WO2020216182A1 - 硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置 - Google Patents

硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置 Download PDF

Info

Publication number
WO2020216182A1
WO2020216182A1 PCT/CN2020/085649 CN2020085649W WO2020216182A1 WO 2020216182 A1 WO2020216182 A1 WO 2020216182A1 CN 2020085649 W CN2020085649 W CN 2020085649W WO 2020216182 A1 WO2020216182 A1 WO 2020216182A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
sulfide solid
lithium secondary
secondary battery
sulfide
Prior art date
Application number
PCT/CN2020/085649
Other languages
English (en)
French (fr)
Inventor
梁成都
付佳玮
刘成勇
郭永胜
胡波兵
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20794184.0A priority Critical patent/EP3930068B1/en
Publication of WO2020216182A1 publication Critical patent/WO2020216182A1/zh
Priority to US17/509,097 priority patent/US11699812B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of batteries, and in particular to a sulfide solid electrolyte and a preparation method thereof, an all-solid lithium secondary battery, and a device including an all-solid lithium secondary battery.
  • Lithium secondary batteries are widely used in various fields due to their high energy density and good electrochemical performance.
  • the most commonly used lithium secondary battery is a liquid lithium secondary battery, and its electrolyte material mainly adopts a liquid electrolyte material, which contains a large amount of organic solvents, so that potential safety hazards may be raised during use.
  • the all-solid-state lithium secondary battery has incomparable safety performance as a liquid lithium secondary battery, and can be expected to completely eliminate hidden safety hazards during use, and is more in line with the future development needs of electric vehicles and large-scale energy storage. Therefore, researchers from various countries are Vigorously develop all solid-state lithium secondary batteries.
  • solid-state lithium secondary batteries have not been widely used, and the main bottleneck restricting their full-scale application is the research and development of high-performance solid electrolyte materials (solid electrolyte, referred to as SE).
  • SE solid electrolyte
  • SE solid electrolyte
  • the current solid electrolyte materials mainly include: polymers, oxides, sulfides and other categories.
  • the conductivity of polymer solid electrolytes at room temperature is extremely low (usually ⁇ 10 -6 S/cm), so it is difficult to take advantage of its advantages.
  • the conductivity of the oxide solid electrolyte is also low, and its hardness is usually large, it is difficult to adapt to the change of the electrode size during the charge and discharge process, and the problem of matching failure is prone to occur.
  • the sulfide solid electrolyte has the advantages of high room temperature conductivity and good contact with the electrode interface, so it can be used as the first choice for solid-state lithium secondary batteries.
  • the inventors have discovered through research that the existing sulfide solid electrolyte has poor electrochemical stability, which will adversely affect the electrochemical performance of the all-solid lithium secondary battery using it.
  • the inventors have conducted a lot of research, aiming to provide a sulfide solid electrolyte with higher ionic conductivity and higher electrochemical stability, and also provide a method for preparing the sulfide solid electrolyte.
  • Another object of the present application is to provide an all-solid-state lithium secondary battery with higher first week specific capacity, higher first week coulomb efficiency and good cycle performance.
  • the first aspect of the present application provides a sulfide solid electrolyte, which is obtained by at least a composite of Li 2 S, P 2 S 5 and a dopant M x S 2 O 3 , wherein M is selected from Na, K One or more of, Ba and Ca, 1 ⁇ x ⁇ 2.
  • a second aspect of the present application provides an all-solid lithium secondary battery, which includes a positive pole piece, a negative pole piece, and a solid electrolyte membrane, wherein the solid electrolyte membrane includes the sulfide solid electrolyte according to the first aspect of the present application.
  • a third aspect of the present application provides a device, which includes the all-solid lithium secondary battery according to the second aspect of the present application.
  • the fourth aspect of the present application provides a method for preparing a sulfide solid electrolyte, which includes:
  • the mixture is heat-treated at a temperature of 150°C to 450°C for 0.5h-20h to obtain the sulfide solid electrolyte.
  • the sulfide solid electrolyte of the present application can have the advantages of high ion conductivity and good electrochemical stability by doping with M x S 2 O 3 . More preferably, the all-solid-state lithium secondary battery using the sulfide solid electrolyte of the present application can have high first week specific capacity, high first week Coulomb efficiency and good cycle performance.
  • the device of the present application includes the all-solid-state lithium secondary battery, and therefore has at least the same advantages.
  • FIG. 1 is an XRD pattern of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 of Example 1.
  • Fig. 2 is an impedance spectrum of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 of Example 1 at 25°C.
  • Fig. 3 is a cyclic voltammetry curve of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 of Example 1 with metallic lithium as the working electrode and stainless steel as the counter electrode.
  • FIG. 6 is a schematic diagram of an embodiment of an all-solid lithium secondary battery.
  • Fig. 7 is an exploded view of Fig. 6.
  • Fig. 8 is a schematic diagram of an embodiment of a battery module.
  • Fig. 9 is a schematic diagram of an embodiment of a battery pack.
  • Fig. 10 is an exploded view of Fig. 9.
  • FIG. 11 is a schematic diagram of an embodiment of a device in which an all-solid lithium secondary battery is used as a power source.
  • any lower limit may be combined with any upper limit to form an unspecified range; and any lower limit may be combined with other lower limits to form an unspecified range, and any upper limit may be combined with any other upper limit to form an unspecified range.
  • each point or single value between the end points of the range is included in the range. Therefore, each point or single value can be used as its own lower limit or upper limit in combination with any other point or single value or with other lower limit or upper limit to form an unspecified range.
  • the sulfide solid electrolyte according to the first aspect of the present application is obtained by compounding at least Li 2 S, P 2 S 5 and a dopant M x S 2 O 3 , wherein M is selected from one of Na, K, Ba and Ca Or several, 1 ⁇ x ⁇ 2.
  • a solid electrolyte is an electrolyte that transfers charges between the positive and negative electrodes in a solid state.
  • solid electrolytes are usually required to have high ionic conductivity and low electronic conductivity. That is, lithium ions can be transported in the solid electrolyte, but electrons cannot be transported.
  • the ionic conductance of a solid electrolyte is the diffusion of ions under the action of an electric field, including inherent ionic conductance and impurity conductance.
  • the intrinsic ionic conductance is called the intrinsic conductance of the solid electrolyte, which reflects the movement of ions in the solid electrolyte.
  • a solid electrolyte For a solid electrolyte to have high ionic conductivity, it must have a large concentration of ion lattice defects, and these lattice defects participate in ion conduction, that is, the generation of ion lattice defects and their concentration determine the solid electrolyte ions. The key to conductivity.
  • the sulfide solid electrolyte of the present application is obtained by at least a composite of Li 2 S, P 2 S 5 and M x S 2 O 3 , which is a glass ceramic solid electrolyte in which a glass phase and a crystal phase are uniformly mixed.
  • P 2 S 5 is a glass phase network forming sulfide
  • Li 2 S is a glass phase network modified sulfide
  • M x S 2 O 3 is a dopant.
  • P 2 S 5 can form strong interconnected and long-range disordered macromolecular chains to promote the transport of lithium ions in the solid electrolyte.
  • Li 2 S can chemically react with P 2 S 5 to break some of the sulfur bridges in the macromolecular chain, reduce the average length of the macromolecular chain to reduce the viscosity of the glass phase, and thus facilitate the rapid transmission of lithium ions.
  • the glass phase network formed by the interaction of the two because the sulfur has a larger ion radius and smaller electronegativity, it has a weaker binding effect on lithium ions.
  • the long-range disordered glass phase network also provides lithium ions.
  • the larger transmission channel facilitates the transmission of lithium ions, so that the sulfide solid electrolyte has higher ion conductivity as a whole.
  • the glass phase formed by Li 2 S and P 2 S 5 is a metastable state with high internal energy, it can be transformed into a crystalline phase under certain heating conditions, that is, under certain heating conditions.
  • the glass phase formed by Li 2 S and P 2 S 5 can be transformed into the crystalline phase PS 4 3- phase and P 2 S 7 4- phase under heating. From a dynamic point of view, during the cooling process of the glass phase, the rapid increase in the viscosity of the system hinders the generation and growth of crystal nuclei.
  • PS 4 3- phase, P 2 S 7 4- phase there is not enough time for the glass phase to completely transform into crystals, so the crystal phase ( PS 4 3- phase, P 2 S 7 4- phase) and glass phase coexist in the form.
  • the formation of PS 4 3- phase and P 2 S 7 4- phase can further improve the ionic conductivity of the sulfide solid electrolyte. The reason is that, on the one hand, the boundary between PS 4 3- phase and P 2 S 7 4- phase is formed by the glass phase and the boundary impedance is greatly reduced. On the other hand, PS 4 3- phase and P 2 S 7 4- The phase itself has high ionic conductivity.
  • M x S 2 O 3 doping can improve the ionic conductivity of the sulfide solid electrolyte by constructing voids and changing the size of the lithium ion transport channel.
  • the reason is that the size of M ions in M x S 2 O 3 is larger than that of lithium ions. Therefore, the crystal formed after M x S 2 O 3 doping will produce more lattice distortion and form more lattice defects. , And enlarge the size of the lithium ion channel in the crystal, so that the sulfide solid electrolyte can obtain higher lithium ion conductivity.
  • M x S 2 O 3 itself is an oxygen-containing compound, and the introduction of M x S 2 O 3 is equivalent to the introduction of oxygen atoms with higher electronegativity, which can also improve the electrochemical stability of the sulfide solid electrolyte. By introducing oxygen atoms with higher electronegativity, the stability of the sulfide solid electrolyte to water and oxygen is also improved.
  • the sulfide solid electrolyte obtained by the composite of Li 2 S, P 2 S 5 and the dopant M x S 2 O 3 in this application can have the advantages of high ionic conductivity and good electrochemical stability.
  • the sulfide solid electrolyte of the present application is applied to an all-solid lithium secondary battery, so that the all-solid lithium secondary battery has a high first week specific capacity, a high first week Coulomb efficiency, and good cycle performance.
  • the molar percentage of Li 2 S is preferably 60% or more.
  • the source of lithium ions in the sulfide solid electrolyte is sufficient, which can improve the ionic conductivity of the sulfide solid electrolyte; on the other hand, the resulting sulfide solid electrolyte will contain an appropriate amount of bridging sulfur, which is conducive to lithium ions.
  • the rapid transmission can also improve the ionic conductivity of the sulfide solid electrolyte.
  • the molar percentage of Li 2 S in the sulfide solid electrolyte is preferably 80% or less.
  • the ratio of the content of bridging sulfur to the content of non-bridging sulfur in the finally obtained sulfide solid electrolyte is appropriate, which can improve the rapid transmission performance of lithium ions therein, and therefore can improve the ionic conductivity of the sulfide solid electrolyte.
  • the molar percentage of Li 2 S is greater than or equal to 60% and less than or equal to 79%. More preferably, the mole percentage of Li 2 S is greater than or equal to 70% and less than or equal to 79%. For example, it is 65%, 68%, 70%, 72%, 75% or 77%.
  • the molar percentage of P 2 S 5 is preferably 16% or more. Then, the sulfide solid electrolyte can effectively form interconnected and long-range disordered molecular chains, which is beneficial to the rapid transmission of lithium ions.
  • the molar percentage of P 2 S 5 in the sulfide solid electrolyte is preferably 35% or less. Then, the average length of the interconnected and long-range disordered macromolecular chains in the sulfide solid electrolyte is smaller, which is beneficial to reduce the viscosity of the glass phase, while ensuring sufficient Li 2 S content to break some sulfur bridges in the macromolecular chains. This facilitates the rapid transmission of lithium ions.
  • the molar percentage of P 2 S 5 is greater than or equal to 16% and less than or equal to 30%. More preferably, the molar percentage of P 2 S 5 is greater than or equal to 20% and less than or equal to 30%. Especially preferably, the molar percentage of P 2 S 5 is greater than or equal to 20% and less than or equal to 29%. For example, it is 18%, 20%, 22%, 24%, 25% or 28%.
  • the molar percentage of M x S 2 O 3 is preferably greater than 0 and less than or equal to 10%. Therefore, M x S 2 O 3 can cause more lattice distortions to be formed in the crystal, while maintaining higher structural stability of the crystal, so that the sulfide solid electrolyte has higher ionic conductivity and higher Electrochemical stability. This further improves the first week specific capacity, first week Coulomb efficiency and cycle performance of the all-solid lithium secondary battery.
  • the molar percentage of M x S 2 O 3 is less than or equal to 5%. More preferably, the molar percentage of M x S 2 O 3 is greater than or equal to 1% and less than or equal to 5%. For example, it is 0.5%, 0.8%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, or 5%.
