WO2020213942A1 - 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블 - Google Patents

유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블 Download PDF

Info

Publication number
WO2020213942A1
WO2020213942A1 PCT/KR2020/005074 KR2020005074W WO2020213942A1 WO 2020213942 A1 WO2020213942 A1 WO 2020213942A1 KR 2020005074 W KR2020005074 W KR 2020005074W WO 2020213942 A1 WO2020213942 A1 WO 2020213942A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
content
ethylene
cable
Prior art date
Application number
PCT/KR2020/005074
Other languages
English (en)
French (fr)
Inventor
박찬웅
김인하
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200045144A external-priority patent/KR20200122249A/ko
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Publication of WO2020213942A1 publication Critical patent/WO2020213942A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B19/00Apparatus or processes specially adapted for manufacturing insulators or insulating bodies
    • H01B19/04Treating the surfaces, e.g. applying coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present invention relates to a cable having an insulating layer formed from an insulating composition having excellent flexibility and oil resistance, particularly a high voltage cable for an electric vehicle.
  • the present invention relates to a high voltage cable for an electric vehicle including an insulating layer formed from an insulating composition that satisfies physical properties such as heat resistance, cold resistance, and flame resistance while simultaneously improving flexibility and oil resistance that are in a trade-off relationship. will be.
  • electric vehicles require a high voltage of 300 volts or more for driving a motor for starting an engine and/or other devices that require high voltage.
  • a high voltage device applied to an electric vehicle is a motor for starting an engine.
  • inverters high voltage batteries, power relay assemblies, and low voltage DC converters.
  • the conventional high-voltage cable for electric vehicles has a conductor such as copper or aluminum and an insulating layer surrounding the conductor, and the insulating layer can be applied with various polymer materials. Do.
  • silicone-based materials have a disadvantage of excellent heat resistance and flexibility, but poor oil resistance and high price.
  • crosslinked polyolefin resins which can be applied in various types, are limited in allowable temperature due to relatively weak heat resistance (ex. 150°C), but are inexpensive and have the advantage of being able to implement various properties through composition change.
  • the insulating layer may be made of ethylene vinyl acetate (EVA) resin with a high content of vinyl acetate (VA), polyolefin elastomer (POE) with a low melting point, etc.
  • EVA ethylene vinyl acetate
  • VA vinyl acetate
  • POE polyolefin elastomer
  • the oil resistance of the cable may be greatly reduced, and if a resin with high crystallinity is increased as a resin that forms an insulating layer to improve such oil resistance, there is a problem that the flexibility of the cable decreases, and thus it is difficult to satisfy both flexibility and oil resistance. .
  • the flexibility and oil resistance in a trade-off relationship are improved at the same time, and the insulating composition for forming the insulation layer of high voltage cables for electric vehicles that satisfies the properties such as heat resistance, cold resistance, and flame resistance of 150°C and formed therefrom.
  • An insulating composition forming an insulating layer of a cable comprising a base resin, wherein the base resin comprises an ethylene copolymer containing a polar monomer, an ethylene-propylene rubber, and a polyolefin resin grafted with a polar group, and the following
  • the TE index defined by Equation 1 is 30 to 65, providing an insulating composition.
  • A is the melting point (°C) of the ethylene copolymer containing a polar monomer
  • B is the content (part by weight; phr) of the ethylene copolymer containing a polar monomer based on 100 parts by weight of the base resin.
  • the melting point (Tm) of the ethylene copolymer including the polar monomer is 80 to 110°C, and the content of the polar monomer is 5 to 25% by weight based on the total weight of the ethylene copolymer including the polar monomer. It provides an insulating composition, characterized in that.
  • the content of the ethylene copolymer containing the polar monomer is 25 to 65 parts by weight
  • the content of the ethylene-propylene rubber is 25 to 65 parts by weight
  • the polar group is grafted It provides an insulating composition, characterized in that the content of the grafted polyolefin resin is 5 to 15 parts by weight.
  • the polar monomer provides an insulating composition, characterized in that it contains an acrylic monomer, an acetate-based monomer, or both.
  • the acrylic monomer includes at least one selected from the group consisting of butyl acrylate, ethyl acrylate, and methacrylate, and the acetate-based monomer includes vinyl acetate.
  • the ethylene-propylene rubber provides an insulating composition, characterized in that the specific gravity is 0.850 to 0.890.
  • the ethylene-propylene rubber provides an insulating composition, characterized in that it comprises an ethylene-propylene copolymer (EPM), an ethylene-propylene diene copolymer (EPDM), or both.
  • EPM ethylene-propylene copolymer
  • EPDM ethylene-propylene diene copolymer
  • the polyolefin resin grafted with the polar group comprises a linear low-density polyethylene (LLDPE) resin grafted with maleic anhydride having a melting point of 110 to 130°C and a specific gravity of 0.900 to 0.930. to provide.
  • LLDPE linear low-density polyethylene
  • a crosslinking aid is further included, and the crosslinking aid is triallyl isocyanurate (TAIC), triallyl cyanurate (TAC), trimethylolpropane trimethacrylate (TMPTMA), and trimethylolpropane triacrylate
  • TAIC triallyl isocyanurate
  • TAC triallyl cyanurate
  • TMPTMA trimethylolpropane trimethacrylate
  • TMPTA trimethylolpropane triacrylate
  • a metal hydroxide as a flame retardant and antimony trioxide as a flame retardant auxiliary are included, and based on 100 parts by weight of the base resin, the content of the flame retardant is 70 to 110 parts by weight, and the content of the flame retardant auxiliary is 5 to 20 parts by weight. It provides an insulating composition.
  • a conductor surrounds the conductor and provides a cable comprising an insulating layer formed from the insulating composition.
  • a cable characterized in that it further comprises a shielding layer surrounding the insulating layer and a sheath layer surrounding the shielding layer.
  • a cable characterized in that the nominal cross-sectional area of the conductor is more than 6 mm 2.
  • the insulating composition according to the present invention exhibits an excellent effect of simultaneously improving flexibility and oil resistance in a trade-off relationship with each other by a combination of a specific base resin and an additive, and satisfying physical properties such as heat resistance, cold resistance, and flame resistance.
  • FIG. 1 schematically shows a cross-sectional structure of an embodiment of a high voltage cable for an electric vehicle according to the present invention.
  • FIG. 2 schematically shows a cross-sectional structure of another embodiment of a high voltage cable for an electric vehicle according to the present invention.
  • FIG. 1 and 2 schematically show a cross-sectional structure of a high voltage cable for an electric vehicle according to the present invention.
  • the high voltage cable for an electric vehicle is formed from a single or stranded conductor 10 made of copper, aluminum, an alloy thereof, and the like, and an insulating composition as described below by wrapping the conductor 10
  • An insulating layer 20 may be included, and the nominal cross-sectional area of the conductor 10 may be greater than 6.0 mm 2.
  • the high voltage cable for an electric vehicle relates to a high voltage cable for an electric vehicle in which the shielding layer 30 and the sheath layer 40 are sequentially added on the insulating layer 20.
  • the insulating composition may include a base resin, a flame retardant, a crosslinking aid, and other additives, wherein the base resin comprises an ethylene copolymer including a polar monomer, an ethylene-propylene rubber, and a polyolefin resin grafted with a polar group.
  • the base resin comprises an ethylene copolymer including a polar monomer, an ethylene-propylene rubber, and a polyolefin resin grafted with a polar group.
  • the ethylene copolymer containing the polar monomer performs a function of simultaneously improving the flexibility and oil resistance of the insulating layer formed from the insulating composition by precisely controlling the TE index value defined by Equation 1 below to 30 to 65.
  • A is the melting point (°C) of the ethylene copolymer containing a polar monomer
  • B is the content (part by weight; phr) of the ethylene copolymer containing a polar monomer based on 100 parts by weight of the base resin.
  • the melting point (°C) of the ethylene copolymer containing the polar monomer is about 10 ethylene copolymer samples in the range of -50 to 200°C using a differential scanning calorimeter (manufacturer: TA Instruments; product name: DSC Q100). It can be measured by treating mg under a nitrogen purge gas at a heating rate of 10°C/min.
  • the oil resistance of the insulating layer may be greatly reduced, whereas when the TE index value is more than 65, the flexibility of the insulating layer may be greatly reduced.
