WO2020217269A1 - レーダ装置及び信号処理方法 - Google Patents

レーダ装置及び信号処理方法 Download PDF

Info

Publication number
WO2020217269A1
WO2020217269A1 PCT/JP2019/016961 JP2019016961W WO2020217269A1 WO 2020217269 A1 WO2020217269 A1 WO 2020217269A1 JP 2019016961 W JP2019016961 W JP 2019016961W WO 2020217269 A1 WO2020217269 A1 WO 2020217269A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
target
antennas
radar device
transmission
Prior art date
Application number
PCT/JP2019/016961
Other languages
English (en)
French (fr)
Inventor
聡 影目
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2019547159A priority Critical patent/JP6641540B1/ja
Priority to PCT/JP2019/016961 priority patent/WO2020217269A1/ja
Publication of WO2020217269A1 publication Critical patent/WO2020217269A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver

Definitions

  • the present invention relates to a radar device for measuring an angle of a target and a signal processing method.
  • Patent Document 1 discloses a radar device in which a plurality of transmitting antennas and a plurality of receiving antennas are installed so as to be orthogonal to each other in order to enlarge the horizontal antenna opening and the vertical antenna opening. There is.
  • a plurality of transmitting antennas are installed on the windshield along the A pillar of the automobile.
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain a radar device and a signal processing method capable of reducing power loss of a transmission signal in a direction in which a target exists. And.
  • the radar device has different installation positions in the directivity direction of the transmission signal, and the installation positions in the direction orthogonal to the horizontal plane parallel to the directing direction are different from each other, and is orthogonal to the directing direction.
  • a plurality of transmitting antennas that radiate transmission signals from the radiation surface, and after being radiated from each of the plurality of transmitting antennas, each transmitted signal reflected to the target is received as a reflected signal, and the received signal of each reflected signal is received.
  • the received signal output from the receiving antenna is coherently integrated, and the target is measured from the coherent integrated signal which is the coherent integration result of the received signal. It is provided with a square signal processor.
  • FIG. 1 It is a block diagram which shows the radar apparatus 1 which concerns on Embodiment 1.
  • FIG. It is a block diagram which shows the signal processor 13 of the radar apparatus 1 which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram which shows the hardware of a signal processor 13. It is a hardware block diagram of the computer when the signal processor 13 is realized by software, firmware and the like.
  • It is a flowchart which shows the processing procedure of the radar apparatus 1 shown in FIG. It is a flowchart which shows the processing procedure of the transmission part 11 shown in FIG. It is a flowchart which shows the processing procedure of the receiving part 12 shown in FIG. It is a flowchart which shows the signal processing method which is the processing procedure of the signal processor 13 shown in FIG.
  • FIG. 10A is an explanatory diagram showing the arrangement of transmitting antennas 24-1 to 24-4 and receiving antennas 31-1 to 31-4 in the yz plane
  • FIG. 10B shows transmitting antennas 24-1-1 to 24-1 in the zx plane
  • FIG. 10C shows arrangement of transmitting antennas 24-1 to 24-4 and receiving antennas 31-1 to 31-4 in the xy plane. It is explanatory drawing which shows.
  • FIG. 10A is an explanatory diagram showing the arrangement of transmitting antennas 24-1 to 24-4 and receiving antennas 31-1 to 31-4 in the yz plane
  • FIG. 10B shows transmitting antennas 24-1-1 to 24-1 in the zx plane
  • FIG. 10C shows arrangement of transmitting antennas 24-1 to 24-4 and receiving antennas 31-1 to 31-4 in the xy plane. It is explanatory drawing which shows.
  • FIG. 10A
  • FIG. 11A is an explanatory diagram showing the relationship between the sampling number and the hit number of the received beat signals V 1, C (n Tx , n Rx , h, m) after demodulation
  • FIG. 11B is a distance velocity signal f b, 1
  • FIG. 12A is an explanatory diagram showing the relationship between the distance bin number k and the velocity bin number q in the distance velocity signal f b, 1 (n Tx , n Rx , q, k)
  • FIG. 12B is an incoherent integration signal f b.
  • 1, inch (q, k) is an explanatory diagram showing the relationship between the distance bin number k and the speed bin number q.
  • FIG. 13A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4
  • FIG. 13B is an explanatory diagram showing a virtual receiving antenna.
  • FIG. 14A is an explanatory view showing the resolution in the elevation angle direction of the radar device 1 shown in FIG. 1, and FIG. 14B shows a plurality of transmitting antennas corresponding to each of the transmitting antennas 24-1 to 24-4 arranged in parallel with the A pillar.
  • FIG. 14A is an explanatory view showing the resolution in the elevation angle direction of the radar device 1 shown in FIG. 1
  • FIG. 14B shows a plurality of transmitting antennas corresponding to each of the transmitting antennas 24-1 to 24-4 arranged in parallel with the A pillar.
  • FIG. 14C which is an explanatory diagram showing the resolution in the elevation angle direction when the radar is used, shows a case where a plurality of transmitting antennas corresponding to each of the transmitting antennas 24-1 to 24-4 are arranged in a direction parallel to the traveling direction.
  • FIG. 14D shows the resolution in the elevation direction when twice as many transmitting antennas as the transmitting antennas 24-1 to 24-4 shown in FIG. 14A are arranged in parallel with the A pillar.
  • FIG. 16A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4 when the transmitting antennas 24-1 to 24-4 are assumed to be planar array antennas.
  • FIG. 16B is an explanatory diagram showing an elevation angle of a target candidate when the transmitting antennas 24-1 to 24-4 are assumed to be planar array antennas.
  • FIG. 17A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4 when the distance between the transmitting antennas 24-1 to 24-4 in the directivity direction is dy.
  • 17B is an explanatory diagram showing an elevation angle of a target candidate when the distance between the transmitting antennas 24-1 to 24-4 in the directivity direction is dy. It is explanatory drawing which shows the transmission RF signal radiated from the transmission antenna 24-1 to 24-4 which the interval in a directivity direction is dy. It is explanatory drawing which shows the installation example of the transmitting antenna 24-1 to 24-4 and the receiving antenna 31-1 to 31-4. It is explanatory drawing which shows the installation example of the transmitting antenna 24-1 to 24-4 and the receiving antenna 31-1 to 31-4. It is explanatory drawing which shows the installation example of the transmitting antenna 24-1 to 24-4 and the receiving antenna 31-1 to 31-4.
  • FIG. 1 is a configuration diagram showing a radar device 1 according to the first embodiment.
  • FIG. 2 is a configuration diagram showing a signal processor 13 of the radar device 1 according to the first embodiment.
  • FIG. 3 is a hardware configuration diagram showing the hardware of the signal processor 13.
  • the radar device 1 includes a transmission unit 11, a reception unit 12, and a signal processor 13.
  • the transmission unit 11 includes a modulation unit 20, transmitters 23-1 to 23-N Tx, and transmission antennas 24-1 to 24-N Tx .
  • NTx is an integer greater than or equal to 2.
  • the modulation unit 20 includes a local oscillation signal generation unit 21 and a code modulation unit 22.
  • the local oscillation signal generation unit 21 generates a local oscillation signal and outputs the local oscillation signal to the code modulation unit 22 and the receivers 32-1 to 32-N Rx , respectively.
  • NRx is an integer of 1 or more.
  • the code modulation unit 22 modulates the local oscillation signal output from the local oscillation signal generation unit 21 by using a modulation code which is a code corresponding to each transmission channel number in the transmission antennas 24-1 to 24- NTx . doing, as N Tx number of transmitting signals, to produce a N Tx number of transmitting an RF (Radio Frequency) signal.
  • Code modulation unit 22 outputs each of the N Tx number of transmitting RF signals to the transmitter 23-1 ⁇ 23-N Tx, and outputs the modulation codes corresponding to the transmission channel number signal processor 13.
  • the transmitting antennas 24-1-1 to 24-N Tx are installed at different positions in the directivity direction of the transmission RF signal, and are installed at different positions in the direction orthogonal to the horizontal plane parallel to the directivity direction.
  • the transmitting antennas 24-1-1 to 24-N Tx are arranged in a row in a direction orthogonal to the horizontal plane.
  • the transmitting antenna 24-n Tx has a radiation surface 24an Tx that is orthogonal to the directivity direction.
  • the transmitting antenna 24-n Tx radiates a transmitted RF signal into space from the radiating surface 24an Tx .
  • the receiving unit 12 includes receiving antennas 31-1 to 31-N Rx , receivers 32-1 to 32-N Rx, and an analog-to-digital converter (hereinafter referred to as “A / D converter”) 33-1 to 33-. It is equipped with NRx .
  • N Rx is an integer of 1 or more. For example, if N Rx ⁇ 2, the receiving antennas 31-1 to 31-N Rx are orthogonal to the directivity direction, and the transmitting antennas 24-1 to 24 -N Tx are arranged in a row in a direction orthogonal to the direction in which they are arranged in a row.
  • the transmitted RF signal is received as a reflected RF signal (reflected signal).
  • the receiving antenna 31-n Rx outputs the reflected RF signal as a receiving RF signal (received signal) to the receiver 32-n Rx .
  • the receiver 32-n Rx down-converts the frequency of the received RF signal output from the receiving antenna 31-n Rx by using the local oscillation signal output from the local oscillation signal generation unit 21.
  • the receiver 32-n Rx uses, for example, a band filter to filter the received RF signal after down-conversion and amplifies the intensity of the signal that has passed through the band filter.
  • the receiver 32-n Rx detects the phase of the signal after intensity amplification, generates a reception beat signal of the reception channel number n Rx , and outputs the reception beat signal to the A / D converter 33-n Rx . ..
  • the A / D converter 33-n Rx converts the received beat signal output from the receiver 32-n Rx from an analog signal to a digital signal, and outputs the digital signal to the signal processor 13.
  • the signal processor 13 includes a separation unit 41, a signal generation unit 42, an incoherent integration unit 43, a target candidate detection unit 44, a coherent integration unit 45, and an angle calculation unit 46.
  • the signal processor 13 coherently integrates the digital signals output from the A / D converters 33-1 to 33-N Rx based on the installation positions in the directivity directions of the transmitting antennas 24-1 to 24-N Tx . ..
  • the signal processor 13 measures the target from the coherent integral signal, which is the coherent integral result of the digital signal.
  • the separation unit 41 is realized by, for example, the separation circuit 51 shown in FIG.
  • the separation unit 41 uses the modulation code corresponding to each transmission channel number output from the code modulation unit 22 to transmit channels from the digital signals output from the A / D converters 33-1 to 33-N Rx. Demodulate the received beat signal corresponding to both the number and the received channel number. The demodulated received beat signal is separated for each transmission channel and for each reception channel.
  • the separation unit 41 outputs the demodulated received beat signal to the signal generation unit 42.
  • the signal generation unit 42 is realized by, for example, the signal generation circuit 52 shown in FIG.
  • the signal generation unit 42 generates a distance velocity signal corresponding to both the transmission channel and the reception channel by performing a discrete Fourier transform on the demodulated reception beat signal output from the separation unit 41.
  • the distance-velocity signal includes distance information regarding the distance to the target candidate (target) and speed information regarding the speed of the target candidate.
  • the signal generation unit 42 outputs the distance velocity signal to the incoherent integration unit 43 and the target candidate detection unit 44, respectively.
  • the incoherent integrator 43 is realized by, for example, the incoherent integrator circuit 53 shown in FIG.
  • the incoherent integration unit 43 incoherently integrates the distance velocity signal output from the signal generation unit 42, and outputs the incoherent integration signal, which is the incoherent integration result of the distance velocity signal, to the target candidate detection unit 44.
  • the target candidate detection unit 44 is realized by, for example, the target candidate detection circuit 54 shown in FIG.
  • the target candidate detection unit 44 detects the target candidate based on the signal strength of the incoherent integration signal output from the incoherent integration unit 43.
  • the target candidate detection unit 44 calculates each of the detected distance to the target candidate and the speed of the target candidate.
  • the target candidate detection unit 44 outputs each of the distance to the target candidate and the speed of the target candidate to the display 14.
  • the target candidate detection unit 44 outputs to the coherent integration unit 45 a distance velocity signal corresponding to the target candidate detected based on the signal strength of the incoherent integration signal among the plurality of distance velocity signals output from the signal generation unit 42. To do.
  • the coherent integrator 45 is realized by, for example, the coherent integrator circuit 55 shown in FIG.
  • the coherent integration unit 45 coherently integrates the distance velocity signal output from the target candidate detection unit 44 based on the installation position in the pointing direction of the transmitting antennas 24-1 to 24- NTx .
  • the installation position of the transmitting antennas 24-1-1 to 24- NTx in the directivity direction may be stored in the internal memory of the coherent integrating unit 45 or may be given from the outside of the radar device 1.
