WO2020215638A1 - 一种环糊精基金属有机框架材料及其制备方法 - Google Patents

一种环糊精基金属有机框架材料及其制备方法 Download PDF

Info

Publication number
WO2020215638A1
WO2020215638A1 PCT/CN2019/113455 CN2019113455W WO2020215638A1 WO 2020215638 A1 WO2020215638 A1 WO 2020215638A1 CN 2019113455 W CN2019113455 W CN 2019113455W WO 2020215638 A1 WO2020215638 A1 WO 2020215638A1
Authority
WO
WIPO (PCT)
Prior art keywords
cyclodextrin
organic framework
based metal
framework material
solution
Prior art date
Application number
PCT/CN2019/113455
Other languages
English (en)
French (fr)
Inventor
李晓玺
池承灯
陈玲
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/605,249 priority Critical patent/US20220282046A1/en
Publication of WO2020215638A1 publication Critical patent/WO2020215638A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/001Macromolecular compounds containing organic and inorganic sequences, e.g. organic polymers grafted onto silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • C08B37/0015Inclusion compounds, i.e. host-guest compounds, e.g. polyrotaxanes

Definitions

  • the invention relates to the field of chemical production, in particular to a method for rapidly preparing a cyclodextrin-based metal organic framework material.
  • Metal-Organic Frameworks can also be called porous coordination polymers, which are a type of porous materials formed by self-assembly of metal ions or metal clusters and organic ligands through coordination.
  • MOFs have extremely high porosity, diverse structures and adjustable functions, which make them have good application prospects in gas storage, separation, catalysis, sensing, and drug release.
  • MOFs metal ions and organic ligands of MOFs
  • the synthesis reaction conditions are relatively harsh (such as high temperature, organic solvents, etc.), and the reaction time is long (between several hours to tens of hours)
  • the metal ions and organic ligands of MOFs require good biocompatibility and biodegradability, which is important for MOFs.
  • the expansion of the application of biomedicine is greatly reduced.
  • the search for MOFs with mild synthesis conditions and good biocompatibility is one of the hot topics that MOFs researchers at home and abroad pay attention to.
  • ⁇ -Cyclodextrin is a type of cyclic oligosaccharide with 8 glucopyranoses, which is produced by the glucosyltransferase of certain strains of Bacillus species acting on starch. Due to its superior biocompatibility, It is biodegradable and renewable and has attracted wide attention and applications. Since 2010, the team of Professor Stoddart of Northwestern University has used ethanol volatilization to prepare ⁇ -cyclodextrin-based metal organic framework materials, and use them for CO2 adsorption, chiral molecule separation and detection, biopharmaceutical loading and delivery, etc. , Greatly broaden the scope of application and high-value utilization of ⁇ -cyclodextrin.
  • an open small container containing metal ions (Li + , K + , Rb + or Cs + ) and ⁇ -cyclodextrin alkaline solution is placed in a large container containing methanol solution, and the large container is sealed; further Specifically, placing it in an environment of 50-70° C. allows the alcohol molecules to diffuse into the small container and mix with the ⁇ -cyclodextrin alkali solution to drive the ⁇ -cyclodextrin and the metal ion to self-assemble to obtain the cyclodextrin-based metal organic framework material.
  • the technical problem to be solved by the present invention is how to quickly prepare a cyclodextrin-based metal organic framework material.
  • the purpose of the present invention is to provide a method for quickly preparing the cyclodextrin-based metal-organic framework material.
  • the green and rapid preparation of cyclodextrin-based metal-organic framework materials is realized, and the crystallization is perfect , Biodegradable materials with high specific surface area.
  • a preparation method of cyclodextrin-based metal organic framework material includes the following steps:
  • step (3) Cool the ⁇ -cyclodextrin hot solution of step (2), crystallize and separate to obtain a cyclodextrin-based metal organic framework material.
  • the alkali metal ion is K + , Rb + or Cs + ; the alcohol is methanol or ethanol.
  • the molar ratio of ⁇ -cyclodextrin to alkaline earth metal ion in the supersaturated ⁇ -cyclodextrin alkaline alcohol aqueous solution is 1:6-1:12, and the mass-volume ratio of ⁇ -cyclodextrin to water is 0.1:10-0.6:10g/mL, the volume ratio of alcohol to water is 2:5-5:5.
  • the molar ratio of cyclodextrin to metal salt ion in the supersaturated ⁇ -cyclodextrin alkaline alcohol aqueous solution is 1:7-1:10; the mass-volume ratio of ⁇ -cyclodextrin to water is 0.2:5 -0.3:5 g/mL; the volume ratio of alcohol to water is 3:5-5:5 mL/mL.
  • the pH of the supersaturated ⁇ -cyclodextrin alkaline alcohol aqueous solution is 10-14, preferably 12-14.
  • the temperature of the ⁇ -cyclodextrin hot solution in step (2) is 60-90 °C, preferably 70-80 °C.
  • the hot ⁇ -cyclodextrin solution in step (3) is cooled at a temperature drop rate of 5-20°C/min, preferably 7.5-15°C/min.
  • the temperature of the ⁇ -cyclodextrin hot solution is reduced to 5-25°C, preferably 10-20°C.
  • the separation in step (3) is performed by centrifugation in a centrifuge or with a membrane pore less than 500 Filter with nm filter membrane.
  • the raw material alcohol is recovered through a distillation device to reduce raw material loss and environmental pollution.
  • the present invention induces the dissolution and crystallization behavior of ⁇ -cyclodextrin in alcohol solution through simple control of heating and cooling processes to prepare cyclodextrin-based metal organic framework materials, which are simple to operate and environmentally friendly; most importantly, the traditional The synthesis time of several hours or even tens of hours is compressed to several minutes, which is short in time and high in efficiency, which is conducive to the industrial production of cyclodextrin-based metal organic framework.
