WO2020215887A1 - 发光二极管显示面板 - Google Patents

发光二极管显示面板 Download PDF

Info

Publication number
WO2020215887A1
WO2020215887A1 PCT/CN2020/076916 CN2020076916W WO2020215887A1 WO 2020215887 A1 WO2020215887 A1 WO 2020215887A1 CN 2020076916 W CN2020076916 W CN 2020076916W WO 2020215887 A1 WO2020215887 A1 WO 2020215887A1
Authority
WO
WIPO (PCT)
Prior art keywords
opening
emitting diode
pixel
light emitting
shape
Prior art date
Application number
PCT/CN2020/076916
Other languages
English (en)
French (fr)
Inventor
杨文玮
刘品妙
张正杰
Original Assignee
友达光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友达光电股份有限公司 filed Critical 友达光电股份有限公司
Publication of WO2020215887A1 publication Critical patent/WO2020215887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2003Display of colours
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections

Definitions

  • the present invention relates to display technology, in particular to the pixel arrangement and the reflective cover structure of the light emitting diode, and the manufacturing method thereof.
  • the light emitting diodes used in the light emitting diode display device may be micro LEDs ( ⁇ LED) or sub-millimeter light emitting diodes (mini LEDs).
  • ⁇ LED micro LEDs
  • mini LEDs sub-millimeter light emitting diodes
  • the micro-light-emitting diode display panel uses micro-light-emitting diodes as pixel units, which can enable the micro-light-emitting diode display panel to achieve high resolution, high brightness, and high contrast.
  • the brightest viewing angle of light-emitting diodes on a light-emitting diode display panel is not perpendicular to the viewing angle of the display panel (that is, the angle is 0 degree).
  • the light-emitting patterns and characteristics of the light-emitting diodes corresponding to the pixels of the light-emitting diode display panel are consistent with each other. In some cases, if the function of any light emitting diode is abnormal, the user will easily observe the display abnormality caused by the abnormal light emitting diode.
  • a technical aspect of the present invention relates to a light emitting diode display panel.
  • the light emitting diode display panel includes: a backplane; a pixel structure, wherein the pixel structure includes a plurality of pixels, and each pixel includes: a reflector structure arranged on the backplane, wherein the reflector structure has a first reflective convex structure and a second Reflective convex structure, the first reflective convex structure has a first opening, the second reflective convex structure has a second opening, wherein the first opening has a first shape, the second opening has a second shape, and the second shape is a A mirror image of a shape or a 180-degree symmetrical shape of the first shape; and the first light emitting diode and the second light emitting diode, the first light emitting diode and the second light emitting diode are arranged on the back plate and emit the same color, wherein the first The light emitting diode is arranged in the first opening of the first reflective convex
  • the first opening and the second opening are arranged to be mirror images of each other in the same direction.
  • the first opening and the second opening are arranged to be mirror images of each other in a first direction, and for each pixel adjacent to the first row For each pixel in the two rows, the first opening and the second opening are mirror images of each other in a second direction different from the first direction.
  • the first shape of the first opening is a triangle.
  • the first light emitting diode is disposed in a light emitting diode area of the first opening, and the light emitting diode area has a similar triangle similar to the triangle of the first shape, and The vertex of the similar triangle of the light emitting diode area is located at the midpoint of the midline connecting the vertex of the first shape to the center of gravity of the first shape.
  • the first light emitting diode is located at the center of gravity of the first shape, and the second light emitting diode is located at the center of gravity of the second shape.
  • the first shape of the first opening of all pixels is the same.
  • the first shape of the first opening is a flat quadrilateral or a trapezoid.
  • the first reflective convex structure has two first sidewalls, and the two first sidewalls are located on both sides of the first opening, and are perpendicular to the backplane and connected to each other.
  • each first side wall extends obliquely outward from the back plate to define an acute angle ⁇ between the back plate and each first side wall, wherein the acute angle ⁇ ranges from 20 degrees And 80 degrees.
  • the pixels include multiple red pixels, multiple green pixels, and multiple blue pixels.
  • the area of the first opening of each blue pixel is greater than the area of the first opening of each red pixel, and the area of the first opening of each blue pixel is greater than the area of the first opening of each green pixel Area.
  • the area of the first opening of each red pixel is larger than the area of the first opening of each green pixel.
  • the area of the first opening of each green pixel is larger than the area of the first opening of each red pixel.
  • the first shape of the first opening of the red pixel is the same, the first shape of the first opening of the green pixel is the same, and the first shape of the first opening of the blue pixel is the same .
  • the first shapes of the first openings of at least two red pixels are different from each other
  • the first shapes of the first openings of at least two green pixels are different from each other
  • the first openings of at least two blue pixels are different from each other.
  • the first shapes are different from each other.
  • the first reflective convex structure and the second reflective convex structure are connected to each other.
  • the first reflective convex structure and the second reflective convex structure are separated from each other.
  • the light emitting diode display panel further includes an active driving layer.
  • the active driving layer has a plurality of driving units, each of which is configured to drive one of the corresponding pixels, and each of the driving units has a shape that is different from the first shape and the second shape of the first opening of one of the corresponding pixels. The combination between the second shape of the opening.
  • each driving unit is rectangular, square, triangular, and combinations thereof.
  • FIG. 1A illustrates a schematic diagram of sub-pixels of a light emitting diode display panel according to some specific embodiments of the present invention
  • FIG. 1B illustrates the angular distribution of the light intensity of the sub-pixels in FIG. 1A according to some specific embodiments of the present invention
  • FIG. 1C illustrates a graph of brightness corresponding to different viewing angles of the sub-pixels in FIG. 1A according to some specific embodiments of the present invention
  • FIG. 2A illustrates a display mode of a light emitting diode display panel according to some specific embodiments of the present invention, in which all light emitting diodes of the light emitting diode display panel emit light toward the same vertical viewing angle;
  • FIG. 2B illustrates the light emitting mode of the light emitting diode display panel shown in FIG. 2A by way of example, and one of the light emitting diodes is malfunctioning;
  • 2C illustrates a schematic diagram of the light emitting mode of a light emitting diode display panel according to some specific embodiments of the present invention, where the light emitting diodes of the light emitting diode display panel are adjusted to emit light toward different viewing angles;
  • FIG. 2D exemplarily shows the light emitting mode of the light emitting diode display panel shown in FIG. 2C, in which one of the light emitting diodes is abnormal;
  • 3A illustrates a schematic diagram of a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention
  • FIG. 3B shows a schematic diagram of the pixel shown in FIG. 3A according to an embodiment of the present invention
  • Fig. 3C exemplarily shows a cross-sectional view of the pixel shown in Fig. 3B along the line segment A-A according to an embodiment of the present invention
  • FIG. 3D illustrates the shape of the opening shown in FIG. 3B according to some specific embodiments of the present invention
  • FIG. 3E illustrates the angular distribution of the light intensity of the pixel as shown in FIG. 3B according to some specific embodiments of the present invention
  • Fig. 3F schematically illustrates a cross-sectional view of the pixel shown in Fig. 3B along the line segment A-A according to another embodiment of the present invention
  • FIG. 4 shows a schematic diagram of the pixel shown in FIG. 3A according to another embodiment of the present invention.
  • 5A shows a schematic diagram of the opening of a pixel according to an embodiment of the present invention
  • FIG. 5B shows a schematic diagram of an opening of a pixel according to another embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention
  • FIG. 7A shows a schematic diagram of a pixel according to an embodiment of the present invention.
  • FIG. 7B shows the first sub-pixel part of FIG. 7A
  • FIG. 7C illustrates the distribution of light intensity corresponding to different angles of the pixels shown in FIG. 7B according to some specific embodiments of the present invention, where ⁇ is 40 degrees;
  • FIG. 7D illustrates the distribution of light intensity corresponding to different angles of the pixels shown in FIG. 7B according to some specific embodiments of the present invention, where ⁇ is 50 degrees;
  • FIG. 7E illustrates the distribution of light intensity corresponding to different angles of the pixel shown in FIG. 7B according to some specific embodiments of the present invention, where ⁇ is 70 degrees;
  • FIG. 7F shows a graph of brightness corresponding to different viewing angles of the pixels shown in FIG. 7A according to some specific embodiments of the present invention
  • FIG. 7G shows a graph of brightness corresponding to different viewing angles of the first sub-pixel as shown in FIG. 7B according to some specific embodiments of the present invention
  • FIG. 8A illustrates the pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention
  • FIG. 8B illustrates a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention
  • FIG. 8C illustrates a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention.
  • FIG. 8D illustrates a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention.
  • FIG. 9 illustrates a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention.
  • FIG. 10 illustrates the pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention.
  • FIG. 11 shows a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention.
  • FIG. 12A illustrates a schematic diagram of the sizes of red pixels, green pixels, and blue pixels in a pixel structure of a light emitting diode according to an embodiment of the present invention
  • FIG. 12B illustrates a schematic diagram of the sizes of red pixels, green pixels, and blue pixels in a pixel structure of a light emitting diode according to another embodiment of the present invention
  • FIG. 13A shows a schematic diagram of driving integrated circuits and pixels in the pixel structure shown in FIG. 3A according to some specific embodiments of the present invention
  • FIG. 13B illustrates a schematic diagram of driving integrated circuits and pixels in the pixel structure shown in FIG. 6 according to some specific embodiments of the present invention
  • FIG. 14A shows a schematic diagram of the active matrix layer and pixel arrangement in the pixel structure shown in FIG. 3A according to some specific embodiments of the present invention
  • FIG. 14B shows a schematic diagram of the active driving unit and corresponding pixels shown in FIG. 14A according to an embodiment of the present invention
  • FIG. 14C illustrates a schematic diagram of the active driving unit and corresponding pixels shown in FIG. 14A according to another embodiment of the present invention.
  • FIG. 15A shows a schematic diagram of an active matrix layer and pixel arrangement in the pixel structure shown in FIG. 8A according to some specific embodiments of the present invention
  • FIG. 15B shows a schematic diagram of the driving unit shown in FIG. 15A according to some specific embodiments of the present invention.
  • 15C illustrates a schematic diagram of the active matrix layer and pixel arrangement in the pixel structure shown in FIG. 8B according to some specific embodiments of the present invention
  • FIG. 15D shows a schematic diagram of the driving unit shown in FIG. 15C according to some specific embodiments of the present invention.
  • Fig. 16A shows a schematic diagram of a horizontal light emitting diode according to some specific embodiments of the present invention
  • FIG. 16B shows a schematic diagram of a vertical light emitting diode according to some specific embodiments of the present invention.
  • FIG. 16C shows a schematic diagram of a flip-chip light emitting diode according to some specific embodiments of the present invention.
  • 320A, 320B sub-pixel part
  • 338A, 338B LED area
  • connection can refer to physical and/or electrical connection.
  • electrical connection or “coupling” can mean that there are other elements between two elements.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or parts, these elements, components, regions, and / Or part should not be restricted by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Therefore, the “first element”, “component”, “region”, “layer” or “portion” discussed below may be referred to as a second element, component, region, layer or portion without departing from the teachings herein.
  • relative terms such as “lower” or “bottom” and “upper” or “top” can be used herein to describe the relationship between one element and another element, as shown in the figure. It should be understood that relative terms are intended to include different orientations of the device other than those shown in the figures. For example, if the device in one figure is turned over, elements described as being on the “lower” side of other elements will be oriented on the “upper” side of the other elements. Therefore, the exemplary term “lower” may include an orientation of “lower” and “upper”, depending on the specific orientation of the drawing. Similarly, if the device in one figure is turned over, elements described as “below” or “below” other elements will be oriented “above” the other elements. Thus, the exemplary terms “below” or “below” can include an orientation of above and below.
  • Vocabulary used in this manual should generally be considered to be within 20% of a given value or value range, and better to be within 10% , Even better is within 10%.
  • the specification stated that the given values are approximate, which means that if there is no clear description, it can be inferred that the term “approximately” has a meaning close to the stated “in the range of”, “approximately” or “approximately”.
  • the present invention relates to a display device structure for wireless communication, and has one or more antennas on its side surface.
  • FIG. 1A illustrates a schematic diagram of sub-pixels of a light-emitting diode display panel according to some specific embodiments of the present invention.
  • the sub-pixel 100 includes two light-emitting diodes 110.
  • 1B and 1C illustrate the angular distribution of the light intensity of the sub-pixel 100 shown in FIG. 1A according to some specific embodiments of the present invention.
  • the angular distribution of the light intensity of the sub-pixel 100 provided in FIG. 1B does not have any packaging structure or reflector structure (the reflector structure is also referred to as a reflective convex structure).
  • the brightest viewing angle of the light emitting diode 110 of the sub-pixel 100 is approximately positive 45 degrees and negative 45 degrees, and its brightness is close to 100%.
  • a vertical angle that is, an angle of 0 degrees
  • its brightness is only about 65%.
  • FIG. 2A illustrates a display mode of a light emitting diode display panel according to some specific embodiments of the present invention.
  • all the light-emitting diodes of the light-emitting diode display panel 200 emit light toward the same vertical viewing angle.
  • the user will be able to easily detect the abnormality caused by the abnormal LED 210.
  • FIG. 2C illustrates a schematic diagram of a light emitting mode of a light emitting diode display panel according to some specific embodiments of the present invention.
