WO2020213424A1 - Substrate treatment system and substrate treatment device - Google Patents

Substrate treatment system and substrate treatment device Download PDF

Info

Publication number
WO2020213424A1
WO2020213424A1 PCT/JP2020/015249 JP2020015249W WO2020213424A1 WO 2020213424 A1 WO2020213424 A1 WO 2020213424A1 JP 2020015249 W JP2020015249 W JP 2020015249W WO 2020213424 A1 WO2020213424 A1 WO 2020213424A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
substrate
main surface
processing unit
wafer
Prior art date
Application number
PCT/JP2020/015249
Other languages
French (fr)
Japanese (ja)
Inventor
真一 待鳥
光昭 丸山
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2021514876A priority Critical patent/JP7270726B2/en
Publication of WO2020213424A1 publication Critical patent/WO2020213424A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B7/00Cleaning by methods not provided for in a single other subclass or a single group in this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present disclosure relates to a substrate processing system and a substrate processing apparatus.
  • Patent Document 1 discloses a substrate cleaning device that irradiates a substrate (for example, a glass substrate) with ultraviolet rays to remove foreign substances or residues of organic substances adhering to the surface of the substrate.
  • the present disclosure describes a substrate processing system and a substrate processing apparatus capable of efficiently processing both sides of a substrate.
  • the substrate processing system includes a transfer device configured to transfer a substrate including a first main surface and a second main surface which is a back surface of the first main surface, and a transfer device. It includes a substrate processing apparatus configured to exchange and exchange substrates with and from the apparatus.
  • the substrate processing apparatus is configured to perform a predetermined process on one of a holding portion configured to hold the substrate conveyed by the conveying apparatus and one of the first main surface and the second main surface.
  • the drive unit that drives at least one of the holding unit and the processing unit and the substrate are inverted so that the processing unit and the substrate held by the holding unit move relative to the processing unit. It includes a reversing part and a housing for accommodating a holding part, a processing part, a driving part, and a reversing part.
  • the substrate processing system and the substrate processing apparatus according to the present disclosure, it is possible to efficiently process both sides of the substrate.
  • FIG. 1 is a schematic view showing an example of a substrate processing system as viewed from the side.
  • FIG. 2 is a schematic view showing an example of a substrate processing system as viewed from above.
  • FIG. 3 is a schematic view showing an example of the substrate processing apparatus when viewed from diagonally above.
  • FIG. 4 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 5 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 6 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 7 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 8 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 1 is a schematic view showing an example of a substrate processing system as viewed from the side.
  • FIG. 2 is a schematic view showing an example of a substrate processing system as viewed from above.
  • FIG. 3 is a
  • FIG. 9 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 10 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 11 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 12 is a diagram for explaining a substrate processing method by the substrate processing system of FIG.
  • FIG. 13 is a schematic view showing another example of the substrate processing system as viewed from the side.
  • the substrate processing system 1 includes a transport device 2, a substrate processing device 3, and a controller Ctr (control unit).
  • the transport device 2 is configured to carry the wafer W (board) into the board processing device 3.
  • the transfer device 2 is configured to carry out the wafer W processed by the substrate processing device 3 from the substrate processing device 3.
  • the transfer device 2 includes a transfer arm 2a used for loading and unloading the wafer W to and from the substrate processing device 3, and a housing 2b for accommodating the transfer arm 2a.
  • the transfer arm 2a is configured to be movable between the substrate processing device 3 and another location of the substrate processing system 1 while holding the wafer W based on the control signal from the controller Ctr.
  • Other locations of the substrate processing system 1 include, for example, a carrier that houses the wafer W in a sealed state (not shown), a heat treatment apparatus that heat-treats the wafer W (not shown), various coating liquids on the wafer W, or Examples thereof include a liquid treatment device (not shown) that supplies the treatment liquid.
  • the transfer arm 2a is in a state in which one main surface Wa (first main surface) of the wafer W faces the upper surface and the other main surface Wb (second main surface) of the wafer W faces downward. This will be described as transporting the wafer W.
  • the posture of the wafer W during transfer by the transfer arm 2a is not particularly limited.
  • the housing 2b functions as a passage (transport path) for the transport arm 2a.
  • the housing 2b is adjacent to the substrate processing device 3 and communicates with the housing 10 (described later) of the substrate processing device 3 via the gate 2c.
  • the gate 2c opens and closes based on a control signal from the controller Ctr. With the gate 2c open, the transport arm 2a can move between the housing 2b and the housing 10.
  • the wafer W processed in the substrate processing system 1 may have a disk shape, a part of a circle may be cut out, or a shape other than a circle such as a rectangle or a polygon. May be good.
  • the wafer W will be described as having a rectangular shape.
  • the wafer W may be, for example, a semiconductor substrate, a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or various other substrates.
  • the substrate processing device 3 is configured to perform predetermined processing on each of the main surfaces Wa and Wb of the wafer W. As shown in FIGS. 1 to 3, the substrate processing device 3 includes a housing 10, an elevating unit 20, a holding unit 30, a driving unit 40, an inversion unit 50, and a light irradiation unit 60 (processing unit). And include.
  • the housing 10 is configured to accommodate the elevating unit 20, the holding unit 30, the driving unit 40, the reversing unit 50, and the light irradiation unit 60 in the same accommodation space. That is, as will be described in detail later, the processing of the wafer W by the inversion unit 50 and the wafer W by the light irradiation unit 60 are both performed in the housing 10.
  • the elevating part 20 includes an actuator 21 and a plurality of elevating pins 22.
  • the actuator 21 operates based on a control signal from the controller Ctr to move the plurality of elevating pins 22 up and down (see arrows A1 in FIGS. 1 and 3).
  • the plurality of elevating pins 22 are raised (for example, when they are located at the top dead center), the wafer W can be placed on the tips of the plurality of elevating pins 22.
  • the wafer W placed on the tips of the plurality of elevating pins 22 moves up and down as the plurality of elevating pins 22 move up and down.
  • the holding portion 30 includes a frame body 31 and four support pieces 32, as shown in FIGS. 2 and 3.
  • the frame 31 has a C-shape with the side facing the gate 2c open.
  • the wafer W can be arranged in the space inside the frame 31.
  • the frame 31 may be made of a metal material such as stainless steel.
  • the four support pieces 32 are attached to the four corners of the inner edge of the frame 31, respectively.
  • Each support piece 32 has a substantially L-shape, and is configured to be able to support the lower surface side of the wafer W.
  • the alignment of the wafer W is performed by placing each corner of the rectangular wafer W on the corresponding support pieces 32.
  • the four support pieces 32 may be formed of, for example, a resin material such as PEEK (polyetheretherketone).
  • the drive unit 40 includes a rail 41, a slider 42, and a support member 43, particularly as shown in FIG.
  • the rail 41 extends on the bottom surface of the housing 10 from one end side (gate 2c side) to the other end side (opposite side of the gate 2c) of the housing 10.
  • the slider 42 is configured to be movable along the rail 41 based on an operation signal from the controller Ctr.
  • the moving speed of the slider 42 may be, for example, about 40 mm / sec.
  • the support member 43 extends in the vertical direction so as to connect the slider 42 and the frame 31. Therefore, when the slider 42 moves on the rail 41 while the wafer W is held by the holding portion 30, the wafer W also moves horizontally along the rail 41 (see arrows A2 in FIGS. 1 to 3).
  • the reversing unit 50 operates based on a control signal from the controller Ctr, and is configured to sandwich and reverse the wafer W.
  • the reversing section 50 includes a base 51, a pair of sandwiching members 52, a pinching drive section 53, and a reversing drive section 54, as shown in FIGS. 2 and 3.
  • the base 51 extends along the vertical direction in a stationary state.
  • Each of the pair of holding members 52 is connected to the base 51 via the connecting member 55.
  • Each of the pair of holding members 52 is configured to be movable with respect to the base 51 in the extending direction thereof.
  • the sandwiching member 52 has a substantially cross shape in the examples shown in FIGS. 2 and 3, but the shape of the sandwiching member 52 is not particularly limited as long as the wafer W can be sandwiched.
  • each corner of the sandwiching member 52 is provided with a protrusion 56 that protrudes toward the other sandwiching member 52.
  • the protrusion 56 may have a shape in which a cylinder and a truncated cone are combined.
  • the wafer W is supported on the slope of the truncated cone of the protrusion 56.
  • the protrusion 56 may be formed of, for example, a resin material such as PEEK (polyetheretherketone).
  • the pinch drive unit 53 operates based on a control signal from the controller Ctr, and moves the pair of pinch members 52 with respect to the base 51 (see arrows A3 in FIGS. 1 and 3).
  • the sandwiching drive unit 53 can change the distance between the pair of sandwiching members 52, for example, between the sandwiching position where the wafer W is sandwiched and the release position where the wafer W is not sandwiched.
  • the pinching drive unit 53 may be, for example, a linear motion cylinder or the like.
  • the reversing drive unit 54 operates based on a control signal from the controller Ctr, and inverts the base 51 around a rotation axis that intersects the extending direction of the base 51 (see arrows A4 in FIGS. 2 and 3).
  • the reversing drive unit 54 operates while the wafer W is sandwiched by the pair of sandwiching members 52, the wafer W is turned upside down. That is, when the main surface Wa is the upper surface and the main surface Wb is the lower surface, the main surface Wa is the lower surface and the main surface Wb is the upper surface.
  • the reversing drive unit 54 may be, for example, a motor or the like.
  • the light irradiation unit 60 is located on the back side of the housing 10 (the side opposite to the gate 2c).
  • the light irradiation unit 60 includes a housing 61 and a light source 62.
  • the housing 61 houses the light source 62 inside.
  • the light source 62 is configured to irradiate the main surfaces Wa and Wb with processing light for ashing organic substances adhering to the main surfaces Wa and Wb of the wafer W.
  • the processed light may be, for example, ultraviolet rays having a wavelength of about 10 nm to 300 nm.
  • the light source 62 has, for example, a straight tube type, and may extend in the housing 61 so as to be parallel to the main surfaces Wa and Wb of the wafer W.
  • the controller Ctr generates instruction signals for operating each part of the board processing system 1 based on, for example, a program recorded on a recording medium (not shown) or an operation input from an operator, and the controller Ctr generates instruction signals for operating each part of the board processing system 1. It is configured to transmit each instruction signal.
  • controller Ctr controls the gate 2c to open the gate 2c so that the housings 2b and 10 are in communication with each other.
  • controller Ctr controls the transfer arm 2a to move the transfer arm 2a holding the wafer W into the housing 10 so that the wafer W is located above the elevating portion 20.
  • the controller Ctr controls the actuator 21 to raise the elevating pin 22.
  • the elevating pin 22 rises while avoiding the transport arm 2a, and the wafer W is placed on the tip of the elevating pin 22 with the main surface Wa on the upper surface (see FIG. 4).
  • controller Ctr controls the transfer arm 2a to move the transfer arm 2a to the housing 2b.
  • controller Ctr controls the gate 2c to close the gate 2c so that the housing 2b and the housing 10 are not in communication with each other (see FIG. 5).
  • the controller Ctr controls the actuator 21 to lower the elevating pin 22.
  • the wafer W is lowered together with the elevating pin 22, and the wafer W is supported by the protrusion 56 of the holding member 52 located on the lower side (see FIG. 5).
  • the controller Ctr controls the sandwiching drive unit 53 to move the pair of sandwiching members 52 to the sandwiching position.
  • the wafer W is sandwiched by the pair of sandwiching members 52 with the main surface Wa on the upper surface and the main surface Wb on the lower surface (see FIG. 6).
  • the controller Ctr controls the reversing drive unit 54 to reverse the base 51 together with the pair of holding members 52, that is, rotate it by 180 ° (see FIG. 7).
  • the wafer W has a main surface Wa on the lower surface and a main surface Wb on the upper surface.
  • the controller Ctr controls the sandwiching drive unit 53 to move the pair of sandwiching members 52 to the release position.
  • the wafer W is supported by the protrusion 56 of the holding member 52 located on the lower side while the main surface Wb remains on the upper surface (see FIG. 8).
  • the controller Ctr controls the actuator 21 to raise the elevating pin 22.
  • the elevating pin 22 rises while avoiding the transport arm 2a, and the wafer W is placed on the tip of the elevating pin 22 with the main surface Wb on the upper surface (see FIG. 8).
  • the controller Ctr controls the slider 42 to move the holding portion 30 to one end side (gate 2c side) of the rail 41.
  • the frame body 31 since the frame body 31 has a C-shape, the frame body 31 is positioned so as to avoid the rising elevating pin 22 and overlap with the wafer W (see FIG. 8).
  • the controller Ctr controls the actuator 21 to lower the elevating pin 22.
  • the wafer W is lowered together with the elevating pin 22, and the wafer W is supported by the support piece 32 of the holding portion 30 located on the lower side (see FIG. 9).
  • the controller Ctr controls the slider 42 to move the holding unit 30 so that the wafer W is located near the light irradiation unit 60 and at a standby position that does not overlap with the light source 62.
  • the controller Ctr controls the light source 62 to turn on the light source 62. At this time, since the wafer W is in the standby position, the ultraviolet rays emitted from the light source 62 are not applied to the wafer W (see FIG. 9).