  • the melting point (Tm) of the ethylene copolymer including the polar monomer is 80 to 110°C, and based on the total weight of the ethylene copolymer, the polarity
  • the content of the monomer is 5 to 25% by weight, based on 100 parts by weight of the base resin, the content of the ethylene copolymer may be 25 to 65 parts by weight.
  • the content of the polar monomer is less than 5% by weight or the content of the ethylene copolymer is less than 25 parts by weight, the flexibility of the insulating layer may be greatly reduced, whereas the content of the polar monomer is more than 25% by weight or the When the content of the ethylene copolymer exceeds 65 parts by weight, the oil resistance of the insulating layer to gasoline-based oil may be greatly reduced.
  • the polar monomer may include acrylic monomers such as butyl acrylate, ethyl acrylate, and methacrylate, and acetate-based monomers such as vinyl acetate, whereby the ethylene copolymer is ethylene butyl acrylate (EBA), ethylene Ethyl acrylate (EEA), ethylene methacrylate (EMA), ethylene vinyl acetate (EVA) and the like may be included, and preferably ethylene butyl acrylate (EBA) may be included.
  • EBA ethylene butyl acrylate
  • ESA ethylene Ethyl acrylate
  • EMA ethylene methacrylate
  • EVA ethylene vinyl acetate
  • EBA ethylene butyl acrylate
  • the ethylene-propylene rubber may perform a function of additionally improving the flexibility, cold resistance, and heat resistance of the insulating layer formed from the insulating composition, and preferably, ethylene-propylene diene copolymer (EPDM), ethylene-propylene copolymer (EPM) and the like.
  • EPDM ethylene-propylene diene copolymer
  • EPM ethylene-propylene copolymer
  • the ethylene-propylene rubber may have a specific gravity of 0.850 to 0.890 and a content of 25 to 65 parts by weight based on 100 parts by weight of the base resin.
  • the content of the ethylene-propylene rubber is less than 25 parts by weight, the flexibility of the insulating layer may be deteriorated, whereas when the content is more than 65 parts by weight, the oil resistance of the insulating layer may be greatly reduced.
  • the polyolefin resin grafted with the polar group performs a function of uniformly dispersing additives such as inorganic flame retardants to be described later in the base resin so that the properties of the insulating composition are not deteriorated and the function of the additive can be uniformly implemented.
  • it may include a linear low-density polyethylene (LLDPE) resin grafted with maleic anhydride having a melting point of 110 to 130 °C and a specific gravity of 0.900 to 0.930.
  • LLDPE linear low-density polyethylene
  • the content of the polyolefin resin grafted with the polar group may be 5 to 15 parts by weight.
  • compatibility between the base resin and the additives described later decreases, so that the physical properties of the insulating layer may be greatly reduced, and when the content exceeds 15 parts by weight, flexibility And elongation may be reduced, and a load may be severely applied when extruding the cable.
  • the insulating composition may further include a crosslinking aid for irradiation crosslinking after forming an insulating layer therefrom.
  • Crosslinking aids for irradiation crosslinking are, for example, triallyl isocyanurate (TAIC), triallyl cyanurate (TAC), trimethylolpropane trimethacrylate (TMPTMA), trimethylolpropane tri Acrylate (TMPTA), and the like.
  • the content of the crosslinking aid may be 2 to 5 parts by weight based on 100 parts by weight of the base resin. If the content of the crosslinking aid is less than 2 parts by weight, physical properties such as oil resistance and heat resistance may be greatly reduced due to insufficient crosslinking of the insulating layer, whereas when it exceeds 5 parts by weight, flexibility due to excessive crosslinking of the insulating layer, Physical properties such as cold resistance may be greatly deteriorated.
  • the irradiation amount, irradiation time, etc. may be appropriately selected by a person skilled in the art according to the thickness of the insulating layer during irradiation crosslinking of the insulating layer.
  • the insulating composition may further include a flame retardant to implement flame retardancy of the insulating layer formed therefrom.
  • the flame retardant may include inorganic metal hydroxides such as magnesium hydroxide and aluminum hydroxide, and in order to improve compatibility between the flame retardant and the base resin, the metal hydroxide may be hydrophobically modified with a hydrophobic treatment agent such as vinylsilane. have.
  • the content of the flame retardant may be 70 to 110 parts by weight based on 100 parts by weight of the base resin.
  • the content of the flame retardant is less than 70 parts by weight, the flame retardancy of the insulating layer may be insufficient, whereas when the content of the flame retardant is more than 110 parts by weight, the extrudability of the insulating layer may be greatly reduced or other physical properties may be greatly reduced.
  • the insulating composition contains the flame retardant in a limited amount in order to prevent an increase in manufacturing cost and lower extrudability and other physical properties of the insulating composition when the flame retardant is added in an excessive amount to implement the desired flame retardancy, and Due to this, insufficient flame retardancy can be compensated for by additionally including antimony-based flame retardant aids such as antimony trioxide.
  • the content of the flame retardant aid may be 5 to 20 parts by weight based on 100 parts by weight of the base resin.
  • the flame retardancy of the insulating composition may be insufficient, and when the content of the flame retardant is increased to compensate for insufficient flame retardancy, the extrudability and other physical properties of the insulating composition are large. It may be lowered and the cost of the insulating composition is greatly increased.
  • the insulating composition may further include other additives such as antioxidants and lubricants.
  • Antioxidants may suppress damage due to deterioration of the insulating layer, and lubricants may improve compatibility between the base resin and other additives or further improve the extrudability of the insulating layer.
  • TMPTMA trimethylolpropane trimethacrylate
  • the cable specimens of each of the Examples and Comparative Examples were immersed in a beaker containing gasoline, allowed to stay at room temperature for 20 hours, and then taken out, and the outer diameter of the cable specimen was measured after 30 minutes. If the outer diameter of the cable specimen after immersion increases by more than 15% compared to the outer diameter before immersion, it is defective.
  • long-term/short-term heat resistance was evaluated separately.
  • cracks should not occur in the insulation layer during bending tests at room temperature after staying at 150°C/3,000 hours for each cable specimen of Examples and Comparative Examples, and insulation breakdown should not occur while applying a voltage of 1 kV underwater for 1 minute. Shouldn't.
  • Short-term heat resistance should not cause cracks in the insulating layer when the cable specimens of Examples and Comparative Examples are cooled in a -25°C chamber for 4 hours and low-temperature bending test after staying at 175°C/240 hours.
  • the cable specimen of each of the Examples and Comparative Examples is suspended in an oven at -40°C according to the size of the conductor, and the weight specified in the standard is suspended from the cable specimen, stayed in the chamber for 4 hours, and then wound up, causing cracks. Whether or not. If cracks do not occur, insulation breakdown should not occur while applying a voltage of 1 kV underwater for 1 minute.
  • the cable specimens of Examples 1 to 5 according to the present invention improved both oil resistance and flexibility, which are in conflict with each other, and excellent physical properties such as heat resistance, cold resistance, and flame resistance.
  • the cable specimen of Comparative Example 1 increased the content of Resin 4 to improve oil resistance compared to Example 3, but the flexibility and cold resistance were significantly reduced, and the cable specimen of Comparative Example 2 reduced the content of Resin 4 compared to Example 1. It was confirmed that the content of Resin 1 was increased to improve the flexibility, but the oil resistance was greatly reduced, and in terms of workability, it was confirmed that there was a problem in that the pellet was not properly cut during the pellet processing of the insulating composition.
  • the cable specimens of Comparative Examples 3 and 4 have improved flexibility compared to Example 3 by completely replacing Resin 4 with Resins 6 and 7 having a relatively high content of butyl acrylate (BA), which is a polar monomer, compared to Example 1.
  • BA butyl acrylate
  • the oil resistance was greatly deteriorated, and the cable specimen of Comparative Example 5 was completely replaced with Resin 2 in order to improve flexibility compared to Example 2, but oil resistance and heat resistance were greatly reduced, and the cable specimens of Comparative Examples 6 and 7 Compared to Example 2, it was confirmed that the flame retardancy was significantly reduced by excluding the flame retardant aid or reducing the content of the flame retardant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)