  • the cyclodextrin-based metal organic framework material quickly synthesized by the preparation process of the present invention has a perfect crystal structure and a large specific surface area, which is similar to the crystal structure and specific surface area properties of the material prepared by the traditional synthesis process.
  • the method disclosed in the present invention is not only limited to the preparation of cyclodextrin-based metal-organic framework materials, but is also suitable for inducing the aggregation structure, dissolution and crystallization behavior of organic ligands in the water/organic phase through the heating-cooling process. Any metal-organic framework material that can be quickly prepared by changes will significantly improve the synthesis efficiency of organic framework materials.
  • FIG. 1 is an X-ray diffraction pattern of the cyclodextrin-based metal organic framework material prepared in Example 1.
  • Example 2 is a graph showing the N2 adsorption-desorption isotherm curve of the cyclodextrin-based metal organic framework material prepared in Example 1.
  • step (3) The hot solution of step (2) is cooled to 10°C at 15°C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is centrifuged at a speed of 4000 revolutions/min in a centrifuge.
  • the synthesis time for preparing the cyclodextrin metal organic framework material is less than 9 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material showed a single crystal diffraction pattern on the X-ray diffraction pattern, see Figure 1; its specific surface area is 729.3 m 2 /g, see Figure 2, which is between those prepared by traditional methods The specific surface area of the material is 350-1400 m 2 /g.
  • step (3) The hot solution of step (2) is cooled to 5°C at 20°C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is centrifuged at a speed of 4000 revolutions/min in a centrifuge.
  • the synthesis time used to prepare the cyclodextrin metal organic framework material is less than 6 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material presents a single crystal diffraction pattern on the X-ray diffraction pattern; its specific surface area is 568.2 m 2 /g, which is between the specific surface area of the material prepared by the traditional method of 350-1400 m 2 / g.
  • step (3) The hot solution of step (2) is cooled to 5 °C at 10 °C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is passed through a pore size of 450 Obtained by filtration with nm filter membrane.
  • the synthesis time used to prepare the cyclodextrin metal organic framework material is less than 10 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material exhibits single crystal diffraction patterns on the X-ray diffraction pattern; its specific surface area is 860.9 m 2 /g, which is between 350-1400 m 2 / g.
  • step (3) The hot solution of step (2) is cooled to 10°C at 15°C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is centrifuged at a speed of 4000 revolutions/min in a centrifuge.
  • the synthesis time for preparing the cyclodextrin metal organic framework material is less than 7 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material presents a single crystal diffraction pattern on the X-ray diffraction pattern; its specific surface area is 1186.7 m 2 /g, which is between the specific surface area of the material prepared by the traditional method of 350-1400 m 2 / g.
  • step (3) The hot solution of step (2) is cooled to 5°C at 5°C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is centrifuged at a speed of 4000 revolutions/min in a centrifuge.
  • the synthesis time used to prepare the cyclodextrin metal organic framework material is less than 14 minutes, which is significantly lower than the traditional preparation time.
  • the cyclodextrin prepared based metal-organic framework material exhibits a diffraction pattern in the X-ray diffraction pattern; specific surface area of 527.6m 2 / g, prepared by conventional methods between the material specific surface area of 350-1400 m 2 / g.
  • step (3) The hot solution of step (2) is cooled to 25°C at 20°C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is centrifuged at a speed of 4000 revolutions/min in a centrifuge.
  • the synthesis time for preparing the cyclodextrin metal organic framework material is less than 7 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material presents a single crystal diffraction pattern on the X-ray diffraction pattern; its specific surface area is 608.9 m 2 /g, which is between the specific surface area of the material prepared by the traditional method of 350-1400 m 2 / g.
  • step (3) The hot solution of step (2) is cooled to 20 °C at 15 °C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization is passed through a pore size of 450 Obtained by filtration with nm filter membrane.
  • the synthesis time for preparing the cyclodextrin metal organic framework material is less than 7 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material exhibits single crystal diffraction patterns on the X-ray diffraction pattern; its specific surface area is 1075.8 m 2 /g, which is between 350-1400 m 2 / g.
  • step (3) The hot solution of step (2) was cooled to 10 °C at 7.5 °C/min, and the cyclodextrin-based metal organic framework material obtained by crystallization was passed through a hole diameter of 400 Obtained by filtration with nm filter membrane.
  • the synthesis time used to prepare the cyclodextrin metal organic framework material is less than 13 minutes, which is significantly lower than the traditional preparation time.
  • the prepared cyclodextrin-based metal-organic framework material presents a single crystal diffraction pattern on the X-ray diffraction pattern; its specific surface area is 1018.6 m 2 /g, which is between 350-1400 m 2 / g.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Medicinal Preparation (AREA)