  • the coherent integration unit 45 outputs the coherent integration signal, which is the coherent integration result of the distance velocity signal, to the angle calculation unit 46.
  • the angle calculation unit 46 is realized by, for example, the angle calculation circuit 56 shown in FIG.
  • the angle calculation unit 46 calculates each of the azimuth angle and the elevation angle of the target candidate based on the signal strength of the coherent integration signal output from the coherent integration unit 45.
  • the angle calculation unit 46 outputs each of the azimuth angle and the elevation angle of the target candidate to the display 14.
  • the display 14 displays each of the distance to the target candidate and the speed of the target candidate output from the target candidate detection unit 44 on the display, and displays each of the azimuth angle and the elevation angle of the target candidate output from the angle calculation unit 46. Display on the display.
  • the separation unit 41, the signal generation unit 42, the incoherent integration unit 43, the target candidate detection unit 44, the coherent integration unit 45, and the angle calculation unit 46 which are the components of the signal processor 13, are shown in FIG. It is assumed to be realized by the dedicated hardware as shown. That is, it is assumed that the signal processor 13 is realized by the separation circuit 51, the signal generation circuit 52, the incoherent integration circuit 53, the target candidate detection circuit 54, the coherent integration circuit 55, and the angle calculation circuit 56.
  • each of the separation circuit 51, the signal generation circuit 52, the incoherent integration circuit 53, the target candidate detection circuit 54, the coherent integration circuit 55, and the angle calculation circuit 56 is, for example, a single circuit, a composite circuit, or a programmed processor. , A parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof.
  • the components of the signal processor 13 are not limited to those realized by dedicated hardware, and even if the signal processor 13 is realized by software, firmware, or a combination of software and firmware. Good.
  • the software or firmware is stored as a program in the memory of the computer.
  • a computer means hardware that executes a program, and corresponds to, for example, a CPU (Central Processing Unit), a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, a processor, or a DSP (Digital Signal Processor). To do.
  • FIG. 4 is a hardware configuration diagram of a computer when the signal processor 13 is realized by software, firmware, or the like.
  • the processing procedure of the separation unit 41, the signal generation unit 42, the incoherent integration unit 43, the target candidate detection unit 44, the coherent integration unit 45, and the angle calculation unit 46 is computerized.
  • the program to be executed by the memory 61 is stored in the memory 61.
  • the processor 62 of the computer executes the program stored in the memory 61.
  • FIG. 3 shows an example in which each of the components of the signal processor 13 is realized by dedicated hardware
  • FIG. 4 shows an example in which the signal processor 13 is realized by software, firmware, or the like. ..
  • this is only an example, and some components of the signal processor 13 may be realized by dedicated hardware, and the remaining components may be realized by software, firmware, or the like.
  • FIG. 5 is a flowchart showing a processing procedure of the radar device 1 shown in FIG.
  • FIG. 6 is a flowchart showing a processing procedure of the transmission unit 11 shown in FIG.
  • FIG. 7 is a flowchart showing a processing procedure of the receiving unit 12 shown in FIG.
  • FIG. 8 is a flowchart showing a signal processing method which is a processing procedure of the signal processor 13 shown in FIG.
  • the transmitting antennas 24-1 to 24-N Tx and the receiving antennas 31-1 to 31-N Rx are respectively installed in the vehicle.
  • the transmitting antennas 24-1 to 24-N Tx and the receiving antennas 31-1 to 31-N Rx are not limited to those installed in the vehicle, but are installed in structures installed on the road. It may be the one that has been done.
  • the transmitting antennas 24-1 to 24-N Tx and the receiving antennas 31-1 to 31-N Rx are each installed at the edge of the windshield of the vehicle as shown in FIG. .. FIG.
  • the transmitting antennas 24-1 to 24-4 are installed near the A pillar on the edge of the windshield, and the receiving antennas 31-1 to 31-4 are on the upper end of the edge of the windshield. It is installed in the vicinity of.
  • the attachment of the transmitting antennas 24-1 to 24-N Tx to the windshield and the attachment of the receiving antennas 31-1 to 31-N Rx to the windshield are omitted.
  • each of the transmitting antennas 24-1 to 24-4 has four element antennas and is represented as an array antenna.
  • each of the transmitting antennas 24-1 to 24-4 may have only one element antenna.
  • the element antenna may be used as an array antenna by installing it not only in the vertical direction but also in the horizontal direction.
  • the transmitting antennas 24-1 to 24-N Tx may be installed in the vicinity of both A pillars.
  • the transmitting antennas 24-1-1 to 24-N Tx may be installed in a plurality of rows in a direction orthogonal to the horizontal plane. The same applies to other drawings such as FIG.
  • the y-axis is an axis indicating the traveling direction of the vehicle
  • the traveling direction of the vehicle is a transmission RF signal radiated from the radiation surfaces 24a-1 to 24a-4 of the transmission antennas 24-1 to 24-4. It matches the direction of direction of.
  • the coincidence between the traveling direction and the directivity direction is not limited to exactly the same, and the traveling direction and the directivity direction may deviate within a range where there is no practical problem.
  • the x-axis is an axis indicating the vehicle width direction of the vehicle
  • the z-axis is an axis indicating the vertical direction orthogonal to the horizontal plane parallel to the traveling direction of the vehicle.
  • the installation positions of the transmitting antennas 24-1 to 24-4 are different from each other in the direction parallel to the y-axis and different from each other in the direction parallel to the z-axis.
  • the transmitting antennas 24-1 to 24-4 are arranged in a row in a direction parallel to the z-axis.
  • Each setting position in the receiving antennas 31-1 ⁇ 31-N Rx are different from each other in a direction parallel to the x-axis, the receiving antennas 31-1 ⁇ 31-N Rx is the direction parallel to the x axis, disposed in a row Has been done.
  • FIG. 10A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1-1 to 24-N Tx and the receiving antennas 31-1 to 31-N Rx in the yz plane
  • FIG. 10B is the transmitting antenna in the z-x plane. It is explanatory drawing which shows the arrangement of 24-1 to 24-N Tx and the receiving antenna 31-1 to 31-N Rx
  • FIG. 10C is an explanatory diagram showing the arrangement of the transmitting antennas 24-1-1 to 24-N Tx and the receiving antennas 31-1 to 31-N Rx in the xy plane.
  • a d y The distance from the + z direction end of the transmitting antenna 24-1 to the ⁇ z direction end of the transmitting antenna 24-4 is d Tx , as shown in FIG. 10A.
  • the lengths of the transmitting antennas 24-1 to 24-N Tx in the direction parallel to the z-axis are d Tx, sub , as shown in FIGS. 10A and 10B.
  • the local oscillation signal generation unit 21 generates the local oscillation signal L 1 (h, t) as shown in the following equation (1) (step ST11 in FIG. 6).
  • ⁇ 0 is the initial phase of the local oscillation signal.
  • h is the hit number and H is the number of hits.
  • AL is the amplitude of the local oscillation signal
  • B 0 is the transmission RF. This is the signal modulation band.
  • T 0 is the modulation time and t is the time.
  • T chp is a transmission repetition period of the transmission RF signal, and is expressed by the following equation (2).
  • T Tx in the equation (2) is a transmission repetition cycle, and is expressed by the following equation (3).
  • T 1 is the time from the modulation time T 0 to the next modulation.
  • the local oscillation signal generation unit 21 outputs the generated local oscillation signal L 1 (h, t) to the code modulation unit 22 and the receivers 32-1 to 32-N Rx , respectively.
  • the code modulation unit 22 uses the modulation code corresponding to each transmission channel number n Tx in the transmission antennas 24-1 to 24-N Tx, and the local oscillation signal L 1 (h) output from the local oscillation signal generation unit 21. by modulating the t), and it generates the N Tx number of transmitting RF signal (step ST12 in FIG. 6).
  • the process of generating the transmission RF signal by the code modulation unit 22 will be specifically described.
  • the code modulation unit 22 cyclically shifts the cyclic code C 0 (h) by the cyclic shift amount ⁇ h (n Tx ) corresponding to the transmission channel number n Tx.
  • the modulation code Code 1 (n Tx , h) of the transmission channel indicated by the transmission channel number n Tx is generated.
  • the cyclic code C 0 (h) may be stored in the internal memory of the code modulation unit 22, or may be given from the outside of the radar device 1.
  • the code modulation unit 22 may use an M sequence (Maximal length sequence) as the cyclic code C 0 (h), or may use a Gold sequence or a scissors sequence.
  • Shift (C 0 (h), ⁇ h (n Tx )) is a mathematical symbol indicating that the cyclic code C 0 (h) is cyclically shifted by the cyclic shift amount ⁇ h (n Tx ).
  • the code modulation unit 22 multiplies the local oscillation signal L 1 (h, t) by the modulation code Code 1 (n Tx , h) to transmit the transmission channel.
  • the transmission RF signal Tx 1 (n Tx , h, t) of the transmission channel corresponding to the number n Tx is generated.
  • the modulation code Code 1 (n Tx , h) is output to the signal processor 13.
  • the transmitter 23-n Tx When the transmitter 23-n Tx receives the transmission RF signal Tx 1 (n Tx , h, t) from the code modulation unit 22, the transmitter 23-n Tx transmits the transmission RF signal Tx 1 (n Tx , h, t) to the transmission antenna 24-n Tx. Output to.
  • the transmitting antenna 24-n Tx radiates a transmitted RF signal Tx 1 (n Tx , h, t) from the radiating surface 24an Tx into space (step ST1 in FIG. 5 and step ST13 in FIG. 6).
  • Emitting surface 24a-n Tx transmitting antennas 24-n Tx is because it is orthogonal to a direction parallel to the y-axis, the directivity direction of the transmission RF signal Tx 1 (n Tx, h, t) is, the traveling direction of the vehicle Is consistent with.
  • N Tx number of transmitting RF signal Tx 1 radiated from the transmission antenna 24-1 ⁇ 24-N Tx (1 , h, t) ⁇ Tx 1 (N Tx, h, t) is generally emitted simultaneously ..
  • the received RF signal Rx 1 (n Rx , h, t) is expressed by the following equation (6).
  • the reflected RF signal Rx 0 (n Tx , n Rx , h, t) in the equation (6) is expressed by the following equation (7).
  • a R is the amplitude of the received RF signal Rx 1 (n Rx, h, t).
  • R 0 is the initial target relative distance
  • the initial target relative distance is the initial value of the relative distance between the radar device 1 and the target.
  • v is the target relative speed
  • the target relative speed is the relative speed between the radar device 1 and the target.
  • c is the speed of light and t'is the time within one hit.
  • ⁇ Tx (n Tx ) is the phase difference of the transmission channel indicated by the transmission channel number n Tx , and is expressed as in the following equation (8).
  • ⁇ Rx (n Rx ) is the phase difference of the receiving channel indicated by the receiving channel number n Rx , and is expressed by the following equation (9).
  • ⁇ tgt is the target direction in which the azimuth is ⁇ AZ, tgt and the elevation angle is ⁇ AZ, tgt , as represented by the following equation (10). It is a unit vector. " ⁇ " Is a mathematical symbol representing the inner product.
  • PTx (n Tx ) is a position vector of the transmitting antenna 24-n Tx represented by the following equation (11).
  • PRx (n Rx ) is a position vector of the receiving antenna 31-n Rx represented by the following equation (12).
  • Equation (11) p Tx, x (n Tx ) is the x coordinate of the transmitting antenna 24-n Tx , and p Tx, y (n Tx ) is the y coordinate of the transmitting antenna 24-n Tx , p Tx, z. (N Tx ) is the z coordinate of the transmitting antenna 24-n Tx .
  • Equation (12) p Rx, x (n Rx ) is the x coordinate of the receiving antenna 31-n Rx , and p Rx, y (n Rx ) is the y coordinate of the receiving antenna 31-n Rx , p Rx, z.
  • N Rx is the y coordinate of the receiving antenna 31-n Rx .
  • the receiver 32-n Rx When the receiver 32-n Rx receives the received RF signal Rx 1 (n Rx , h, t) from the receiving antenna 31-n Rx, the local oscillation signal L 1 (h,) output from the local oscillation signal generation unit 21.
  • the frequency of the received RF signal Rx 1 (n Rx , h, t) is down-converted using t).
  • the receiver 32-n Rx filters the received RF signal after down-conversion by using, for example, a band filter, and amplifies the intensity of the signal that has passed through the band filter.
  • Receiver 32-n Rx is, by detecting the phase of the signal strength after amplification, as shown in the following equation (13), the reception beat signal V '1 of the receiving channel indicated by the received channel number n Rx (n Rx , h, t) is generated (step ST22 in FIG. 7).
  • a V is the amplitude of the received beat signal V '0 (n Tx, n Rx, h, t).
  • Receiver 32-n Rx outputs the received beat signal V '1 (n Rx, h , t) to the A / D converter 33-n Rx.
  • a / D converter 33-n Rx is received beat signal from the receiver 32-n Rx V '1 ( n Rx, h, t) receives the reception beat signal V' 1 (n Rx, h , t) Is converted from an analog signal to a digital signal (step ST23 in FIG. 7).
  • a / D converter 33-n Rx is received is expressed by the formula (15) below the digital signal beat signal V '1 (n Rx, h , m) to the signal processor 13 as (in FIG. 5 Step ST2).
  • a / D converter 33-n Rx received beat signal is outputted from the V '1 (n Rx, h , m) , as shown in the following equation (16), the transmission channel n Tx and reception channels n Rx
  • the received beat signals V 0 (n Tx , n Rx , h, t) corresponding to each are added.
  • ⁇ t is the sampling interval within the modulation time T 0 .
  • m is the sampling number of the received beat signal is sampled in the modulation time T 0.
  • M is the number of samples received beat signal in the modulation time T 0.
