WO2020215641A1 - 超声辅助型燃料电池的工作方法及系统 - Google Patents

超声辅助型燃料电池的工作方法及系统 Download PDF

Info

Publication number
WO2020215641A1
WO2020215641A1 PCT/CN2019/113561 CN2019113561W WO2020215641A1 WO 2020215641 A1 WO2020215641 A1 WO 2020215641A1 CN 2019113561 W CN2019113561 W CN 2019113561W WO 2020215641 A1 WO2020215641 A1 WO 2020215641A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
ultrasonic
sound field
air
working
Prior art date
Application number
PCT/CN2019/113561
Other languages
English (en)
French (fr)
Inventor
胡俊辉
罗钊
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2020215641A1 publication Critical patent/WO2020215641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode

Definitions

  • the invention relates to a working method and system of an ultrasonic assisted fuel cell, belonging to the cross field of ultrasonic engineering and energy engineering.
  • Fuel cells have the characteristics of high energy conversion efficiency, safe operation, green environmental protection, etc., as a new type of energy, they have been used in mobile equipment, electric vehicles, fixed power stations and other fields. Since the metal fuel cell, also known as the metal-air battery, has entered people’s field of vision, due to its high energy density and capacity, stable discharge characteristics, low dependence on load and temperature, and low manufacturing costs, it has been Automobiles, military communication equipment, portable equipment, unmanned aerial vehicles, vehicles, submarines, surface ships, and spacecraft all have great application potential, so they have received more and more attention. Although the metal-air battery has high energy density (or specific energy), its slow oxygen reduction reaction has become a bottleneck restricting its further development. This is because the slow oxygen reduction reaction limits the output current of the metal-air battery, which in turn limits its output power density. The current research direction is mainly focused on the development of new high-efficiency cathode catalytic materials and the design of battery structure.
  • the purpose of the present invention is to provide an ultrasonic-assisted fuel cell working method and system, which is a brand-new air cathode oxidation-reduction reaction catalysis method, which uses ultrasonic wave The catalytic effect of the oxygen reduction reaction at the electrode junction, so as to achieve the technical effect of improving the discharge current density and output power of the fuel cell.
  • the present invention adopts the following technical solutions:
  • the working method of the ultrasonic-assisted fuel cell uses a transducer drive circuit to drive the ultrasonic transducer to generate sound pressure at the junction of the air electrode, air and electrolyte.
  • the sound pressure is used to affect oxygen in the air, electrons in the electrolyte, and water.
  • the oxygen reduction reaction of the molecules at the air electrode is catalyzed, thereby increasing the output current and output electric power of the fuel cell system.
  • the present invention also provides a system using the above-mentioned ultrasonic-assisted fuel cell working method.
  • the fuel cells of the fuel cell system are metal-air batteries and hydrogen-oxygen fuel cells.
  • the radiating surface of the ultrasonic transducer is a radiating surface with focusing ability
  • the working sound field generated is a focused sound field or a quasi-focused sound field
  • the working frequency range is 0.01 Hz-10 GHz
  • the focal area of the sound field covers the entire Or part of the air electrode surface.
  • the radiating surface of the ultrasonic transducer is a plane
  • the working sound field generated is a standing wave sound field or a traveling wave sound field
  • the working frequency range is 0.01 Hz-10 GHz
  • the focal area of the sound field covers the entire or part of the air electrode surface.
  • the working voltage of the transducer drive circuit comes from the battery system itself or an external power source.
  • the working sound field of the ultrasonic transducer is applied to the surface of the porous air electrode to promote the diffusion process of oxygen molecules in the air electrode.
  • the sound pressure at the cathode reaction position is generated by the ultrasonic vibration of the battery shell structure, and the battery shell structure is excited by piezoelectric elements or transducers.
  • Transducer refers to transducers other than ultrasonic transducers.
  • the system of the present invention uses the ultrasonic waves generated by various ultrasonic transducers at the cathode oxygen reduction reaction position of the fuel cell to drive oxygen molecules to the cathode oxygen reduction reaction position, thereby increasing the oxygen reduction reaction efficiency per unit time, which can be doubled Improve the discharge power and current density of fuel cells;
  • Excitation voltage is applied to the ultrasonic transducer of the system of the present invention, the ultrasonic transducer vibrates at a certain working frequency, drives the air to vibrate, and generates sound pressure at the position where the oxygen reduction reaction occurs through the standing wave sound field or the focused sound field
  • the sound pressure at the position where the oxygen reduction reaction occurs enters the positive half cycle, the gas compression effect caused by the sound pressure will drive more oxygen molecules to the oxygen reduction reaction position, increase the rate of the oxygen reduction reaction, and then increase the battery discharge current And output electric power;
  • the working method of the present invention can be used to catalyze the cathode oxygen reduction reaction of any fuel cell, has no noise, can be miniaturized, can be scaled, and has good reliability.
  • Figure 1 is a schematic diagram of the working principle of the present invention
  • Embodiment 2 is a schematic diagram of the structure of Embodiment 1;
  • Figure 3 is a graph showing the output power of the zinc-air battery in the embodiment with or without ultrasonic radiation