Abstract

본 발명은 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 갖는 케이블, 특히 전기차용 고전압 케이블에 관한 것이다. 구체적으로, 본 발명은 서로 상충관계(trade-off)에 있는 유연성과 내유성이 동시에 향상되고, 내열성, 내한성, 난연성 등의 물성을 만족하는 절연 조성물로부터 형성된 절연층을 포함하는 전기차용 고전압 케이블에 관한 것이다.

Description

유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블
본 발명은 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 갖는 케이블, 특히 전기차용 고전압 케이블에 관한 것이다. 구체적으로, 본 발명은 서로 상충관계(trade-off)에 있는 유연성과 내유성이 동시에 향상되고, 내열성, 내한성, 난연성 등의 물성을 만족하는 절연 조성물로부터 형성된 절연층을 포함하는 전기차용 고전압 케이블에 관한 것이다.
최근 미국과 유럽을 중심으로 환경오염 문제로 인해 차량의 배기가스 규제가 높아지고 있어, 전기자동차가 차세대 차량으로 주목되고 있다. 즉, 공해 없는 전기 에너지를 사용하는 전기자동차는 대기오염 요인의 70% 내외를 차지하는 내연식 엔진 자동차의 유해한 배기가스나 소음 등 환경문제를 근본적으로 해결할 수 있고, 또한 석유 등 화석 연료의 자원수명을 배 이상으로 연장할 수 있다.
이러한 상황에서, 1990년부터 전기자동차와 관련된 다양한 기술이 개발되었다. 즉, 자동차 생산 업체에서는 전기자동차의 기술적 문제인 상대적으로 낮은 배터리 용량, 긴 충전시간, 짧은 운행거리, 늦은 운행속도 등을 개선하기 위한 다양한 기술을 개발하고 있는 추세에 있다.
일반적으로, 전기자동차에는 엔진 시동을 위한 모터의 구동 및/또는 기타 고압을 필요로 하는 장치를 위해 300 볼트 이상의 고전압이 요구되고, 예를 들어 전기자동차에 적용되는 고전압 장치로는 엔진 시동을 위한 모터 이외에 인버터, 고전압 배터리, 파워 릴레이 어셈블리, 저전압 직류 변환기 등이 있다.
또한, 이러한 고전압 장치들 간에는 이들을 연결하기 위한 고전압 케이블이 필요한데, 종래 전기차용 고전압 케이블은 구리, 알루미늄 등의 도체 및 상기 도체를 감싸는 절연층을 구비하며, 상기 절연층은 다양한 고분자 재료의 적용이 가능하다.
예를 들어, 실리콘계 재료의 경우 내열성 및 유연성이 우수하나 내유성이 취약하며 가격이 비싸다는 단점이 있다. 이에 비해 다양한 종류의 적용이 가능한 가교 폴리올레핀계 수지는 상대적으로 취약한 내열성으로 인해 허용 온도에 제약이 있지만 (ex. 150℃) 가격이 저렴하고 조성물 변경을 통한 다양한 특성 구현이 가능하다는 장점이 있다.
특히, 종래 전기차용 고전압 케이블은 기존 국제 규격인 ISO-6722-1을 만족하지만 특히 도체 사이즈가 6.0 SQ를 초과하는 케이블의 경우 차량 내부라는 제한된 범위의 장소에 적용되고 해당 제품의 사이즈가 크기 때문에 고객 사용성 측면에서 설치가 쉽도록 제품의 유연성이 중요하다.
따라서, 전기차용 고전압 케이블의 유연성 확보를 위해 절연층이 비닐아세테이트(VA) 함량이 높은 에틸렌비닐아세테이트(EVA) 수지, 융점이 낮은 폴리올레핀엘라스토머(POE) 등으로 이루어질 수 있으나, 이러한 경우 가솔린계 오일에 대한 내유성이 크게 저하될 수 있고, 이러한 내유성을 향상시키기 위해 절연층을 형성하는 수지로서 결정성이 높은 수지를 늘리면 케이블의 유연성이 저하되는 문제가 있어, 유연성과 내유성을 동시에 만족하기 어려운 문제가 있다.
그러므로, 서로 상충관계(trade-off)에 있는 유연성과 내유성이 동시에 향상되고, 150℃ 등급의 내열성, 내한성, 난연성 등의 물성을 만족하는 전기차용 고전압 케이블의 절연층 형성용 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전기차용 고전압 케이블이 절실히 요구되고 있는 실정이다.
본 발명은 서로 상충관계(trade-off)에 있는 유연성과 내유성이 동시에 향상되고, 내열성, 내한성, 난연성 등의 물성을 만족하는 절연 조성물로부터 형성된 절연층을 포함하는 전기차용 고전압 케이블을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위해, 본 발명은,
케이블의 절연층을 형성하는 절연 조성물로서, 베이스 수지를 포함하고, 상기 베이스 수지는 극성 단량체를 포함하는 에틸렌 공중합체, 에틸렌-프로필렌 고무 및 극성기가 그라프트된(grafted) 폴리올레핀 수지를 포함하며, 아래 수학식 1로 정의되는 TE 인덱스가 30 내지 65인, 절연 조성물을 제공한다.
[수학식 1]
TE 인덱스(℃·phr)=(A×B)/100
상기 수학식 1에서,
A는 극성 단량체를 포함하는 에틸렌 공중합체의 융점(℃)이고,
B는 베이스 수지 100 중량부를 기준으로 극성 단량체를 포함하는 에틸렌 공중합체의 함량(중량부; phr)이다.
여기서, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 융점(Tm)은 80 내지 110℃이고, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 총 중량을 기준으로, 상기 극성 단량체의 함량은 5 내지 25 중량%인 것을 특징으로 하는, 절연 조성물을 제공한다.
또한, 상기 베이스 수지 100 중량부를 기준으로, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 함량은 25 내지 65 중량부이고, 상기 에틸렌-프로필렌 고무의 함량은 25 내지 65 중량부이며, 상기 극성기가 그라프트된(grafted) 폴리올레핀 수지의 함량은 5 내지 15 중량부인 것을 특징으로 하는, 절연 조성물을 제공한다.