Abstract

本公开属于化工生产领域,具体涉及一种环糊精基金属有机框架材料及其制备方法,包括以下步骤:(1)配置含有碱金属离子的过饱和γ-环糊精碱性醇水溶液;(2)加热得到γ-环糊精热溶液;(3)冷却步骤(2)的γ-环糊精热溶液,结晶并分离得到环糊精基金属有机框架材料。所述环糊精基金属有机框架材料结晶完美、比表面积大,与传统方法制备得到的材料的结晶与比表面积性质相近;重要的是,其合成操作简单、绿色环保,所需时间从传统数小时乃至数十个小时缩短至数分钟,显著提高合成效率,利于工业规模化生产。

Description

一种环糊精基金属有机框架材料及其制备方法 技术领域
本发明涉及化工生产领域,具体涉及一种快速制备环糊精基金属有机框架材料的方法。
背景技术
金属有机框架材料(Metal-Organic Frameworks, MOFs)又可以被称为多孔配位聚合物,是一类由金属离子或金属簇与有机配体通过配位作用自组装形成的多孔材料。MOFs具有极高的孔隙率、结构多样且功能性可调,使其在气体储存、分离、催化、传感、药物释放等方面具有很好的应用前景。然而,目前大部分MOFs的金属离子和有机配体均具有一定的生物毒性,且合成反应条件较为苛刻(如高温、有机溶剂等)、反应时间长(数个小时到数十个小时之间),限制了大部分MOFs的连续化、规模化生产;此外,从生物或医药领域来看,MOFs的金属离子和有机配体所需生物相容性良好、可生物降解等特点,这对MOFs在生物医药领域的扩大应用大打折扣。寻求合成条件温和、生物相容性好的MOFs是国内外MOFs研究学者所关注的热点课题之一。
γ-环糊精是由芽孢杆菌属的某些菌种的葡萄糖基转移酶作用于淀粉而产生的一类具有8个吡喃葡萄糖的环状低聚糖,因其优越的生物相容性、可生物降解和可再生等特点而受到广泛关注与应用。自2010年以来,美国西北大学Stoddart教授团队利用乙醇挥发法制备得到γ-环糊精基金属有机框架材料,并将其用于CO2吸附、手性分子分离与检测、生物药物负载与递送等方面,极大拓宽γ-环糊精的适用范围与高值化利用。该方法将装有金属离子(Li +、K +、Rb +或Cs +)和γ-环糊精碱性溶液的敞口小容器置于盛有甲醇溶液的大容器,并密封大容器;进一步地,将其置于50-70 ℃环境中使得醇分子扩散进入小容器与γ-环糊精碱溶液混合,驱使γ-环糊精与金属离子自组装得到环糊精基金属有机框架材料。该晶体的合成条件温和,且其金属离子与有机配体对人体生物相容性好,在生物应用方面表现为巨大潜力;然而,其合成过程耗时长,一般需数十个小时,不利于环糊精基金属有机框架材料的规模化生产。中国江南大学ZhengyuJin教授团队自2018年以来发明了一种晶种结晶法控制环糊精基金属有机框架材料的结晶行为。他们参考Stoddart教授的方法在环糊精基金属有机框架材料结晶前加入淀粉基纳米粒子(< 100 nm),有效缩短了环糊精基金属有机框架材料的合成时间(约6 h),并且通过控制淀粉基纳米粒子的添加量控制了环糊精基金属有机框架材料的微粒大小。值得注意的是,截止到目前为止,环糊精基金属有机框架材料的合成耗时依旧需要长达数个小时。开发一种快速制备环糊精基金属有机框架材料的方法是工业规模化生产环糊精基金属有机框架材料亟待解决的关键问题。
技术问题
本发明所要解决的技术问题是,如何快速制备环糊精基金属有机框架材料。
技术解决方案
针对目前环糊精基金属有机框架材料合成时间长,限制其在工业化领域大规模生产的现状,本发明的目的是提供一种快速制备环糊精基金属有机框架材料的制备方法。通过简单加热与冷却γ-环糊精的过饱和碱性醇溶液诱导γ-环糊精在溶液中的溶解与结晶行为,实现环糊精基金属有机框架材料的绿色、快速制备,得到结晶完美、比表面积高的可生物降解材料。
本发明的目的通过下述方案实现:
一种环糊精基金属有机框架材料的制备方法,包括以下步骤:
(1)配置含有碱金属离子的过饱和γ-环糊精碱性醇水溶液;
(2)加热得到γ-环糊精热溶液;
(3)冷却步骤(2)的γ-环糊精热溶液,结晶并分离得到环糊精基金属有机框架材料。
优选地,所述碱金属离子为K +、Rb +或Cs +;所述醇为甲醇或乙醇。
优选地,所述过饱和γ-环糊精碱性醇水溶液中γ-环糊精与碱土金属离子的摩尔比为1:6-1:12,γ-环糊精与水的质量体积比为0.1:10-0.6:10g/mL,醇与水的体积比为2:5-5:5。
优选地,所述过饱和γ-环糊精碱性醇水溶液中环糊精与金属盐离子的摩尔比为1:7-1:10;γ-环糊精与水的质量体积比为0.2:5-0.3:5 g/mL;醇与水的体积比为3:5-5:5 mL/mL。
优选地,所述过饱和γ-环糊精碱性醇水溶液的pH值为10-14,优选为12-14。
优选地,步骤(2)所述γ-环糊精热溶液的温度为60-90 ℃,优选为70-80 ℃。
优选地,步骤(3)所述γ-环糊精热溶液以5-20 ℃/min的降温速率冷却,优选为7.5-15 ℃/min。
优选地,所述γ-环糊精热溶液温度降至5-25 ℃,优选为10-20 ℃。
优选地,步骤(3)所述分离是经离心机离心处理或用膜孔小于500 nm的过滤膜过滤。
所述醇溶液在环糊精基金属有机框架材料分离后,经蒸馏装置回收原料醇,以减少原料损失及环境污染。
有益效果
相对于现有技术,具有如下的优点及有益效果:
(1)本发明通过简单控制加热和冷却工艺诱导γ-环糊精在醇溶液的溶解与结晶行为制备得到环糊精基金属有机框架材料,操作简单、绿色环保;最重要的是,将传统的数个小时乃至数十个小时合成时间压缩至数分钟,用时短、效率高,利于环糊精基金属有机框架的工业化生产。