  • Figure 4 is a diagram showing the relationship between operating current and voltage of the zinc-air battery in the embodiment under different loads with or without ultrasonic radiation;
  • 1-ultrasonic transducer 2-transducer drive circuit
  • 3-air electrode 4-electrolyte
  • 5-metal electrode plate 5-metal electrode plate
  • a system using the above-mentioned ultrasonic-assisted fuel cell working method has a specific structure as follows: ultrasonic transducer 1, transducer drive circuit 2, air electrode 3, electrolyte 4, fuel electrode 5.
  • the front end of the ultrasonic transducer 1 is equipped with a focusing head, which can focus the ultrasonic radiation generated by the ultrasonic transducer 1.
  • the air electrode 3 is located at the ultrasonic radiation focusing position below the ultrasonic transducer 1, and the air electrode 3 is a metal platinum sheet
  • the electrode, the air electrode 3 is located at the surface position of the electrolyte 4, partly in contact with air, partly in contact with the electrolyte 4, and the metal fuel electrode 5 is partially or completely immersed in the electrolyte.
  • the ultrasonic transducer 1 When working, the ultrasonic transducer 1 is fixed and placed in the air environment with a bracket.
  • the transducer driving circuit 2 applies voltage excitation to it, the ultrasonic transducer 1 will vibrate at the same frequency as the voltage excitation, driving the air to vibrate, and Ultrasonic radiation is focused under the ultrasonic transducer 1, that is, at the junction of the air electrode 3, air and electrolyte 4, and generates sound pressure, which drives the oxygen molecules in the air to the air, air electrode 3, and electrolyte faster 4 Three-phase interface, increasing the oxygen reduction reaction rate occurring at this position, thereby increasing the battery's discharge current and output power.
  • the sound pressure is in the positive half cycle, the gas compression effect caused by the sound pressure will drive more oxygen molecules to the oxygen reduction reaction position, increase the oxygen reduction reaction rate, and further increase the battery's discharge current and output electric power.
  • the ultrasonic transducer 1 in the present invention can adopt a piezoelectric element-radiation film excitation structure or a cantilever beam excitation structure.
  • the piezoelectric element-radiation film excitation structure is a piezoelectric ceramic sheet as the excitation source to drive the hard film material. Because the film material is relatively light, the power consumption is relatively low; the cantilever beam excitation structure refers to One end of the cantilever beam is bonded with piezoelectric ceramic for excitation, and this end is a fixed end, and the other end is a free end. This structure can amplify the vibration amplitude of the piezoelectric ceramic through the bending deformation of the cantilever beam.
  • the frequency of the driving circuit of the ultrasonic transducer 1 is generally in the high frequency range, above 20kHz.
  • the transducer driving circuit 2 has a conversion function, which can rectify, filter, and amplify the power of the driving circuit.
  • the adjustment interval is based on actual conditions. It needs to be designed and adjusted to realize the ultrasonic driving of the ultrasonic transducer 1.
  • Ultrasonic transducer 1 The operating frequency is 71kHz, the radiation surface is a focused radiation surface such as a concave surface, and the input voltage is 70V (peak).
  • the working sound field generated is a focused sound field.
  • the focal area of the sound field covers the entire surface of the air electrode 3.
  • the working voltage of the energy device driving circuit 2 comes from an external power source, the current is 170mA (effective value), and the distance from the electrolyte solution level is 2cm;
  • Transducer drive circuit 2 The signal is sent by the function signal generator (Tektronix ARG 3022B, 250Ms/s, 25MHz), and the signal power is amplified by the power amplifier (hpf-83a Nanjing Fangneng Technology Industrial Co., Ltd.) to drive the converter Energy device
  • Air electrode 3 Metal platinum electrode, size 10*10*0.5mm, located at the liquid surface of the electrolyte solution;
  • Electrolyte 4 KOH aqueous solution with a concentration of 6mol/l, 75ml;
  • Metal electrode plate 5 metallic zinc with a purity of 99.9%, with a size of 2.5*5.0*0.1cm.
  • Figure 3 is a graph showing the output power of the zinc-air battery in the embodiment with or without ultrasonic radiation
  • Fig. 4 is a diagram showing the relationship between operating current and voltage of the zinc-air battery in the embodiment under different loads with or without ultrasonic radiation.
  • Ultrasonic transducer 1 The working frequency is 61.5kHz, the radiating surface is a flat radiating surface, the input voltage is 70V (peak), the working sound field generated is a standing wave sound field, the focal area of the sound field covers the entire surface of the air electrode 3, and the energy is converted
  • the working voltage of the driver circuit 2 comes from an external power source, the current is 170mA (effective value), and the distance from the electrolyte solution level is 2cm;
  • Transducer drive circuit 2 The signal is sent by the function signal generator (Tektronix ARG 3022B, 250Ms/s, 25MHz), and the signal power is amplified by the power amplifier (hpf-83a Nanjing Fangneng Technology Industrial Co., Ltd.) to drive the converter Energy device
  • Air electrode 3 Porous carbon electrode, size 10*10*1.0mm, located at the surface of the electrolyte solution;
  • Electrolyte 4 KOH aqueous solution with a concentration of 6mol/l, 75ml;
  • Metal electrode plate 5 metal zinc with purity of 99.9%, size 2.5*5.0*0.1cm.
  • Example 2 show that ultrasound can increase the output power of the battery to a certain extent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种超声辅助型燃料电池的工作方法及系统,该方法利用超声波对空气-电解质-空气电极交界处氧还原反应的催化效应,增加电池的输出功率。相关的电池系统包括超声换能器、换能器驱动电路、空气电极、电解质和燃料极,利用超声换能器在燃料电池的阴极氧还原反应位置处产生的超声波,把更多的氧分子驱动到阴极氧还原反应位置处,增加燃料电池的放电电流和输出功率。