  • the controller Ctr controls the slider 42 to move the holding portion 30 to the other end side of the rail 41 (the side opposite to the gate 2c).
  • the main surface Wb of the wafer W is irradiated with ultraviolet rays.
  • the organic matter adhering to the main surface Wb is removed (UV cleaning) (see FIG. 10).
  • the controller Ctr controls the light source 62 to turn off the light source 62.
  • the controller Ctr controls the slider 42 to move the holding portion 30 to one end side (gate 2c side) of the rail 41.
  • the controller Ctr raises the elevating pin 22.
  • the elevating pin 22 rises while avoiding the transport arm 2a, and the wafer W is placed on the tip of the elevating pin 22 with the main surface Wb on the upper surface (see FIG. 11).
  • the controller Ctr controls the slider 42 to move the holding unit 30 to a position where the holding unit 30 does not overlap with the elevating unit 20 (see FIG. 12).
  • the controller Ctr controls the actuator 21 to lower the elevating pin 22.
  • the wafer W is lowered together with the elevating pin 22, and the wafer W is supported by the protrusion 56 of the holding member 52 located on the lower side.
  • the controller Ctr controls the sandwiching drive unit 53 to move the pair of sandwiching members 52 to the sandwiching position.
  • the wafer W is sandwiched by the pair of sandwiching members 52 with the main surface Wa on the lower surface and the main surface Wb on the upper surface.
  • the controller Ctr controls the reversing drive unit 54 to reverse the base 51 together with the pair of holding members 52, that is, rotate it by 180 ° (see FIG. 12).
  • the wafer W has a main surface Wa on the upper surface and a main surface Wb on the lower surface.
  • the controller Ctr controls each part of the substrate processing system 1 and repeats the same steps as those in FIGS. 8 to 11. That is, when the wafer W passes directly under the light source 62, the main surface Wa of the wafer W is irradiated with ultraviolet rays, and the organic substances adhering to the main surface Wa are removed (UV cleaning). After that, the gate 2c is opened, and the wafer W is delivered to the transfer arm 2a with the main surface Wa on the upper surface and the main surface Wb on the lower surface. The transfer arm 2a transfers the wafer W processed by the substrate processing device 3 to a subsequent process.
  • the wafer W is sequentially passed through a unit for processing one main surface of the wafer W, a unit for inverting the wafer W, and a unit for processing the other main surface of the wafer W.
  • a substrate cleaning device is configured in the above. In a substrate cleaning device that handles a large number of wafers W at the same time, if the substrate processing device is configured so that the wafer W passes through the same unit multiple times, the transfer path of the wafer W becomes complicated and the control of the device becomes complicated. Because. Therefore, a plurality of units and two UV lamps are required, which can also increase the cost for processing the wafer W.
  • the substrate processing apparatus 3 according to the above example, the main surfaces Wa and Wb of the wafer W are processed and the wafer W is inverted in the same housing 10. Therefore, it is not necessary to transport the wafer W to another unit in order to process the main surfaces Wa and Wb of the wafer W. Therefore, it is possible to efficiently process both sides of the wafer W. Further, since the processing of each surface of the wafer W can be performed by one processing unit, it is possible to reduce the size and cost of the substrate processing device 3 and simplify the maintenance of the light irradiation unit 60.
  • the wafer W is once inverted to process the main surface Wb, and then the wafer W is inverted again to process the main surface Wa. Therefore, when the wafer W is carried into the substrate processing apparatus 3 so that the main surface Wa is on the upper surface, after both sides of the wafer W are processed, the wafer W is in a state where the main surface Wa is on the upper surface as in the case of carrying in. Is carried out from the substrate processing device 3. Therefore, it becomes easy to perform the subsequent processing on the wafer W.
  • the wafer W is in the standby position until the preparation of the light source 62 is completed. Therefore, after the wafer W is brought as close to the light irradiation unit 60 as possible, the light irradiation from the light irradiation unit 60 is performed. Therefore, it is possible to reduce the energy consumed by the light irradiation unit 60.
  • the standby position of the wafer W is different from the position where the wafer W is determined by the reversing unit 50. Therefore, it is possible to save energy in the light irradiation unit 60 while avoiding contact between the reversing unit 50 and the wafer W and the light irradiation unit 60.
  • the reversing portion 50 is configured to reverse the wafer W at the delivery position where the wafer W is delivered from the transport arm 2a to the holding portion 30 via the elevating portion 20. Therefore, it is not necessary to move the wafer W from the delivery position to the reverse position. Therefore, it is possible to further reduce the size of the substrate processing device 3.
  • the wafer W is held by the holding portion 30 by supporting the lower surface side of the wafer W by the support piece 32. Therefore, the upper surface side of the wafer W is not covered by the holding portion 30. Therefore, when the wafer W is processed by the light irradiation unit 60, an unprocessed region (a region not irradiated with light) is less likely to occur in the wafer W. As a result, it becomes possible to process the entire main surfaces Wa and Wb of the wafer W. On the other hand, the portion of the support piece 32 that supports the wafer W is covered with the wafer W.
  • the light from the light irradiation unit 60 is not irradiated to the portion of the support piece 32. Therefore, it is possible to suppress the deterioration of the support piece 32 due to the irradiation of light.
  • the wafer W was once inverted to process the main surface Wb, and then the wafer W was inverted again to process the main surface Wa.
  • the wafer W was not inverted and the main surface Wa was processed. May be processed and the wafer W is inverted, and then the main surface Wb may be processed.
  • the wafer W processed by the substrate processing apparatus 3 is delivered to the transfer arm 2a with the main surface Wa on the lower surface and the main surface Wb on the upper surface.
  • the inversion portion 50 only needs to invert the wafer W once. Therefore, it is possible to shorten the time required to process both sides of the wafer W.
  • the inverting portion 50 inverts the wafer W while sandwiching the wafer W, but the wafer W may be inverted while the wafer W is adsorbed.
  • the entire upper surface of the wafer W is irradiated with light by moving the wafer W with respect to the light irradiation unit 60, but the light irradiation unit 60 moves with respect to the wafer W. Either the light irradiation unit 60 and the holding unit 30 may move.
  • the controller Ctr controls the drive unit 40 so that the wafer W moves relative to the light irradiation unit 60 at the first speed when the light irradiation unit 60 processes the main surface Wa.
  • the drive unit 40 may be controlled so that the wafer W moves relative to the light irradiation unit 60 at a second speed different from the first speed. ..
  • the controller Ctr controls the drive unit 40 so as to move the slider 42 at the first speed when the light irradiation unit 60 processes the main surface Wa, and the light irradiation unit 60 processes the main surface Wb.
  • the drive unit 40 may be controlled so as to move the slider 42 at the second speed.
  • the main surface Wa is the front surface (circuit forming surface) of the wafer W and the main surface Wb is the back surface of the wafer W
  • foreign substances for example, organic substances, residues, etc.
  • the second speed may be lower than the first speed.
  • the processing time for the main surface Wb can be shortened.
  • the frequency of replacement of the light source 62 can be reduced.
  • the substrate processing system includes a transfer device configured to transfer a substrate including a first main surface and a second main surface which is a back surface of the first main surface, and a transfer device. It includes a substrate processing apparatus configured to exchange and exchange substrates with and from the apparatus.
  • the substrate processing apparatus is configured to perform a predetermined process on one of a holding portion configured to hold the substrate conveyed by the conveying apparatus and one of the first main surface and the second main surface.
  • the drive unit that drives at least one of the holding unit and the processing unit and the substrate are inverted so that the processing unit and the substrate held by the holding unit move relative to the processing unit.
  • each main surface of the substrate is processed and the substrate is inverted in the same housing. Therefore, it is not necessary to transport the substrate to another unit in order to process each surface of the substrate. Therefore, it is possible to efficiently process both sides of the substrate. Further, since the processing of each surface of the substrate can be performed by one processing unit, it is possible to reduce the size and cost of the substrate processing apparatus and to simplify the maintenance of the processing unit.
  • the substrate processing apparatus includes a holding portion configured to hold a substrate conveyed by an external transfer device, and a first main surface of the substrate and a back surface of the first main surface.
  • a processing unit configured to perform a predetermined process on one of the second main surfaces of a substrate and a substrate held by the holding unit move relative to the processing unit.
  • the drive unit for driving at least one of the holding unit and the processing unit, the reversing unit configured to invert the substrate, and the housing for accommodating the holding unit, the processing unit, the driving unit, and the reversing unit are provided. According to the apparatus of Example 2, the same effect as that of Example 1 is obtained.
  • Example 3 The apparatus of Example 2 further includes a control unit configured to control a processing unit, a driving unit, and a reversing unit, and the control unit is such that the processing unit processes the first main surface. Control of the reversing part so that the directions of the first main surface and the second main surface are switched by reversing the substrate, and processing so that the processing unit processes the second main surface. Controlling the unit and the driving unit may be performed in this order. In this case, in order to process both sides of the substrate, the substrate needs to be inverted once by the inversion part. Therefore, it is possible to reduce the time required to process both sides of the substrate.
  • Example 4 The device of Example 2 further includes a control unit configured to control a processing unit, a drive unit, and a reversing unit, and the control unit is oriented with respect to the first main surface and the second main surface by reversing the substrate.
  • the reversing part is controlled so that the two main surfaces are interchanged
  • the processing unit and the driving unit are controlled so that the processing unit processes the second main surface
  • the substrate is once inverted to process the second main surface, and then the substrate is inverted again to process the first main surface. Therefore, for example, when the substrate is carried into the substrate processing apparatus so that the first main surface is the upper surface, after both sides of the substrate are processed, the first main surface is the upper surface as in the case of carrying in.
  • the board is carried out from the board processing device. Therefore, it becomes easy to perform the subsequent processing on the substrate.
  • Example 5 The apparatus according to any one of Examples 2 to 4 further includes a control unit configured to control a processing unit, a driving unit, and an inversion unit, and the processing unit is provided with respect to a first or second main surface of the substrate. It is a light irradiation unit configured to irradiate light, and the control unit controls the drive unit so that the substrate is located at a standby position where the light from the light irradiation unit is not irradiated to the substrate, while the substrate is in the standby position. Further, the light irradiation unit may be further controlled so as to start the light irradiation in the standby state. In this case, after the substrate is brought as close to the light irradiation unit as possible, the light irradiation from the light irradiation unit is performed. Therefore, it is possible to reduce the energy consumed in the light irradiation unit.
  • a control unit configured to control a processing unit, a driving unit, and an inversion unit, and the processing unit is
  • Example 6 In the apparatus of Example 5, the standby position may be different from the position where the substrate is inverted by the inversion section. In this case, it is possible to save energy in the light irradiation unit while avoiding contact between the reversing portion and the substrate and the light irradiation unit.
  • the processing unit may be a light irradiation unit configured to irradiate the first or second main surface of the substrate with ultraviolet rays. In this case, it is possible to remove foreign substances, residues, and the like of organic substances adhering to each surface of the substrate by irradiating with ultraviolet rays.
  • Example 8 When the processing unit processes the first main surface, the control unit controls the driving unit so that the substrate moves relative to the processing unit at the first speed, and the processing unit controls the second main surface.
  • the drive unit may be controlled so that the substrate moves relative to the processing unit at a second speed different from the first speed.
  • the processing time is set to the main surface by making the first speed and the second speed different according to the difference between the processing time required for the first main surface and the processing time required for the second main surface. It can be optimized for each. Further, by optimizing the processing time for each main surface, the total time of the processing time of the first main surface and the processing time of the second main surface can be shortened, and the burden on the processing unit can be reduced.
  • Example 9 In any of the devices of Examples 2 to 8, the reversing section may be configured to flip the substrate at a delivery position where the substrate is delivered from the transfer device to the holding section. In this case, it is not necessary to move the substrate from the delivery position to the inverted position. Therefore, it is possible to further reduce the size of the substrate processing apparatus.
  • Example 10 In any of the devices of Examples 2 to 9, the reversing portion may be configured to invert the substrate while sandwiching or sucking the substrate.
  • the holding unit may be configured to hold the substrate without covering the surface of the first and second main surfaces treated by the processing unit. In this case, when the processing unit processes the substrate, an unprocessed region is less likely to occur on the substrate. Therefore, it is possible to process the entire surface of each surface of the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