(2)采用本发明的制备工艺快速合成得到的环糊精基金属有机框架材料结晶结构完美、比表面积大,与传统合成工艺制备得到的材料结晶结构与比表面积性质相近。
(3)本发明公开的方法不仅仅局限于制备环糊精基金属有机框架材料,同样适用于通过加热-冷却工艺诱导有机配体在水相/有机相中聚集态结构、溶解与结晶行为的改变而快速制备得到的任何金属有机框架材料,将显著提高有机框架材料的合成效率。
附图说明
图1为实施例1制备得到的环糊精基金属有机框架材料的X射线衍射图谱。
图2为实施例1制备得到的环糊精基金属有机框架材料的N2吸附-解吸等温曲线图。
本发明的实施方式
下面结合实施例,对本发明作进一步详细地说明,但本发明实施方式并不限于此。
下列实施例中使用的材料均可从商业渠道获得。
实施例1
(1)称取0.35 g (0.27 mmol)γ-环糊精和0.224 g(2.02 mmol)氢氧化钾溶于甲醇溶液(8 mL甲醇与10 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到90 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以15 ℃/min降温至10 ℃,将结晶得到的环糊精基金属有机框架材料通过离心机以4000 转/分钟的转速离心得到。
用于制备环糊精金属有机框架材料的合成时间少于9分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样,见附图1;其比表面积为729.3 m 2/g,见附图2,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例2
(1)称取0.40 g (0.31 mmol)γ-环糊精和0.213 g(1.92 mmol)氢氧化钾溶于甲醇溶液(4 mL甲醇与8 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到60 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以20 ℃/min降温至5 ℃,将结晶得到的环糊精基金属有机框架材料通过离心机以4000 转/分钟的转速离心得到。
用于制备环糊精金属有机框架材料的合成时间少于6分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为568.2 m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例3
(1)称取0.35 g (0.27 mmol)γ-环糊精和0.15 g(2.68 mmol)氢氧化铯溶于乙醇溶液(6 mL乙醇与6 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到75 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以10 ℃/min降温至5 ℃,将结晶得到的环糊精基金属有机框架材料通过孔径为450 nm的过滤膜过滤得到。
用于制备环糊精金属有机框架材料的合成时间少于10分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为860.9 m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例4
(1)称取0.40 g (0.31 mmol)γ-环糊精和0.26 g(2.11 mmol)氢氧化铷溶于甲醇溶液(6 mL甲醇与8 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到70 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以15 ℃/min降温至10 ℃,将结晶得到的环糊精基金属有机框架材料通过离心机以4000 转/分钟的转速离心得到。
用于制备环糊精金属有机框架材料的合成时间少于7分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为1186.7 m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例5
(1)称取0.40 g (0.31 mmol)γ-环糊精和0.27 g(2.64 mmol)氢氧化铷溶于乙醇溶液(16 mL乙醇与40 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到60 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以5 ℃/min降温至5 ℃,将结晶得到的环糊精基金属有机框架材料通过离心机以4000 转/分钟的转速离心得到。
用于制备环糊精金属有机框架材料的合成时间少于14分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为527.6m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例6