  • M in M x S 2 O 3 , M includes one or more of Na and K, and preferably includes Na.
  • the dopant M 2 S 2 O 3 has an appropriate size with the introduced alkali metal atom M, it can form a moderate lattice distortion in the crystal structure of the sulfide solid electrolyte, which is more conducive to improving ion conductivity rate.
  • the sulfide solid electrolyte is a multi-phase composite comprising a glass phase and a crystalline phase, including PS 4 3- , P 2 S 7 4- and P 2 S 6 4- , and
  • the ratio of the Raman characteristic peak intensities of PS 4 3- , P 2 S 7 4- and P 2 S 6 4- is 1 ⁇ 60:1 ⁇ 60:0.01 ⁇ 1, and further is 6 ⁇ 40:3 ⁇ 40 : 0.01 to 0.5, and further 20 to 40: 10 to 20: 0.01 to 0.1.
  • the ratio of the Raman characteristic peak intensities of PS 4 3- , P 2 S 7 4- and P 2 S 6 4- in the sulfide solid electrolyte is within an appropriate range, which can make it have higher ionic conductivity and stability Sex.
  • the average particle size of the sulfide solid electrolyte is 5 ⁇ m-50 ⁇ m.
  • the average particle size of the sulfide solid electrolyte is above 5 ⁇ m, preferably above 10 ⁇ m, and the preparation process can be simplified.
  • the average particle size of the sulfide solid electrolyte is 10 ⁇ m to 20 ⁇ m.
  • the average particle size of the sulfide solid electrolyte is 12 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 22 ⁇ m, 25 ⁇ m, 30 ⁇ m, or 35 ⁇ m.
  • the ionic conductivity of the sulfide solid electrolyte is 0.6 mS/cm to 2.5 mS/cm, such as 0.8 mS/cm, 1.0 mS/cm, 1.2 mS/cm, 1.4 mS/cm, 1.5 mS/cm, 1.6mS/cm, 1.7mS/cm, 1.8mS/cm or 2.0mS/cm.
  • the sulfide solid electrolyte has high ionic conductivity, which is beneficial to make the all-solid lithium secondary battery have high electrochemical performance, which has high first week specific capacity, first week Coulomb efficiency and cycle performance.
  • the specific test process is: metal lithium is used as the working electrode, stainless steel is used as the counter electrode, and the test is performed after assembling into a half-cell; the scanning potential interval is ⁇ 0.5V ⁇ 6V, the scanning speed is 1mV/s, the test condition is 25°C, normal pressure 0.1MPa), the ratio of the peak current of the anode peak to the cathode peak is 0.55 ⁇ 0.85. It can be seen that the peak current ratio between the anode peak and the cathode peak is relatively close to the ideal ratio of 1.
  • the electrode reaction of the present application has good reversibility, and the sulfide solid electrolyte has good Li + /Li intercalation/extraction reversibility, which means that the sulfide solid electrolyte of the present application has the advantage of good electrochemical stability.
  • the all-solid lithium secondary battery including the sulfide solid electrolyte of the present application has good cycle performance.
  • the ratio of the peak current of the anode peak to the cathode peak is 0.6, 0.65, 0.67, 0.7, 0.75, 0.76, 0.77, 0.78, 0.79, 0.8, 0.81, or 0.83.
  • the above-mentioned sulfide solid electrolyte can be prepared by this preparation method.
  • the sulfide solid electrolyte is prepared from Li 2 S, P 2 S 5 and M x S 2 O 3 through a heat treatment process.
  • the purity of Li 2 S, P 2 S 5 and M x S 2 O 3 are each independently 98% or more, such as 99% or more.
  • the heat treatment temperature is 150°C to 450°C. Further preferably, the heat treatment temperature is 200°C to 400°C, for example, 225°C, 230°C, 240°C, 250°C, 260°C, 280°C, 300°C, 320°C or 350°C.
  • the inventor found that the heat treatment temperature within an appropriate range can make the obtained sulfide solid electrolyte contain more PS 4 3- phase and P 2 S 7 4- phase with high ion conductivity, so its ion conductivity is higher. .
  • the heating rate may be 0.5°C/min-10°C/min, further 1°C/min-5°C/min, and still further 2°C/min-3°C/min.
  • the heat treatment time is 0.5h-20h. Further preferably, the heat treatment time is 1h-10h, for example 1.5h, 2h, 2.5h, 3h, 3.5h, 4h, 5h, 6h, 7h, 8h or 9h.
  • the inventors also found that the heat treatment time within an appropriate range can make the obtained sulfide solid electrolyte contain more PS 4 3- phase and P 2 S 7 4- phase with high ion conductivity characteristics, so its ion conductivity is higher. .
  • the heat treatment process is preferably performed in a protective gas atmosphere, for example, in an inert gas (such as argon) atmosphere.
  • a protective gas atmosphere for example, in an inert gas (such as argon) atmosphere.
  • the moisture content in the protective gas atmosphere is less than 1 ppm, and the oxygen content is less than 1 ppm.
  • the heat treatment process before the heat treatment process, it further includes: mixing Li 2 S, P 2 S 5 and M x S 2 O 3 in proportions to obtain a premix; afterwards, the premix is placed in the organic solvent. Ball milling is carried out to obtain the incipient wetness material; then the organic solvent in the incipient wetness material is removed to obtain the mixture. Afterwards, the mixture is heat-treated to obtain the sulfide solid electrolyte.
  • the step of preparing the premix, the step of preparing the incipient wetness material, and/or the step of removing the solvent are preferably performed in a protective gas atmosphere, for example, in an inert gas (such as argon) atmosphere.
  • a protective gas atmosphere for example, in an inert gas (such as argon) atmosphere.
  • the moisture content in the protective gas atmosphere is less than 1 ppm, and the oxygen content is less than 1 ppm.
  • the grinding balls may use one or more of ZrO 2 balls and Al 2 O 3 balls, such as ZrO 2 balls.
  • the ball-to-material ratio may be 20:1 to 80:1, preferably 30:1 to 60:1, more preferably 40:1 to 50:1.
  • the organic solvent in the step of preparing the incipient wet material, may be one or more of hexane, cyclohexane, heptane, octane, benzene, toluene, xylene, and ethylbenzene, such as Cyclohexane.
  • the volume ratio of the organic solvent to the premix may be 1:1 to 5:1, such as 2:1 to 4:1, such as 10:3.
  • ball milling in the step of preparing the incipient wetness material, ball milling may be performed in a ball mill.
  • the rotation speed of the ball mill may be 300 rpm to 700 rpm, preferably 400 rpm to 600 rpm, such as 500 rpm.
  • the time of ball milling can be 5h-30h, for example 10h-25h, and for example 15h-20h.
  • the materials can be more fully mixed, and the particles can be pulverized to improve the reactivity.
  • the mixed material before the heat treatment process, may be compressed into tablets to form a flake material.
  • the pressure of tableting may be 10 MPa to 30 MPa, for example, 15 MPa to 25 MPa, such as 20 MPa. After heat treatment of the flake material, the material can be crushed to the desired particle size by grinding.
  • the all-solid lithium secondary battery according to the second aspect of the present application includes a positive pole piece, a negative pole piece, and a solid electrolyte membrane, wherein the solid electrolyte membrane includes the sulfide solid electrolyte according to the first aspect of the present application.
  • the average particle size of the sulfide solid electrolyte in the solid electrolyte membrane is 5 ⁇ m-50 ⁇ m.
  • the particle size of the sulfide solid electrolyte is within an appropriate range, which is conducive to compacting the compressed solid electrolyte membrane, and the gap between the particles is small, thereby reducing the lithium ion solid phase diffusion barrier and improving the lithium ion diffusion coefficient .
  • the sulfide solid electrolyte has an appropriate particle size, which is also conducive to good interface contact between the solid electrolyte membrane and the positive electrode, and low interface resistance, thereby improving the cycle performance of the all-solid lithium secondary battery.
  • the dense solid electrolyte membrane can prevent lithium dendrites from piercing the solid electrolyte membrane to reach the positive electrode, thereby effectively preventing the safety problems of all solid-state lithium secondary batteries caused by internal short circuits. .
  • the average particle size of the sulfide solid electrolyte in the solid electrolyte membrane is 10 ⁇ m to 20 ⁇ m.
  • the positive electrode sheet may include a positive electrode current collector and a positive electrode membrane provided on the positive electrode current collector and including a positive electrode active material.
  • the type of the positive electrode active material is not specifically limited, and can be selected according to actual needs.
  • the negative electrode sheet may include a negative electrode current collector and a negative electrode membrane provided on the negative electrode current collector and including a negative electrode active material.
  • the type of the negative electrode active material is not specifically limited, and can be selected according to actual needs.
  • the positive electrode active material is selected from LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 3 (PO 4 ) 3 , LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , LiCoO 2 , LiNiO 2 , One or more of LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiNi 0.8 Co 0.1 Al 0.1 O 2 , LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • the corresponding negative electrode active material can be selected from graphite (such as artificial graphite, natural graphite), soft carbon, hard carbon, silicon carbon, metallic lithium, and lithium alloys. One or more.
  • the positive electrode active material can also be selected from one or more of V 2 O 5 , MnO 2 , TiS 2 , FeS 2 , SnS 2 , and CuS 2 .
  • the positive electrode active material is the aforementioned non-lithium salt-based positive electrode active material
  • the corresponding negative electrode active material should be a negative electrode active material capable of extracting lithium ions, such as metallic lithium or lithium alloy.
  • the positive electrode film may further include a conductive agent and a binder.
  • the types of the conductive agent and the binder are not specifically limited and can be based on actual conditions. Need to choose.
  • the positive electrode membrane may further include the sulfide solid electrolyte according to the first aspect of the present application.
  • the average particle size of the sulfide solid electrolyte in the positive electrode membrane is 5 ⁇ m-50 ⁇ m.
  • the particle size of the sulfide solid electrolyte is within an appropriate range, which can make the positive electrode slurry have good dispersibility and reduce the agglomeration between particles; and can also make the positive electrode film have a higher compaction density, thereby reducing lithium
  • the ion solid phase diffusion energy barrier improves the diffusion coefficient of lithium ions, and at the same time enables the battery to have a higher energy density.
  • the average particle size of the sulfide solid electrolyte in the positive electrode membrane is 10 ⁇ m-20 ⁇ m.
  • the negative electrode film may further include a conductive agent and a binder.
  • the types of the conductive agent and the binder are not specifically limited and can be based on actual conditions. Need to choose.
  • the negative electrode membrane may further include the sulfide solid electrolyte according to the first aspect of the present application.
  • the average particle size of the sulfide solid electrolyte in the negative electrode membrane is 5 ⁇ m-50 ⁇ m.
  • the particle size of the sulfide solid electrolyte is within an appropriate range, which can make the positive electrode slurry have good dispersibility and reduce the agglomeration between particles; and can also make the positive electrode film have a higher compaction density, thereby reducing lithium
  • the ion solid phase diffusion energy barrier improves the diffusion coefficient of lithium ions, and at the same time enables the battery to have a higher energy density.
  • the average particle size of the sulfide solid electrolyte in the negative electrode membrane is 10 ⁇ m to 20 ⁇ m.
  • FIG. 5 is an all-solid lithium secondary battery 5 with a square structure as an example.
  • the all-solid lithium secondary battery may include an outer package for packaging the positive pole piece, the negative pole piece and the solid electrolyte membrane.
  • the outer packaging of the all-solid lithium secondary battery may be a soft bag, such as a pouch type soft bag.
  • the material of the soft bag can be plastic, for example, it can include one or more of polypropylene PP, polybutylene terephthalate PBT, polybutylene succinate PBS, and the like.
  • the outer packaging of the all-solid lithium secondary battery may also be a hard shell, such as a hard plastic shell, an aluminum shell, a steel shell, and the like.
  • the outer package may include a housing 51 and a cover 53.
  • the housing 51 may include a bottom plate and a side plate connected to the bottom plate, and the bottom plate and the side plate enclose a receiving cavity.
  • the housing 51 has an opening communicating with the containing cavity, and a cover plate 53 can cover the opening to close the containing cavity.
  • the positive pole piece, the negative pole piece and the solid electrolyte membrane may be formed into the electrode assembly 52 through a lamination process or a winding process.
  • the electrode assembly 52 is packaged in the receiving cavity.
  • the number of electrode assemblies 52 contained in the all-solid lithium secondary battery 5 can be one or several, which can be adjusted according to requirements.
  • the all-solid lithium secondary battery can be assembled into a battery module, and the number of all-solid lithium secondary batteries contained in the battery module can be multiple, and the specific number can be adjusted according to the application and capacity of the battery module.
  • FIG. 7 is the battery module 4 as an example.
  • a plurality of all-solid lithium secondary batteries 5 may be arranged in sequence along the length direction of the battery module 4. Of course, it can also be arranged in any other manner. Furthermore, the plurality of all-solid lithium secondary batteries 5 can be fixed by fasteners.
  • the battery module 4 may further include a housing with an accommodation space, and a plurality of all-solid lithium secondary batteries 5 are accommodated in the accommodation space.
  • the above-mentioned battery modules can also be assembled into a battery pack, and the number of battery modules contained in the battery pack can be adjusted according to the application and capacity of the battery pack.