  • the LEDs of the LED display panel 200' are adjusted to emit light toward different viewing angles.
  • the angular distribution of the light intensity of the pixel formed by the light emitting diode can be adjusted.
  • one LED 210' of the LED display panel 200' functions abnormally, as shown in FIG. 2D, compared to the example in FIG. 2B, the user will not easily detect the abnormality caused by the abnormal LED 210'.
  • FIG. 3A shows a schematic diagram of a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention. It should be noted that the pixel structure shown in FIG. 3A only represents a pixel structure composed of light-emitting diodes and corresponding structures, and the following structures will not include driving units or components. As shown in FIG.
  • the light-emitting diode display panel 300 includes a back plate 310 and a pixel structure disposed on the back plate 310.
  • the pixel structure 320 includes a plurality of red pixels (R), a plurality of green pixels (G), and a plurality of blue pixels (B).
  • FIG. 3B shows the red pixel 320R as shown in FIG. 3A.
  • the red pixel 320R includes two sub-pixel portions 320A and 320B, and the sub-pixel portions 320A and 320B are mirror images of each other.
  • the first reflective convex structure 330A is disposed on the back plate (not shown in FIG.
  • the second reflective convex structure 330B is disposed on the back Above the board (not shown in Figure 3B).
  • the first reflective convex structure 330A and the second reflective convex structure 330B are formed by a highly reflective material. As shown in FIG. 3B, the first reflective convex structure 330A and the second reflective convex structure 330B are separated from each other, and collectively referred to as the reflective cover structure of the red pixel 320R, wherein each of the first reflective convex structure 330A and the second reflective convex structure
  • the shape of the structure 330B is an equilateral triangle (or equilateral triangle), and each of the corners of the equilateral triangle has an included angle of 60 degrees.
  • the first reflective convex structure 330A and the second reflective convex structure 330B are mirror images of each other in a row direction (for example, the vertical direction shown in FIG. 3B).
  • the second reflective convex structure 330B of the equilateral triangle is a mirror image of the first reflective convex structure 330A of the equilateral triangle.
  • the first reflective raised structure 330A has a first opening 335A
  • the second reflective raised structure 330B has a second opening 335B to respectively expose the back plate, which makes the first red light emitting diode 340A disposed in the first opening 335A ⁇ LED area 338A.
  • the shape of the first opening 335A and the shape of the second opening 335B can also be equilateral triangles, and the equilateral triangles of the first opening 335A and the equilateral triangles of the second opening 335B are in a row direction (for example, the vertical direction shown in FIG. 3B). For mirroring.
  • the arrangement of the sub-pixel portions is similar to the red pixel 320R shown in FIG. 3B.
  • the regular triangle of the first opening 335A and the regular triangle of the second opening 335B are in the same column direction (for example, the vertical direction shown in FIG. 3B).
  • FIG. 3C illustrates a cross-sectional view of the red pixel 320R along the line A-A as shown in FIG. 3B exemplarily according to an embodiment of the present invention.
  • the cross-sectional view of FIG. 3C shows a cross-section of the second sub-pixel portion 320B, which is perpendicular to the back plate 310 and interleaved with the second light-emitting diode 340B.
  • the first sub-pixel portion 320A is a mirror image of the second sub-pixel portion 320B, the details of the first sub-pixel portion 320A will be similar to the cross section of the second sub-pixel portion, and therefore will not be described in detail here.
  • the second reflective protrusion structure 330B has two first sidewalls 332, and the two first sidewalls 332 are symmetrically located on both sides of the second opening 335B.
  • Each first side wall 332 extends obliquely outward from the back plate 310, so an acute angle ⁇ is defined between the back plate 310 and each first side wall 332.
  • the acute angle ⁇ ranges between 20 degrees and 80 degrees. In one embodiment, the acute angle ⁇ is 68 degrees.
  • the second light emitting diode 340B is located between the two first side walls 332, and the distance from the second light emitting diode 340B to each first side wall 332 is a distance d.
  • the height of the second light emitting diode 340B is a height h
  • the height of the second reflective protrusion structure 330B is a height H.
  • the height H is greater than 1.5 times the height h (that is, H>1.5*h). Under such a structure design, the second light emitting diode 340B and the second reflective convex structure 330B can have better optical effects.
  • FIG. 3D illustrates the shape of the first opening 335A of the red pixel 320R shown in FIG. 3B according to some specific embodiments of the present invention. It should be noted that FIG. 3D shows the shape of the first opening 335A corresponding to the LED area 338A. Because the second opening 335B is a mirror image structure of the first opening 335A, and the shape of the second opening 335B and the corresponding light emitting diode region 338B has been seen in FIG. 3D, the detailed description is omitted here. As shown in FIG. 3D, the shape of the light emitting diode region 338A is a triangle similar to the regular triangle of the first opening 335A.
  • the first opening 335A has a regular triangle PQR
  • the light emitting diode area 338A has a similar regular triangle P'Q'R'.
  • the vertices P', Q', and R'of the similar regular triangle of the light emitting diode region 338A are the vertices P, Q, and R of the regular triangle of the first opening 335A, and the regular triangle of the first opening 335A
  • the center of gravity C is connected to the midpoint of the center line.
  • the vertex P'of the similar equilateral triangle of the light emitting diode region 338A is located at the center of the connecting center line.
  • the length from the vertex P to the center of gravity C is the length L
  • the length from the vertex P to the vertex P'is L/2. Therefore, the first light emitting diode 340A can be located in the light emitting diode area 338A, and the light emitting diode area 338A is surrounded by a similar triangle P'Q'R'.
  • the first light emitting diode 340A may be located at the center of gravity C of the equilateral triangle of the first opening 335A.
  • Fig. 3E illustrates the angular distribution of the light intensity of the pixel as shown in Fig. 3B according to some specific embodiments of the present invention.
  • the vertical viewing angle in each direction (and the angle is 0 degrees) The brightness increases.
  • FIG. 3F schematically illustrates a cross-sectional view of the pixel shown in FIG. 3B along the line segment A-A according to another embodiment of the present invention.
  • the cross-section of FIG. 3F is different from the cross-section of FIG. 3C in that there is a metal layer 350 disposed on the second reflective convex structure 330B in FIG. 3F, which makes the two first sidewalls 332' made of metal Layer 350 is formed.
  • the other structures appearing in the cross-section of FIG. 3F are the same as the cross-section of FIG. 3C, and therefore will not be described in detail here.
  • the shape of the first opening 335A is an equilateral triangle
  • the shape of the second opening 335B which is a mirror image of the first opening 335A, is also an equilateral triangle. Therefore, as shown in FIG. 3A, for all pixels in the pixel structure 320, the corresponding first opening and second opening are both equilateral triangles. In other words, the shape of the first opening of all pixels in the pixel structure 320 is the same.
  • FIG. 4 shows a schematic diagram of the pixel shown in FIG. 3A according to another embodiment of the present invention. As shown in FIG. 4, the first reflective convex structure 330A' and the second reflective convex structure 330B' are connected to each other. Specifically, the difference between the pixel 400 shown in FIG. 4 and the pixel shown in FIG.
  • first opening 335A and the second opening 335B are not separate openings.
  • first opening 335A and the second opening 335B together form an opening.
  • Other structures of the pixel including the light-emitting diode regions 338A and 338B, and the light-emitting diodes 340A and 340B, are the same as the corresponding structures with the same reference numerals in the red pixel 320R shown in FIG. 3B, and therefore will not be described in detail here.
  • FIG. 3A for all pixels in the pixel structure 320, including red pixels, green pixels, and blue pixels, the first opening and the second opening of each pixel are arranged to be along the same column direction They are mirror images of each other, as shown in Figure 3B. However, because the first opening and the second opening of each pixel are equilateral triangles, the mirror direction of the first opening and the second opening of each pixel will change.
  • FIGS. 5A and 5B show schematic diagrams of openings of two pixels according to two embodiments of the present invention. As shown in FIG. 5A, the first opening 510 and the second opening 520 are mirror images of each other in the direction inclined to the right. As shown in FIG.
  • the first opening 530 and the second opening 540 are mirror images of each other in the direction inclined to the left. It should be noted that different arrangements of pixels will not significantly change the angular distribution of the light intensity of the pixels. In other words, if the positions of the first opening and the second opening of the pixel are arranged in the manner shown in FIG. 5A or FIG. 5B, the angular distribution of the light intensity of the pixel as shown in FIG. 3B can remain the same.
  • FIG. 6 illustrates a schematic diagram of a pixel structure of a light emitting diode display panel according to some specific embodiments of the present invention.
  • the light-emitting diode display panel 600 includes a back plate 610 and a pixel structure 620 disposed on the back plate 610.
  • the difference between the pixel structure 620 shown in FIG. 6 and the pixel structure 320 shown in FIG. 3A lies in the mirror direction, and this mirror direction is the mirror direction of the first opening and the second opening.
  • the pixels of the pixel structure 620 are arranged in a top row and a bottom row. In the top column, similar to FIG.
  • each pixel is arranged in an inclined manner to the right; and in the bottom column, similar to FIG. 5B, each pixel is arranged in an inclined manner to the left.
  • the mirror directions of the first opening and the second opening of each pixel are the same, but the mirror directions of two adjacent columns are different from each other.
  • the pixel adjacent to it in the bottom column is a blue pixel, so that in the pixel structure 620, any two adjacent pixels are pixels of different colors. In other words, in the pixel structure 620, any two adjacent pixels emit light of different wavelengths (that is, light of different colors).
  • the first opening and the second opening of each pixel are equilateral triangles.
  • the shape of the first opening and the second opening of each pixel can be changed to an isosceles triangle, and such an isosceles triangle allows the arrangement of pixels in the pixel structure 320 to be substantially similar.
  • FIG. 7A shows a schematic diagram of a pixel according to an embodiment of the present invention
  • FIG. 7B shows the first sub-pixel portion of FIG. 7A.
  • the pixel 700 includes two sub-pixel portions 700A and 700B, and the two sub-pixel portions 700A and 700B are mirror images of each other.
  • the first reflective convex structure 730A and the second reflective convex structure 730B may be separate structures.
  • the only difference between the two sub-pixel portions 700A and 700B shown in FIG. 7A and the two sub-pixel portions 320A and 320B shown in FIG. 3B is that the base angle of the triangle of the first opening 735A has an included angle ⁇ .
  • the value of the included angle ⁇ is variable, so that the shape of the first opening 735A (and the corresponding mirror shape of the second opening 735B) is an isosceles triangle.
  • the shape of the first opening 735A is an equilateral triangle, which is the same as that of FIG. 3B. Since the shape of the formed light emitting diode area 738A is a triangle similar to the shape of the first opening 735A, the shape of the light emitting diode area 738A will also be variable based on the included angle ⁇ . A similar relationship also corresponds to the second opening 735B and its light emitting diode area 738B. Therefore, in some specific embodiments, the first reflective convex structure 730A may also be variable.
  • FIG. 7C, 7D, 7E, 7F, and 7G illustrate the angular distribution of the light intensity of the pixel 700 shown in FIG. 7A.
  • FIG. 7C, FIG. 7D, and FIG. 7E respectively illustrate the angular distribution of the light intensity of the pixel shown in FIG. 7B according to different embodiments of the present invention, and these different embodiments correspond to different included angles ⁇ .
  • FIG. 7C shows the angular distribution of light intensity at an angle ⁇ of 40 degrees
  • FIG. 7D shows the angular distribution of light intensity at an angle ⁇ of 50 degrees
  • FIG. 7E shows the angle distribution of light at an angle ⁇ of 70 degrees.
  • Angular distribution of intensity shows the angular distribution of intensity.
  • FIG. 7F shows a graph of brightness corresponding to different viewing angles of the pixel 700 as shown in FIG. 7A according to some specific embodiments of the present invention, where the brightness information provided in the graph includes an included angle ⁇ of 40 degrees (corresponding to FIG. 7C ), the included angle ⁇ is 50 degrees (corresponding to Fig. 7D), the included angle ⁇ is 60 degrees (corresponding to Fig. 3E) and the included angle ⁇ is 70 degrees (corresponding to Fig. 7E).
  • the brightness information provided in the graph includes an included angle ⁇ of 40 degrees (corresponding to FIG. 7C )
  • the included angle ⁇ is 50 degrees (corresponding to Fig. 7D)
  • the included angle ⁇ is 60 degrees (corresponding to Fig. 3E)
  • the included angle ⁇ is 70 degrees (corresponding to Fig. 7E).
  • FIG. 7G shows a graph of brightness corresponding to the first sub-pixel portion 700A.
  • the vertical viewing angle that is, the angle is 0 In the case of degrees
  • the included angle ⁇ is 40 degrees, 50 degrees or 60 degrees
  • the brightest viewing angle of the light emitting diode of the pixel is close to the vertical viewing angle (that is, the angle is 0 degrees)
  • the brightness at the vertical viewing angle increases to approximately 80%, which is significant compared to the 65% brightness increase in FIG. 1C.
  • the shapes of the openings are all equilateral triangles or isosceles triangles.
  • other polygons can also be used as the shape of the opening.
  • the polygon may include, but is not limited to, a triangle, a parallelogram, a trapezoid, an irregular trapezoid, or a quadrilateral, as long as at least two angles of each polygon are an included angle less than 90°.
  • FIG. 8A, 8B, 8C, 8D, 9, 10, and 11 illustrate the pixel structure of a light emitting diode display panel according to some different embodiments of the present invention.
  • each drawing closely shows the pixel structure without showing the corresponding backplane.
  • the shape of the opening is drawn to represent the pixel, and the reflective convex structure and the light-emitting diode of the pixel are not drawn.
  • each pixel is formed by two openings, and the two openings are mirror images of each other in the shape of a right triangle along the row direction (the vertical direction as shown in FIG. 8A).
  • the first opening of the red pixel 820R and the first opening of the adjacent green pixel together form a square.
  • the size and shape of each pixel in the pixel structure 800 are similar.
