WO2020215790A1 - 一种用于金属有机物化学气相沉积的承载盘 - Google Patents

一种用于金属有机物化学气相沉积的承载盘 Download PDF

Info

Publication number
WO2020215790A1
WO2020215790A1 PCT/CN2019/129974 CN2019129974W WO2020215790A1 WO 2020215790 A1 WO2020215790 A1 WO 2020215790A1 CN 2019129974 W CN2019129974 W CN 2019129974W WO 2020215790 A1 WO2020215790 A1 WO 2020215790A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
sub
tray
plate
epitaxial wafer
Prior art date
Application number
PCT/CN2019/129974
Other languages
English (en)
French (fr)
Inventor
彭泽滔
万玉喜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19926234.6A priority Critical patent/EP3907308A4/en
Publication of WO2020215790A1 publication Critical patent/WO2020215790A1/zh
Priority to US17/404,197 priority patent/US20210384065A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4584Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/12Substrate holders or susceptors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68771Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof

Definitions

  • MOCVD Metal Organic Chemical Vapor Deposition
  • LED Light Emitting Diode
  • MOCVD includes a wafer carrier, on which multiple carrier sub-disks are distributed.
  • the carrier sub-tray is used to place the epitaxial wafer substrate.
  • the LED epitaxial growth process using MOCVD is generally: the epitaxial wafer substrate is placed on the carrier sub-disk, the substrate and the carrier sub-disk are heated to 500°C-1200°C by resistance wire or radio frequency, and the organic source is passed through the carrier gas H 2 , N 2 etc. are brought into the reaction chamber and grown on the epitaxial wafer substrate to form a thin film.
  • the size of epitaxial wafer substrates is getting larger and larger (6 inches, 8 inches and 12 inches), thereby increasing the stress and warpage of the epitaxial wafer.
  • the stress and warpage of the epitaxial wafer increase, the crystal quality of the flat edges and edges of the epitaxial wafer is greatly affected.
  • the embodiment of the present application provides a carrier plate for metal organic chemical vapor deposition, which can be used to improve the crystal quality of the flat or edge of an epitaxial wafer.
  • an embodiment of the present application provides a carrier plate for metal organic chemical vapor deposition, including: at least one carrier sub-tray, in a groove structure, for placing an epitaxial wafer substrate;
  • the first space in the sub-tray is filled with a first thermally conductive material, and the first space is when the epitaxial wafer substrate is placed on the carrier sub-tray, the flat side and the entire surface of the epitaxial wafer substrate.
  • the space between the side walls of the supporting sub-disk; the thermal conductivity of the first thermally conductive material is not lower than the thermal conductivity of the supporting sub-disk.
  • the height of the first thermally conductive material filled in the first space is not higher than the height of the side wall of the supporting sub-tray.
  • the material of the supporting sub-disk is graphite;
  • the first heat conducting material is any one or a combination of at least two of the following:
  • the selected first thermal conductive material can improve the heat radiation heating effect of the flat edge of the epitaxial wafer substrate, improve the crystal quality of the flat edge of the epitaxial wafer, and thereby improve The overall yield of the epitaxial wafer.
  • the bearing sub-tray has a side wall with a higher thermal conductivity than the bottom wall of the bearing sub-tray.
  • the heat radiation heating effect at the edge of the epitaxial wafer substrate can be improved, and the temperature at the edge of the epitaxial wafer substrate can be compensated, thereby suppressing defects such as black spots, fog edges, and cracks on the edge of the epitaxial wafer
  • the generation of improves the crystal quality at the edge of the epitaxial wafer, thereby increasing the overall yield of the epitaxial wafer.
  • the material of the bottom wall of the supporting sub-tray is graphite; the material of the side wall of the supporting sub-tray is graphene.
  • the selected first thermally conductive material can improve the heat radiation heating effect at the flat edge of the epitaxial wafer substrate, and improve the crystal quality of the flat edge of the epitaxial wafer. Thereby improving the overall yield of epitaxial wafers.
  • the sidewall of the supporting sub-tray includes a first layer and a second layer, and the second layer has a high thermal conductivity The thermal conductivity of the bottom wall of the carrier sub-tray.
  • the side wall of the carrier sub-tray includes a high thermal conductivity layer with a higher thermal conductivity than the bottom wall of the carrier sub-tray, which can improve the heat radiation heating effect at the edge of the epitaxial wafer substrate and compensate for the epitaxial wafer The temperature at the edge of the substrate.
  • the second layer is composed of a second thermally conductive material attached to the inner periphery of the first layer, and The thermal conductivity of the second thermal conductive material is higher than the thermal conductivity of the bottom wall of the supporting sub-tray.
  • the second layer is formed by attaching the second thermally conductive material to the inner circumference of the first layer.
  • the process flow is simple and easy to operate; and it can be modified on the basis of the existing carrier sub-disk to obtain compensation
  • the temperature of the edge position of the epitaxial wafer substrate is required to carry the sub-tray.
  • the material of the second layer is graphene
  • the material of the first layer is graphite
  • the carrier The material of the bottom wall of the pan is graphite
  • the material of the second layer is selected, which can improve the heat radiation heating effect at the edge of the epitaxial wafer substrate and improve the epitaxial wafer
  • the crystal quality at the edge of the wafer improves the overall yield of the epitaxial wafer.
  • the bearing plate is a large graphite plate
  • the bearing sub-plate is a small graphite plate arranged on the large graphite plate.
  • the diameter of the epitaxial wafer is greater than or equal to 6 inches.
  • the overall yield of large-sized epitaxial wafers can be improved.
  • a carrier plate for metal organic chemical vapor deposition including: at least one carrier sub-tray in a groove structure for placing an epitaxial wafer substrate; the carrier sub-tray has a thermal conductivity higher than The side wall of the bottom wall of the supporting sub-tray.
  • the selected first thermally conductive material can improve the heat radiation heating effect at the flat edge of the epitaxial wafer substrate, and improve the crystal quality of the flat edge of the epitaxial wafer. Thereby improving the overall yield of epitaxial wafers.
  • the side wall of the supporting sub-tray includes a first layer and a second layer, and the thermal conductivity of the second layer is higher than that of the bottom wall. coefficient.
  • the side wall of the carrier sub-tray includes a high thermal conductivity layer with a higher thermal conductivity than the bottom wall of the carrier sub-tray, which can improve the heat radiation heating effect at the edge of the epitaxial wafer substrate and compensate for the epitaxial wafer The temperature at the edge of the substrate.
  • the second layer is formed by attaching the second thermally conductive material to the inner circumference of the first layer.