  • Signal processor 13 based on the installation position of a directional direction of transmission antennas 24-1 ⁇ 24-N Tx, A / D converters 33-1 ⁇ 33-N Rx received beat signal output from the V '1 (1, h, m) ⁇ V '1 (N Rx, h, m) to be coherent integration.
  • Signal processor 13 the received beat signal V '1 (1, h, m) ⁇ V' 1 (N Rx, h, m) from the coherent integration signal is coherent integration result of angular measurement target.
  • the target angle measurement processing by the signal processor 13 will be specifically described.
  • the separation unit 41 acquires the modulation codes Code 1 (1, h) to Code 1 ( NTx , h) output from the code modulation unit 22, and outputs them from the A / D converters 33-1 to 33-N Rx.
  • modulation code Code 1 (n Tx, h) using a received beat signal V '1 (n Rx, h , m) from, corresponds to both the transmission channel number n Tx and the receive channel number n Rx
  • the received beat signals V 1, C (n Tx , n Rx , h, m) are demodulated (step ST31 in FIG. 8).
  • the demodulated received beat signals V 1, C (n Tx , n Rx , h, m) are separated for each transmission channel and for each reception channel, as shown in the following equation (17). expressed.
  • the separation unit 41 outputs the demodulated received beat signals V 1, C (n Tx , n Rx , h, m) to the signal generation unit 42.
  • the received beat signals V 1, C (n Tx , n Rx , h, m) after demodulation match the modulation code Code 1 (n Tx , h) as shown in the following equation (18), and are self. It is represented by the correlated signals V 0, C (n Tx , n Rx , h, m). Further, the received beat signals V 1, C (n Tx , n Rx , h, m) after demodulation do not match the modulation code Code 1 (n Tx , h) as shown in the following equation (19). It is represented by signals V'0 , C ( n'Tx , nRx , h, m) of transmission channel number n'Tx that are cross-correlated. Inconsistency with the modulation code Code 1 (n Tx , h) means that n Tx ⁇ n'Tx .
  • the signal generation unit 42 performs discrete Fourier transform on the demodulated received beat signals V 1, C (n Tx , n Rx , h, m) output from the separation unit 41, and is shown in the following equation (20).
  • the distance velocity signals f b, 1 (n Tx , n Rx , q, k) corresponding to both the transmission channel number n Tx and the reception channel number n Rx are generated (step ST32 in FIG. 8).
  • the distance / velocity signals f b, 1 (n Tx , n Rx , q, k) include distance information regarding the distance to the target candidate and velocity information regarding the speed of the target candidate, respectively.
  • Equation (20) q is the velocity bin number and k is the distance bin number.
  • the signal generation unit 42 outputs the distance velocity signals f b, 1 (n Tx , n Rx , q, k) to the incoherent integration unit 43.
  • FIG. 11A is an explanatory diagram showing the relationship between the sampling number and the hit number of the received beat signals V 1, C (n Tx , n Rx , h, m) after demodulation.
  • FIG. 11B is an explanatory diagram showing the relationship between the distance bin number k and the speed bin number q in the distance velocity signals f b, 1 (n Tx , n Rx , q, k).
  • the incoherent integrating unit 43 When the incoherent integrating unit 43 receives the distance velocity signal f b, 1 (n Tx , n Rx , q, k) from the signal generation unit 42, the incoherent integrating unit 43 receives the distance velocity signal f b, 1 (n Tx , n Rx , q, k) is incoherently integrated (step ST33 in FIG. 8).
  • the incoherent integration unit 43 receives the incoherent integration signal f b, 1 represented by the following equation (21) as the incoherent integration result of the distance velocity signal f b, 1 (n Tx , n Rx , q, k).
  • Inch (q, k) is output to the target candidate detection unit 44.
  • FIG. 12A is an explanatory diagram showing the relationship between the distance bin number k and the speed bin number q in the distance velocity signals f b, 1 (n Tx , n Rx , q, k).
  • FIG. 12B is an explanatory diagram showing the relationship between the distance bin number k and the velocity bin number q in the incoherent integration signals f b, 1, inch (q, k).
  • the incoherent integrated signals f b, 1, inch (q, k) are plural because they are signals in which the signal intensities of a plurality of distance velocity signals f b, 1 (n Tx , n Rx , q, k) are integrated.
  • the noise contained in the distance velocity signals f b, 1 (n Tx , n Rx , q, k) of is averaged, and the influence of the noise is reduced.
  • the target candidate detection unit 44 When the target candidate detection unit 44 receives the incoherent integration signal f b, 1, inch (q, k) from the incoherent integration unit 43, the target candidate detection unit 44 receives the signal strength of the incoherent integration signal f b, 1, inch (q, k). Detect target candidates based on.
  • the target candidate number for identifying the detected target candidate is ntgt .
  • CA-CFAR Cell Average Constant False Allarm Rate
  • Target candidate detection unit 44 is a target candidate number n tgt and the speed bin number q Ntgt a velocity direction of the sampling number of the corresponding target candidate, the target candidate number n tgt sampling number of the distance direction of the corresponding target candidate Identify the distance bin number k ntgt .
  • the target candidate detection unit 44 calculates the distance L (n Tgt ) from the specified distance bin number k ntgt to the target candidate, and calculates the speed v (n Tgt ) of the target candidate from the specified speed bin number q ntgt ( Step ST34 in FIG. 8).
  • the target candidate detection unit 44 outputs each of the distance L (n Tgt ) to the target candidate and the speed v (n Tgt ) of the target candidate to the display 14.
  • Target candidate detection unit 44 a plurality of distance speed signal outputted from the signal generation unit 42 f b, 1 (n Tx , n Rx, q, k) of the distance speed signal f b corresponding to the detected target candidates , 1 (n Tx , n Rx , q ntgt , k ntgt ) is output to the coherent integrator 45.
  • the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) corresponding to the detected target candidates are the distances corresponding to the specified distance bin number k ntgt and the specified velocity bin number q ntgt , respectively.
  • the velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ). Further, the target candidate detection unit 44 outputs each of the specified distance bin number k ntgt and the specified velocity bin number q ntgt to the coherent integration unit 45.
  • the coherent integrator 45 has a distance velocity signal f b, 1 (n Tx , n Rx ,) output from the target candidate detection unit 44 based on the installation position in the directivity direction of the transmitting antennas 24-1 to 24-N Tx .
  • q ntgt , k ntgt is coherently integrated (step ST35 in FIG. 8).
  • the coherent integration unit 45 coherently integrates the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) between the transmission channels and the reception channels, thereby causing the distance velocity signals f b, 1 (
  • the coherent integral signal R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) as shown in the following equation (22). Is obtained.
  • N EL is the number of assumed target elevation angles
  • n EL is the target elevation number assigned to the assumed target elevation angle
  • N AZ is the number of assumed target azimuths
  • n AZ is the target azimuth number assigned to the assumed target azimuth
  • ⁇ 'Tx (n Tx , n EL , n AZ ) is the phase difference in the transmission channel number n Tx for the target elevation angle number n EL and the target azimuth angle number n AZ , and is represented by the following equation (23). Will be done.
  • ⁇ 'Rx (n Rx , n EL , n AZ ) is the phase difference in the reception channel number n Rx for the target elevation angle number n EL and the target azimuth angle number n AZ , and is represented by the following equation (24). Will be done.
  • the unit vector ⁇ (n EL , n AZ ) of the assumed target direction for the target elevation angle number n EL and the target azimuth angle number n AZ is expressed by the following equation (25).
  • the coherent integration unit 45 outputs the coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) to the angle calculation unit 46.
  • the signal power of the coherent integrated signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) is the phase difference ⁇ Tx (n Tx ) of the transmission channel as shown in the following equation (26).
  • the difference from the phase difference ⁇ 'Tx (n Tx , n EL , n AZ ) is zero, and the phase difference ⁇ Rx (n Rx ) of the receiving channel and the phase difference ⁇ 'Rx (n Tx , n EL , n AZ ) If the difference with is zero, it becomes the maximum value.
  • the angle measurement accuracy of the target is improved.
  • the target elevation angle number n EL when the signal power of the coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) becomes the maximum value is set as the target elevation angle number indicating the elevation angle of the target candidate. Let it be n EL and nTgt .
  • the target azimuth number n AZ when the signal power of the coherent integrated signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) becomes the maximum value is set as a target indicating the azimuth angle of the target candidate. This will be described as the azimuth numbers nAZ and nTgt .
  • the receiving unit 12 includes receiving antennas 31-1 to 31-N Rx .
  • the receiving antennas 31-1 to 31-4 are arranged in a row in the direction parallel to the x-axis, and in the direction parallel to the z-axis. , Multiple receiving antennas are not arranged. Therefore, there is no opening of the receiving channel in the direction parallel to the z-axis.
  • the transmitting antennas 24-1 to 24-4 are arranged in a row in the direction parallel to the z-axis, the receiving antennas 31-1 are as shown in FIG. 13B.
  • a virtual receiving antenna is formed at a position moved in the ⁇ z direction by the length d Tx, sub of the transmitting antenna 24-1. Further, a virtual receiving antenna is formed at a position moved from the receiving antennas 31-1 to 31-4 in the ⁇ z direction by the length d Tx, sub ⁇ 2 of the transmitting antenna 24-1. Further, a virtual receiving antenna is formed at a position moved from the receiving antennas 31-1 to 31-4 in the ⁇ z direction by the length d Tx, sub ⁇ 3 of the transmitting antenna 24-1.
  • the virtual receiving antenna is not the receiving antenna that actually exists. However, the virtual receiving antenna can obtain a reflected RF signal similar to the reflected RF signal received by the actually existing receiving antenna by signal processing.
  • FIG. 13A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4
  • FIG. 13B is an explanatory diagram showing a virtual receiving antenna.
  • the angle calculation unit 46 has a target azimuth number n AZ, based on the signal strength of the coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) output from the coherent integration unit 45 .
  • the azimuth angle ⁇ (n AZ , n Tgt ) of the target candidate indicated by nTgt is calculated (step ST3 in FIG. 5 and step ST36 in FIG. 8).
  • the angle calculation unit 46 determines the elevation angle of the target candidate indicated by the target elevation angle numbers n EL, nTgt based on the signal strength of the coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ). ⁇ (n EL , n Tgt ) is calculated (step ST3 in FIG. 5 and step ST36 in FIG. 8).
  • the angle calculation unit 46 outputs each of the azimuth angle ⁇ (n AZ , n Tgt ) of the target candidate and the elevation angle ⁇ (n EL , n Tgt ) of the target candidate to the display 14.
  • the display 14 displays on the display each of the distance L (n Tgt ) from the target candidate detection unit 44 to the target candidate and the speed v (n Tgt ) of the target candidate. Further, the display 14 displays each of the azimuth angle ⁇ (n AZ , n Tgt ) of the target candidate and the elevation angle ⁇ (n EL , n Tgt ) of the target candidate output from the angle calculation unit 46 on the display.
  • FIG. 14A shows the resolution of the radar device 1 shown in FIG. 1 in the elevation angle direction.
  • FIG. 14B shows the resolution in the elevation angle direction when a plurality of transmitting antennas corresponding to each of the transmitting antennas 24-1 to 24-4 are arranged in parallel with the A pillar.
  • FIG. 14C shows the resolution in the elevation angle direction when a plurality of transmitting antennas corresponding to each of the transmitting antennas 24-1 to 24-4 are arranged in a direction orthogonal to the traveling direction.
  • FIG. 14D shows the resolution in the elevation angle direction when twice as many transmitting antennas as the transmitting antennas 24-1 to 24-4 shown in FIG. 14A are arranged in parallel with the A pillar.
  • the transmitting RF signal is radiated from the transmitting antenna in the traveling direction of the vehicle.
  • the opening length D 2 in the vertical direction is expressed by the following equation (27).
  • D 1 is the vertical aperture length when the transmitting antennas 24-1 to 24-4 are arranged, as shown in FIG. 14A.
  • ⁇ Ap is the inclination angle of the A pillar.
  • the vertical opening length D 2 is smaller than the vertical opening length D 1 as shown in the following equation (28).
  • the resolution in the elevation angle direction when the transmitting antennas 24-1 to 24-4 are arranged is ⁇ EL
  • FIG. 14B a plurality of transmitting antennas are used.
  • the resolution in the elevation angle direction is about 2 ⁇ ⁇ EL .
  • FIG. 14B when a plurality of transmitting antennas are arranged parallel to the A pillar, the elevation angle direction is larger than that when the transmitting antennas 24-1 to 24-4 are arranged as shown in FIG. 14A.
  • the resolution of is deteriorated. As shown in FIG.
  • the aperture length in the vertical direction is such that the transmitting antennas 24-1 to 24-4 are arranged as shown in FIG. 14A. is the same as the aperture length D 1 of the vertical direction when there.
  • the area where the windshield of the vehicle is shielded by the plurality of transmitting antennas is the transmitting antenna 24 as shown in FIG. 14A. It is larger than the shielding area when -1 to 24-4 are arranged.
  • the hatched portion shows a region shielded by the transmitting antenna. The larger the area shielded by the transmitting antenna, the worse the visibility in front of the vehicle will occur.
  • FIG. 14D when twice as many transmitting antennas as the transmitting antennas 24-1 to 24-4 shown in FIG. 14A are arranged parallel to the A pillar, the vertical aperture length is shown in FIG. 14A. As described above, when the transmitting antennas 24-1 to 24-4 are arranged, the opening length D 1 in the vertical direction is almost the same. However, as shown in FIG. 14D, when twice as many transmitting antennas as the transmitting antennas 24-1 to 24-4 shown in FIG. 14A are arranged in parallel with the A pillar, the transmitting antenna 24- The cost is higher than when 1 to 24-4 are arranged.