Description

超声辅助型燃料电池的工作方法及系统 技术领域
本发明涉及一种超声辅助型燃料电池的工作方法及系统,属于超声工程与能源工程的交叉领域。
背景技术
燃料电池具有能量转换效率高、运行安全、绿色环保等特点作为一种新型能源已经在移动设备、电动汽车、固定电站等领域得到应用。而金属燃料电池,又称金属-空气电池自进入人们的视野以来,由于其高能量密度和容量、平稳的放电特性、对负载和温度的依赖性低和较低的制造成本等特点,在电动汽车、军事通讯装备、便携式装备、无人机、车辆、潜艇、水面舰艇和航天器等均具有较大的应用潜力,所以受到越来越多的关注。虽然金属空气电池具有高能量密度(或比能量),但其缓慢的氧还原反应已成为制约其进一步发展的一个瓶颈。这是因为缓慢的氧还原反应限制了金属空气电池的输出电流,进而限制了其输出功率密度。而目前的研究方向主要集中于新型高效阴极催化材料的研制及其电池结构设计。
发明内容
为了克服上述现有技术的不足,本发明的目的是提供一种超声辅助型燃料电池的工作方法及系统,是一种全新的空气阴极氧化还原反应的催化方法,利用超声波对空气-电解质-空气电极交界处氧还原反应的催化效应,从而达到提升燃料电池的放电电流密度和输出功率的技术效果。
为达到上述目的,本发明采用如下技术方案:
超声辅助型燃料电池的工作方法,利用换能器驱动电路驱动超声换能器,在空气电极与空气、电解质的交界处产生声压,利用声压对空气中的氧气、电解质中的电子及水分子在空气电极处发生的氧还原反应进行催化,进而提高燃料电池系统的输出电流和输出电功率。
本发明还提供了一种使用上述超声辅助型燃料电池工作方法的系统,所述的燃料电池系统的燃料电池为金属-空气电池和氢氧燃料电池。
进一步的,所述的超声换能器的辐射面为具有聚焦能力的辐射面,产生的工作声场为聚焦型声场或准聚焦型声场,工作频率范围是0.01Hz-10GHz,声场的焦点区域覆盖整个或部分空气电极表面。
进一步的,所述的超声换能器的辐射面为平面,产生的工作声场为驻波声场或行波声场,工作频率范围是0.01Hz-10GHz,声场的焦点区域覆盖整个或部分空气电极表面。
进一步的,所述的换能器驱动电路的工作电压来自于电池系统本身或外部电源。
进一步的,所述的超声换能器的工作声场施加于多孔空气电极表面,促进氧气分子在空气电极中的扩散过程。
进一步的,阴极反应位置处的声压由电池的外壳结构的超声振动所产生,电池的外壳结构由压电元件或换能器进行励振。换能器指的除超声换能器之外的其他换能器。
与现有技术相比,本发明的有益效果是:
1、本发明系统利用各种超声换能器在燃料电池的阴极氧还原反应位置处产生的超声波,把氧分子驱动到阴极氧还原反应位置处,提高单位时间的氧还原反应效率,可成倍提高燃料电池的放电功率和电流密度;
2、本发明系统的超声换能器上施加激励电压,在一定的工作频率下超声换能器产生振动,带动空气振动,通过驻波声场或者聚焦声场在发生氧还原反应的位置处产生声压,当发生氧还原反应位置处的声压进入正半周时,声压引起的气体压缩效应会把更多的氧气分子驱动到氧还原反应位置,提升氧还原反应的速率,进而提高电池的放电电流和输出电功率;
3、本发明所述的工作方法可以用于任意燃料电池的阴极氧还原反应催化,无噪音,可小型化,可规模化,可靠性好。
附图说明
图1为本发明的工作原理示意图;
图2为实施例1的结构示意图;
图3为有无超声辐射情况下,实施例中锌-空气电池的输出功率曲线图;
图4为有无超声辐射情况下,实施例中锌-空气电池在不同载荷下工作电流和电压的关系图;
其中:1-超声换能器、2-换能器驱动电路、3-空气电极、4-电解质、5-金属电极板。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