  • the process flow is simple and easy to operate; and it can be modified on the basis of the existing carrier sub-disk to obtain compensation
  • the temperature of the edge position of the epitaxial wafer substrate is required to carry the sub-tray.
  • the bearing plate is a graphite plate
  • the bearing sub-plate is a groove on the graphite plate
  • the The second thermal conductive material is graphene
  • the filling of the second thermal conductive material can be facilitated, the production efficiency is improved, and the process flow is simple; and for the material of the carrier sub-disk, the second layer of material is selected to increase the heat at the edge of the epitaxial wafer substrate.
  • the radiant heating effect improves the crystal quality at the edge of the epitaxial wafer, thereby increasing the overall yield of the epitaxial wafer; and the second thermally conductive material fills the gap between the carrier sub-plate and the epitaxial wafer substrate, making the epitaxial wafer
  • the substrate is more stable in the carrier sub-disk, which reduces the risk of flying chips due to the rotation of the carrier or the centrifugal force generated by the rotation of the carrier sub-disk.
  • the material of the second layer is graphene
  • the material of the first layer is graphite
  • the carrier The material of the bottom wall of the pan is graphite.
  • the material of the second layer is selected, which can improve the heat radiation heating effect at the edge of the epitaxial wafer substrate and improve the epitaxial wafer
  • the crystal quality at the edge of the wafer improves the overall yield of the epitaxial wafer.
  • the first space in the carrier sub-disk is filled with a first thermally conductive material, and the first space is when the carrier sub-disk is placed When there is the epitaxial wafer substrate, the space between the flat side of the epitaxial wafer substrate and the side wall of the carrier sub-disk; the thermal conductivity of the first thermally conductive material is not lower than that of the carrier sub-disk The thermal conductivity.
  • the heat radiation heating effect at the flat edge of the epitaxial wafer substrate can be improved, and the temperature at the flat edge of the epitaxial wafer substrate can be compensated, thereby suppressing black spots, fog edges, and cracks on the edge of the epitaxial wafer
  • the occurrence of defects improves the crystal quality of the flat edge of the epitaxial wafer, thereby increasing the overall yield of the epitaxial wafer.
  • the height of the first thermally conductive material filled in the first space is not higher than the height of the side wall of the supporting sub-tray .
  • the material of the supporting sub-disk is graphite;
  • the first thermal conductive material is any one or at least two of the following The combination:
  • the bearing plate is a large graphite plate
  • the bearing sub-plate is a small graphite plate arranged on the large graphite plate.
  • the diameter of the epitaxial wafer is greater than or equal to 6 inches.
  • FIG. 2 is a schematic diagram of the structure of a carrier plate provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the structure of a bearing sub-disk provided by an embodiment of the application.
  • FIG. 4 is a schematic structural diagram of a bearing sub-disk provided by an embodiment of the application.
  • FIG. 5 is a schematic structural diagram of a bearing sub-disk provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of a bearing sub-disk provided by an embodiment of the application.
  • Carrying tray 101. Axle hole, 102. Carrying sub-tray, 103. Epitaxial wafer substrate, 104. First space, 1021. Carrying sub-tray bottom wall, 1022. Carrying sub-tray side wall, 10221. The first layer, 10222. The second layer.
  • Figure 1 shows a carrier plate for metal organic chemical vapor deposition.
  • the center of the carrier plate is a shaft hole 101.
  • the carrier plate 100 can rotate at a high speed.
  • a plurality of bearing sub-disks 102 are distributed on the bearing plate 100, and the plurality of bearing sub-plates 102 are arranged on the bearing plate along a ring line.
  • the loop line passes through the center of each bearing sub-disk 102 and is in a concentric relationship with the outer periphery of the bearing disk.
  • the carrier sub-tray 102 has a groove structure for placing the epitaxial wafer substrate 103.
  • the carrier plate 100 itself can be a large graphite plate, and the carrier sub-plate 102 can be a small graphite plate. Both the large stone grinding disc and the small graphite disc are coated with silicon carbide material. During the epitaxial wafer growth process, the small graphite disk can rotate.
  • the warpage of the epitaxial wafer grown thereon is relatively large, which causes the edge of the epitaxial wafer to lift up to a certain height.
  • the temperature of the edge of the epitaxial wafer is lower than the temperature of the center of the epitaxial wafer, resulting in poor crystal quality at the edge of the epitaxial wafer and a large number of defects such as black spots, fog edges, and cracks.
  • the embodiment of the application provides a carrier plate for metal organic chemical vapor deposition.
  • the carrying tray includes at least one carrying sub tray 102.
  • the carrier sub-tray 102 has a groove structure for placing the epitaxial wafer substrate 103.
  • the supporting plate may be a graphite plate, and the supporting sub-plate 102 is a groove on the graphite plate.
  • the structure of the supporting sub-disk 102 is shown in FIG. 3, and it can be seen that the supporting sub-disk 102 is integrated.
  • the bearing sub-disk 02 can be excavated on the bearing disk by trenching.
  • the supporting sub-tray 02 has a bottom wall 1021 and a side wall 1022.
  • the supporting plate may also be a large graphite plate, and the supporting sub-plate 102 is a small graphite plate arranged on the large graphite plate. 4, it can be seen that the carrier sub-tray 102 and the carrier tray are independent of each other, and the carrier sub-tray 102 is located on the carrier tray. In an example, during epitaxial wafer growth, the carrier sub-disk 102 can rotate.
  • the first space 104 in any carrier sub-tray 102 is filled with a first thermally conductive material, and the first space 104 is when the carrier sub-tray 102 is placed with an epitaxial wafer substrate 103, The space between the flat side of the epitaxial wafer substrate 103 and the side wall of the carrier sub-disk 102; the thermal conductivity of the first thermally conductive material is not lower than the thermal conductivity of the carrier sub-disk 102.
  • the surface of the first space 104 facing the flat side of the epitaxial wafer substrate 103 is a plane, and the plane is perpendicular to the radial direction of the carrier disk.
  • the first space 104 may be located on the side of the bearing sub-disk 102 away from the shaft hole 101.
  • the height of the filled first thermally conductive material is not higher than the side wall of the bearing sub-disk 202.
  • the material of the bottom wall of the supporting sub-tray 102 may be graphite; the material of the side wall of the supporting sub-tray 102 is graphene.
  • the structure of the supporting sub-disk 102 may be as shown in FIG. 5.
  • the supporting sub-tray 102 includes a bottom wall 1021 and side walls.
  • the sidewall includes a first layer 10221 and a second layer 10222.