  • FIGS 8 and 9 show the battery pack 1 as an example. 4 and 5, the battery pack 1 may include a battery box and a plurality of battery modules 4 provided in the battery box.
  • the battery box includes an upper box body 2 and a lower box body 3.
  • the upper box body 2 can be covered on the lower box body 3 and forms a closed space for accommodating the battery module 4.
  • Multiple battery modules 4 can be arranged in the battery box in any manner.
  • the application also provides a device, which includes the all-solid lithium secondary battery described in the application.
  • the all-solid lithium secondary battery can be used as a power source for the device, and can also be used as an energy storage unit of the device.
  • the device can be, but is not limited to, mobile devices (such as mobile phones, laptop computers, etc.), electric vehicles (such as pure electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, electric bicycles, electric scooters, electric golf Vehicles, electric trucks, etc.), electric trains, ships and satellites, energy storage systems, etc.
  • the device can select an all-solid lithium secondary battery, battery module or battery pack according to its usage requirements.
  • Fig. 10 is a device as an example.
  • the device is a pure electric vehicle, a hybrid electric vehicle, or a plug-in hybrid electric vehicle.
  • a battery pack or battery module can be used.
  • the device may be a mobile phone, a tablet computer, a notebook computer, etc.
  • the device is generally required to be thin and light, and an all-solid lithium secondary battery can be used as a power source.
  • the initial moisture material is vacuum pumped to remove the organic solvent to obtain the initial dry powder material, and then the initial dry powder material is compressed at a pressure of 20MPa to form tablets State material.
  • Place the flakes in an argon dry atmosphere moisture content is less than 1ppm, oxygen content is less than 1ppm
  • heated to 250°C at a heating rate of 2°C/min kept for 2h, cooled to room temperature along with the furnace, and discharged.
  • the positive electrode membrane is obtained by mixing the positive electrode active material and the sulfide solid electrolyte prepared in step (1) at a mass ratio of 70:30 and then pressing into a layered shape, wherein the positive electrode active material is LiCoO 2 and the positive electrode current collector is aluminum foil.
  • the metal lithium sheet is used as the negative pole piece.
  • the positive electrode current collector, the positive electrode membrane, the sulfide solid electrolyte prepared in step (1), and the negative electrode pole piece are assembled into an all-solid lithium secondary battery by pressure forming.
  • test current is 0.1C (current density is 0.13mA/cm 2 ), and the test temperature is 25°C.
  • sulfide solid electrolyte prepared in step (1) 100 mg was pressed into a solid electrolyte membrane with a diameter of 10 mm at a pressure of 20 MPa, a symmetric battery was constructed with stainless steel as a blocking electrode, and the impedance of the sulfide solid electrolyte at 25°C was tested.
  • step (1) Press 100 mg of the sulfide solid electrolyte prepared in step (1) at a pressure of 20 MPa into a solid electrolyte membrane with a diameter of 10 mm, and then test the electrochemical stability of the sulfide solid electrolyte with metallic lithium as the working electrode and stainless steel as the counter electrode.
  • the potential interval is -0.5V ⁇ 6V, and the process is set to sweep from negative to -0.5V from the open circuit potential at a scanning speed of 1mV/s, then the potential is reversed and scanned to 6V, and finally to the open circuit potential.
  • the test conditions are normal temperature 25°C and normal pressure 0.1MPa.
  • XRD test of sulfide solid electrolyte use X-ray diffractometer (such as Bruker D8Discover) to test.
  • the test can refer to JIS K 0131-1996.
  • CuK ⁇ rays are used as the radiation source, and the wavelength of the rays
  • the scanning 2 ⁇ angle range is 5° ⁇ 80°, and the scanning rate is 4°/min.
  • PS 4 3- , P 2 S 7 4- and P 2 S 6 4- in the sulfide solid electrolyte can be measured by Raman spectroscopy, such as a Senterra Raman tester.
  • the test conditions can be: excitation light wavelength is 532nm, power is 2mW.
  • the sample can be crushed, soaked in silicone oil and placed between glass plates for testing.
  • the Raman characteristic peak intensities of PS 4 3- , P 2 S 7 4- and P 2 S 6 4- are expressed by the integrated area of the corresponding characteristic peaks.
  • the position of PS 4 3- is near 418 cm -1 ; the position of P 2 S 7 4- is near 406 cm -1 ; the position of P 2 S 6 4- is near 387 cm -1 .
  • the average particle size test of the sulfide solid electrolyte It can be determined with a laser particle size analyzer (such as Malvern Master Size 3000) with reference to the standard GB/T 19077.1-2016. Among them, the average particle size (ie D v 50) is the particle size corresponding to when the cumulative volume distribution percentage of the material reaches 50%.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1, except that the positive electrode active material of the all-solid lithium secondary battery uses LiNi 0.8 Co 0.1 Al 0.1 O 2 .
  • the test of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the working voltage range of the above-mentioned all-solid lithium secondary battery is set to 2.8V ⁇ 4.2V, and the cycle is performed by constant current charging and discharging.
  • the test current is 0.1C (current density is 0.15mA/cm 2 ), and the test temperature is 25°C.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1, except that the positive electrode active material of the all-solid lithium secondary battery uses LiNi 0.8 Co 0.1 Mn 0.1 O 2 .
  • the test of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the working voltage range of the above-mentioned all-solid lithium secondary battery is set to 2.8 ⁇ 4.2V, and the cycle test is performed by constant current charging and discharging. , The test current is 0.1C (current density is 0.17mA/cm 2 ), and the test temperature is 25°C.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1, except that the molar ratio of Li 2 S, P 2 S 5 , and Na 2 S 2 O 3 is 70:28:2, and the obtained sulfide
  • the solid electrolyte is 70Li 2 S-28P 2 S 5 -2Na 2 S 2 O 3 with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the molar ratio of Li 2 S, P 2 S 5 , and Na 2 S 2 O 3 is 70:25:5, and the obtained sulfide
  • the solid electrolyte is 70Li 2 S-25P 2 S 5 -5Na 2 S 2 O 3 with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the molar ratio of Li 2 S, P 2 S 5 , and Na 2 S 2 O 3 is 70:20:10, and the obtained sulfide
  • the solid electrolyte is 70Li 2 S-20P 2 S 5 -10Na 2 S 2 O 3 with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the heat treatment conditions are heating to 200°C at a heating rate of 2°C/min and holding for 2 hours.
  • the obtained sulfide solid electrolyte is 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the heat treatment conditions are heating to 400°C at a heating rate of 2°C/min and holding for 2 hours.
  • the obtained sulfide solid electrolyte is 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the heat treatment conditions are heating to 250°C at a heating rate of 2°C/min and holding for 0.5h.
  • the obtained sulfide solid electrolyte is 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the heat treatment conditions are heating to 250°C at a heating rate of 2°C/min and holding for 20 hours.
  • the obtained sulfide solid electrolyte is 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the molar ratio of Li 2 S, P 2 S 5 , and Na 2 S 2 O 3 is 65:34:1, and the obtained sulfide
  • the solid electrolyte is 65Li 2 S-34P 2 S 5 -1Na 2 S 2 O 3 with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the molar ratio of Li 2 S, P 2 S 5 , and Na 2 S 2 O 3 is 75:24:1, and the obtained sulfide
  • the solid electrolyte is 75Li 2 S-24P 2 S 5 -1Na 2 S 2 O 3 with an average particle size of 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the molar ratio of Li 2 S, P 2 S 5 , and Na 2 S 2 O 3 is 80:19:1, and the obtained sulfide
  • the solid electrolyte is 80Li 2 S-19P 2 S 5 -1Na 2 S 2 O 3 and the average particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1.
  • the difference is that the premixed raw material is composed of Li 2 S, P 2 S 5 , and K 2 S 2 O 3 in a molar ratio of 70:29:1
  • the obtained sulfide solid electrolyte is 70Li 2 S-29P 2 S 5 -1K 2 S 2 O 3 , and the average particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1, except that the average particle size of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 is 35 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1, except that the average particle size of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 is 45 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1. The difference is that the sulfide solid electrolyte only contains Li 2 S and P 2 S 5 , and the molar ratio of the two is 70:30. Pre-mixing, the obtained sulfide solid electrolyte is 70Li 2 S-30P 2 S 5 , and the average particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the heat treatment temperature is 100°C, and the obtained sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , The average particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the heat treatment temperature is 500°C, and the obtained sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , The average particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the heat treatment time is 0.1h, and the obtained sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 , The average particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1. The difference is that the heat treatment time is 25h, and the obtained sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 is average The particle size is 20 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1, except that the average particle size of the sulfide solid electrolyte 70Li 2 S-29P2S 5 -1Na 2 S2O 3 is 70 ⁇ m.
  • the preparation of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as in Example 1, except that the average particle size of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 is 3 ⁇ m.
  • Example 4-16 and Comparative Examples 1-7 the test of the sulfide solid electrolyte and the all-solid lithium secondary battery is the same as that of Example 1.
  • FIG. 1 is an XRD pattern of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 of Example 1. It can be seen from Figure 1 that the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 is a glass ceramic solid electrolyte, which can provide a good channel for the transmission of lithium ions in it, and has good ion conductivity. .
  • Fig. 2 is an impedance spectrum of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 of Example 1 at 25°C. It can be seen from Figure 3 that the ionic conductivity of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 is 1.77 mS/cm, indicating that the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 has good ionic conductivity.
  • Fig. 3 is a cyclic voltammetry curve of the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 of Example 1 with metallic lithium as the working electrode and stainless steel as the counter electrode. It can be seen from Figure 3 that at about 0V, the curve is basically symmetrical up and down, so it can be judged that a large degree of reversible lithium deposition and dissolution have occurred on the positive and negative electrodes. At the same time, no obvious oxidation current peaks and reduction current peaks are observed in the subsequent. It means that no electrochemical oxidation or reduction reaction occurs at the subsequent potential. Therefore, it can be shown that the sulfide solid electrolyte 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 has good electrochemical stability.
  • FIG. 5 is the first week charge and discharge curve of the all-solid lithium secondary battery of Example 1. It can be seen from Fig. 5 that using 70Li 2 S-29P 2 S 5 -1Na 2 S 2 O 3 as a sulfide solid electrolyte can increase the charge and discharge voltage platform of Li 2 CO 2 and therefore can make the all-solid lithium secondary battery have a higher The specific capacity of the first week.
  • Li 2 S as the glass phase network modified sulfide in the sulfide solid electrolyte will also affect the ionic conductivity and all-solid state of the sulfide solid electrolyte.
  • Lithium secondary battery first week specific capacity, first week Coulomb efficiency and capacity retention performance If the molar content of Li 2 S is small, on the one hand, it will reduce the source of lithium ions in the sulfide solid electrolyte, and on the other hand, the resulting sulfide solid electrolyte will contain more bridging sulfur, which is not conducive to the rapid speed of lithium ions.
  • Non-bridging sulfur tends to capture lithium ions and make it difficult to move. It is also not conducive to the optimal ionic conductivity of the sulfide solid electrolyte.
  • Example 14 From the test results of Example 1 and Example 14, it can be known that as the dopant M 2 S 2 O 3 increases in size of the introduced alkali metal atom M, the degree of lattice distortion of the system increases, which will cause sulfidation instead.
  • the ionic conductivity of the solid-state electrolyte is slightly decreased, but the sulfide solid-state electrolyte can still maintain a high ionic conductivity as a whole, so that the all-solid lithium secondary battery has a good first week specific capacity, first week coulomb efficiency and cycle capacity retention rate .
  • Example 15-16 From the analysis of the test results of Example 1, Examples 15-16 and Comparative Examples 6-7, it is known that the average particle size of the sulfide solid electrolyte has an influence on the performance of the all-solid lithium secondary battery.
  • Example 1 Examples 15-16, the average particle size of the sulfide solid electrolyte is relatively moderate, and the all-solid-state battery also exhibits higher first week specific capacity, higher first week Coulomb efficiency and higher cycle capacity retention rate.
  • the average particle size of the sulfide solid electrolyte in Comparative Example 6 is too large, resulting in the change in the internal volume of the all-solid lithium secondary battery during the charge and discharge process.
  • the sulfide solid electrolytes of the examples of this application contain more PS 4 3- phase and P 2 S 7 4- phase with high ion conductivity, and P 2 S 6 with low ion conductivity. 4- phase is less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