  • the installation positions of the transmitted signals in the direct direction are different from each other, and the installation positions in the direction orthogonal to the horizontal plane parallel to the direct direction are different from each other, and are orthogonal to the direct direction.
  • a transmitting antenna 24-1 ⁇ 24-N TX for emitting the transmission signal from the emitting surface 24a-1 ⁇ 24a-N TX after being emitted from each of the transmitting antennas 24-1 ⁇ 24-N TX, is reflected to the target
  • the receiving antennas 31-1 to 31-N RX which receive each transmitted signal as a reflected signal and output the received signal of each reflected signal, and the transmitting antennas 24-1 to 24-N TX installed in the directional direction.
  • the received signals output from the receiving antennas 31-1 to 31-N RX are coherently integrated, and the signal processor 13 that measures the target from the coherent integrated signal that is the coherent integration result of the received signals is used.
  • the radar device 1 was configured to be provided. Therefore, the radar device 1 can reduce the power loss of the transmission signal in the direction in which the target exists.
  • the transmitting antennas 24-1 to 24-4 are installed near the A pillar in the edge of the windshield, and the receiving antennas 31-1 to 31 are installed.
  • -4 is installed near the upper end of the edge of the windshield.
  • the transmitting antennas 24-1 to 24-4 are installed near the upper end of the edge of the windshield, and the receiving antennas 31-1 to 31 are installed.
  • -4 may be installed near the A pillar in the edge of the windshield.
  • FIG. 15 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-N Tx and the receiving antennas 31-1 to 31-N Rx .
  • the transmitting antennas 24-1 to 24-4 are installed near the upper end of the edge of the windshield, and the receiving antennas 31-1 to 31-4 are located near the A pillar of the edge of the windshield.
  • N TX ⁇ 1 and N RX ⁇ 2 may be satisfied.
  • the coherent integration obtained by the coherent integrating unit 45 is obtained.
  • the signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) are coherent integral signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) shown in Eq. (22). Will be the same as.
  • the coherent integrator 45 is based on the installation position in the directivity direction of the receiving antennas 31-1 to 31-N RX instead of the installation position in the directivity direction of the transmitting antennas 24-1-1 to 24-N TX .
  • the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) are coherently integrated.
  • the code modulation unit 22 corresponds to the transmission channel number n Tx by multiplying the local oscillation signal L 1 (h, t) by the modulation code Code 1 (n Tx , h).
  • the transmission RF signal Tx 1 (n Tx , h, t) in the transmission channel is generated. If the transmission RF signals radiated from each of the transmission antennas 24-1 to 24-N TX can be made different from each other, the local oscillation signal L 1 (h, t) and the modulation code Code 1 (n Tx , h) ),
  • the code modulation unit 22 may generate the transmission RF signal Tx 1 (n Tx , h, t) by a method other than multiplying by.
  • the code modulation unit 22 performs, for example, time division, code division, or frequency division on the local oscillation signal L 1 (h, t) to transmit RF signal Tx 1 (n Tx , h). , T) may be generated. Also, code modulation unit 22, for example, with respect to the local oscillation signal L 1 (h, t), both time division and code division, or by performing both frequency division and code division transmission RF signal Tx 1 (n Tx , h, t) may be generated.
  • Embodiment 2 In the radar device 1 shown in FIG. 1, the coherent integrating unit 45 coherently integrates the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ), as shown in equation (22). Coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) are obtained.
  • the coherent integrator 45 applies the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) to a fast Fourier transform (FFT: Fast) in each of the azimuth and elevation directions.
  • FFT Fast
  • a radar device 1 that coherently integrates distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) by performing a Fourier Transform) will be described.
  • the configuration of the radar device 1 of the second embodiment is the same as the configuration of the radar device 1 of the first embodiment, and the configuration diagram showing the radar device 1 of the second embodiment is FIG.
  • the coherent integrating unit 45 FFTs the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) in each of the azimuth and elevation directions. Therefore, the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) are coherently integrated.
  • the coherent integration unit 45 uses the coherent integration signals R Tx, Rx, as shown in the following equation (29) as the coherent integration result of the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) . ch (n EL , n AZ , q ntgt , k ntgt ) is obtained.
  • the coherent integration unit 45 outputs the coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) to the angle calculation unit 46.
  • FFT nTx (X ) indicates the FFT of elevation with respect to signals X, N EL, fft is the FFT points of elevation.
  • FFT nRx (X) indicates the FFT azimuthal direction with respect to signals X, N AZ, fft is the FFT points of the azimuth angle direction.
  • the signal power of the coherent integrated signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) represented by the equation (29) is the phase difference ⁇ Tx (of the transmission channel) of the transmission channel as shown in the equation (26).
  • the difference between n Tx ) and the phase difference ⁇ 'Tx (n Tx , n EL , n AZ ) is zero, and the phase difference ⁇ Rx (n Rx ) of the receiving channel and the phase difference ⁇ 'Tx (n Tx , n EL) , N AZ ) If the difference is zero, it becomes the maximum value.
  • FIG. 16A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4 when the transmitting antennas 24-1 to 24-4 are assumed to be planar array antennas.
  • FIG. 16B is an explanatory diagram showing an elevation angle of a target candidate when the transmitting antennas 24-1 to 24-4 are assumed to be planar array antennas.
  • the elevation angle of the target candidate is represented by ⁇ EL .
  • FIG. 17A is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4 when the directivity distance between the transmitting antennas 24-1 to 24-4 is dy. is there.
  • FIG. 17B is an explanatory diagram showing the arrangement of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4 when the directivity distance between the transmitting antennas 24-1 to 24-4 is dy. is there.
  • FIG. 17B is an explanatory diagram showing an elevation angle of a target candidate when the distance between the transmitting antennas 24-1 to 24-4 in the directivity direction is dy.
  • the elevation angle of the target candidate is represented by ⁇ EL .
  • FIG. 18 is an explanatory diagram showing transmission RF signals radiated from transmission antennas 24-1 to 24-4 having a directivity interval of dy.
  • the distance between the transmitting antennas 24-1 to 24- NTx in the directivity direction that is, the distance in the direction parallel to the y-axis is dy.
  • the azimuth angle ⁇ (n AZ , n Tgt ) of the target candidate is given by the equation (30). It is represented by. Therefore, the angle calculation unit 46 can calculate the azimuth angle ⁇ (n AZ , n Tgt ) of the target candidate by the equation (30).
  • the coherent integrating unit 45 FFTs the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) in the azimuth direction as shown in the following equation (35).
  • the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) are coherently integrated by performing a discrete Fourier transform in the elevation direction.
  • the coherent integration unit 45 uses the coherent integration signals R Tx, Rx, as shown in the following equation (35) as the coherent integration result of the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) . ch (n EL , n AZ , q ntgt , k ntgt ) is obtained.
  • the signal power of the coherent integrated signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) represented by the equation (35) is the phase difference ⁇ Tx (of the transmission channel) of the transmission channel as shown in the equation (26).
  • the difference between n Tx ) and the phase difference ⁇ 'Tx (n Tx , n EL , n AZ ) is zero, and the phase difference ⁇ Rx (n Rx ) of the receiving channel and the phase difference ⁇ 'Tx (n Tx , n EL) , N AZ ) If the difference is zero, it becomes the maximum value.
  • the angle calculation unit 46 can calculate the azimuth angle ⁇ (n AZ , n Tgt ) of the target candidate by the equation (36).
  • Embodiment 3 In the radar device 1 shown in FIG. 1, the coherent integrating unit 45 coherently integrates the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ), as shown in equation (22). Coherent integration signals R Tx, Rx, ch (n EL , n AZ , q ntgt , k ntgt ) are obtained.
  • the coherent integration unit 45 performs super-resolution processing on the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ), whereby the distance velocity signals f b, 1
  • a radar device 1 for coherent integration of (n Tx , n Rx , q ntgt , k ntgt ) will be described.
  • the configuration of the radar device 1 of the third embodiment is the same as the configuration of the radar device 1 of the first embodiment, and the configuration diagram showing the radar device 1 of the third embodiment is FIG.
  • processing such as MUSIC (Multiple Signal Classication) or ESPRIT (Estimation of Signal Parameters via Rotary Invasion Technology) can be used.
  • the coherent integration unit 45 uses, for example, MUSIC processing as the super-resolution processing, the coherent integration unit 45 coherents the distance velocity signals f b, 1 (n Tx , n Rx , q ntgt , k ntgt ) according to the following equation (37). Integrate.
  • a ( ⁇ EL (n EL ), ⁇ AZ (n AZ )) is a mode vector to be searched.
  • H is a complex conjugate transpose
  • E N is the noise subspace.
  • the transmitting antennas 24-1 to 24- NTx are installed in the vicinity of the A pillar in the edge of the windshield of the vehicle.
  • the receiving antennas 31-1 to 31-N Rx are installed near the upper end of the edge of the windshield.
  • the transmitting antennas 24-1 to 24-4 may be installed in the A pillar of the vehicle. Further, the transmitting antennas 24-1 to 24-4 may be installed on the B pillar of the vehicle, for example.
  • the transmitting antennas 24-1 to 24-4 are installed on the A pillar or the B pillar of the vehicle, the transmission signal radiated from the transmitting antennas 24-1 to 24-4 is not blocked by the A pillar or the like.
  • the transmitting antennas 24-1 to 24-4 may be installed on the front bumper of the vehicle as shown in FIG. Also in the installation examples of FIGS. 19 and 20, the distance between the transmitting antennas 24-1 to 24-4 in the directivity direction is dy.
  • FIG. 19 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • FIG. 20 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • the transmitting antennas 24-1 to 24-4 are installed near the D pillar in the edge of the rear glass of the vehicle, and the receiving antennas 31-1 to 31-4 are on the rear glass. It may be installed near the upper end of the edge of the antenna. Further, as shown in FIG. 22, the transmitting antennas 24-1 to 24-4 are installed on the rear bumper of the vehicle, and the receiving antennas 31-1 to 31-4 are located on the upper end portion of the edge portion of the rear glass. It may be installed in the vicinity. Also in the installation examples of FIGS. 21 and 22, the distance between the transmitting antennas 24-1 to 24-4 in the directivity direction is dy. FIG.
  • FIG. 21 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • FIG. 22 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • the transmitting antennas 24-1 to 24-4 are installed near the upper end of the edge of the windshield of the vehicle, and the receiving antennas 31-1 to 31-4 are located at the edge of the windshield. It is installed near the A pillar of the.
  • the receiving antennas 31-1 to 31-4 may be installed in the A pillar of the vehicle.
  • the receiving antennas 31-1 to 31-4 may be installed in the B pillar of the vehicle, for example.
  • the receiving antennas 31-1 to 31-4 may be installed on the front bumper of the vehicle as shown in FIG. 24.
  • the distance between the receiving antennas 31-1 to 31-4 in the directivity direction is dy.
  • FIG. 23 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • FIG. 24 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • the transmitting antennas 24-1 to 24-4 are installed near the upper end portion of the edge portion of the rear glass, and the receiving antennas 31-1 to 31-4 are the rear glass of the vehicle. It may be installed near the D-pillar in the edge of the antenna. Further, as shown in FIG. 26, the transmitting antennas 24-1 to 24-4 are installed near the upper end portion of the edge portion of the rear glass, and the receiving antennas 31-1 to 31-4 are rear of the vehicle. It may be installed on the bumper. Also in the installation examples of FIGS. 25 and 26, the distance between the receiving antennas 31-1 to 31-4 in the directivity direction is dy. FIG.
  • FIG. 25 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • FIG. 26 is an explanatory diagram showing an installation example of the transmitting antennas 24-1 to 24-4 and the receiving antennas 31-1 to 31-4.
  • This invention is suitable for a radar device and a signal processing method for measuring a target angle.
  • 1 Radar device 11 Transmitter, 12 Receiver, 13 Signal processor, 14 Indicator, 20 Modulator, 21 Local oscillation signal generator, 22 Code modulator, 23-1 to 23-NTx transmitter, 24-1 ⁇ 24-NTx transmitting antenna, 24a-1 ⁇ 24a-NTx emitting surface, 31-1 to 31-NRx receiving antenna, 32-1 to 32-NRx receiver, 33-1 to 33-NRx A / D converter, 41 Separation unit, 42 Signal generation unit, 43 Incoherent integration unit, 44 Target candidate detection unit, 45 Coherent integration unit, 46 Angle calculation unit, 51 Separation circuit, 52 Signal generation circuit, 53 Incoherent integration circuit, 54 Target candidate detection Circuit, 55 coherent integration circuit, 56 angle calculation circuit, 61 memory, 62 processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