  • the second layer 10222 is composed of a second thermally conductive material attached to the inner circumference of the first layer 10221, and the thermal conductivity of the second thermally conductive material is higher than that of the bottom wall 1021 of the supporting sub-tray.
  • the second thermally conductive material may be attached to the inner periphery of the first layer 10221 by coating or bonding to form the second layer 10222.
  • the material of the carrier plate may be graphite, that is, the material of the bottom wall 1021 and the first layer 10221 may be graphite, and the material of the second layer 10222 may be graphene.
  • the surface of the bottom wall 1021 and the surface of the second layer 10222 are coated with silicon carbide to increase the strength and hardness, and can slow down gas corrosion.
  • the second layer 10222 is formed by filling the second space with a second thermally conductive material, and the filled second thermally conductive material is attached to the inner circumference of the first layer.
  • the layer is the original side wall of the supporting sub-disk 102.
  • the second layer 10221 is formed by filling the second heat-conducting material and the first layer forms a new side wall of the carrier sub-disk 102 together.
  • the thermal conductivity of the first layer bearing the sub-disk 102 and the bottom wall of the bearing sub-disk 102 are the same, and the thermal conductivity of the second thermally conductive material is higher than that of the bottom wall of the bearing sub-disk 102, so that the thermal conductivity of the new side wall is Higher than the thermal conductivity of the bottom wall.
  • the second thermally conductive material fills the gap between the carrier sub-disk and the epitaxial wafer substrate, which makes the epitaxial wafer substrate more stable in the carrier sub-disk, and reduces the flying chips due to the rotation of the carrier disk or the centrifugal force generated by the rotation of the carrier sub-disk risks of.
  • the first heat-conducting material and the second heat-conducting material can be the same, for example, both can be graphene, which can be filled at the same time during filling, which improves production efficiency and has a simple process flow.
  • the carrier plate provided by the embodiment of the application can improve the heat radiation heating effect of the flat edge of the epitaxial wafer substrate, compensate the temperature of the flat edge of the epitaxial wafer substrate, and make the temperature of the entire epitaxial wafer substrate more uniform. This suppresses the occurrence of defects such as black spots, fog edges, and cracks at the flat edge of the epitaxial wafer, and improves the crystal quality of the flat edge of the epitaxial wafer, thereby increasing the overall yield of the epitaxial wafer.
  • the carrying tray includes at least one carrying sub tray 102.
  • the carrier sub-tray 102 has a groove structure for placing the epitaxial wafer substrate 103.
  • the supporting sub-tray has a side wall with a higher thermal conductivity than the bottom wall of the supporting sub-tray.
  • the material of the bottom wall of the supporting sub-tray 102 may be graphite; the material of the side wall of the supporting sub-tray 102 is graphene.
  • the second layer 10222 is formed by filling the second space with a second thermally conductive material, and the filled second thermally conductive material is attached to the inner periphery of the first layer.
  • the first layer is Carry the original side wall of the sub-tray 102.
  • the second layer 10221 is formed by filling the second heat-conducting material and the first layer forms a new side wall of the carrier sub-disk 102 together.
  • the thermal conductivity of the first layer bearing the sub-disk 102 and the bottom wall of the bearing sub-disk 102 are the same, and the thermal conductivity of the second thermally conductive material is higher than that of the bottom wall of the bearing sub-disk 102, so that the thermal conductivity of the new side wall is Higher than the thermal conductivity of the bottom wall.
  • the second thermally conductive material fills the gap between the carrier sub-disk and the epitaxial wafer substrate, which makes the epitaxial wafer substrate more stable in the carrier sub-disk, and reduces the flying chips due to the rotation of the carrier disk or the centrifugal force generated by the rotation of the carrier sub-disk risks of.
  • the material of the first layer and the bottom wall may be graphite, and the second thermally conductive material may be graphene.
  • the surface of the second layer 10222 and the bottom wall surface are coated with silicon carbide to increase the strength and hardness, and can slow down gas corrosion.
  • the first space 104 in any carrier sub-tray 102 is filled with a first thermally conductive material.
  • the first space 104 is when the carrier sub-tray 102 is placed with an epitaxial wafer liner.
  • the bottom 103 is the space between the flat side of the epitaxial wafer substrate 103 and the side wall of the supporting sub-disk 102; the thermal conductivity of the first thermally conductive material is not lower than the thermal conductivity of the supporting sub-disk 102.
  • the surface of the first space 104 facing the flat side of the epitaxial wafer substrate 103 is a plane, and the plane is perpendicular to the radial direction of the carrier disk.
  • the first space 104 may be located on the side of the bearing sub-disk 102 away from the shaft hole 101.
  • the height of the first thermally conductive material filled in the first space 104 is the same as the height of the side wall of the supporting sub-tray 102.
  • the material of the supporting sub-disk 102 is graphite; the first thermally conductive material is any one or a combination of at least two of the following:
  • the first thermally conductive material may be filled into the first space 104 by coating or bonding.
  • the surface of the carrier sub-disk 102 may be coated with silicon carbide, and the surface of the first thermally conductive material filled with the first space 104 may be coated with silicon carbide.
  • the coating of silicon carbide can increase the strength and hardness of the surface of the bearing sub-disk 102 and the surface of the first thermally conductive material, and can slow down gas corrosion.
  • the first heat-conducting material and the second heat-conducting material can be the same, for example, both can be graphene, which can be filled at the same time during filling, which improves production efficiency and has a simple process flow.
  • the susceptor provided by the embodiments of the present application can improve the heat radiation heating effect at the edge of the epitaxial wafer substrate, compensate for the temperature at the edge of the epitaxial wafer substrate, and make the temperature of the entire epitaxial wafer substrate more uniform, thereby suppressing
  • the occurrence of black spots, fog edges, cracks and other defects at the edge of the epitaxial wafer improves the crystal quality of the flat edge of the epitaxial wafer, thereby increasing the overall yield of the epitaxial wafer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本申请提供了一种用于金属有机物化学气相沉积的承载盘。所述承载盘包括:至少一个承载子盘,呈凹槽结构,用于放置外延晶圆衬底;在所述承载子盘内的第一空间填充有第一导热材料,所述第一空间为,当所述承载子盘放置有所述外延晶圆衬底时,所述外延晶圆衬底的平边和所述承载子盘侧壁之间的空间;所述第一导热材料的导热系数不低于所述承载子盘的导热系数。本申请实施例提供的承载盘可以提高外延晶圆衬底平边位置的热辐射加热效果,补偿了外延晶圆衬底平边位置的温度,可使得整个外延晶圆衬底温度更加均匀,由此抑制外延晶圆平边和边缘的黑点、雾边、裂痕等缺陷的产生,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。