한편, 상기 극성 단량체는 아크릴계 단량체나 아세테이트계 단량체 또는 이들 모두를 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.
여기서, 상기 아크릴계 단량체는 부틸 아크릴레이트, 에틸 아크릴레이트 및 메타크릴레이트로 이루어진 그룹으로부터 선택된 1종 이상을 포함하고, 상기 아세테이트계 단량체는 비닐 아세테이트를 포함하는 것을 특징으로 하는 절연 조성물을 제공한다.
또한, 상기 에틸렌-프로필렌 고무는 비중이 0.850 내지 0.890인 것을 특징으로 하는, 절연 조성물을 제공한다.
나아가, 상기 에틸렌-프로필렌 고무는 에틸렌-프로필렌 공중합체(EPM)나 에틸렌-프로필렌 디엔 공중합체(EPDM) 또는 이들 모두를 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.
그리고, 상기 극성기가 그라프트된 폴리올레핀 수지는 융점이 110 내지 130℃이고, 비중이 0.900 내지 0.930인 말레산 무수물이 그라프트된 선형저밀도 폴리에틸렌(LLDPE) 수지를 포함하는 것을 특징으로 하는, 절연 조성물을 제공한다.
나아가, 가교조제를 추가로 포함하고, 상기 가교조제는 트리알릴 이소시아누레이트(TAIC), 트리알릴 시아누레이트(TAC), 트리메틸올프로판 트리메타크릴레이트(TMPTMA) 및 트리메틸올프로판 트리아크릴레이트(TMPTA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하고, 상기 베이스 수지 100 중량부를 기준으로, 상기 가교조제의 함량은 2 내지 5 중량부인 것을 특징으로 하는, 절연 조성물을 제공한다.
여기서, 난연제로서 금속수산화물 및 난연보조제로서 삼산화안티몬을 포함하고, 상기 베이스 수지 100 중량부를 기준으로, 상기 난연제의 함량은 70 내지 110 중량부이고, 상기 난연보조제의 함량은 5 내지 20 중량부인 것을 특징으로 하는, 절연 조성물을 제공한다.
한편, 도체; 및 상기 도체를 감싸고 상기 절연 조성물로부터 형성된 절연층을 포함하는, 케이블을 제공한다.
여기서, 상기 절연층을 감싸는 차폐층 및 상기 차폐층을 감싸는 시스층을 추가로 포함하는 것을 특징으로 하는, 케이블을 제공한다.
또한, 상기 도체의 공칭단면적이 6 ㎟ 초과인 것을 특징으로 하는, 케이블을 제공한다.
본 발명에 따른 절연 조성물은 특정 베이스 수지의 조합과 첨가제에 의해 서로 상충관계(trade-off)에 있는 유연성과 내유성이 동시에 향상되고, 내열성, 내한성, 난연성 등의 물성을 만족하는 우수한 효과를 나타낸다.
도 1은 본 발명에 따른 전기차용 고전압 케이블의 하나의 실시예에 관한 횡단면 구조를 개략적으로 도시한 것이다.
도 2는 본 발명에 따른 전기차용 고전압 케이블의 또 다른 실시예에 관한 횡단면 구조를 개략적으로 도시한 것이다.
이하, 첨부된 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명된 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록, 그리고 당업자에게 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.
도 1 및 2는 본 발명에 따른 전기차용 고전압 케이블의 횡단면 구조를 개략적으로 도시한 것이다.
도 1에 도시된 바와 같이, 본 발명에 따른 전기차용 고전압 케이블은 구리, 알루미늄, 이들의 합금 등으로 이루어진 단선 또는 연선 도체(10) 및 상기 도체(10)를 감싸고 후술하는 바와 같은 절연 조성물로부터 형성된 절연층(20)을 포함할 수 있고, 상기 도체(10)의 공칭단면적은 6.0 ㎟ 초과일 수 있다.
또한, 도 2에 도시된 바와 같이, 본 발명에 따른 전기차용 고전압 케이블은 절연층(20) 위에 차폐층(30) 및 시스층(40)이 순차걱으로 추가된 전기차용 고전압 케이블에 관한 것이다.
상기 절연 조성물은 베이스 수지, 난연제, 가교조제, 기타 첨가제를 포함할 수 있고, 여기서 상기 베이스 수지는 극성 단량체를 포함하는 에틸렌 공중합체, 에틸렌-프로필렌 고무 및 극성기가 그라프트된(grafted) 폴리올레핀 수지를 포함할 수 있다.
상기 극성 단량체를 포함하는 에틸렌 공중합체는 아래 수학식 1로 정의된 TE 인덱스 값이 30 내지 65로 정밀하게 조절됨으로써 상기 절연 조성물로부터 형성된 절연층의 유연성 및 내유성을 동시에 향상시키는 기능을 수행한다.
[수학식 1]
TE 인덱스(℃·phr)=(A×B)/100
상기 수학식 1에서,
A는 극성 단량체를 포함하는 에틸렌 공중합체의 융점(℃)이고,
B는 베이스 수지 100 중량부를 기준으로 극성 단량체를 포함하는 에틸렌 공중합체의 함량(중량부; phr)이다.
예를 들어, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 융점(℃)은 시차주사열량계(제조사 : TA Instruments; 제품명 : DSC Q100)를 이용하여 -50 내지 200℃ 범위 내에서 에틸렌 공중합체 샘플 약 10 mg을 질소 퍼지 가스 하에 승온 속도 10℃/분으로 처리함으로써 측정할 수 있다.
여기서, 상기 TE 인덱스 값이 30 미만인 경우 상기 절연층의 내유성이 크게 저하될 수 있는 반면, TE 인덱스 값이 65 초과인 경우 상기 절연층의 유연성이 크게 저하될 수 있다.
예를 들어, 상기 TE 인덱스를 30 내지 65로 조절하기 위해, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 융점(Tm)은 80 내지 110℃이고, 상기 에틸렌 공중합체의 총 중량을 기준으로, 상기 극성 단량체의 함량은 5 내지 25 중량%이며, 상기 베이스 수지 100 중량부를 기준으로, 상기 에틸렌 공중합체의 함량은 25 내지 65 중량부일 수 있다.