  • the pixel structure 800' is similar to the pixel structure 800 shown in FIG. 8A, but has a slightly different arrangement. Specifically, in the pixel structure 800' shown in FIG. 8B, only part of the pixels are formed by two openings, and the two openings are in the shape of a right-angled triangle along the row direction (vertical as shown in FIG. 8B). Directions) are mirror images of each other. Some other pixels, such as the green pixel 820G and the blue pixel 820B, are formed by two right-angled triangular openings that are mirror images of each other along respective oblique directions, so that each green pixel 820G and blue pixel 820B is square. In such an example, the shape of each pixel in the pixel structure 800' is different from each other.
  • the pixel structure 800" is similar to the pixel structure 800' shown in FIG. 8B, except that the red pixels 820R are two right angles that are mirror images of each other along the row direction (the vertical direction as shown in FIG. 8C).
  • a triangular opening is formed.
  • Some other green pixels 820G and blue pixels 820B are formed by two right-angled triangular openings that are mirror images of each other along respective oblique directions, which is similar to the green pixel 820G shown in FIG. 8B And the blue pixel 820B, so that each green pixel 820G and blue pixel 820B has a square shape.
  • some other green pixels 820G' and blue pixels 820B' are two mirror images of each other along the respective diagonal directions.
  • the green pixel 820G' and the blue pixel 820B' form a diagonal zigzag shape.
  • the shape of each pixel in the pixel structure 800" is different from each other.
  • the shapes of the green pixels are different from each other, and the shapes of the blue pixels are different from each other.
  • the pixel structure 800"' is similar to the pixel structure 800 shown in FIG. 8A, and further has a different pixel arrangement. Specifically, in the pixel structure 800"' shown in FIG. 8D, instead of With two openings to form pixels, the red pixel 820R' is formed by four right-angled triangular openings that are mirror images of each other, so that in a group of red, green, and blue pixels, the red pixel 820R' and the corresponding green pixel The pixels and the blue pixels together form a square. In such an example, the shape of each pixel in the pixel structure 800"' is different from each other, and the size of the red pixel is larger than the size of the green pixel and the blue pixel.
  • each pixel is formed by two triangles that are mirror images of each other along the row direction (the vertical direction as shown in FIG. 9).
  • the shapes of the triangles are different from each other.
  • the shape of the triangle is a regular triangle
  • the blue pixel and the green pixel of the adjacent red pixel 920R the triangle is a right triangle, which makes the first opening of a group of red pixels, green pixels, and blue pixels Together to form a rectangle.
  • the shape and size of each pixel are different from each other.
  • the shape of the first opening of all red pixels is the same
  • the shape of the first opening of all green pixels is the same
  • the shape of the first opening of all blue pixels is the same.
  • each pixel is formed by two quadrilaterals that are mirror images of each other along the row direction (the vertical direction as shown in FIG. 10).
  • the shapes of the quadrilaterals are different from each other.
  • the shape of the quadrilateral is an isosceles trapezoid
  • the quadrilateral is a parallelogram, which makes the first group of red pixels, green pixels, and blue pixels An opening forms a trapezoid together.
  • the shape and size of each pixel are different from each other.
  • the shape of the first opening of the red pixel 1020R (the shape is an isosceles trapezoid) is different from the shape of the first opening of the next red pixel (the shape is a parallelogram).
  • the shapes of the first openings of at least two red pixels are different from each other.
  • the shapes of the first openings of at least two green pixels are different from each other, and the shapes of the first openings of at least two blue pixels are different from each other.
  • each pixel is formed by two triangular or two quadrilateral openings.
  • the two openings are not in mirror shape; instead, the two openings are 180 degrees symmetrical to each other.
  • the shape of each pixel is different from each other.
  • the two openings are 180 degrees symmetrical to each other in the triangle.
  • the two openings are 180 degrees symmetrical to each other in the trapezoid.
  • the two openings are 180 degrees symmetrical to each other in the triangle.
  • each pixel in the pixel structure 1100 are different from each other.
  • the shape of the first opening of the red pixel 1120R (shaped in a triangle) is different from the shape of the first opening of the next red pixel (shaped in a trapezoid).
  • the shapes of the first openings of at least two red pixels are different from each other.
  • the shapes of the first openings of at least two green pixels are different from each other, and the shapes of the first openings of at least two blue pixels are different from each other.
  • the shape and size of the opening of the pixel may be different from each other.
  • the shape and size of the opening of the pixel may be determined by the luminous efficiency of the light-emitting diode of the pixel.
  • the luminous efficiency of a light-emitting diode can be changed based on the wavelength of the light-emitting diode. For example, the luminous efficiency of red light-emitting diodes is generally lower than that of green light-emitting diodes, and the luminous efficiency of green light-emitting diodes is lower than that of blue light-emitting diodes.
  • FIG. 12A shows a schematic diagram of the size of a red pixel 1200R, a green pixel 1200G, and a blue pixel 1200B in a pixel structure of a light emitting diode according to an embodiment of the present invention.
  • each of the red pixel 1200R, the green pixel 1200G, and the blue pixel 1200B is represented by the first light emitting diode of the pixel and the corresponding first opening.
  • the first light emitting diode 1220R , 1220G and 1220B have the same size as each other.
  • the size and area of the first opening 1210B of the blue pixel 1200B are larger than the size and area of the first opening 1210G of the green pixel 1200G and that of the red pixel 1200R
  • the size and area of the first opening 1210R, and the size and area of the first opening 1210G of the green pixel 1200G are larger than the size and area of the first opening 1210R of the red pixel 1200R.
  • the size of the opening of the pixel may be determined by the illuminance of the light emitting diode of the pixel.
  • the illuminance of the light-emitting diode can be changed based on the wavelength of the light-emitting diode. For example, the illuminance of green light-emitting diodes is generally significantly better than that of red light-emitting diodes and blue light-emitting diodes, and the illuminance of red light-emitting diodes is slightly better than that of blue light-emitting diodes.
  • FIG. 12B shows a schematic diagram of the size of a red pixel 1200R', a green pixel 1200G', and a blue pixel 1200B' in a pixel structure of a light emitting diode according to another embodiment of the present invention.
  • each of the red pixel 1200R', the green pixel 1200G' and the blue pixel 1200B' is represented by the first light emitting diode of the pixel and the corresponding first opening.
  • the first The sizes of the light emitting diodes 1220R', 1220G', and 1220B' are the same as each other.
  • the size and area of the first opening 1210B' of the blue pixel 1200B' are larger than the size of the first opening 1210G' of the green pixel 1200G'
  • the size and area of the first opening 1210R' of the red pixel 1200R', and the size and area of the first opening 1210R' of the red pixel 1200R' are larger than the size and area of the first opening 1210G' of the green pixel 1200G'.
  • FIGS. 12A and 12B the reflective protrusion structure is not shown.
  • the triangle of the first opening of the pixel as shown in FIGS. 12A and 12B is provided for illustrative purposes only, and the shape of the first opening can be changed.
  • the The "size” and “area” of the first opening are based on the "size” and “area” of the bottom of the first opening, where the back plate is exposed.
  • the number of openings of the pixels may vary. Specifically, as shown in FIG. 8D, the number of openings of red pixels (four in a group of red pixels, green pixels, and blue pixels) is more than the number of openings of green pixels (in a group of red pixels, There are two green pixels and blue pixels) and the number of openings of the blue pixels (two in a group of red pixels, green pixels and blue pixels). Therefore, the number of pixel openings can be adjusted to compensate for the luminous efficiency or illuminance between different LEDs.
  • the number of openings of red pixels can be more than the number of openings of green pixels and the number of openings of blue pixels, and the number of openings of green pixels can be There are more openings than blue pixels.
  • the number of openings for green pixels in order to compensate for the difference in illuminance between light-emitting diodes, can be more than the number of openings for red pixels and the number of openings for blue pixels, and the number of openings for red pixels can be more. The number of openings for blue pixels.
  • the light emitting diode display panel may include other structures.
  • the light emitting diode display panel may include one or more drivers to drive one or more corresponding pixels in the pixel structure.
  • FIG. 13A illustrates a schematic diagram of a driving integrated circuit and a pixel in the pixel structure shown in FIG. 3A according to some specific embodiments of the present invention
  • FIG. 13B illustrates a schematic diagram according to some specific embodiments of the present invention as In the pixel structure shown in FIG. 6, a schematic diagram of a driving integrated circuit and a pixel. As shown in FIG.
  • the light emitting diode display panel 1300 includes a driving integrated circuit 1310, and the driving integrated circuit 1310 is connected to a pixel through a plurality of signal lines 1320. Specifically, for each pixel, the driving integrated circuit 1310 is connected to two sub-pixels of the communicating pixel through the same signal line 1320. For example, for the red pixel 320R, the driving integrated circuit 1310 is connected to two sub-pixels of the same red pixel through the same signal line 1320. Similarly, as shown in FIG. 13B, the light emitting diode display panel 1300' includes a driving integrated circuit 1310, and the driving integrated circuit 1310 is connected to the pixels through a plurality of signal lines 1320. Because the pixel arrangement of the LED display panel 1300' shown in FIG. 13B is different from the pixel arrangement of the LED display panel 1300 shown in FIG. 13A, the arrangement of the signal lines 1320 will also be different.
  • the driver of the light-emitting diode display panel may be formed by an active matrix (active) multiple drivers.
  • FIG. 14A shows a schematic diagram of the active matrix layer and pixel arrangement in the pixel structure shown in FIG. 3A according to some specific embodiments of the present invention
  • FIG. 14B and FIG. 14C show active driving units and corresponding pixels.
  • the light emitting diode display panel 1400 includes an active matrix, and the active matrix includes a plurality of driving units 1410. Each driving unit 1410 is formed on the active matrix in the active driving layer to drive the corresponding pixel.
  • each driving unit 1410 may be a rectangle as shown in FIGS. 14B and 14C, so that the driving unit 1410 can correspond to the pixels one-to-one. In other words, each driving unit 1410 may have a shape different from the triangular combination of the first opening and the second opening of the corresponding pixel.
  • FIG. 15A shows a schematic diagram of the active matrix layer and pixel arrangement in the pixel structure shown in FIG. 8A according to some specific embodiments of the present invention
  • FIG. 15B shows a schematic diagram of the active matrix layer and pixel arrangement according to some specific embodiments of the present invention.
  • the driving units 1510, 1520, and 1530 correspond to the shapes of the corresponding pixels.
  • the driving unit 1510 is a triangle
  • the driving units 1520 and 1530 are respectively a combination of two triangles.
  • FIG. 15C illustrates a schematic diagram of the active matrix layer and pixel arrangement in the pixel structure shown in FIG. 8B according to some specific embodiments of the present invention
  • FIG. 15D illustrates a schematic diagram of the active matrix layer and pixel arrangement according to some specific embodiments of the present invention as shown in FIG. 15C Schematic diagram of the drive unit shown.
  • the driving units 1510, 1520, 1530, 1540, 1550, and 1560 correspond to the shapes of the corresponding pixels.
  • the driving units 1510 and 1540 are triangular
  • the driving units 1520 and 1530 are respectively a combination of two triangles
  • the driving units 1550 and 1560 are respectively square.
  • the size and shape of the light emitting diode used in the light emitting diode display panel can be changed.
  • light emitting diodes can be classified into horizontal light emitting diodes, vertical light emitting diodes or flip chip light emitting diodes (flip chip LED).
  • FIG. 16A shows a schematic diagram of a horizontal light emitting diode according to some specific embodiments of the present invention.
  • the LED 1620 is formed on the back plate 1610, and the P-N junction 1630 is provided as an active layer.
  • the P wire 1650 is connected to the P electrode (for example, the anode) of the light emitting diode 1620, and the N wire 1660 is connected to the N electrode (for example, the cathode) of the light emitting diode 1620.
  • the insulating layer 1640 covers the light emitting diode 1620 and the N wire 1660, and the P wire 1650 is connected to the P electrode of the light emitting diode 1620 through the opening 1655 formed in the insulating layer 1640.
  • FIG. 16B shows a schematic diagram of a vertical light emitting diode according to some specific embodiments of the present invention.
  • the vertical light-emitting diode structure 1600' shown in FIG. 16B has similar elements in the horizontal light-emitting diode structure 1600 shown in FIG. 16A, but the shape and location of the elements are different.
  • the LED 1620' is formed on the back plate 1610, and the P-N junction 1630' is provided as an active layer.
  • the P wire 1650' is connected to the P electrode (e.g., anode) of the light emitting diode 1620', and the N wire 1660' is connected to the N electrode (e.g., cathode) of the light emitting diode 1620'.
  • the insulating layer 1640' covers the light emitting diode 1620' and the N wire 1660', and the P wire 1650' is connected to the P electrode of the light emitting diode 1620' through the opening 1655' formed in the insulating layer 1640'.
  • FIG. 16C shows a schematic diagram of a flip-chip light emitting diode according to some specific embodiments of the present invention.
  • the flip-chip light-emitting diode structure 1600" shown in FIG. 16C has similar elements in the horizontal light-emitting diode structure 1600 shown in FIG. 16A, but the shape and position of the elements are different.
  • the light-emitting diode 1620" is formed on the back plate 1610, and the PN junction 1630" is provided as an active layer.
  • the P wire 1650" is connected to the P electrode (for example, the anode) of the light emitting diode 1620"
  • the N wire 1660" is connected to the N electrode (for example, the cathode) of the light emitting diode 1620".
  • the light-emitting diode 1620" shown in FIG. 16C is inverted so that the P electrode is located close to the back plate, so Form a "flip chip” structure.
  • there is no need for an insulating layer to cover the light emitting diode 1620 because the P wire 1650" and the N wire 1660" extend toward different sides of the light emitting diode 1620".
  • the light-emitting diodes of the light-emitting diode display panel can be adjusted to emit light at different viewing angles, and if one of the light-emitting diodes malfunctions, it is difficult for the user to notice the abnormality caused by the light-emitting diode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光二极管显示面板(300),发光二极管显示面板(300)包含背板(310)与像素结构(320),像素结构(320)包含像素。每一个像素包含一个反射罩结构(300)与相同颜色的二个发光二极管(340A、340B),反射罩结构与发光二极管(340A、340B)皆设置于背板(310)上。每一个像素的反射罩结构具有第一反射凸起结构(330A、330A')与第二反射凸起结构(330B、330B')。第一反射凸起结构(330A、330A')具有第一开口(335A)。第二反射凸起结构(330B、330B')具有第二开口(335B)。发光二极管(340A、340B)设置于第一与第二开口内(335A、335B)。第一开口(335A)具有第一形状,第二开口(335B)具有第二形状,第二形状是第一形状的镜像或180度对称形状。对于每一个像素,第一形状是多边形,并且第一形状至少二个角为小于90度的夹角。