送信信号の指向方向での設置位置が互いに異なり、かつ、指向方向と平行な水平面と直交している方向での設置位置が互いに異なり、指向方向と直交している放射面(24a-1)~(24a-NTX)から送信信号を放射する送信アンテナ(24-1)~(24-NTX)と、送信アンテナ(24-1)~(24-NTX)のそれぞれから放射されたのち、目標に反射されたそれぞれの送信信号を反射信号として受信し、それぞれの反射信号の受信信号を出力する受信アンテナ(31-1)~(31-NRX)と、送信アンテナ(24-1)~(24-NTX)における指向方向での設置位置に基づいて、受信アンテナ(31-1)~(31-NRX)から出力された受信信号をコヒーレント積分し、受信信号のコヒーレント積分結果であるコヒーレント積分信号から、目標を測角する信号処理器(13)とを備えるように、レーダ装置(1)を構成した。

Description

レーダ装置及び信号処理方法
 この発明は、目標を測角するレーダ装置及び信号処理方法に関するものである。
 物標を検出する機能を有するレーダ装置は、物標への自動車の衝突を防止するために、自動車に設置されることがある。
 特許文献1には、水平方向のアンテナ開口と、垂直方向のアンテナ開口とを拡大するために、複数の送信アンテナと複数の受信アンテナとが直交するように設置されているレーダ装置が開示されている。
 特許文献1に開示されているレーダ装置では、複数の送信アンテナが、自動車のAピラーに沿って、フロントガラスに設置されている。
国際公開2018/122926号
 特許文献1に開示されているレーダ装置では、複数の送信アンテナが設置されているフロントガラスが、道路面から傾いているため、送信アンテナにおける電波の放射面と直交している方向が、自動車の進行方向と異なっている。
 したがって、送信アンテナから送信される電波の指向方向と、自動車の進行方向とが異なるため、物標が存在している方向への電波の電力が損失してしまい、物標の測角精度が劣化してしまうことがあるという課題があった。
 この発明は上記のような課題を解決するためになされたもので、目標が存在している方向への送信信号の電力の損失を低減することができるレーダ装置及び信号処理方法を得ることを目的とする。
 この発明に係るレーダ装置は、送信信号の指向方向での設置位置が互いに異なり、かつ、指向方向と平行な水平面と直交している方向での設置位置が互いに異なり、指向方向と直交している放射面から送信信号を放射する複数の送信アンテナと、複数の送信アンテナのそれぞれから放射されたのち、目標に反射されたそれぞれの送信信号を反射信号として受信し、それぞれの反射信号の受信信号を出力する受信アンテナと、複数の送信アンテナにおける指向方向での設置位置に基づいて、受信アンテナから出力された受信信号をコヒーレント積分し、受信信号のコヒーレント積分結果であるコヒーレント積分信号から、目標を測角する信号処理器とを備えるようにしたものである。
 この発明によれば、目標が存在している方向への送信信号の電力の損失を低減することができる。
実施の形態1に係るレーダ装置1を示す構成図である。 実施の形態1に係るレーダ装置1の信号処理器13を示す構成図である。 信号処理器13のハードウェアを示すハードウェア構成図である。 信号処理器13がソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。 図1に示すレーダ装置1の処理手順を示すフローチャートである。 図1に示す送信部11の処理手順を示すフローチャートである。 図1に示す受信部12の処理手順を示すフローチャートである。 図1に示す信号処理器13の処理手順である信号処理方法を示すフローチャートである。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 図10Aは、y-z平面における送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図、図10Bは、z-x平面における送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図、図10Cは、x-y平面における送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図である。 図11Aは、復調後の受信ビート信号V1,C(nTx,nRx,h,m)のサンプリング番号とヒット番号との関係を示す説明図、図11Bは、距離速度信号fb,1(nTx,nRx,q,k)における距離ビン番号kと速度ビン番号qとの関係を示す説明図である。 図12Aは、距離速度信号fb,1(nTx,nRx,q,k)における距離ビン番号kと速度ビン番号qとの関係を示す説明図、図12Bは、インコヒーレント積分信号fb,1,inch(q,k)における距離ビン番号kと速度ビン番号qとの関係を示す説明図である。 図13Aは、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図、図13Bは、仮想的な受信アンテナを示す説明図である。 図14Aは、図1に示すレーダ装置1の仰角方向の分解能を示す説明図、図14Bは、送信アンテナ24-1~24-4のそれぞれに相当する複数の送信アンテナがAピラーと平行に配置されている場合の仰角方向の分解能を示す説明図、図14Cは、送信アンテナ24-1~24-4のそれぞれに相当する複数の送信アンテナが進行方向と直交する方向に配置されている場合の仰角方向の分解能を示す説明図、図14Dは、図14Aに示す送信アンテナ24-1~24-4の2倍の数の送信アンテナがAピラーと平行に配置されている場合の仰角方向の分解能を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 図16Aは、送信アンテナ24-1~24-4が平面アレーアンテナであると仮定し場合の送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図、図16Bは、送信アンテナ24-1~24-4が平面アレーアンテナであると仮定した場合の目標候補の仰角を示す説明図である。 図17Aは、送信アンテナ24-1~24-4における指向方向の間隔がdyであるときの送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図、図17Bは、送信アンテナ24-1~24-4における指向方向の間隔がdyであるときの目標候補の仰角を示す説明図である。 指向方向の間隔がdyである送信アンテナ24-1~24-4から放射される送信RF信号を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。 送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るレーダ装置1を示す構成図である。
 図2は、実施の形態1に係るレーダ装置1の信号処理器13を示す構成図である。
 図3は、信号処理器13のハードウェアを示すハードウェア構成図である。
 図1において、レーダ装置1は、送信部11、受信部12及び信号処理器13を備えている。
 送信部11は、変調部20、送信機23-1~23-NTx及び送信アンテナ24-1~24-NTxを備えている。NTxは、2以上の整数である。
 変調部20は、局部発振信号生成部21及び符号変調部22を備えている。
 局部発振信号生成部21は、局部発振信号を生成し、局部発振信号を符号変調部22及び受信機32-1~32-NRxのそれぞれに出力する。NRxは、1以上の整数である。
 符号変調部22は、送信アンテナ24-1~24-NTxにおけるそれぞれの送信チャネル番号に対応する符号である変調符号を用いて、局部発振信号生成部21から出力された局部発振信号をそれぞれ変調することで、NTx個の送信信号として、NTx個の送信RF(Radio Frequency)信号を生成する。
 符号変調部22は、NTx個の送信RF信号のそれぞれを送信機23-1~23-NTxに出力し、それぞれの送信チャネル番号に対応する変調符号を信号処理器13に出力する。
 送信機23-nTx(nTx=1,・・・,NTx)は、符号変調部22から出力された送信RF信号を送信アンテナ24-nTxに出力する。
 送信アンテナ24-1~24-NTxは、送信RF信号の指向方向での設置位置が互いに異なり、かつ、指向方向と平行な水平面と直交している方向での設置位置が互いに異なっている。
 送信アンテナ24-1~24-NTxは、水平面と直交している方向に一列に配置されている。
 送信アンテナ24-nTxは、指向方向と直交している放射面24a-nTxを有している。
 送信アンテナ24-nTxは、放射面24a-nTxから送信RF信号を空間に放射する。
 受信部12は、受信アンテナ31-1~31-NRx、受信機32-1~32-NRx及びアナログデジタル変換器(以下、「A/D変換器」と称する)33-1~33-NRxを備えている。
 NRxは、1以上の整数であり、例えば、NRx≧2であれば、受信アンテナ31-1~31-NRxは、指向方向と直交しており、かつ、送信アンテナ24-1~24-NTxが一列に配置されている方向と直交している方向に、一列に配置されている。
 受信アンテナ31-nRx(nRx=1,・・・,NRx)は、送信アンテナ24-1~24-NTxのそれぞれから送信RF信号が放射されたのち、目標に反射されたそれぞれの送信RF信号を反射RF信号(反射信号)として受信する。
 受信アンテナ31-nRxは、反射RF信号を受信RF信号(受信信号)として受信機32-nRxに出力する。
 受信機32-nRxは、局部発振信号生成部21から出力された局部発振信号を用いて、受信アンテナ31-nRxから出力された受信RF信号の周波数をダウンコンバートする。
 受信機32-nRxは、例えば、帯域フィルタを用いて、ダウンコンバート後の受信RF信号をフィルタリングし、帯域フィルタを通過した信号の強度を増幅する。
 受信機32-nRxは、強度増幅後の信号の位相を検波することで、受信チャンネル番号nRxの受信ビート信号を生成し、受信ビート信号をA/D変換器33-nRxに出力する。
 A/D変換器33-nRxは、受信機32-nRxから出力された受信ビート信号をアナログ信号からデジタル信号に変換し、デジタル信号を信号処理器13に出力する。
 信号処理器13は、図2に示すように、分離部41、信号生成部42、インコヒーレント積分部43、目標候補検出部44、コヒーレント積分部45及び角度算出部46を備えている。
 信号処理器13は、送信アンテナ24-1~24-NTxにおける指向方向での設置位置に基づいて、A/D変換器33-1~33-NRxから出力されたデジタル信号をコヒーレント積分する。
 信号処理器13は、デジタル信号のコヒーレント積分結果であるコヒーレント積分信号から、目標を測角する。
 分離部41は、例えば、図3に示す分離回路51によって実現される。
 分離部41は、符号変調部22から出力されたそれぞれの送信チャネル番号に対応する変調符号を用いて、A/D変換器33-1~33-NRxより出力されたデジタル信号から、送信チャネル番号及び受信チャンネル番号の双方に対応する受信ビート信号を復調する。復調後の受信ビート信号は、送信チャンネル毎に分離され、かつ、受信チャンネル毎に分離されている。
 分離部41は、復調後の受信ビート信号を信号生成部42に出力する。
 信号生成部42は、例えば、図3に示す信号生成回路52によって実現される。
 信号生成部42は、分離部41から出力された復調後の受信ビート信号を離散フーリエ変換することで、送信チャンネル及び受信チャンネルの双方に対応する距離速度信号を生成する。
 距離速度信号は、目標候補(目標)までの距離に関する距離情報及び目標候補の速度に関する速度情報のそれぞれを含んでいる。
 信号生成部42は、距離速度信号をインコヒーレント積分部43及び目標候補検出部44のそれぞれに出力する。
 インコヒーレント積分部43は、例えば、図3に示すインコヒーレント積分回路53によって実現される。
 インコヒーレント積分部43は、信号生成部42から出力された距離速度信号をインコヒーレント積分し、距離速度信号のインコヒーレント積分結果であるインコヒーレント積分信号を目標候補検出部44に出力する。
 目標候補検出部44は、例えば、図3に示す目標候補検出回路54によって実現される。
 目標候補検出部44は、インコヒーレント積分部43から出力されたインコヒーレント積分信号の信号強度に基づいて、目標候補を検出する。
 目標候補検出部44は、検出した目標候補までの距離及び目標候補の速度のそれぞれを算出する。
 目標候補検出部44は、目標候補までの距離及び目標候補の速度のそれぞれを表示器14に出力する。
 目標候補検出部44は、信号生成部42から出力された複数の距離速度信号のうち、インコヒーレント積分信号の信号強度に基づいて検出した目標候補に対応する距離速度信号をコヒーレント積分部45に出力する。
 コヒーレント積分部45は、例えば、図3に示すコヒーレント積分回路55によって実現される。
 コヒーレント積分部45は、送信アンテナ24-1~24-NTxにおける指向方向での設置位置に基づいて、目標候補検出部44から出力された距離速度信号をコヒーレント積分する。
 送信アンテナ24-1~24-NTxにおける指向方向での設置位置は、コヒーレント積分部45の内部メモリに格納されていてもよいし、レーダ装置1の外部から与えられるものであってもよい。
 コヒーレント積分部45は、距離速度信号のコヒーレント積分結果であるコヒーレント積分信号を角度算出部46に出力する。
 角度算出部46は、例えば、図3に示す角度算出回路56によって実現される。
 角度算出部46は、コヒーレント積分部45から出力されたコヒーレント積分信号の信号強度に基づいて、目標候補の方位角及び仰角のそれぞれを算出する。
 角度算出部46は、目標候補の方位角及び仰角のそれぞれを表示器14に出力する。
 表示器14は、目標候補検出部44から出力された目標候補までの距離及び目標候補の速度のそれぞれをディスプレイに表示させ、角度算出部46から出力された目標候補の方位角及び仰角のそれぞれをディスプレイに表示させる。
 図2では、信号処理器13の構成要素である分離部41、信号生成部42、インコヒーレント積分部43、目標候補検出部44、コヒーレント積分部45及び角度算出部46のそれぞれが、図3に示すような専用のハードウェアによって実現されるものを想定している。即ち、信号処理器13が、分離回路51、信号生成回路52、インコヒーレント積分回路53、目標候補検出回路54、コヒーレント積分回路55及び角度算出回路56によって実現されるものを想定している。
 ここで、分離回路51、信号生成回路52、インコヒーレント積分回路53、目標候補検出回路54、コヒーレント積分回路55及び角度算出回路56のそれぞれは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
 信号処理器13の構成要素は、専用のハードウェアによって実現されるものに限るものではなく、信号処理器13がソフトウェア、ファームウェア、又は、ソフトウェアとファームウェアとの組み合わせによって実現されるものであってもよい。
 ソフトウェア又はファームウェアは、プログラムとして、コンピュータのメモリに格納される。コンピュータは、プログラムを実行するハードウェアを意味し、例えば、CPU(Central Processing Unit)、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、あるいは、DSP(Digital Signal Processor)が該当する。
 図4は、信号処理器13がソフトウェア又はファームウェア等によって実現される場合のコンピュータのハードウェア構成図である。
 信号処理器13がソフトウェア又はファームウェア等によって実現される場合、分離部41、信号生成部42、インコヒーレント積分部43、目標候補検出部44、コヒーレント積分部45及び角度算出部46の処理手順をコンピュータに実行させるためのプログラムがメモリ61に格納される。そして、コンピュータのプロセッサ62がメモリ61に格納されているプログラムを実行する。
 また、図3では、信号処理器13の構成要素のそれぞれが専用のハードウェアによって実現される例を示し、図4では、信号処理器13がソフトウェア又はファームウェア等によって実現される例を示している。しかし、これは一例に過ぎず、信号処理器13における一部の構成要素が専用のハードウェアによって実現され、残りの構成要素がソフトウェア又はファームウェア等によって実現されるものであってもよい。
 図5は、図1に示すレーダ装置1の処理手順を示すフローチャートである。
 図6は、図1に示す送信部11の処理手順を示すフローチャートである。
 図7は、図1に示す受信部12の処理手順を示すフローチャートである。
 図8は、図1に示す信号処理器13の処理手順である信号処理方法を示すフローチャートである。
 図1に示すレーダ装置1では、送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxのそれぞれが車両に設置されているものとする。ただし、送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxのそれぞれが車両に設置されているものに限るものではなく、道路に設置されている構造物等に設置されているものであってもよい。
 ここでは、送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxのそれぞれが、図9に示すように、車両のフロントガラスの縁部に設置されているものとする。
 図9は、送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxの設置例を示す説明図である。図9では、NTx=NRx=4である。
 送信アンテナ24-1~24-4は、フロントガラスの縁部のうち、Aピラーの近傍に設置されており、受信アンテナ31-1~31-4は、フロントガラスの縁部のうち、上端部の近傍に設置されている。図9では、図面の簡単化のため、フロントガラスに対する送信アンテナ24-1~24-NTxの取り付け器具及びフロントガラスに対する受信アンテナ31-1~31-NRxの取り付け器具を省略している。
 図9では、送信アンテナ24-1~24-4のそれぞれが、4つの素子アンテナを有し、アレーアンテナとして表記している。しかし、これは一例に過ぎず、送信アンテナ24-1~24-4のそれぞれは、1つの素子アンテナのみを有するものであってもよい。また、素子アンテナは、縦方向のみでなく、横方向にも設置することで、アレーアンテナとしてもよい。送信アンテナ24-1~24-NTxは、両方のAピラーの近傍に設置されてもよい。送信アンテナ24-1~24-NTxは、水平面と直交している方向に複数の列で設置されてもよい。図10等の他の図面でも同様である。
 図9において、y軸は、車両の進行方向を示す軸であり、車両の進行方向は、送信アンテナ24-1~24-4の放射面24a-1~24a-4から放射される送信RF信号の指向方向と一致している。ただし、進行方向と指向方向との一致は、厳密に一致しているものに限るものではなく、実用上問題のない範囲で、進行方向と指向方向とがずれていてもよい。
 x軸は、車両の車幅方向を示す軸であり、z軸は、車両の進行方向と平行な水平面と直交している鉛直方向を示す軸である。
 送信アンテナ24-1~24-4におけるそれぞれの設置位置は、y軸と平行な方向で互いに異なり、かつ、z軸と平行な方向で互いに異なっている。送信アンテナ24-1~24-4は、z軸と平行な方向に、一列に配置されている。
 受信アンテナ31-1~31-NRxにおけるそれぞれの設置位置は、x軸と平行な方向で互いに異なり、受信アンテナ31-1~31-NRxは、x軸と平行な方向に、一列に配置されている。
 図10Aは、y-z平面における送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxの配置を示す説明図であり、図10Bは、z-x平面における送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxの配置を示す説明図である。
 図10Cは、x-y平面における送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxの配置を示す説明図である。図10Aから図10Cでは、NTx=NRx=4である。
 送信アンテナ24-1~24-NTxにおけるy軸と平行な方向の間隔は、図10A及び図10Cに示すように、dである。
 送信アンテナ24-1における+z方向側の端部から、送信アンテナ24-4における-z方向側の端部までの距離は、図10Aに示すように、dTxである。
 送信アンテナ24-1~24-NTxにおけるz軸と平行な方向の長さは、図10A及び図10Bに示すように、dTx,subである。
 次に、図1に示すレーダ装置1に動作について説明する。
 局部発振信号生成部21は、以下の式(1)に示すような局部発振信号L(h,t)を生成する(図6のステップST11)。

Figure JPOXMLDOC01-appb-I000001

 式(1)において、φは、局部発振信号の初期位相である。hは、ヒット番号であり、Hは、ヒット数である。
 Aは、局部発振信号の振幅、fは、送信アンテナ24-nTx(nTx=1,・・・,NTx)から放射される送信RF信号の送信周波数、Bは、送信RF信号の変調帯域である。
 Tは、変調時間であり、tは、時間である。
 Tchpは、送信RF信号の送信繰り返し周期であり、以下の式(2)のように表される。
 式(2)中のTTxは、送信繰り返し周期であり、以下の式(3)のように表される。

Figure JPOXMLDOC01-appb-I000002

 式(3)において、Tは、変調時間Tから次の変調までの時間である。
 局部発振信号生成部21は、生成した局部発振信号L(h,t)を符号変調部22及び受信機32-1~32-NRxのそれぞれに出力する。
 符号変調部22は、送信アンテナ24-1~24-NTxにおけるそれぞれの送信チャネル番号nTxに対応する変調符号を用いて、局部発振信号生成部21から出力された局部発振信号L(h,t)を変調することで、NTx個の送信RF信号を生成する(図6のステップST12)。
 以下、符号変調部22による送信RF信号の生成処理を具体的に説明する。
 まず、符号変調部22は、以下の式(4)に示すように、巡回符号C(h)を、送信チャネル番号nTxに対応する巡回シフト量Δh(nTx)だけ巡回シフトさせることで、送信チャンネル番号nTxが示す送信チャンネルの変調符号Code(nTx,h)を生成する。
 巡回符号C(h)は、符号変調部22の内部メモリに格納されていてもよいし、レーダ装置1の外部から与えられるものであってもよい。
 符号変調部22は、巡回符号C(h)として、M系列(Maximal length sequence)を用いるようにしてもよいし、Gold系列、又は、はざみ系列を用いるようにしてもよい。

Figure JPOXMLDOC01-appb-I000003

 式(4)において、Shift(C(h),Δh(nTx))は、巡回符号C(h)を巡回シフト量Δh(nTx)だけ巡回シフトさせる旨を示す数学記号である。
 次に、符号変調部22は、以下の式(5)に示すように、局部発振信号L(h,t)と変調符号Code(nTx,h)とを乗算することで、送信チャネル番号nTxに対応する送信チャンネルの送信RF信号Tx(nTx,h,t)を生成する。

Figure JPOXMLDOC01-appb-I000004

 符号変調部22は、送信チャネル番号nTxが示す送信チャンネルの送信RF信号Tx(nTx,h,t)を送信機23-nTxに出力し、送信チャネル番号nTxが示す送信チャンネルの変調符号Code(nTx,h)を信号処理器13に出力する。
 送信機23-nTxは、符号変調部22から送信RF信号Tx(nTx,h,t)を受けると、送信RF信号Tx(nTx,h,t)を送信アンテナ24-nTxに出力する。
 送信アンテナ24-nTxは、放射面24a-nTxから送信RF信号Tx(nTx,h,t)を空間に放射する(図5のステップST1、図6のステップST13)。
 送信アンテナ24-nTxの放射面24a-nTxは、y軸と平行な方向と直交しているため、送信RF信号Tx(nTx,h,t)の指向方向は、車両の進行方向と一致している。
 なお、送信アンテナ24-1~24-NTxから放射されるNTx個の送信RF信号Tx(1,h,t)~Tx(NTx,h,t)は、概ね同時に放射される。
 送信アンテナ24-1~24-NTxから放射された送信RF信号Tx(1,h,t)~Tx(NTx,h,t)は、空間内に存在している目標に反射される。目標に反射された送信RF信号Tx(1,h,t)~Tx(NTx,h,t)は、反射RF信号Rx(nTx,nRx,h,t)として、受信アンテナ31-1~31-NRxに入射される。
 受信アンテナ31-nRx(nRx=1,・・・,NRx)は、入射された反射RF信号Rx(nTx,nRx,h,t)を、受信チャネル番号nRxが示す受信チャンネルの受信RF信号Rx(nRx,h,t)として受信機32-nRxに出力する(図7のステップST21)。
 受信RF信号Rx(nRx,h,t)は、以下の式(6)のように表される。