The substrate treatment system is equipped with a transport device configured to transport a substrate including a first main surface and a second main surface which is the rear surface of the first main surface and a substrate treatment device configured to receive the substrate from and return the substrate to the transport device. The substrate treatment device includes a holding unit configured to hold a substrate transported by the transport device, a treatment unit configured to subject either the first main surface or the second main surface to a predetermined treatment, a drive unit that drives at least one of the holding unit and the treatment unit so that the substrate held by the holding unit moves relatively with respect to the treatment unit, an inversion unit configured to invert the substrate, and a housing for accommodating the holding unit, treatment unit, drive unit, and inversion unit.

Description

基板処理システム及び基板処理装置Board processing system and board processing equipment
 本開示は、基板処理システム及び基板処理装置に関する。 The present disclosure relates to a substrate processing system and a substrate processing apparatus.
 特許文献1は、基板(例えば、ガラス基板)に紫外線を照射して、基板の表面に付着している有機物の異物又は残渣を除去する基板洗浄装置を開示している。 Patent Document 1 discloses a substrate cleaning device that irradiates a substrate (for example, a glass substrate) with ultraviolet rays to remove foreign substances or residues of organic substances adhering to the surface of the substrate.
国際公開第2009/022429号International Publication No. 2009/022429
 本開示は、基板の両面を効率的に処理することが可能な基板処理システム及び基板処理装置を説明する。 The present disclosure describes a substrate processing system and a substrate processing apparatus capable of efficiently processing both sides of a substrate.
 本開示の一つの観点に係る基板処理システムは、第1の主面と第1の主面の背面である第2の主面とを含む基板を搬送するように構成された搬送装置と、搬送装置との間で基板を授受するように構成された基板処理装置とを備える。基板処理装置は、搬送装置によって搬送された基板を保持するように構成された保持部と、第1の主面と第2の主面との一方に対して所定の処理を行うように構成された処理部と、保持部に保持されている基板が処理部に対して相対的に移動するように、保持部及び処理部の少なくとも一方を駆動する駆動部と、基板を反転させるように構成された反転部と、保持部、処理部、駆動部及び反転部を収容する筐体とを含む。 The substrate processing system according to one aspect of the present disclosure includes a transfer device configured to transfer a substrate including a first main surface and a second main surface which is a back surface of the first main surface, and a transfer device. It includes a substrate processing apparatus configured to exchange and exchange substrates with and from the apparatus. The substrate processing apparatus is configured to perform a predetermined process on one of a holding portion configured to hold the substrate conveyed by the conveying apparatus and one of the first main surface and the second main surface. The drive unit that drives at least one of the holding unit and the processing unit and the substrate are inverted so that the processing unit and the substrate held by the holding unit move relative to the processing unit. It includes a reversing part and a housing for accommodating a holding part, a processing part, a driving part, and a reversing part.
 本開示に係る基板処理システム及び基板処理装置によれば、基板の両面を効率的に処理することが可能となる。 According to the substrate processing system and the substrate processing apparatus according to the present disclosure, it is possible to efficiently process both sides of the substrate.
図1は、基板処理システムの一例を側方から見て示す概略図である。FIG. 1 is a schematic view showing an example of a substrate processing system as viewed from the side. 図2は、基板処理システムの一例を上方から見て示す概略図である。FIG. 2 is a schematic view showing an example of a substrate processing system as viewed from above. 図3は、基板処理装置の一例を斜め上方から見て示す概略図である。FIG. 3 is a schematic view showing an example of the substrate processing apparatus when viewed from diagonally above. 図4は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 4 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図5は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 5 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図6は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 6 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図7は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 7 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図8は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 8 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図9は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 9 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図10は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 10 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図11は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 11 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図12は、図1の基板処理システムによる基板処理方法を説明するための図である。FIG. 12 is a diagram for explaining a substrate processing method by the substrate processing system of FIG. 図13は、基板処理システムの他の例を側方から見て示す概略図である。FIG. 13 is a schematic view showing another example of the substrate processing system as viewed from the side.
 以下に、本開示に係る実施形態の一例について、図面を参照しつつより詳細に説明する。以下の説明において、同一要素又は同一機能を有する要素には同一符号を用いることとし、重複する説明は省略する。 Hereinafter, an example of the embodiment according to the present disclosure will be described in more detail with reference to the drawings. In the following description, the same reference numerals will be used for the same elements or elements having the same function, and duplicate description will be omitted.
 [基板処理システム]
 まず、図1~図3を参照して、基板処理システム1の構成について説明する。基板処理システム1は、搬送装置2と、基板処理装置3と、コントローラCtr(制御部)とを備える。
[Board processing system]
First, the configuration of the substrate processing system 1 will be described with reference to FIGS. 1 to 3. The substrate processing system 1 includes a transport device 2, a substrate processing device 3, and a controller Ctr (control unit).
 搬送装置2は、図1及び図2に示されるように、基板処理装置3に対してウエハW(基板)を搬入するように構成されている。搬送装置2は、基板処理装置3において処理されたウエハWを基板処理装置3から搬出するように構成されている。搬送装置2は、基板処理装置3へのウエハWの搬入出のために用いられる搬送アーム2aと、搬送アーム2aを収容する筐体2bとを備えている。 As shown in FIGS. 1 and 2, the transport device 2 is configured to carry the wafer W (board) into the board processing device 3. The transfer device 2 is configured to carry out the wafer W processed by the substrate processing device 3 from the substrate processing device 3. The transfer device 2 includes a transfer arm 2a used for loading and unloading the wafer W to and from the substrate processing device 3, and a housing 2b for accommodating the transfer arm 2a.
 搬送アーム2aは、コントローラCtrからの制御信号に基づいて、ウエハWを保持しつつ、基板処理装置3と、基板処理システム1の他の場所との間で移動可能に構成されている。基板処理システム1の他の場所としては、例えば、ウエハWを密封状態で収容するキャリア(図示せず)、ウエハWの熱処理を行う熱処理装置(図示せず)、ウエハWに各種の塗布液又は処理液を供給する液処理装置(図示せず)などが挙げられる。以下では、搬送アーム2aは、ウエハWの一方の主面Wa(第1の主面)が上面を向き且つウエハWの他方の主面Wb(第2の主面)が下方を向いた状態でウエハWを搬送するものとして説明する。しかしながら、搬送アーム2aによる搬送時のウエハWの姿勢は特に限定されない。 The transfer arm 2a is configured to be movable between the substrate processing device 3 and another location of the substrate processing system 1 while holding the wafer W based on the control signal from the controller Ctr. Other locations of the substrate processing system 1 include, for example, a carrier that houses the wafer W in a sealed state (not shown), a heat treatment apparatus that heat-treats the wafer W (not shown), various coating liquids on the wafer W, or Examples thereof include a liquid treatment device (not shown) that supplies the treatment liquid. In the following, the transfer arm 2a is in a state in which one main surface Wa (first main surface) of the wafer W faces the upper surface and the other main surface Wb (second main surface) of the wafer W faces downward. This will be described as transporting the wafer W. However, the posture of the wafer W during transfer by the transfer arm 2a is not particularly limited.
 筐体2bは、搬送アーム2aの通路(搬送路)として機能する。筐体2bは、基板処理装置3と隣接しており、ゲート2cを介して基板処理装置3の筐体10(後述する)と連通している。ゲート2cは、コントローラCtrからの制御信号に基づいて開閉する。ゲート2cが開放された状態において、搬送アーム2aは筐体2bと筐体10との間を移動可能である。 The housing 2b functions as a passage (transport path) for the transport arm 2a. The housing 2b is adjacent to the substrate processing device 3 and communicates with the housing 10 (described later) of the substrate processing device 3 via the gate 2c. The gate 2c opens and closes based on a control signal from the controller Ctr. With the gate 2c open, the transport arm 2a can move between the housing 2b and the housing 10.
 基板処理システム1において処理されるウエハWは、円板状を呈してもよいし、円形の一部が切り欠かれていてもよいし、矩形状、多角形など円形以外の形状を呈していてもよい。以下では、ウエハWが矩形状を呈しているものとして説明する。ウエハWは、例えば、半導体基板、ガラス基板、マスク基板、FPD(Flat Panel Display)基板その他の各種基板であってもよい。 The wafer W processed in the substrate processing system 1 may have a disk shape, a part of a circle may be cut out, or a shape other than a circle such as a rectangle or a polygon. May be good. Hereinafter, the wafer W will be described as having a rectangular shape. The wafer W may be, for example, a semiconductor substrate, a glass substrate, a mask substrate, an FPD (Flat Panel Display) substrate, or various other substrates.
 基板処理装置3は、ウエハWの各主面Wa,Wbに対して、所定の処理を行うように構成されている。基板処理装置3は、図1~図3に示されるように、筐体10と、昇降部20と、保持部30と、駆動部40と、反転部50と、光照射部60(処理部)とを含む。 The substrate processing device 3 is configured to perform predetermined processing on each of the main surfaces Wa and Wb of the wafer W. As shown in FIGS. 1 to 3, the substrate processing device 3 includes a housing 10, an elevating unit 20, a holding unit 30, a driving unit 40, an inversion unit 50, and a light irradiation unit 60 (processing unit). And include.
 筐体10は、昇降部20、保持部30、駆動部40、反転部50及び光照射部60を同一の収容空間内に収容するように構成されている。すなわち、詳しくは後述するが、反転部50によるウエハW及び光照射部60によるウエハWの処理は、共に筐体10内において行われる。 The housing 10 is configured to accommodate the elevating unit 20, the holding unit 30, the driving unit 40, the reversing unit 50, and the light irradiation unit 60 in the same accommodation space. That is, as will be described in detail later, the processing of the wafer W by the inversion unit 50 and the wafer W by the light irradiation unit 60 are both performed in the housing 10.
 昇降部20は、アクチュエータ21と、複数の昇降ピン22とを含む。アクチュエータ21は、コントローラCtrからの制御信号に基づいて動作し、複数の昇降ピン22を上下動させる(図1及び図3の矢印A1参照)。複数の昇降ピン22が上昇した場合(例えば、上死点に位置する場合)、複数の昇降ピン22の先端上にウエハWが載置されうる。複数の昇降ピン22の先端上に載置されたウエハWは、複数の昇降ピン22の上下動に伴い昇降する。 The elevating part 20 includes an actuator 21 and a plurality of elevating pins 22. The actuator 21 operates based on a control signal from the controller Ctr to move the plurality of elevating pins 22 up and down (see arrows A1 in FIGS. 1 and 3). When the plurality of elevating pins 22 are raised (for example, when they are located at the top dead center), the wafer W can be placed on the tips of the plurality of elevating pins 22. The wafer W placed on the tips of the plurality of elevating pins 22 moves up and down as the plurality of elevating pins 22 move up and down.
 保持部30は、特に図2及び図3に示されるように、枠体31と、4つの支持片32とを含む。枠体31は、ゲート2cに向かう側が開放されたC字形状を呈している。枠体31の内側の空間内にはウエハWが配置可能である。枠体31は、例えば、ステンレス鋼などの金属材料によって形成されていてもよい。 The holding portion 30 includes a frame body 31 and four support pieces 32, as shown in FIGS. 2 and 3. The frame 31 has a C-shape with the side facing the gate 2c open. The wafer W can be arranged in the space inside the frame 31. The frame 31 may be made of a metal material such as stainless steel.
 4つの支持片32は、枠体31の内縁の四隅にそれぞれ取り付けられている。各支持片32は、略L字状を呈しており、ウエハWの下面側を支持可能に構成されている。矩形状のウエハWの各角部がそれぞれ対応する各支持片32に載置されることで、ウエハWの位置合わせが行われる。4つの支持片32は、例えば、PEEK(ポリエーテルエーテルケトン)等の樹脂材料によって形成されていてもよい。 The four support pieces 32 are attached to the four corners of the inner edge of the frame 31, respectively. Each support piece 32 has a substantially L-shape, and is configured to be able to support the lower surface side of the wafer W. The alignment of the wafer W is performed by placing each corner of the rectangular wafer W on the corresponding support pieces 32. The four support pieces 32 may be formed of, for example, a resin material such as PEEK (polyetheretherketone).