Description

发光二极管显示面板 技术领域
本发明有关于显示科技,特别是关于像素排列与发光二极管的反射罩结构,以及其制造方式。
背景技术
这里提供的技术领域的说明,目的仅是为了能够一般性的呈现本发明的整体的脉络。于此所呈现的发明人的工作,关于本技术领域部分中所描述的范围,以及可能于现时不被认为具有现有技术资格的说明内容的各个方面,这些皆未明示地或暗示地被承认为是针对本发明的现有技术。
由于显示器的高分辨率与大尺寸需求,为了高的发光效率,发光二极管显示设备已经成为最受欢迎的显示面板。用于发光二极管显示设备的发光二极管可以是微发光二极管(micro LEDs,μLED)或是次毫米发光二极管(mini LEDs)。举例来说,微发光二极管显示面板使用微发光二极管作为像素单元,能够使得微发光二极管显示面板达到高分辨率、高亮度与高对比度。
然而,由于没有封装与没有反射罩结构的发光二极管的发光模式与其特性,在一个发光二极管显示面板上发光二极管最亮的可视角度,并非垂直于显示面板的可视角度(也就是角度为0度)。此外,对应发光二极管显示面板各个像素的发光二极管的发光模式与特性彼此是一致的。在一些例子,若任何一个发光二极管的功能异常,则使用者将很容易地观察到由于异常的发光二极管所导致的显示异常。
因此,本领域存在至今尚未解决的需求,以解决上述的缺陷与不足之处。
发明公开
本发明的一技术态样有关于一种发光二极管显示面板。发光二极管显示面板包含:背板;像素结构,其中像素结构包含多个像素,每一个像素都包含:设置于背板上的反射罩结构,其中反射罩结构具有第一反射凸起结构与第二反射凸起结构,第一反射凸起结构具有第一开口,第二反射凸起结构具有第二开口,其中第一开口具有第一形状,第二开口具有第二形状,并且第二形状是第 一形状的一镜像或是第一形状的180度对称形状;以及第一发光二极管与第二发光二极管,第一发光二极管与第二发光二极管设置于背板上并发出相同的颜色,其中第一发光二极管设置于第一反射凸起结构的第一开口内,并且第二发光二极管设置于第二反射凸起结构的该第二开口内;其中对于每一个像素,第一形状是多边形,并且第一形状的至少二个角为小于90度的夹角。
在一些特定的实施方式中,对于每一个像素,第一开口与第二开口设置为沿相同方向上彼此互为镜像。
在一些特定的实施方式中,对于在第一行的每一个像素,第一开口与第二开口设置为沿一第一方向上彼此互为镜像,并且对于在相邻于第一行的一第二行的每一个像素,第一开口与第二开口沿不同于第一方向的一第二方向上彼此互为镜像。
在一些特定的实施方式中,对于每一个像素,第一开口的第一形状是三角形。
在一些特定的实施方式中,对于每一个像素,该第一发光二极管设置于该第一开口的一发光二极管区域内,该发光二极管区域具有相似于该第一形状的三角形的一相似三角形,并且发光二极管区的相似三角形的顶点位在连接第一形状的顶点至第一形状的重心的中线的中点。
在一些特定的实施方式中,对于每一个像素,第一发光二极管是位于第一形状的重心,而第二发光二极管是位于第二形状的重心。
在一些特定的实施方式中,全部像素的第一开口的第一形状是相同的。
在一些特定的实施方式中,对于每一个像素,第一开口的第一形状是平形四边形或是梯形。
在一些特定的实施方式中,对于每一个像素,第一反射凸起结构具有二个第一侧壁,二个第一侧壁位于第一开口的两侧,并且沿着垂直于背板并与第一发光二极管交叉的截面,每一个第一侧壁从背板向外倾斜地延伸,以于背板与每一个第一侧壁之间定义一锐角α,其中锐角α的范围介于20度与80度之间。
在一些特定的实施方式中,像素包含多个红像素、多个绿像素以及多个蓝像素。
在一些特定的实施方式中,每一个蓝像素的第一开口的区域大于每一个红像素的第一开口的区域,并且每一个蓝像素的第一开口的区域大于每一个绿像 素的第一开口的区域。
在一些特定的实施方式中,每一个红像素的第一开口的区域大于每一个绿像素的第一开口的区域。
在一些特定的实施方式中,每一个绿像素的第一开口的区域大于每一个红像素的第一开口的区域。
在一些特定的实施方式中,红像素的第一开口的第一形状是相同的,绿像素的第一开口的第一形状是相同的,以及蓝像素的第一开口的第一形状是相同的。
在一些特定的实施方式中,至少二个红像素的第一开口的第一形状彼此不同,至少二个绿像素的第一开口的第一形状彼此不同,至少二个蓝像素的第一开口的第一形状彼此不同。
在一些特定的实施方式中,对于每一个像素,第一反射凸起结构与第二反射凸起结构是彼此连接。
在一些特定的实施方式中,对于每一个像素,第一反射凸起结构与第二反射凸起结构是彼此分离。
在一些特定的实施方式中,发光二极管显示面板更包含主动驱动层。主动驱动层具有多个驱动单元,其中每一个驱动单元配置以驱动其中一个对应的像素,并且每一个驱动单元具有形状,此形状不同于其中一个相应像素的第一开口的第一形状以及第二开口的第二形状之间的组合。
在一些特定的实施方式中,每一个驱动单元的该形状是矩形、正方形、三角形及其组合。
以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。
附图简要说明
图1A根据本发明一些特定的实施方式绘示发光二极管显示面板的子像素的示意图;
图1B图根据本发明一些特定的实施方式绘示如图1A的子像素的光强度的角分布;
图1C根据本发明一些特定的实施方式绘示如图1A的子像素的对应不同 可视角的明亮度的图表;
图2A根据本发明一些特定的实施方式绘示一发光二极管显示面板的显示模式,其中发光二极管显示面板的所有发光二极管朝向相同的垂直可视角发光的示意图;
图2B示例地绘示如图2A所示的发光二极管显示面板的发光模式,而其中一个发光二极管功能异常;
图2C根据本发明一些特定的实施方式绘示发光二极管显示面板的发光模式的示意图,其中发光二极管显示面板的发光二极管调整以朝向不同的可视角发光;
图2D示例地绘示如图2C所示的发光二极管显示面板的发光模式,其中一个发光二极管的功能异常;
图3A根据本发明一些特定的实施方式绘示发光二极管显示面板的一个像素结构的示意图;
图3B根据本发明的一实施方式示绘示如图3A所示的像素的示意图;
图3C根据本发明的一实施方式示例地绘示如图3B所示的像素沿线段A-A的横截面图;
图3D根据本发明的一些特定的实施方式绘示如图3B所示的开口的形状;
图3E根据本发明的一些特定的实施方式绘示如图3B所示的像素的光强度的角分布;
图3F根据本发明的另一实施方式示意地绘示如图3B所示的像素沿线段A-A的横截面图;
图4根据本发明的另一实施方式绘示如图3A所示的像素的示意图;
图5A根据本发明的一实施方式绘示像素的开口的示意图;
图5B根据本发明的另一实施方式绘示像素的开口的示意图;
图6根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构的示意图;
图7A根据本发明的一实施方式绘示像素的示意图;
图7B绘示图7A的第一子像素部分;
图7C根据本发明的一些特定的实施方式绘示如图7B所示的像素的光强度对应不同角度的分布,其中θ为40度;
图7D根据本发明的一些特定的实施方式绘示如图7B所示的像素的光强度对应不同角度的分布,其中θ为50度;
图7E根据本发明的一些特定的实施方式绘示如图7B所示的像素的光强度对应不同角度的分布,其中θ为70度;
图7F根据本发明的一些特定的实施方式绘示亮度对应如图7A所示的像素的不同可视角的图表;
图7G根据本发明的一些特定的实施方式绘示亮度对应如图7B所示的第一子像素的不同可视角的图表;
图8A根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图8B根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图8C根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图8D根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图9根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图10根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图11根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构;
图12A根据本发明的一实施方式绘示在发光二极管的一像素结构内红像素、绿像素与蓝像素尺寸大小的示意图;
图12B根据本发明的另一实施方式绘示在发光二极管的一像素结构内红像素、绿像素与蓝像素尺寸大小的示意图;
图13A根据本发明的一些特定的实施方式绘示如图3A所示的像素结构内,驱动集成电路与像素的示意图;
图13B根据本发明的一些特定的实施方式绘示如图6所示的像素结构内,驱动集成电路与像素的示意图;
图14A根据本发明的一些特定的实施方式绘示如图3A所示的像素结构内,主动矩阵层与像素排列的示意图;
图14B根据本发明的一实施方式绘示如图14A所示的主动驱动单元与对应的像素的示意图;
图14C根据本发明的另一实施方式绘示如图14A所示的主动驱动单元与对应的像素的示意图;
图15A根据本发明的一些特定的实施方式绘示如图8A所示的像素结构内,主动矩阵层与像素排列的示意图;
图15B根据本发明的一些特定的实施方式绘示如图15A所示的驱动单元的示意图;
图15C根据本发明的一些特定的实施方式绘示如图8B所示的像素结构内,主动矩阵层与像素排列的示意图;
图15D根据本发明的一些特定的实施方式绘示如图15C所示的驱动单元的示意图;
图16A根据本发明的一些特定的实施方式绘示水平发光二极管的示意图;
图16B根据本发明的一些特定的实施方式绘示垂直发光二极管的示意图;以及
图16C根据本发明的一些特定的实施方式绘示倒装芯片发光二极管的示意图。
其中,附图标记:
100:子像素
110:发光二极管
200、200’:发光二极管显示面板
210、210’:发光二极管
300:发光二极管显示面板
310:背板
320:像素结构
320R:红像素
320A、320B:子像素部分
330A、330A’:第一反射凸起结构
330B、330B’:第二反射凸起结构
332、332’:第一侧壁
335A:第一开口
335B:第二开口
338A、338B:发光二极管区域
340A、340B:发光二极管
350:金属层
400:像素
510:第一开口
520:第二开口
530:第一开口
540:第二开口
600:发光二极管显示面板
610:背板
620:像素结构
620R:红像素
700:像素
700A、700B:子像素部分
730A:第一反射凸起结构
730B:第二反射凸起结构
735A:第一开口
735B:第二开口
738A、738B:发光二极管区域
740A、740B:发光二极管
800、800’、800”、800”’:像素结构
820R、820R’:红像素
820G、820G’:绿像素
820B、820B’:蓝像素
900:像素结构
920R:红像素
1000:像素结构
1020R:红像素
1100:像素结构
1120R:红像素
1200R、1200R’:红像素
1200G、1200G’:绿像素
1200B、1200B’:蓝像素
1210R、1210R’:第一开口