(1)称取0.40 g (0.31 mmol)γ-环糊精和0.378 g(3.70 mmol)氢氧化铷溶于乙醇溶液(6 mL乙醇与7 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到90 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以20 ℃/min降温至25 ℃,将结晶得到的环糊精基金属有机框架材料通过离心机以4000 转/分钟的转速离心得到。
用于制备环糊精金属有机框架材料的合成时间少于7分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为608.9 m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例7
(1)称取0.40 g (0.31 mmol)γ-环糊精和0.246 g(2.22 mmol)氢氧化钾溶于甲醇溶液(8 mL甲醇与10 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到80 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以15 ℃/min降温至20 ℃,将结晶得到的环糊精基金属有机框架材料通过孔径为450 nm的过滤膜过滤得到。
用于制备环糊精金属有机框架材料的合成时间少于7分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为1075.8 m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
实施例8
(1)称取0.35 g (0.27 mmol)γ-环糊精和0.15 g(2.68 mmol)氢氧化铯溶于乙醇溶液(6 mL乙醇与6 mL去离子水的混合溶液),获得过饱和γ-环糊精溶液;
(2)将步骤(1)的过饱和γ-环糊精溶液加热到80 ℃后,获得环糊精热溶液;
(3)将步骤(2)的热溶液以7.5 ℃/min降温至10 ℃,将结晶得到的环糊精基金属有机框架材料通过孔径为400 nm的过滤膜过滤得到。
用于制备环糊精金属有机框架材料的合成时间少于13分钟,显著低于传统的制备时间。所制备得到的环糊精基金属有机框架材料在X射线衍射图谱上呈现单晶衍射花样;其比表面积为1018.6 m 2/g,介于传统方法制备的材料的比表面积350-1400 m 2/g。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种环糊精基金属有机框架材料的制备方法,其特征在于,包括以下步骤:
    (1)配置含有碱金属离子的过饱和γ-环糊精碱性醇水溶液;
    (2)加热得到γ-环糊精热溶液;
    (3)冷却步骤(2)的γ-环糊精热溶液,结晶并分离得到环糊精基金属有机框架材料。
  2. 根据权利要求1所述的方法,其特征在于,所述碱金属离子为K +、Rb +或Cs +;所述醇为甲醇或乙醇。
  3. 根据权利要求1或2所述的方法,其特征在于,其特征在于,所述过饱和γ-环糊精碱性醇水溶液中γ-环糊精与碱土金属离子的摩尔比为1:6-1:12,γ-环糊精与水的质量体积比为0.1:10-0.6:10g/mL,醇与水的体积比为2:5-5:5。
  4. 根据权利要求3所述的方法,所述过饱和γ-环糊精碱性醇水溶液中环糊精与金属盐离子的摩尔比为1:7-1:10;γ-环糊精与水的质量体积比为0.2:5-0.3:5 g/mL;醇与水的体积比为3:5-5:5 mL/mL。
  5. 根据权利要求4所述的方法,其特征在于,所述过饱和γ-环糊精碱性醇水溶液的pH值为10-14,优选为12-14。
  6. 根据权利要求4所述的方法,其特征在于,步骤(2)所述γ-环糊精热溶液的温度为60-90 ℃,优选为70-80 ℃。
  7. 根据权利要求6所述的方法,其特征在于,步骤(3)所述γ-环糊精热溶液以5-20 ℃/min的降温速率冷却,优选为7.5-15 ℃/min。
  8. 根据权利要求7所述的方法,其特征在于,所述γ-环糊精热溶液温度降至5-25 ℃,优选为10-20 ℃。
  9. 根据权利要求1或2或3所述的方法,其特征在于,步骤(3)所述分离是经离心机离心处理或用膜孔小于500 nm的过滤膜过滤。
  10. 权利要求1-9任一项所述方法制备的环糊精基金属有机框架材料。
PCT/CN2019/113455 2019-04-22 2019-10-25 一种环糊精基金属有机框架材料及其制备方法 WO2020215638A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/605,249 US20220282046A1 (en) 2019-04-22 2019-10-25 Cyclodextrin-based metal organic framework material and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910325089.1 2019-04-22
CN201910325089.1A CN110054782B (zh) 2019-04-22 2019-04-22 一种环糊精基金属有机框架材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2020215638A1 true WO2020215638A1 (zh) 2020-10-29