여기서, 상기 극성 단량체의 함량이 5 중량% 미만이거나 상기 에틸렌 공중합체의 함량이 25 중량부 미만인 경우 상기 절연층의 유연성이 크게 저하될 수 있는 반면, 상기 극성 단량체의 함량이 25 중량% 초과이거나 상기 에틸렌 공중합체의 함량이 65 중량부 초과인 경우 특히 가솔린계 오일에 대한 상기 절연층의 내유성이 크게 저하될 수 있다.
또한, 상기 극성 단량체는 부틸 아크릴레이트, 에틸 아크릴레이트, 메타크릴레이트 등의 아크릴계 단량체, 비닐 아세테이트 등의 아세테이트계 단량체를 포함할 수 있고, 이로써 상기 에틸렌 공중합체는 에틸렌부틸아크릴레이트(EBA), 에틸렌에틸아크릴레이트(EEA), 에틸렌메타크릴레이트(EMA), 에틸렌비닐아세테이트(EVA) 등을 포함할 수 있고, 바람직하게는 에틸렌부틸아크릴레이트(EBA)를 포함할 수 있다.
상기 에틸렌-프로필렌 고무는 상기 절연 조성물로부터 형성된 절연층의 유연성, 내한성, 내열성 등을 추가로 향상시키는 기능을 수행할 수 있고, 바람직하게는 에틸렌-프로필렌 디엔 공중합체(EPDM), 에틸렌-프로필렌 공중합체(EPM) 등을 포함할 수 있다. 이러한 기능을 수행하기 위해 에틸렌-프로필렌 고무는 비중이 0.850 내지 0.890이며 상기 베이스 수지 100 중량부를 기준으로 함량이 25 내지 65 중량부일 수 있다.
또한, 상기 에틸렌-프로필렌 고무의 함량이 25 중량부 미만인 경우 상기 절연층의 유연성 등이 저하될 수 있는 반면, 65 중량부 초과인 경우 상기 절연층의 내유성이 크게 저하될 수 있다.
상기 극성기가 그라프트된 폴리올레핀 수지는 상기 베이스 수지 내에서 후술하는 무기계 난연제 등의 첨가제가 균일하게 분산됨으로써 상기 절연 조성물의 물성이 저하되지 않고 상기 첨가제의 기능이 균일하게 구현될 수 있도록 하는 기능을 수행하고, 예를 들어, 융점이 110 내지 130℃이고, 비중이 0.900 내지 0.930인 말레산 무수물이 그라프트된 선형저밀도 폴리에틸렌(LLDPE) 수지를 포함할 수 있다.
상기 베이스 수지 100 중량부를 기준으로, 상기 극성기가 그라프트된 폴리올레핀 수지의 함량은 5 내지 15 중량부일 수 있다. 여기서, 상기 극성기가 그라프트된 폴리올레핀 수지의 함량이 5 중량부 미만인 경우 상기 베이스 수지와 후술하는 첨가제와의 상용성이 저하되어 상기 절연층의 물성이 크게 저하될 수 있으며 15 중량부 초과인 경우 유연성 및 신장율이 저하되고 케이블 압출시 부하가 심하게 걸릴 수 있다.
상기 절연 조성물은 이로부터 절연층을 형성한 후 조사가교를 위한 가교조제를 추가로 포함할 수 있다. 상기 조사가교를 위한 가교조제는 예를 들어 다관능유기모노머로서 트리알릴 이소시아누레이트(TAIC), 트리알릴 시아누레이트(TAC), 트리메틸올프로판 트리메타크릴레이트(TMPTMA), 트리메틸올프로판 트리아크릴레이트(TMPTA) 등을 포함할 수 있다.
상기 가교조제의 함량은 상기 베이스 수지 100 중량부를 기준으로 2 내지 5 중량부일 수 있다. 상기 가교조제의 함량이 2 중량부 미만인 경우 상기 절연층의 불충분한 가교에 의해 내유성, 내열성 등의 물성이 크게 저하될 수 있는 반면, 5 중량부 초과인 경우 상기 절연층의 과도한 가교에 의해 유연성, 내한성 등의 물성이 크게 저하될 수 있다. 또한, 상기 절연층의 조사가교시 절연층의 두께에 따라 조사량, 조사시간 등이 통상의 기술자에 의해 적절히 선택될 수 있다.
상기 절연 조성물은 이로부터 형성되는 절연층의 난연성 구현을 위해 난연제를 추가로 포함할 수 있다. 상기 난연제는 수산화마그네슘, 수산화알루미늄 등의 무기계 금속수산화물을 포함할 수 있고, 상기 난연제와 상기 베이스 수지 사이의 상용성 향상을 위해 상기 금속수산화물은 비닐실란 등의 소수성처리제로 표면이 소수성으로 개질될 수 있다.
상기 난연제의 함량은 상기 베이스 수지 100 중량부를 기준으로 70 내지 110 중량부일 수 있다. 여기서, 상기 난연제의 함량이 70 중량부 미만인 경우 상기 절연층의 난연성이 불충분할 수 있는 반면, 110 중량부 초과인 경우 상기 절연층의 압출성이 크게 저하되거나 다른 물성이 크게 저하될 수 있다.
한편, 상기 절연 조성물은 목적한 난연성을 구현하기 위해 상기 난연제가 과량 첨가되는 경우 상기 절연 조성물의 압출성 및 기타 물성이 저하되고 제조비용이 증가하는 것을 방지하기 위해, 상기 난연제를 제한된 함량으로 포함하며 이로 인해 불충분한 난연성은 삼산화안티몬 등 안티몬계 난연보조제를 추가로 포함함으로써 보완할 수 있다.
상기 난연보조제의 함량은 상기 베이스 수지 100 중량부를 기준으로 5 내지 20 중량부일 수 있다. 여기서, 상기 난연보조제의 함량이 5 중량부 미만인 경우 상기 절연 조성물의 난연성이 불충분할 수 있고, 불충분한 난연성을 보완하기 위해 상기 난연제의 함량을 증가시키는 경우 상기 절연 조성물의 압출성 및 기타 물성이 크게 저하될 수 있으며 절연 조성물의 가격이 크게 상승하게 된다.
한편, 상기 절연 조성물은 산화방지제, 활제 등의 기타 첨가제를 추가로 포함할 수 있다. 산화방지제는 상기 절연층의 열화에 의한 손상을 억제할 수 있고, 활제는 상기 베이스 수지와 다른 첨가제의 상용성을 향상시키거나 상기 절연층의 압출성을 추가로 향상시킬 수 있다.
[실시예]
1. 제조예
아래 표 1에 나타난 바와 같은 구성성분을 기재된 배합비로 니더(kneader) 설비(용량 3L)에서 150℃로 30분간 혼합하여 절연 조성물을 제조한 후 이를 펠렛(pellet)화 하였으며, 또한 싱글 스크류 압출기(φ: 45mm)를 이용하여 공칭단면적 8 SQ의 연동선 위에 절연층을 형성한 후 조사가교를 통해 상기 절연층을 가교함으로써 케이블 시편을 제조했다.