 駆動部40は、特に図3に示されるように、レール41と、スライダ42と、支持部材43とを含む。レール41は、筐体10の一端側(ゲート2c側)から他端側(ゲート2cとは反対側)にかけて筐体10の底面上を延伸している。スライダ42は、コントローラCtrからの動作信号に基づいて、レール41に沿って移動可能に構成されている。スライダ42の移動速度は、例えば、40mm/sec程度であってもよい。支持部材43は、スライダ42と枠体31とを接続するように、鉛直方向に沿って延びている。そのため、ウエハWが保持部30に保持された状態でスライダ42がレール41上を移動すると、ウエハWもレール41に沿って水平移動する(図1~図3の矢印A2参照)。 The drive unit 40 includes a rail 41, a slider 42, and a support member 43, particularly as shown in FIG. The rail 41 extends on the bottom surface of the housing 10 from one end side (gate 2c side) to the other end side (opposite side of the gate 2c) of the housing 10. The slider 42 is configured to be movable along the rail 41 based on an operation signal from the controller Ctr. The moving speed of the slider 42 may be, for example, about 40 mm / sec. The support member 43 extends in the vertical direction so as to connect the slider 42 and the frame 31. Therefore, when the slider 42 moves on the rail 41 while the wafer W is held by the holding portion 30, the wafer W also moves horizontally along the rail 41 (see arrows A2 in FIGS. 1 to 3).
 反転部50は、コントローラCtrからの制御信号に基づいて動作し、ウエハWを挟持及び反転するように構成されている。反転部50は、特に図2及び図3に示されるように、ベース51と、一対の挟持部材52と、挟持駆動部53と、反転駆動部54とを含む。 The reversing unit 50 operates based on a control signal from the controller Ctr, and is configured to sandwich and reverse the wafer W. The reversing section 50 includes a base 51, a pair of sandwiching members 52, a pinching drive section 53, and a reversing drive section 54, as shown in FIGS. 2 and 3.
 ベース51は、静止状態において、鉛直方向に沿って延びている。一対の挟持部材52はそれぞれ、接続部材55を介してベース51に接続されている。一対の挟持部材52はそれぞれ、ベース51に対してその延在方向に移動可能に構成されている。挟持部材52は、図2及び図3に示される例において略十字形状を呈しているが、ウエハWを挟持可能であれば挟持部材52の形状は特に限定されない。 The base 51 extends along the vertical direction in a stationary state. Each of the pair of holding members 52 is connected to the base 51 via the connecting member 55. Each of the pair of holding members 52 is configured to be movable with respect to the base 51 in the extending direction thereof. The sandwiching member 52 has a substantially cross shape in the examples shown in FIGS. 2 and 3, but the shape of the sandwiching member 52 is not particularly limited as long as the wafer W can be sandwiched.
 挟持部材52の各隅部には、他方の挟持部材52に向かって突出する突起56が設けられている。突起56は、図1に示されるように、円柱と円錐台とが組み合わされた形状を呈していてもよい。ウエハWは、突起56の円錐台の斜面において支持される。突起56は、例えば、PEEK(ポリエーテルエーテルケトン)等の樹脂材料によって形成されていてもよい。 Each corner of the sandwiching member 52 is provided with a protrusion 56 that protrudes toward the other sandwiching member 52. As shown in FIG. 1, the protrusion 56 may have a shape in which a cylinder and a truncated cone are combined. The wafer W is supported on the slope of the truncated cone of the protrusion 56. The protrusion 56 may be formed of, for example, a resin material such as PEEK (polyetheretherketone).
 挟持駆動部53は、コントローラCtrからの制御信号に基づいて動作し、一対の挟持部材52をそれぞれベース51に対して移動させる(図1及び図3の矢印A3参照)。挟持駆動部53は、例えば、ウエハWを挟持する挟持位置と、ウエハWを挟持しない解放位置との間で、一対の挟持部材52の間隔を変更可能である。挟持駆動部53は、例えば、直動シリンダなどであってもよい。 The pinch drive unit 53 operates based on a control signal from the controller Ctr, and moves the pair of pinch members 52 with respect to the base 51 (see arrows A3 in FIGS. 1 and 3). The sandwiching drive unit 53 can change the distance between the pair of sandwiching members 52, for example, between the sandwiching position where the wafer W is sandwiched and the release position where the wafer W is not sandwiched. The pinching drive unit 53 may be, for example, a linear motion cylinder or the like.
 反転駆動部54は、コントローラCtrからの制御信号に基づいて動作し、ベース51の延在方向と交差する回転軸周りにベース51を反転させる(図2及び図3の矢印A4参照)。一対の挟持部材52によってウエハWが挟持された状態で反転駆動部54が動作すると、ウエハWの上下が反転する。すなわち、主面Waが上面で主面Wbが下面であった場合には、主面Waが下面で主面Wbが上面となる。反転駆動部54は、例えば、モータなどであってもよい。 The reversing drive unit 54 operates based on a control signal from the controller Ctr, and inverts the base 51 around a rotation axis that intersects the extending direction of the base 51 (see arrows A4 in FIGS. 2 and 3). When the reversing drive unit 54 operates while the wafer W is sandwiched by the pair of sandwiching members 52, the wafer W is turned upside down. That is, when the main surface Wa is the upper surface and the main surface Wb is the lower surface, the main surface Wa is the lower surface and the main surface Wb is the upper surface. The reversing drive unit 54 may be, for example, a motor or the like.
 光照射部60は、図1~図3に示されるように、筐体10の奥側(ゲート2cとは反対側)に位置している。光照射部60は、ハウジング61と、光源62とを含む。ハウジング61は、光源62を内部に収容している。 As shown in FIGS. 1 to 3, the light irradiation unit 60 is located on the back side of the housing 10 (the side opposite to the gate 2c). The light irradiation unit 60 includes a housing 61 and a light source 62. The housing 61 houses the light source 62 inside.
 光源62は、ウエハWの主面Wa,Wbに付着している有機物をアッシングするための処理光を当該主面Wa,Wbに対して照射するように構成されている。当該処理光は、例えば、波長10nm~300nm程度の紫外線であってもよい。光源62は、例えば直管型を呈しており、ウエハWの主面Wa,Wbに対して平行となるように、ハウジング61内において延びていてもよい。 The light source 62 is configured to irradiate the main surfaces Wa and Wb with processing light for ashing organic substances adhering to the main surfaces Wa and Wb of the wafer W. The processed light may be, for example, ultraviolet rays having a wavelength of about 10 nm to 300 nm. The light source 62 has, for example, a straight tube type, and may extend in the housing 61 so as to be parallel to the main surfaces Wa and Wb of the wafer W.
 コントローラCtrは、例えば、記録媒体(図示せず)に記録されているプログラム又はオペレータからの操作入力等に基づいて、基板処理システム1の各部を動作させるための指示信号を生成し、これらに当該指示信号をそれぞれ送信するように構成されている。 The controller Ctr generates instruction signals for operating each part of the board processing system 1 based on, for example, a program recorded on a recording medium (not shown) or an operation input from an operator, and the controller Ctr generates instruction signals for operating each part of the board processing system 1. It is configured to transmit each instruction signal.
 [基板処理方法]
 続いて、図4~図12を参照して、ウエハWの処理方法について説明する。なお、ウエハWが筐体10内に存在しない場合には、保持部30は昇降部20と重なり合わないように光照射部60側に位置しており、光照射部60の光源62は点灯していない。
[Board processing method]
Subsequently, a method for processing the wafer W will be described with reference to FIGS. 4 to 12. When the wafer W does not exist in the housing 10, the holding portion 30 is located on the light irradiation unit 60 side so as not to overlap with the elevating portion 20, and the light source 62 of the light irradiation unit 60 is lit. Not.
 まず、コントローラCtrがゲート2cを制御して、ゲート2cを開放し、筐体2b,10が連通した状態とする。次に、コントローラCtrが搬送アーム2aを制御して、ウエハWが昇降部20の上方に位置するように、ウエハWを保持している搬送アーム2aを筐体10内に移動させる。 First, the controller Ctr controls the gate 2c to open the gate 2c so that the housings 2b and 10 are in communication with each other. Next, the controller Ctr controls the transfer arm 2a to move the transfer arm 2a holding the wafer W into the housing 10 so that the wafer W is located above the elevating portion 20.
 次に、コントローラCtrがアクチュエータ21を制御して、昇降ピン22を上昇させる。このとき、昇降ピン22は搬送アーム2aを避けて上昇し、主面Waが上面の状態で、昇降ピン22の先端にウエハWが載置される(図4参照)。 Next, the controller Ctr controls the actuator 21 to raise the elevating pin 22. At this time, the elevating pin 22 rises while avoiding the transport arm 2a, and the wafer W is placed on the tip of the elevating pin 22 with the main surface Wa on the upper surface (see FIG. 4).
 次に、コントローラCtrが搬送アーム2aを制御して、搬送アーム2aを筐体2bに移動させる。次に、コントローラCtrがゲート2cを制御して、ゲート2cを閉鎖し、筐体2bと筐体10とが連通していない状態とする(図5参照)。 Next, the controller Ctr controls the transfer arm 2a to move the transfer arm 2a to the housing 2b. Next, the controller Ctr controls the gate 2c to close the gate 2c so that the housing 2b and the housing 10 are not in communication with each other (see FIG. 5).
 次に、コントローラCtrがアクチュエータ21を制御して、昇降ピン22を下降させる。これにより、昇降ピン22と共にウエハWが降下し、下側に位置する挟持部材52の突起56によってウエハWが支持される(図5参照)。 Next, the controller Ctr controls the actuator 21 to lower the elevating pin 22. As a result, the wafer W is lowered together with the elevating pin 22, and the wafer W is supported by the protrusion 56 of the holding member 52 located on the lower side (see FIG. 5).
 次に、コントローラCtrが挟持駆動部53を制御して、一対の挟持部材52を挟持位置に移動させる。これにより、ウエハWは、主面Waが上面で主面Wbが下面の状態で、一対の挟持部材52によって挟持される(図6参照)。 Next, the controller Ctr controls the sandwiching drive unit 53 to move the pair of sandwiching members 52 to the sandwiching position. As a result, the wafer W is sandwiched by the pair of sandwiching members 52 with the main surface Wa on the upper surface and the main surface Wb on the lower surface (see FIG. 6).
 次に、コントローラCtrが反転駆動部54を制御して、一対の挟持部材52と共にベース51を反転、すなわち180°回転させる(図7参照)。これにより、ウエハWは、主面Waが下面で主面Wbが上面の状態とされる。 Next, the controller Ctr controls the reversing drive unit 54 to reverse the base 51 together with the pair of holding members 52, that is, rotate it by 180 ° (see FIG. 7). As a result, the wafer W has a main surface Wa on the lower surface and a main surface Wb on the upper surface.
 次に、コントローラCtrが挟持駆動部53を制御して、一対の挟持部材52を解放位置に移動させる。このとき、主面Wbが上面の状態のまま、下側に位置する挟持部材52の突起56によってウエハWが支持される(図8参照)。 Next, the controller Ctr controls the sandwiching drive unit 53 to move the pair of sandwiching members 52 to the release position. At this time, the wafer W is supported by the protrusion 56 of the holding member 52 located on the lower side while the main surface Wb remains on the upper surface (see FIG. 8).
 次に、コントローラCtrがアクチュエータ21を制御して、昇降ピン22を上昇させる。このとき、昇降ピン22は搬送アーム2aを避けて上昇し、主面Wbが上面の状態で、昇降ピン22の先端にウエハWが載置される(図8参照)。 Next, the controller Ctr controls the actuator 21 to raise the elevating pin 22. At this time, the elevating pin 22 rises while avoiding the transport arm 2a, and the wafer W is placed on the tip of the elevating pin 22 with the main surface Wb on the upper surface (see FIG. 8).
 次に、コントローラCtrがスライダ42を制御して、保持部30をレール41の一端側(ゲート2c側)に移動させる。このとき、枠体31がC字形状を呈しているので、枠体31は、上昇している昇降ピン22を避けてウエハWと重なり合うように位置する(図8参照)。 Next, the controller Ctr controls the slider 42 to move the holding portion 30 to one end side (gate 2c side) of the rail 41. At this time, since the frame body 31 has a C-shape, the frame body 31 is positioned so as to avoid the rising elevating pin 22 and overlap with the wafer W (see FIG. 8).
 次に、コントローラCtrがアクチュエータ21を制御して、昇降ピン22を下降させる。これにより、昇降ピン22と共にウエハWが降下し、下側に位置する保持部30の支持片32によってウエハWが支持される(図9参照)。 Next, the controller Ctr controls the actuator 21 to lower the elevating pin 22. As a result, the wafer W is lowered together with the elevating pin 22, and the wafer W is supported by the support piece 32 of the holding portion 30 located on the lower side (see FIG. 9).
 次に、コントローラCtrがスライダ42を制御して、光照射部60の近傍で且つ光源62と重なり合わない待機位置にウエハWが位置するように、保持部30を移動させる。次に、コントローラCtrが光源62を制御して、光源62を点灯させる。このとき、ウエハWが待機位置にあるので、光源62から照射される紫外線はウエハWに照射されない(図9参照)。 Next, the controller Ctr controls the slider 42 to move the holding unit 30 so that the wafer W is located near the light irradiation unit 60 and at a standby position that does not overlap with the light source 62. Next, the controller Ctr controls the light source 62 to turn on the light source 62. At this time, since the wafer W is in the standby position, the ultraviolet rays emitted from the light source 62 are not applied to the wafer W (see FIG. 9).
 光源62の準備が整った後に、コントローラCtrがスライダ42を制御して、保持部30をレール41の他端側(ゲート2cとは反対側)に移動させる。この際、ウエハWが光源62の直下を通過するので、ウエハWの主面Wbに紫外線が照射される。これにより、主面Wbに付着している有機物が除去(UV洗浄)される(図10参照)。 After the light source 62 is ready, the controller Ctr controls the slider 42 to move the holding portion 30 to the other end side of the rail 41 (the side opposite to the gate 2c). At this time, since the wafer W passes directly under the light source 62, the main surface Wb of the wafer W is irradiated with ultraviolet rays. As a result, the organic matter adhering to the main surface Wb is removed (UV cleaning) (see FIG. 10).
 次に、コントローラCtrが光源62を制御して、光源62を消灯させる。この状態で、コントローラCtrがスライダ42を制御して、保持部30をレール41の一端側(ゲート2c側)に移動させる。次に、コントローラCtrが昇降ピン22を上昇させる。このとき、昇降ピン22は搬送アーム2aを避けて上昇し、主面Wbが上面の状態で、昇降ピン22の先端にウエハWが載置される(図11参照)。 Next, the controller Ctr controls the light source 62 to turn off the light source 62. In this state, the controller Ctr controls the slider 42 to move the holding portion 30 to one end side (gate 2c side) of the rail 41. Next, the controller Ctr raises the elevating pin 22. At this time, the elevating pin 22 rises while avoiding the transport arm 2a, and the wafer W is placed on the tip of the elevating pin 22 with the main surface Wb on the upper surface (see FIG. 11).
 次に、コントローラCtrがスライダ42を制御して、保持部30が昇降部20と重なり合わない位置まで保持部30を移動させる(図12参照)。次に、コントローラCtrがアクチュエータ21を制御して、昇降ピン22を下降させる。これにより、昇降ピン22と共にウエハWが降下し、下側に位置する挟持部材52の突起56によってウエハWが支持される。 Next, the controller Ctr controls the slider 42 to move the holding unit 30 to a position where the holding unit 30 does not overlap with the elevating unit 20 (see FIG. 12). Next, the controller Ctr controls the actuator 21 to lower the elevating pin 22. As a result, the wafer W is lowered together with the elevating pin 22, and the wafer W is supported by the protrusion 56 of the holding member 52 located on the lower side.