Family

ID=67319989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113455 WO2020215638A1 (zh) 2019-04-22 2019-10-25 一种环糊精基金属有机框架材料及其制备方法

Country Status (3)

Country Link
US (1) US20220282046A1 (zh)
CN (1) CN110054782B (zh)
WO (1) WO2020215638A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054782B (zh) * 2019-04-22 2021-08-10 华南理工大学 一种环糊精基金属有机框架材料及其制备方法
CN110663763A (zh) * 2019-09-04 2020-01-10 华南理工大学 一种具有高效附载和缓释乙烯的环糊精载体及其制备方法
CN113786396B (zh) * 2021-08-20 2023-12-05 华南理工大学 一种负载百里香酚的环糊精络合物及其制备方法
CN116120571A (zh) * 2022-12-02 2023-05-16 四川农业大学 一种用于吸收乙烯的γ-环糊精金属有机框架
CN116444964A (zh) * 2022-12-16 2023-07-18 杭州泽同新材料科技有限公司 一种生物降解耐热材料及其制备方法、用途
CN115944562B (zh) * 2023-03-15 2023-07-04 华南理工大学 一种环糊精生物mof防晒材料制备方法及其化妆品应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814118A (zh) * 2014-06-06 2016-07-27 西北大学 碳水化合物介导的石化产品的纯化
CN110054782A (zh) * 2019-04-22 2019-07-26 华南理工大学 一种环糊精基金属有机框架材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9808788B2 (en) * 2015-07-29 2017-11-07 Panaceanano, Inc. Method of using cyclodextrin-based metal organic frameworks
CN107151329B (zh) * 2016-03-04 2020-10-16 中国科学院上海药物研究所 环糊精-金属有机骨架材料的快速合成方法
CN107837401B (zh) * 2016-09-19 2022-04-08 中国科学院上海药物研究所 环糊精-金属有机骨架材料复合微球及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105814118A (zh) * 2014-06-06 2016-07-27 西北大学 碳水化合物介导的石化产品的纯化
CN110054782A (zh) * 2019-04-22 2019-07-26 华南理工大学 一种环糊精基金属有机框架材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LI, HAIYAN ET AL.: "Composite CD -MOF Nanocrystals-Containing Microspheres for Sustained Drug Delivery", THE ROYAL SOCIETY OF CHEMISTRY, vol. 9, 13 April 2017 (2017-04-13), pages 7454 - 7463, XP055746114, DOI: 10.1039/C6NR07593B *
LIU, BOTAO ET AL.: "Microwave-Assisted Rapid Synthesis of y-Cyclodextrin Metal-Organic Frameworks for Size Control and Efficient Drug Loading", CRYSTAL GROWTH & DESIGN, vol. 17, 20 February 2017 (2017-02-20), pages 1654 - 1660, XP055624796, DOI: 10.1021/acs.cgd.6b01658 *
SMALDONE, RONALD A. ET AL.: "Metal-Organic Frameworks from Edible Natural Products", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 49, 16 August 2010 (2010-08-16), pages 8630 - 8634, XP055214613, DOI: 10.1002/anie.201002343 *