실시예 비교예
1 2 3 4 5 1 2 3 4 5 6 7
수지1 55 40 25 25 55 20 70 55 55 40 40
수지2 40
수지3 35
수지4 35 50 65 70 20 50 50 50
수지5 65
수지6 35
수지7 35
수지8 10 10 10 10 10 10 10 10 10 10 10 10
난연제1 80 80 80 80 80 80 80 80 80 80 80 60
난연제2 10 10 10 10 10 10 10 10 10 10 10
가교조제 3 3 3 3 3 3 3 3 3 3 3 3
- 수지1 : 에틸렌프로필렌 디엔 공중합체(비중 : 0.86)
- 수지2 : 폴리올레핀엘라스토머(융점 : 61℃, 비중 : 0.868)
- 수지3 : 에틸렌부틸아크릴레이트(BA 함량 : 7 중량%, 융점 : 107℃)
- 수지4 : 에틸렌부틸아크릴레이트(BA 함량 : 16 중량%, 융점 : 97℃)
- 수지5 : 에틸렌부틸아크릴레이트(BA 함량 : 20 중량%, 융점 : 89℃)
- 수지6 : 에틸렌부틸아크릴레이트(BA 함량 : 28 중량%, 융점 : 75℃)
- 수지7 : 에틸렌부틸아크릴레이트(BA 함량 : 33 중량%, 융점 : 64℃)
- 수지8 : 말레산 무수물 그라프트된 선형저밀도 폴리에틸렌(융점 : 121℃; 비중 : 0.918)
- 난연제 : 비닐실란 코팅된 수산화마그네슘(BET : 4.0~6.0)
- 난연보조제 : 삼산화안티몬
- 가교조제 : 트리메틸올프로판 트리메타크릴레이트(TMPTMA)
2. 물성 평가
1) 내유성 평가
규격 ISO 6722-1에 의거하여 실시예 및 비교예 각각의 케이블 시편을 가솔린이 담긴 비이커에 침유시킨 상태로 상온에서 20시간 체류시킨 후 꺼내어 30분 후 케이블 시편의 외경을 측정했다. 침유 후 케이블 시편의 외경이 침유 전 외경과 비교하여 15% 초과하여 증가하면 불량이다.
2) 유연성 평가
UTM 설비를 이용하여 실시예 및 비교예 각각의 절연 시편에 대해 5% Tensile strength를 측정한다. 기존 ISO 규격을 만족하는 처방의 5% Tensile strength 값(0.36)과 비교하여 20% 이상 감소, 즉 0.29 이하여야 한다.
3) 내열성 평가
규격 ISO 6722-1에 의거하여 장기/단기 내열성을 구분하여 평가했다. 장기 내열성은 실시예 및 비교예 각각의 케이블 시편을 150℃/3,000 시간 체류 후 상온에서 굴곡 시험시 절연층에 크랙이 발생하지 않아야 하며 1분간 수중에서 1 kV의 전압을 인가하는 동안 절연파괴가 일어나지 않아야 한다. 단기 내열성은 실시예 및 비교예 각각의 케이블 시편을 175℃/240 시간 체류 후 -25℃ 챔버에서 4시간 냉각 및 저온굴곡시험시 절연층에 크랙이 발생하지 않아야 한다.
4) 내한성 평가
규격 ISO 6722-1에 의거하여 실시예 및 비교예 각각의 케이블 시편을 -40℃ 오븐에서 도체의 사이즈에 따라 규격에 명시된 추를 케이블 시편에 매달고 챔버 내에서 4시간 체류시킨 후 감아서 크랙이 발생하는지 여부를 확인했다. 크랙이 발생하지 않으면 이후 1분간 수중에서 1 kV의 전압을 인가하는 동안 절연파괴가 일어나지 않아야 한다.
5) 난연성 평가
규격 ISO 6722-1에 의거하여 실시예 및 비교예 각각의 케이블 시편에 대해 지면에서 45°각도로 고정된 버너와 서로 수직이 되도록 배치된 케이블 시편에 대해 30초간 불꽃을 인가한 후 70초 내에 자연소화되어야 하고 연소길이는 550 mm 이하여야 한다.
상기 물성 평가 결과는 아래 표 2에 나타난 바와 같다.
TE 인덱스 내유성 유연성 내열성 내한성 난연성
spec. 30~65(℃/phr) ≤15% ≤0.29 No Crack No Crack 70초 내에 자연소화
실시예1 34.0 14.3 0.233
실시예2 48.5 13.5 0.246
실시예3 63.1 10.1 0.281
실시예4 57.9 12.2 0.274
실시예5 37.5 13.1 0.259
비교예1 67.9 9.5 0.374 ×
비교예2 19.4 23.1 0.178
비교예3 26.3 16.2 0.221
비교예4 22.4 17.3 0.208
비교예5 48.5 19.1 0.271 ×
비교예6 48.5 13.2 0.235 ×
비교예7 48.5 13.3 0.227 ×
상기 표 2에 나타난 바와 같이, 본 발명에 따른 실시예 1 내지 5의 케이블 시편은 서로 상충관계에 있는 내유성과 유연성이 모두 향상되었고, 내열성, 내한성, 난연성 등의 물성이 우수한 것으로 확인되었다.반면, 비교예 1의 케이블 시편은 실시예 3에 비하여 내유성을 향상시키기 위해 수지 4의 함량을 증가시켰으나 유연성 및 내한성이 크게 저하되었고, 비교예 2의 케이블 시편은 실시예 1에 비하여 수지 4의 함량을 감소시켰고 유연성 향상을 위해 수지 1의 함량을 증가시켰으나 내유성이 크게 저하되었고, 작업성 측면에서 절연 조성물의 펠렛 가공시 펠렛 커팅이 제대로 되지 않는 문제점이 발생한 것으로 확인되었다.
또한, 비교예 3 및 4의 케이블 시편은 실시예 1에 비하여 수지 4를 극성 단량체인 부틸 아크릴레이트(BA)의 함량이 상대적으로 높은 수지 6 및 7로 전량 대체함으로써 실시예 3에 비하여 유연성은 향상되었지만 내유성이 크게 저하되었고, 비교예 5의 케이블 시편은 실시예 2에 비하여 유연성을 향상시키기 위해 수지 1을 수지 2로 전량 대체하였으나 내유성, 내열성 등이 크게 저하되었으며, 비교예 6 및 7의 케이블 시편은 실시예 2에 비하여 난연보조제를 배제하거나 난연제의 함량을 감소시킨 것으로 난연성이 크게 저하된 것으로 확인되었다.
본 명세서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.