1210G、1210G’:第一开口
1210B、1210B’:第一开口
1220R、1220R’:发光二极管
1220G、1220G’:发光二极管
1220B、1220B’:发光二极管
1300、1300’:发光二极管显示面板
1310:驱动集成电路
1320:信号线
1400:发光二极管显示面板
1410:驱动单元
1500、1500’:发光二极管显示面板
1510、1520、1530、1540、1550、1560:驱动单元
1600:水平发光二极管结构
1600’:垂直发光二极管结构
1600”:倒装芯片发光二极管结构
1610:背板
1620、1620’、1620”:发光二极管
1630、1630’、1630”:P-N接面
1640、1640’:绝缘层
1650、1650’、1650”:P导线
1655、1655’:开孔
1660、1660’、1660”:N导线
A-A:线段
H:高度
L:长度
h:高度
d:距离
α:锐角
θ:夹角
实现本发明的最佳方式
下面结合附图对本发明的结构原理和工作原理作具体的描述:
本说明书中使用的术语一般来说,具有在本领域中所认知到的普通含义,这些术语出现在本说明书关于本发明内容的上下文中,以及出现在使用这些术语的特定上下文段落中。用于描述本发明的某些术语将于下面或说明书中的其他地方讨论,以向从业者提供关于本发明描述的额外导引。为方便起见,例如使用斜体与/或引号以醒目地标示某些术语。对术语使用醒目地标示,对术语的范围与含义并没有影响;术语的范围和含义在相同的上下文中是相同的,无论是否以醒目的方式标示。应理解到,相同的事情可以以不止一种的方式加以说明。因此,替代的用语和同义词可以用于本文所讨论的任何一或多个术语,并且对于术语是否在本文中详细阐述或讨论,也没有任何特殊意义。某些术语的同义词被提出。而一或多个同义词的叙述,并不排除使用其他同义词的使用。本说明书中任何地方的实施例,包括本文所讨论的任何术语的实施例,其仅是说明性质,而并不以此限制本发明或任何示例性术语的范围与含义。同样地,本发明并不限于本说明书中所给出的各种实施方式。
应当理解,当诸如层、膜、区域或基板的元件被称为在另一元件「上」或「连接到」另一元件时,其可以直接在另一元件上或与另一元件连接,或者中间元件可以也存在。相反,当元件被称为「直接在另一元件上」或「直接连接到」另一元件时,不存在中间元件。如本文所使用的,「连接「可以指物理及/或电性连接。再者,「电性连接」或「耦合」可为二元件间存在其它元件。
应当理解,尽管术语「第一」、「第二」、「第三」等在本文中可以用于描述各种元件、部件、区域、层及/或部分,但是这些元件、部件、区域、及/ 或部分不应受这些术语的限制。这些术语仅用于将一个元件、部件、区域、层或部分与另一个元件、部件、区域、层或部分区分开。因此,下面讨论的「第一元件」、「部件」、「区域」、「层」或「部分」可以被称为第二元件、部件、区域、层或部分而不脱离本文的教导。
这里使用的术语仅仅是为了描述特定实施例的目的,而不是限制性的。如本文所使用的,除非内容清楚地指示,否则单数形式「一」、「一个」和「该」旨在包括多形式,包括「至少一个」。「或」表示「及/或」。如本文所使用的,术语「及/或」包括一个或多个相关所列项目的任何和所有组合。还应当理解,当在本说明书中使用时,术语「包括」及/或「包括」指定所述特征、区域、整体、步骤、操作、元件的存在及/或部件,但不排除一个或多个其它特征、区域整体、步骤、操作、元件、部件及/或其组合的存在或添加。
此外,诸如「下」或「底部」和「上」或「顶部」的相对术语可在本文中用于描述一个元件与另一元件的关系,如图所示。应当理解,相对术语旨在包括除了图中所示的方位之外的装置的不同方位。例如,如果一个附图中的装置翻转,则被描述为在其他元件的「下」侧的元件将被定向在其他元件的「上」侧。因此,示例性术语「下」可以包括「下」和「上」的取向,取决于附图的特定取向。类似地,如果一个附图中的装置翻转,则被描述为在其它元件「下方」或「下方」的元件将被定向为在其它元件「上方」。因此,示例性术语「下面」或「下面」可以包括上方和下方的取向。
除非另有定义,本文使用的所有术语(包括技术和科学术语)具有与本发明所属领域的普通技术人员通常理解的相同的含义。将进一步理解的是,诸如在通常使用的字典中定义的那些术语应当被解释为具有与它们在相关技术和本发明的上下文中的含义一致的含义,并且将不被解释为理想化的或过度正式的意义,除非本说明书中明确地这样定义。
在本说明书所使用的词汇例如「大约」或是「近似地」,应一般性认为是在给定数值或是数值范为的百分之二十以内,更好一些是在百分之十以内、再更好一些则是在百分之十以内。说明书中说明给定的数值是近似的,意味着如果没有明确说明,可以推断出术语近似其含义接近所述的「在…的范围」、「大约」或是「近似地」。
接下来将结合附图针对本发明的实施方式做进一步说明。根据本发明的目 的,如本说明书所体现与广泛描述的,在某些方面上,本发明涉及用于无线通信的显示装置结构,而在其侧表面上具有一或多个天线。
如前所述,因为没有封装与反射罩结构的发光二极管的发光模式与特性,发光二极管显示面板的发光二极管的可视角并不是在垂直的可视角(例如角度为0度)。举例来说,图1A根据本发明一些特定的实施方式绘示发光二极管显示面板的子像素的示意图。如图1A所示,子像素100包含二个发光二极管110。图1B与图1C根据本发明一些特定的实施方式绘示如图1A的子像素100的光强度的角分布。而应注意到,在图1B中所提供的子像素100的光强度的角分布,是没有任何的封装结构或是反射罩结构(反射罩结构也称作是反射凸起结构)。如图1B与图1C所示,子像素100的发光二极管110最亮的可视角大约是在正的45度与负的45度,其亮度(brightness)接近于100%。相较之下,在垂直角度(也就是角度为0度),其亮度仅约为65%。
此外。如前所讨论的,对应发光二极管显示面板像素的发光二极管的发光模式与特性是一致的。举例来说,图2A根据本发明一些特定的实施方式绘示一发光二极管显示面板的显示模式。如图2A所示,发光二极管显示面板200的所有发光二极管朝向相同的垂直可视角发光。在这样的案例下,若发光二极管显示面板200的一个发光二极管210功能异常,如图2B所示,则使用者将能够轻易地察觉异常的发光二极管210所造成的异常。
鉴于上述的缺陷,本发明的一技术态样有关于一种发光二极管显示面板,其中借由对应的反射罩结构,发光二极管显示面板的发光二极管被调整为朝向不同的可视角发光。举例来说,图2C根据本发明一些特定的实施方式绘示发光二极管显示面板的发光模式的示意图。如图2C所示,在发光二极管显示面板200’,发光二极管显示面板200’的发光二极管被调整为朝向不同的可视角发光。在这样的例子下,由发光二极管形成的像素的光强度的角分布能够被调整。此外,若发光二极管显示面板200’的一个发光二极管210’功能异常,如图2D所示,相较于图2B的例子,使用者将不易察觉由异常发光二极管210’所造成的异常。
鉴于上述的缺陷,本发明的一技术态样有关于一种发光二极管显示面板,这种发光二极管显示面板具有形状经设计过的反射罩结构,借以在相似于如图2C所示的方法下调整发光二极管发光的方向。举例来说,图3A根据本发明 一些特定的实施方式绘示发光二极管显示面板的一个像素结构的示意图。应留意到,图3A所示的像素结构,仅是表示是由发光二极管与对应结构所构成的像素结构,并且于接下来的这些结构将不会包含驱动单元或是组件。如图3A所示,发光二极管显示面板300包含背板310与设置于背板310之上的像素结构。具体而言,像素结构320包含多个红像素(R)、多个绿像素(G)以及多个蓝像素(B)。特别是,图3B绘示如图3A所示的红像素320R。如图3B所示,红像素320R包含二个子像素部分320A与320B,子像素部分320A与320B彼此互为镜像。对于第一子像素部分320A,第一反射凸起结构330A为设置于背板(图3B未绘示)之上,并且对于第二子像素部分320B,第二反射凸起结构330B为设置于背板(图3B未绘示)之上。第一反射凸起结构330A与第二反射凸起结构330B借由高光反射材料形成。如图3B所示,第一反射凸起结构330A与第二反射凸起结构330B彼此分离,并且统称为红像素320R的反射罩结构,其中每一个第一反射凸起结构330A与第二反射凸起结构330B的形状都是正三角形(equilateral triangle,或称等边三角形),且每一个正三角形的转角都具有60度的夹角。具体而言,第一反射凸起结构330A与第二反射凸起结构330B彼此沿一列方向上(例如图3B所示的垂直方向)互为镜像。换句话说,正三角形的第二反射凸起结构330B是正三角形的第一反射凸起结构330A的一镜像形状。第一反射凸起结构330A具有第一开口335A,而第二反射凸起结构330B具有第二开口335B,以分别暴露背板,这使得第一红色发光二极管340A设置在位于第一开口335A之内的发光二极管区域338A。第一开口335A的形状与第二开口335B的形状也可以是正三角形,并且第一开口335A的正三角形与第二开口335B的正三角形彼此沿一列方向上(例如图3B所示的垂直方向)互为镜像。
回去参照图3A,对于在像素结构320内的每一个红像素、绿像素以及蓝像素,子像素部分的排列方式是相似于如图3B所示的红像素320R。换句话说,对于在像素结构320内的每一个像素,第一开口335A的正三角形与第二开口335B的正三角形彼此沿一相同的列方向上(例如图3B所示的垂直方向)互为镜像。
图3C根据本发明的一实施方式示例地绘示如图3B所示的红像素320R沿线段A-A的横截面图。应留意到,图3C的横截面图展示第二子像素部分320B 的横截面,此横截面为垂直于背板310且与第二发光二极管340B交错。因为第一子像素部分320A是第二子像素部分320B的镜像,第一子像素部分320A的细节将会相似于第二子像素部分的横截面,因此在此不再详细说明。
如图3C所绘示,第二反射凸起结构330B具有二个第一侧壁332,二个第一侧壁332对称地位于第二开口335B的两侧。每一个第一侧壁332自背板310向外倾斜延伸,因而于背板310与每一个第一侧壁332之间定义出一锐角α。在一些特定的实施方式中,锐角α的范围是介于20度与80度之间。在一实施方式中,锐角α是68度。第二发光二极管340B位于二个第一侧壁332之间,而第二发光二极管340B至每一个第一侧壁332的距离为距离d。第二发光二极管340B的高度为高度h,而第二反射凸起结构330B的高度是高度H。在一些特定的实施方式中,高度H大于1.5倍的高度h(也就是H>1.5*h)。在这样的结构设计下,第二发光二极管340B与第二反射凸起结构330B可以具有更好的光学效果。