Figure JPOXMLDOC01-appb-I000005
 式(6)中の反射RF信号Rx(nTx,nRx,h,t)は、以下の式(7)のように表される。

Figure JPOXMLDOC01-appb-I000006

 式(7)において、Aは、受信RF信号Rx(nRx,h,t)の振幅である。Rは、初期目標相対距離であり、初期目標相対距離は、レーダ装置1と目標との相対距離の初期値である。vは、目標相対速度であり、目標相対速度は、レーダ装置1と目標との相対速度である。
 cは、光速であり、t’は、1ヒット内の時間である。
 式(7)において、φTx(nTx)は、送信チャンネル番号nTxが示す送信チャンネルの位相差であり、以下の式(8)のように表される。
 φRx(nRx)は、受信チャンネル番号nRxが示す受信チャンネルの位相差であり、以下の式(9)のように表される。

Figure JPOXMLDOC01-appb-I000007
 式(8)及び式(9)において、εtgtは、以下の式(10)で表されるように、方位角がθAZ,tgtであって、仰角がθAZ,tgtである目標方向の単位ベクトルである。“・”は、内積を表す数学記号である。
 式(8)において、PTx(nTx)は、以下の式(11)で表される送信アンテナ24-nTxの位置ベクトルである。
 式(9)において、PRx(nRx)は、以下の式(12)で表される受信アンテナ31-nRxの位置ベクトルである。

Figure JPOXMLDOC01-appb-I000008

 式(11)において、pTx,x(nTx)は、送信アンテナ24-nTxのx座標、pTx,y(nTx)は、送信アンテナ24-nTxのy座標、pTx,z(nTx)は、送信アンテナ24-nTxのz座標である。
 式(12)において、pRx,x(nRx)は、受信アンテナ31-nRxのx座標、pRx,y(nRx)は、受信アンテナ31-nRxのy座標、pRx,z(nRx)は、受信アンテナ31-nRxのy座標である。
 受信機32-nRxは、受信アンテナ31-nRxから受信RF信号Rx(nRx,h,t)を受けると、局部発振信号生成部21から出力された局部発振信号L(h,t)を用いて、受信RF信号Rx(nRx,h,t)の周波数をダウンコンバートする。
 次に、受信機32-nRxは、例えば、帯域フィルタを用いて、ダウンコンバート後の受信RF信号をフィルタリングし、帯域フィルタを通過した信号の強度を増幅する。
 受信機32-nRxは、強度増幅後の信号の位相を検波することで、以下の式(13)に示すように、受信チャンネル番号nRxが示す受信チャネルの受信ビート信号V’(nRx,h,t)を生成する(図7のステップST22)。

Figure JPOXMLDOC01-appb-I000009
 式(13)で表される受信ビート信号V’(nRx,h,t)は、以下の式(14)に示すように、送信チャンネルnTx及び受信チャンネルnRxのそれぞれに対応する受信ビート信号V’(nTx,nRx,h,t)が加算されたものである。

Figure JPOXMLDOC01-appb-I000010

 式(14)において、Aは、受信ビート信号V’(nTx,nRx,h,t)の振幅である。
 受信機32-nRxは、受信ビート信号V’(nRx,h,t)をA/D変換器33-nRxに出力する。
 A/D変換器33-nRxは、受信機32-nRxから受信ビート信号V’(nRx,h,t)を受けると、受信ビート信号V’(nRx,h,t)をアナログ信号からデジタル信号に変換する(図7のステップST23)。
 A/D変換器33-nRxは、デジタル信号を以下の式(15)で表される受信ビート信号V’(nRx,h,m)として信号処理器13に出力する(図5のステップST2)。

Figure JPOXMLDOC01-appb-I000011
 A/D変換器33-nRxから出力される受信ビート信号V’(nRx,h,m)は、以下の式(16)に示すように、送信チャンネルnTx及び受信チャンネルnRxのそれぞれに対応する受信ビート信号V(nTx,nRx,h,t)が加算されたものである。

Figure JPOXMLDOC01-appb-I000012

 式(16)において、Δtは、変調時間T内でのサンプリング間隔である。mは、変調時間T内でサンプリングされた受信ビート信号のサンプリング番号である。Mは、変調時間T内での受信ビート信号のサンプリング数である。
 信号処理器13は、送信アンテナ24-1~24-NTxにおける指向方向での設置位置に基づいて、A/D変換器33-1~33-NRxから出力された受信ビート信号V’(1,h,m)~V’(NRx,h,m)をコヒーレント積分する。
 信号処理器13は、受信ビート信号V’(1,h,m)~V’(NRx,h,m)のコヒーレント積分結果であるコヒーレント積分信号から、目標を測角する。
 以下、信号処理器13による目標の測角処理を具体的に説明する。
 分離部41は、符号変調部22から出力された変調符号Code(1,h)~Code(NTx,h)を取得し、A/D変換器33-1~33-NRxから出力された受信ビート信号V’(1,h,m)~V’(NRx,h,m)を取得する。
 分離部41は、変調符号Code(nTx,h)を用いて、受信ビート信号V’(nRx,h,m)から、送信チャネル番号nTx及び受信チャンネル番号nRxの双方に対応する受信ビート信号V1,C(nTx,nRx,h,m)を復調する(図8のステップST31)。
 復調後の受信ビート信号V1,C(nTx,nRx,h,m)は、送信チャンネル毎に分離され、かつ、受信チャンネル毎に分離されており、以下の式(17)のように表される。
 分離部41は、復調後の受信ビート信号V1,C(nTx,nRx,h,m)を信号生成部42に出力する。

Figure JPOXMLDOC01-appb-I000013
 復調後の受信ビート信号V1,C(nTx,nRx,h,m)は、以下の式(18)に示すように、変調符号Code(nTx,h)と一致して、自己相関となる信号V0,C(nTx,nRx,h,m)によって表される。
 また、復調後の受信ビート信号V1,C(nTx,nRx,h,m)は、以下の式(19)に示すように、変調符号Code(nTx,h)と一致せずに、相互相関となる送信チャンネル番号n’Txの信号V’0,C(n’Tx,nRx,h,m)によって表される。変調符号Code(nTx,h)と一致しないとは、nTx≠n’Txであることを意味する。

Figure JPOXMLDOC01-appb-I000014
 信号生成部42は、分離部41から出力された復調後の受信ビート信号V1,C(nTx,nRx,h,m)を離散フーリエ変換することで、以下の式(20)に示すように、送信チャネル番号nTx及び受信チャンネル番号nRxの双方に対応する距離速度信号fb,1(nTx,nRx,q,k)を生成する(図8のステップST32)。
 距離速度信号fb,1(nTx,nRx,q,k)は、目標候補までの距離に関する距離情報及び目標候補の速度に関する速度情報のそれぞれを含んでいる。

Figure JPOXMLDOC01-appb-I000015

 式(20)において、qは、速度ビン番号であり、kは、距離ビン番号である。
 信号生成部42は、距離速度信号fb,1(nTx,nRx,q,k)をインコヒーレント積分部43に出力する。
 図11Aは、復調後の受信ビート信号V1,C(nTx,nRx,h,m)のサンプリング番号とヒット番号との関係を示す説明図である。
 図11Bは、距離速度信号fb,1(nTx,nRx,q,k)における距離ビン番号kと速度ビン番号qとの関係を示す説明図である。
 インコヒーレント積分部43は、信号生成部42から距離速度信号fb,1(nTx,nRx,q,k)を受けると、距離速度信号fb,1(nTx,nRx,q,k)をインコヒーレント積分する(図8のステップST33)。
 インコヒーレント積分部43は、距離速度信号fb,1(nTx,nRx,q,k)のインコヒーレント積分結果として、以下の式(21)で表されるインコヒーレント積分信号fb,1,inch(q,k)を目標候補検出部44に出力する。

Figure JPOXMLDOC01-appb-I000016
 図12Aは、距離速度信号fb,1(nTx,nRx,q,k)における距離ビン番号kと速度ビン番号qとの関係を示す説明図である。
 距離速度信号fb,1(nTx,nRx,q,k)は、nTx=0,nRx=0であるときの目標候補の距離ビン番号k及び速度ビン番号q、nTx=1,nRx=1であるときの目標候補の距離ビン番号k及び速度ビン番号q、・・・、nTx=NTx-1,nRx=NRx-1であるときの目標候補の距離ビン番号k及び速度ビン番号qを含んでいる。
 距離速度信号fb,1(nTx,nRx,q,k)は、目標候補に関する情報のほかに、雑音が重畳されている。
 図12Bは、インコヒーレント積分信号fb,1,inch(q,k)における距離ビン番号kと速度ビン番号qとの関係を示す説明図である。
 インコヒーレント積分信号fb,1,inch(q,k)は、複数の距離速度信号fb,1(nTx,nRx,q,k)の信号強度が積分された信号であるため、複数の距離速度信号fb,1(nTx,nRx,q,k)に含まれている雑音が平均化されて、雑音の影響が低減されている。
 目標候補検出部44は、インコヒーレント積分部43からインコヒーレント積分信号fb,1,inch(q,k)を受けると、インコヒーレント積分信号fb,1,inch(q,k)の信号強度に基づいて、目標候補を検出する。以下、検出した目標候補を識別する目標候補番号をntgtとする。
 目標候補の検出処理としては、例えば、CA-CFAR(Cell Average Constant False Alarm Rate)処理を用いることができる。
 目標候補検出部44は、目標候補番号ntgtと対応する目標候補の速度方向のサンプリング番号である速度ビン番号qntgtと、目標候補番号ntgtと対応する目標候補の距離方向のサンプリング番号である距離ビン番号kntgtとを特定する。
 目標候補検出部44は、特定した距離ビン番号kntgtから目標候補までの距離L(nTgt)を算出し、特定した速度ビン番号qntgtから目標候補の速度v(nTgt)を算出する(図8のステップST34)。
 距離ビン番号kntgtから目標候補までの距離L(nTgt)を算出する処理自体は、公知の技術であるため詳細な説明を省略する。また、速度ビン番号qntgtから目標候補の速度v(nTgt)を算出する処理自体は、公知の技術であるため詳細な説明を省略する。
 目標候補検出部44は、目標候補までの距離L(nTgt)及び目標候補の速度v(nTgt)のそれぞれを表示器14に出力する。
 目標候補検出部44は、信号生成部42から出力された複数の距離速度信号fb,1(nTx,nRx,q,k)のうち、検出した目標候補に対応する距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分部45に出力する。
 検出した目標候補に対応する距離速度信号fb,1(nTx,nRx,qntgt,kntgt)は、特定した距離ビン番号kntgt及び特定した速度ビン番号qntgtのそれぞれに対応する距離速度信号fb,1(nTx,nRx,qntgt,kntgt)である。
 また、目標候補検出部44は、特定した距離ビン番号kntgt及び特定した速度ビン番号qntgtのそれぞれをコヒーレント積分部45に出力する。
 コヒーレント積分部45は、送信アンテナ24-1~24-NTxにおける指向方向での設置位置に基づいて、目標候補検出部44から出力された距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分する(図8のステップST35)。
 コヒーレント積分部45は、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)を、送信チャンネル間及び受信チャンネル間でコヒーレント積分することで、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)のコヒーレント積分結果として、以下の式(22)に示すようなコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)が得られる。

Figure JPOXMLDOC01-appb-I000017
 式(22)において、NELは、想定される目標仰角の数であり、nELは、想定される目標仰角に割り当てられた目標仰角番号である。
 NAZは、想定される目標方位角の数であり、nAZは、想定される目標方位角に割り当てられた目標方位角番号である。
 φ’Tx(nTx,nEL,nAZ)は、目標仰角番号nEL及び目標方位角番号nAZについての送信チャンネル番号nTxにおける位相差であり、以下の式(23)のように表される。
 φ’Rx(nRx,nEL,nAZ)は、目標仰角番号nEL及び目標方位角番号nAZについての受信チャンネル番号nRxにおける位相差であり、以下の式(24)のように表される。
 目標仰角番号nEL及び目標方位角番号nAZについての想定される目標方向の単位ベクトルε(nEL,nAZ)は、以下の式(25)のように表される。

Figure JPOXMLDOC01-appb-I000018

 コヒーレント積分部45は、コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)を角度算出部46に出力する。
 コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号電力は、以下の式(26)に示すように、送信チャンネルの位相差φTx(nTx)と位相差φ’Tx(nTx,nEL,nAZ)との差分が零であり、受信チャンネルの位相差φRx(nRx)と位相差φ’Rx(nTx,nEL,nAZ)との差分が零であれば、最大値になる。
 信号電力が最大値になるコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)を用いて、目標を測角することで、目標の測角精度が向上する。

Figure JPOXMLDOC01-appb-I000019

 以降、コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号電力が最大値になるときの目標仰角番号nELを、目標候補の仰角を示す目標仰角番号nEL,nTgtとする。また、コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号電力が最大値になるときの目標方位角番号nAZを、目標候補の方位角を示す目標方位角番号nAZ,nTgtとして説明する。
 図1に示すレーダ装置1では、受信部12が、受信アンテナ31-1~31-NRxを備えている。
 NRx=4であるときは、図13Aに示すように、受信アンテナ31-1~31-4が、x軸と平行な方向に、一列に配置されており、z軸と平行な方向には、複数の受信アンテナが配置されていない。したがって、z軸と平行な方向には、受信チャンネルの開口がない。
 しかし、図1に示すレーダ装置1では、送信アンテナ24-1~24-4が、z軸と平行な方向に、一列に配置されているため、図13Bに示すように、受信アンテナ31-1~31-4から、送信アンテナ24-1の長さdTx,subだけ-z方向に移動した位置に、仮想的な受信アンテナが形成される。
 また、受信アンテナ31-1~31-4から、送信アンテナ24-1の長さdTx,sub×2だけ-z方向に移動した位置に、仮想的な受信アンテナが形成される。
 また、受信アンテナ31-1~31-4から、送信アンテナ24-1の長さdTx,sub×3だけ-z方向に移動した位置に、仮想的な受信アンテナが形成される。
 仮想的な受信アンテナは、実際に存在している受信アンテナではない。しかし、仮想的な受信アンテナは、実際に存在している受信アンテナが受信する反射RF信号と同様の反射RF信号を、信号処理で得ることができる。
 図13Aは、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図であり、図13Bは、仮想的な受信アンテナを示す説明図である。
 角度算出部46は、コヒーレント積分部45から出力されたコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号強度に基づいて、目標方位角番号nAZ,nTgtが示す目標候補の方位角θ(nAZ,nTgt)を算出する(図5のステップST3、図8のステップST36)。
 また、角度算出部46は、コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号強度に基づいて、目標仰角番号nEL,nTgtが示す目標候補の仰角θ(nEL,nTgt)を算出する(図5のステップST3、図8のステップST36)。
 コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号強度に基づいて、目標候補の方位角θ(nAZ,nTgt)及び目標候補の仰角θ(nEL,nTgt)のそれぞれを算出する処理自体は、公知の技術であるため詳細な説明を省略する。
 角度算出部46は、目標候補の方位角θ(nAZ,nTgt)及び目標候補の仰角θ(nEL,nTgt)のそれぞれを表示器14に出力する。
 表示器14は、目標候補検出部44から出力された目標候補までの距離L(nTgt)及び目標候補の速度v(nTgt)のそれぞれをディスプレイに表示させる。
 また、表示器14は、角度算出部46から出力された目標候補の方位角θ(nAZ,nTgt)及び目標候補の仰角θ(nEL,nTgt)のそれぞれをディスプレイに表示させる。
 以下、図1に示すレーダ装置1の有用性について説明する。
 図14Aは、図1に示すレーダ装置1の仰角方向の分解能を示している。
 図14Bは、送信アンテナ24-1~24-4のそれぞれに相当する複数の送信アンテナがAピラーと平行に配置されている場合の仰角方向の分解能を示している。
 図14Cは、送信アンテナ24-1~24-4のそれぞれに相当する複数の送信アンテナが進行方向と直交する方向に配置されている場合の仰角方向の分解能を示している。
 図14Dは、図14Aに示す送信アンテナ24-1~24-4の2倍の数の送信アンテナがAピラーと平行に配置されている場合の仰角方向の分解能を示している。
 図14Bに示すように、送信アンテナ24-1~24-4のそれぞれに相当する送信アンテナがAピラーと平行に配置されている場合、送信アンテナから送信RF信号が車両の進行方向に放射されると、垂直方向の開口長Dは、以下の式(27)のように表される。