一种硫化物固态电解质及其制备方法、全固态锂二次电池(5)和包含全固态锂二次电池(5)的装置。所述硫化物固态电解质至少由Li 2S、P 2S 5以及掺杂剂M xS 2O 3复合得到,其中,M选自Na、K、Ba以及Ca中的一种或几种,1≤x≤2。

Description

硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置
相关申请的交叉引用
本申请要求享有于2019年04月25日提交的名称为“硫化物固态电解质及全固态锂二次电池”的中国专利申请201910338105.0的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体涉及一种硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置。
背景技术
锂二次电池由于具有能量密度大、电化学性能好的优点而被广泛应用于各领域。目前使用较多的锂二次电池是液态锂二次电池,其电解质材料主要采用液态电解质材料,其中含有大量有机溶剂,因此在使用过程中会导致安全隐患凸出。而全固态锂二次电池具有液态锂二次电池不可比拟的安全性能,并可有望彻底消除使用过程中的安全隐患,更符合电动汽车和规模储能领域未来发展的需求,因此各国研究者正大力开发全固态锂二次电池。
截止目前,全固态锂二次电池仍未得到广泛的应用,而限制其全面应用的主要瓶颈是高性能固态电解质材料(solid electrolyte,简称为SE)的研究与开发。为了提高全固态锂二次电池的市场竞争力,确有必要提供一种高性能的固态电解质材料。
发明内容
目前的固态电解质材料主要包括:聚合物、氧化物、硫化物等几大类。聚合物固态电解质在室温下的电导率极低(通常<10 -6S/cm),因此难以发挥出其优势。氧化物固态电解质的电导率也较低,且其硬度通常较大,难以适应充放电过程中电极 尺寸的变化,进而容易出现匹配失灵的问题。硫化物固态电解质具有室温电导率较高、与电极界面接触良好等优势,因此可作为全固态锂二次电池的首选固态电解质。
然而,本发明人研究发现,现有的硫化物固态电解质的电化学稳定性较差,这将会不利地影响采用其的全固态锂二次电池的电化学性能。
因此,本发明人进行了大量的研究,旨在提供一种同时具有较高的离子电导率和较高的电化学稳定性的硫化物固态电解质,还提供一种硫化物固态电解质的制备方法。
本申请的另一个目的还在于,提供一种具有较高的首周比容量、较高的首周库伦效率和良好的循环性能的全固态锂二次电池。
为了达到上述目的,本申请第一方面提供一种硫化物固态电解质,其至少由Li 2S、P 2S 5以及掺杂剂M xS 2O 3复合得到,其中,M选自Na、K、Ba以及Ca中的一种或几种,1≤x≤2。
本申请第二方面提供一种全固态锂二次电池,其包括正极极片、负极极片以及固态电解质膜,其中所述固态电解质膜包括根据本申请第一方面所述的硫化物固态电解质。
本申请第三方面提供一种装置,其包括根据本申请第二方面所述的全固态锂二次电池。
本申请第四方面提供一种硫化物固态电解质的制备方法,其包括:
将Li 2S、P 2S 5和掺杂剂M xS 2O 3在有机溶剂存在的条件下进行球磨处理,得到初湿料;
去除初湿料中的有机溶剂,得到混合料;
在150℃~450℃的温度下对混合料进行热处理0.5h~20h,以得到所述硫化物固态电解质。
相对于现有技术,本申请至少具有以下有益效果:
令人惊奇地发现,本申请的硫化物固态电解质通过掺杂M xS 2O 3,从而能具有离子电导率高且电化学稳定性好的优点。更优选地,采用本申请的硫化物固态电解质的全固态锂二次电池能具有高的首周比容量、高的首周库伦效率和良好的循环性能。本申请的装置包含所述的全固态锂二次电池,因而至少具有相同的优势。
附图说明
图1为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的XRD图谱。
图2为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3在25℃下的阻抗图谱。
图3为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3以金属锂作为工作电极,以不锈钢作为对电极测试的循环伏安曲线。
图4为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的拉曼测试曲线。
图5为实施例1的全固态锂二次电池的首周充放电曲线。
图6是全固态锂二次电池的一实施方式的示意图。
图7是图6的分解图。
图8是电池模块的一实施方式的示意图。
图9是电池包的一实施方式的示意图。
图10是图9的分解图。
图11是全固态锂二次电池用作电源的装置的一实施方式的示意图。
具体实施方式
为了使本申请的发明目的、技术方案和有益技术效果更加清晰,以下结合具体实施例对本申请进行详细说明。应当理解的是,本说明书中描述的实施例仅仅是为了解释本申请,并非为了限定本申请。
为了简便,本文仅明确地公开了一些数值范围。然而,任意下限可以与任何上限组合形成未明确记载的范围;以及任意下限可以与其它下限组合形成未明确记载的范围,同样任意上限可以与任意其它上限组合形成未明确记载的范围。此外,尽管未明确记载,但是范围端点间的每个点或单个数值都包含在该范围内。因而,每个点或单个数值可以作为自身的下限或上限与任意其它点或单个数值组合或与其它下限或上限组合形成未明确记载的范围。
在本文的描述中,需要说明的是,除非另有说明,“以上”、“以下”为包含本数,“一种或几种”中“几种”的含义是两种以上。
本申请的上述发明内容并不意欲描述本申请中的每个公开的实施方式或每种实现方式。如下描述更具体地举例说明示例性实施方式。在整篇申请中的多处,通过 一系列实施例提供了指导,这些实施例可以以各种组合形式使用。在各个实例中,列举仅作为代表性组,不应解释为穷举。
硫化物固态电解质
首先说明根据本申请第一方面的硫化物固态电解质。
根据本申请第一方面的硫化物固态电解质至少由Li 2S、P 2S 5以及掺杂剂M xS 2O 3复合得到,其中,M选自Na、K、Ba以及Ca中的一种或几种,1≤x≤2。
固态电解质是以固态形式在正负极之间传输电荷的一种电解质。对于全固态锂二次电池而言,为了保证其具有良好的电化学性能和安全性能,通常要求固态电解质具有高的离子电导率和低的电子电导率。即,锂离子可以在固态电解质中进行传输,而电子则无法进行传输。固态电解质的离子电导是离子在电场作用下的扩散现象,包括固有离子电导和杂质电导。其中固有离子电导称为固态电解质的本征电导,是固态电解质中有离子运动的体现,其反映了离子的迁移能力,且其与固态电解质中运动离子的电荷高低和固态电解质的晶体结构相关。通常,一价阳离子的电荷少、活化能低,因此其离子电导率高;相反,高价阳离子的价键强、活化能高,故迁移率较低、离子电导率较低。同时在结构紧密的离子晶体中,由于可供离子移动的间隙小,间隙离子迁移困难,导致离子迁移的活化能高、离子电导率较小。由此,固态电解质要具有高的离子电导率就必须要求其具有大浓度的离子晶格缺陷,并且这些晶格缺陷参与离子电导,即离子晶格缺陷的生成及其浓度大小是决定固态电解质离子电导率大小的关键。
本申请的硫化物固态电解质至少由Li 2S、P 2S 5以及M xS 2O 3复合得到,其是一种玻璃相与晶相均匀混合的玻璃陶瓷固态电解质。其中,P 2S 5是玻璃相网络形成硫化物,Li 2S是玻璃相网络改性硫化物,而M xS 2O 3是掺杂剂。
P 2S 5可以形成强烈的相互连接且长程无序的巨分子链,促进固态电解质中锂离子的传输。Li 2S可以与P 2S 5发生化学反应从而打破巨分子链中的部分硫桥,降低巨分子链的平均长度以降低玻璃相的粘度,从而有利于锂离子的快速传输。在两者相互作用形成的玻璃相网络中,由于硫的离子半径较大、电负性较小,因此对锂离子的束缚作用较弱,同时长程无序的玻璃相网络也为锂离子提供了较大的传输通道,方便了锂离子的传输,使硫化物固态电解质总体上具有较高的离子电导率。此外, 从热力学角度来说,由于Li 2S与P 2S 5形成的玻璃相是一种亚稳态,内能较高,因此在一定的加热条件下可以转变为晶相,即在一定的加热条件下由Li 2S与P 2S 5形成的玻璃相可以转变为晶相PS 4 3-相和P 2S 7 4-相。而从动力学角度来看,玻璃相在冷却的过程中,体系粘度的迅速增大阻碍了晶核的产生和长大,玻璃相没有足够的时间全部转化为晶体,因此最终形成了晶相(PS 4 3-相、P 2S 7 4-相)和玻璃相共存形态,其中PS 4 3-相和P 2S 7 4-相的形成可以进一步提高硫化物固态电解质的离子电导。其原因在于,一方面形成的PS 4 3-相和P 2S 7 4-相的边界由于被玻璃相包围从而边界阻抗大大降低,另一方面,PS 4 3-相和P 2S 7 4-相本身具有较高的离子导电性。
而采用M xS 2O 3掺杂可以通过构造空隙以及改变锂离子传输通道的大小来提高硫化物固态电解质的离子电导率。原因在于,M xS 2O 3中的M离子的尺寸比锂离子大,因此M xS 2O 3掺杂后形成的晶体中会产生更多的晶格畸变,形成更多的晶格缺陷,并且括大了晶体中锂离子通道的尺寸,使硫化物固态电解质可以获得更高的锂离子电导率。同时,M xS 2O 3所携带的多余的硫原子可以与基体中的非桥连硫结合生成桥连硫,有效地降低硫化物固态电解质的电阻,进一步提高硫化物固态电解质的离子电导率。此外,M xS 2O 3本身为含氧化合物,引入M xS 2O 3相当于引入了电负性较高的氧原子,从而还可以提高硫化物固态电解质的电化学稳定性。通过引入电负性较高的氧原子,还提高了硫化物固态电解质对水和氧气的稳定性。
因此,本申请由Li 2S、P 2S 5以及掺杂剂M xS 2O 3复合得到的硫化物固态电解质能具有离子电导率高且电化学稳定性好的优点。本申请的硫化物固态电解质应用于全固态锂二次电池中,能使全固态锂二次电池具有高的首周比容量、高的首周库伦效率和良好的循环性能。
在本申请第一方面所述的硫化物固态电解质中,Li 2S的摩尔百分含量优选为60%以上。一方面硫化物固态电解质中锂离子的来源充足,能提高硫化物固态电解质的离子电导率;另一方面也会使最终得到的硫化物固态电解质中含有适量的桥连硫,有利于锂离子在其中的快速传输,也能提高硫化物固态电解质的离子电导率。硫化物固态电解质中Li 2S的摩尔百分含量优选为80%以下。则,最终得到的硫化物固态电解质中桥连硫的含量和非桥连硫的含量比例适当,能提升锂离子在其中的快速传输性能,因此能改善硫化物固态电解质的离子电导率。
优选地,Li 2S的摩尔百分含量大于等于60%且小于等于79%。进一步优选地, Li 2S的摩尔百分含量大于等于70%且小于等于79%。例如为65%、68%、70%、72%、75%或77%。
在本申请第一方面所述的硫化物固态电解质中,P 2S 5的摩尔百分含量优选为16%以上。则,硫化物固态电解质能有效地形成相互连接且长程无序的分子链,有利于锂离子的快速传输。硫化物固态电解质中P 2S 5的摩尔百分含量优选为35%以下。则,硫化物固态电解质中相互连接且长程无序的巨分子链的平均长度较小,有利于降低玻璃相的粘度,同时保证足够的Li 2S含量来打破巨分子链中的部分硫桥,从而有利于锂离子的快速传输。
优选地,P 2S 5的摩尔百分含量大于等于16%且小于等于30%。进一步优选地,P 2S 5的摩尔百分含量大于等于20%且小于等于30%。尤其优选地,P 2S 5的摩尔百分含量大于等于20%且小于等于29%。例如为18%、20%、22%、24%、25%或28%。
在本申请第一方面所述的硫化物固态电解质中,M xS 2O 3的摩尔百分含量优选为大于0且小于等于10%。则,M xS 2O 3能使晶体中形成较多的晶格畸变的同时,还使晶体保持较高的结构稳定性,从而使硫化物固态电解质具有较高的离子电导率和较高的电化学稳定性。这样进一步提高全固态锂二次电池的首周比容量、首周库伦效率以及循环性能。
进一步优选地,M xS 2O 3的摩尔百分含量小于等于5%。更优选地,M xS 2O 3的摩尔百分含量为大于等于1%且小于等于5%。例如为0.5%、0.8%、1%、1.5%、2%、2.5%、3%、3.5%、4%或5%。
在一些优选的实施例中,M xS 2O 3中,M包括Na和K中的一种或几种,优选包括Na。作为掺杂剂的M 2S 2O 3随着所引入的碱金属原子M具有适当的尺寸,能使硫化物固态电解质的晶体结构中形成适度的晶格畸变,这样能更加有利于提高离子电导率。
在一些优选的实施例中,所述硫化物固态电解质为包含玻璃相和晶相的多相复合体,其中包括PS 4 3-、P 2S 7 4-和P 2S 6 4-,且所述PS 4 3-、P 2S 7 4-和P 2S 6 4-的拉曼特征峰强度之比为1~60:1~60:0.01~1,进一步地为6~40:3~40:0.01~0.5,更进一步地为20~40:10~20:0.01~0.1。硫化物固态电解质中所述PS 4 3-、P 2S 7 4-和P 2S 6 4-的拉曼特征峰强度之比在适当范围内,能使其具有较高的离子电导率和稳定性。
在一些优选的实施例中,所述硫化物固态电解质的平均粒径为5μm~50μm。发 明人发现,硫化物固态电解质的平均粒径在适当范围内,能使采用其的固态电解质膜、正极极片和/或负极极片具有较高的锂离子扩散系数;同时使固态电解质膜与电极之间的界面接触良好,界面电阻较低,从而提高全固态锂二次电池的电化学性能,如循环性能等。硫化物固态电解质的平均粒径在5μm以上,优选在10μm以上,还能简化其制备工艺。
进一步优选地,所述硫化物固态电解质的平均粒径为10μm~20μm。例如,硫化物固态电解质的平均粒径为12μm、15μm、18μm、20μm、22μm、25μm、30μm或35μm。
在一些实施例中,所述硫化物固态电解质的离子电导率为0.6mS/cm~2.5mS/cm,例如为0.8mS/cm、1.0mS/cm、1.2mS/cm、1.4mS/cm、1.5mS/cm、1.6mS/cm、1.7mS/cm、1.8mS/cm或2.0mS/cm。硫化物固态电解质具有较高的离子电导率,有利于使全固态锂二次电池具有较高的电化学性能,其中具有较高的首周比容量、首周库伦效率和循环性能。
在一些实施例中,在硫化物固态电解质的循环伏安曲线图谱中(具体测试过程为:以金属锂作为工作电极,以不锈钢作为对电极,组装成半电池后进行测试;扫描电位区间为-0.5V~6V,扫描速度为1mV/s,测试条件为常温25℃、常压0.1MPa),阳极峰与阴极峰的峰电流之比为0.55~0.85。由此可以看出,阳极峰与阴极峰的峰电流比值比较接近理想的比值1。因此,本申请电极反应的可逆性好,硫化物固态电解质具有较好Li +/Li的嵌入/脱出可逆性,即表明本申请的硫化物固态电解质具有电化学稳定性好的优点,也可表明包括本申请的硫化物固态电解质的全固态锂二次电池具有良好的循环性能。例如,在硫化物固态电解质的循环伏安曲线图谱中,阳极峰与阴极峰的峰电流之比为0.6、0.65、0.67、0.7、0.75、0.76、0.77、0.78、0.79、0.8、0.81或0.83。