图3D根据本发明的一些特定的实施方式绘示如图3B所示的红像素320R的第一开口335A的形状。应留意到,图3D为展示第一开口335A对应发光二极管区域338A的形状。因为第二开口335B是第一开口335A的镜像结构,而第二开口335B与对应的发光二极管区域338B的形状已见于图3D,因此在此不再详细说明。如图3D所示,发光二极管区域338A的形状是第一开口335A的正三角形的相似三角形。特别的是,第一开口335A具有正三角形PQR,而发光二极管区域338A具有相似正三角形P’Q’R’。在这样的例子下,发光二极管区域338A的相似正三角形的顶点P’、Q’与R’,是位于第一开口335A的正三角形的顶点P、Q与R,以及第一开口335A的正三角形的重心C的连接中线的中点。所以,对于连接重心C至第一开口335A的正三角形的顶点P中线的连接中线,发光二极管区域338A的相似正三角形的顶点P’位于此连接中线的中点。换句话说,顶点P至重心C的长度为长度L,则自顶点P至顶点P’的长度为L/2。因此,第一发光二极管340A可以位于发光二极管区域338A,而发光二极管区域338A区域为相似三角形P’Q’R’所包围。在一些特定的实施方式中,举例来说,第一发光二极管340A可以位于第一开口335A的正三角形的重心C。
图3E根据本发明的一些特定的实施方式绘示如图3B所示的像素的光强 度的角分布。如图3E所示,借由红像素320R的反射罩结构的调整,相较于如图1B所示的光强度的角分布,在每一个方向上的垂直可视角度(及角度为0度)的亮度增加。
如前述所讨论,第一反射凸起结构330A与第二反射凸起结构330B借由高光反射材料形成。在一些特定的实施方式中,于第一反射凸起结构330A与第二反射凸起结构330B之上可以形成金属反射层。举例来说,图3F根据本发明的另一实施方式示意地绘示如图3B所示的像素沿线段A-A的横截面图。具体而言,图3F的横截面不同于图3C的横截面的地方,在于图3F存在设置于第二反射凸起结构330B之上金属层350,这使得二个第一侧壁332’由金属层350所形成。图3F横截面中出现的其他结构与图3C的横截面相同,因此在此不再详细说明。
如前述所讨论,第一开口335A形状是正三角形,而为第一开口335A的镜像结构的第二开口335B,其形状也是正三角形。所以,如图3A所示,对于像素结构320中所有的像素,对应到的第一开口与第二开口皆为正三角形。换句话说,像素结构320中所有像素的第一开口的形状都是相同的。
在如图3B所示的实施方式中,第一反射凸起结构330A与第二反射凸起结构330B是彼此分离的。在一些特定的实施方式中,第一反射凸起结构330A与第二反射凸起结构330B可以彼此连接,这使得第一开口335A与第二开口335B彼此更为靠近。在一些特定的实施方式中,图4根据本发明的另一实施方式绘示如图3A所示的像素的示意图。如图4所示,第一反射凸起结构330A’与第二反射凸起结构330B’彼此连接。具体而言,图4所示的像素400与图3A所示的像素的差异,在于第一开口335A与第二开口335B并非分开的开口。换句话说,第一开口335A与第二开口335B共同形成一个开口。像素的其他结构,包括发光二极管区域338A与338B,以及发光二极管340A与340B,皆相同如图3B所示的红像素320R中具有相同参考标号的对应结构,因此在此不再详细说明。
在如图3A所示的实施方式中,对于在像素结构320中的全部像素,包含红像素、绿像素与蓝像素,每一个像素的第一开口与第二开口设置为以沿相同的列方向彼此互为镜像,如图3B所示。然而,因为每一个像素的第一开口与第二开口的正三角形,每一个像素的第一开口与第二开口的镜像方向将会变 化。举例来说,图5A与图5B根据本发明的两个实施方式绘示两个像素的开口的示意图。如图5A所示,第一开口510与第二开口520沿向右倾斜的方向彼此互为镜像。如图5B所示,第一开口530与第二开口540沿向左倾斜的方向彼此互为镜像。应留意到,像素的不同排列方式不会显著地改变像素光强度的角分布。换句话说,若像素的第一开口与第二开口的位置是以如图5A或是图5B的方式做排列,则如图3B所示像素的光强度的角分布能够保持相同。
图6根据本发明的一些特定的实施方式绘示发光二极管显示面板的像素结构的示意图。如图6所示,发光二极管显示面板600包含背板610与设置于背板610之上的像素结构620。具体而言,图6所示的像素结构620与图3A所示的像素结构320的差异,存在于镜像方向上,而这个镜像方向是第一开口与第二开口的镜像方向。特别的是,如图6所示,像素结构620的像素是排列在一顶列与一底列。在顶列,相似于图5A,每一个像素以向右倾斜的方式排列;而在底列,相似于图5B,每一个像素以向左倾斜的方式排列。换句话说,对于在同一列的每一个像素,每一个像素的第一开口与第二开口的镜像方向是相同的,但两相邻列的镜像方向则彼此不同。此外,如图6所示,对于顶列的红像素620R,在底列与之相邻的像素是蓝像素,这使得在像素结构620中,任何两相邻像素是不同颜色的像素。换句话说,在像素结构620中,任意两相邻像素发出不同波长的光(也就是不同颜色的光)。
在如图3A与图3B所示的实施方式中,每一个像素的第一开口与第二开口是正三角形。在一些特定的实施方式中,每一个像素的第一开口与第二开口的形状可以改变为等腰三角形(isosceles triangle),而这样的等腰三角形允许像素结构320中像素的排列基本上是相似的。举例来说,图7A根据本发明的一实施方式绘示像素的示意图,而图7B绘示图7A的第一子像素部分。如图7A与图7B所示,像素700包含两个子像素部分700A与700B,两个子像素部分700A与700B彼此互为镜像。而应留意到,因为两个子像素部分700A与700B的位置不同,第一反射凸起结构730A与第二反射凸起结构730B可以是分开的结构。此外,图7A所示的两个子像素部分700A与700B,与图3B所示的两个子像素部分320A与320B的唯一不同处,在于第一开口735A的三角形的底角具有夹角θ。夹角θ的值是可变的,使得第一开口735A的形状(以及对应的第二开口735B的镜像形状)为等腰三角形。当夹角θ是60度,第一开口735A 的形状是正三角形,而相同于图3B。因为形成的发光二极管区域738A的形状是第一开口735A的形状的相似三角形,发光二极管区域738A的形状基于夹角θ也将是可变的。类似的关系也对应到第二开口735B与其发光二极管区域738B。因此在一些特定的实施方式中,第一反射凸起结构730A也可以是可变的。像素700的其他结构,包括第一子像素部分700A的第一发光二极管740A,与另一子像素部分700B的发光二极管740B,皆相似于如图3B所示的对应的结构,因此在此不再详细说明。
图7C、图7D、图7E、图7F与图7G绘示如图7A所示的像素700的光强度的角分布。具体而言,图7C、图7D与图7E根据本发明不同实施方式分别绘示如图7B所示像素的光强度的角分布,这些不同实施方式对应到不同的夹角θ。特别的是,图7C绘示夹角θ为40度的光强度的角分布,图7D绘示夹角θ为50度的光强度的角分布,图7E绘示夹角θ为70度的光强度的角分布。在所有的例子中,像素的发光二极管到每一个对应的反射凸起结构的侧壁的距离,为保持在相同的距离d,如图3C所示。此外,图7F根据本发明的一些特定的实施方式绘示亮度对应如图7A所示的像素700的不同可视角的图表,其中图表中提供的亮度信息包括夹角θ为40度(对应图7C)、夹角θ为50度(对应图7D)、夹角θ为60度(对应图3E)与夹角θ为70度(对应图7E)的情况。对应地,相较于图7F所示的像素对应的信息,为了比较的目的,图7G绘示亮度对应第一子像素部分700A的图表。如图7C、图7D与图7E所示,借由像素320R的反射罩结构的调整,相较于图1B的光强度的角分布,于每个方向上在垂直可视角(也就是角度为0度)的情况时,亮度显著地增加。如图7F与图7G所示,在夹角θ为40度、50度或是60度的例子,像素的发光二极管的最亮可视角接近于垂直可视角(也就是角度为0度),并且在夹角θ为40度、50度或是70度的例子,在垂直可视角(也就是角度为0度)的亮度大约增加至80%,相对于图1C的65%亮度增加是显著的。
在如上所述的一些实施方式中,开口的形状都是正三角形或是等腰三角形。在一些特定的实施方式中,也可以使用其他的多边形作为开口的形状。举例来说,多边形可包括但不限于三角形、平行四边形、梯形、不规则梯形或四边形,只要每个多边形的至少两个角为小于90°的夹角。
图8A、图8B、图8C、图8D、图9、图10与图11根据本发明的一些不 同的实施方式绘示发光二极管显示面板的像素结构。为了简单说明的目的,每一张附图紧绘示像素结构而未绘示出相对应的背板。此外,对于像素结构中的每一个像素,仅绘示出开口的形状以表示像素,而没有绘示出反射凸起结构与像素的发光二极管。
如图8A所示,在像素结构800中,每一个像素由二个开口所形成,二个开口是以直角三角形的形状沿着行方向(如图8A所示的垂直方向)彼此互为镜像。此外,红像素820R的第一开口与相邻的绿像素的第一开口一起形成一个正方形。在这样的例子,在像素结构800中每一个像素的尺寸与形状是相似的。
如图8B所示,像素结构800’相似于图8A所示的像素结构800,而具有略为不同的排列方式。具体而言,如图8B所示的像素结构800’,仅有部分的像素是以二个开口所形成,其中二个开口是以直角三角形的形状沿着行方向(如图8B所示的垂直方向)彼此互为镜像。一些其他的像素,例如绿像素820G与蓝像素820B,是以沿各别的倾斜方向彼此互为镜像的二个直角三角形的开口形成,使得每一个绿像素820G与蓝像素820B是正方形。在这样的例子,像素结构800’中的每一个像素的形状彼此是不相同的。
如图8C所示,像素结构800”相似于图8B所示的像素结构800’,仅有红像素820R是以沿行方向(如图8C所示的垂直方向)彼此互为镜像的二个直角三角形的开口所形成。一些其他的绿像素820G与蓝像素820B,是以沿各别的倾斜方向彼此互为镜像的二个直角三角形的开口形成,这相似于如图8B所示的绿像素820G与蓝像素820B,使得每一个绿像素820G与蓝像素820B是正方形形状。此外,一些其他的绿像素820G’与蓝像素820B’,是以沿各别的对角线方向彼此互为镜像的二个直角三角形的开口形成,使得绿像素820G’与蓝像素820B’形成对角锯齿形状。在这样的例子下,像素结构800”中的每一个像素的形状彼此是不相同的。此外,绿像素的形状彼此不同,并且蓝像素的形状彼此不同。
如图8D所示,像素结构800”’相似于图8A所示的像素结构800,并更进一步具有不同的像素排列。具体而言,在如图8D所示的像素结构800”’中,取代以二个开口形成像素的作法,红像素820R’为由四个彼此互为镜像的直角三角形开口所形成,使得在一组红像素、绿像素与蓝像素中,红像素820R’与对应的绿像素及蓝像素一起形成一个正方形。在这样的例子下,像素结构 800”’中的每一个像素的形状彼此是不相同的,并且红像素的尺寸是大于绿像素与蓝像素的尺寸。
如图9所示,在像素结构900中,每一个像素为由二个沿行方向(如图9所示的垂直方向)彼此互为镜像的三角形所形成。然而,对于每一个像素,三角形的形状彼此并不相同。具体而言,对于红像素920R,三角形的形状是正三角形,而对于相邻红像素920R的蓝像素与绿像素,三角形是直角三角形,这使得一组红像素、绿像素与蓝像素的第一开口一起形成矩形。在这样的例子,在一组红像素、绿像素与蓝像素中,每一个像素的形状与尺寸彼此是不相同的。然而,所有红像素的第一开口的形状是相同的,所有绿像素的第一开口的形状是相同的,并且所有蓝像素的第一开口的形状是相同的。