Description

一种用于金属有机物化学气相沉积的承载盘
本申请要求于2019年04月22日提交中国专利局、申请号为201910324680.5、申请名称为“一种用于金属有机物化学气相沉积的承载盘”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体技术领域,具体涉及一种用于金属有机物化学气相沉积的承载盘。
背景技术
金属有机物化学气相沉积设备(Metal Organic Chemical Vapor Deposition、MOCVD)广泛应用于发光二极管(Light Emitting Diode,LED)外延(Epitaxy)和器件外延。MOCVD包括承载盘(Wafer Carrier),其上分布有多个承载子盘。承载子盘用于放置外延晶圆衬底。使用MOCVD进行LED外延生长制程一般为:外延晶圆衬底放置在承载子盘上,衬底连同承载子盘由电阻丝或射频加热到500℃-1200℃,有机源通过载气H 2、N 2等带进反应室,在外延晶圆衬底上生长,形成薄膜。随着技术的发展,外延晶圆衬底的尺寸越来越大(6寸、8寸和12寸),由此增大了外延晶圆的应力和翘曲度。随着外延晶圆的应力和翘曲度增大,外延晶圆的平边和边缘的晶体质量受到极大影响。
发明内容
本申请实施例提供了一种用于金属有机物化学气相沉积的承载盘,可用于改善外延晶圆平边或边缘的晶体质量。
第一方面,本申请的实施例提供了一种用于金属有机物化学气相沉积的承载盘,包括:至少一个承载子盘,呈凹槽结构,用于放置外延晶圆衬底;在所述承载子盘内的第一空间填充有第一导热材料,所述第一空间为,当所述承载子盘放置有所述外延晶圆衬底时,所述外延晶圆衬底的平边和所述承载子盘侧壁之间的空间;所述第一导热材料的导热系数不低于所述承载子盘的导热系数。
结合第一方面,在第一方面第一种可能的实现方式中,所述第一空间填充的第一导热材料的高度不高于所述承载子盘侧壁的高度。
在该实现方式中,可避免承载盘旋转以及承载子盘旋转导致第一导热材料甩脱的风险。
结合第一方面,在第一方面第二种可能的实现方式中,所述承载子盘的材料为石墨;所述第一导热材料为以下任一种或至少两种的组合:
石墨、碳化硅、石墨烯、钛金属、钨金属。
在该实现方式中,针对承载子盘的材料,选用的第一导热材料,可提高外延晶圆衬底平边位置的热辐射加热效果,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。
结合第一方面第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述承载子盘的表面涂覆有碳化硅,所述第一空间填充的第一导热材料的表面涂覆有碳化硅。
在该实现方式中,可增加承载子盘表面和第一空间填充的第一导热材料表面的强度和硬 度,并且可减缓气体腐蚀。
结合第一方面,在第一方面第四种可能的实现方式中,所述承载子盘具有导热系数高于所述承载子盘底壁的侧壁。
在该实现方式中,可以提高外延晶圆衬底边缘位置的热辐射加热效果,补偿了外延晶圆衬底边缘位置的温度,由此抑制外延晶圆边缘的黑点、雾边、裂痕等缺陷的产生,改善了外延片晶圆边缘的晶体质量,从而提高外延晶圆整体的良率。
结合第一方面第四种可能的实现方式,在第一方面第五种可能的实现方式中,所述承载子盘底壁的材料为石墨;所述承载子盘侧壁的材料为石墨烯。
在该实现方式中,针对承载子盘底壁的材料,选用的第一导热材料,可提高外延晶圆衬底平边位置的热辐射加热效果,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。
结合第一方面第四种可能的实现方式,在第一方面第六种可能的实现方式中,所述承载子盘侧壁包括第一层和第二层,所述第二层的导热系数高于所述承载子盘底壁的导热系数。
在该实现方式中,所述承载子盘侧壁包括导热系数高于所述承载子盘底壁的高导热层,可以提高外延晶圆衬底边缘位置的热辐射加热效果,补偿了外延晶圆衬底边缘位置的温度。
结合第一方面第六种可能的实现方式,在第一方面第七种可能的实现方式中,所述第二层由附着在所述第一层内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁的导热系数。
在该实现方式中,通过在第一层内周附着第二导热材料,从而形成第二层,工艺流程简单,便于操作;并且可以在已有的承载子盘基础上进行改造,以得到可补偿了外延晶圆衬底边缘位置的温度得承载子盘。
结合第一方面第六种可能的实现方式,在第一方面第八种可能的实现方式中,所述第二层的材料为石墨烯,所述第一层的材料为石墨,所述承载子盘底壁的材料为石墨。
在该实现方式中,针对承载子盘底壁的材料以及侧壁第一层的材料,选用的第二层的材料,可提高外延晶圆衬底边缘位置的热辐射加热效果,改善了外延片晶圆边缘的晶体质量,从而提高外延晶圆整体的良率。
结合第一方面,在第一方面第九种可能的实现方式中,所述承载盘为石墨盘,所述承载子盘为所述石墨盘上的凹槽。
在该实现方式中,可方便第一导热材料填充,提高了生产效率,工艺流程简单。
结合第一方面,在第一方面第十种可能的实现方式中,所述承载盘为大石墨盘,所述承载子盘为设置在所述大石墨盘上的小石墨盘。
在该实现方式中,可方便第一导热材料填充,提高了生产效率,工艺流程简单。
结合第一方面,在第一方面第十一种可能的实现方式中,所述外延晶圆的直径≥6英寸。
在该实现方式中,可提高大尺寸的外延晶圆的整体良率。
第二方面提供了一种用于金属有机物化学气相沉积的承载盘,包括:至少一个承载子盘,呈凹槽结构,用于放置外延晶圆衬底;所述承载子盘具有导热系数高于所述承载子盘底壁的侧壁。
结合第二方面,在第二方面第一种可能的实现方式中,所述承载子盘底壁的材料为石墨;所述承载子盘侧壁的材料为石墨烯。
在该实现方式中,针对承载子盘底壁的材料,选用的第一导热材料,可提高外延晶圆衬底平边位置的热辐射加热效果,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体 的良率。
结合第二方面,在第二方面第二种可能的实现方式中,所述承载子盘侧壁包括第一层和第二层,所述第二层的导热系数高于所述底壁的导热系数。
在该实现方式中,所述承载子盘侧壁包括导热系数高于所述承载子盘底壁的高导热层,可以提高外延晶圆衬底边缘位置的热辐射加热效果,补偿了外延晶圆衬底边缘位置的温度。
结合第二方面第二种可能的实现方式,在第二方面第三种可能的实现方式中,所述第二层由附着在所述第一层内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁的导热系数。
在该实现方式中,通过在第一层内周附着第二导热材料,从而形成第二层,工艺流程简单,便于操作;并且可以在已有的承载子盘基础上进行改造,以得到可补偿了外延晶圆衬底边缘位置的温度得承载子盘。
结合第二方面第三种可能的实现方式,在第二方面第四种可能的实现方式中,所述承载盘为石墨盘,所述承载子盘为所述石墨盘上的凹槽,所述第二导热材料为石墨烯。
在该实现方式中,可方便第二导热材料填充,提高了生产效率,工艺流程简单;并且针对承载子盘的材料,选用的第二层的材料,可提高外延晶圆衬底边缘位置的热辐射加热效果,改善了外延片晶圆边缘的晶体质量,从而提高外延晶圆整体的良率;以及第二导热材料填充了承载子盘和外延晶圆衬底之间的空隙,使得外延晶圆衬底在承载子盘中更加稳固,降低了因承载盘旋转或承载子盘旋转产生离心力而飞片的风险。
结合第二方面第二种可能的实现方式,在第二方面第五种可能的实现方式中,所述第二层的材料为石墨烯,所述第一层的材料为石墨,所述承载子盘底壁的材料为石墨。
在该实现方式中,针对承载子盘底壁的材料以及侧壁第一层的材料,选用的第二层的材料,可提高外延晶圆衬底边缘位置的热辐射加热效果,改善了外延片晶圆边缘的晶体质量,从而提高外延晶圆整体的良率。
结合第二方面,在第二方面第六种可能的实现方式中,在所述承载子盘内的第一空间填充有第一导热材料,所述第一空间为,当所述承载子盘放置有所述外延晶圆衬底时,所述外延晶圆衬底的平边和所述承载子盘侧壁之间的空间;所述第一导热材料的导热系数不低于所述承载子盘的导热系数。