接下来提供一种所述的硫化物固态电解质的制备方法。通过该制备方法能够制备得到上述的硫化物固态电解质。
在一些实施例中,优选地,所述硫化物固态电解质由Li 2S、P 2S 5以及M xS 2O 3通过热处理工艺制备得到。
在一些实施例中,优选地,Li 2S、P 2S 5以及M xS 2O 3的纯度各自独立地为98%以上,如99%以上。
在一些实施例中,优选地,所述热处理温度为150℃~450℃。进一步优选地,所述热处理温度为200℃~400℃,例如为225℃、230℃、240℃、250℃、260℃、280℃、300℃、320℃或350℃。发明人研究发现,热处理温度在适当范围内,能使所得硫化物固态电解质中含有较多的高离子传导特性的PS 4 3-相和P 2S 7 4-相,因此其离子电导率较高。
热处理工艺中,升温速率可以为0.5℃/min~10℃/min,进一步为1℃/min~5℃/min,更进一步为2℃/min~3℃/min。
在一些实施例中,优选地,所述热处理时间为0.5h~20h。进一步优选地,所述热处理时间为1h~10h,例如为1.5h、2h、2.5h、3h、3.5h、4h、5h、6h、7h、8h或9h。发明人还发现,热处理时间在适当范围内,能使所得硫化物固态电解质中含有较多的高离子传导特性的PS 4 3-相和P 2S 7 4-相,因此其离子电导率较高。
热处理工艺优选在保护性气体气氛中进行,例如在惰性气体(如氩气)气氛中进行。优选地,保护性气体气氛中水分含量低于1ppm,氧气含量低于1ppm。
在一些实施例中,在热处理工艺之前,还包括:将Li 2S、P 2S 5和M xS 2O 3按比例混合,得到预混料;之后将预混料在有机溶剂存在的条件下进行球磨处理,得到初湿料;再去除初湿料中的有机溶剂,得到混合料。之后对混合料进行热处理,以得到所述硫化物固态电解质。
制备预混料的步骤、制备初湿料的步骤和/或除溶剂的步骤优选在保护性气体气氛中进行,例如在惰性气体(如氩气)气氛中进行。优选地,保护性气体气氛中水分含量低于1ppm,氧气含量低于1ppm。
在一些实施例中,制备初湿料的步骤中,磨球可采用ZrO 2球、Al 2O 3球中的一种或几种,如ZrO 2球。球料比(质量比)可以为20:1~80:1,优选为30:1~60:1,更优选为40:1~50:1。
在一些实施例中,制备初湿料的步骤中,有机溶剂可采用己烷、环己烷、庚烷、辛烷、苯、甲苯、二甲苯、乙基苯中的一种或几种,如环己烷。有机溶剂与预混料的体积比可以为1:1~5:1,例如2:1~4:1,如10:3。
在一些实施例中,制备初湿料的步骤中,球磨可以在球磨机中进行。球磨的转速可以为300rpm~700rpm,优选为400rpm~600rpm,如500rpm。球磨的时间可以为5h~30h,例如10h~25h,再例如15h~20h。
通过球磨处理,能更使物料更加充分的混合,同时能粉碎使颗粒细化,提高反应性。
在一些实施例中,在热处理工艺之前,还可以将混合料进行压片,形成片状料。压片的压力可以为10MPa~30MPa,例如为15MPa~25MPa,如20MPa。对片状料进行热处理之后,可通过研磨将材料粉碎至所需粒径。
全固态锂二次电池
其次说明根据本申请第二方面的全固态锂二次电池。
根据本申请第二方面的全固态锂二次电池包括正极极片、负极极片以及固态电解质膜,其中所述固态电解质膜包括根据本申请第一方面所述的硫化物固态电解质。
在一些实施例中,优选地,所述固态电解质膜中的硫化物固态电解质的平均粒径为5μm~50μm。硫化物固态电解质的颗粒粒径在适当范围内,有利于使压制后的固态电解质膜实现致密化,颗粒之间的空隙较小,从而降低锂离子固相扩散能垒,提高锂离子的扩散系数。同时,硫化物固态电解质具有适当的粒径,还有利于使固态电解质膜与正极之间的界面接触良好,界面电阻较低,进而能提升全固态锂二次电池的循环性能。此外,即使在负极产生锂枝晶的情况下,致密的固态电解质膜也能防止锂枝晶刺穿固态电解质膜到达正极,从而有效防止造成内部短路而引发的全固态锂二次电池的安全问题。
更优选地,所述固态电解质膜中的硫化物固态电解质的平均粒径为10μm~20μm。
在本申请第二方面所述的全固态锂二次电池中,所述正极极片可包括正极集流体和设置于正极集流体上且包括正极活性材料的正极膜片。所述正极活性材料的种类没有具体的限制,可根据实际需求进行选择。所述负极极片可包括负极集流体和设置于负极集流体上且包括负极活性材料的负极膜片。所述负极活性材料的种类没有具体的限制,可根据实际需求进行选择。
在一些实施例中,所述正极活性材料可选自LiFe x1Mn y1Me z1PO 4(0≤x1≤1,0≤y1≤1,0≤z1≤1,x1+y1+z1=1,Me选自Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo中的一种或几种)、Li 3V 2(PO 4) 3、Li 3V 3(PO 4) 3、LiVPO 4F、LiNi 0.5-x2Mn 1.5-y2M′ x2+y2O 4(-0.1≤x2≤0.5,0≤y2≤1.5,M′选自Mn、Co、Fe、Al、Mg、Ca、Ti、Mo、Cr、Cu、Zn中的一种或几 种)、Li 1+x2Ni 1-y2-z2Co y2M″ z2O 2(M″选自Mn、Fe、Al、Mg、Ga、Ti、Cr、Cu、Zn、Mo中的一种或几种,-0.1≤x2≤0.2,0≤y2≤1,0≤z2≤1,0≤y2+z2≤1)中的一种或几种。进一步地,所述正极活性材料选自LiFePO 4、LiMnPO 4、LiNiPO 4、LiCoPO 4、Li 3V 3(PO 4) 3、LiMn 2O 4、LiNi 0.5Mn 1.5O 4、LiCoO 2、LiNiO 2、LiCo 1/3Ni 1/3Mn 1/3O 2、LiNi 0.8Co 0.1Al 0.1O 2、LiNi 0.8Co 0.1Mn 0.1O 2中的一种或几种。当所述正极活性材料为上述锂盐类正极活性材料时,对应的负极活性材料可选自石墨(如人造石墨、天然石墨)、软碳、硬碳、硅碳、金属锂、锂合金中的一种或几种。
在一些实施例中,所述正极活性材料还可选自V 2O 5、MnO 2、TiS 2、FeS 2、SnS 2、CuS 2中的一种或几种。当所述正极活性材料为上述非锂盐类正极活性材料时,对应的负极活性材料应采用可脱出锂离子的负极活性材料,例如金属锂或锂合金。
在本申请第二方面所述的全固态锂二次电池中,所述正极膜片还可包括导电剂和粘结剂,所述导电剂和粘结剂的种类没有具体的限制,可根据实际需求进行选择。
在本申请第二方面所述的全固态锂二次电池中,所述正极膜片还可包括根据本申请第一方面所述的硫化物固态电解质。
在一些实施例中,优选地,所述正极膜片中的硫化物固态电解质的平均粒径为5μm~50μm。硫化物固态电解质的颗粒粒径在适当范围内,能使正极浆料具有良好的分散性,减少颗粒间的团聚现象;并且还能使正极膜片具有较高的压实密度,从而能降低锂离子固相扩散能垒,提高锂离子的扩散系数,同时还能使电池具有较高的能量密度。
更优选地,所述正极膜片中的硫化物固态电解质的平均粒径为10μm~20μm。
在本申请第二方面所述的全固态锂二次电池中,所述负极膜片还可包括导电剂和粘结剂,所述导电剂和粘结剂的种类没有具体的限制,可根据实际需求进行选择。
在本申请第二方面所述的全固态锂二次电池中,所述负极膜片还可包括根据本申请第一方面所述的硫化物固态电解质。
在一些实施例中,优选地,所述负极膜片中的硫化物固态电解质的平均粒径为5μm~50μm。硫化物固态电解质的颗粒粒径在适当范围内,能使正极浆料具有良好的分散性,减少颗粒间的团聚现象;并且还能使正极膜片具有较高的压实密度,从而能降低锂离子固相扩散能垒,提高锂离子的扩散系数,同时还能使电池具有较高的能量密度。
更优选地,所述负极膜片中的硫化物固态电解质的平均粒径为10μm~20μm。
本申请对全固态锂二次电池的形状没有特别的限制,其可以是圆柱形、方形或其他任意的形状。如图5是作为一个示例的方形结构的全固态锂二次电池5。
在一些实施例中,全固态锂二次电池可包括外包装,用于封装正极极片、负极极片和固态电解质膜。
在一些实施例中,全固态锂二次电池的外包装可以是软包,例如袋式软包。软包的材质可以是塑料,如可包括聚丙烯PP、聚对苯二甲酸丁二醇酯PBT、聚丁二酸丁二醇酯PBS等中的一种或几种。全固态锂二次电池的外包装也可以是硬壳,例如硬塑料壳、铝壳、钢壳等。
在一些实施例中,参照图6,外包装可包括壳体51和盖板53。其中,壳体51可包括底板和连接于底板上的侧板,底板和侧板围合形成容纳腔。壳体51具有与容纳腔连通的开口,盖板53能够盖设于所述开口,以封闭所述容纳腔。正极极片、负极极片和固态电解质膜可经叠片工艺或卷绕工艺形成电极组件52。电极组件52封装于所述容纳腔。
全固态锂二次电池5所含电极组件52的数量可以为一个或几个,可根据需求来调节。
在一些实施例中,全固态锂二次电池可以组装成电池模块,电池模块所含全固态锂二次电池的数量可以为多个,具体数量可根据电池模块的应用和容量来调节。
图7是作为一个示例的电池模块4。参照图7,在电池模块4中,多个全固态锂二次电池5可以是沿电池模块4的长度方向依次排列设置。当然,也可以按照其他任意的方式进行排布。进一步可通过紧固件将该多个全固态锂二次电池5进行固定。
可选地,电池模块4还可以包括具有容纳空间的外壳,多个全固态锂二次电池5容纳于该容纳空间。
在一些实施例中,上述电池模块还可以组装成电池包,电池包所含电池模块的数量可以根据电池包的应用和容量进行调节。
图8和图9是作为一个示例的电池包1。参照图4和图5,在电池包1中可以包括电池箱和设置于电池箱中的多个电池模块4。电池箱包括上箱体2和下箱体3,上箱体2能够盖设于下箱体3,并形成用于容纳电池模块4的封闭空间。多个电池模块4可以按照任意的方式排布于电池箱中。
装置
本申请还提供一种装置,所述装置包括本申请所述的全固态锂二次电池。所述全固态锂二次电池可以用作所述装置的电源,也可以作为所述装置的能量存储单元。所述装置可以但不限于是移动设备(例如手机、笔记本电脑等)、电动车辆(例如纯电动车、混合动力电动车、插电式混合动力电动车、电动自行车、电动踏板车、电动高尔夫球车、电动卡车等)、电气列车、船舶及卫星、储能系统等。
所述装置可根据其使用需求来选择全固态锂二次电池、电池模块或电池包。
图10是作为一个示例的装置。该装置为纯电动车、混合动力电动车、或插电式混合动力电动车等。为了满足该装置对电池的高功率和高能量密度的需求,可以采用电池包或电池模块。
作为另一个示例的装置可以是手机、平板电脑、笔记本电脑等。该装置通常要求轻薄化,可以采用全固态锂二次电池作为电源。
实施例
下述实施例更具体地描述了本申请公开的内容,这些实施例仅仅用于阐述性说明,因为在本申请公开内容的范围内进行各种修改和变化对本领域技术人员来说是明显的。除非另有声明,以下实施例中所报道的所有份、百分比、和比值都是基于重量计,而且实施例中使用的所有试剂都可商购获得或是按照常规方法进行合成获得,并且可直接使用而无需进一步处理,以及实施例中使用的仪器均可商购获得。
实施例1
(1)硫化物固态电解质的制备
在氩气干燥气氛中(水分含量低于1ppm,氧气含量低于1ppm),将纯度分别为99%以上的Li 2S、P 2S 5、Na 2S 2O 3按照摩尔比70:29:1称量后置于研钵中进行手工预混合,得到预混初料。之后取3mL预混初料,将预混初料置入45mL的ZrO 2球磨罐中(球料比为45:1),并加入10mL环己烷有机溶剂后密封球磨罐,以500rpm转速进行高能球磨20h,得到初湿料。在氩气干燥气氛(水分含量低于1ppm,氧气含量低于1ppm)中,将初湿料进行减压抽干除去有机溶剂,得到初干粉料,然后将初干粉料以20MPa压力压片形成片状料。将片状料置于氩气干燥气氛(水分含量低于1ppm,氧气含量低于1ppm)中,以2℃/min的升温速率加热至250℃,保温2h,随 炉冷却至室温后出料,研磨粉碎至平均粒径为20μm,即得到硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3
(2)全固态锂二次电池的制备
正极膜片通过将正极活性材料与步骤(1)制备的硫化物固态电解质按质量比为70:30混合均匀后压制成层状得到,其中正极活性材料采用LiCoO 2,正极集流体采用铝箔。
以金属锂片作为负极极片。
采用压力成型的方式将正极集流体、正极膜片、步骤(1)制备的硫化物固态电解质以及负极极片组装成全固态锂二次电池。
将上述全固态锂二次电池的工作电压范围设置为2.8V~4.2V,采用恒流充放电的方式进行循环测试并得到全固态锂二次电池的首周放电比容量、首周库伦效率以及循环100周后的容量保持率。其中,测试电流为0.1C(电流密度为0.13mA/cm 2),测试温度为25℃。
以20MPa压力将100mg步骤(1)制备的硫化物固态电解质压制成直径为10mm的固态电解质膜,以不锈钢作为阻塞电极构成对称电池,测试硫化物固态电解质在25℃下的阻抗。硫化物固态电解质的离子电导率由公式σ=l/(R·S)计算得出,其中,σ为离子电导率,l为固态电解质膜的厚度,R为硫化物固态电解质的阻抗值,S为固态电解质膜的正面面积。
以20MPa压力将100mg步骤(1)制备的硫化物固态电解质压制成直径为10mm的固态电解质膜,之后以金属锂作为工作电极、不锈钢作为对电极测试硫化物固态电解质的电化学稳定性,其扫描电位区间为-0.5V~6V,其过程设置为以1mV/s的扫描速度由开路电位负扫至-0.5V,然后电位逆转扫描至6V,最后回扫至开路电位。测试条件为常温25℃、常压0.1MPa。
硫化物固态电解质的XRD测试:使用X射线衍射仪(如Bruker D8Discover)测试。测试可参考JIS K 0131-1996。在X射线衍射分析测试中以CuKα射线为辐射源,射线波长
Figure PCTCN2020085649-appb-000001
扫描2θ角范围为5°~80°,扫描速率为4°/min。
硫化物固态电解质中的PS 4 3-、P 2S 7 4-和P 2S 6 4-可由拉曼光谱测得,如Senterra型拉曼测试仪。测试条件可以为:激发光波长为532nm,功率为2mW。可将样品粉碎后用硅油浸泡并放置于玻璃板之间进行测试。PS 4 3-、P 2S 7 4-和P 2S 6 4-的拉曼特征峰强 度是以相应特征峰的积分面积来表示。在拉曼光谱中,PS 4 3-所在位置为418cm -1附近;P 2S 7 4-所在位置为406cm -1附近;P 2S 6 4-所在位置为387cm -1附近。