 次に、コントローラCtrが挟持駆動部53を制御して、一対の挟持部材52を挟持位置に移動させる。これにより、ウエハWは、主面Waが下面で主面Wbが上面の状態で、一対の挟持部材52によって挟持される。 Next, the controller Ctr controls the sandwiching drive unit 53 to move the pair of sandwiching members 52 to the sandwiching position. As a result, the wafer W is sandwiched by the pair of sandwiching members 52 with the main surface Wa on the lower surface and the main surface Wb on the upper surface.
 次に、コントローラCtrが反転駆動部54を制御して、一対の挟持部材52と共にベース51を反転、すなわち180°回転させる(図12参照)。これにより、ウエハWは、主面Waが上面で主面Wbが下面の状態とされる。 Next, the controller Ctr controls the reversing drive unit 54 to reverse the base 51 together with the pair of holding members 52, that is, rotate it by 180 ° (see FIG. 12). As a result, the wafer W has a main surface Wa on the upper surface and a main surface Wb on the lower surface.
 以降は、コントローラCtrが基板処理システム1の各部を制御して、図8~図11と同様の工程を繰り返す。すなわち、ウエハWが光源62の直下を通過する際に、ウエハWの主面Waに紫外線が照射され、主面Waに付着している有機物が除去(UV洗浄)される。その後、ゲート2cが開放され、主面Waが上面で主面Wbが下面の状態でウエハWが搬送アーム2aに受け渡される。搬送アーム2aは、基板処理装置3において処理されたウエハWを後続の工程に搬送する。 After that, the controller Ctr controls each part of the substrate processing system 1 and repeats the same steps as those in FIGS. 8 to 11. That is, when the wafer W passes directly under the light source 62, the main surface Wa of the wafer W is irradiated with ultraviolet rays, and the organic substances adhering to the main surface Wa are removed (UV cleaning). After that, the gate 2c is opened, and the wafer W is delivered to the transfer arm 2a with the main surface Wa on the upper surface and the main surface Wb on the lower surface. The transfer arm 2a transfers the wafer W processed by the substrate processing device 3 to a subsequent process.
 [作用]
 ところで、ウエハWの両面をUV洗浄するための一つの方法として、一対のUVランプの間に基板を通過させることが考えられる。この場合、ウエハWの表面を照射するためのUVランプと、ウエハWの裏面を照射するためのUVランプとが必要となり、装置が複雑化し、高価なUVランプのメンテナンスの頻度が高まってしまう。そのため、ウエハWの処理のためのコストが増加しうる。
[Action]
By the way, as one method for UV cleaning both sides of the wafer W, it is conceivable to pass a substrate between a pair of UV lamps. In this case, a UV lamp for irradiating the front surface of the wafer W and a UV lamp for irradiating the back surface of the wafer W are required, which complicates the apparatus and increases the frequency of maintenance of the expensive UV lamp. Therefore, the cost for processing the wafer W can be increased.
 ウエハWの両面を処理するための他の方法として、ウエハWの一方の主面を処理した後に、ウエハWを裏返して、ウエハWの他方の主面を処理することが考えられる。この場合、ウエハWの一方の主面を処理するためのユニットと、ウエハWを反転させるためのユニットと、ウエハWの他方の主面を処理するためのユニットとをウエハWが順次通過するように、基板洗浄装置が構成される。多数のウエハWを同時に取り扱う基板洗浄装置において、ウエハWが同じユニットを複数回通過するように基板処理装置を構成すると、ウエハWの搬送経路が複雑化したり、当該装置の制御が複雑化したりするためである。そのため、複数のユニットと、2つのUVランプとが必要となり、やはりウエハWの処理のためのコストが増加しうる。 As another method for processing both sides of the wafer W, it is conceivable to process one main surface of the wafer W and then turn the wafer W over to process the other main surface of the wafer W. In this case, the wafer W is sequentially passed through a unit for processing one main surface of the wafer W, a unit for inverting the wafer W, and a unit for processing the other main surface of the wafer W. A substrate cleaning device is configured in the above. In a substrate cleaning device that handles a large number of wafers W at the same time, if the substrate processing device is configured so that the wafer W passes through the same unit multiple times, the transfer path of the wafer W becomes complicated and the control of the device becomes complicated. Because. Therefore, a plurality of units and two UV lamps are required, which can also increase the cost for processing the wafer W.
 これらに対し、上記の例に係る基板処理装置3によれば、同一の筐体10内において、ウエハWの各主面Wa,Wbの処理と、ウエハWの反転とが行われる。そのため、ウエハWの各主面Wa,Wbを処理するために、ウエハWを他のユニットに搬送する必要がなくなる。したがって、ウエハWの両面を効率的に処理することが可能となる。また、ウエハWの各面の処理を一つの処理部で行えるので、基板処理装置3の小型化、低コスト化及び光照射部60のメンテナンスの簡素化を図ることが可能となる。 On the other hand, according to the substrate processing apparatus 3 according to the above example, the main surfaces Wa and Wb of the wafer W are processed and the wafer W is inverted in the same housing 10. Therefore, it is not necessary to transport the wafer W to another unit in order to process the main surfaces Wa and Wb of the wafer W. Therefore, it is possible to efficiently process both sides of the wafer W. Further, since the processing of each surface of the wafer W can be performed by one processing unit, it is possible to reduce the size and cost of the substrate processing device 3 and simplify the maintenance of the light irradiation unit 60.
 上記の例によれば、ウエハWをいったん反転して主面Wbを処理した後に、ウエハWを再び反転して主面Waを処理している。そのため、主面Waが上面となるようにウエハWが基板処理装置3に搬入された場合、ウエハWの両面が処理された後に、搬入時と同じく主面Waが上面とされた状態でウエハWが基板処理装置3から搬出される。したがって、ウエハWに対して後続の処理を行いやすくなる。 According to the above example, the wafer W is once inverted to process the main surface Wb, and then the wafer W is inverted again to process the main surface Wa. Therefore, when the wafer W is carried into the substrate processing apparatus 3 so that the main surface Wa is on the upper surface, after both sides of the wafer W are processed, the wafer W is in a state where the main surface Wa is on the upper surface as in the case of carrying in. Is carried out from the substrate processing device 3. Therefore, it becomes easy to perform the subsequent processing on the wafer W.
 上記の例によれば、光源62の準備が完了するまで、ウエハWを待機位置に位置させた状態としている。そのため、ウエハWをできる限り光照射部60に近づけた後に、光照射部60からの光の照射が行われる。したがって、光照射部60において消費されるエネルギーを低減することが可能となる。 According to the above example, the wafer W is in the standby position until the preparation of the light source 62 is completed. Therefore, after the wafer W is brought as close to the light irradiation unit 60 as possible, the light irradiation from the light irradiation unit 60 is performed. Therefore, it is possible to reduce the energy consumed by the light irradiation unit 60.
 上記の例によれば、ウエハWの待機位置は、ウエハWが反転部50によって判定される位置とは異なっている。そのため、反転部50及びウエハWと光照射部60との接触を避けつつ、光照射部60における省エネを図ることが可能となる。 According to the above example, the standby position of the wafer W is different from the position where the wafer W is determined by the reversing unit 50. Therefore, it is possible to save energy in the light irradiation unit 60 while avoiding contact between the reversing unit 50 and the wafer W and the light irradiation unit 60.
 上記の例によれば、反転部50は、搬送アーム2aからウエハWが昇降部20を介して保持部30に受け渡される受け渡し位置においてウエハWを反転させるように構成されている。そのため、ウエハWを受け渡し位置から反転位置に移動させる必要がない。したがって、基板処理装置3の更なる小型化を図ることが可能となる。 According to the above example, the reversing portion 50 is configured to reverse the wafer W at the delivery position where the wafer W is delivered from the transport arm 2a to the holding portion 30 via the elevating portion 20. Therefore, it is not necessary to move the wafer W from the delivery position to the reverse position. Therefore, it is possible to further reduce the size of the substrate processing device 3.
 上記の例によれば、ウエハWの下面側が支持片32によって支持されることにより、ウエハWが保持部30に保持される。そのため、ウエハWの上面側が保持部30によって覆われない。したがって、光照射部60によるウエハWの処理の際に、ウエハWに未処理領域(光が照射されない領域)が生じ難くなる。その結果、ウエハWの各主面Wa,Wbの全体を処理することが可能となる。一方、支持片32のうちウエハWを支持している部分は、ウエハWによって覆われている。そのため、光照射部60によるウエハWの処理の際に、支持片32の当該部分に対して光照射部60からの光が照射されない。したがって、光の照射に伴う支持片32の劣化を抑制することが可能となる。 According to the above example, the wafer W is held by the holding portion 30 by supporting the lower surface side of the wafer W by the support piece 32. Therefore, the upper surface side of the wafer W is not covered by the holding portion 30. Therefore, when the wafer W is processed by the light irradiation unit 60, an unprocessed region (a region not irradiated with light) is less likely to occur in the wafer W. As a result, it becomes possible to process the entire main surfaces Wa and Wb of the wafer W. On the other hand, the portion of the support piece 32 that supports the wafer W is covered with the wafer W. Therefore, when the wafer W is processed by the light irradiation unit 60, the light from the light irradiation unit 60 is not irradiated to the portion of the support piece 32. Therefore, it is possible to suppress the deterioration of the support piece 32 due to the irradiation of light.
 [変形例]
 以上、本開示に係る実施形態について詳細に説明したが、特許請求の範囲及びその要旨を逸脱しない範囲で種々の変形を上記の実施形態に加えてもよい。
[Modification example]
Although the embodiments according to the present disclosure have been described in detail above, various modifications may be added to the above embodiments without departing from the scope of claims and the gist thereof.
 (1)上記の例では、ウエハWをいったん反転して主面Wbを処理した後に、ウエハWを再び反転して主面Waを処理していたが、ウエハWを反転させずに主面Waを処理し、ウエハWを反転させた後に、主面Wbを処理してもよい。この場合、基板処理装置3において処理されたウエハWは、主面Waが下面で主面Wbが上面の状態で搬送アーム2aに受け渡される。このようにすると、ウエハWの両面を処理するために、反転部50によるウエハWの反転が1回ですむ。そのため、ウエハWの両面を処理するために要する時間を短縮することが可能となる。 (1) In the above example, the wafer W was once inverted to process the main surface Wb, and then the wafer W was inverted again to process the main surface Wa. However, the wafer W was not inverted and the main surface Wa was processed. May be processed and the wafer W is inverted, and then the main surface Wb may be processed. In this case, the wafer W processed by the substrate processing apparatus 3 is delivered to the transfer arm 2a with the main surface Wa on the lower surface and the main surface Wb on the upper surface. In this way, in order to process both sides of the wafer W, the inversion portion 50 only needs to invert the wafer W once. Therefore, it is possible to shorten the time required to process both sides of the wafer W.
 (2)基板処理装置3において、ウエハWの一方の面のみを選択的に処理してもよい。 (2) In the substrate processing apparatus 3, only one surface of the wafer W may be selectively processed.
 (3)上記の例では、反転部50は、ウエハWを挟持した状態でウエハWを反転させていたが、ウエハWを吸着した状態でウエハWを反転させてもよい。 (3) In the above example, the inverting portion 50 inverts the wafer W while sandwiching the wafer W, but the wafer W may be inverted while the wafer W is adsorbed.
 (4)上記の例では、光照射部60に対してウエハWを移動させることにより、ウエハWの上面全体に対して光を照射していたが、ウエハWに対して光照射部60が移動してもよいし、光照射部60及び保持部30の双方が移動してもよい。 (4) In the above example, the entire upper surface of the wafer W is irradiated with light by moving the wafer W with respect to the light irradiation unit 60, but the light irradiation unit 60 moves with respect to the wafer W. Either the light irradiation unit 60 and the holding unit 30 may move.
 (5)上記の例では、ウエハWに光を照射してウエハWの主面Wa,Wbの有機物を除去する処理を説明したが、図13に示されるように、ブラシ70等を直接ウエハWの主面Wa,Wbに接触させて、ウエハWの主面Wa,Wbの有機物を除去してもよい。 (5) In the above example, the process of irradiating the wafer W with light to remove organic substances on the main surfaces Wa and Wb of the wafer W has been described, but as shown in FIG. 13, the brush 70 and the like are directly applied to the wafer W. The organic substances on the main surfaces Wa and Wb of the wafer W may be removed by contacting the main surfaces Wa and Wb of the wafer W.
 (6)コントローラCtrは、光照射部60が主面Waを処理する際には、ウエハWが光照射部60に対して第1速度で相対的に移動するように駆動部40を制御し、光照射部60が主面Wbを処理する際には、ウエハWが光照射部60に対して第1速度と異なる第2速度で相対的に移動するように駆動部40を制御してもよい。例えばコントローラCtrは、光照射部60が主面Waを処理する際には、上記スライダ42を第1速度で移動させるように駆動部40を制御し、光照射部60が主面Wbを処理する際には、上記スライダ42を第2速度で移動させるように駆動部40を制御してもよい。例えば、主面WaがウエハWの表面(回路形成面)であり、主面WbがウエハWの裏面である場合、主面Wbから除去すべき異物(例えば有機物、残渣等)は、主面Waから除去すべき異物よりもよりも少ない場合がある。このような場合、第2速度は第1速度より低くてもよい。これにより、主面Wbに対する処理時間を短縮することができる。また、主面Wbに対する処理における光源62の点灯時間を短縮し、光源62の劣化を抑制することもできる。これにより、光源62の交換頻度を低くすることができる。 (6) The controller Ctr controls the drive unit 40 so that the wafer W moves relative to the light irradiation unit 60 at the first speed when the light irradiation unit 60 processes the main surface Wa. When the light irradiation unit 60 processes the main surface Wb, the drive unit 40 may be controlled so that the wafer W moves relative to the light irradiation unit 60 at a second speed different from the first speed. .. For example, the controller Ctr controls the drive unit 40 so as to move the slider 42 at the first speed when the light irradiation unit 60 processes the main surface Wa, and the light irradiation unit 60 processes the main surface Wb. At that time, the drive unit 40 may be controlled so as to move the slider 42 at the second speed. For example, when the main surface Wa is the front surface (circuit forming surface) of the wafer W and the main surface Wb is the back surface of the wafer W, foreign substances (for example, organic substances, residues, etc.) to be removed from the main surface Wb are the main surface Wa. May be less than foreign matter to be removed from. In such a case, the second speed may be lower than the first speed. As a result, the processing time for the main surface Wb can be shortened. Further, it is possible to shorten the lighting time of the light source 62 in the processing for the main surface Wb and suppress the deterioration of the light source 62. As a result, the frequency of replacement of the light source 62 can be reduced.