Claims (13)

  1. 케이블의 절연층을 형성하는 절연 조성물로서,
    베이스 수지를 포함하고,
    상기 베이스 수지는 극성 단량체를 포함하는 에틸렌 공중합체, 에틸렌-프로필렌 고무 및 극성기가 그라프트된(grafted) 폴리올레핀 수지를 포함하며,
    아래 수학식 1로 정의되는 TE 인덱스가 30 내지 65인, 절연 조성물.
    [수학식 1]
    TE 인덱스(℃·phr)=(A×B)/100
    상기 수학식 1에서,
    A는 극성 단량체를 포함하는 에틸렌 공중합체의 융점(℃)이고,
    B는 베이스 수지 100 중량부를 기준으로 극성 단량체를 포함하는 에틸렌 공중합체의 함량(중량부; phr)이다.
  2. 제1항에 있어서,
    상기 극성 단량체를 포함하는 에틸렌 공중합체의 융점(Tm)은 80 내지 110℃이고, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 총 중량을 기준으로, 상기 극성 단량체의 함량은 5 내지 25 중량%인 것을 특징으로 하는, 절연 조성물.
  3. 제1항에 있어서,
    상기 베이스 수지 100 중량부를 기준으로, 상기 극성 단량체를 포함하는 에틸렌 공중합체의 함량은 25 내지 65 중량부이고, 상기 에틸렌-프로필렌 합성 수지의 함량은 25 내지 65 중량부이며, 상기 극성기가 그라프트된(grafted) 폴리올레핀 수지의 함량은 5 내지 15 중량부인 것을 특징으로 하는, 절연 조성물.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 극성 단량체는 아크릴계 단량체나 아세테이트계 단량체 또는 이들 모두를 포함하는 것을 특징으로 하는, 절연 조성물.
  5. 제4항에 있어서,
    상기 아크릴계 단량체는 부틸 아크릴레이트, 에틸 아크릴레이트 및 메타크릴레이트로 이루어진 그룹으로부터 선택된 1종 이상을 포함하고, 상기 아세테이트계 단량체는 비닐 아세테이트를 포함하는 것을 특징으로 하는, 절연 조성물.
  6. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 에틸렌-프로필렌 고무는 비중이 0.850 내지 0.890인 것을 특징으로 하는, 절연 조성물.
  7. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 에틸렌-프로필렌 고무는 에틸렌-프로필렌 공중합체(EPM)나 에틸렌-프로필렌 디엔 공중합체(EPDM) 또는 이들 모두를 포함하는 것을 특징으로 하는, 절연 조성물.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 극성기가 그라프트된 폴리올레핀 수지는 융점이 110 내지 130℃이고, 비중이 0.900 내지 0.930인 말레산 무수물이 그라프트된 선형저밀도 폴리에틸렌(LLDPE) 수지를 포함하는 것을 특징으로 하는, 절연 조성물.
  9. 제1항 내지 제3항 중 어느 한 항에 있어서,
    가교조제를 추가로 포함하고,
    상기 가교조제는 트리알릴 이소시아누레이트(TAIC), 트리알릴 시아누레이트(TAC), 트리메틸올프로판 트리메타크릴레이트(TMPTMA) 및 트리메틸올프로판 트리아크릴레이트(TMPTA)로 이루어진 그룹으로부터 선택된 1종 이상을 포함하고,
    상기 베이스 수지 100 중량부를 기준으로, 상기 가교조제의 함량은 2 내지 5 중량부인 것을 특징으로 하는, 절연 조성물.
  10. 제1항 내지 제3항 중 어느 한 항에 있어서,
    난연제로서 금속수산화물 및 난연보조제로서 삼산화안티몬을 포함하고,
    상기 베이스 수지 100 중량부를 기준으로, 상기 난연제의 함량은 70 내지 110 중량부이고, 상기 난연보조제의 함량은 5 내지 20 중량부인 것을 특징으로 하는, 절연 조성물.
  11. 도체; 및
    상기 도체를 감싸고 제1항 내지 제3항 중 어느 한 항의 절연 조성물로부터 형성된 절연층을 포함하는, 케이블.
  12. 제11항에 있어서,
    상기 절연층을 감싸는 차폐층 및 상기 차폐층을 감싸는 시스층을 추가로 포함하는 것을 특징으로 하는, 케이블.
  13. 제11항에 있어서,
    상기 도체의 공칭단면적이 6 ㎟ 초과인 것을 특징으로 하는, 케이블.
PCT/KR2020/005074 2019-04-17 2020-04-16 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블 WO2020213942A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0045052 2019-04-17
KR20190045052 2019-04-17
KR1020200045144A KR20200122249A (ko) 2019-04-17 2020-04-14 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블
KR10-2020-0045144 2020-04-14