在该实现方式中,可以提高外延晶圆衬底平边位置的热辐射加热效果,补偿了外延晶圆衬底平边位置的温度,由此抑制外延晶圆边缘的黑点、雾边、裂痕等缺陷的产生,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。
结合第二方面第六种可能的实现方式,在第二方面第七种可能的实现方式中,所述第一空间填充的第一导热材料的高度不高于所述承载子盘侧壁的高度。
在该实现方式中,可避免承载盘旋转以及承载子盘旋转导致第一导热材料甩脱的风险。
结合第二方面第六种可能的实现方式,在第二方面第八种可能的实现方式中,所述承载子盘的材料为石墨;所述第一导热材料为以下任一种或至少两种的组合:
石墨、碳化硅、石墨烯、钛金属、钨金属。
在该实现方式中,针对承载子盘的材料,选用的第一导热材料,可提高外延晶圆衬底平边位置的热辐射加热效果,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。
结合第二方面第八种可能的实现方式,在第二方面第九种可能的实现方式中,所述承载子盘的表面涂覆有碳化硅,所述第一空间填充的第一导热材料的表面涂覆有碳化硅。
在该实现方式中,可增加承载子盘表面和第一空间填充的第一导热材料表面的强度和硬度,并且可减缓气体腐蚀。
结合第二方面,在第二方面第十种可能的实现方式中,所述承载盘为大石墨盘,所述承载子盘为设置在所述大石墨盘上的小石墨盘。
在该实现方式中,可方便第一导热材料填充,提高了生产效率,工艺流程简单。
结合第二方面,在第二方面第十一种可能的实现方式中,所述外延晶圆的直径≥6英寸。
在该实现方式中,可提高大尺寸的外延晶圆的整体良率。
本申请实施例提供的承载盘可以提高外延晶圆衬底平边或边缘位置的热辐射加热效果,补偿了外延晶圆衬底平边或边位置的温度,可使得整个外延晶圆衬底温度更加均匀,由此抑制外延晶圆平边或边缘的黑点、雾边、裂痕等缺陷的产生,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。
附图说明
图1为本申请一个实施例提供的承载盘结构示意图;
图2为本申请一个实施例提供的承载盘结构示意图;
图3为本申请一个实施例提供的承载子盘结构示意图;
图4为本申请一个实施例提供的承载子盘结构示意图;
图5为本申请一个实施例提供的承载子盘结构示意图;
图6为本申请一个实施例提供的承载子盘结构示意图;
图7为本申请一个实施例提供的承载盘结构示意图。
在图中,100.承载盘,101.轴孔,102.承载子盘,103.外延晶圆衬底,104.第一空间,1021.承载子盘底壁,1022.承载子盘侧壁,10221.第一层,10222.第二层。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。另外,需要指出的是,在本申请实施例中,如无特殊说明,“多个”是指两个或两个以上。
图1示出了一种用于金属有机物化学气相沉积承载盘。如图1所示,承载盘中心为轴孔101。在外延晶圆生长过程中,在轴孔101对应的转轴带动下,承载盘100可高速旋转。承载盘100上分布着多个承载子盘102,多个承载子盘102沿一环线排列在承载盘上。该环线经过各个承载子盘102的中心,并且与承载盘的外缘周呈同心圆关系。
承载子盘102呈凹槽结构,用于放置外延晶圆衬底103。该承载盘100自身可以为大石墨盘,承载子盘102为可以小石墨盘。大石磨盘和小石墨盘表面均涂覆有碳化硅材料。在外延晶圆生长过程中,小石墨盘可以进行自转。
小石墨盘一般为圆形,当放入外延晶圆衬底时,在外延晶圆衬底的平边和小石墨盘侧壁之间会留有较大的空隙。在进行外延晶圆生长时,由于载气的气流可以快速带走热量,导致外延晶圆衬底的平边位置的温度比外延晶圆衬底中心位置的温度低,即会发生外延晶圆平边和中心受热不均,使得外延晶圆平边晶体质量差,出现大量黑点、雾边、裂痕等缺陷。
另外,对于较大尺寸(例如,6寸、8寸、12寸)的外延晶圆衬底,其上生长的外延晶圆的翘曲度较大,导致外延晶圆边缘翘起一定高度,会造成外延晶圆边缘的温度低于外延晶圆中心的温度,使得外延晶圆边缘晶体质量差,出现大量黑点、雾边、裂痕等缺陷。
本申请实施例提供了一种用于金属有机物化学气相沉积的承载盘。如图2所示,承载盘包括至少一个承载子盘102。承载子盘102呈凹槽结构,用于放置外延晶圆衬底103。
所述承载盘可以为石墨盘,所述承载子盘102为所述石墨盘上的凹槽。承载子盘102的结构如图3所示,可知,承载子盘102为一体。具体可以通过挖槽的方式在承载盘上开凿出承载子盘02。承载子盘02具有底壁1021和侧壁1022。
所述承载盘也可以为大石墨盘,所述承载子盘102为设置在所述大石墨盘上的小石墨盘。具体参考图4,可知,承载子盘102与承载盘相互独立,承载子盘102位于承载盘上。在一个例子中,在进行外延圆晶生长时,承载子盘102可以自转。
外延晶圆衬底103可以为直径≥英寸的衬底。具体的,外延晶圆衬底103可以为直径为6英寸的衬底,也可以为直径为8英寸的衬底,也可以为直径为12英寸的衬底。
如图2所示,在任一承载子盘102内的第一空间104填充有第一导热材料,所述第一空间104为,当该承载子盘102放置有外延晶圆衬底103时,所述外延晶圆衬底103的平边和该承载子盘102侧壁之间的空间;所述第一导热材料的导热系数不低于该承载子盘102的导热系数。对于任一承载子盘102,其第一空间104朝向外延晶圆衬底103平边的一面为平面,该平面与承载盘的径向垂直。在一个例子中,对于任一承载子盘102,其第一空间104可以位于该承载子盘102远离轴孔101的一侧。
在一个示例中,所述第一空间104填充的第一导热材料的高度不高于所述承载子盘102侧壁的高度。
为了避免承载盘旋转以及承载子盘102旋转导致第一导热材料甩脱的风险,填充的第一导热材料的高度不高于承载子盘202侧壁。
在该示例的一个例子中,第一空间104填充的第一导热材料的高度与承载子盘102侧壁的高度持平。
在该示例的又一个例子中,第一空间104填充的第一导热材料的高度不高于承载子盘102侧壁的高度,并且不低于外延晶圆衬底103的厚度。
在一个示例中,所述承载子盘102的材料为石墨;所述第一导热材料为以下任一种或至少两种的组合:
石墨、碳化硅、石墨烯、钛金属、钨金属。
在该示例的一个例子中,第一导热材料可以采用涂覆或键合的方式填充到第一空间104。
在该示例的又一个例子中,所述承载子盘102的表面涂覆有碳化硅,所述第一空间104填充的第一导热材料的表面涂覆有碳化硅。涂覆碳化硅可以增加承载子盘102的表面和第一导热材料的表面的强度和硬度,并且可减缓气体腐蚀。
在一个示例中,所述承载子盘102具有导热系数高于所述承载子盘102底壁的侧壁。
在该示例中,承载子盘102侧壁的导热系数较高,在进行外延晶圆生长时,对外延晶圆的边缘的热辐射加热效果更好,从而可以避免外延晶圆边缘晶体质量差,出现大量黑点、雾边、裂痕等缺陷。
在该示例的第一例子中,所述承载子盘102底壁的材料可以为石墨;所述承载子盘102侧壁的材料为石墨烯。
具体的,所述承载子盘102的结构可以如图4所示。所述承载子盘102包括底部1021和侧壁1022。其中,底壁1021的构成材料为石墨,侧壁1022的构成材料为石墨烯。底壁1021和侧壁1022的表面涂覆有碳化硅,以增加强度和硬度,并且可减缓气体腐蚀。
在该示例的第二例子中,所述承载子盘侧壁包括第一层和第二层,所述第二层的导热系 数高于所述承载子盘底壁的导热系数。
在第二例子的一个具体实现方案中,所述承载子盘102的结构可以如图5所示。所述承载子盘102包括底壁1021和侧壁。侧壁包括第一层10221和第二层10222。所述第二层10222由附着在所述第一层10221内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁1021的导热系数。具体可以通过涂覆或键合的方式将第二导热材料附着在第一层10221内周,以形成第二层10222。