 [例示]
 例1.本開示の一つの例に係る基板処理システムは、第1の主面と第1の主面の背面である第2の主面とを含む基板を搬送するように構成された搬送装置と、搬送装置との間で基板を授受するように構成された基板処理装置とを備える。基板処理装置は、搬送装置によって搬送された基板を保持するように構成された保持部と、第1の主面と第2の主面との一方に対して所定の処理を行うように構成された処理部と、保持部に保持されている基板が処理部に対して相対的に移動するように、保持部及び処理部の少なくとも一方を駆動する駆動部と、基板を反転させるように構成された反転部と、保持部、処理部、駆動部及び反転部を収容する筐体とを含む。この場合、同一の筐体内において、基板の各主面の処理と、基板の反転とが行われる。そのため、基板の各面を処理するために、基板を他のユニットに搬送する必要がなくなる。したがって、基板の両面を効率的に処理することが可能となる。また、基板の各面の処理を一つの処理部で行えるので、基板処理装置の小型化、低コスト化及び処理部のメンテナンスの簡素化を図ることが可能となる。
[Example]
Example 1. The substrate processing system according to one example of the present disclosure includes a transfer device configured to transfer a substrate including a first main surface and a second main surface which is a back surface of the first main surface, and a transfer device. It includes a substrate processing apparatus configured to exchange and exchange substrates with and from the apparatus. The substrate processing apparatus is configured to perform a predetermined process on one of a holding portion configured to hold the substrate conveyed by the conveying apparatus and one of the first main surface and the second main surface. The drive unit that drives at least one of the holding unit and the processing unit and the substrate are inverted so that the processing unit and the substrate held by the holding unit move relative to the processing unit. It includes a reversing part and a housing for accommodating a holding part, a processing part, a driving part, and a reversing part. In this case, each main surface of the substrate is processed and the substrate is inverted in the same housing. Therefore, it is not necessary to transport the substrate to another unit in order to process each surface of the substrate. Therefore, it is possible to efficiently process both sides of the substrate. Further, since the processing of each surface of the substrate can be performed by one processing unit, it is possible to reduce the size and cost of the substrate processing apparatus and to simplify the maintenance of the processing unit.
 例2.本開示の他の例に係る基板処理装置は、外部の搬送装置によって搬送された基板を保持するように構成された保持部と、基板の第1の主面と第1の主面の背面である基板の第2の主面との一方に対して所定の処理を行うように構成された処理部と、保持部に保持されている基板が処理部に対して相対的に移動するように、保持部及び処理部の少なくとも一方を駆動する駆動部と、基板を反転させるように構成された反転部と、保持部、処理部、駆動部及び反転部を収容する筐体とを備える。例2の装置によれば、例1と同様の効果を奏する。 Example 2. The substrate processing apparatus according to another example of the present disclosure includes a holding portion configured to hold a substrate conveyed by an external transfer device, and a first main surface of the substrate and a back surface of the first main surface. A processing unit configured to perform a predetermined process on one of the second main surfaces of a substrate and a substrate held by the holding unit move relative to the processing unit. The drive unit for driving at least one of the holding unit and the processing unit, the reversing unit configured to invert the substrate, and the housing for accommodating the holding unit, the processing unit, the driving unit, and the reversing unit are provided. According to the apparatus of Example 2, the same effect as that of Example 1 is obtained.
 例3.例2の装置は、処理部、駆動部及び反転部を制御するように構成された制御部をさらに備え、制御部は、処理部によって第1の主面を処理するように処理部及び駆動部を制御することと、基板の反転により第1の主面と第2の主面との向きが入れ替わるように反転部を制御することと、処理部によって第2の主面を処理するように処理部及び駆動部を制御することとをこの順に実行してもよい。この場合、基板の両面を処理するために、反転部による基板の反転が1回ですむ。そのため、基板の両面を処理するために要する時間を短縮することが可能となる。 Example 3. The apparatus of Example 2 further includes a control unit configured to control a processing unit, a driving unit, and a reversing unit, and the control unit is such that the processing unit processes the first main surface. Control of the reversing part so that the directions of the first main surface and the second main surface are switched by reversing the substrate, and processing so that the processing unit processes the second main surface. Controlling the unit and the driving unit may be performed in this order. In this case, in order to process both sides of the substrate, the substrate needs to be inverted once by the inversion part. Therefore, it is possible to reduce the time required to process both sides of the substrate.
 例4.例2の装置は、処理部、駆動部及び反転部を制御するように構成された制御部をさらに備え、制御部は、基板の反転により第1の主面と第2の主面との向きが入れ替わるように反転部を制御することと、処理部によって第2の主面を処理するように処理部及び駆動部を制御することと、基板の反転により第1の主面と第2の主面との向きが入れ替わるように反転部を制御することと、処理部によって第1の主面を処理するように処理部及び駆動部を制御することとをこの順に実行してもよい。この場合、基板をいったん反転して第2の主面を処理した後に、基板を再び反転して第1の主面を処理している。そのため、例えば、第1の主面が上面となるように基板が基板処理装置に搬入された場合、基板の両面が処理された後に、搬入時と同じく第1の主面が上面とされた状態で基板が基板処理装置から搬出される。したがって、基板に対して後続の処理を行いやすくなる。 Example 4. The device of Example 2 further includes a control unit configured to control a processing unit, a drive unit, and a reversing unit, and the control unit is oriented with respect to the first main surface and the second main surface by reversing the substrate. The reversing part is controlled so that the two main surfaces are interchanged, the processing unit and the driving unit are controlled so that the processing unit processes the second main surface, and the first main surface and the second main surface are processed by reversing the substrate. Controlling the reversing unit so that the orientations with the surfaces are switched, and controlling the processing unit and the driving unit so that the processing unit processes the first main surface may be executed in this order. In this case, the substrate is once inverted to process the second main surface, and then the substrate is inverted again to process the first main surface. Therefore, for example, when the substrate is carried into the substrate processing apparatus so that the first main surface is the upper surface, after both sides of the substrate are processed, the first main surface is the upper surface as in the case of carrying in. The board is carried out from the board processing device. Therefore, it becomes easy to perform the subsequent processing on the substrate.
 例5.例2~4のいずれかの装置は、処理部、駆動部及び反転部を制御するように構成された制御部をさらに備え、処理部は、基板の第1又は第2の主面に対して光を照射するように構成された光照射部であり、制御部は、光照射部からの光が基板に照射されない待機位置に基板が位置するように駆動部を制御しつつ、基板が待機位置において待機している状態で光の照射を開始するように光照射部を制御することをさらに実行してもよい。この場合、基板をできる限り光照射部に近づけた後に、光照射部からの光の照射が行われる。そのため、光照射部において消費されるエネルギーを低減することが可能となる。 Example 5. The apparatus according to any one of Examples 2 to 4 further includes a control unit configured to control a processing unit, a driving unit, and an inversion unit, and the processing unit is provided with respect to a first or second main surface of the substrate. It is a light irradiation unit configured to irradiate light, and the control unit controls the drive unit so that the substrate is located at a standby position where the light from the light irradiation unit is not irradiated to the substrate, while the substrate is in the standby position. Further, the light irradiation unit may be further controlled so as to start the light irradiation in the standby state. In this case, after the substrate is brought as close to the light irradiation unit as possible, the light irradiation from the light irradiation unit is performed. Therefore, it is possible to reduce the energy consumed in the light irradiation unit.
 例6.例5の装置において、待機位置は、基板が反転部によって反転される位置とは異なっていてもよい。この場合、反転部及び基板と光照射部との接触を避けつつ、光照射部における省エネを図ることが可能となる。 Example 6. In the apparatus of Example 5, the standby position may be different from the position where the substrate is inverted by the inversion section. In this case, it is possible to save energy in the light irradiation unit while avoiding contact between the reversing portion and the substrate and the light irradiation unit.
 例7.例5又は例6の装置において、処理部は、基板の第1又は第2の主面に対して紫外線を照射するように構成された光照射部であってもよい。この場合、紫外線の照射により、基板の各面に付着している有機物の異物、残渣等を除去することが可能となる。 Example 7. In the apparatus of Example 5 or Example 6, the processing unit may be a light irradiation unit configured to irradiate the first or second main surface of the substrate with ultraviolet rays. In this case, it is possible to remove foreign substances, residues, and the like of organic substances adhering to each surface of the substrate by irradiating with ultraviolet rays.
 例8.制御部は、処理部が第1の主面を処理する際には、基板が処理部に対して第1速度で相対的に移動するように駆動部を制御し、処理部が第2の主面を処理する際には、基板が処理部に対して第1速度と異なる第2速度で相対的に移動するように駆動部を制御してもよい。この場合、第1の主面に必要な処理時間と、第2の主面に必要な処理時間との違いに合わせ、第1速度と第2速度とを相違させることで、処理時間を主面ごとに適正化することができる。また、主面ごとの処理時間の適正化によって、第1の主面の処理時間と第2の主面の処理時間との合計時間を短縮し、処理部の負担を軽減することもできる。 Example 8. When the processing unit processes the first main surface, the control unit controls the driving unit so that the substrate moves relative to the processing unit at the first speed, and the processing unit controls the second main surface. When processing the surface, the drive unit may be controlled so that the substrate moves relative to the processing unit at a second speed different from the first speed. In this case, the processing time is set to the main surface by making the first speed and the second speed different according to the difference between the processing time required for the first main surface and the processing time required for the second main surface. It can be optimized for each. Further, by optimizing the processing time for each main surface, the total time of the processing time of the first main surface and the processing time of the second main surface can be shortened, and the burden on the processing unit can be reduced.
 例9.例2~例8のいずれかの装置において、反転部は、搬送装置から基板が保持部に受け渡される受け渡し位置において基板を反転させるように構成されていてもよい。この場合、基板を受け渡し位置から反転位置に移動させる必要がない。そのため、基板処理装置の更なる小型化を図ることが可能となる。 Example 9. In any of the devices of Examples 2 to 8, the reversing section may be configured to flip the substrate at a delivery position where the substrate is delivered from the transfer device to the holding section. In this case, it is not necessary to move the substrate from the delivery position to the inverted position. Therefore, it is possible to further reduce the size of the substrate processing apparatus.
 例10.例2~例9のいずれかの装置において、反転部は、基板を挟持又は吸着しつつ基板を反転させるように構成されていてもよい。 Example 10. In any of the devices of Examples 2 to 9, the reversing portion may be configured to invert the substrate while sandwiching or sucking the substrate.
 例11.例2~例10のいずれかの装置において、保持部は、第1及び第2の主面のうち処理部によって処理される面を覆わずに基板を保持するように構成されていてもよい。この場合、処理部による基板の処理の際に、基板に未処理領域が生じ難くなる。そのため、基板の各面の全体を処理することが可能となる。 Example 11. In any of the devices of Examples 2 to 10, the holding unit may be configured to hold the substrate without covering the surface of the first and second main surfaces treated by the processing unit. In this case, when the processing unit processes the substrate, an unprocessed region is less likely to occur on the substrate. Therefore, it is possible to process the entire surface of each surface of the substrate.
 1…基板処理システム、2…搬送装置、2a…搬送アーム、2b…筐体、3…基板処理装置、10…筐体、20…昇降部、30…保持部、40…駆動部、50…反転部、60…光照射部、Ctr…コントローラ(制御部)、W…ウエハ(基板)、Wa…主面(第1の主面)、Wb…主面(第2の主面)。 1 ... Board processing system, 2 ... Conveying device, 2a ... Conveying arm, 2b ... Housing, 3 ... Board processing device, 10 ... Housing, 20 ... Elevating part, 30 ... Holding part, 40 ... Drive part, 50 ... Inversion Unit, 60 ... Light irradiation unit, Ctr ... Controller (control unit), W ... Wafer (board), Wa ... Main surface (first main surface), Wb ... Main surface (second main surface).