硫化物固态电解质的平均粒径测试:可以参照标准GB/T 19077.1-2016,使用激光粒度分析仪(如Malvern Master Size 3000)测定。其中,平均粒径(即D v50)是材料累计体积分布百分数达到50%时所对应的粒径。
实施例2
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,全固态锂二次电池的正极活性材料采用LiNi 0.8Co 0.1Al 0.1O 2
硫化物固态电解质及全固态锂二次电池的测试同实施例1,区别在于,将上述全固态锂二次电池的工作电压范围设置为2.8V~4.2V,采用恒流充放电的方式进行循环测试,测试电流为0.1C(电流密度为0.15mA/cm 2),测试温度为25℃。
实施例3
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,全固态锂二次电池的正极活性材料采用LiNi 0.8Co 0.1Mn 0.1O 2
硫化物固态电解质及全固态锂二次电池的测试同实施例1,区别在于,将上述全固态锂二次电池的工作电压范围设置为2.8~4.2V,采用恒流充放电的方式进行循环测试,测试电流为0.1C(电流密度为0.17mA/cm 2),测试温度为25℃。
实施例4
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,Li 2S、P 2S 5、Na 2S 2O 3的摩尔比为70:28:2,得到的硫化物固态电解质为70Li 2S-28P 2S 5-2Na 2S 2O 3,平均粒径为20μm。
实施例5
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,Li 2S、P 2S 5、Na 2S 2O 3的摩尔比为70:25:5,得到的硫化物固态电解质为70Li 2S-25P 2S 5-5Na 2S 2O 3,平均粒径为20μm。
实施例6
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,Li 2S、P 2S 5、Na 2S 2O 3的摩尔比为70:20:10,得到的硫化物固态电解质为70Li 2S-20P 2S 5-10Na 2S 2O 3,平均粒径为20μm。
实施例7
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的条件为以2℃/min的升温速率加热至200℃,保温2h,得到的硫化物固态电解质为70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例8
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的条件为以2℃/min的升温速率加热至400℃,保温2h,得到的硫化物固态电解质为70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例9
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的条件为以2℃/min的升温速率加热至250℃,保温0.5h,得到的硫化物固态电解质为70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例10
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的条件为以2℃/min的升温速率加热至250℃,保温20h,得到的硫化物固态电解质为70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例11
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,Li 2S、P 2S 5、Na 2S 2O 3的摩尔比为65:34:1,得到的硫化物固态电解质为65Li 2S-34P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例12
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,Li 2S、P 2S 5、Na 2S 2O 3的摩尔比为75:24:1,得到的硫化物固态电解质为75Li 2S-24P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例13
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,Li 2S、P 2S 5、Na 2S 2O 3的摩尔比为80:19:1,得到的硫化物固态电解质为80Li 2S-19P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
实施例14
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,预混初料由Li 2S、P 2S 5、K 2S 2O 3按照摩尔比为70:29:1制备,得到的硫化物固态电解质为70Li 2S-29P 2S 5-1K 2S 2O 3,平均粒径为20μm。
实施例15
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的平均粒径为35μm。
实施例16
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的平均粒径为45μm。
对比例1
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,硫化物固态电解质中仅含有Li 2S、P 2S 5,两者按摩尔比为70:30进行研钵手工预混合,得到的硫化物固态电解质为70Li 2S-30P 2S 5,平均粒径为20μm。
对比例2
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的温度为100℃,得到的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
对比例3
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的温度为500℃,得到的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
对比例4
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的时间为0.1h,得到的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
对比例5
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,热处理的时间为25h,得到的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3,平均粒径为20μm。
对比例6
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,硫化物固态电解质70Li 2S-29P2S 5-1Na 2S2O 3的平均粒径为70μm。
对比例7
硫化物固态电解质及全固态锂二次电池的制备同实施例1,区别在于,硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的平均粒径为3μm。
实施例4~16及对比例1~7中,硫化物固态电解质及全固态锂二次电池的测试同实施例1。
表1 实施例1-16和对比例1-7的性能测试结果
Figure PCTCN2020085649-appb-000002
图1为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的XRD图谱。从图1中可知,硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3是玻璃陶瓷固态电解质,能够为锂离子在其中的传输提供良好的通道,具有良好的离子电导性。
图2为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3在25℃下的阻抗图 谱。从图3可知,硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3的离子电导率为1.77mS/cm,表明硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3具有良好的离子电导性。
图3为实施例1的硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3以金属锂作为工作电极、以不锈钢作为对电极测试的循环伏安曲线。从图3可知,在0V左右,曲线上下基本对称,因此可以判断在正负极上发生了可逆程度较大的锂沉积和溶出,同时后续并未观测到明显的氧化电流峰和还原电流峰,则表示在后续电位下未发生电化学氧化或还原反应,因此可以说明硫化物固态电解质70Li 2S-29P 2S 5-1Na 2S 2O 3具有良好的电化学稳定性。
图5为实施例1的全固态锂二次电池的首周充放电曲线。从图5可知,以70Li 2S-29P 2S 5-1Na 2S 2O 3作为硫化物固态电解质可提高Li 2CO 2的充放电电压平台,因此可以使全固态锂二次电池具有更高的首周比容量。
从实施例1-3和对比例1的测试结果分析可知,相同条件下,引入掺杂剂Na 2S 2O 3后,硫化物固态电解质的阳极峰与阴极峰的峰电流之比和离子电导率均可以得到显著提高,同时采用该硫化物固态电解质的全固态锂二次电池也具有较高的首周比容量、首周库伦效率以及容量保持率。
从实施例1、实施例4-6的测试结果分析可知,掺杂剂Na 2S 2O 3的加入量对硫化物固态电解质的离子电导率和全固态锂二次电池的首周比容量、首周库伦效率以及容量保持率有影响。随着Na 2S 2O 3摩尔含量的增加,硫化物固态电解质的离子电导率呈现减小的趋势,原因可能是Na 2S 2O 3的存在对硫化物固态电解质中晶相的晶格结构影响较大,Na 2S 2O 3的含量越大,晶格结构越不稳定,当晶格结构的这种不稳定性过大时反而会影响到锂离子的迁移,进而影响硫化物固态电解质的离子电导率和全固态锂二次电池的首周比容量、首周库伦效率以及容量保持率。
从实施例1、实施例7-8和对比例2-3的测试结果分析可知,热处理温度对硫化物固态电解质的性能影响较为明显。在相同的热处理时间下,对比例2的热处理的温度过低,硫化物固态电解质中基本不含有具有高离子传导特性的PS 4 3-相和P 2S 7 4-相,因此硫化物固态电解质的离子电导率偏低。而对比例3的热处理的温度过高,具有高离子传导特性的P 2S 7 4-相大部分分解形成具有低离子传导特性的P 2S 6 4-相,因此硫化物固态电解质的离子电导率也会偏低。
从实施例1、实施例9-10和对比例4-5的测试结果分析可知,热处理时间也会 对硫化物固态电解质的性能产生影响。在相同的热处理温度下,对比例4的热处理时间过短,则来不及形成较多的具有高离子传导特性的PS 4 3-相和P 2S 7 4-相,因此硫化物固态电解质的离子电导率偏低;对比例5的热处理时间过长,容易导致具有高离子传导特性的P 2S 7 4-相大部分分解形成具有低离子传导特性的P 2S 6 4-相,因此硫化物固态电解质的离子电导率也会偏低。
从实施例1、实施例11-13的测试结果分析可知,硫化物固态电解质中作为玻璃相网络改性硫化物的Li 2S的含量变化也会影响硫化物固态电解质的离子电导率和全固态锂二次电池首周比容量、首周库伦效率以及容量保持率性能。若Li 2S的摩尔含量较少,一方面会降低硫化物固态电解质中锂离子的来源,另一方面会使得到的硫化物固态电解质中含有较多的桥连硫,不利于锂离子的快速传输;而若Li 2S的摩尔含量较多,硫化物固态电解质中的桥连硫的含量会降低,非桥连硫的含量会增多,非桥连硫容易捕获锂离子而使其移动困难,也不利于硫化物固态电解质的离子电导率达到最优。
从实施例1、实施例14的测试结果可知,作为掺杂剂的M 2S 2O 3随着所引入的碱金属原子M尺寸的增大,体系的晶格畸变程度提高,反而会导致硫化物固态电解质的离子电导率略微下降,但硫化物固态电解质总体仍然可以保持较高的离子电导率,使全固态锂二次电池具有良好的首周比容量、首周库伦效率和循环容量保持率。
从实施例1,实施例15-16以及对比例6-7的测试结果分析可知,硫化物固态电解质的平均粒径对全固态锂二次电池的性能有影响。实施例1、实施例15-16中,硫化物固态电解质的平均粒径较为适中,全固态电池也表现出较高的首周比容量、较高的首周库伦效率及较高的循环容量保持率。对比例6中硫化物固态电解质的平均粒径过大,导致充放电过程中全固态锂二次电池内部的体积变化后,固态电解质膜与正极极片和负极极片的界面接触发生恶化,界面电阻增加,进而导致全固态锂二次电池的循环性能恶化,表现为全固态锂二次电池的循环容量保持率降低。对比例7中硫化物固态的平均粒径过小,全固态锂二次电池的首周比容量、首库伦效率及循环容量保持率相比于实施例1并未表现出明显的提升,但其所需的制备条件及工艺难度则明显增大,因此也不适用于硫化物全固态电池的制造。
表2 硫化物固态电解质的拉曼光谱测试
  PS 4 3-、P 2S 7 4-和P 2S 6 4-的拉曼特征峰强度之比
实施例1 24:17:0.05
实施例4 28:14:0.05
实施例5 40:5:0.07
实施例6 60:3:0.1
实施例7 24:17:0.05
实施例8 22:17:1
实施例9 12:8:0.01
实施例10 22:17:1
实施例11 6:37:0.05
实施例12 痕量P 2S 7 4-
实施例13 痕量P 2S 7 4-
实施例14 24:17:0.05
实施例15 24:17:0.05
实施例16 24:17:0.05
对比例1 20:17:2
对比例2 1:1:0.01
对比例3 5:6:9
对比例4 1:1:0.01
对比例5 4:7:9
对比例6 24:17:0.05
对比例7 24:17:0.05
由表2可知,本申请实施例的硫化物固态电解质中含有较多的具有高离子传导特性的PS 4 3-相和P 2S 7 4-相,且具有低离子传导特性的P 2S 6 4-相较少。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (15)