底壁1021和第一层10221的构成材料可以为石墨,第二层10222的构成材料可以为石墨烯。底壁1021的表面、第一层10221的表面和第二层10222的表面涂覆有碳化硅,以增加的强度和硬度,并且可减缓气体腐蚀。
在第二例子的另一个具体实现方案中,所述承载子盘102的结构可以如图6所示。承载子盘102为承载盘的凹槽,两者为一体。承载子盘102侧壁包括第一层10221和第二层10222。第一层10221即为承载盘体形成的壁。所述第二层10222由附着在所述第一层10221内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁1021的导热系数。具体可以通过涂覆或键合的方式将第二导热材料附着在第一层10221内周,以形成第二层10222。
承载盘的构成材料可以为石墨,即底壁1021和第一层10221的构成材料可以为石墨,第二层10222的构成材料可以为石墨烯。底壁1021的表面、第二层10222的表面涂覆有碳化硅,以增加的强度和硬度,并且可减缓气体腐蚀。
在第二例子的又一个具体实现方案中,参考图7,第二层10222由使用第二导热材料填充第二空间而形成,填充的第二导热材料附着在第一层内周上,第一层即为承载子盘102原来的侧壁。通过填充第二导热材料构成了第二层10221和第一层共同形成了承载子盘102新的侧壁。承载子盘102的第一层的和承载子盘102底壁的导热系数相同,而第二导热材料的导热系数高于承载子盘102底壁的导热系数,从而使得新的侧壁的导热系数高于底壁的导热系数。第二导热材料填充了承载子盘和外延晶圆衬底之间的空隙,使得外延晶圆衬底在承载子盘中更加稳固,降低了因承载盘旋转或承载子盘旋转产生离心力而飞片的风险。
第一层和底壁的材料可以为石墨,第二导热材料可以为石墨烯。在第二层10222表面和底壁表面涂覆有碳化硅以增加的强度和硬度,并且可减缓气体腐蚀。
在该示例的第三例子中,第一导热材料和第二导热材料可以相同,例如都可以为石墨烯,在填充时,可以同时填充,提高了生产效率,并且工艺流程简单。
本申请实施例提供的承载盘可以提高外延晶圆衬底平边位置的热辐射加热效果,补偿了外延晶圆衬底平边位置的温度,可使得整个外延晶圆衬底温度更加均匀,由此抑制外延晶圆平边位置的黑点、雾边、裂痕等缺陷的产生,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。
本申请实施例提供了一种用于金属有机物化学气相沉积的承载盘。如图7所示,承载盘包括至少一个承载子盘102。承载子盘102呈凹槽结构,用于放置外延晶圆衬底103。所述承载子盘具有导热系数高于所述承载子盘底壁的侧壁。
所述承载盘可以为大石墨盘,所述承载子盘102为设置在所述大石墨盘上的小石墨盘。具体参考图4,可知,承载子盘102与承载盘相互独立,承载子盘102位于承载盘上。在一个例子中,在进行外延圆晶生长时,承载子盘102可以自转。
外延晶圆衬底103可以为直径≥6英寸的衬底。具体的,外延晶圆衬底103可以为直径 为6英寸的衬底,也可以为直径为8英寸的衬底,也可以为直径为12英寸的衬底。
在一个示例,所述承载子盘102底壁的材料可以为石墨;所述承载子盘102侧壁的材料为石墨烯。
具体的,所述承载子盘102的结构可以如图4所示。所述承载子盘102包括底部1021和侧壁1022。其中,底壁1021的构成材料为石墨,侧壁1022的构成材料为石墨烯。底壁1021和侧壁1022的表面涂覆有碳化硅,以增加强度和硬度,并且可减缓气体腐蚀。
在一个示例中,所述承载子盘侧壁包括第一层和第二层,所述第二层的导热系数高于所述承载子盘底壁的导热系数。
在该示例的一个例子中,所述承载子盘102的结构可以如图5所示。所述承载子盘102包括底壁1021和侧壁。侧壁包括第一层10221和第二层10222。所述第二层10222由附着在所述第一层10221内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁1021的导热系数。具体可以通过涂覆或键合的方式将第二导热材料附着在第一层10221内周,以形成第二层10222。
底壁1021和第一层10221的构成材料可以为石墨,第二层10222的构成材料可以为石墨烯。底壁1021的表面、第一层10221的表面和第二层10222的表面涂覆有碳化硅,以增加的强度和硬度,并且可减缓气体腐蚀。
在该示例的另一个例子中,所述承载子盘102的结构可以如图6所示。承载子盘102为承载盘的凹槽,两者为一体。承载子盘102侧壁包括第一层10221和第二层10222。第一层10221即为承载盘体形成的壁。所述第二层10222由附着在所述第一层10221内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁1021的导热系数。具体可以通过涂覆或键合的方式将第二导热材料附着在第一层10221内周,以形成第二层10222。
在该例子的一个具体实现方式中,所述承载盘为石墨盘,所述承载子盘102为所述石墨盘上的凹槽,所述第二导热材料为石墨烯。即底壁1021和第一层10221的构成材料均为石墨,第二层10222的构成材料为石墨烯。底壁1021的表面、第二层10222的表面涂覆有碳化硅,以增加的强度和硬度,并且可减缓气体腐蚀。
在该示例的又一个例子中,参考图7,第二层10222由使用第二导热材料填充第二空间而形成,填充的第二导热材料附着在第一层内周上,第一层即为承载子盘102原来的侧壁。通过填充第二导热材料构成了第二层10221和第一层共同形成了承载子盘102新的侧壁。承载子盘102的第一层的和承载子盘102底壁的导热系数相同,而第二导热材料的导热系数高于承载子盘102底壁的导热系数,从而使得新的侧壁的导热系数高于底壁的导热系数。第二导热材料填充了承载子盘和外延晶圆衬底之间的空隙,使得外延晶圆衬底在承载子盘中更加稳固,降低了因承载盘旋转或承载子盘旋转产生离心力而飞片的风险。
第一层和底壁的材料可以为石墨,第二导热材料可以为石墨烯。在第二层10222表面和底壁表面涂覆有碳化硅以增加的强度和硬度,并且可减缓气体腐蚀。
在一个示例中,如图2所示,在任一承载子盘102内的第一空间104填充有第一导热材料,所述第一空间104为,当该承载子盘102放置有外延晶圆衬底103时,所述外延晶圆衬底103的平边和该承载子盘102侧壁之间的空间;所述第一导热材料的导热系数不低于该承载子盘102的导热系数。对于任一承载子盘102,其第一空间104朝向外延晶圆衬底103平边的一面为平面,该平面与承载盘的径向垂直。在一个例子中,对于任一承载子盘102,其第一空间104可以位于该承载子盘102远离轴孔101的一侧。
在该示例的第一例子中,所述第一空间104填充的第一导热材料的高度不高于所述承载 子盘102侧壁的高度。
为了避免承载盘旋转以及承载子盘102旋转导致第一导热材料甩脱的风险,填充的第一导热材料的高度不高于承载子盘202侧壁。
在第一例子的一个具体实现方案中,第一空间104填充的第一导热材料的高度与承载子盘102侧壁的高度持平。
在第一例子的另一个具体实现方案中,第一空间104填充的第一导热材料的高度不高于承载子盘102侧壁的高度,并且不低于外延晶圆衬底103的厚度。
在该示例的第二例子中,所述承载子盘102的材料为石墨;所述第一导热材料为以下任一种或至少两种的组合:
石墨、碳化硅、石墨烯、钛金属、钨金属。
在该例子中,第一导热材料可以采用涂覆或键合的方式填充到第一空间104。所述承载子盘102的表面可以涂覆有碳化硅,所述第一空间104填充的第一导热材料的表面可以涂覆有碳化硅。涂覆碳化硅可以增加承载子盘102的表面和第一导热材料的表面的强度和硬度,并且可减缓气体腐蚀。
在该示例的第三例子中,第一导热材料和第二导热材料可以相同,例如都可以为石墨烯,在填充时,可以同时填充,提高了生产效率,并且工艺流程简单。
本申请实施例提供的承载盘可以提高外延晶圆衬底边缘位置的热辐射加热效果,补偿了外延晶圆衬底边缘位置的温度,可使得整个外延晶圆衬底温度更加均匀,由此抑制外延晶圆边缘位置的黑点、雾边、裂痕等缺陷的产生,改善了外延片晶圆平边的晶体质量,从而提高外延晶圆整体的良率。