Also Published As

Publication number Publication date
CN110054782B (zh) 2021-08-10
CN110054782A (zh) 2019-07-26
US20220282046A1 (en) 2022-09-08

Similar Documents

Publication Publication Date Title
WO2020215638A1 (zh) 一种环糊精基金属有机框架材料及其制备方法
Duan et al. Ultrafast room-temperature synthesis of hierarchically porous metal–organic frameworks by a versatile cooperative template strategy
Hu et al. Template strategies with MOFs
Feng et al. Controllable synthesis of metal-organic frameworks and their hierarchical assemblies
Xu et al. Seed-mediated synthesis of metal–organic frameworks
Yang et al. Synthesis of metal–organic framework MIL-101 in TMAOH-Cr (NO3) 3-H2BDC-H2O and its hydrogen-storage behavior
CN113354825B (zh) 锆基金属有机骨架材料UiO-66(Zr)及其室温快速制备方法和应用
Li et al. Crystal‐growth‐dominated fabrication of metal–organic frameworks with orderly distributed hierarchical porosity
CN101421034B (zh) 用于水分吸附和脱附的吸附剂
Duan et al. Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks
Jin et al. Synthetic methods, properties and controlling roles of synthetic parameters of zeolite imidazole framework-8: A review
Xiang et al. Facile synthesis and catalytic properties of nickel-based mixed-metal oxides with mesopore networks from a novel hybrid composite precursor
CN110496604A (zh) 一种钴镍双金属有机框架二氧化碳吸附材料及其制备方法与应用
Si et al. Carbonized ZIF-8 incorporated mixed matrix membrane for stable ABE recovery from fermentation broth
CN106902785B (zh) 一种用于超高乙炔存储及气体高效选择性分离吸附的金属有机框架材料及其制备方法
Yang et al. Rapid hydrothermal synthesis of MIL-101 (Cr) metal–organic framework nanocrystals using expanded graphite as a structure-directing template
CN105622445B (zh) 一种室温下合成纳米级金属有机骨架材料的方法
CN109293467A (zh) 一种吸附分离丙烯、丙炔、丙烷和丙二烯的方法
Morales et al. Ultrafast synthesis of HKUST-1 nanoparticles by solvothermal method: Properties and possible applications
CN104128163A (zh) 微孔-介孔mil-101材料的制备方法及其应用
Thomas et al. Processing of thermally stable 3D hierarchical ZIF-8@ ZnO structures and their CO2 adsorption studies
Zhang et al. Green and rapid preparation of hierarchically porous metal–organic zeolites and simulation of their growth
Luo et al. Thermal decompositions and heat capacities study of a co-based zeolitic imidazolate framework
CN103950920A (zh) 一种二氧化碳响应的石墨烯纳米杂化材料的制备方法
Lan et al. Ultra-long α-MnO2 nanowires: control synthesis and its absorption activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03/03/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 19925683

Country of ref document: EP

Kind code of ref document: A1