Figure JPOXMLDOC01-appb-I000020

 式(27)において、Dは、図14Aに示すように、送信アンテナ24-1~24-4が配置されている場合の垂直方向の開口長である。θApは、Aピラーの傾斜角である。
 垂直方向の開口長Dは、以下の式(28)に示すように、垂直方向の開口長Dよりも小さい。

Figure JPOXMLDOC01-appb-I000021
 したがって、図14Aに示すように、送信アンテナ24-1~24-4が配置されている場合の仰角方向の分解能がΔθELであるとすれば、図14Bに示すように、複数の送信アンテナがAピラーと平行に配置されている場合の仰角方向の分解能が約2×ΔθELとなる。
 図14Bに示すように、複数の送信アンテナがAピラーと平行に配置されている場合、図14Aに示すように、送信アンテナ24-1~24-4が配置されている場合よりも、仰角方向の分解能が劣化する。
 図14Bに示すように、複数の送信アンテナがAピラーと平行に配置されている場合、送信RF信号を合成し、最大となる方向がAピラーと直交する方向であり、車両の進行方向と異なるため、目標が存在している方向への送信RF信号の電力が損失する。
 一方、図14Aに示すように、送信アンテナ24-1~24-4が配置されている場合、送信RF信号の指向方向がほぼ車両の進行方向となるので、目標が存在している方向への送信RF信号の電力の損失が小さくなる。
 図14Cに示すように、複数の送信アンテナが進行方向と直交する方向に配置されている場合、垂直方向の開口長は、図14Aのように送信アンテナ24-1~24-4が配置されている場合の垂直方向の開口長Dと同じになる。
 図14Cに示すように、複数の送信アンテナが進行方向と直交する方向に配置されている場合、車両のフロントガラスが、複数の送信アンテナによって遮蔽される領域が、図14Aのように送信アンテナ24-1~24-4が配置されている場合の遮蔽領域よりも大きくなる。
 図14A及び図14Cにおいて、ハッチング部分は、送信アンテナによって遮蔽される領域を示している。送信アンテナによって遮蔽される領域が大きい程、車両の前方の視界が悪くなる等の不具合を生じる。
 図14Dに示すように、図14Aに示す送信アンテナ24-1~24-4の2倍の数の送信アンテナがAピラーと平行に配置されている場合、垂直方向の開口長は、図14Aのように送信アンテナ24-1~24-4が配置されている場合の垂直方向の開口長Dとほぼ同じになる。
 しかし、図14Dに示すように、図14Aに示す送信アンテナ24-1~24-4の2倍の数の送信アンテナがAピラーと平行に配置される場合、図14Aのように送信アンテナ24-1~24-4が配置されている場合よりも、コストが増大する。
 以上の実施の形態1では、送信信号の指向方向での設置位置が互いに異なり、かつ、指向方向と平行な水平面と直交している方向での設置位置が互いに異なり、指向方向と直交している放射面24a-1~24a-NTXから送信信号を放射する送信アンテナ24-1~24-NTXと、送信アンテナ24-1~24-NTXのそれぞれから放射されたのち、目標に反射されたそれぞれの送信信号を反射信号として受信し、それぞれの反射信号の受信信号を出力する受信アンテナ31-1~31-NRXと、送信アンテナ24-1~24-NTXにおける指向方向での設置位置に基づいて、受信アンテナ31-1~31-NRXから出力された受信信号をコヒーレント積分し、受信信号のコヒーレント積分結果であるコヒーレント積分信号から、目標を測角する信号処理器13とを備えるように、レーダ装置1を構成した。したがって、レーダ装置1は、目標が存在している方向への送信信号の電力の損失を低減することができる。
 図1に示すレーダ装置1では、図9に示すように、送信アンテナ24-1~24-4が、フロントガラスの縁部のうちのAピラーの近傍に設置され、受信アンテナ31-1~31-4が、フロントガラスの縁部のうちの上端部の近傍に設置されている。
 しかし、これは一例に過ぎず、図15に示すように、送信アンテナ24-1~24-4が、フロントガラスの縁部のうちの上端部の近傍に設置され、受信アンテナ31-1~31-4が、フロントガラスの縁部のうちのAピラーの近傍に設置されていてもよい。
 図15は、送信アンテナ24-1~24-NTx及び受信アンテナ31-1~31-NRxの設置例を示す説明図である。
 図15が示す設置例では、NTX=NRX=4である。送信アンテナ24-1~24-4が、フロントガラスの縁部のうちの上端部の近傍に設置され、受信アンテナ31-1~31-4が、フロントガラスの縁部のうちのAピラーの近傍に設置される場合、NTX≧1、NRX≧2であればよい。
 送信アンテナ24-1~24-4が、上端部の近傍に設置され、受信アンテナ31-1~31-4が、Aピラーの近傍に設置される場合でも、コヒーレント積分部45により得られるコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)は、式(22)に示すコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)と同じになる。
 ただし、コヒーレント積分部45は、送信アンテナ24-1~24-NTXにおける指向方向での設置位置の代わりに、受信アンテナ31-1~31-NRXにおける指向方向での設置位置に基づいて、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分する。
 図1に示すレーダ装置1では、符号変調部22が、局部発振信号L(h,t)と変調符号Code(nTx,h)とを乗算することで、送信チャネル番号nTxに対応する送信チャンネルにおける送信RF信号Tx(nTx,h,t)を生成している。
 送信アンテナ24-1~24-NTXのそれぞれから放射される送信RF信号が、互いに異なるようにすることができれば、局部発振信号L(h,t)と変調符号Code(nTx,h)とを乗算する以外の方法で、符号変調部22が、送信RF信号Tx(nTx,h,t)を生成するようにしてもよい。
 符号変調部22は、例えば、局部発振信号L(h,t)に対して、時分割、符号分割、又は、周波数分割のいずれかを行うことで、送信RF信号Tx(nTx,h,t)を生成するようにしてもよい。
 また、符号変調部22は、例えば、局部発振信号L(h,t)に対して、時分割及び符号分割の双方、又は、周波数分割及び符号分割の双方を行うことで、送信RF信号Tx(nTx,h,t)を生成するようにしてもよい。
実施の形態2.
 図1に示すレーダ装置1では、コヒーレント積分部45が、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分することで、式(22)に示すようなコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)を得ている。
 実施の形態2では、コヒーレント積分部45が、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)を、方位角方向及び仰角方向のそれぞれについて高速フーリエ変換(FFT:Fast Fourier Transform)することで、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分するレーダ装置1について説明する。
 実施の形態2のレーダ装置1の構成は、実施の形態1のレーダ装置1の構成と同様であり、実施の形態2のレーダ装置1を示す構成図は、図1である。
 コヒーレント積分部45は、以下の式(29)に示すように、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)を、方位角方向及び仰角方向のそれぞれについてFFTすることで、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分する。
 コヒーレント積分部45は、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)のコヒーレント積分結果として、以下の式(29)に示すようなコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)が得られる。
 コヒーレント積分部45は、コヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)を角度算出部46に出力する。

Figure JPOXMLDOC01-appb-I000022

 式(29)において、FFTnTx(X)は、信号Xに対する仰角方向のFFTを示しており、NEL,fftは、仰角方向のFFT点数である。
 FFTnRx(X)は、信号Xに対する方位角方向のFFTを示しており、NAZ,fftは、方位角方向のFFT点数である。
 式(29)が示すコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号電力は、式(26)に示すように、送信チャンネルの位相差φTx(nTx)と位相差φ’Tx(nTx,nEL,nAZ)との差分が零であり、受信チャンネルの位相差φRx(nRx)と位相差φ’Tx(nTx,nEL,nAZ)との差分が零であれば、最大値になる。
 信号電力が最大値になるときの、式(29)が示すコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)に基づけば、目標候補番号ntgtの目標候補の方位角θ(nAZ,nTgt)は、以下の式(30)のように表される。

Figure JPOXMLDOC01-appb-I000023
 図1に示すレーダ装置1では、送信アンテナ24-1~24-4(NTx=4)におけるy軸と平行な方向の間隔が、図10A及び図10Cに示すように、dである。d≠0である。
 仮に、図16に示すように、d=0であって、送信アンテナ24-1~24-4が平面アレーアンテナであるとすれば、送信アンテナ24-1~24-4におけるそれぞれの送信チャンネルの位相差φTx(nTx)は、以下の式(31)のように表される。したがって、送信アンテナ24-1~24-4が平面アレーアンテナであるとすれば、目標候補番号ntgtが示す目標候補の仰角θ(nEL,nTgt)は、以下の式(32)のように表される。
 図16Aは、送信アンテナ24-1~24-4が平面アレーアンテナであると仮定し場合の送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図である。
 図16Bは、送信アンテナ24-1~24-4が平面アレーアンテナであると仮定した場合の目標候補の仰角を示す説明図である。図16Bでは、目標候補の仰角をθELで表している。

Figure JPOXMLDOC01-appb-I000024
 図1に示すレーダ装置1では、図17Aに示すように、送信アンテナ24-1~24-4における指向方向の間隔がdyである。送信アンテナ24-1~24-4における指向方向の間隔がdyであれば、図17Bに示すように、送信アンテナ24-1~24-4におけるそれぞれの送信チャンネルの位相差φTx(nTx)は、以下の式(33)のように表される。
 図17Aは、送信アンテナ24-1~24-4における指向方向の間隔がdyであるときの送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の配置を示す説明図である。
 図17Bは、送信アンテナ24-1~24-4における指向方向の間隔がdyであるときの目標候補の仰角を示す説明図である。図17Bでは、目標候補の仰角をθELで表している。
 図18は、指向方向の間隔がdyである送信アンテナ24-1~24-4から放射される送信RF信号を示す説明図である。

Figure JPOXMLDOC01-appb-I000025
 図1に示すレーダ装置1では、送信アンテナ24-1~24-NTxにおける指向方向の間隔、即ち、y軸と平行な方向の間隔がdyである。しかし、間隔dyが十分に小さく、位相差φTx(nTx)を以下の式(34)のように近似できる場合、目標候補の方位角θ(nAZ,nTgt)は、式(30)で表される。

Figure JPOXMLDOC01-appb-I000026

 したがって、角度算出部46は、式(30)によって目標候補の方位角θ(nAZ,nTgt)を算出することができる。
 間隔dyの影響によって、位相差φTx(nTx)を式(34)のように近似できない場合がある。
 この場合、コヒーレント積分部45は、以下の式(35)に示すように、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)を、方位角方向についてはFFTし、仰角方向については離散フーリエ変換を行うことで、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分する。
 コヒーレント積分部45は、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)のコヒーレント積分結果として、以下の式(35)に示すようなコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)が得られる。

Figure JPOXMLDOC01-appb-I000027
 式(35)が示すコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)の信号電力は、式(26)に示すように、送信チャンネルの位相差φTx(nTx)と位相差φ’Tx(nTx,nEL,nAZ)との差分が零であり、受信チャンネルの位相差φRx(nRx)と位相差φ’Tx(nTx,nEL,nAZ)との差分が零であれば、最大値になる。
 信号電力が最大値になるときの、式(35)が示すコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)に基づけば、目標候補番号ntgtの目標候補の方位角θ(nAZ,nTgt)は、以下の式(36)のように表される。

Figure JPOXMLDOC01-appb-I000028

 したがって、角度算出部46は、式(36)によって目標候補の方位角θ(nAZ,nTgt)を算出することができる。
実施の形態3.
 図1に示すレーダ装置1では、コヒーレント積分部45が、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分することで、式(22)に示すようなコヒーレント積分信号RTx,Rx,ch(nEL,nAZ,qntgt,kntgt)を得ている。
 実施の形態3では、コヒーレント積分部45が、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)に対する超解像処理を実施することで、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分するレーダ装置1について説明する。
 実施の形態3のレーダ装置1の構成は、実施の形態1のレーダ装置1の構成と同様であり、実施の形態3のレーダ装置1を示す構成図は、図1である。
 超解像処理として、MUSIC(Multiple Signal Classification)、又は、ESPRIT(Estimation of Signal Parameters via Rotational Invariance Technique)等の処理を用いることができる。
 コヒーレント積分部45は、超解像処理として、例えば、MUSICの処理を用いる場合、以下の式(37)に従って距離速度信号fb,1(nTx,nRx,qntgt,kntgt)をコヒーレント積分する。