Claims (24)

  1. 一种用于金属有机物化学气相沉积的承载盘,其特征在于,包括:
    至少一个承载子盘,呈凹槽结构,用于放置外延晶圆衬底;
    在所述承载子盘内的第一空间填充有第一导热材料,所述第一空间为,当所述承载子盘放置有所述外延晶圆衬底时,所述外延晶圆衬底的平边和所述承载子盘侧壁之间的空间;所述第一导热材料的导热系数不低于所述承载子盘的导热系数。
  2. 根据权利要求1所述的承载盘,其特征在于,所述第一空间填充的第一导热材料的高度不高于所述承载子盘侧壁的高度。
  3. 根据权利要求1所述的承载盘,其特征在于,所述承载子盘的材料为石墨;所述第一导热材料为以下任一种或至少两种的组合:
    石墨、碳化硅、石墨烯、钛金属、钨金属。
  4. 根据权利要求3所述的承载盘,其特征在于,所述承载子盘的表面涂覆有碳化硅,所述第一空间填充的第一导热材料的表面涂覆有碳化硅。
  5. 根据权利要求1所述的承载盘,其特征在于,所述承载子盘具有导热系数高于所述承载子盘底壁的侧壁。
  6. 根据权利要求5所述的承载盘,其特征在于,所述承载子盘底壁的材料为石墨;所述承载子盘侧壁的材料为石墨烯。
  7. 根据权利要求5所述的承载盘,其特征在于,所述承载子盘侧壁包括第一层和第二层,所述第二层的导热系数高于所述承载子盘底壁的导热系数。
  8. 根据权利要求7所述的承载盘,其特征在于,所述第二层由附着在所述第一层内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁的导热系数。
  9. 根据权利要求7所述的承载盘,其特征在于,所述第二层的材料为石墨烯,所述第一层的材料为石墨,所述承载子盘底壁的材料为石墨。
  10. 根据权利要求1所述的承载盘,其特征在于,所述承载盘为石墨盘,所述承载子盘为所述石墨盘上的凹槽。
  11. 根据权利要求1所述的承载盘,其特征在于,所述承载盘为大石墨盘,所述承载子盘为设置在所述大石墨盘上的小石墨盘。
  12. 根据权利要求1所述的承载盘,其特征在于,所述外延晶圆的直径≥6英寸。
  13. 一种用于金属有机物化学气相沉积的承载盘,其特征在于,包括:
    至少一个承载子盘,呈凹槽结构,用于放置外延晶圆衬底;
    所述承载子盘具有导热系数高于所述承载子盘底壁的侧壁。
  14. 根据权利要求13所述的承载盘,其特征在于,所述承载子盘底壁的材料为石墨;所述承载子盘侧壁的材料为石墨烯。
  15. 根据权利要求13所述的承载盘,其特征在于,所述承载子盘侧壁包括第一层和第二 层,所述第二层的导热系数高于所述底壁的导热系数。
  16. 根据权利要求15所述的承载盘,其特征在于,所述第二层由附着在所述第一层内周上的第二导热材料构成,所述第二导热材料的导热系数高于所述承载子盘底壁的导热系数。
  17. 根据权利要求16所述的承载盘,其特征在于,所述承载盘为石墨盘,所述承载子盘为所述石墨盘上的凹槽,所述第二导热材料为石墨烯。
  18. 根据权利要求15所述的承载盘,其特征在于,所述第二层的材料为石墨烯,所述第一层的材料为石墨,所述承载子盘底壁的材料为石墨。
  19. 根据权利要求13所述的承载盘,其特征在于,在所述承载子盘内的第一空间填充有第一导热材料,所述第一空间为,当所述承载子盘放置有所述外延晶圆衬底时,所述外延晶圆衬底的平边和所述承载子盘侧壁之间的空间;所述第一导热材料的导热系数不低于所述承载子盘的导热系数。
  20. 根据权利要求19所述的承载盘,其特征在于,所述第一空间填充的第一导热材料的高度不高于所述承载子盘侧壁的高度。
  21. 根据权利要求19所述的承载盘,其特征在于,所述承载子盘的材料为石墨;所述第一导热材料为以下任一种或至少两种的组合:
    石墨、碳化硅、石墨烯、钛金属、钨金属。
  22. 根据权利要求21所述的承载盘,其特征在于,所述承载子盘的表面涂覆有碳化硅,所述第一空间填充的第一导热材料的表面涂覆有碳化硅。
  23. 根据权利要求13所述的承载盘,其特征在于,所述承载盘为大石墨盘,所述承载子盘为设置在所述大石墨盘上的小石墨盘。
  24. 根据权利要求13所述的承载盘,其特征在于,所述外延晶圆的直径≥6英寸。
PCT/CN2019/129974 2019-04-22 2019-12-30 一种用于金属有机物化学气相沉积的承载盘 WO2020215790A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19926234.6A EP3907308A4 (en) 2019-04-22 2019-12-30 WAFER HOLDER FOR ORGANOMETALLIC VAPOR PHASE CHEMICAL DEPOSITION
US17/404,197 US20210384065A1 (en) 2019-04-22 2021-08-17 Wafer carrier for metal organic chemical vapor deposition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910324680.5A CN110129768B (zh) 2019-04-22 2019-04-22 一种用于金属有机物化学气相沉积的承载盘
CN201910324680.5 2019-04-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/404,197 Continuation US20210384065A1 (en) 2019-04-22 2021-08-17 Wafer carrier for metal organic chemical vapor deposition