如图10所示,在像素结构1000中,每一个像素为由二个沿行方向(如图10所示的垂直方向)彼此互为镜像的四边形所形成。然而,对于每一个像素,四边形的形状彼此并不相同。具体而言,对于红像素1020R,四边形的形状是等腰梯形,而对于相邻红像素1020R的蓝像素与绿像素,四边形是平行四边形,这使得一组红像素、绿像素与蓝像素的第一开口一起形成梯形。在这样的例子,在一组红像素、绿像素与蓝像素中,每一个像素的形状与尺寸彼此是不相同的。此外,红像素1020R(形状为等腰梯形)的第一开口的形状,不同于下一个红像素(形状为平行四边形)的第一开口的形状。换句话说,至少二个红像素的第一开口的形状是彼此不同的。相似地,至少二个绿像素的第一开口的形状是彼此不同的,并且至少二个蓝像素的第一开口的形状是彼此不同的。
如图11所示,在像素结构1100中,每一个像素为由二个三角形或是二个四边形的开口所形成。具体而言,对于像素结构1100中的每一个像素,二个开口不是镜像形状;取而代之的,二个开口彼此是180度的对称。此外,每一个像素的形状彼此不同。具体而言,对于红像素1120R,二个开口于三角形彼此是180度对称。对于绿像素,二个开口于梯形彼此是180度对称。对于蓝像素,二个开口于三角形彼此是180度对称。在这样的例子下,在像素结构1100中每一个像素的形状与尺寸彼此不同。此外,红像素1120R(形状为三角形)的第一开口的形状不同于下一个红像素(形状为梯形)的第一开口的形状。换句话说,至少二个红像素的第一开口的形状是彼此不同的。相似地,至少二个绿像素的第一开口的形状是彼此不同的,并且至少二个蓝像素的第一开口的形状是 彼此不同的。
在上述一些特定的实施方式中,像素的开口的形状与尺寸可以是彼此不同。在一些特定的实施方式中,像素的开口的形状与尺寸可以由像素的发光二极管的发光效率所决定。一般来说,发光二极管的发光效率可以基于发光的发光二极管的波长做变化。举例来说,红色发光二极管的发光效率一般而言是低于绿色发光二极管的发光效率,并且绿色发光二极管的发光效率是低于蓝色发光二极管的发光效率。为了补偿不同发光二极管之间发光效率的差异,可以调整像素的开口的尺寸差异。举例来说,图12A根据本发明的一实施方式绘示在发光二极管的一像素结构内红像素1200R、绿像素1200G与蓝像素1200B尺寸大小的示意图。如图12A所示,每一个红像素1200R、绿像素1200G与蓝像素1200B,是由像素的第一发光二极管与对应的第一开口表示,这些被绘示于一个三角形,并且第一发光二极管1220R、1220G与1220B的尺寸彼此相同。在尺寸彼此相同的第一发光二极管1220R、1220G与1220B的情况下,蓝像素1200B的第一开口1210B的尺寸与面积,是大于绿像素1200G的第一开口1210G的尺寸与面积以及红像素1200R的第一开口1210R的尺寸与面积,并且绿像素1200G的第一开口1210G的尺寸与面积是大于红像素1200R的第一开口1210R的尺寸与面积。
此外,在一些特定的实施方式中,像素的开口的尺寸可以由像素的发光二极管的照度所决定。一般来说,发光二极管的照度可以基于发光的发光二极管的波长做变化。举例来说,绿色发光二极管的照度一般来说显著地优于红色发光二极管与蓝色发光二极管的照度,并且红色发光二极管的照度略优于蓝色发光二极管的照度。为了补偿不同发光二极管之间照度的差异,可以调整像素的反射凸起结构的尺寸差异。举例来说,图12B根据本发明的另一实施方式绘示在发光二极管的一像素结构内红像素1200R’、绿像素1200G’与蓝像素1200B’尺寸大小的示意图。如图12B所示,每一个红像素1200R’、绿像素1200G’与蓝像素1200B’,是由像素的第一发光二极管与对应的第一开口表示,这些被绘示于一个三角形,并且第一发光二极管1220R’、1220G’与1220B’的尺寸彼此相同。在尺寸彼此相同的第一发光二极管1220R’、1220G’与1220B’的情况下,蓝像素1200B’的第一开口1210B’的尺寸与面积,是大于绿像素1200G’的第一开口1210G’的尺寸与面积以及红像素1200R’的第一开口1210R’ 的尺寸与面积,并且红像素1200R’的第一开口1210R’的尺寸与面积是大于绿像素1200G’的第一开口1210G’的尺寸与面积。
应留意到,在图12A与图12B中,并未绘示反射凸起结构。此外,如图12A与图12B所示的像素的第一开口的三角形,仅仅是提供用于说明的目的,而第一开口的形状是可以变化的。
此外,应特别留意到,对于每一个如图12A所示的第一开口1210R、1210G与1210B,以及对于每一个如图12B所示的第一开口1210R’、1210G’与1210B’,所述的第一开口的「尺寸」与「面积」,是参照于第一开口的底部的「尺寸」与「面积」,其中背板裸露。
此外,在如图8D所示的实施方式中,像素的开口的数量可以变化。具体而言,如图8D所示,红像素的开口的数量(在一组红像素、绿像素与蓝像素中有四个),是多于绿像素的开口的数量(在一组红像素、绿像素与蓝像素中有二个)以及蓝像素的开口的数量(在一组红像素、绿像素与蓝像素中有二个)。所以,像素的开口的数量,可以为了补偿不同发光二极管之间的发光效率或是照度而加以调整。在一些特定的实施方式中,为补偿发光二极管之间发光效率的不同,红像素的开口的数量可以多于绿像素的开口的数量与蓝像素的开口的数量,并且绿像素的开口的数量可以多于蓝像素的开口的数量。在一些特定的实施方式中,为补偿发光二极管之间照度的不同,绿像素的开口的数量可以多于红像素的开口的数量与蓝像素的开口的数量,并且红像素的开口的数量可以多于蓝像素的开口的数量。
应留意到,在上述每一个实施方式中,发光二极管显示面板可以包括其他的结构。举例来说,发光二极管显示面板可以包括一或多个驱动器,以驱动在像素结构中一或多个对应的像素。举例来说,图13A根据本发明的一些特定的实施方式绘示如图3A所示的像素结构内,驱动集成电路与像素的示意图,而图13B根据本发明的一些特定的实施方式绘示如图6所示的像素结构内,驱动集成电路与像素的示意图。如图13A所示,发光二极管显示面板1300包括驱动集成电路1310,驱动集成电路1310通过多根信号线1320连接至像素。具体而言,对于每一个像素,驱动集成电路1310通过相同的信号线1320连接至相通像素的二个子像素。举例来说,对于红像素320R,驱动集成电路1310借由相同的信号线1320连接至相同红像素的二个子像素。相似地,如图13B 所示,发光二极管显示面板1300’包括驱动集成电路1310,驱动集成电路1310通过多根信号线1320连接至像素。因为如图13B所示的发光二极管显示面板1300’的像素排列不同于图13A所示的发光二极管显示面板1300的像素排列,信号线1320的排列也会有所不同。
在一些特定的实施方式中,发光二极管显示面板的驱动器可以是由一个主动矩阵(active)的多个驱动器所形成。举例来说,图14A根据本发明的一些特定的实施方式绘示如图3A所示的像素结构内,主动矩阵层与像素排列的示意图,而图14B与图14C绘示主动驱动单元与对应像素的二个例子。如第14A所示,发光二极管显示面板1400包括主动矩阵,主动矩阵包括多个驱动单元1410。每一个驱动单元1410形成于主动驱动层内的主动矩阵之上,以驱动对应的像素。因为每一个像素包括二个沿行方向上彼此互为镜像的子像素部分,每一个驱动单元1410可以是如图14B与第14C如所示的矩形,使得驱动单元1410可以一对一对应到像素。换句话说,每一个驱动单元1410可以是不同于对应像素的第一开口与第二开口的三角形组合的形状。
图15A根据本发明的一些特定的实施方式绘示如图8A所示的像素结构内,主动矩阵层与像素排列的示意图,而图15B根据本发明的一些特定的实施方式绘示如图15A所示的驱动单元的示意图。如图15A与图15B所示,在发光二极管显示面板1500中,驱动单元1510、1520与1530对应到对应像素的形状。具体而言,驱动单元1510是一个三角形,并且驱动单元1520与1530分别是两个三角形组合的形状。
图15C根据本发明的一些特定的实施方式绘示如图8B所示的像素结构内,主动矩阵层与像素排列的示意图,而图15D根据本发明的一些特定的实施方式绘示如图15C所示的驱动单元的示意图。如图15C与图15D所示,在发光二极管显示面板1500’中,驱动单元1510、1520、1530、1540、1550与1560对应到对应像素的形状。具体而言,驱动单元1510与1540是三角形,驱动单元1520与1530分别是二个三角形组合的形状,而驱动单元1550与1560分别是正方形。
在一些特定的实施方式中,用于发光二极管显示面板的发光二极管的尺寸与形状是可以变化的。一般来说,基于发光二极管的P-N结构,发光二极管可以分类为水平发光二极管、垂直发光二极管或是倒装芯片发光二极管(flip chip  LED)。
图16A根据本发明的一些特定的实施方式绘示水平发光二极管的示意图。如图16A所示,在水平发光二极管结构1600中,发光二极管1620形成于背板1610之上,其中P-N接面1630提供作为主动层。P导线1650连接至发光二极管1620的P电极(例如阳极),而N导线1660连接至发光二极管1620的N电极(例如阴极)。绝缘层1640覆盖发光二极管1620与N导线1660,而P导线1650通过形成于绝缘层1640的开孔1655连接至发光二极管1620的P电极。
图16B根据本发明的一些特定的实施方式绘示垂直发光二极管的示意图。具体而言,如图16B所示的垂直发光二极管结构1600’,具有于如图16A所示的水平发光二极管结构1600内相似的元件,但元件的形状与位置安排不同。如图16B所示,在垂直发光二极管结构1600’中,发光二极管1620’形成于背板1610之上,其中P-N接面1630’提供作为主动层。P导线1650’连接至发光二极管1620’的P电极(例如阳极),而N导线1660’连接至发光二极管1620’的N电极(例如阴极)。绝缘层1640’覆盖发光二极管1620’与N导线1660’,而P导线1650’通过形成于绝缘层1640’的开孔1655’连接至发光二极管1620’的P电极。
图16C根据本发明的一些特定的实施方式绘示倒装芯片发光二极管的示意图。具体而言,如图16C所示的倒装芯片发光二极管结构1600”,具有于如图16A所示的水平发光二极管结构1600内相似的元件,但元件的形状与位置安排不同。如图16C所示,在倒装芯片发光二极管结构1600”中,发光二极管1620”形成于背板1610之上,其中P-N接面1630”提供作为主动层。P导线1650”连接至发光二极管1620”的P电极(例如阳极),而N导线1660”连接至发光二极管1620”的N电极(例如阴极)。应留意到,相较于如图16A所示的发光二极管1620与如图16B所示的发光二极管1620’,如图16C所示的发光二极管1620”倒置,使得P电极位置靠近于背板,因此形成「倒装芯片」结构。在这样的例子,不需要绝缘层覆盖发光二极管1620”,因为P导线1650”与N导线1660”延伸朝向发光二极管1620”的不同侧。
当然,本发明还可有其它多种实施例,在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员当可根据本发明作出各种相应的改变和变形,但 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业应用性
采用本发明的发光二极管显示面板,具有以下有益效果:
发光二极管显示面板的发光二极管可被调整为朝向不同的可视角发光,以及若其中一发光二极管功能发生异常,使用者不易察觉由该发光二极管所造成的异常。