Figure JPOXMLDOC01-appb-I000029

 式(37)において、a(θEL(nEL),θAZ(nAZ))は、サーチするモードベクトルである。Hは、複素共役転置であり、Eは、雑音部分空間である。
 コヒーレント積分部45が、距離速度信号fb,1(nTx,nRx,qntgt,kntgt)に対する超解像処理を実施する場合、FFT等を実施する場合よりも、目標の分離性能を高めることができる。
 実施の形態1~3のレーダ装置1では、図9に示すように、送信アンテナ24-1~24-NTxが、車両のフロントガラスの縁部のうちのAピラーの近傍に設置されて、受信アンテナ31-1~31-NRxが、フロントガラスの縁部のうちの上端部の近傍に設置されている。
 しかし、これは一例に過ぎず、図19に示すように、送信アンテナ24-1~24-4が、車両のAピラーに設置されていてもよい。また、送信アンテナ24-1~24-4は、例えば、車両のBピラーに設置されていてもよい。ただし、送信アンテナ24-1~24-4が、車両のAピラー又はBピラーに設置される場合、送信アンテナ24-1~24-4から放射される送信信号が、Aピラー等に遮られないように、Aピラー等の一部又は全部が、例えば、送信信号を透過する部材で施されているものとする。
 また、送信アンテナ24-1~24-4は、図20に示すように、車両のフロントバンパーに設置されていてもよい。
 図19及び図20の設置例でも、送信アンテナ24-1~24-4における指向方向の間隔がdyである。
 図19は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 図20は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 また、図21に示すように、送信アンテナ24-1~24-4が、車両のリアガラスの縁部のうちのDピラーの近傍に設置されて、受信アンテナ31-1~31-4が、リアガラスの縁部のうちの上端部の近傍に設置されていてもよい。
 また、図22に示すように、送信アンテナ24-1~24-4が、車両のリアバンパーに設置されて、受信アンテナ31-1~31-4が、リアガラスの縁部のうちの上端部の近傍に設置されていてもよい。
 図21及び図22の設置例でも、送信アンテナ24-1~24-4における指向方向の間隔がdyである。
 図21は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 図22は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 図15では、送信アンテナ24-1~24-4が、車両のフロントガラスの縁部のうちの上端部の近傍に設置されて、受信アンテナ31-1~31-4が、フロントガラスの縁部のうちのAピラーの近傍に設置されている。
 しかし、これは一例に過ぎず、図23に示すように、受信アンテナ31-1~31-4が、車両のAピラーに設置されていてもよい。また、受信アンテナ31-1~31-4は、例えば、車両のBピラーに設置されていてもよい。
 また、受信アンテナ31-1~31-4は、図24に示すように、車両のフロントバンパーに設置されていてもよい。
 図23及び図24の設置例でも、受信アンテナ31-1~31-4における指向方向の間隔がdyである。
 図23は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 図24は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 また、図25に示すように、送信アンテナ24-1~24-4が、リアガラスの縁部のうちの上端部の近傍に設置されて、受信アンテナ31-1~31-4が、車両のリアガラスの縁部のうちのDピラーの近傍に設置されていてもよい。
 また、図26に示すように、送信アンテナ24-1~24-4が、リアガラスの縁部のうちの上端部の近傍に設置されて、受信アンテナ31-1~31-4が、車両のリアバンパーに設置されていてもよい。
 図25及び図26の設置例でも、受信アンテナ31-1~31-4における指向方向の間隔がdyである。
 図25は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 図26は、送信アンテナ24-1~24-4及び受信アンテナ31-1~31-4の設置例を示す説明図である。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明は、目標を測角するレーダ装置及び信号処理方法に適している。
 1 レーダ装置、11 送信部、12 受信部、13 信号処理器、14 表示器、20 変調部、21 局部発振信号生成部、22 符号変調部、23-1~23-NTx 送信機、24-1~24-NTx 送信アンテナ、24a-1~24a-NTx 放射面、31-1~31-NRx 受信アンテナ、32-1~32-NRx 受信機、33-1~33-NRx A/D変換器、41 分離部、42 信号生成部、43 インコヒーレント積分部、44 目標候補検出部、45 コヒーレント積分部、46 角度算出部、51 分離回路、52 信号生成回路、53 インコヒーレント積分回路、54 目標候補検出回路、55 コヒーレント積分回路、56 角度算出回路、61 メモリ、62 プロセッサ。

Claims (19)

  1.  送信信号の指向方向での設置位置が互いに異なり、かつ、前記指向方向と平行な水平面と直交している方向での設置位置が互いに異なり、前記指向方向と直交している放射面から前記送信信号を放射する複数の送信アンテナと、
     前記複数の送信アンテナのそれぞれから放射されたのち、目標に反射されたそれぞれの送信信号を反射信号として受信し、それぞれの反射信号の受信信号を出力する受信アンテナと、
     前記複数の送信アンテナにおける指向方向での設置位置に基づいて、前記受信アンテナから出力された受信信号をコヒーレント積分し、前記受信信号のコヒーレント積分結果であるコヒーレント積分信号から、前記目標を測角する信号処理器と
     を備えたレーダ装置。
  2.  前記複数の送信アンテナは、前記水平面と直交している方向に一列に配置されていることを特徴とする請求項1記載のレーダ装置。
  3.  前記受信アンテナとして、複数の受信アンテナを備えており、
     前記複数の受信アンテナは、前記指向方向と直交しており、かつ、前記複数の送信アンテナが一列に配置されている方向と直交している方向に、一列に配置されていることを特徴とする請求項2記載のレーダ装置。
  4.  送信信号の指向方向と直交している放射面から前記送信信号を放射する送信アンテナと、
     前記指向方向での設置位置が互いに異なり、かつ、前記指向方向と平行な水平面と直交している方向での設置位置が互いに異なり、前記送信アンテナから放射されたのち、目標に反射された前記送信信号を反射信号として受信し、前記反射信号の受信信号を出力する複数の受信アンテナと、
     前記複数の受信アンテナにおける指向方向での設置位置に基づいて、前記複数の受信アンテナから出力された受信信号をコヒーレント積分し、前記受信信号のコヒーレント積分結果であるコヒーレント積分信号から、前記目標を測角する信号処理器と
     を備えたレーダ装置。
  5.  前記複数の受信アンテナは、前記水平面と直交している方向に一列に配置されていることを特徴とする請求項4記載のレーダ装置。
  6.  前記送信アンテナとして、複数の送信アンテナを備えており、
     前記複数の送信アンテナは、前記指向方向と直交しており、かつ、前記複数の受信アンテナが一列に配置されている方向と直交している方向に、一列に配置されていることを特徴とする請求項5記載のレーダ装置。
  7.  前記信号処理器は、前記目標の方位角及び仰角のそれぞれを算出することを特徴とする請求項1または請求項4記載のレーダ装置。
  8.  前記信号処理器は、前記複数の受信アンテナから出力された受信信号に基づいて、前記目標までの距離に関する距離情報及び前記目標の速度に関する速度情報のそれぞれを含む距離速度信号を生成し、前記複数の送信アンテナにおける指向方向での設置位置に基づいて、前記距離速度信号をコヒーレント積分し、前記距離速度信号のコヒーレント積分結果であるコヒーレント積分信号から、前記目標を測角することを特徴とする請求項3記載のレーダ装置。
  9.  前記信号処理器は、前記距離速度信号をインコヒーレント積分し、前記距離速度信号のインコヒーレント積分結果であるインコヒーレント積分信号から、前記目標までの距離及び前記目標の速度のそれぞれを算出することを特徴とする請求項8記載のレーダ装置。
  10.  前記信号処理器は、前記複数の受信アンテナから出力された受信信号に基づいて、前記目標までの距離に関する距離情報及び前記目標の速度に関する速度情報のそれぞれを含む距離速度信号を生成し、前記複数の受信アンテナにおける指向方向での設置位置に基づいて、前記距離速度信号をコヒーレント積分し、前記距離速度信号のコヒーレント積分結果であるコヒーレント積分信号から、前記目標を測角することを特徴とする請求項6記載のレーダ装置。
  11.  前記信号処理器は、前記距離速度信号をインコヒーレント積分し、前記距離速度信号のインコヒーレント積分結果であるインコヒーレント積分信号から、前記目標までの距離及び前記目標の速度のそれぞれを算出することを特徴とする請求項10記載のレーダ装置。
  12.  前記信号処理器は、前記複数の受信アンテナから出力された受信信号を、方位角方向及び仰角方向のそれぞれについて高速フーリエ変換することで、前記複数の受信アンテナから出力された受信信号をコヒーレント積分することを特徴とする請求項3または請求項6記載のレーダ装置。
  13.  前記信号処理器は、前記複数の受信アンテナから出力された受信信号を、方位角方向については高速フーリエ変換し、仰角方向については離散フーリエ変換することで、前記複数の受信アンテナから出力された受信信号をコヒーレント積分することを特徴とする請求項3または請求項6記載のレーダ装置。
  14.  前記信号処理器は、前記複数の受信アンテナから出力された受信信号に対する超解像処理を実施することで、前記複数の受信アンテナから出力された受信信号をコヒーレント積分することを特徴とする請求項3または請求項6記載のレーダ装置。
  15.  前記複数の送信アンテナにおけるそれぞれのチャネル番号に対応する符号を用いて、局部発振信号をそれぞれ変調することで、複数の送信信号を生成し、前記複数の送信信号のそれぞれを前記複数の送信アンテナに出力する変調部を備えたことを特徴とする請求項3または請求項6記載のレーダ装置。
  16.  前記送信アンテナ及び前記受信アンテナのそれぞれが車両に設置されていることを特徴とする請求項1または請求項4記載のレーダ装置。
  17.  前記送信アンテナは、車両のフロントガラスの縁部、前記車両のリアガラスの縁部、前記車両のピラー、前記車両のフロントバンパー、又は、前記車両のリアバンパーに設置されていることを特徴とする請求項1記載のレーダ装置。
  18.  前記受信アンテナは、車両のフロントガラスの縁部、前記車両のリアガラスの縁部、前記車両のピラー、前記車両のフロントバンパー、又は、前記車両のリアバンパーに設置されていることを特徴とする請求項4記載のレーダ装置。
  19.  送信信号の指向方向での設置位置が互いに異なり、かつ、前記指向方向と平行な水平面と直交している方向での設置位置が互いに異なり、前記指向方向と直交している放射面を有する複数の送信アンテナの放射面のそれぞれから、前記送信信号が放射されたのち、受信アンテナが、目標に反射されたそれぞれの送信信号を反射信号として受信して、それぞれの反射信号の受信信号を出力すると、
     又は、
     送信信号の指向方向と直交している放射面を有する送信アンテナの放射面から、当該送信信号が放射されたのち、前記指向方向での設置位置が互いに異なり、かつ、前記指向方向と直交している方向での設置位置が互いに異なる複数の受信アンテナのそれぞれが、前記目標に反射された前記送信信号を反射信号として受信して、前記反射信号の受信信号を出力すると、
     信号処理器が、前記複数の送信アンテナにおける指向方向での設置位置、又は、前記複数の受信アンテナにおける指向方向での設置位置のいずれかに基づいて、前記受信信号をコヒーレント積分し、前記受信信号のコヒーレント積分結果であるコヒーレント積分信号から、前記目標を測角する
     信号処理方法。
PCT/JP2019/016961 2019-04-22 2019-04-22 レーダ装置及び信号処理方法 WO2020217269A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019547159A JP6641540B1 (ja) 2019-04-22 2019-04-22 レーダ装置及び信号処理方法
PCT/JP2019/016961 WO2020217269A1 (ja) 2019-04-22 2019-04-22 レーダ装置及び信号処理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016961 WO2020217269A1 (ja) 2019-04-22 2019-04-22 レーダ装置及び信号処理方法

Publications (1)

Publication Number Publication Date
WO2020217269A1 true WO2020217269A1 (ja) 2020-10-29

Family

ID=69320988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016961 WO2020217269A1 (ja) 2019-04-22 2019-04-22 レーダ装置及び信号処理方法

Country Status (2)

Country Link
JP (1) JP6641540B1 (ja)
WO (1) WO2020217269A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140354462A1 (en) * 2013-05-29 2014-12-04 Delphi Technologies, Inc. Radar device for behind windshield installations
JP2017173227A (ja) * 2016-03-25 2017-09-28 パナソニック株式会社 レーダ装置及びレーダ方法
WO2018046353A1 (de) * 2016-09-08 2018-03-15 Audi Ag Kraftfahrzeug mit einer erfassungseinrichtung zur winkelaufgelösten erfassung des kraftfahrzeugumfelds
JP2018054327A (ja) * 2016-09-26 2018-04-05 パナソニック株式会社 レーダ装置
JP2019009713A (ja) * 2017-06-28 2019-01-17 マツダ株式会社 車載用アンテナ、それを備えた車載用レーダー装置、及び車載用アンテナの製造方法
WO2019012741A1 (ja) * 2017-07-11 2019-01-17 三菱電機株式会社 レーダ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140354462A1 (en) * 2013-05-29 2014-12-04 Delphi Technologies, Inc. Radar device for behind windshield installations
JP2017173227A (ja) * 2016-03-25 2017-09-28 パナソニック株式会社 レーダ装置及びレーダ方法
WO2018046353A1 (de) * 2016-09-08 2018-03-15 Audi Ag Kraftfahrzeug mit einer erfassungseinrichtung zur winkelaufgelösten erfassung des kraftfahrzeugumfelds
JP2018054327A (ja) * 2016-09-26 2018-04-05 パナソニック株式会社 レーダ装置
JP2019009713A (ja) * 2017-06-28 2019-01-17 マツダ株式会社 車載用アンテナ、それを備えた車載用レーダー装置、及び車載用アンテナの製造方法
WO2019012741A1 (ja) * 2017-07-11 2019-01-17 三菱電機株式会社 レーダ装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SATOSHI KAGEME; TERUYUKI HARA: "Coherent Integration method of Frequency Division MIMO Radar Using the Chirp Z-Transform for a Moving Target (SANE2017-94)", IEICE TECHNICAL REPORT, vol. 117, no. 403, 1 January 2018 (2018-01-01), pages 47 - 52, XP009519045, ISSN: 0913-5685 *

Also Published As

Publication number Publication date
JPWO2020217269A1 (ja) 2021-05-06
JP6641540B1 (ja) 2020-02-05

Similar Documents

Publication Publication Date Title
JP6365251B2 (ja) レーダ装置
JP2021183985A (ja) 自動車のためのmimoレーダセンサ
JP3821688B2 (ja) レーダ装置
JP6576595B2 (ja) レーダ装置
CN109477892B (zh) 用于环境检测的车辆雷达
EP2182375A1 (en) A combined direction finder and radar system, method and computer program product
JP2006284181A (ja) 車載用レーダ装置
JP2010286403A (ja) 測角装置、モノパルス測角装置、モノパルスレーダ、マルチスタティックレーダ
JP2016151424A (ja) レーダ装置
JP3865761B2 (ja) レーダ装置
JP7012903B2 (ja) アンテナ装置及びレーダ装置
JP7224292B2 (ja) レーダ装置およびそれを備える自動車
WO2020217269A1 (ja) レーダ装置及び信号処理方法
US20210325524A1 (en) Angle measuring device, angle measuring method, and in-vehicle device
US11960023B2 (en) Radar device
RU2429501C1 (ru) Способ обнаружения и пеленгования воздушных объектов
US11921230B2 (en) Radar device and signal processing method
RU2557251C1 (ru) Способ поляризационно-чувствительного поиска малоразмерных подвижных объектов
EP4258019A1 (en) Phase noise reduction for symmetric bistatic radar
JP6880345B1 (ja) レーダ装置およびレーダ方法
WO2023033086A1 (ja) レーダ装置
TWI808874B (zh) 用於交通工具的雷達系統及偵測方法
JP6793897B1 (ja) レーダ信号処理装置、レーダ信号処理方法及びレーダ装置
CN115754968A (zh) 雷达系统的数据处理方法、雷达系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019547159

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926618

Country of ref document: EP

Kind code of ref document: A1