Publications (1)

Publication Number Publication Date
WO2020215790A1 true WO2020215790A1 (zh) 2020-10-29

Family

ID=67570480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129974 WO2020215790A1 (zh) 2019-04-22 2019-12-30 一种用于金属有机物化学气相沉积的承载盘

Country Status (4)

Country Link
US (1) US20210384065A1 (zh)
EP (1) EP3907308A4 (zh)
CN (1) CN110129768B (zh)
WO (1) WO2020215790A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110129768B (zh) * 2019-04-22 2020-08-14 华为技术有限公司 一种用于金属有机物化学气相沉积的承载盘
CN111218672A (zh) * 2020-02-27 2020-06-02 苏州新材料研究所有限公司 Mocvd加热器
CN113277883A (zh) * 2021-05-26 2021-08-20 中山德华芯片技术有限公司 一种石墨盘及其制备方法和应用
CN113652743B (zh) * 2021-06-25 2022-06-14 华灿光电(浙江)有限公司 石墨基板
DE102021118568A1 (de) 2021-07-19 2023-01-19 VON ARDENNE Asset GmbH & Co. KG Verfahren für einen Substratträger, ein Substratträger und eine Vakuumanordnung
CN117089926B (zh) * 2023-10-20 2024-01-16 杭州海乾半导体有限公司 一种用于提高碳化硅外延片均匀性的载具及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047051A (zh) * 2014-06-23 2014-09-17 厦门市三安光电科技有限公司 用于led外延晶圆制程的石墨承载盘
CN104051316A (zh) * 2014-06-23 2014-09-17 厦门市三安光电科技有限公司 可调控局域温场的石墨承载盘
CN110129768A (zh) * 2019-04-22 2019-08-16 华为技术有限公司 一种用于金属有机物化学气相沉积的承载盘

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5840124A (en) * 1997-06-30 1998-11-24 Emcore Corporation Wafer carrier with flexible wafer flat holder
US20100037827A1 (en) * 2001-07-04 2010-02-18 Johannes Kaeppeler CVD Device with Substrate Holder with Differential Temperature Control
EP1790757B1 (en) * 2004-07-22 2013-08-14 Toyo Tanso Co., Ltd. Susceptor
JP2006173560A (ja) * 2004-11-16 2006-06-29 Sumitomo Electric Ind Ltd ウエハガイド、有機金属気相成長装置および窒化物系半導体を堆積する方法
JP2011119391A (ja) * 2009-12-02 2011-06-16 Sumco Corp エピタキシャル成長用サセプタ及び該サセプタを用いたエピタキシャル成長装置
CN102677164B (zh) * 2011-03-18 2015-09-02 北京北方微电子基地设备工艺研究中心有限责任公司 托盘、腔室装置和外延设备
CN103938186B (zh) * 2013-01-23 2016-12-07 北京北方微电子基地设备工艺研究中心有限责任公司 托盘、mocvd反应腔和mocvd设备
KR20140115720A (ko) * 2013-03-22 2014-10-01 서울바이오시스 주식회사 분리가능한 웨이퍼 포켓 및 이를 포함하는 웨이퍼 캐리어
ITCO20130041A1 (it) * 2013-09-27 2015-03-28 Lpe Spa Suscettore con elemento di supporto
JP6097681B2 (ja) * 2013-12-24 2017-03-15 昭和電工株式会社 SiCエピタキシャルウェハの製造装置およびSiCエピタキシャルウェハの製造方法
KR20160137746A (ko) * 2015-05-20 2016-12-01 삼성전자주식회사 기판 제조 장치, 및 그의 탄소 보호막 코팅 방법
CN109183001A (zh) * 2018-11-27 2019-01-11 中山德华芯片技术有限公司 一种应用于半导体材料外延生长的石墨盘

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104047051A (zh) * 2014-06-23 2014-09-17 厦门市三安光电科技有限公司 用于led外延晶圆制程的石墨承载盘
CN104051316A (zh) * 2014-06-23 2014-09-17 厦门市三安光电科技有限公司 可调控局域温场的石墨承载盘
CN110129768A (zh) * 2019-04-22 2019-08-16 华为技术有限公司 一种用于金属有机物化学气相沉积的承载盘

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3907308A4

Also Published As

Publication number Publication date
EP3907308A1 (en) 2021-11-10
CN110129768A (zh) 2019-08-16
US20210384065A1 (en) 2021-12-09
EP3907308A4 (en) 2022-04-27
CN110129768B (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
WO2020215790A1 (zh) 一种用于金属有机物化学气相沉积的承载盘
JP5926730B2 (ja) 改良されたウェハキャリア
TWI609991B (zh) 具有熱一致性改善特色的晶圓舟盒
KR102147326B1 (ko) 기판 지지장치
US8153454B2 (en) Fabrication apparatus and fabrication method of semiconductor device produced by heating substrate
JP4019998B2 (ja) サセプタ及び気相成長装置
US8795435B2 (en) Susceptor, coating apparatus and coating method using the susceptor
TWI397113B (zh) 具有可變熱阻之晶圓載體
TW201335414A (zh) 石墨盤、具有上述石墨盤的反應腔室和對基底的加熱方法
US20130255578A1 (en) Chemical vapor deposition apparatus having susceptor
JP2010034476A (ja) エピタキシャルウェーハの製造方法及びそれに用いられるウェーハの保持具
US20090269490A1 (en) Coating apparatus and coating method
JP6018909B2 (ja) ウェハホルダーおよびエピタキシャルウェハの製造装置
US20230257904A1 (en) Vapor phase growth apparatus
JP2009170676A (ja) エピタキシャルウェーハの製造装置及び製造方法
JP5161748B2 (ja) 気相成長用サセプタ及び気相成長装置並びにエピタキシャルウェーハの製造方法
JP2009071210A (ja) サセプタおよびエピタキシャル成長装置
JP2017022320A (ja) ウェハ支持台、ウェハ支持体、化学気相成長装置
KR20130043443A (ko) 서셉터 및 이를 구비하는 화학 기상 증착 장치
JP2006186105A (ja) エピタキシャル成長装置およびそれに用いるサセプター
JP2010034185A (ja) 気相成長装置用のサセプタ及びエピタキシャルウェーハの製造方法
JP6732483B2 (ja) 基板保持部材及び気相成長装置
JP2010034337A (ja) 気相成長装置用のサセプタ
JP2009182009A (ja) 気相成長装置および気相成長方法
JP6587354B2 (ja) サセプタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019926234

Country of ref document: EP

Effective date: 20210803

NENP Non-entry into the national phase

Ref country code: DE