Publications (1)

Publication Number Publication Date
WO2020213942A1 true WO2020213942A1 (ko) 2020-10-22

Family

ID=72837477

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/005074 WO2020213942A1 (ko) 2019-04-17 2020-04-16 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블

Country Status (1)

Country Link
WO (1) WO2020213942A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773719A (zh) * 2022-03-28 2022-07-22 金发科技股份有限公司 一种聚烯烃材料及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130094404A (ko) * 2012-02-16 2013-08-26 엘에스전선 주식회사 유연성, 내마모성 및 난연성이 우수한 전선용 수지 조성물
KR20150135730A (ko) * 2014-05-22 2015-12-03 엘에스전선 주식회사 난연성 폴리올레핀 조성물 및 이로부터 형성된 절연체를 포함하는 cmp 난연등급 utp 케이블
KR20160121873A (ko) * 2015-04-13 2016-10-21 엘에스전선 주식회사 전력 케이블
KR20190016667A (ko) * 2017-08-09 2019-02-19 엘에스전선 주식회사 고전압 케이블용 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
KR20190019799A (ko) * 2017-08-18 2019-02-27 엘에스전선 주식회사 난연성 및 내수성을 갖는 시스 조성물 및 이로부터 형성된 시스층을 갖는 케이블

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130094404A (ko) * 2012-02-16 2013-08-26 엘에스전선 주식회사 유연성, 내마모성 및 난연성이 우수한 전선용 수지 조성물
KR20150135730A (ko) * 2014-05-22 2015-12-03 엘에스전선 주식회사 난연성 폴리올레핀 조성물 및 이로부터 형성된 절연체를 포함하는 cmp 난연등급 utp 케이블
KR20160121873A (ko) * 2015-04-13 2016-10-21 엘에스전선 주식회사 전력 케이블
KR20190016667A (ko) * 2017-08-09 2019-02-19 엘에스전선 주식회사 고전압 케이블용 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
KR20190019799A (ko) * 2017-08-18 2019-02-27 엘에스전선 주식회사 난연성 및 내수성을 갖는 시스 조성물 및 이로부터 형성된 시스층을 갖는 케이블

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114773719A (zh) * 2022-03-28 2022-07-22 金发科技股份有限公司 一种聚烯烃材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
KR102482859B1 (ko) 내한성 및 유연성이 우수한 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
CA2800035A1 (en) Temperature resistant halogen free cable
JP2015168697A (ja) ノンハロゲン難燃性樹脂組成物、それを用いた絶縁電線及びケーブル
US11763963B2 (en) Power cable
AU2010258513A1 (en) Electric cable adapted for ensuring the continuity of power distribution in the event of fire
WO2021086090A1 (ko) 케이블 절연층용 삼성분계 조성물, 그 제조방법 및 이를 포함하는 케이블 절연층, 전력케이블
WO2020213942A1 (ko) 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블
JP2007169415A (ja) 難燃性、耐火性エチレン−プロピレン−ジエン共重合体組成物および低圧耐火電線・ケーブル
WO2018151421A1 (ko) 고전압 케이블용 고분자 조성물 및 이로부터 형성된 절연층 및 시스층을 포함하는 케이블
WO2018151420A1 (ko) 고전압 케이블용 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
WO2020009336A1 (ko) 전력 케이블
CN113380447B (zh) 一种储能系统用电缆
JP2004010840A (ja) 伝送線被覆用樹脂組成物および伝送線
CN113593760B (zh) 一种电力储能系统用低烟无卤阻燃电池连接电缆
KR20200122249A (ko) 유연성 및 내유성이 우수한 절연 조성물로부터 형성된 절연층을 포함하는 케이블
WO2022010244A1 (ko) 고전압 전력 케이블
WO2022149681A1 (ko) 태양광 케이블의 절연층 또는 시스층용 조성물 및 이로부터 형성된 절연층 또는 시스층을 포함하는 태양광 케이블
CA3064772A1 (en) Fire retardant cables formed from halogen-free and heavy metal-free compositions
WO2021230431A1 (ko) 직류 전력케이블용 친환경 절연조성물 및 이를 이용하여 제조된 직류 전력케이블
CA2902218A1 (en) Fire and water resistant cable
WO2016104888A1 (ko) 내유성 및 내한성이 우수한 비할로겐계 절연 조성물 및 이로부터 형성된 절연층을 포함하는 전선
KR20190016667A (ko) 고전압 케이블용 절연 조성물 및 이로부터 형성된 절연층을 포함하는 케이블
CN113896980A (zh) 一种柔韧耐弯折耐高温低烟低卤阻燃组合物及其制法和应用
JPH0668720A (ja) 難燃性耐火電線
KR20220121492A (ko) 전기차 고전압 케이블용 절연 조성물 및 이를 이용하여 제조된 전기차 고전압 케이블

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20791030

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20791030

Country of ref document: EP

Kind code of ref document: A1