) 振動発生装置及び電子機器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020526655

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926384

Country of ref document: EP

Kind code of ref document: A1