参照图2所示,一种使用上述超声辅助型燃料电池工作方法的系统,具体结构如下,超声换能器1、换能器驱动电路2、空气电极3、电解质4、燃料极5,所述的超声换能器1前端设有聚焦头,可以将超声换能器1所产生的的超声辐射聚焦,空气电极3位于超声换能器 1下方的超声辐射聚焦处,空气电极3为金属铂片电极,空气电极3位置处于电解质4的表面位置处,部分与空气接触,部分与电解质4接触,金属燃料电极5部分或全部浸没在电解质内部。
工作时,将超声换能器1用支架固定放置于空气环境中,当换能器驱动电路2对其施加电压激励,超声换能器1会产生与电压激励同频率振动,驱动空气振动,将超声辐射聚焦于超声换能器1下方,即空气电极3与空气、电解质4的交界处位置,并产生声压,声压将空气中的氧气分子更快的驱动至空气、空气电极3、电解质4三相界面,增加在此位置发生的氧还原反应速率,从而提高电池的放电电流和输出电功率。当声压处于正半周时,声压引起的气体压缩效应会把更多的氧气分子驱动到氧还原反应位置,提升氧还原反应的速率,更进一步的提高电池的放电电流和输出电功率。
本发明中超声换能器1可采用压电元件-辐射膜励振结构或悬臂梁励振结构。所述的压电元件-辐射膜励振结构为压电陶瓷片作为励振源对硬质膜材料进行驱动,由于膜材料比较轻质,所以功耗比较低,;所述的悬臂梁励振结构是指悬臂梁的一端粘合压电陶瓷进行励振端,并且此端为固定端,而另一端为自由端,此结构可以通过悬臂梁的弯曲变形放大压电陶瓷的振动幅度。
本发明中超声换能器1的驱动电路频率一般都在高频区间,为20kHz以上,换能器驱动电路2具有转换功能,可将驱动电路进行整流、滤波、功率放大,调整区间是根据实际需要进行设计和调整,实现超声换能器1的超声驱动。
实施例1:
超声换能器1:工作频率为71kHz,辐射面为聚焦型辐射面如凹面,输入电压为70V(峰值),产生的工作声场为聚焦型声场,声场的焦点区域覆盖整个空气电极3表面,换能器驱动电路2的工作电压来自于外部电源,电流为170mA(有效值),距离电解质溶液液面2cm;
换能器驱动电路2:由函数信号发生器(Tektronix ARG 3022B,250Ms/s,25MHz)发出信号,通过功率放大器(hpf-83a南京方能科技实业有限公司)进行信号功率放大,用于驱动换能器;
空气电极3:金属铂电极,尺寸为10*10*0.5mm,位于电解质溶液液面处;
电解质4:浓度为6mol/l的KOH水溶液,75ml;
金属电极板5:纯度为99.9%的金属锌,尺寸为2.5*5.0*0.1cm。
图3为有无超声辐射情况下,实施例中锌-空气电池的输出功率曲线图;
图4为有无超声辐射情况下,实施例中锌-空气电池在不同载荷下,工作电流和电压的关系图。
实施例2:
超声换能器1:工作频率为61.5kHz,辐射面为平面型辐射面,输入电压为70V(峰值),产生的工作声场为驻波声场,声场的焦点区域覆盖整个空气电极3表面,换能器驱动电路2的工作电压来自于外部电源,电流为170mA(有效值),距离电解质溶液液面2cm;
换能器驱动电路2:由函数信号发生器(Tektronix ARG 3022B,250Ms/s,25MHz)发出信号,通过功率放大器(hpf-83a南京方能科技实业有限公司)进行信号功率放大,用于驱动换能器;
空气电极3:多孔碳电极,尺寸为10*10*1.0mm,位于电解质溶液液面处;
电解质4:浓度为6mol/l的KOH水溶液,75ml;
金属电极板5:纯度为99.9%的金属锌,尺寸为2.5*5.0*0.1cm。
实施例2测试结果表明,超声可在一定程度上增加电池的输出功率。
以上,仅为本发明的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求的保护范围为准。