Claims (19)

  1. 一种发光二极管显示面板,其特征在于,包含:
    一背板;以及
    一像素结构,包含多个像素,其中每一个该像素包含:
    一反射罩结构,设置于该背板上,其中该反射罩结构具有一第一反射凸起结构与一第二反射凸起结构,该第一反射凸起结构具有一第一开口,该第二反射凸起结构具有一第二开口,其中该第一开口具有一第一形状,该第二开口具有一第二形状,并且该第二形状是该第一形状的一镜像或是该第一形状的180度对称形状;以及
    一第一发光二极管与一第二发光二极管,设置于该背板上并发出一相同的颜色,其中该第一发光二极管设置于该第一反射凸起结构的该第一开口内,并且该第二发光二极管设置于该第二反射凸起结构的该第二开口内;
    其中对于每一个该像素,该第一形状是一多边形,并且该第一形状至少二个角为小于90度的夹角。
  2. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一开口与该第二开口设置为沿一相同方向上彼此互为镜像。
  3. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于在一第一行的每一个该像素,该第一开口与该第二开口设置为沿一第一方向上彼此互为镜像,并且对于在相邻于该第一行的一第二行的每一个该像素,该第一开口与该第二开口沿不同于该第一方向的一第二方向上彼此互为镜像。
  4. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一开口的该第一形状是一三角形。
  5. 如权利要求4所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一发光二极管设置于该第一开口的一发光二极管区域内,该发光二极管区域内具有相似于该第一形状的三角形的一相似三角形,并且该发光二极管区域内的该相似三角形的顶点位于连接该第一形状的顶点至该第一形状的重心的中线的中点。
  6. 如权利要求5所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一发光二极管位于该第一形状的重心,而该第二发光二极管位 于该第二形状的重心。
  7. 如权利要求4所述的发光二极管显示面板,其特征在于,其中全部像素的该第一开口的该第一形状是相同的。
  8. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一开口的该第一形状是一平形四边形或是一梯形。
  9. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一反射凸起结构具有二个第一侧壁,该二个第一侧壁位于该第一开口的两侧,并且沿着垂直于该背板并与该第一发光二极管交叉的一截面,每一个该第一侧壁从该背板向外倾斜地延伸,以于该背板与每一个该第一侧壁之间定义一锐角α,其中该锐角α的范围介于20度与80度之间。
  10. 如权利要求1所述的发光二极管显示面板,其特征在于,其中该多个像素包含多个红像素、多个绿像素以及多个蓝像素。
  11. 如权利要求10所述的发光二极管显示面板,其特征在于,其中每一个该蓝像素的该第一开口的该区域大于每一个该红像素的该第一开口的该区域,并且每一个该蓝像素的该第一开口的该区域大于每一个该绿像素的该第一开口的该区域。
  12. 如权利要求11所述的发光二极管显示面板,其特征在于,其中每一个该红像素的该第一开口的该区域大于每一个该绿像素的该第一开口的该区域。
  13. 如权利要求11所述的发光二极管显示面板,其特征在于,其中每一个该绿像素的该第一开口的该区域大于每一个该红像素的该第一开口的该区域。
  14. 如权利要求10所述的发光二极管显示面板,其特征在于,其中该多个红像素的该第一开口的该第一形状是相同的,该多个绿像素的该第一开口的该第一形状是相同的,以及该多个蓝像素的该第一开口的该第一形状是相同的。
  15. 如权利要求10所述的发光二极管显示面板,其特征在于,其中至少二个该红像素的该第一开口的该第一形状彼此不同,至少二个该绿像素的该第一开口的该第一形状彼此不同,至少二个该蓝像素的该第一开口的该第一形状彼此不同。
  16. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于每一个该像素,该第一反射凸起结构与该第二反射凸起结构是彼此连接。
  17. 如权利要求1所述的发光二极管显示面板,其特征在于,其中对于每 一个该像素,该第一反射凸起结构与该第二反射凸起结构是彼此分离。
  18. 如权利要求1所述的发光二极管显示面板,其特征在于,更包含一主动驱动层,该主动驱动层具有多个驱动单元,其中每一个该驱动单元配置以驱动其中一个对应的像素,并且每一个该驱动单元具有一形状,该形状不同于该其中一个相应像素的该第一开口的该第一形状以及该第二开口的该第二形状之间的组合。
  19. 如权利要求18所述的发光二极管显示面板,其特征在于,其中每一个该驱动单元的该形状是一矩形、一正方形、一三角形或其组合。
PCT/CN2020/076916 2019-04-23 2020-02-27 发光二极管显示面板 WO2020215887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/392,034 US10950175B1 (en) 2019-04-23 2019-04-23 Pixel arrangement and reflector structure of LED display and method of forming same
US16/392,034 2019-04-23

Publications (1)

Publication Number Publication Date
WO2020215887A1 true WO2020215887A1 (zh) 2020-10-29

Family

ID=71811687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/076916 WO2020215887A1 (zh) 2019-04-23 2020-02-27 发光二极管显示面板

Country Status (6)

Country Link
US (1) US10950175B1 (zh)
JP (1) JP6955051B2 (zh)
CN (1) CN111490039B (zh)
SG (1) SG10201910377TA (zh)
TW (1) TWI730597B (zh)
WO (1) WO2020215887A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11500433B2 (en) * 2020-01-14 2022-11-15 Au Optronics Corporation Flexible electronic device
CN113823193B (zh) * 2021-10-15 2023-09-29 京东方科技集团股份有限公司 一种柔性显示屏、车灯及汽车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103762224A (zh) * 2014-01-29 2014-04-30 京东方科技集团股份有限公司 有机电致发光显示面板
US9466815B2 (en) * 2013-08-08 2016-10-11 Samsung Display Co., Ltd. Organic light emitting diode display
JP2017187710A (ja) * 2016-04-08 2017-10-12 三菱電機株式会社 表示装置
CN107910346A (zh) * 2017-10-24 2018-04-13 上海天马微电子有限公司 微发光二极管显示面板以及显示装置
CN108257949A (zh) * 2018-01-24 2018-07-06 福州大学 可实现光效提取和色彩转换微米级led显示装置及制造方法
CN208570613U (zh) * 2018-09-05 2019-03-01 广东聚华印刷显示技术有限公司 像素结构与显示器件

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196637A (ja) * 2000-01-11 2001-07-19 Toyoda Gosei Co Ltd 発光装置
KR100634508B1 (ko) * 2004-07-23 2006-10-16 삼성전자주식회사 평면표시장치의 화소구조
JP2007173397A (ja) * 2005-12-20 2007-07-05 Matsushita Electric Ind Co Ltd 発光モジュールとこれを用いた表示装置及び照明装置
TWI378573B (en) * 2007-10-31 2012-12-01 Young Lighting Technology Corp Light emitting diode package
KR100985956B1 (ko) * 2010-05-13 2010-10-06 이두환 전 개구 발광 구조의 엘이디 반사판
JP2012034849A (ja) * 2010-08-06 2012-02-23 Okumura Yu-Ki Co Ltd ドットマトリクス表示器
WO2012073778A1 (ja) 2010-11-30 2012-06-07 シャープ株式会社 照明装置、表示装置及びテレビ受信装置
TWI451605B (zh) * 2011-03-08 2014-09-01 Lextar Electronics Corp 具有金屬反射面與散熱塊之發光二極體結構
TWI567454B (zh) 2011-11-15 2017-01-21 友達光電股份有限公司 面光源及使用其之背光模組
JP2013171874A (ja) * 2012-02-17 2013-09-02 Nk Works Kk 反射板アレイ、及びこれを備えた光照射装置
CN104037199B (zh) 2013-12-31 2017-06-20 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
TWI550847B (zh) * 2014-04-23 2016-09-21 財團法人工業技術研究院 畫素結構及具有其之電激發光顯示器
CN104576696B (zh) * 2014-12-22 2017-12-19 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
CN104716163B (zh) * 2015-03-26 2018-03-16 京东方科技集团股份有限公司 像素结构以及显示基板和显示装置
US9837473B2 (en) * 2015-04-29 2017-12-05 Lg Display Co., Ltd. Organic light emitting diode display
KR20160129688A (ko) * 2015-04-29 2016-11-09 엘지디스플레이 주식회사 유기발광 다이오드 표시장치
TWI588985B (zh) 2016-04-22 2017-06-21 友達光電股份有限公司 微型發光二極體結構及其畫素單元與發光二極體顯示面板
US10304375B2 (en) 2016-09-23 2019-05-28 Hong Kong Beida Jade Bird Display Limited Micro display panels with integrated micro-reflectors
CN206349366U (zh) 2016-12-27 2017-07-21 霸州市云谷电子科技有限公司 像素结构
KR20180076813A (ko) 2016-12-28 2018-07-06 엘지디스플레이 주식회사 전계 발광 표시 장치
US20200098957A1 (en) * 2017-01-18 2020-03-26 Cree Huizhou Solid State Lighting Company Ltd. Multiple led light source lens design in an integrated package

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9466815B2 (en) * 2013-08-08 2016-10-11 Samsung Display Co., Ltd. Organic light emitting diode display
CN103762224A (zh) * 2014-01-29 2014-04-30 京东方科技集团股份有限公司 有机电致发光显示面板
JP2017187710A (ja) * 2016-04-08 2017-10-12 三菱電機株式会社 表示装置
CN107910346A (zh) * 2017-10-24 2018-04-13 上海天马微电子有限公司 微发光二极管显示面板以及显示装置
CN108257949A (zh) * 2018-01-24 2018-07-06 福州大学 可实现光效提取和色彩转换微米级led显示装置及制造方法
CN208570613U (zh) * 2018-09-05 2019-03-01 广东聚华印刷显示技术有限公司 像素结构与显示器件

Also Published As

Publication number Publication date
SG10201910377TA (en) 2020-11-27
CN111490039B (zh) 2022-03-01
TWI730597B (zh) 2021-06-11
US10950175B1 (en) 2021-03-16
TW202040547A (zh) 2020-11-01
CN111490039A (zh) 2020-08-04
JP6955051B2 (ja) 2021-10-27
JP2020181192A (ja) 2020-11-05

Similar Documents

Publication Publication Date Title
JP6741649B2 (ja) シリコン上のカラーiledディスプレイ
US11195970B2 (en) Light emitting diode panel and tiling display apparatus
US11871637B2 (en) Display device having lens corresponding to pixel, and electronic apparatus
US20200358036A1 (en) Display device and electronic apparatus
WO2021258489A1 (zh) 显示面板及显示装置
WO2020215887A1 (zh) 发光二极管显示面板
US10930712B2 (en) Irregularly-shaped flat-panel display having irregularly-shaped pixels
KR20190027986A (ko) 표시 장치
US20220328795A1 (en) Display device and electronic apparatus
TWI578579B (zh) 發光裝置、顯示單元及影像顯示裝置
TW201921330A (zh) 子顯示器和由子顯示器製造的拼裝顯示器
KR102392020B1 (ko) 유기전계발광 표시장치
US11342538B2 (en) Organic EL display device having reflection transmission portion, and electronic apparatus
US11539034B2 (en) Display device and electronic apparatus having lenses disposed correspondingly to respective pixel electrodes
KR20220030052A (ko) 디스플레이 장치
TWI572062B (zh) 發光元件及顯示裝置
US20230056073A1 (en) Optical device
US20240113266A1 (en) Display device
WO2023226019A1 (zh) 发光基板及其制备方法、显示装置
JP2022046698A (ja) 表示装置、および電子機器
TW202418972A (zh) 無機發光二極體顯示器
CN113871441A (zh) 显示面板
JP2004264370A (ja) Ledユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20796037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20796037

Country of ref document: EP

Kind code of ref document: A1