  1. 一种硫化物固态电解质,至少由Li 2S、P 2S 5以及掺杂剂M xS 2O 3复合得到,其中,M选自Na、K、Ba以及Ca中的一种或几种,1≤x≤2。
  2. 根据权利要求1所述硫化物固态电解质,其中,在所述硫化物固态电解质中,
    Li 2S的摩尔百分含量大于等于60%且小于等于79%,
    P 2S 5的摩尔百分含量大于等于16%且小于等于30%,
    M xS 2O 3的摩尔百分含量大于0%且小于等于10%。
  3. 根据权利要求1或2所述的硫化物固态电解质,其中,在所述硫化物固态电解质中,
    Li 2S的摩尔百分含量大于等于70%且小于等于79%,
    P 2S 5的摩尔百分含量大于等于20%且小于等于29%,
    M xS 2O 3的摩尔百分含量小于等于5%,优选为大于等于1%且小于等于5%。
  4. 根据权利要求1至3任一项所述的硫化物固态电解质,其中,所述M包括Na和K中的一种或几种,优选包括Na。
  5. 根据权利要求1至4任一项所述的硫化物固态电解质,其中,所述硫化物固态电解质为包含玻璃相和晶相的多相复合体,其中包括PS 4 3-、P 2S 7 4-和P 2S 6 4-,且所述PS 4 3-、P 2S 7 4-和P 2S 6 4-的拉曼特征峰强度之比为1~60:1~60:0.01~1,优选为20~40:10~20:0.01~0.1。
  6. 根据权利要求1至5任一项所述的硫化物固态电解质,其中,所述硫化物固态电解质的平均粒径为5μm~50μm,优选为10μm~20μm。
  7. 根据权利要求1至6任一项所述的硫化物固态电解质,其中,所述硫化物固态电解质的离子电导率为0.6mS/cm~2.5mS/cm。
  8. 根据权利要求1至7任一项所述的硫化物固态电解质,其中,所述硫化物固态电解质的循环伏安曲线图谱中,阳极峰与阴极峰的峰电流之比为0.55~0.85。
  9. 一种全固态锂二次电池,包括正极极片、负极极片以及固态电解质膜,所述固态电解质膜包括根据权利要求1至8中任一项所述的硫化物固态电解质。
  10. 根据权利要求9所述的全固态锂二次电池,其中,所述固态电解质膜中的硫化物固态电解质的平均粒径为5μm~50μm,优选为10μm~20μm。
  11. 根据权利要求9或10所的全固态锂二次电池,其中,所述正极极片和/或所 述负极极片包括根据权利要求1至8中任一项所述的硫化物固态电解质。
  12. 根据权利要求11所述的全固态锂二次电池,其中,所述正极极片和/或所述负极极片中的硫化物固态电解质的平均粒径为5μm~50μm,优选为10μm~20μm。
  13. 一种装置,包括根据权利要求9至12任一项所述的全固态锂二次电池。
  14. 一种硫化物固态电解质的制备方法,包括:
    将Li 2S、P 2S 5和掺杂剂M xS 2O 3在有机溶剂存在的条件下进行球磨处理,得到初湿料;
    去除初湿料中的有机溶剂,得到混合料;
    在150℃~450℃的温度下对混合料进行热处理0.5h~20h,以得到所述硫化物固态电解质。
  15. 根据权利要求14所述的制备方法,其中,所述热处理的温度为200℃~400℃,优选为230℃~300℃;和/或,
    所述热处理的时间为1h~10h,优选为2h~5h。
PCT/CN2020/085649 2019-04-25 2020-04-20 硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置 WO2020216182A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20794184.0A EP3930068B1 (en) 2019-04-25 2020-04-20 Sulfide solid electrolyte and method for the preparation thereof, all solid-state lithium secondary battery, and apparatus containing the same
US17/509,097 US11699812B2 (en) 2019-04-25 2021-10-25 Sulfide solid electrolyte and method for the preparation thereof, all-solid-state lithium secondary battery, and apparatus containing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910338105.0 2019-04-25
CN201910338105.0A CN111864256B (zh) 2019-04-25 2019-04-25 硫化物固态电解质及全固态锂二次电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/509,097 Continuation US11699812B2 (en) 2019-04-25 2021-10-25 Sulfide solid electrolyte and method for the preparation thereof, all-solid-state lithium secondary battery, and apparatus containing the same