Claims (7)

  1. 超声辅助型燃料电池的工作方法,其特征在于:利用换能器驱动电路(2)驱动超声换能器(1),在空气电极(3)与空气、电解质(4)的交界处产生声压,利用声压对空气中的氧气、电解质(4)中的电子及水分子在空气电极(3)处发生的氧还原反应进行催化,进而提高燃料电池系统的输出电流和输出电功率。
  2. 使用如权1所述的超声辅助型燃料电池工作方法的系统,其特征在于:所述的燃料电池系统的燃料电池为金属-空气电池和氢氧燃料电池。
  3. 根据权利要求2所述的使用超声辅助型燃料电池工作方法的系统,其特征在于:所述的超声换能器(1)的辐射面为具有聚焦能力的辐射面,产生的工作声场为聚焦型声场或准聚焦型声场,工作频率范围是0.01Hz-10GHz,声场的焦点区域覆盖整个或部分空气电极(3)表面。
  4. 根据权利要求2所述的使用超声辅助型燃料电池工作方法的系统,其特征在于:所述的超声换能器(1)的辐射面为平面,产生的工作声场为驻波声场或行波声场,工作频率范围是0.01Hz-10GHz,声场的焦点区域覆盖整个或部分空气电极(3)表面。
  5. 根据权利要求3或4所述的使用超声辅助型燃料电池工作方法的系统,其特征在于:所述的换能器驱动电路(2)的工作电压来自于电池系统本身或外部电源。
  6. 根据权利要求5所述的使用超声辅助型燃料电池工作方法的系统,其特征在于:所述的超声换能器(1)的工作声场施加于多孔空气电极(3)表面,促进氧气分子在空气电极(3)中的扩散过程。
  7. 根据权利要求2所述的使用超声辅助型燃料电池工作方法的系统,其特征在于:阴极反应位置处的声压由燃料电池的外壳结构的超声振动所产生,燃料电池的外壳结构由压电元件或换能器进行励振。
PCT/CN2019/113561 2019-04-22 2019-10-28 超声辅助型燃料电池的工作方法及系统 WO2020215641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910322642.6A CN109980322B (zh) 2019-04-22 2019-04-22 超声辅助型金属-空气电池工作方法及系统
CN201910322642.6 2019-04-22

Publications (1)

Publication Number Publication Date
WO2020215641A1 true WO2020215641A1 (zh) 2020-10-29

Family

ID=67085544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113561 WO2020215641A1 (zh) 2019-04-22 2019-10-28 超声辅助型燃料电池的工作方法及系统

Country Status (2)