Claims (11)

  1.  第1の主面と前記第1の主面の背面である第2の主面とを含む基板を搬送するように構成された搬送装置と、
     前記搬送装置との間で前記基板を授受するように構成された基板処理装置とを備え、
     前記基板処理装置は、
      前記搬送装置によって搬送された前記基板を保持するように構成された保持部と、
      前記第1の主面と前記第2の主面との一方に対して所定の処理を行うように構成された処理部と、
      前記保持部に保持されている前記基板が前記処理部に対して相対的に移動するように、前記保持部及び前記処理部の少なくとも一方を駆動する駆動部と、
      前記基板を反転させるように構成された反転部と、
      前記保持部、前記処理部、前記駆動部及び前記反転部を収容する筐体とを含む、基板処理システム。
    A transport device configured to transport a substrate including a first main surface and a second main surface that is the back surface of the first main surface.
    A substrate processing apparatus configured to transfer the substrate to and from the transfer apparatus is provided.
    The substrate processing apparatus is
    A holding unit configured to hold the substrate conveyed by the conveying device,
    A processing unit configured to perform a predetermined process on one of the first main surface and the second main surface,
    A drive unit that drives at least one of the holding unit and the processing unit so that the substrate held by the holding unit moves relative to the processing unit.
    An inversion part configured to invert the substrate and
    A substrate processing system including the holding unit, the processing unit, the driving unit, and a housing for accommodating the reversing unit.
  2.  外部の搬送装置によって搬送された基板を保持するように構成された保持部と、
     前記基板の第1の主面と前記第1の主面の背面である前記基板の第2の主面との一方に対して所定の処理を行うように構成された処理部と、
     前記保持部に保持されている前記基板が前記処理部に対して相対的に移動するように、前記保持部及び前記処理部の少なくとも一方を駆動する駆動部と、
     前記基板を反転させるように構成された反転部と、
     前記保持部、前記処理部、前記駆動部及び前記反転部を収容する筐体とを備える、基板処理装置。
    A holding unit configured to hold the substrate transported by an external transfer device,
    A processing unit configured to perform a predetermined process on one of a first main surface of the substrate and a second main surface of the substrate which is the back surface of the first main surface.
    A drive unit that drives at least one of the holding unit and the processing unit so that the substrate held by the holding unit moves relative to the processing unit.
    An inversion part configured to invert the substrate and
    A substrate processing apparatus including a holding unit, a processing unit, a driving unit, and a housing for accommodating the reversing unit.
  3.  前記処理部、前記駆動部及び前記反転部を制御するように構成された制御部をさらに備え、
     前記制御部は、
      前記処理部によって前記第1の主面を処理するように前記処理部及び前記駆動部を制御することと、
      前記基板の反転により前記第1の主面と前記第2の主面との向きが入れ替わるように前記反転部を制御することと、
      前記処理部によって前記第2の主面を処理するように前記処理部及び前記駆動部を制御することとをこの順に実行する、請求項2に記載の装置。
    A control unit configured to control the processing unit, the driving unit, and the reversing unit is further provided.
    The control unit
    Controlling the processing unit and the driving unit so that the processing unit processes the first main surface,
    Controlling the reversing portion so that the orientations of the first main surface and the second main surface are switched by reversing the substrate.
    The apparatus according to claim 2, wherein the processing unit and the driving unit are controlled in this order so that the processing unit processes the second main surface.
  4.  前記処理部、前記駆動部及び前記反転部を制御するように構成された制御部をさらに備え、
     前記制御部は、
      前記基板の反転により前記第1の主面と前記第2の主面との向きが入れ替わるように前記反転部を制御することと、
      前記処理部によって前記第2の主面を処理するように前記処理部及び前記駆動部を制御することと、
      前記基板の反転により前記第1の主面と前記第2の主面との向きが入れ替わるように前記反転部を制御することと、
      前記処理部によって前記第1の主面を処理するように前記処理部及び前記駆動部を制御することとをこの順に実行する、請求項2に記載の装置。
    A control unit configured to control the processing unit, the driving unit, and the reversing unit is further provided.
    The control unit
    Controlling the reversing portion so that the orientations of the first main surface and the second main surface are switched by reversing the substrate.
    Controlling the processing unit and the driving unit so that the processing unit processes the second main surface,
    Controlling the reversing portion so that the orientations of the first main surface and the second main surface are switched by reversing the substrate.
    The apparatus according to claim 2, wherein the processing unit and the driving unit are controlled in this order so that the processing unit processes the first main surface.
  5.  前記処理部、前記駆動部及び前記反転部を制御するように構成された制御部をさらに備え、
     前記処理部は、前記基板の前記第1又は第2の主面に対して光を照射するように構成された光照射部であり、
     前記制御部は、前記光照射部からの光が前記基板に照射されない待機位置に前記基板が位置するように前記駆動部を制御しつつ、前記基板が前記待機位置において待機している状態で光の照射を開始するように前記光照射部を制御することをさらに実行する、請求項2~4のいずれか一項に記載の装置。
    A control unit configured to control the processing unit, the driving unit, and the reversing unit is further provided.
    The processing unit is a light irradiation unit configured to irradiate the first or second main surface of the substrate with light.
    The control unit controls the drive unit so that the substrate is located at a standby position where the light from the light irradiation unit is not irradiated to the substrate, and the light is in a state where the substrate is on standby at the standby position. The apparatus according to any one of claims 2 to 4, further performing controlling the light irradiation unit so as to start the irradiation of the above.
  6.  前記待機位置は、前記基板が前記反転部によって反転される位置とは異なる、請求項5に記載の装置。 The device according to claim 5, wherein the standby position is different from the position where the substrate is inverted by the inversion portion.
  7.  前記処理部は、前記基板の前記第1又は第2の主面に対して紫外線を照射するように構成された光照射部である、請求項5又は6に記載の装置。 The device according to claim 5 or 6, wherein the processing unit is a light irradiation unit configured to irradiate the first or second main surface of the substrate with ultraviolet rays.
  8.  前記制御部は、前記処理部が前記第1の主面を処理する際には、前記基板が前記処理部に対して第1速度で相対的に移動するように前記駆動部を制御し、前記処理部が前記第2の主面を処理する際には、前記基板が前記処理部に対して前記第1速度と異なる第2速度で相対的に移動するように前記駆動部を制御する、請求項3~7のいずれか一項記載の装置。 The control unit controls the drive unit so that when the processing unit processes the first main surface, the substrate moves relative to the processing unit at a first speed. When the processing unit processes the second main surface, the driving unit is controlled so that the substrate moves relative to the processing unit at a second speed different from the first speed. Item 6. The apparatus according to any one of Items 3 to 7.
  9.  前記反転部は、前記搬送装置から前記基板が前記保持部に受け渡される受け渡し位置において前記基板を反転させるように構成されている、請求項2~8のいずれか一項に記載の装置。 The device according to any one of claims 2 to 8, wherein the reversing unit is configured to invert the substrate at a delivery position where the substrate is delivered from the transport device to the holding unit.
  10.  前記反転部は、前記基板を挟持又は吸着しつつ前記基板を反転させるように構成されている、請求項2~9のいずれか一項に記載の装置。 The apparatus according to any one of claims 2 to 9, wherein the reversing portion is configured to invert the substrate while sandwiching or sucking the substrate.
  11.  前記保持部は、前記第1及び第2の主面のうち前記処理部によって処理される面を覆わずに前記基板を保持するように構成されている、請求項2~10のいずれか一項に記載の装置。 Any one of claims 2 to 10, wherein the holding portion is configured to hold the substrate without covering the surface treated by the processing portion among the first and second main surfaces. The device described in.
PCT/JP2020/015249 2019-04-15 2020-04-02 Substrate treatment system and substrate treatment device WO2020213424A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021514876A JP7270726B2 (en) 2019-04-15 2020-04-02 Substrate processing system and substrate processing apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019076882 2019-04-15
JP2019-076882 2019-04-15
JP2020-027362 2020-02-20
JP2020027362 2020-02-20