Publications (1)

Publication Number Publication Date
WO2020216182A1 true WO2020216182A1 (zh) 2020-10-29

Family

ID=72941330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/085649 WO2020216182A1 (zh) 2019-04-25 2020-04-20 硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置

Country Status (4)

Country Link
US (1) US11699812B2 (zh)
EP (1) EP3930068B1 (zh)
CN (1) CN111864256B (zh)
WO (1) WO2020216182A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745651B (zh) * 2021-08-27 2023-12-05 深圳市研一新材料有限责任公司 一种包覆型硫化物固态电解质及其制备方法和应用
CN116826155A (zh) * 2023-07-17 2023-09-29 中创新航科技集团股份有限公司 一种全固态电池
CN117117300A (zh) * 2023-08-14 2023-11-24 国联汽车动力电池研究院有限责任公司 一种无机硫化物固体电解质及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544580A (zh) * 2012-02-29 2012-07-04 中国科学院宁波材料技术与工程研究所 全固态锂二次电池电解质材料、其制备方法及全固态锂二次电池
CN102934279A (zh) * 2010-06-08 2013-02-13 雷蒙特亚特特拉维夫大学有限公司 可再充电的碱金属-空气电池
CN103796964A (zh) * 2011-09-22 2014-05-14 出光兴产株式会社 玻璃颗粒
CN103959546A (zh) * 2011-12-02 2014-07-30 出光兴产株式会社 固体电解质
WO2018135862A1 (en) * 2017-01-17 2018-07-26 Samsung Electronics Co., Ltd. A solid electrolyte for a negative electrode of a secondary battery and method for manufacture of an electrochemical cell

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100502111C (zh) 2007-02-13 2009-06-17 中国科学院上海硅酸盐研究所 用于全固态锂电池的锂硫体系固体电解质材料及制备方法
CN103531849B (zh) * 2013-11-01 2016-08-17 国家电网公司 硫化物电解质材料及其制备方法与全固态锂二次电池
CN103560267B (zh) * 2013-11-01 2016-05-11 国家电网公司 全固态锂二次电池电解质材料、其制备方法及全固态锂二次电池
CN103531841B (zh) * 2013-11-01 2016-03-02 中国科学院宁波材料技术与工程研究所 硫化物固体电解质及其制备方法与全固态锂二次电池
KR102377944B1 (ko) * 2015-02-13 2022-03-23 에스케이이노베이션 주식회사 나트륨 이차전지 전해질 및 이를 채용한 나트륨 이차전지
EP3432319A4 (en) * 2016-03-14 2019-10-16 Idemitsu Kosan Co.,Ltd. METHOD FOR MANUFACTURING SOLID ELECTROLYTE
CN108091923B (zh) * 2016-11-22 2020-07-28 东莞新能源科技有限公司 固态电解质及其制备方法以及全固态锂二次电池
CN108493479B (zh) * 2018-04-03 2020-09-11 燕山大学 一种基于氧掺杂的硫化物固体电解质及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102934279A (zh) * 2010-06-08 2013-02-13 雷蒙特亚特特拉维夫大学有限公司 可再充电的碱金属-空气电池
CN103796964A (zh) * 2011-09-22 2014-05-14 出光兴产株式会社 玻璃颗粒
CN103959546A (zh) * 2011-12-02 2014-07-30 出光兴产株式会社 固体电解质
CN102544580A (zh) * 2012-02-29 2012-07-04 中国科学院宁波材料技术与工程研究所 全固态锂二次电池电解质材料、其制备方法及全固态锂二次电池
WO2018135862A1 (en) * 2017-01-17 2018-07-26 Samsung Electronics Co., Ltd. A solid electrolyte for a negative electrode of a secondary battery and method for manufacture of an electrochemical cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930068A4 *

Also Published As

Publication number Publication date
EP3930068A1 (en) 2021-12-29
US20220045358A1 (en) 2022-02-10
EP3930068A4 (en) 2022-04-27
CN111864256B (zh) 2021-07-13
EP3930068B1 (en) 2022-12-28
US11699812B2 (en) 2023-07-11
CN111864256A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
KR101767848B1 (ko) 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지
KR101783047B1 (ko) 비수전해질 이차 전지용 부극재, 비수전해질 이차 전지용 부극재의 제조 방법 및 리튬 이온 이차 전지
KR100559104B1 (ko) 비수 전해질 전지용 양극 및 그 제조방법과 이 양극을사용한 비수 전해질 전지 및 그 제조방법
KR101513820B1 (ko) 리튬 이온 이차 전지 음극재용 분말, 이것을 이용한 리튬 이온 이차 전지 음극 및 캐패시터 음극, 및 리튬 이온 이차 전지 및 캐패시터
WO2020216182A1 (zh) 硫化物固态电解质及其制备方法、全固态锂二次电池和包含全固态锂二次电池的装置
KR20170075596A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2019176895A1 (ja) 硫化物系固体電解質粒子
US11916186B2 (en) Method for preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared by the method and all-solid-state lithium secondary battery including the sulfide-based solid electrolyte
WO2016098306A1 (ja) リチウムイオン二次電池の負極用粉末、およびその製造方法
TWI705605B (zh) 負極活性物質、混合負極活性物質材料、非水電解質二次電池用負極、鋰離子二次電池、負極活性物質的製造方法、以及鋰離子二次電池的製造方法
CN110679019B (zh) 负极活性物质、混合负极活性物质材料、以及负极活性物质颗粒的制造方法
KR20190078720A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
TW202029559A (zh) 負極活性物質及其製造方法
CN111247673A (zh) 活性物质层形成用组合物及其制造方法、以及全固态二次电池用电极片及全固态二次电池的制造方法
TW202114278A (zh) 負極活性物質、負極及該等的製造方法
WO2011030486A1 (ja) 珪素酸化物およびリチウムイオン二次電池用負極材
Na et al. Li1· 5Al0· 3Si0· 2Ti1· 7P2· 8O12 inorganic solid electrolyte for high-performance all-solid-state Li-ion batteries
Jin et al. Active prelithiation strategies for advanced lithium storage systems: A perspective from electrochemical mechanism to structural design and application
JP2014523387A (ja) 電池特性を改善させる電極活物質の製造方法及びそれから製造された電極活物質を含むリチウム二次電池
US9172089B2 (en) Anode active material, method of preparing the same, anode including the anode active material, and lithium battery including the anode
JP5036174B2 (ja) 非水電解液二次電池
US20240213524A1 (en) Method for preparing sulfide-based solid electrolyte, sulfide-based solid electrolyte prepared by the method and all-solid-state lithium secondary battery including the sulfide-based solid electrolyte
Li et al. Insight into the capacity degradation mechanism of LiNi0. 5Co0. 2Mn0. 3O2 caused by rate-dependent kinetic limitations
KR101382665B1 (ko) 리튬이온 이차전지용 양극활물질, 그 제조방법 및 이것을 포함하는 리튬이온 이차전지
US20230282829A1 (en) Artificial graphite and prepartion method thereof, negative electrode plate, secondary battery, battery module, battery pack and electrical device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20794184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020794184

Country of ref document: EP

Effective date: 20210920

NENP Non-entry into the national phase

Ref country code: DE