Country Link
CN (1) CN109980322B (zh)
WO (1) WO2020215641A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980322B (zh) * 2019-04-22 2021-04-13 南京航空航天大学 超声辅助型金属-空气电池工作方法及系统
CN111403786B (zh) * 2019-11-21 2022-04-19 南京航空航天大学 一种利用超声微流驱动提升金属空气液流电池性能的方法
CN111146477A (zh) * 2019-12-30 2020-05-12 南京航空航天大学 一种超声微液流金属-空气电池系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112406A1 (en) * 2006-06-21 2010-05-06 The University Of Miami Ultrasonically enhanced fuel cell systems and methods of use
CN102593499A (zh) * 2011-01-17 2012-07-18 常州信雷迪特电子系统工程有限公司 电池
CN203644882U (zh) * 2013-11-27 2014-06-11 武汉理工大学 直接醇类燃料电池结构
CN109671961A (zh) * 2018-12-13 2019-04-23 彭志军 一种超声波燃料电池
CN109980322A (zh) * 2019-04-22 2019-07-05 南京航空航天大学 超声辅助型金属-空气电池工作方法及系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101783429B (zh) * 2009-01-16 2011-11-09 北京化工大学 一种锌氧单液流电池
CN101811751B (zh) * 2010-04-15 2012-02-22 南京航空航天大学 行波型超声反应器
CN101829531B (zh) * 2010-04-30 2012-06-06 南京航空航天大学 变横截面驻波超声反应器
CN202181219U (zh) * 2010-05-17 2012-04-04 昆明珀玺金属材料有限公司 超声-电场耦合金属铝原电池反应器
US10300453B2 (en) * 2013-10-16 2019-05-28 University Of Iowa Research Foundation Thin layer sonochemistry and sonoelectrochemistry devices and methods
CN107315070A (zh) * 2017-07-05 2017-11-03 南京航空航天大学 一种超声辅助型mos气体传感器的结构
CN108693246B (zh) * 2018-07-10 2024-03-29 南京航空航天大学 一种超声体声波气体传感装置的结构
CN108598628B (zh) * 2018-07-13 2022-04-05 Cnus技术公司 一种金属空气电池
CN109520612A (zh) * 2018-11-13 2019-03-26 上海交通大学 水浸式聚焦超声换能器实际声场的快速测焦系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112406A1 (en) * 2006-06-21 2010-05-06 The University Of Miami Ultrasonically enhanced fuel cell systems and methods of use
CN102593499A (zh) * 2011-01-17 2012-07-18 常州信雷迪特电子系统工程有限公司 电池
CN203644882U (zh) * 2013-11-27 2014-06-11 武汉理工大学 直接醇类燃料电池结构
CN109671961A (zh) * 2018-12-13 2019-04-23 彭志军 一种超声波燃料电池
CN109980322A (zh) * 2019-04-22 2019-07-05 南京航空航天大学 超声辅助型金属-空气电池工作方法及系统

Also Published As

Publication number Publication date
CN109980322B (zh) 2021-04-13
CN109980322A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020215641A1 (zh) 超声辅助型燃料电池的工作方法及系统
CN109671961B (zh) 一种超声波燃料电池
CN102593499A (zh) 电池
KR20090119215A (ko) 차량 타이어용 전원발생장치
US8264123B2 (en) Piezoelectric vibration device system and electronics apparatus
CN111326830B (zh) 一种金属/空气电池
US8957622B2 (en) Fuel cell system and electronic device
CN111403786B (zh) 一种利用超声微流驱动提升金属空气液流电池性能的方法
JP4643393B2 (ja) 燃料電池
US10300453B2 (en) Thin layer sonochemistry and sonoelectrochemistry devices and methods
Huang et al. Enabling a high-performance saltwater Al-air battery via ultrasonically driven electrolyte flow
CN202678465U (zh) 电池
CN201051520Y (zh) 一种燃料电池膜电极
US20110136032A1 (en) Fuel cell system and electronic device
CN111326760B (zh) 金属/空气电池
CN111146477A (zh) 一种超声微液流金属-空气电池系统
JP4643394B2 (ja) 燃料電池
JP2006147486A (ja) 燃料電池システム
CN114672823A (zh) 基于高-低频声波组合的光电催化合成氨反应器及方法
CN213184431U (zh) 一种新型圆柱锂电池盖板结构
CN112490476A (zh) 一种金属-空气电池系统
WO2013094168A1 (ja) 二次電池
CN108023108B (zh) 一种大功率液流电池正极一体化结构
JP2004014192A (ja) 燃料電池装置及び燃料電池装置の制御方法
CN220492137U (zh) 极耳焊接结构及其包含它的复合集流体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19926163

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19926163

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19926163

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19926163

Country of ref document: EP

Kind code of ref document: A1