Publications (1)

Publication Number Publication Date
WO2020213424A1 true WO2020213424A1 (en) 2020-10-22

Family

ID=72837752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/015249 WO2020213424A1 (en) 2019-04-15 2020-04-02 Substrate treatment system and substrate treatment device

Country Status (3)

Country Link
JP (1) JP7270726B2 (en)
TW (1) TWI827832B (en)
WO (1) WO2020213424A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199458A (en) * 1996-01-22 1997-07-31 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2001244229A (en) * 2000-02-28 2001-09-07 Shibaura Mechatronics Corp Substrate-treating device
JP2005254186A (en) * 2004-03-15 2005-09-22 Sony Corp Foreign matter removal apparatus
JP2008177361A (en) * 2007-01-18 2008-07-31 Nec Electronics Corp Uv irradiation device
JP2008177471A (en) * 2007-01-22 2008-07-31 Tokyo Electron Ltd Processing method of substrate, coater and substrate treatment system
JP2017092304A (en) * 2015-11-12 2017-05-25 株式会社Screenホールディングス Substrate processing apparatus
JP2018085354A (en) * 2016-11-21 2018-05-31 株式会社荏原製作所 Reversing machine, reversing unit, inversion method and substrate processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09199458A (en) * 1996-01-22 1997-07-31 Dainippon Screen Mfg Co Ltd Substrate treatment device
JP2001244229A (en) * 2000-02-28 2001-09-07 Shibaura Mechatronics Corp Substrate-treating device
JP2005254186A (en) * 2004-03-15 2005-09-22 Sony Corp Foreign matter removal apparatus
JP2008177361A (en) * 2007-01-18 2008-07-31 Nec Electronics Corp Uv irradiation device
JP2008177471A (en) * 2007-01-22 2008-07-31 Tokyo Electron Ltd Processing method of substrate, coater and substrate treatment system
JP2017092304A (en) * 2015-11-12 2017-05-25 株式会社Screenホールディングス Substrate processing apparatus
JP2018085354A (en) * 2016-11-21 2018-05-31 株式会社荏原製作所 Reversing machine, reversing unit, inversion method and substrate processing method

Also Published As

Publication number Publication date
TWI827832B (en) 2024-01-01
JPWO2020213424A1 (en) 2020-10-22
TW202044477A (en) 2020-12-01
JP7270726B2 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
KR101760552B1 (en) Substrate cleaning apparatus, substrate cleaning method and storage medium
WO2012098986A1 (en) Substrate inverting device, substrate inverting method, and peeling system
CN107275259B (en) Substrate processing apparatus
JP6158721B2 (en) Cleaning device, peeling system, cleaning method, program, and computer storage medium
KR101166109B1 (en) Facility for treating substrates
JP2008174361A (en) Substrate conveying device
JP5580806B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
KR101216747B1 (en) Decompression drier
WO2013011806A1 (en) Bonding system, substrate processing system, and bonding method
JP4596619B2 (en) Substrate processing system, method for transferring substrate in system, robot blade for substrate processing system, and robot for substrate processing system
JP2012069905A (en) Joining device, joining method, program, and computer storage medium
JP3928902B2 (en) Substrate manufacturing line and substrate manufacturing method
WO2020213424A1 (en) Substrate treatment system and substrate treatment device
JP2004259734A (en) Device and method for treating substrate
JP2004077592A (en) Method and apparatus for processing work, and conveying apparatus for glass substrate
JP5899153B2 (en) Peeling apparatus, peeling system, peeling method, program, and computer storage medium
JP2022077220A (en) Cleaning module and wafer processing device
JP2002329661A (en) Substrate processing device and method therefor, and method for manufacturing substrate
JP5778944B2 (en) Substrate processing equipment
JPH08139153A (en) Single wafer processing system, wafer transfer system and cassette
KR102341442B1 (en) Uv irradiation apparatus and irradiation method thereof, substrate processing apparatus and production method thereof
JP3777050B2 (en) Substrate processing system
JP2008198883A (en) Substrate-treating device
JPH10125640A (en) Apparatus and method for treating substrate
JP2022102287A (en) Transfer machine, cleaning module, and board processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20790784

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514876

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20790784

Country of ref document: EP

Kind code of ref document: A1